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ABSTRACT. A number of models have been developed to estimate PM2.5 exposure, 13 

including satellite-based aerosol optical depth (AOD) models, land-use regression or 14 

chemical transport model simulation, all with both strengths and weaknesses. Variables 15 

like normalized difference vegetation index (NDVI), surface reflectance, absorbing 16 

aerosol index and meteoroidal fields, are also informative about PM2.5 concentrations. 17 

Our objective is to establish a hybrid model which incorporates multiple approaches and 18 

input variables to improve model performance. To account for complex atmospheric 19 

mechanisms, we used a neural network for its capacity to model nonlinearity and 20 

interactions. We used convolutional layers, which aggregate neighboring information, 21 

into a neural network to account for spatial and temporal autocorrelation. We trained the 22 

neural network for the continental United States from 2000 to 2012 and tested it with left 23 

out monitors. Ten-fold cross-validation revealed good model performance with total R
2
 24 

of 0.84 on the left out monitors. Regional R
2
 could be even higher for the Eastern and 25 

Central United States. Model performance was still good at low PM2.5 concentrations. 26 

Then, we used the trained neural network to make daily prediction of PM2.5 at 1 km×1 27 

km grid cells. This model allows epidemiologists to access PM2.5 exposure in both the 28 

short term and the long term. 29 

 30 
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1. Introduction 31 

Fine particulate matter (PM2.5) is a major concern in public health.
1-6

 Adverse health 32 

effect is associated with PM2.5 exposure in the short term
7, 8

 and the long term.
9, 10

 PM2.5 33 

is found to be associated with morbidity,
11, 12

 mortality,
6
 cardiovascular disease,

4
 34 

respiratory disease,
13

 myocardial infarction,
14

 an increase in hospital admission
11, 15, 16

 35 

and others.
17

  36 

Accurate exposure assessment of PM2.5 is a prerequisite of to investigate its adverse 37 

health effect. Early studies estimated PM2.5 at the nearest monitoring station.
18

 However, 38 

nearest monitors cannot capture all variability in PM2.5 concentrations and non-39 

differential misclassification occurs.
19

  40 

Various approaches have been developed to achieve better exposure assessment. 41 

Spatial interpolation, including nearest-neighbor interpolation and Kriging interpolation, 42 

was used to smooth PM2.5 concentration and estimate local exposure. Nonetheless, 43 

interpolation adds no additional information to the model. Local emission like highways 44 

between two monitor sites is not captured by simple interpolation. Land-use regression 45 

(LUR) uses land-use terms, such as road density, percentage of urban and others, as 46 

proxies for PM2.5 concentration.
20, 21

 Although LUR could achieve a high spatial 47 

resolution, it has limited temporal resolution since land-use terms are usually time-48 

invariant.
22

 Recent improvements in land-use regression enable to incorporate some level 49 

of time-variant factors,
23, 24

 but land-use terms are still inadequate in modeling short-term 50 

variations and often limited by short temporal coverage.
25

 51 
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Satellite-based aerosol optical depth (AOD) measurements have been widely used to 52 

estimate PM2.5 in various models for its large spatial coverage and repeated daily 53 

observations.
26

 AOD measures the light extinction due to aerosol in the whole 54 

atmospheric column.
27

 To obtain ground-level PM2.5 concentration, vertical distribution 55 

of aerosol is needed. Recent studies proposed different calibration methods.
26, 28-32

 Most 56 

studies focused on quantifying relationship between AOD and PM2.5 or predict long-term 57 

average of PM2.5, while epidemiological studies also need short-term PM2.5 assessment. 58 

Some studies combined AOD and land-use regression and used mixed effect model to 59 

achieve improvements on model performance.
33-35

 However, the drawback of AOD is 60 

missing data, which is caused by bright surfaces or cloud contamination, especially in 61 

winter.
36

 Also, AOD measurements may also have abnormally large values caused by 62 

forest fires.
37

 For grid cells with missing or abnormal values, the AOD-PM2.5 relationship 63 

may be problematic, especially for daily PM2.5 assessment. The relationship between 64 

column aerosol concentration and ground-level concentration can be influenced by 65 

multiple factors such as meteorological fields, chemical profile of aerosol and others.
38, 39

