



# Rapid Development of the Seeker Free-Flying Inspector Guidance, Navigation, and Control System



42<sup>nd</sup> AAS GNC Conference (2019)

Jake Sullivan, NASA/EG6 Elisabeth Gambone, NASA/EG4 Thomas Kirven, Jacobs/EG Sam Pedrotty, NASA/EG6 Brandon Wood, NASA/EG6



## **Overview**



- ☐ Free-Flying Inspector History
- □ Seeker/Kenobi
- □ Linear Covariance Analysis
- □ Seeker Sensor Downselection
- □ Sensor Testing and Verification
- ☐ Vision-Based Navigation
- ☐ CFS Software Architecture
- Navigation
- □ Guidance
- □ Control
- □ Automated Tuning and Analysis
- **☐** ROSIE Testing
- ☐ Hardware/Software Integration (HSI) Milestones
- **□** Summary



# **Free-Flying Inspector History**





## □ In-space inspection long-desired by NASA

- Damage Assessment
- Periodic Inspection
- External View of Critical Events

#### □ AERCam SPRINT

- Free-Flying Camera
- Shuttle DTO for STS-87 (1997)
- Teleoperated by Shuttle Astronauts

#### ☐ Mini AERCam

- Upgrade to AERCam SPRINT
- Developed at JSC from 2000-2006
- Significant upgrades to AERCam
  - Waypoint Guidance and Relative Navigation
  - Docking and Refueling Capability
  - Miniaturization of AERCam SPRINT
- Never flown in space














- Not an acronym (Jedi training droid)
- First step in development process
- Funded by ISS as "Class 1E" project
- Authority To Proceed: 07/26/2017
- Requested Delivery: 10/01/2018
- \$1.8 million budget, 10 FTE allotted
- Early-career emphasis
- Launch aboard NG-11 in 2019
- 45 minute mission (lighting constraints)



Luke Skywalker training with Seeker Droid (Credit: Lucasfilm)

# □ Kenobi: Communication Box (3U Form Factor)

- Remains within NanoRacks deployer
- Communication and data storage
- Data telemetered down in weeks following mission

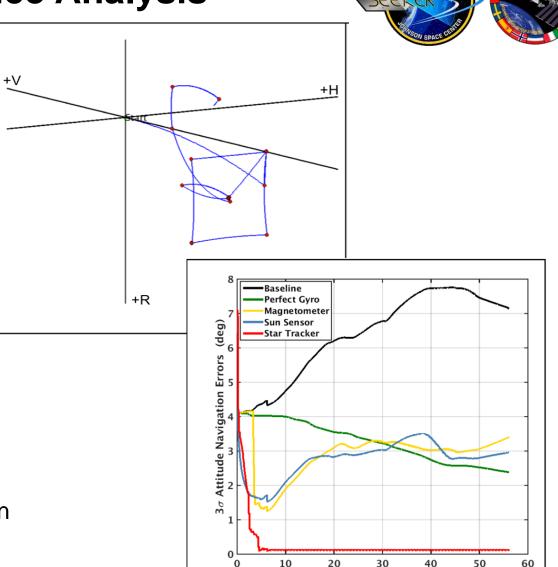


Seeker (left) and Kenobi (right)

# **Linear Covariance Analysis**



# ☐ LinCov Analysis has long history at NASA


- Dating back to the Apollo Program
- Similar statistics to Monte Carlo in single run
- Rendezvous scenarios readily available
- Quick iteration of system design

## ☐ Converged on baseline sensor configuration

- IMU
- Bearing sensor
- Range sensor
- Differenced GPS

## ☐ Attitude error emerged as driving factor

- Evaluated star tracker, sun sensor, magnetometer
- Price and lead time eliminated star tracker as option
- Sun sensors added to baseline design



Time (min)



