Using Dust Shed from Asteroids as Microsamples to Link Remote Measurements with Meteorite Classes

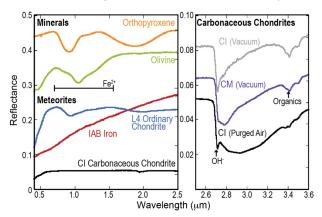
B. A. Cohen, J. A. Richardson

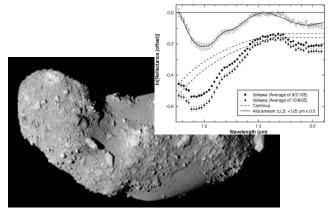
NASA Goddard Space Flight Center, Greenbelt MD 20771 (Barbara.A.Cohen@nasa.gov

J. R. Szalav

Princeton University, Princeton, NJ 08544

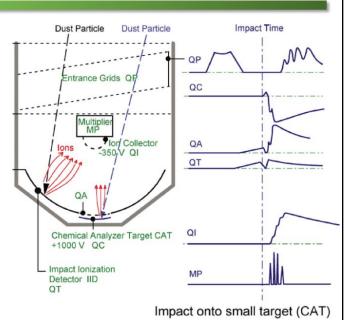
A. S. Rivkin, R. E. Klima, C. M. Ernst, N. L. Chabot Applied Physics Laboratory, Johns Hopkins University, Laurel MD 20723


Z. Sternovsky and M. HorányiUniversity of Colorado, Boulder CO 80303


Introduction & Summary

- Given the diversity of asteroids, it is impossible to consider returning samples from each one
- Dust particles are abundant around asteroids
- Primary minerals and organic materials can be measured by in situ dust detector instruments
- These particles can be used to classify the parent body as an ordinary chondrite, basaltic achondrite, or other class of meteorite
- Such instruments could provide direct links to known meteorite groups without returning the samples to terrestrial laboratories

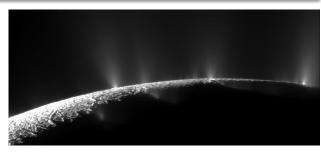
The importance of asteroids

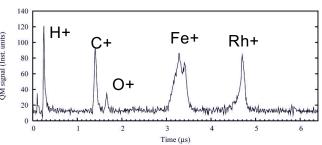

- Building blocks of terrestrial, habitable worlds
- Incubator and delivery mechanism for organic molecules
- Tracers of dynamics, including planetary migration
- Meteorite parent bodies, providing direct evidence of early solar system history
- Interesting to other communities (planetary defense, ISRU, human exploration)

Dust as microsamples

- Dust detectors use particle impact to measure mass, velocity and directionality
- Dust analyzers add a mass spectrometer to analyze the impactgenerated plasma cloud
- PUMA aboard VEGA 1 and 2 flew by comet P/Halley in 1986; particles are a mixture of silicates and organic material
- Cassini CDA (m/Δm ~ 30) identified salts in Enceladus plume, (SiO₂) particles embedded in Saturn's E ring, and IDPs
- New analyzers have larger detectors and higher mass resolution (m/Δm > 200) → recognizable particle compositions and mineralogies

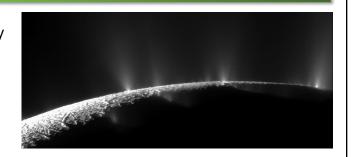
Dust as microsamples

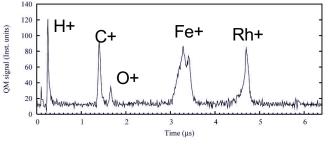

- Dust detectors use particle impact to measure mass, velocity and directionality
- Dust analyzers add a mass spectrometer to analyze the impactgenerated plasma cloud
- PUMA aboard VEGA 1 and 2 flew by comet P/Halley in 1986; particles are a mixture of silicates and organic material
- Cassini CDA (m/Δm ~ 30) identified salts in Enceladus plume, (SiO₂) particles embedded in Saturn's E ring, and IDPs
- New analyzers have larger detectors and higher mass resolution (m/Δm > 200) → recognizable particle compositions and mineralogies


Table 4. Chemical composition of Fe-rich particles. *N*, number of spectra.

	PUMA-1		
	N	N with Ni (%)	PUMA-2 (N)
Metal (Fe/S > 10.0; Fe/Si > 10.0)	21	43	8
Sulfides (Fe/S < 10.0; S/Si > 5.0)	35	26	10
Silicates (Fe/Si < 10.0; Si/S > 5.0)	15	40	4
Other	50	34	11

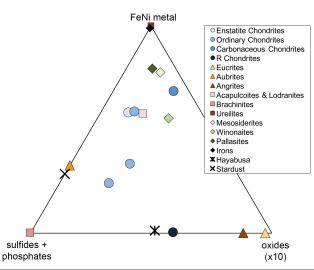
Dust as microsamples


- Dust detectors use particle impact to measure mass, velocity and directionality
- Dust analyzers add a mass spectrometer to analyze the impactgenerated plasma cloud
- PUMA aboard VEGA 1 and 2 flew by comet P/Halley in 1986; particles are a mixture of silicates and organic material
- Cassini CDA (m/Δm ~ 30) identified salts in Enceladus plume, (SiO₂) particles embedded in Saturn's E ring, and IDPs
- New analyzers have larger detectors and higher mass resolution (m/Δm > 200) → recognizable particle compositions and mineralogies

