

### **Outline**



- Introduction
- Upset Prevention:
  - Safe Flight Envelope Estimation



– Safe Flight Envelope Protection:



Upset Recovery: Stall Recovery Guidance









### **History:**

- 1998 2004: Aerospace Engineering, Delft University of Technology, NL
- 2004 2010: lecturer and PhD researcher in Delft
   2009: visiting scientist at DLR in Germany during 4 months
- 2010 2016: scientific researcher at DLR in Germany
   2012 2014: Visiting Marie Curie Fellow at NASA Ames
- 2016 today: senior aerospace research engineer at NASA Ames







#### Interests:

- Aircraft state estimation and Kalman filtering
- Aerodynamic model identification: structure selection and parameter identification, fault detection
- Adaptive control and nonlinear dynamic inversion, Pseudo Control Hedging
- Control Allocation
- Handling qualities and pilot workload analysis





### Introduction

- Loss of control in flight (LOC-I) remains the most frequent primary cause of accidents
- 40% of all accidents is LOC-I related and this category involves most fatalities
- Increasing trend over the last decades





## **Upset Prevention and Recovery**



Research subtopics, based on CAST directives on safety enhancements:

### 1. Upset prevention

- Adaptive safe flight envelope estimation
- Adaptive envelope protection

### 2. Upset recovery

- 1. Stall recovery guidance
- 2. Unusual attitude recovery

Upset recovery training aspect







## Estimation of the envelope boundaries trim envelope



Trim envelope: all the sets of stable equilibrium conditions  $(V,\gamma)$  within the input limits.

#### Aircraft variables:

- Airspeed V
- Flight path angle v

#### Inputs:

- Angle of attack α
- Thrust T









## Estimation of the envelope boundaries maneuvering envelope



Safe maneuverability envelope is defined as intersection between forward and backward reachable sets











## Estimation of the envelope boundaries trim and maneuvering envelope variation



Full Flaps at 15000 ft.

Trim and Maneuverability Envelope

10

100

150

200

250

300

350

400

450

500

185 [knots]









## Estimation of the envelope boundaries maximum roll angle





maximum achievable roll angle at current airspeed and flight path angle before stall occurs







 $V_{IAS} = 142 \text{ kts}, \, \varphi_{max} = 20^{\circ}$ 





## Additional information provided to the pilot over the cockpit displays









## **Experiment overview: Advanced Concepts Flight Simulator**

### Objective

Explore how crews manage their energy state, both with and without new technology

#### Overview

- 10 commercial flight crews
- 4 descent and landing scenarios in Memphis airspace
- Workload assessment, questionnaires

### New technology:

- Maneuver envelope limits displayed on the primary flight display (PFD)
- Others (not discussed here)





Advanced Concepts Flight Simulator (ACFS)



## **Experiment overview: Icing scenario**



• Aircraft is initialized in an icing condition: modified flight dynamics: less lift, more drag,  $\alpha_{\text{stall}}$  smaller







## **Results Icing scenario**







icing effect







icing effect and reduced  $\alpha_{\text{stall}}$ 



# Results Icing scenario







20 — without technology
25 — with technology
15 — with technology
15 — with technology
16 — without technology
27 — with technology
28 — with technology
18 — without technology
29 — with technology
20 — with technology
20 — with technology
20 — with technology
21 — with technology
22 — with technology
23 — with technology
24 — with technology
25 — with technology
26 — with technology
27 — with technology
28 — with technology
29 — with technology
20 — with technology
21 — with technology
20 — with technology
21 — with technology
20 — with technology
21 — with technology
21 — with technology
21 — with technology
22 — with technology
23 — with technology
24 — with technology
25 — with technology
26 — with technology
27 — with technology
28 — with technology
28 — with technology
28 — with technology
29 — with technology
20 — with technology

margins for all crews

flap deployment strategy





# Implementation of the protections in the closed loop architecture



### Protections are implemented in:

- Flight control laws
- Cockpit displays
- Haptic feedback

| Envelope<br>boundary      | Protection in controller | Displayed in PFD | Haptic<br>feedback |
|---------------------------|--------------------------|------------------|--------------------|
| max roll                  | Χ                        | X                | Χ                  |
| max α                     | Χ                        |                  | X                  |
| min airspeed              | via max $\alpha$         | X                | via max α          |
| max load factor           | X                        |                  | X                  |
| min/max flight path angle |                          | X                |                    |





## **Experiment method: Simona Research Simulator**



### Research hypotheses

- Will envelope protection prevent loss of control and reduce workload?
- Will modified PFD improve situational awareness about flying capabilities?
- Will haptic feedback improve situational awareness about protective action?

