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Abstract—Establishing identity is becoming critical in our vastly
interconnected society. Questions such as “Is she really who she
claims to be?,” “Is this person authorized to use this facility?,” or
“Is he in the watchlist posted by the government?” are routinely
being posed in a variety of scenarios ranging from issuing a driver’s
license to gaining entry into a country. The need for reliable user
authentication techniques has increased in the wake of heightened
concerns about security and rapid advancements in networking,
communication, and mobility. Biometrics, described as the science
of recognizing an individual based on his or her physical or behav-
ioral traits, is beginning to gain acceptance as a legitimate method
for determining an individual’s identity. Biometric systems have
now been deployed in various commercial, civilian, and forensic
applications as a means of establishing identity. In this paper, we
provide an overview of biometrics and discuss some of the salient
research issues that need to be addressed for making biometric
technology an effective tool for providing information security. The
primary contribution of this overview includes: 1) examining ap-
plications where biometrics can solve issues pertaining to informa-
tion security; 2) enumerating the fundamental challenges encoun-
tered by biometric systems in real-world applications; and 3) dis-
cussing solutions to address the problems of scalability and security
in large-scale authentication systems.

Index Terms—Biometrics, cryptosystems, digital rights manage-
ment, grand challenge, information security, multibiometrics.

I. INTRODUCTION

THE PROBLEM of information security entails the pro-
tection of information elements (e.g., multimedia data)

thereby ensuring that only authorized users are able to access
the contents available in digital media. Content owners, such as
authors and authorized distributors, are losing billions of dol-
lars annually in revenue due to the illegal copying and sharing
of digital media. In order to address this growing problem,
digital rights management (DRM) systems are being deployed
to regulate the duplication and dissemination of digital content
[68]. The critical component of a DRM system is user authenti-
cation which determines whether a certain individual is indeed
authorized to access the content available in a particular digital
medium. In a generic cryptographic system, the user authen-
tication method is possession based. That is, the possession
of the decrypting key is sufficient to establish the authenticity
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of the user. Since cryptographic keys are long and random
(e.g., 128 bits for the advanced encryption standard (AES) [1],
[2]), they are difficult to memorize. As a result, these keys
are stored somewhere (for example, on a computer or a smart
card) and released based on some alternative authentication
mechanism (e.g., password). Most passwords are so simple,
that they can be easily guessed (especially based on social
engineering methods) or broken by simple dictionary attacks
[3]. It is not surprising that the most commonly used password
is the word “password.” Thus, multimedia data protected by
a cryptographic algorithm are only as secure as the password
(weakest link) used to release the correct decrypting key(s)
that can be used for establishing user authenticity. Simple
passwords are easy to guess and, thus, compromise security;
complex passwords are difficult to remember and, thus, are
expensive to maintain.1 Some users tend to “store” complex
passwords at easily accessible locations. Furthermore, most
people use the same password across different applications; an
impostor upon determining a single password can now access
multiple applications. Finally, in a multiuser account scenario,
passwords are unable to provide nonrepudiation (i.e., when a
password is divulged to a friend, it is impossible to determine
who the actual user is: this may eliminate the feasibility of
countermeasures such as holding conniving legitimate users
accountable in a court of law).

Many of these limitations associated with the use of pass-
words can be ameliorated by the incorporation of better
methods for user authentication. Biometric authentication or,
simply biometrics [5], [6], [69], refers to establishing identity
based on the physical and behavioral characteristics (also
known as traits or identifiers) of an individual such as face,
fingerprint, hand geometry, iris, keystroke, signature, voice,
etc. Biometric systems offer several advantages over traditional
authentication schemes. They are inherently more reliable than
password-based authentication as biometric traits cannot be
lost or forgotten (passwords can be lost or forgotten); biometric
traits are difficult to copy, share, and distribute (passwords can
be announced in hacker websites); and they require the person
being authenticated to be present at the time and point of au-
thentication (conniving users can deny that they have shared the
password). It is difficult to forge biometrics (it requires more
time, money, experience, access privileges) and it is unlikely
for a user to repudiate having accessed the digital content using
biometrics. Thus, a biometrics-based authentication scheme is
a powerful alternative to traditional authentication schemes.
In some instances, biometrics can be used in conjunction
with passwords (or tokens) to enhance the security offered by
the authentication system. In the context of a DRM system,

1For example, anywhere between 25% and 50% of helpdesk calls relate to
password resets; these calls cost as much as U.S. $30 per end user, with the
helpdesk receiving at least five calls per end user every year [4].
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Fig. 1. Examples of biometric characteristics: (a) face, (b) fingerprint, (c) hand geometry, (d) iris, (e) keystroke, (f) signature, and (g) voice.

biometrics can be used 1) to facilitate the entire authentication
mechanism, or 2) secure the cryptographic keys that protect a
specific multimedia file.

A number of biometric characteristics have been in use for
different applications [79]. Each biometric trait has its strengths
and weaknesses, and the choice depends on the application. No
single biometric is expected to effectively meet all of the re-
quirements (e.g., accuracy, practicality, and cost) of all applica-
tions (e.g., DRM, access control, and welfare distribution). In
other words, no biometric is “optimal” although a number of
them are “admissible.” The suitability of a specific biometric
for a particular application is determined depending upon the
requirements of the application and the properties of the bio-
metric characteristic. It must be noted that traits, such as voice
and keystroke, lend themselves more easily to a challenge-re-
sponse mechanism that may be necessary in some applications
(e.g., telebanking). A brief description of the commonly used
biometrics is given below (Fig. 1).

1) Face: Face recognition is a nonintrusive method, and fa-
cial images are probably the most common biometric character-
istic used by humans to make personal recognition. The applica-
tions of facial recognition range from a static, controlled “mug-
shot” authentication to a dynamic, uncontrolled face identifica-
tion in a cluttered background. The most popular approaches
to face recognition [7] are based on either: 1) the location and
shape of facial attributes, such as the eyes, eyebrows, nose, lips,
and chin and their spatial relationships or 2) the overall (global)
analysis of the face image that represents a face as a weighted
combination of a number of canonical faces. While the authen-
tication performance of the face recognition systems that are
commercially available is reasonable [8], they impose a number
of restrictions on how the facial images are obtained, often re-
quiring a fixed and simple background or special illumination.
These systems also have difficulty in matching face images cap-
tured from two drastically different views and under different
illumination conditions (i.e., varying temporal contexts). It is
questionable whether the face itself, without any contextual in-
formation, is a sufficient basis for recognizing a person from a
large number of identities with an extremely high level of con-

fidence. In order that a facial recognition system works well
in practice, it should automatically: 1) detect whether a face is
present in the acquired image; 2) locate the face if there is one;
3) recognize the face from a general viewpoint (i.e., from any
pose).

2) Fingerprint: Humans have used fingerprints for per-
sonal identification for many decades and the matching (i.e.,
identification) accuracy using fingerprints has been shown to
be very high [9]. A fingerprint is the pattern of ridges and
valleys on the surface of a fingertip, the formation of which is
determined during the first seven months of fetal development.
Fingerprints of identical twins are different and so are the prints
on each finger of the same person. Today, a fingerprint scanner
costs about U.S. $20 when ordered in large quantities and the
marginal cost of embedding a fingerprint-based biometric in a
system (e.g., laptop computer) has become affordable in a large
number of applications. The accuracy of the currently available
fingerprint recognition systems is adequate for authentication
systems involving a few hundred users. Multiple fingerprints of
a person provide additional information to allow for large-scale
identification involving millions of identities. One problem
with the current fingerprint recognition systems is that they
require a large amount of computational resources, especially
when operating in the identification mode. Finally, fingerprints
of a small fraction of the population may be unsuitable for the
automatic identification because of genetic factors, aging, envi-
ronmental, or occupational reasons (e.g., manual workers may
have a large number of cuts and bruises on their fingerprints
that keep changing).

