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3. Quantify dust impact on satellite infrared radiances by comparing Summary and Future Work
CRTM simulated brightness temperatures to observations We provide accurate dust optical and physical properties into the CRTM via CALIOP vertical profiles and AERONET ground-based retrievals, which led to an overall better agreement between the
4 Use GSI to assimilate aerosol-affected infrared radiances into the observed and simulated VIIRS, MODIS, and AHI infrared brightness temperatures. However, the 8.6 um channel of VIIRS and AHI shows a notable warm bias in the simulated brightness temperatures
GEOS-5 model and evaluate impact on dust impact on forecast fields. even when accounting for the accurate aerosol information within Asian dust plumes. We modify the prescribed CRTM dust properties according those specifically for Asian dust shown in Sokolik et al.

_ _ (1998), which significantly reduces the warm bias at this channel. This bias is not observed for Saharan dust plumes. We are currently investigating the impact of aerosol-affected infrared radiance
* This work is supported by grant NNX17AE97G assimilation using the GEOS-5 framework. We plan to extend this work to assess the impact of dust aerosols on hyperspectral measurements from CrlS.