 66 

Absorbing aerosol index (AAI) provides information about aerosol type and is 67 

informative to PM2.5 modeling.
40, 41

 68 

Chemical transport models (CTMs), like GEOS-Chem,
42

 CMAQ,
43

 and CHIMERE,
44

 69 

simulate the formation, dispersion and deposition of fine particles based on emission 70 

inventories and known atmospheric chemical reaction. CTM is another way to assess 71 

PM2.5 concentration. Due to the complexity of reactions and atmospheric meteorological 72 

processes, simulated concentration often deviates from the real world. CTM outputs are 73 

often used after calibration.
45, 46

 CTM provides aerosol vertical profile, which has been 74 
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used as scaling factor in AOD calibration.
29, 47

 Due to the limit of computation, CTM 75 

usually has coarse spatial resolution. In a previous study, we have proposed a hybrid 76 

model which uses land-use regression to downscale CTM outputs. 
48

  77 

Existing approaches have both strengths and weaknesses and often they complement 78 

to each other. In this paper, we incorporated multiple variables into a neural network-79 

based hybrid model, including satellite-based AOD data, AAI, CTM outputs, land-use 80 

terms and meteorological variables. We validated the model with ten-fold cross-81 

validation and predicted daily PM2.5 at 1 km×1 km resolution in the continental United 82 

States for the years 2000-2012. Prediction with such a high temporal and spatial 83 

resolution allows epidemiological studies to estimate health effect of PM2.5 with greater 84 

reliability. 85 

2. Materials 86 

2.1. Study Domain 87 

The study domain is the continental United States, including 48 contiguous states and 88 

Washington D.C (Figure S1). The study period is from January 1
st
, 2000 to December 89 

31
st
, 2012, in total of 4,749 days. 90 

2.2. Monitoring Data 91 

Monitoring data for PM2.5 were collected by EPA Air Quality System (AQS). In total, 92 

there were 1,986 monitor stations available in this period and 1,928 of them were located 93 

in the study area. Not every monitoring site has data available throughout the study 94 

period. Monitoring sites were densely distributed along coastal areas and the Eastern part, 95 
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while there were few monitors in the Mountain Region (Figure S1). We calibrated our 96 

hybrid model to the daily average of monitored PM2.5. 97 

2.3. AOD Data 98 

The Moderate Resolution Imaging Spectroradiometer (MODIS) is an instrument 99 

aboard the Earth Observing System (EOS) satellite.
49, 50

 Several algorithms have been 100 

developed to retrieve AOD data from MODIS measurement,
51

 including a recent 101 

algorithm called MAIAC, which retrieves AOD with a spatial resolution of 1 km×1 km. 102 

52-54
 We used MAIAC AOD data from Aqua satellite from 2003 to 2012 and Terra 103 

satellite from 2001 to 2012. MAIAC algorithm arranges data at 600 km×600 km tile, 104 

which includes 360,000 1 km×1 km grid cells. In total 33 tiles and 11,880,000 grid cells 105 

were used in this study, which is also the grid cell we made predictions at. Grid cells over 106 

water bodies were excluded from the study. 107 

AOD data has some portion of missing values, especially in the winter. Missing 108 

values are caused by bright surfaces (e.g. snow coverage) and cloud contamination.
36

 In 109 

addition, AOD data may have abnormally large values due to extreme events like forest 110 

fires.
37

 Usually AOD data with values above 1.5 are excluded from modeling, which also 111 

creates missing values.
55

 Our previous study calibrated column aerosol mass from CTM 112 

outputs to satellite-based AOD and predicted AOD values when satellite-based AOD are 113 

missing.
56

 For AOD data used in this study, we filled in the missing values using this 114 

method as pre-processing (Section 3, Supplementary Material).  115 

2.4. Surface Reflectance  116 
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Surface characteristics and errors in AOD data products have been well documented 117 

by previous studies.
57

 MAIAC algorithm was designed to retrieve AOD over various 118 

surfaces, but surface brightness can still affect data quality.
54

 We used MODIS surface 119 

reflectance data (MOD09A1) to control for that.
58

 MOD13A1 has a spatial resolution of 120 

500 m×500 m and a temporal resolution of 8 days. We used surface reflectance from 121 