# **Sensor Downselection**





- □ Sensor selection based on cost, performance, lead time, and heritage (in that order)
  - Space-rated items with flight heritage strongly preferred
  - If unavailable, consider tactical-grade units or units without heritage
- ☐ IMU: Sensonor STIM 300-400-5
  - Flight heritage with Raven (STP-H5)
  - Recommendation from GSFC Raven
- ☐ Laser Rangefinder: Jenoptik DLEM-SR
  - Tactical-grade rangefinder
  - Flight heritage with OCSD-A
- ☐ GPS: SkyFox Labs piNAV-NG
  - Flight heritage GPS receiver
  - TTFF from cold start: 90 seconds
- ☐ Sun Sensors: SolarMEMS nanoSSOC-D60
  - Selected based on unit cost and lead time
- □ Bearing: Pursued camera-based approaches
  - No LIDAR available meeting SWaP
  - Convolutional Neural Network (CNN) with UT-Austin
  - Scale-Invariant Feature Transform (SIFT) with local contractor







Sensonor STIM 300-400-5



SolarMEMS nanoSSOC-D60



# **Sensor Testing/Verification**





- ☐ Sensors tested for performance and survivability, not operability
- □ Space COTS sensors assumed to meet environmental specification
- ☐ Performed test series to attempt to qualify non-space rated sensors
  - Benchtop testing
  - Thermal (TestEquity Model 107)
    - Cycle between -44 C and +70 C
    - Operate at each temperature extreme
  - Vacuum (epoxy out-gassing vacuum chamber)
    - Re-test performance after 24 hours at -30 psig

☐ LRF subject to range testing (with/without thermal)

- Vibration
  - 9 GRMS random and sine, all axes
- Blinding
  - All optics by pointing up on clear day