3) Hand Geometry: Hand geometry recognition systems are
based on a number of measurements taken from the human
hand, including its shape, size of palm, and lengths and widths of
the fingers [10]. Commercial hand geometry-based authentica-
tion systems have been installed in hundreds of locations around
the world. The technique is very simple, relatively easy to use,
and inexpensive. Environmental factors, such as dry weather or
individual anomalies such as dry skin, do not appear to have any
negative effects on the authentication accuracy of hand geom-
etry-based systems. The geometry of the hand is not known to
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be very distinctive and hand geometry-based recognition sys-
tems cannot be scaled up for systems requiring identification
of an individual from a large population. Further, hand geom-
etry information may not be invariant during the growth period
of children. In addition, an individual’s jewelry (e.g., rings) or
limitations in dexterity (e.g., from arthritis), may pose further
challenges in extracting the correct hand geometry information.
The physical size of a hand geometry-based system is large, and
it cannot be embedded in certain devices such as laptops. There
are authentication systems available that are based on measure-
ments of only a few fingers (typically, index and middle) instead
of the entire hand. These devices are smaller than those used for
hand geometry, but are still much larger than those used in some
other biometrics (e.g., fingerprint, face, and voice).

4) Iris: The iris is the annular region of the eye bounded
by the pupil and the sclera (white of the eye) on either side.
The visual texture of the iris is formed during fetal development
and stabilizes during the first two years of life. The complex iris
texture carries very distinctive information useful for personal
recognition [11], [71], [72]. The accuracy and speed of currently
deployed iris-based recognition systems is promising and points
to the feasibility of large-scale identification systems based on
iris information. Each iris is believed to be distinctive and, like
fingerprints, even the irises of identical twins are expected to be
different. It is extremely difficult to surgically tamper the tex-
ture of the iris. Further, the ability to detect artificial irises (e.g.,
designer contact lenses) has been demonstrated in the literature.
Although the early iris-based recognition systems required con-
siderable user participation and were expensive, the newer sys-
tems have become more user friendly and cost-effective. While
iris systems have a very low false accept rate (FAR) compared
to other biometric traits, the false reject rate (FRR) of these sys-
tems can be high [75].

5) Keystroke: It is hypothesized that each person types on a
keyboard in a characteristic way. This behavioral biometric is
not expected to be unique to each individual but it is expected to
offer sufficient discriminatory information that permits identity
verification [12]. Keystroke dynamics is a behavioral biometric;
for some individuals, one may expect to observe large variations
in typical typing patterns. Further, the keystrokes of a person
using a system could be monitored unobtrusively as that person
is keying in information. However, this biometric permits “con-
tinuous verification” of an individual over a period of time.

6) Signature: The way a person signs his or her name is
known to be a characteristic of that individual [13]. Although
signatures require contact with the writing instrument and an
effort on the part of the user, they have been accepted in govern-
ment, legal, and commercial transactions as a method of authen-
tication. Signatures are a behavioral biometric that change over
a period of time and are influenced by physical and emotional
conditions of the signatories. Signatures of some people vary
substantially: even successive impressions of their signature are
significantly different. Further, professional forgers may be able
to reproduce signatures that fool the system.

7) Voice: Voice is a combination of physical and behavioral
biometrics. The features of an individual’s voice are based on
the shape and size of the appendages (e.g., vocal tracts, mouth,
nasal cavities, and lips) that are used in the synthesis of the

TABLE I
EXAMPLES OF COMMONLY USED REPRESENTATION AND MATCHING SCHEMES

FOR FIVE DIFFERENT BIOMETRIC TRAITS. ADVANCEMENTS IN STATISTICAL

PATTERN RECOGNITION, SIGNAL PROCESSING, AND COMPUTER VISION HAVE

RESULTED IN OTHER SOPHISTICATED SCHEMES NOT INDICATED HERE

TABLE II
COMPARISON OF VARIOUS BIOMETRIC TECHNOLOGIES BASED ON THE

PERCEPTION OF THE AUTHORS. HIGH, MEDIUM, AND LOW ARE DENOTED

BY H, M, AND L, RESPECTIVELY. UNIVERSALITY (DO ALL PEOPLE HAVE

IT?), DISTINCTIVENESS (CAN PEOPLE BE DISTINGUISHED BASED ON AN

IDENTIFIER?), PERMANENCE (HOW PERMANENT ARE THE IDENTIFIERS?),
AND COLLECTABLE (HOW WELL CAN THE IDENTIFIERS BE CAPTURED AND

QUANTIFIED?) ARE PROPERTIES OF BIOMETRIC IDENTIFIERS. PERFORMANCE

(MATCHING SPEED AND ACCURACY), ACCEPTABILITY (WILLINGNESS OF

PEOPLE TO ACCEPT), AND CIRCUMVENTION (FOOLPROOF) ARE ATTRIBUTES

OF BIOMETRIC SYSTEMS [18]

sound [70]. These physical characteristics of human speech are
invariant for an individual, but the behavioral part of the speech
of a person changes over time due to age, medical conditions
(such as common cold), emotional state, etc. Voice is also not
very distinctive and may not be appropriate for large-scale iden-
tification. A text-dependent voice recognition system is based
on the utterance of a fixed predetermined phrase. A text-inde-
pendent voice recognition system recognizes the speaker inde-
pendent of what he or she speaks. A text-independent system is
more difficult to design than a text-dependent system but offers
more protection against fraud. A disadvantage of voice-based
recognition is that speech features are sensitive to a number of
factors such as background noise. Speaker recognition is most
appropriate in phone-based applications but the voice signal
over phone is typically degraded in quality by the communi-
cation channel.

Table I lists some of the commonly used representation and
matching schemes for a few biometric traits. Table II compares
various biometric traits based on seven different factors.

II. BIOMETRIC VARIANCE

Password-based authentication systems do not involve any
complex pattern recognition techniques (passwords have to
match exactly) and, hence, they almost always perform ac-
curately as intended by their system designers. On the other
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Fig. 2. Variations in a biometric signal: (a) inconsistent presentation: change
in facial pose with respect to the camera [76]; (b) irreproducible presentation:
temporary change in fingerprint due to the wear and tear of ridges.

hand, biometric signals and their representations (e.g., facial
image and eigen-coefficients of facial image) of a person vary
dramatically depending on the acquisition method, acquisition
environment, user’s interaction with the acquisition device, and
(in some cases) variation in the traits due to various patho-phys-
iological phenomena. Below, we present some of the common
reasons for biometric signal/representation variations.

1) Inconsistent Presentation: The signal captured by the
sensor from a biometric identifier depends upon both the
intrinsic biometric identifier characteristic as well as the way
the biometric identifier was presented. Thus, an acquired bio-
metric signal is a nondeterministic composition of a physical
biometric trait, the user characteristic behavior, and the user
interaction facilitated by the acquisition interface. For example,
the three-dimensional (3-D) shape of the finger gets mapped
onto the two-dimensional (2-D) surface of the sensor surface.
As the finger is not a rigid object and since the process of
projecting the finger surface onto the sensor surface is not
precisely controlled, different impressions of a finger are re-
lated to each other by various transformations. Further, each
impression of a finger may possibly depict a different portion
of its surface. In case of face acquisition, different acquisitions
may represent different poses of the face [Fig. 2(a)]. Hand
geometry measurements may be based on different projections
of hand on a planar surface. Different iris/retina acquisitions
may correspond to different nonfrontal projections of iris/retina
on to the image planes.

2) Irreproducible Presentation: Unlike the synthetic iden-
tifiers [e.g., radio-frequency identification (RFID)], biometric
identifiers represent measurements of a biological trait or be-
havior. These identifiers are prone to wear-and-tear, accidental
injuries, malfunctions, and pathophysiological development.
Manual work, accidents, etc., inflict injuries to the finger,
thereby changing the ridge structure of the finger either perma-
nently or semipermanently [Fig. 2(b)]. Wearing different kinds
of jewelry (e.g., rings) may affect hand geometry measurements
in an irreproducible way. Facial hair growth (e.g., sideburns
and mustache), accidents (e.g., broken nose), attachments

Fig. 3. Imperfect acquisition: three different impressions of a subject’s finger
exhibiting poor quality ridges possibly due to extreme finger dryness.