Band 3 and linearly interpolated values for days without measurements. 122 

2.5. Chemical Transport Model Outputs 123 

We used GEOS-Chem, a chemical transport model, to simulate ground-level PM2.5 124 

concentration. GEOS-Chem is a global 3-dimensional chemical transport model, which 125 

uses meteorological inputs and emission inventories to simulate atmospheric components. 126 

The details of GEOS-Chem is articulated somewhere else.
42

 We performed a nested grid 127 

simulation (Version 9.0.2) for North America at 0.500°×0.667° from 2005 to 2012, with 128 

boundary conditions exported from a 2.0°×2.5° global simulation. Since meteorological 129 

inputs at 0.500°×0.667° are not available from 2000 to 2004, we used 2.0°×2.5° outputs 130 

instead. Based on previous studies and pilot testing, total PM2.5 was defined as the sum of 131 

nitrate, sulfate, elemental carbon, organic carbon, ammonium, sea salt aerosol, dust 132 

aerosol and others (Table S2).
59

 133 

In additional to providing ground-level PM2.5 estimation, GEOS-Chem also simulates 134 

vertical distribution of aerosol, which could be used for calibrating AOD. Previous 135 

studies used GEOS-Chem to compute the percentage of ground-level aerosol in the total 136 

column aerosol. This percentage was used in AOD calibration as a scaling factor.
29, 60

 137 
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Both studies utilized GEOS-Chem to provide both direct estimation for ground-level 138 

PM2.5 and a scaling factor to calibrate AOD. 139 

2.6. Meteorological Data 140 

Meteorological fields were obtained from NCEP North American Regional 141 

Reanalysis data, which assimilates various data sources like land-surface, ship, 142 

radiosonde, pibal, aircraft, satellite and others.
61

 Meteorological data are daily estimate at 143 

0.3° grid cells (about 32 km). In total 16 meteorological variables were used in this study. 144 

They include air temperature, accumulated total precipitation, downward shortwave 145 

radiation flux, accumulated total evaporation, planetary boundary layer height, low cloud 146 

area fraction, precipitable water for the entire atmosphere, pressure, specific humidity at 147 

2m, visibility, wind speed, medium cloud area fraction, high cloud area fraction, and 148 

albedo. Wind speed was computed as the vector sum of u-wind (east-west component of 149 

the wind) at 10m and v-wind (north-south component) at 10m. 150 

2.7. Aerosol Index Data 151 

Absorbing aerosol index (AAI) indicates the presence of absorbing aerosols in the 152 

atmosphere. Major sources of absorbing aerosol include biomass burning and desert dust; 153 

other minor sources could be volcanic ash.
62

 AAI is informative for estimating absorbing 154 

aerosols, such as organic carbon and soil dust.
63, 64

 We used AAI Level 3 data products 155 

from the Ozone Monitoring Instrument (OMI), where two algorithms are used in 156 

retrieval. One is a near-UV algorithm, which retrieves UV aerosol index (OMI data 157 

product OMAERUVd);
62, 64

 and the other one uses multi-wavelength aerosol algorithm, 158 

whose outputs include aerosol indexes at visible and UV range (OMI data product 159 
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OMAEROe).
65

 Both algorithms have pros and cons, which have been discussed 160 

previously.
66

 Both data products are complementary and thus we used both. OMI AAI 161 

data is available after October 2004. OMAERUVd data product has a spatial resolution of 162 

1°; OMAEROe data product has a spatial resolution of 0.25°. 163 

2.8. Land-use terms 164 

Land-use terms serve as proxies for emissions and are used to capture variations at a 165 

small spatial scale, which may not modeled by GEOS-Chem. The detailed process of 166 

obtaining land-terms like elevation, road density, NEI (National Emissions Inventory) 167 

emission inventory, population density, percentage of urban, and NDVI has been reported 168 

somewhere else.
67

  For vegetation coverage, we used percentage of vegetation from 169 

NCEP North American Regional Reanalysis data and MODIS MOD13A2, a NDVI data 170 

product.
68

 MOD13A2 has a spatial resolution of 1 km×1 km and a temporal resolution of 171 

16 days. We linearly interpolated NDVI values for days without measurements.  172 

