Surviving the Improbable Upset Prevention and Recovery in Flight Control

Dr Ir Thomas Lombaerts

**Santa Clara
University**

Santa Clara University, January 23, 2019

Outline

- Introduction
- Upset Prevention:
	- Safe Flight Envelope Estimation
	- Safe Flight Envelope Protection:

Concept Demonstration

• Upset Recovery: Stall Recovery Guidance

Introduction: Who am I?

History:

- 1998 2004: Aerospace Engineering, Delft University of Technology, NL
- 2004 2010: lecturer and PhD researcher in Delft 2009: visiting scientist at DLR in Germany during 4 months
- 2010 2016: scientific researcher at DLR in Germany 2012 – 2014: Visiting Marie Curie Fellow at NASA Ames
- 2016 today: senior aerospace research engineer at NASA Ames

Interests:

- Aircraft state estimation and Kalman filtering
- Aerodynamic model identification: structure selection and parameter identification, fault detection
- Adaptive control and nonlinear dynamic inversion, Pseudo Control Hedging
- Control Allocation
- Handling qualities and pilot workload analysis

Introduction

- Loss of control in flight (LOC-I) remains the most frequent primary cause of accidents
- 40% of all accidents is LOC-I related and this category involves most fatalities
- Increasing trend over the last decades

Upset Prevention and Recovery

 $CAST$ The Commercial Aviation

Research subtopics, based on CAST directives on safety enhancements:

1. Upset prevention

- Adaptive safe flight envelope estimation
- Adaptive envelope protection

2. Upset recovery

- 1. Stall recovery guidance
- 2. Unusual attitude recovery

Upset recovery training aspect

Estimation of the envelope boundaries NASP trim envelope

Trim envelope: all the sets of stable equilibrium conditions (V,γ) within the input limits.

Aircraft variables:

- Airspeed V
- Flight path angle γ

Inputs:

- Angle of attack α
- Thrust T

Estimation of the envelope boundaries NASY maneuvering envelope

Estimation of the envelope boundaries NASA trim and maneuvering envelope variation

Estimation of the envelope boundaries NASA maximum roll angle

maximum achievable roll angle at current airspeed and flight path angle before stall occurs

Additional information provided to the pilot over the cockpit displays

Experiment overview: Advanced Concepts Flight Simulator

• Objective

Explore how crews manage their energy state, both with and without new technology

Overview

- 10 commercial flight crews
- 4 descent and landing scenarios in Memphis airspace
- Workload assessment, questionnaires
- New technology:
	- **Maneuver envelope limits displayed on the primary flight display (PFD)**
	- Others (not discussed here)

Experiment overview: Icing scenario

• Aircraft is initialized in an icing condition:

modified flight dynamics: less lift, more drag, α_{stall} smaller

Results Icing scenario

Results Icing scenario

Implementation of the protections in the closed loop architecture

Protections are implemented in:

- Flight control laws
- Cockpit displays
- Haptic feedback

Experiment method: Simona Research Simulator

Delft

• Research hypotheses

- Will envelope protection prevent loss of control and reduce workload?
- Will modified PFD improve situational awareness about flying capabilities?
- Will haptic feedback improve situational awareness about protective action?
- **Overview**
	- 7 commercial pilots
	- Icing scenario in approach near Amsterdam Schiphol Airport
	- Workload assessment and questionnaires
- New technologies
	- Adaptive envelope protection in flight control laws
	- Extended primary flight display
	- Haptic feedback on stick

Results: icing scenario

- Gradual ice accretion on the wings, starts around FL30
- Wind gusts make effect on envelope less obvious
- Speed and bank angle margins improve with new tech
- No increase in workload

margin to V_{prot} [m/s]

 20

15

 52° N 42'

48

latitude

Concept demonstration of envelope protection in Robotic Motion Simulator at DLR Oberpfaffenhofen

DLR Robotic Motion Simulator: overview Simulator cab of

Robotic Motion Simulator

Concept demonstration of envelope protection in NASA Robotic Motion Simulator at DLR Oberpfaffenhofen

Conclusions of upset prevention

- Adaptive safe flight envelope estimation and protection algorithms were designed and evaluated by several airline pilots in various simulators
- Safe envelope bounds estimated in real time taking into account malfunctions and upsets, used for three kinds of protections:
	- Extended Primary Flight Display **Extended Primary Flight Display** Experiments in ACFS – Hard protections in the flight control laws **► Experiments in Simona**
	- Haptic feedback on sidestick
- Significant performance changes detected in icing scenario
- Observations with new technology:

ACFS experiments:

pilots adapted strategy based on information Icing scenario:

- higher V_{min}
- flap deployment for higher speeds

Simona experiments:

- larger safety margins to envelope boundaries prevent loss of control in off-nominal conditions,
- reduced workload (objective and subjective ratings),
- improved situational awareness (subjective ratings).

Stall Recovery Guidance

Upset recovery: stall recovery guidance

Strategy: exchange potential energy (altitude) for kinetic energy (speed), taking into account energy dissipation (drag) and energy inflow (thrust)

Constraints:

- Secondary stalls (α)
- Structural loads (n_z)
- Pitching moment (T_{max})

Pilot guidance through flight director (θ_c) and throttle tape (T_c) in PFD

Vertical Motion Simulator at NASA Ames

Research Flight Deck at NASA Langley

Level D A330 simulator at FAA

24/28

Experiment results

Traffic avoiding maneuver in cruise phase:

Performance improvements with guidance:

- Fewer and less severe secondary stalls
- Less total altitude loss during recovery
- No violations of maximum/minimum load factor limits
- On average shorter time to recover
- Better buffer to overspeed limit

Conclusions and remarks

- Overall, stall recovery guidance algorithms evaluated in 3 simulators
	- NASA Ames
	- NASA Langley
	- FAA.
- 2 dissimilar aircraft configurations
- 65 participating flight crews:
	- 40 at NASA Ames (of which 10 test pilots)
	- 13 at NASA Langley (Boeing pilots)
	- 12 at FAA (Airbus pilots)
- Different scenarios: cockpit display malfunctions, autothrottle failure, sensor faults, windshear, traffic avoiding maneuvers in all phases of flight.
- Satisfactory performance, well received by pilots.

Thank you for your attention

This work would not have been possible without:

Stefan Schuet, Diana Acosta, John Kaneshige, Kim Shish, Vahram Stepanyan Gertjan Looye, Andreas Seefried, Miguel Neves, Tobias Bellmann, Joost Ellerbroek, Mitchell Rodriguez y Martin