(e.g., eyeglasses and jewelry), makeup, swellings, cyst growth,
and different hairstyles may all correspond to irreproducible
face depictions. Retinal measurements can change in some
pathological developments (e.g., diabetic retinopathy). Inebri-
ation results in erratic signatures. The common cold changes a
person’s voice. All of these phenomena contribute to dramatic
variations in the biometric identifier signal captured at different
acquisitions.

3) Imperfect Signal/Representational Acquisition: The
signal acquisition conditions in practical situations are not per-
fect and cause extraneous variations in the acquired biometric
signal. For example, nonuniform contact results in poor quality
fingerprint acquisition. That is, the ridge structure of a finger
would be completely captured only if ridges belonging to the
part of the finger being imaged are in complete physical/optical
contact with the image acquisition surface and the valleys
do not make any contact with the image acquisition surface.
However, the dryness of the skin, shallow/worn-out ridges (due
to aging/genetics), skin disease, sweat, dirt, and humidity in
the air all confound the situation resulting in a nonideal contact
situation (Fig. 3). In the case of inked fingerprints, inappro-
priate inking of the finger often results in “noisy” low contrast
(poor quality) images, which lead to either spurious or missing
fingerprint features (i.e., minutiae). Different illuminations
cause conspicuous differences in the facial appearance. Backlit
illumination may render image acquisition virtually useless
in many applications. Depending upon ergonomic conditions,
the signature may vary significantly. The channel bandwidth
characteristics affect the voice signal.

Further, the feature extraction algorithm is imperfect and
introduces measurement errors. Various image processing op-
erations might introduce inconsistent biases to perturb feature
localization. A particular biometric identifier of two different
people can be very similar because of the inherent lack of
distinctive information in it or because of the inadequate repre-
sentation used for the identifier. As a result of these complex
variations in the biometric signal/representations, determining
whether two presentations of a biometric identifier are the same
typically involves complex pattern recognition and decision
making.

III. OPERATION OF A BIOMETRIC SYSTEM

A biometric system may be viewed as a signal detection
system with a pattern recognition architecture that senses a
raw biometric signal, processes this signal to extract a salient
set of features, compares these features against the feature sets
residing in the database, and either validates a claimed identity
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Fig. 4. Fingerprint minutiae: (a) The common fingerprint minutiae types: (b)
ridge ending: (x ; y ) are the minutia coordinates, � is the angle that the minutia
tangent forms with the horizontal axis: (c) ridge bifurcation.

or determines the identity associated with the signal. Biometric
systems attempt to elicit repeatable and distinctive human
presentations, and consist (in theory, if not in actual practice)
of user-friendly, intuitive interfaces for guiding the user in
presenting the necessary traits. In the context of biometric
systems, sensing consists of a biometric sensor (e.g., fingerprint
sensor or charge-coupled device (CCD) camera), which scans
the biometric characteristic of an individual to produce a digital
representation of the characteristic. A quality check is generally
performed to ensure that the acquired sample can be reliably
processed by successive stages. In order to facilitate matching,
the input digital representation is usually further processed
by a feature extractor to generate a compact but expressive
representation called a feature set which can be stored as a
template for future comparison. The feature extraction stage
discards the unnecessary and extraneous information from the
sensed measurements and gleans useful information necessary
for matching.

Let us consider the example of fingerprint matching to illus-
trate how a biometric matcher operates. The most widely used
local features are based on minute details (minutiae) of the fin-
gerprint ridges [Fig. 4(a)]. The pattern of the minutiae of a fin-
gerprint forms a valid representation of the fingerprint. This rep-
resentation is compact and captures a significant component of
information in fingerprints; compared to other representations,
minutiae extraction is relatively more robust to various sources
of fingerprint degradation. Most types of minutiae in fingerprint
images are not stable and cannot be reliably identified by auto-
matic image processing methods. The most widely used features
are based on: 1) ridge ending; and 2) ridge bifurcation, which
are represented in terms of triplets , where [x, y] repre-
sents the spatial coordinates in a fixed image-centric coordinate
system and represents orientation of the ridge at that minutia
[Fig. 4(b) and (c)]. Typically, in a live-scan fingerprint image of
good quality, there are about 20–70 minutiae.

How are two biometric measurements matched? Typically, a
biometric matcher undoes some of the intraclass variations in
the biometric measurements to be matched by aligning them
with respect to each other. Once the two representations are
aligned, an assessment of their similarity is measured. The sim-
ilarity between the two representations is typically quantified
in terms of a matching score; the higher the matching score,

Fig. 5. Fingerprint matching. Here, matching consists of feature (minutiae) ex-
traction followed by alignment and determination of corresponding minutiae
(highlighted using filled circles). (a) Matching two impressions of the same fin-
gers; (b) matching impressions from different fingers.

the more similar are the representations. For example, given
two (query and template) fingerprint feature representations,
the matching module determines whether the prints are impres-
sions of the same finger by a comparison of the query and tem-
plate features. Only in highly constrained fingerprint systems
can one assume that the query and template fingerprints depict
the same portion of the finger and are aligned (in terms of dis-
placement from the origin of the imaging coordinate system
and of their orientations) with each other. So, in typical situ-
ations, one needs to (either implicitly or explicitly) align (or
register) the fingerprints (or their representations) before de-
ciding whether the prints are mated pairs. After aligning the fin-
gerprints, the number of matching (or corresponding) features
is determined and a fingerprint similarity is defined in terms
of the number of corresponding minutiae. Fig. 5 illustrates the
matching process. Even in the best practical situations, all minu-
tiae in query and template prints are rarely matched due to spu-
rious minutiae introduced by dirt/leftover smudges, variations in
the area of finger being imaged, and displacement of the minutia
owing to distortion of the print (Fig. 6) from pressing the finger
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Fig. 6. Two (good quality) fingerprint impressions of the same finger exhibiting
nonlinear elastic deformation. A fingerprint matching algorithm that assumes a
rigid transformation between the two fingerprint representations cannot success-
fully match the minutiae points present in the two prints.

whose surface is deformable against the flat surface of the ac-
quisition device [55]; the matcher uses a system parameter—the
threshold value—to decide whether a given pair of prints be-
longs to the same finger (mated pair) or not.

IV. FUNCTIONALITIES OF A BIOMETRIC SYSTEM

Biometrics is not only a fascinating pattern recognition re-
search problem but, if carefully used, could also be an enabling
technology with the potential to make our society safer, reduce
fraud, and lead to user convenience (user friendly man-machine
interface) by broadly providing the following three functionali-
ties.

1) Verification (“Is this person truly John Doe?”): Bio-
metrics can verify with high certainty the authenticity
of a claimed enrollment based on the input biometric
sample. For example, a person claims that he or she is
known as John Doe within the authentication system
and offers his or her fingerprint; the system then ei-
ther accepts or rejects the claim based on a comparison
performed between the offered pattern and the enrolled
pattern associated with the claimed identity. Commer-
cial applications, such as computer network logon, elec-
tronic data security, ATMs, credit-card purchases, phys-
ical access control, cellular phones, personal digital as-
sistants (PDAs), medical records management, and dis-
tance learning are sample authentication applications.
Authentication applications are typically cost sensitive
with a strong incentive for being user friendly.

2) Identification (“Is this person in the database?”):
Given an input biometric sample, an identification
determines if the input biometric sample is associ-
ated with any of a large number (e.g., millions) of
enrolled identities. Typical identification applications
include welfare-disbursement, national ID cards, border
control, voter ID cards, driver’s license, criminal investi-
gation, corpse identification, parenthood determination,
missing children identification, etc. These identification
applications require a large sustainable throughput with
as little human supervision as possible.