2.9. Regional and Monthly Dummy 173 

Previous studies found the relationship between AOD and PM2.5 have regional and 174 

daily variation due to difference in meteorology and aerosol composition.
38, 69

 175 

Atmospheric mechanism is complex and relationships between other variables could also 176 

differ temporally and spatially. To account for that, we put monthly and regional dummy 177 

variables. Regional dummy variable comes from major climate types in the United States 178 

(Figure S3).
70

 Since AOD-PM2.5 relationship can change from day to day, daily dummy 179 

variables would be ideal. However, training a neural network with 365 indicator variables 180 
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in addition to the other variables would be computationally intensive, and we used 181 

monthly dummy variables as a compromise.  182 

3. Methods 183 

 We trained a neural network with the above variables to monitored PM2.5 from the 184 

AQS network. The relationships between input variables and PM2.5 could be highly 185 

nonlinear with complex interactions. Neural networks have the potential to model any 186 

type of nonlinearity.
71, 72

 The details of the neural network, such as its structure and 187 

training method were articulated in the supplementary material. All input variables 188 

covered the entire study area, but some of them were not available in early years or had 189 

higher proportions of missing values. Missing values were especially common in Terra 190 

and Aqua AOD data. To deal with the missingness problem and different temporal 191 

coverages, we adopted the following steps. We used a calibration method to fill in the 192 

missing values in Aqua AOD data from 2003 to 2012 and Terra AOD data from 2001 to 193 

2012 based on the association of GEOS-Chem outputs and land-use terms with non-194 

missing AOD.
56

 For the other variables with a low fraction of missing values, we 195 

interpolated at grid cells with missing values. Regarding temporal coverage, GEOS-196 

Chem outputs, land-use terms, MODIS outputs, and meteorological variables were 197 

available throughout the study period. OMI data, Aqua AOD, and Terra AOD were 198 

unavailable in earlier years. For years with one or more unavailable variables, we fitted 199 

the model with the remaining available variables. 200 

Most previous studies used only in situ variables for modeling. However, information 201 

from neighboring cell can be informative as well. For example, nearby road density, 202 
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forest coverage and other land-use variables as well as nearby PM2.5 measurements either 203 

influence or correlate with local PM2.5 measurements. They are informative for modeling 204 

and can improve model performance. We accounted for spatial correlation by using 205 

convolutional layers in the neural network.
73

 A convolutional layer is computed by 206 

applying a convolution kernel on an input layer. Values from neighboring cells are 207 

combined through the use of the kernel function. The kernel takes the form a function 208 

(e.g. weighted average with Gaussian weights based on distance) that produces a scalar 209 

estimate from the multidimensional inputs. A convolution layer aggregates nearby 210 

information and can simulate some form of autocorrelation. We included convolutional 211 

layers for land-use terms and nearby PM2.5 measurements as additional predictor 212 

variables to account for spatial autocorrelation. Multiple convolution layers were 213 

incorporated to allow the neural network to model even more complex autocorrelation or 214 

possible interaction with other variables (Supplementary material). In addition to nearby 215 

grid cells, observations from nearby days for the same grid cell can be also informative. 216 

To incorporate this, we first fitted a neural network and obtained an initial prediction for 217 

PM2.5. We then computed temporal convolution layers and fitted the neural network 218 

again with them (Figure S5). 219 

To validate model results and avoid overfitting, we used ten-fold cross-validation, in 220 

which all monitoring sites were randomly divided into 10%-90% splits. The model was 221 

trained with 90% of data and predicted PM2.5 at the remaining 10%. The same process 222 

was repeated for other splits. Assembling predicted PM2.5 at ten 10% testing sets yielded 223 

predicted PM2.5 for all the monitors. We computed correlation between predicted PM2.5 224 
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and monitored PM2.5. Spatial and temporal R
2
s were also calculated. Details of 225 

calculating R
2
 have been specified in the supplementary material. 226 

The trained neural network was then used to make daily PM2.5 predictions for each 227 

grid cell (1 km×1 km) for each day.  228 

All programming was implemented in Matlab (version 2014a, The MathWorks, Inc.).  229 