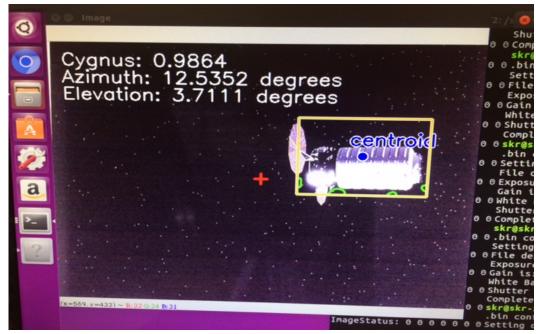
DLEM-SR Cold Extreme
Thermal Testing



**Laser Rangefinder Performance Testing at JSC Antenna Range** 

☐ Sensors subjected to thermal, vacuum, EMI, vibe, shock on integrated vehicle




# Visual Navigation (VizNav)

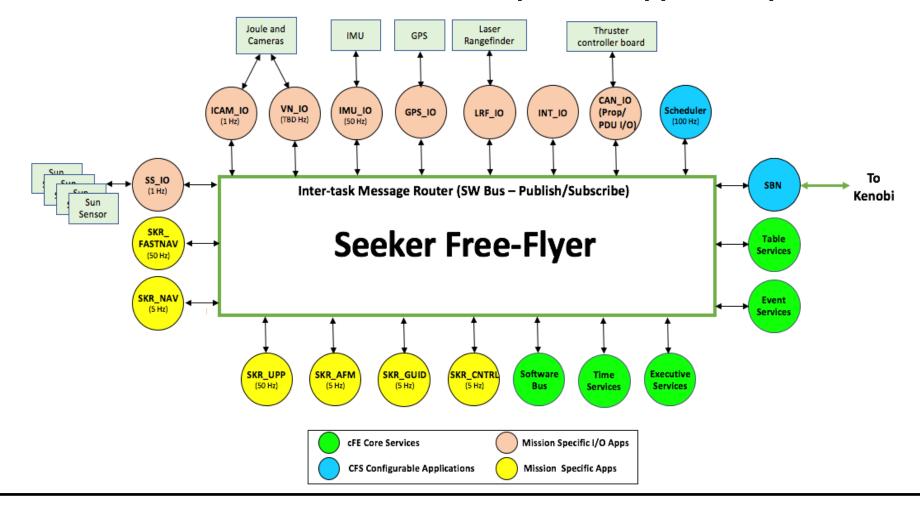




## ☐ Three approaches pursued in parallel

- Neural Network (JSC internal)
- Neural Network with Contouring (UT-Austin)
- Scale-Invariant Feature Transform (Contractor)
- □ Latter two approaches delivered mid-CY2018 for integration with Seeker FSW
- □ Both algorithms evaluated using 4K monitor in Seeker lab
  - Similar to Orion optical navigation evaluation
  - Tested against Cygnus and non-Cygnus targets
- ☐ UT-Austin approach selected
  - More robust acquisition of target
  - Uncertain flight imagery
  - SIFT very sensitive to features




**UT-Austin CNN Performance Evaluation in Seeker Lab** 



# **Core Flight Software Architecture**



- ☐ CFS has long flight heritage, developed by GSFC
- ☐ Publish/Subscribe architecture, common template for app developers





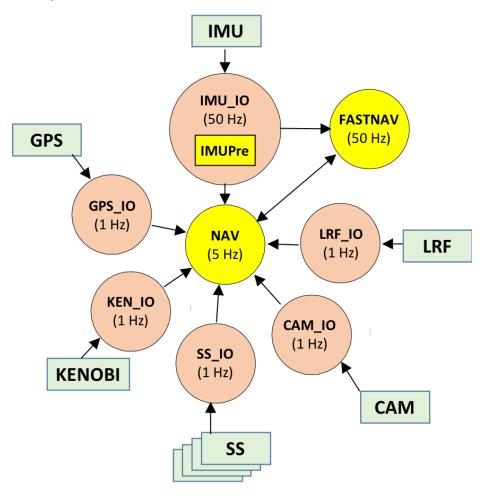
# **Seeker Navigation Subsystem**





- Purely kinematic (Relative state, Clohessey-Wiltsire dynamics)
- Inertial navigation filter (Dual-Inertial or Inertial Relative)

#### ☐ Inertial-Relative Filter chosen after HSI-1


- Needed inertial frame to compensate for gyro drift
- Inertial-Relative form simplifies measurement modeling
- Navigation broken into three components
- **☐** IMU Preprocessor (IMUPre)
  - Downsample IMU data to single 50Hz packet
  - Perform coning/sculling correction

#### ☐ FASTNAV

- Perform state integration using IMU data
- Generate dynamics partials and State Transition Matrix

#### □ NAV

- Multiplicative Extended Kalman Filter (MEKF)
- Perform measurement updates





# Seeker Guidance Subsystem





- ☐ Initial approach involved potential field-based guidance algorithms
- ☐ Artificial potential field steers Seeker to waypoints and away from hazards
- □ Abandoned for point-to-point guidance algorithm
  - Resource and timeline constraints
- ☐ Commanded velocity always in direction of next waypoint
  - Constant magnitude if greater than iLoaded "stopping distance"
  - Linearly decreasing as Seeker approaches waypoint
  - Effectively bounds Seeker kinetic energy
- ☐ Both target track and waypoint logic implemented for attitude guidance
  - Target track to keep navigation camera and rangefinder pointed at target
  - Waypoint commands to attitude specified by Automated Flight Manager (AFM)
- □ Keep-Out-Zone logic implemented (Stretch Goal)
  - Guidance ignores commands to enter or pass through hazardous area
  - Future missions could generate Keep-Out-Zones in realtime
- ☐ Simplified approach resulted in rapid development and testing
- ☐ Approach general enough to return to field-based guidance without redesign



# **Seeker Control Subsystem**



- ☐ PID controller designed to calculate thruster duty cycle
  - Derivative term zeroed due to uncertain acceleration measurement
  - Integral term limited to prevent saturation
- □ Phase-plane controller designed for attitude control
- ☐ Control parameters are inputs into the system and can vary by mission phase
  - Control gains
  - Integral limit
  - Minimum firing time
  - Phase plane limits
  - Firing time increment
- ☐ Both translational and rotational control algorithms implemented in Simulink
  - Enabled rapid development and analysis while simulation was under development
- ☐ Final tunings performed in flight software after integrated testing