3) Screening (“Is this a wanted person?”): Screening
applications determine whether a person belongs to
a watchlist of identities. Examples of screening ap-
plications could include airport security, security at
public events, and other surveillance applications. The

screening watchlist consists of a moderate (e.g., a few
hundred) number of identities. By their very nature, the
screening applications: 1) do not have a well-defined
“user” enrollment phase; 2) can expect only minimal
control over their subjects and imaging conditions; 3)
require large sustainable throughput with as little human
supervision as possible. Screening cannot be accom-
plished without biometrics (e.g., by using token-based
or knowledge-based identification).
Biometric systems are being increasingly deployed in
civilian applications that have several thousand enrolled
users. The Schiphol Privium scheme at the Amsterdam
airport, for example, employs iris scan cards to speed
up the passport and visa control procedures.2 Passengers
enrolled in this scheme insert their card at the gate and
look into a camera; the camera acquires the eye image of
the traveler, processes it to locate the iris, and computes
the IrisCode [11]; the computed IrisCode is compared
with the data residing in the card to complete user ver-
ification. A similar scheme is also being used to verify
the identity of Schiphol airport employees working in
high-security areas. Thus, biometric systems can be used
to enhance user convenience while improving security.

A. Matcher Accuracy and Template Capacity

Unlike password or token-based system, a practical bio-
metric system does not make perfect match decisions and can
make two basic types of errors: 1) False Match: the biometric
system incorrectly declares a successful match between the
input pattern and a nonmatching pattern in the database (in the
case of identification/screening) or the pattern associated with
an incorrectly claimed identity (in the case of verification).
2) False Nonmatch: the biometric system incorrectly declares
failure of match between the input pattern and a matching
pattern in the database (identification/screening) or the pattern
associated with the correctly claimed identity (verification).
Besides the above two error rates, the failure to capture (FTC)
rate and the failure to enroll (FTE) rate are also necessary to
summarize the accuracy of a biometric system. The FTC rate is
only applicable when the biometric device supports automatic
capture functionality, and denotes the percentage of times the
biometric device fails to capture a sample when the biometric
characteristic is presented to it. This type of error typically
occurs when the device is not able to locate a biometric signal
of sufficient quality (e.g., an extremely faint fingerprint or
an occluded face). The FTE rate, on the other hand, denotes
the percentage of times users are not able to enroll in the
recognition system. There is a tradeoff between the FTE rate
and the perceived system accuracy (FMR and FNMR). FTE
errors typically occur when the system rejects poor quality
inputs during enrollment. Consequently, the database contains
only good quality templates and the perceived system accuracy
improves. Because of the interdependence among the failure
rates and error rates, all of these rates (i.e., FTE, FTC, FNMR,
and FMR) constitute important accuracy specifications of a

2“Schiphol backs eye scan security,” (CNN World News, March 27, 2002,
Available at http://www.cnn.com/2002/WORLD/europe/03/27/schiphol.secu-
rity/).



JAIN et al.: BIOMETRICS: A TOOL FOR INFORMATION SECURITY 131

Fig. 7. Fishbone (cause and effect) diagram of biometric failures. The security afforded by a biometric system can be undermined due to a variety of reasons.
(a) Administration: The administrative capability of the system can be abused to compromise the integrity of the system. (b) Intrinsic: The inherent limitation in
information content, and the representation/matching schemes may result in the erroneous acceptance of an intruder. (c) Infrastructure: A denial-of-service attack
can disable system functionality. (d) Nonsecure processing: A hacker could exploit the nature of processing adopted by the system to fraudulently gain access into
the system. (e) Patent: Biometrics identifiers are not secrets and, hence, an intruder, though unaware of the intricacies of the system, could create physical or digital
artifacts to fool the system.

biometric system and should be reported during performance
evaluation.

From an information theory perspective, one is interested in
determining the number of unique users that can be represented
by the contents of a particular template. Consider a biometric
template consisting of bits. If all bit combinations are possible,
then the number of users that can be uniquely represented is .
However, in reality, this is not true because 1) not all bit com-
binations are valid, and 2) a single user will require more than
a single bit-combination. This imposes an upper bound
on the number of users that can be accommodated by the tem-
plate. Another formulation of the same problem requires com-
puting the probability that the templates pertaining to two dif-
ferent users demonstrate sufficient similarity. As noted earlier,
the notion of similarity in biometrics is defined using a toler-
ance level (known as a threshold) since it is practically impos-
sible to extract the same feature set from two different instances
of a person’s biometric. The capacity of a template is an indi-
cation of the number of unique users that can be represented by
its contents.

V. ATTACKS ON A BIOMETRIC SYSTEM

A biometric system is vulnerable to different types of at-
tacks that can compromise the security afforded by the system,
thereby resulting in system failure (Fig. 7). All attacks observed
in Fig. 7 can be categorized into two basic types.

1) Zero-effort attacks: The biometric traits of an opportunistic
intruder may be sufficiently similar to a legitimately en-

rolled individual, resulting in a False Match and a breach
of system security. This event is related to the probability
of observing a degree of similarity between templates orig-
inating from different sources by chance.

2) Adversary attacks: This refers to the possibility that a de-
termined impostor would be able to masquerade as an en-
rolled user by using a physical or a digital artifact of a legit-
imately enrolled user. An individual may also deliberately
manipulate his or her biometric trait in order to avoid de-
tection by an automated biometric system.

A. Zero-Effort Attacks

What is the probability that the biometric data originating
from two different individuals will be sufficiently similar? This
question leads to the issue of individuality in biometrics. The
individuality of a certain biometric trait is a function of the in-
terclass similarity and the intraclass variability associated with
the trait. In order to address this issue, one could model the
source that generates the biometric signal or model the param-
eters constituting the template (i.e., feature set). The individu-
ality problem, in the context of, say, fingerprints, can be for-
mulated in many different ways depending on which one of the
following aspects of the problem is under examination: 1) de-
termine the probability that any two (or more) individuals may
have sufficiently similar fingerprints in a given target popula-
tion; 2) given a sample fingerprint, determine the probability of
finding a sufficiently similar fingerprint in a target population; 3)
given two fingerprints from two different fingers, determine the
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probability that they are sufficiently similar. A scientific basis
for fingerprint comparison can establish an upper bound on the
performance of fingerprint systems.

Given a representation scheme (e.g., minutiae distribution)
and a similarity measure (e.g., string matching), there are two
approaches for determining the individuality of the fingerprints.
In the empirical approach, representative samples of finger-
prints are collected and using a typical fingerprint matcher, the
accuracy of the matcher on the samples provides an indication
of the uniqueness of the fingerprint with respect to the matcher.
However, there are known problems (and costs) associated with
collection of the representative samples. Additionally, even
if a large database of fingerprints, such as the FBI database,
which contains about 450 million fingerprints (ten prints of
about 45 million people) is used for an empirical evaluation of
the fingerprint individuality, it would take approximately 127
years to match all of the fingerprints in the database with each
other using a processor with a speed of one million matches per
second. In a theoretical approach to individuality estimation,
one models all realistic phenomenon affecting interclass and
intraclass fingerprint pattern variations. Given the similarity
metric, one could then theoretically estimate the probability
of a false correspondence. Theoretical approaches are often
limited by the extent to which the assumed model conforms to
the reality.

The total number of degrees-of-freedom of the pattern space
(e.g., minutiae configuration space) does not directly relate
to the discriminability of the different patterns (e.g., minutiae
from different fingers). The effective estimation of discrimina-
tory information can only be achieved by taking into account
intraclass variations. There are several sources of variability in
the multiple impressions of a finger: nonuniform contact (with
the sensor), irreproducible contact, inconsistent contact, and
imaging artifacts. This variability in multiple impressions of a
finger manifests itself as: 1) detection of spurious minutiae or
missing genuine minutiae; 2) displacement/disorientation (also
called deformation) of genuine minutiae; 3) transformation
of the type of minutiae (connective ambiguity). However,
designing a matcher to accommodate these intraclass variations
may result in a significant increase in the probability of false
correspondences between minutiae points.