4. Results 230 

To determine input variables, we compared models with different combinations of 231 

input variables based on cross-validated total R
2
. Model comparison indicated that (1) a 232 

hybrid model performed better than any subset models (Figure S6); (2) scaling factor was 233 

better to be incorporated as a separate input layer (Figure S7); (3) convolutional layers for 234 

land-use variables and predicted PM2.5 both improved model performance (Figures S6, 235 

S8). Hence, input variables for the final model were GEOS-Chem outputs, Aqua and 236 

Terra AOD, scaling factor, OMI AAIs, meteorological variables, NDVI, surface 237 

reflectance, land-use terms, convolutional layers and regional/monthly dummy variables. 238 

Table 1 presents model performance after conducting ten-fold cross-validation. Total R
2
 239 

between fitted and monitored PM2.5 ranged from 0.74 to 0.88 and spatial R
2
 was from 240 

0.78 to 0.88. By season, the model usually performed better in summer, followed by 241 

autumn, spring, and winter (Table S3). By region, regions in the Eastern United States 242 

had the best model performance, followed by the Central United States. The Pacific and 243 

Mountain regions had less satisfying model performance. We also found R
2
 remained 244 

high before 2008 and dropped after 2010 for sub-regions and the whole study area (Table 245 

S4). We will discuss possible reasons later. Region name and division are from U.S. 246 
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census division (Table S1, Figure S2). In terms of spatial pattern, we found an east-west 247 

gradient with model performing better in the Eastern and Central United States but less 248 

satisfying in the western coast and the Mountain Region (Figure 1). Besides, some areas 249 

in the Mountain Region (e.g. Great Basin and Colorado Plateau) with large variability in 250 

elevation and surface type have relative low R
2
 all the year round. Even in the Eastern 251 

United States, where model performance is high in general, areas along Appalachian 252 

Mountains and around Ozark Plateau have less satisfying model performance. 253 

Figure 2 shows the spatial distribution of total PM2.5 in the study area. The Eastern 254 

United States generally had higher PM2.5 levels than the Western part. Area around 255 

Illinois and Ohio, areas around New York City and Philadelphia, and parts of the 256 

Southeastern United States witnessed the heaviest PM2.5 pollutions in the study area, 257 

especially in summer. The San Joaquin Valley, Salt Lake City and Denver stood out in 258 

the Western United States for their high PM2.5 levels. Regarding temporal trend, the 259 

national average dropped from 9.2 µg/m
3
 in 2003 to 7.5 µg/m

3
 2012 (Figure 3). By 260 

regions, the declining trend was predominantly in the Eastern United States, with largest 261 

reduction occurring in East South Central Region (5.8 µg/m
3
). 262 

One additional way to validate our exposure estimates is to see if they can reproduce 263 

the spatial autocorrelation in PM2.5 concentrations. To do this, we calculated the 264 

correlation among all pairs of PM2.5 monitors in the EPA network, and plotted them as a 265 

function of distance. We compared that to the same plot, but using our predicted PM2.5 266 

concentrations instead (Figure 4). The results show essential identical trends and 267 

substantial overlap between the correlations of actual vs modeled PM2.5 with distance. 268 
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5. Discussion 269 

Our hybrid model incorporated existing PM2.5 models as well as multiple variables 270 

and achieved high out-of-sample R
2
, averaging 0.84 (0.74~0.88 by year) over the study 271 

period. The model performed better in some eastern regions, with an average out of 272 

sample R
2
 of 0.86~0.89 by region. To our best knowledge, our model performance 273 

surpasses existing similar studies. Meanwhile, we predicted PM2.5 daily concentrations at 274 

nationwide 1 km×1 km grid cells from 2000 to 2012. As discussed below, this level of 275 

resolution and coverage is an improvement over current PM2.5 models and could be 276 

beneficial to epidemiological studies. Epidemiologists could identify long-term and short-277 

term exposure of PM2.5 in the whole continental United States at individual level, which 278 

helps study adverse health effect of PM2.5 with higher accuracy. 279 

There are several advantages and innovations in our approach. First of all, our model 280 

covered the whole United States with a spatial resolution of 1 km×1 km and a temporal 281 

resolution of 1 day and achieved high R
2
. As far as we know, if taking coverage, 282 

resolution and model performance into consideration, our model performs better than 283 

existing models. As mentioned in the introduction part, most PM2.5 modeling work that 284 

used AOD data focused on the AOD-PM2.5 relationship, instead of making predictions. 285 