#### Overview

- 7 commercial pilots
- Icing scenario in approach near Amsterdam Schiphol Airport
- Workload assessment and questionnaires

### New technologies

- Adaptive envelope protection in flight control laws
- Extended primary flight display
- Haptic feedback on stick









### **Results: icing scenario**

- Gradual ice accretion on the wings, starts around FL30
- Wind gusts make effect on envelope less obvious
- Speed and bank angle margins improve with new tech
- No increase in workload





















TU[

## Concept demonstration of envelope protection in Robotic Motion Simulator at DLR Oberpfaffenhofen



DLR Robotic Motion Simulator: overview

Simulator cab of Robotic Motion Simulator





## Concept demonstration of envelope protection in Robotic Motion Simulator at DLR Oberpfaffenhofen



## Conclusions of upset prevention

- Adaptive safe flight envelope estimation and protection algorithms were designed and evaluated by several airline pilots in various simulators
- Safe envelope bounds estimated in real time taking into account malfunctions and upsets, used for three kinds of protections:
  - Extended Primary Flight Display
  - Hard protections in the flight control laws
  - Haptic feedback on sidestick

- Experiments in ACFS

  Experiments in Simona
- Significant performance changes detected in icing scenario
- Observations with new technology:

#### **ACFS** experiments:

pilots adapted strategy based on information lcing scenario:

- higher V<sub>min</sub>
- flap deployment for higher speeds

#### Simona experiments:

- larger safety margins to envelope boundaries prevent loss of control in off-nominal conditions,
- reduced workload (objective and subjective ratings),
- improved situational awareness (subjective ratings).





## **Stall Recovery Guidance**





## Sequence of events for stall recovery

| onset to stall                                  | stall occurrence                                                                                     | stall recovery                                                                                                                                                          |                                                                                  |                                 |  |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------|--|
|                                                 |                                                                                                      | accelerating dive                                                                                                                                                       | pitch up                                                                         | out of stall                    |  |
| Decreasing airspeed, increasing angle of attack | aural warning, stick shaker, low speed buffeting  Speed below stall speed, alpha exceeds stall value | Trade altitude for speed, potential → kinetic energy                                                                                                                    | Transition to level flight, avoiding secondary stalls or overstressing structure | Establish level flight or climb |  |
| FAA stall recovery<br>template:                 | Disconnect autopilot and autothrottle/ autothrust                                                    | <ol> <li>Nose down until stall indications eliminated,</li> <li>Bank wings level,</li> <li>Apply thrust as needed</li> <li>Retract speed brakes and spoilers</li> </ol> | 6. Return to the desired flightpath                                              |                                 |  |







### Upset recovery: stall recovery guidance

Strategy: exchange potential energy (altitude) for kinetic energy (speed), taking into account energy dissipation (drag) and energy inflow (thrust)

#### Constraints:

- Secondary stalls (α)
- Structural loads (n,)
- Pitching moment (T<sub>max</sub>)

Pilot guidance through flight director  $(\theta_c)$  and throttle tape  $(T_c)$  in PFD







### Evaluated in 3 different simulators

Vertical Motion Simulator at NASA Ames



Research Flight Deck at NASA Langley





Level D A330 simulator at FAA









## **Experiment results**

### Traffic avoiding maneuver in cruise phase:



### Performance improvements with guidance:

- Fewer and less severe secondary stalls
- Less total altitude loss during recovery
- No violations of maximum/minimum load factor limits
- On average shorter time to recover
- Better buffer to overspeed limit







### **Conclusions and remarks**

- Overall, stall recovery guidance algorithms evaluated in 3 simulators
  - NASA Ames
  - NASA Langley
  - FAA.
- 2 dissimilar aircraft configurations
- 65 participating flight crews:
  - 40 at NASA Ames (of which 10 test pilots)
  - 13 at NASA Langley (Boeing pilots)
  - 12 at FAA (Airbus pilots)
- Different scenarios: cockpit display malfunctions, autothrottle failure, sensor faults, windshear, traffic avoiding maneuvers in all phases of flight.
- Satisfactory performance, well received by pilots.



## Thank you for your attention

This work would not have been possible without:

Stefan Schuet, Diana Acosta, John Kaneshige, Kim Shish, Vahram Stepanyan Gertjan Looye, Andreas Seefried, Miguel Neves, Tobias Bellmann, Joost Ellerbroek, Mitchell Rodriguez y Martin