Pankanti et al. [14] developed a fingerprint individuality
model based on the minutiae configuration of a fingerprint.
Given an input fingerprint containing n minutiae, they compute
the probability that an arbitrary fingerprint template (in a data-
base of fingerprints) containing minutiae will have exactly

corresponding minutiae with the input. They assume that
minutiae are defined by their location, ( , ), and by the angle

, of the ridge on which they reside. If denotes the area of
overlap between the two fingerprints and denotes the area
of tolerance used to decide minutiae correspondences (Fig. 8),
then the probability of matching minutiae in both position
and orientation is computed as

Fig. 8. Illustration of the area of overlap and the area of tolerance when com-
paring two fingerprints.

TABLE III
FINGERPRINT CORRESPONDENCE PROBABILITIES OBTAINED FROM THE

INDIVIDUALITY MODEL PROPOSED BY PANKANTI ET AL. [14] FOR DIFFERENT

SIZES OF FINGERPRINT IMAGES CONTAINING 26, 36, OR 46 MINUTIAE. THE

ENTRY (70, 12, 12, 12) CORRESPONDS TO THE 12-POINT GUIDELINE. THE

VALUE OF M FOR THIS ENTRY WAS COMPUTED BY ESTIMATING TYPICAL PRINT

AREA MANIFESTING 12 MINUTIAE IN A 500-dpi OPTICAL FINGERPRINT SCAN

where is the probability of two position-matched minutiae
having similar orientation, and is assumed to be
an integer (since ).

The authors in [14] report the value of for
fingerprint images containing 12, 26, 36, and 46 minutiae
(Table III). While the individuality of the minutiae-based fin-
gerprint representation based on their model is lower than other
estimates in the literature (e.g., [61]), their results indicate that
the likelihood of an adversary guessing someone’s fingerprint
pattern (e.g., requiring matching 20 or more minutia from a
total of 36) is significantly lower than a hacker being able to
guess a six-character alphanumerical case-sensitive (most prob-
ably weak) password by social engineering techniques (most
common passwords are based on birthday, spouse’s name, etc.)
or by brute force (the probability of guessing such a password
by brute force is ). Obviously, more stringent
conditions on matching will provide a better cryptographic
strength at the risk of increasing the false rejection error rate.

B. Adversary Attacks

Biometrics are not “secrets.” Physical traits, such as face and
fingerprint, can be surreptitously obtained from an individual
(e.g., covert acquisition of face images or lifting latent prints
from an object) for creating digital or physical artifacts that can
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Fig. 9. Vulnerabilities in a biometric system (adapted from [16]).

then be used to spoof the identity of a legitimately enrolled indi-
vidual. Besides this, there are other attacks that can be launched
against an application whose resources are protected using bio-
metrics [15], [73].

1) Circumvention: An intruder may fraudulently gain access
to the system by circumventing the biometric matcher and
peruse sensitive data such as medical records pertaining to
a legitimately enrolled user. Besides violating the privacy
of the enrolled user, the impostor can modify sensitive data
including biometric information.

2) Repudiation: A legitimate user may access the facilities
offered by an application and then claim that an intruder
had circumvented the system. A bank clerk, for example,
may modify the financial records of a customer and then
deny responsibility by claiming that an intruder must have
spoofed her (i.e., the clerk’s) biometric trait and accessed
the records.

3) Collusion: An individual with super-user privileges (such
as an administrator) may deliberately modify biometric
system parameters to permit incursions by a collaborating
intruder.

4) Coercion: An impostor may force a legitimate user (e.g.,
at gunpoint) to grant him access to the system.

5) Denial of Service (DoS): An attacker may overwhelm the
system resources to the point where legitimate users de-
siring access will be refused service. For example, a server
that processes access requests can be bombarded with a
large number of bogus requests, thereby overloading its
computational resources and preventing valid requests
from being processed.

Ratha et al. [16] identified several different levels of attacks that
can be launched against a biometric system (Fig. 9). These at-
tacks are intended to either circumvent the security afforded by
the system or to deter the normal functioning of the system: 1) a
fake biometric trait, such as an artificial finger, may be presented
at the sensor; 2) illegally intercepted data may be resubmitted to
the system; 3) the feature extractor may be replaced by a Trojan
horse program that produces predetermined feature sets; 4) le-
gitimate feature sets may be replaced with synthetic feature sets;

5) the matcher may be replaced by a Trojan horse program that
always outputs high scores thereby defying the system secu-
rity; 6) the templates stored in the database may be modified
or removed. Alternately, new templates may be introduced in
the database; 7) the data in the communication channel between
various modules of the system may be altered; 8) the final deci-
sion output by the biometric system may be overridden.

Template security is an important consideration in the de-
sign of a biometric system. The U.K. Biometric Working Group
(UK-BWG) lists several factors that can affect the integrity of
the template [17]: 1) accidental template corruption due to a
system malfunction such as a hardware failure; 2) deliberate al-
teration of an enrolled template by an attacker; 3) substitution
of a valid template with a bogus template for the purpose of de-
terring system functionality.

A template represents a set of salient features that summa-
rizes the biometric data (signal) of an individual. Due to its com-
pact nature, it is commonly assumed that the template cannot be
used to elicit complete information about the original biometric
signal. Furthermore, since the templates are typically stored in
an encrypted form, it is substantially difficult to decrypt and
determine the contents of the stored template (without knowl-
edge of the correct decrypting keys). Thus, traditionally, tem-
plate-generating algorithms have been viewed as one-way al-
gorithms. However, in recent literature, there have been tech-
niques presented that contradict these assumptions. Adler [74]
demonstrated that a face image can be regenerated from a face
template using a “Hill Climbing Attack.” An iterative scheme is
employed to reconstruct a face image using a face verification
system that releases match scores. Uludag and Jain [15] devised
a synthetic template generator (STG) that also uses the “Hill
Climbing Attack” to determine the contents of a target minutiae
template.

Several methods have been suggested in the literature to pro-
tect biometric templates from revealing important information.
In order to prevent the Hill-Climbing Attack from successfully
converging, Soutar [18] has suggested the use of coarsely quan-
tized match scores by the matcher. However, Adler [19] demon-
strated that it is still possible to estimate the unknown enrolled
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image although the number of iterations required to converge is
significantly higher now. The Hill-Climbing attack can be pre-
vented if the biometric system aborts the matching process upon
detecting multiple (say, 3) unsuccessful attempts.

Yeung and Pankanti [20] describe an invisible fragile wa-
termarking technique to detect regions in a fingerprint image
that have been tampered with by an attacker. In the proposed
scheme, a chaotic mixing procedure is employed to transform
a visually perceptible watermark to a random-looking textured
image in order to make it resilient against attacks. This “mixed”
image is then embedded in a fingerprint image. The authors
show that the presence of the watermark does not affect the
feature extraction process. Furthermore, the original “unmixed”
watermark may be recovered by using an inverse mapping. The
use of a watermark also imparts copyright capability by identi-
fying the origin of the raw fingerprint image.

Jain and Uludag [21] suggest the use of steganography prin-
ciples [81] to hide biometric data (e.g., eigencoefficients of a
face image) in host images (e.g., fingerprints). This is particu-
larly useful in distributed systems where the raw biometric data
may have to be transmitted over a nonsecure communication
channel. Embedding biometric data in an innocuous host image
prevents an eavesdropper from accessing sensitive template in-
formation. Further, the embedded data are not significantly af-
fected when the host image is subjected to a severe tampering
method such as cropping. The authors also discuss a novel ap-
plication wherein the facial features of a user (i.e., eigencoeffi-
cients) are embedded in a host fingerprint image (of the user).
In this scenario, the watermarked fingerprint image of a person
may be stored in a smart card issued to that person. At an access
control site, the fingerprint of the person possessing the card
will first be compared with the fingerprint present in the smart
card. The eigencoefficients hidden in the fingerprint image can
then be used to reconstruct the user’s face, thereby serving as a
second source of authentication.

Watermarking and steganography techniques should be ap-
plied before encrypting the raw biometric data or the template.
Note that encryption relies on the use of a difficult-to-compute
secret key(s) to protect biometric information. Watermarking
and steganography principles, on the other hand, protect the data
even if this secret key is compromised and the biometric data
are decrypted. Therefore, it is necessary for biometric vendors
to use both of these techniques in conjunction in order to en-
hance the privacy of the stored information.