For studies with similar research goal as ours, some of them have done AOD calibration 286 

at global scale, but their estimation was long-term average
29

 or annual average, with 287 

some degree of bias (slope=0.68) and modest R
2
 (R

2
=0.65).

47
 A previous study calibrated 288 

AOD to daily monitored PM2.5 in the Northeastern United States using mixed model and 289 

achieved R
2
 around 0.725~0.904.

31
 A similar study used the similar method for the 290 
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Southeastern United States and achieved R
2
 around 0.63 to 0.85.

32
 Compared with both 291 

regional models, our hybrid nationwide model performs slightly better in the 292 

Northeastern United States and much better in the Southeastern United States (Table S6). 293 

One reason is that aerosol formation in the Southeastern United States is affected by 294 

biogenic isoprene emission from trees;
74

 while isoprene emission from trees in the 295 

Northeastern United States is less of a concern. Secondary organic aerosol that results 296 

from isoprene has different absorption than other PM2.5 components,
75

 which is not well 297 

captured by AOD. AAI provides some information about absorption profile, which helps 298 

our hybrid model perform much better in the Southeast and almost the same or a little 299 

better in the Northeast. 300 

Second, our hybrid model integrated most variables that are known to be informative 301 

to PM2.5 modeling and improved model performance. This study reminds the importance 302 

of hybrid framework and also proposes a possible neural network-based approach to 303 

implement that. Atmospheric mechanism is complex and a single variable can only 304 

capture an incomplete picture. For example, AOD measures the light extinction due to 305 

aerosol in the whole atmosphere column. Different aerosols vary in terms of aerosol 306 

absorption, which can affect AOD. More complexly, even the same aerosol type could 307 

have various absorptions under different meteorological conditions and emission 308 

features.
39

 This discovery suggests that when modeling PM2.5 with AOD data, AAI 309 

(proxy for aerosol type), meteorological fields and emission profiles are also necessary. 310 

There could be many unknown mechanisms intertwining with other variables. Multiple 311 

variables are not redundant but complementary, which can recover the original picture of 312 

atmospheric process and improve model performance to the best.  313 
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Third, we used convolutional layer in neural network for PM2.5 modeling, which is an 314 

innovation of our study. Primarily used in computer science, convolutional kernel is 315 

placed over nearby pixels to produce a convolutional layer. Similarly, we used 316 

convolutional layers in exposure assessment to aggregate variable values from nearby 317 

grid cells or monitoring sites. Previous studies incorporated nearby information by using 318 

nearby monitoring measurements, nearby road density or others, which were all pre-319 

specified. Our hybrid model takes multiple convolutional layers, which stand for various 320 

ways of aggregating nearby information, and lets learning algorithm decide their relative 321 

importance in the model. This approach is versatile and is able to model different 322 

neighboring influences, as well as potential interactions with other variables.  323 

Last but not least, we used AOD data with missing values been filled by some 324 

calibration model. No further processing is required to deal with missing AOD data, 325 

which could have been lengthy and cumbersome in previous studies.  326 

For the east-west gradient in model performance (Figure 1), previous studies also 327 

reported that correlation between MODIS AOD and ground-measured PM2.5 is better in 328 

the eastern part but poor in the western part, and they attributed poor model performance 329 

to relative low PM2.5 level and variability of terrain.
31, 41

 This study lends support to both 330 

statements. We quantified the relationship between model performance and elevation at 331 

each monitoring site and found a negative correlation despite of much noise (Figure S10). 332 

Similarly, a positive association exists between PM2.5 level and model performance 333 