# **Automated Tuning and Analysis**



- ☐ Trick Monte Carlo capability became available late in the project (August 2018)
- ☐ Personnel and schedule constraints demanded automated approach
  - Developed "Tuning Bulldozer" to help the process
  - Vary individual filter parameters across a range using Monte Carlo in automated way
  - Resulting output viewable using Koviz, a JSC plotting tool
  - Run about 100 values for a parameter within an hour
  - Enabled distributed simulation tuning runs
  - Quickly revealed trends, sensitive parameters, and initial starting values
- □ Automated process produced initial guesses for manual tuning
- Monte Carlo runs analyzed using VERAS tool
  - Load and parse data, compare to requirements, and generate PDF reports
  - Enabled more traditional tuning approach
  - Quickly trade navigation accuracy, mission time, and propellant usage
- □ Converged on parameters which should provide robust performance while achieving minimum, full, and stretch project goals



## **ROSIE**





- □ Rendezvous Operation Sensor and Imagery Evaluator (ROSIE)
- □ Collaboration between EG (Flight Mechanics) and ER (Robotics/Software) in 2017
- ☐ Platform for relative navigation sensor and algorithm testing
  - Smaller scale, simulate relative motion, avoid pushing a cart
  - Provide 6-DOF motion
  - Support 12"x12"x18" payloads of up to 40 lbs
  - May be driven by scripts, hand controller or Trick simulation
- ☐ Ideal platform for Seeker testing
  - Prototype FlatSat can fit on motion platform
  - Quickly reconfigurable
  - Real or simulated sensors or effectors
  - Development of interface allows ROSIE to be driven by Trick sim
- ☐ Test anywhere with large, open space and flat floor
- ☐ Initial tests used scripted motion, moved to simulation base



**ROSIE Robot in Building 9 at JSC** 



# Hardware/Software Integration (HSI)





## ☐ Series of HSI milestones set by project to accelerate development

- Forcing function for development schedule
- Three planned, four completed

## **☐** HSI-1 (February 2018)

- Basic AFM functionality, camera I/O, prop controller
- Navigation propagation and flight control

## ☐ HSI-2 (April 2018)

- Guidance, NAV, AFM development and integration
- Sensor interfaces, ground commanding

## ☐ HSI-2.5 (July 2018)

- Integrate all hardware sensors, additional software upgrades
- VizNav not yet available

## **☐** HSI-3 (September 2018)

VizNav integration, filter tuning, flight config

## ☐ Multiple benefits to HSI schedule

- Develop interfaces early in project
- Periodic re-integration with hardware



Seeker FlatSat on ROSIE Platform for HSI-3



# **Summary Gantt Chart**



Sensor Procurement

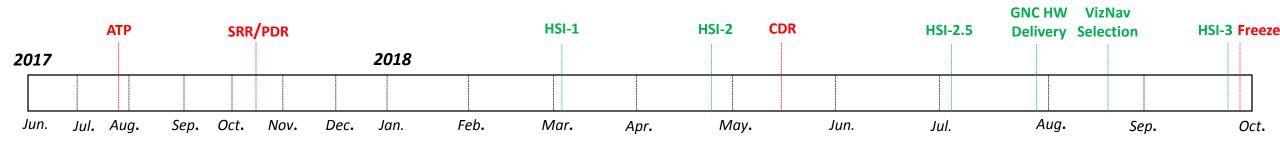
Control/Math Pre-Development

**Simulation Development** 

Initial Guid, Cntrl, AFM, Perfect Nav

**Sensor Testing** 

**UT VizNav Development** 


**ROSIE Interface Development** 

**GNC FSW Development and Debugging** 

**Navigation Tuning** 

Assembly

**Integrated Testing** 