Since the biometric trait of a person cannot be easily replaced
(unlike passwords and PINs), a compromised template would
mean the loss of a user’s identity. Ratha et al. [22] propose the
use of distortion functions to generate biometric data that can
be canceled if necessary. They use a noninvertible transforma-
tion function that distorts the input biometric signal (e.g., face
image) prior to feature extraction or, alternately, modifies the ex-
tracted feature set (e.g., minutiae points) itself. When a stored
template is compromised, then the current transformation func-
tion is replaced with a new function thereby “canceling” the cur-
rent (compromised) template and generating a new one. This
also permits the use of the same biometric trait in several dif-
ferent applications by merely adopting an application-specific
transformation function. However, it is not clear how one would

ensure that the biometric discriminability is not impoverished in
the transformed domain.

Linnartz and Tuyls [23] proposed the use of shielding func-
tions to protect the biometric templates of a user from being
misused by an administrator of the biometric system. The au-
thors accomplish this by using delta-contracting and epsilon-re-
vealing functions to preprocess the biometric data acquired from
an individual. These functions make it computationally pro-
hibitive for an administrator to estimate the original data of the
user. Although several techniques have been proposed to en-
hance the security of a user’s template, government regulations
will also have to be established in order to address the issue of
template privacy. For example, issues related to the sharing of
biometric templates across agencies (e.g., health-care providers
and law-enforcement agencies) and the inferring of personal in-
formation about an enrolled user (e.g., Is this person prone to
diabetes?) from biometric data have to be countered by estab-
lishing an appropriate legal framework.

VI. BIOMETRIC CRYPTOSYSTEMS: THE FUZZY VAULT SCHEME

Given that the biometric system (like any other security
system) is vulnerable to a number of adversary attacks, it is
important to address the issue of secure design of the biometric
system. Specifically, one would like to know whether there is
a secure method of combining biometric authentication and
cryptographic techniques. In a simplistic biometrics-based
key release method [52], a successful biometric template
match releases a cryptographic key [Fig. 10(a)]. This method
is vulnerable to attacks on the biometric template database,
cryptographic key database, and the biometric matcher. A more
monolithic combination would entail generating a combined
biometric-cryptographic key that is cryptographically secure
(e.g., will not reveal information about a biometric template
or about the cryptographic key) from intruders while, for
legitimate users, will permit access to the protected resource
(e.g., key). The advantage of the second method [Fig. 10(b)],
called the biometrics-based key generation method [52], is
that since secret and biometric templates are securely stored in
the crypto-biometric template, the system is less vulnerable to
attacks on the template information database.

The matching of biometric identifiers within a cryptographic
framework is a very challenging problem. In traditional (sym-
metric) cryptography, if the encryption and decryption keys
are not identical, the decryption operation will produce useless
random data. When biometric identifiers are employed as
“keys” in the context of the cryptographic system, demanding
such an exactitude is impractical, that is, for the same biometric
entity (e.g., the right index finger) that is analyzed during
different acquisitions, the extracted biometric data will signifi-
cantly vary due to acquisition characteristics. The issue dealing
with the variability of the biometric data within the context of
the cryptographic (biometric key generation) system has not
been studied until recent years [52].

A. Biometric Key Generation Implementation

In this section, we summarize a biometric (fingerprint) key
generation system implementation by Uludag et al. [63], a cryp-
tographic construct called the fuzzy vault (see Juels and Sudan
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Fig. 10. Two modes of combining biometrics with cryptography: (a) key release and (b) key generation [63].

[62]). The technique suggested by the authors is very prelimi-
nary, but the concept is rather powerful.

For simplicity, let us assume that the system uses 8-bit -co-
ordinates of fingerprint minutiae features but it can be (and has
been) extended to include other minutiae information as well.
Further assume that x-coordinates have been appropriately
coarsely quantized (e.g., to the nearest number divisible by 5).
Fig. 11 shows the block diagram of a fingerprint fuzzy vault
system.

Encoding: Secret is any secret data that needs to be
protected (e.g., secret encryption key). The fuzzy vault built by
Uludag et al. [63] begins by concatenating 16-bits CRC data
from the initial secret S (56-bits key) to produce SC (72 bits).
This concatenation reduces the chance of a random error being
undetected (i.e., failing to identify incorrect decoding). SC is
used to find the coefficients of the polynomial P: 72-bits SC
can be represented as a polynomial with 8 (72/9) coefficients,
with degree , ,
by decomposing SC into nonoverlapping 9-bit segments,
and each segment is declared as a specific coefficient ,

. Assuming that there are unique template
minutiae, , the authors find a set of ordered
pairs .
A second set of ordered pairs, called the chaff set
C, is then generated from random x-coordinates

(distinct from ) such that
and , .

The union of these two sets is randomized to produce
vault set .

Decoding: Here, a user tries to unlock the vault using
the query minutiae features. Given query minutiae (Q)

, the points to be used in polynomial reconstruc-
tion are found by comparing , , with the ab-
scissa values of the vault , namely , :
if any , is equal to , ,
the corresponding vault point is added to the list
of points to be used. Assume that this list has points,

where . Now, for decoding a degree polynomial,
unique projections are necessary. All possible com-

binations of points, among the list with size
are considered, resulting in combinations. For each
of these combinations, the Lagrange interpolating polyno-
mial is constructed. For a specific combination set given
as , the corre-
sponding polynomial is

yielding . The coeffi-
cients are mapped back to the decoded secret . If the CRC
remainder on is not zero, we are certain that there are errors.
If the remainder is zero, with very high probability, there are no
errors. For the latter case, is segmented into two parts: the
first 56 bits denote while the remaining 16 bits are CRC data.
Finally, the system outputs . If the query minutiae list over-
laps with the template minutiae list in at least points, for
some combinations, the correct secret will be decoded, namely,

will be obtained. This denotes the desired outcome when
the query and template fingerprints are from the same finger.

VII. MULTIBIOMETRIC SYSTEMS

The matching accuracy of a biometric system is impacted
by several factors and, therefore, the performances observed
in several test conditions suggest that biometric authentication
has significant scope for improvement. Table IV presents the
“state-of-the-art” error rates of four popular biometric traits. Re-
searchers are not only addressing issues related to reducing error
rates, but they are also looking at ways to enhance the usability
of biometric systems. Some of the challenges encountered by
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Fig. 11. Flowchart of the fuzzy fingerprint vault: (a) encoding and (b) decoding [63].

TABLE IV
“STATE-OF-THE-ART” ERROR RATES ASSOCIATED WITH FINGERPRINT, FACE,

VOICE, AND IRIS BIOMETRIC SYSTEMS. NOTE THAT THE ACCURACY ESTIMATES

OF BIOMETRIC SYSTEMS ARE DEPENDENT ON A NUMBER OF TEST CONDITIONS

a biometric system in an operational scenario include the fol-
lowing.

1) Noise in sensed data: The sensed data might be noisy or
distorted. Noisy biometric data may be incorrectly matched
with templates in the database, resulting in a user being
incorrectly rejected.

2) Intraclass variations: The biometric data acquired from
an individual during authentication may be very different
from the data that was used to generate the template during
enrollment, thereby affecting the matching process. This
variation is typically caused by a user who is incorrectly
interacting with the sensor, or when sensor characteristics
are modified (e.g., by changing sensors—the sensor inter-
operability problem [64]) during the verification phase.

3) Distinctiveness: While a biometric trait is expected to vary
significantly across individuals, there may be large inter-
class similarities in the feature sets used to represent these
traits. This limitation restricts the discriminability provided
by the biometric trait.

4) Nonuniversality: While every user is expected to possess
the biometric trait being acquired, in reality, it is possible
for a subset of the users to be not able to provide a particular
biometric.

5) Spoof attacks: An impostor may attempt to spoof the bio-
metric trait of a legitimate enrolled user in order to circum-
vent the system [25]–[27].