(Figure S10), which implies that the drop of model performance after 2010 is probably 334 

caused by substantive reduction in PM2.5 level after 2010. This is also the reason why the 335 
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Mountain region, with low PM2.5 level, has poor model performance. Lower level of 336 

PM2.5 means lower signal-to-noise ratio and model performance drops as model 337 

uncertainty keeps constant. Besides, the reduction of sulfate is mainly responsible for 338 

decreasing PM2.5 level. Sulfate is better modeled in GEOS-Chem than other major 339 

components like nitrate and ammonium,
76

 so dropping sulfate causes unsatisfying model 340 

performance. For the same reason, we saw less satisfying model performance in 341 

California despite of its high PM2.5 level, for the reason that California has high amount 342 

of nitrate originated from vehicle exhaust compared with the Eastern United States. This 343 

argument suggests that it would be informative to include sulfate in PM2.5 modeling work 344 

in the future. 345 

Our model performance is still good even at low PM2.5 levels. To prove that, we fitted 346 

a spline regression of prediction PM2.5 to measured PM2.5. Linearity between measured 347 

and predicted PM2.5 holds when PM2.5 level is below 70 µg/m
3 

and become less obvious 348 

above 80 µg/m
3
 due to insufficient measurements (Figure 5). Bias at high concentration 349 

is less of our concern, since there are few days with PM2.5 level above 80 µg/m
3
 in the 350 

study area. If constraining to monitored PM2.5 below 35 µg/m
3
, the EPA daily standard 351 

for PM2.5, our hybrid model performed even better. Mean R
2
 increased to 0.85; slope is 352 

close 1; and intercept is close to 0 (Table S5). Good model performance at low PM2.5 353 

concentrations enables epidemiologists to estimate the adverse effect of PM2.5 even 354 

below EPA daily standard. 355 

Figure 2 visualizes the spatial distribution of annual and seasonal average of PM2.5. 356 

There is also an east-west gradient of PM2.5 level. The Eastern and Central United States 357 
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suffered relatively heavy PM2.5 pollutions, except Appalachian Mountains, Florida 358 

Peninsula, and some remote areas in the Northeast. The Southeastern United States, 359 

especially Alabama and Georgia, witnessed high PM2.5 level in summer and less 360 

noticeably in spring and autumn, which results from isoprene emission from trees. 361 

Isoprene emission from trees increases with temperature
74, 77

 and peaks in hot summer.
78

  362 

The Western United States had relatively low PM2.5 levels, but the San Joaquin Valley, 363 

Salt Lake City and Denver stood out for its abnormally high PM2.5 level, which was also 364 

featured by clear seasonality and high PM2.5 level in winter. This is caused by 365 

temperature inversion in winter which prevents atmospheric convection and trapped air 366 

pollution near surface. For temporal trend, the Eastern and Central United States 367 

witnessed a decreasing trend in PM2.5 level (Figure 3), which is caused by reduction of 368 

sulfur dioxide from power plant emission. For seasonal cycle, PM2.5 level peaks in 369 

summer in the Eastern and Central United States due to long-term transported sulfate 370 

from power plants and isoprene-related organic carbon. The winter peaks are probably 371 

caused by increased fuel burning for heat, and local temperature inversion that prevents 372 

pollution dispersion.  373 

Exposure assessments are essential for epidemiological studies. Traditional method of 374 

exposure assessment relies on nearest monitors, which constraints the number of 375 

available participants and introduces measurement errors. Besides, monitoring data from 376 

some monitors are intermittent. Our PM2.5 predictions have temporal resolution of 1 day 377 

and spatial resolution of 1 km×1 km, which lifts the above limitations. Besides, our 378 

hybrid model performs still well at low concentrations. Linearity between predicted and 379 

monitored PM2.5 still holds at low concentrations, without any signal of bias (Figure 5). 380 
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Cross-validated R
2
 indicates good fit when daily PM2.5 level is below 35 µg/m

