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1. Moulin formation and persistence 2. Developing moulin geometry ™ v, Stoaring and

Opening il Creep Closure iii. Refreezing Refreezing Internal Deformation

* Nearly all proglacial water discharge from the Greenland Ice Sheetis ¢ Moulins persist over months or years when elastic

routed englacially via moulins. opening and melting due to the dissipation of
turbulent and heat energy are equivalent or
exceed creep closure and refreezing.

* Crevasse and moulin formation is dependent on persistent
(crevasses) or transient (moulin initiation) stresses which result in
surface-to-bed hydrofracture (e.g. Hoffman et al., 2018; e These geometries become more complex over
Christoffersen et al., 2018). time as ice deformation and shearing continue to

alter moulin shape, potentially impacting the

discharge-pressure relationship in individual

 Understanding the conditions, including both the transient stress
state and the surface runoff flux, needed to form and maintain a

. . . . moulins.
moulin are an important component to developing a stochastic
model for englacial connections.
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lllustration of the analytic model for the ice-sheet surface response (top surface) to a basal Conceptual diagram of the components necessary for the development of a stochastic model for

slipperiness perturbation. Ice flow is from left to right. Ice flow is extensive upstream of the slippery = moulin density.
patch; this region may seed crevasses.
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