Some of the limitations imposed by unimodal biometric sys-
tems can be overcome by using multiple biometric modalities
(such as face and fingerprint of a person or multiple fingers of
a person). Such systems, known as multibiometric systems, are
expected to be more reliable due to the presence of multiple,
independent pieces of evidence [28], [82]. These systems are
also able to meet the stringent performance requirements im-
posed by various applications [29]. Multibiometric systems can
address the problem of nonuniversality, since multiple traits en-
sure sufficient population coverage. Further, multibiometric sys-
tems could provide antispoofing measures by making it difficult
for an intruder to simultaneously spoof the multiple biometric
traits of a legitimate user. By asking the user to present a random
subset of biometric traits (e.g., right index and right middle fin-
gers in that order), the system ensures that a “live” user is in-
deed present at the point of data acquisition. Thus, a challenge-
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Fig. 12. Generic reasons for poor accuracy performance: (i) information limitation: the invariant and distinctive information content in the pattern samples may be
inherently limited [24]. (a) Due to a change in pose, an appearance-based face recognition system will not be able to match these images (taken from http://www.
lrv.fri.uni-lj.si/facedb.html, see [76]) successfully, even though they belong to the same individual. (b) Identical twins cannot be reliably distinguished using face
information alone. (ii) Representation limitation: practical feature extraction systems, typically based on simplistic models of biometric signal, fail to capture all
discriminatory information in the biometric signal. (c) “Poor quality” prints from a finger cannot be matched by traditional minutiae-based fingerprint identification
systems, although the fingerprint experts claim to routinely use such smudged prints to make a reliable match decision similarly. (d) Forged signatures cannot be
distinguished based on the representations derived from shape information alone and temporal (e.g., speed, acceleration of pen) signature information is often
useful to distinguish fraudulent impostors. (iii) Matcher limitation: a practical matcher may not be accurate because it does not take into account realistic variations
in the biometric signals. (e) Two mated signatures are not correctly matched because the matcher fails to recognize that one is a distorted version of the other. (f)
A very simple matching criterion (e.g., gross fingerprint features) may result in an incorrect match decision (i.e., two prints from different fingers can be declared
as a match if the matcher uses only the overall appearance similarity (e.g., image correlation) for matching).

response type of authentication can be facilitated using multi-
biometric systems.

Mere usage of multiple biometrics does not necessarily imply
better system performance; a poorly designed multibiometric
system can result in deterioration in performance of the indi-
vidual modalities, increase the cost of the system, and present
increased inconvenience to users/administrators (e.g., complex
enrollment procedures).

A. Modes of Operation

A multibiometric system can operate in one of three different
modes: serial mode, parallel mode, or hierarchical mode. In the
serial mode of operation, the output of one biometric trait is typ-
ically used to narrow down the number of possible identities be-
fore the next trait is used. This serves as an indexing scheme in
an identification system. For example, a multibiometric system
using face and fingerprints could first employ face information
to retrieve the top few matches, and then use fingerprint infor-
mation to converge onto a single identity. This is in contrast to

a parallel mode of operation where information from multiple
traits is used simultaneously to perform recognition. This dif-
ference is crucial. In the cascade operational mode, the various
biometric characteristics do not have to be acquired simultane-
ously. Further, a decision could be arrived at without acquiring
all of the traits. This reduces the overall recognition time. In
the hierarchical scheme, individual classifiers are combined in
a treelike structure.

B. Levels of Fusion

Evidence in a multibiometric system can be integrated in sev-
eral different levels (Fig. 13) as described below.

1) Sensor level: The raw data acquired from multiple sensors
can be processed and integrated to generate new data from
which features can be extracted. For example, in the case
of face biometrics, both 2-D texture information and 3-D
depth (range) information (obtained using two different
sensors) may be fused to generate a 3-D texture image of
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Fig. 13. Examples of fusion in the parallel mode of operation: (a) feature extraction level; (b) match score (confidence or rank) level; (c) decision (abstract label)
level.

the face which could then be subjected to feature extraction
and matching.

2) Feature level: The feature sets extracted from multiple data
sources can be fused to create a new feature set to repre-
sent the individual. The geometric features of the hand, for
example, may be augmented with the eigen-coefficients of
the face in order to construct a new high-dimension feature
vector. A feature selection/transformation procedure may
be adopted to elicit a minimal feature set from the high-di-
mensional feature vector.

3) Match score level: In this case, multiple classifiers output
a set of match scores which are fused to generate a single
scalar score. As an example, the match scores generated by

the face and hand modalities of a user may be combined via
the simple sum rule in order to obtain a new match score
which is then used to make the final decision.

4) Rank level: This type of fusion is relevant in identification
systems where each classifier associates a rank with every
enrolled identity (a higher rank indicating a good match).
Thus, fusion entails consolidating the multiple ranks as-
sociated with an identity and determining a new rank that
would aid in establishing the final decision. Techniques
such as the Borda count [80] may be used to make the final
decision.

5) Decision level: When each matcher outputs its own class
label (i.e., accept or reject in a verification system, or the
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identity of a user in an identification system), a single class
label can be obtained by employing techniques such as ma-
jority voting, behavior knowledge space, etc.

The integration at the feature extraction level assumes a
strong interaction among the input measurements and such
schemes are referred to as tightly coupled integrations. The
loosely coupled integration, on the other hand, assumes very
little or no interaction among the inputs and integration occurs
at the output of relatively autonomous agents; each agent
independently assesses the input from its own perspective.

It is generally believed that a combination scheme applied as
early as possible in the recognition system is more effective. For
example, an integration at the feature level is expected to result
in a better improvement than at the matching score level. This
is because the feature representation conveys the richest infor-
mation compared to the matching score of a matcher, while the
abstract labels contain the least amount of information about
the decision being made. However, it is more difficult to per-
form a combination at the feature level because the relationship
between the feature spaces of different biometric systems may
not be known and the feature representations may not be com-
patible. Further, when the multimodal systems employ propri-
etary individual modalities developed by different commercial
entities, different feature values may not be accessible to the
system. In such cases, integration at the matching score, rank,
or decision levels are the only options. This is also reflected in
the nature of research dedicated to multibiometric systems: very
few published papers report results on a combination at the fea-
ture level [37].

Multibiometric systems have received much attention in
recent literature. Brunelli et al. [32] describe a multibiometric
system that uses the face and voice traits of an individual for
identification. Their system combines the matching scores of
five different matchers operating on the voice and face features,
to generate a single matching score that is used for identifi-
cation. Bigun et al. develop a statistical framework based on
Bayesian statistics to integrate information presented by the
speech (text dependent) and face data of a user [33]. Hong et al.
combined face and fingerprints for person identification [29].
Their system consolidates multiple cues by associating different
confidence measures with the individual biometric matchers
and achieved a significant improvement in retrieval time as
well as identification accuracy. Kumar et al. combined hand
geometry and palmprint biometrics in a verification system
[36]. A commercial product called BioID [34] uses voice, lip
motion, and face features of a user to verify identity. Jain and
Ross improved the performance of a multibiometric system
by learning user-specific parameters [35]. General strategies
for combining multiple classifiers have been suggested in [38]
and [39]. All of the approaches presented in [38] (the highest
rank method, the Borda count method, and logistic regression)
attempt to reduce or re-rank a given set of pattern classes.
These techniques are thus relevant to the identification problem
in which a large number of classes (identities) are present.
Prabhakar and Jain [40] showed in the context of a fingerprint
verification system that combining multiple matchers, mul-
tiple enrollment templates, and multiple fingers of a user can
significantly improve the accuracy of a fingerprint verification

system. They also argue that selecting matchers based on some
“goodness” statistic may be necessary to avoid performance
degradation when combining multiple biometric modalities.
Hong et al. [28] theoretically analyzed the improvement in
verification accuracy when two biometric characteristics are
fused at the matching score level and at the decision level.
There is a large amount of literature available on the various
combination strategies for fusing multiple biometric modalities
using matching scores (see, for example, [41]–[43]).