3
 (Table 381 

S5), which enable epidemiologists to assess the adverse effect of PM2.5 even below EPA 382 

standard. In the long term, there is little discrepancy between long-term averages of 383 

predicted and monitored PM2.5, with difference below 1 µg/m
3
 (Figure S9). 384 

Some limitations remain. Our model requires quite a lot of variables, which limits the 385 

application in other countries. This data-intensive approach could be difficulty in other 386 

regions where public data is sparse. For regions with less data available, we might have 387 

to make tradeoff between model performance and resolution. For example, instead of 388 

daily prediction PM2.5 at 1 km×1 km, we may model annual average of PM2.5 or at coarse 389 

spatial resolution. Besides, chemical profile of PM2.5 is not available in this framework. 390 

Previous epidemiological studies suggest various toxicities of PM2.5 chemical 391 

components,
79, 80

 which is worthy of further investigation. 392 

 393 

  394 
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Table 1. Cross-validated R
2
 for the whole study area 395 
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R
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R
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B
ia
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S
lo
p
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2000 0.86 3.35 0.85 1.52 0.85 3.07 0.22 1.01 

2001 0.84 3.58 0.86 1.40 0.83 3.35 0.22 1.01 

2002 0.88 2.99 0.88 1.24 0.88 2.75 0.25 1.00 

2003 0.88 2.80 0.87 1.21 0.88 2.57 0.23 1.00 

2004 0.88 2.69 0.79 1.50 0.88 2.45 0.22 1.00 

2005 0.88 2.94 0.84 1.45 0.89 2.66 0.27 1.00 

2006 0.86 2.77 0.80 1.34 0.86 2.50 0.25 1.00 

2007 0.87 2.95 0.83 1.31 0.87 2.72 0.21 1.00 

2008 0.85 2.64 0.79 1.26 0.86 2.40 0.19 1.00 

2009 0.82 2.73 0.81 1.09 0.82 2.54 0.21 1.00 

2010 0.81 2.85 0.84 1.21 0.81 2.60 0.51 0.98 

2011 0.81 2.83 0.81 1.11 0.81 2.60 0.38 0.99 

2012 0.74 3.15 0.78 1.16 0.74 2.92 0.32 1.00 

Mean 0.84 2.94 0.83 1.29 0.84 2.70 0.27 1.00 

 396 
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  397 

Figure 1. Model performance in the continental United States  398 

We calculated total R
2
 between monitored and predicted PM2.5 for each monitoring site 399 

and interpolated R
2
 to places without monitors using Kriging interpolation. Spring was 400 

defined as March to May; summer was defined as June to August; autumn was defined as 401 

September to November; winter was from December to February of the next year (same 402 

below). Red color stands for high R
2
 and blue color stands for low R

2
. 403 
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 404 

Figure 2. Spatial distribution of predicted PM2.5 405 

The trained neural network predicted daily total PM2.5 concentration at 1 km×1 km grid 406 

cell in the study area. Red color stands for high concentrations and blue color stands for 407 

low concentrations. 408 
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 410 

Figure 3. Annual means by month of year and by region 411 

Annual averages were computed by averaging all predicted PM2.5 values at 1 km×1 km 412 

grid cells in that region or in that month.  413 
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 415 

Figure 4. Relationship between correlation and distance between any two monitor 416 

sites 417 

For 1,928 monitoring sites in the study area, we computed the correlation of PM2.5 418 

measurements and distance (in degree) between any two monitoring site pairs and plotted 419 

the between-site correlation versus between-site distance (red dots). We repeated the 420 

same process for predicted PM2.5 and plotted the correlation of predicted PM2.5 and 421 

monitored PM2.5 between two site pairs versus distance (blue dots). This figure is for year 422 

2012. 423 

 424 
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 426 

Figure 5. Relationship between measured PM2.5 and predicted PM2.5 427 

We fit a penalized spline between measured PM2.5 and predicted PM2.5 without 428 

specifying degree of freedom. This figure is for year 2009.   429 
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SUPPORTING INFORMATION 430 

Maps of the study area, details on US census division, details on GEOS-Chem, details 431 

on neural network and convolutional layers, details on calculating R
2
, detailed results for 432 

model comparison, cross-validated R
2
 by region and by season, and model performance 433 

at low concentrations. 434 
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