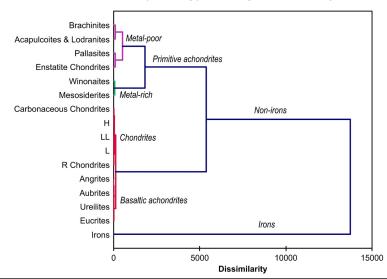


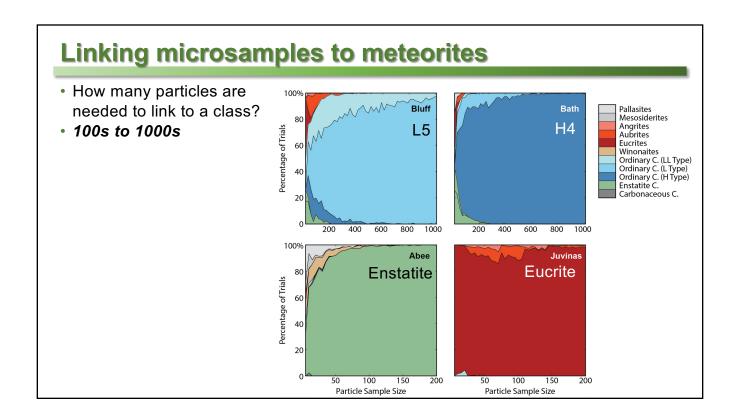
Dust as microsamples

- Dust detectors use particle impact to measure mass, velocity and directionality
- Dust analyzers add a mass spectrometer to analyze the impactgenerated plasma cloud
- PUMA aboard VEGA 1 and 2 flew by comet P/Halley in 1986; particles are a mixture of silicates and organic material
- Cassini CDA (m/Δm ~ 30) identified salts in Enceladus plume, (SiO₂) particles embedded in Saturn's E ring, and IDPs
- Next generation (SUDA, IDEX) has larger detectors and higher mass resolution (m/Δm > 200) → recognizable particle compositions and mineralogies



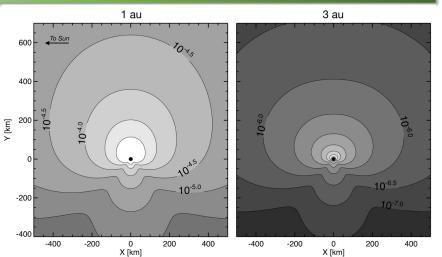
Linking microsamples to meteorites


 Combination of phase abundance (silicates, Fe-Ni metal, sulfides, phosphates, oxides) and mineral composition (Fe/Mg) distinguishes major meteorite groups

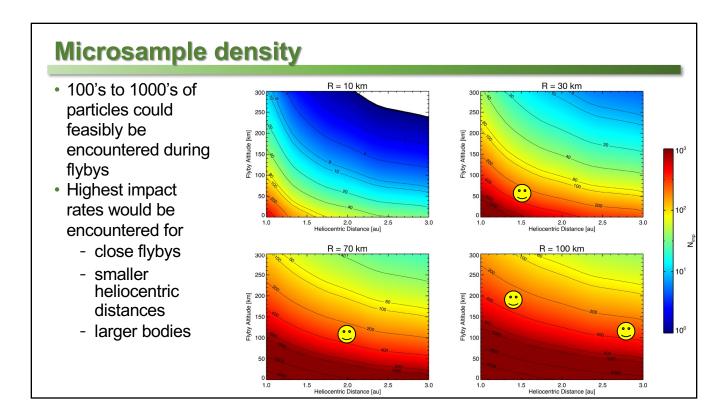


Linking microsamples to meteorites

 Combination of phase abundance (silicates, Fe-Ni metal, sulfides, phosphates, oxides) and mineral composition (Fe/Mg) distinguishes major meteorite groups


Linking microsamples to meteorites

- How many particles are needed to link to a class?
- 100s to 1000s
- Hayabusa returned 1087 monomineralic particles, was that enough to link to an LL chondrite (in the absence of other evidence)?
- Yes
- But not for Stardust (n=34)



Microsample density

- Dust clouds are small particles lost from the asteroid primarily by micrometeorite impacts
- Structure of the dust cloud is created by asymmetry in the micrometeorite sources

Ejecta cloud structure (particles/ m^3) for 10-km body with grains a > 50 nm Density is enhanced on the apex side, decreases with heliocentric distance

Summary

- Given the diversity of asteroids, it is impossible to consider returning samples from each one
- Dust particles are abundant around asteroids
- Primary minerals and organic materials can be measured by in situ dust detector instruments
- These particles can be used to classify the parent body as an ordinary chondrite, basaltic achondrite, or other class of meteorite
- Such instruments could provide direct links to known meteorite groups without returning the samples to terrestrial laboratories
- Missions are being developed that will take advantage of the opportunities provided by measuring asteroid dust, particularly in combination with other instruments

Main-belt and NEO Tour with Imaging and Spectroscopy