Recently, Dass et al. [65] used copula models to estimate
the joint generalized densities of match scores originating from
multiple matchers. Copula functions are effective in modeling
the joint distribution when the marginal distributions (pertaining
to the scores of a single matcher) are non-normal and do not have
a parametric form. These functions can represent a variety of de-
pendence structures using a correlation matrix. The authors then
employ a copula fusion rule (based on the Neyman–Pearson
Lemma) that combines the estimates of the generalized distri-
bution functions of multiple matchers. They demonstrate that
the joint generalized densities obtained by using copula fusion
rule result in improved matching performance as opposed to
product or marginal density estimates (see [40] and [66]). Their
approach eliminates the need to perform match score normal-
ization [67] or determine optimal weights [35] for combining
matchers.

VIII. RESEARCH CHALLENGES IN BIOMETRIC RECOGNITION

There are several reasons underlying imperfect accuracy per-
formance of a biometric system as summarized in Section II
(see, also Fig. 12). A number of challenging research problems
in biometric matcher design need to be addressed before the per-
formance hiatus can be effectively closed.

Effective Representation and Matching: The biometric
system design challenge is to be able to arrive at a realistic
representational/invariance model of the identifier from a few
samples acquired under possibly inconsistent conditions, and
then, formally estimate the inherent discriminatory information
(e.g., individuality) in the signal from the samples. This is
especially difficult in a large-scale identification system where
the number of classes/identities is huge (e.g., in the millions).
Further, the representation/model of a user has to be updated
over a period of time (i.e., the template update problem [60]) in
order to account for temporal/permanent changes in the user’s
biometric trait. The problem of seamlessly integrating multiple
biometric cues to provide effective identification across the
entire population is also very challenging given the variety of
scenarios that are possible.

Performance Modeling (i.e., Biometric Individuality): One of
the most fundamental questions one would like to ask about any
practical biometric authentication system is: what is the inherent
discriminable information available in the input signal? Unfor-
tunately, this question, if at all, has been answered in a very lim-
ited setting for most biometrics modalities. The inherent signal
capacity issue is of enormous complexity as it involves mod-
eling both the composition of the population as well as the in-
teraction between the behavioral and physiological attributes at
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Fig. 14. Biometric system characterization. The accuracy axis represents the
intrinsic 1:1 (verification) accuracy of the matcher.

different scales of time and space. Nevertheless, a first-order ap-
proximation to the answers to these questions will have a signif-
icant bearing on the acceptance of (biometrics-based) personal
identification systems into our society as well as determining the
upper bounds on scalability of deployments of such systems.

Characterizing Signal Quality and Enhancement: For a
particular biometric to be effective, it should be universal: every
individual in the target population should possess the biometric
and every acquisition of the biometric from an individual
should provide useful information for personal identity recog-
nition. In practice, adverse signal acquisition conditions and
inconsistent presentations of the signal often result in unusable
or nearly unusable biometric signals (biometric samples). This
is confounded by the problem that the underlying individual
biometric signal can vary over time due to (for example) aging.
Hence, poor quality of a biometric sample constitutes the single
most cause of inferior matching accuracy in biometric systems.
Therefore, it is important to quantify the quality of the signal
for either seeking a better representation of the signal or for
subjecting the poor signal to alternative methods of processing.
In situations involving noncooperative individuals, where it
may not be feasible to acquire a good quality biometric signal, it
is critical that the procured signal be suitably enhanced in order
to permit accurate processing of the data. Indeed, biometric
signal enhancement is an important research problem that has
to be pursued in a systematic manner.

Empirical Performance Measurement: Performance assess-
ment plays a crucial role in determining whether the given bio-
metric system is acceptable or needs further improvement. Ob-
taining reliable performance estimation is very challenging [77],
[78]. This is especially true when the system is already opera-
tional or when the system is being tested against adversarial at-
tacks. How does one reliably predict the performance (accuracy,
speed, and vulnerability) of a large-scale biometric system that
has several million identities enrolled in it?

Besides the problems enumerated above, issues related to pri-
vacy, security, integrity and liveness detection will also have to
be addressed [49], [50].

IX. SUMMARY AND CONCLUSION

Biometrics presents important technical, policy, and system
challenges that must be solved because there is no substitute

TABLE V
FEW EXAMPLES OF NOVEL BIOMETRIC-ENABLED APPLICATIONS

for this technology for addressing many critical information se-
curity problems. Considering the recent government mandates
for national and international use of biometrics in delivering
crucial societal functions, there is urgency to further develop
basic biometric capabilities, and to integrate them into practical
applications. Because biometrics cannot be easily shared, mis-
placed, or forged, the resultant security is more reliable than
current password systems and does not encumber the end user
with remembering long cryptographically strong passwords.
Biometric-based system administrator access to sensitive user
information affords effective accountability.

While biometric technology appears to be well suited to
provide a user-convenient component of secure person-identity
linkage, there may be cultural, societal, and religious resistance
toward acceptance of this technology [44]. On the other hand,
the hyperbole underlying biometric technology has created
the expectation that biometric is the panacea for all of our
security and identity theft problems and not merely one of the
several complementary technologies (e.g., RFID, conventional
security, process engineering) that need to be integrated in a
way that remains to be well defined. For example, one of the
fundamental sources of identity theft problem is the critical
reliance on the linkages to and information in legacy identity
management systems. While biometric technology can mitigate
some of the enrollment problems (e.g., multiple identities), it
cannot solve the problem of having to rely on imperfect legacy
identity management systems. One may have to rely on process
engineering (e.g., ensuring enrollment at birth as is currently
done in local birth registers and the U.S. Social Security
System) for several generations before we could ensure perfect
enrollment. Meanwhile, we may have to rely on a delicate
balance of deterrence and detection of identity fraud guided
by sound public policy. A poorly implemented biometric
system can be the cause of complacence, disaster, and a further
basis for resistance. On the other hand, a well-implemented
biometrics system with sufficient privacy safeguards may be a
clear requirement in the quick response to natural or man-made
disasters. Much remains to be accomplished in terms of general
education of the end users, system administrators, integrators,
and most important, public policy makers.
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The limitations of the current state of the biometric tech-
nology should not be construed to imply that it is not currently
useful in many applications. In fact, there are a large number
of biometric solutions that have been successfully deployed to
provide useful value in practical applications. For example, the
hand geometry system has served as a good access control so-
lution in many deployments such as university dorms, building
entrance, and time and attendance applications. AFIS systems3

have been providing terrific value to society (since their incep-
tion in the U.S. in the late 1960s), integrating automatic and
manual processes. Disney World uses the finger geometry infor-
mation of individuals to ensure that a season pass is not shared
among multiple individuals.4 Further iterative cycles of tech-
nology development, application to new domains, realistic per-
formance evaluation [46], and standardization efforts5 will fa-
cilitate the cycle of build-test-share for transforming the tech-
nology into business solutions.

The complexity of designing a biometric system [51] based
on three main factors (accuracy, scale or size of the database, and
usability) is illustrated in Fig. 14. Many application domains re-
quire a biometric system to operate on the extreme of only one
of the three axes in Fig. 14 and such systems have been suc-
cessfully deployed. The grand challenge is to design a system
that would operate on the extremes of all of these three axes
simultaneously. This will entail overcoming the fundamental
barriers that have been cleverly avoided in designing the cur-
rently successful niche biometric solutions. Addressing these
core research problems in the opinion of the authors will signif-
icantly advance the state of the art and make biometric systems
more secure, robust, and cost-effective. This, we believe, will
promote adoption of biometric systems, resulting in potentially
broad economic and social impact.

As biometric technology matures, there will be increasing in-
teraction among the market, the technologies, and the applica-
tions. This interaction will be influenced by the additional value
of the technology, user acceptance, and the credibility of the ser-
vice provider. It is too early to predict exactly where and how
biometric technology will evolve and into which particular ap-
plications it will become embedded (see Table V for a list of po-
tential applications). But it is certain that biometric-based recog-
nition will have a profound influence on the way we conduct our
daily business because of the inherent potential for effectively
linking people to records, thereby ensuring information secu-
rity.
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