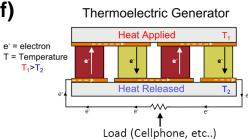


Dynamic Radioisotope Power Systems

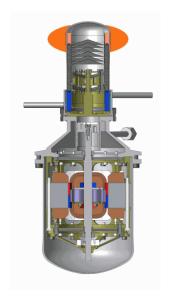
Conference on Advanced Power Systems for Deep Space Exploration

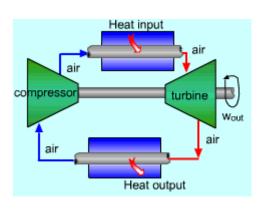
October 24, 2018


Salvatore Oriti
NASA Glenn Research Center
Thermal Energy Conversion Branch

Energy Conversion Options for Radioisotope Power Systems

Static

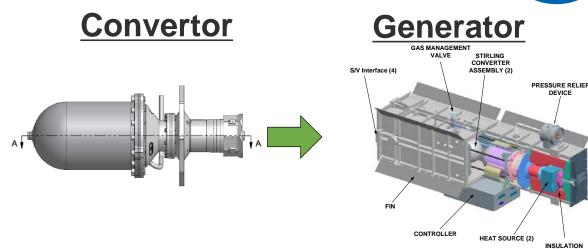

- Thermoelectrics (Seebeck effect, heat direct to emf)
- Solid-state, no moving parts
- Demonstrated reliability and long life (Voyager, Cassini, New Horizons, Mars Curiosity)
- Other options : Thermo-photovoltaic, thermionic



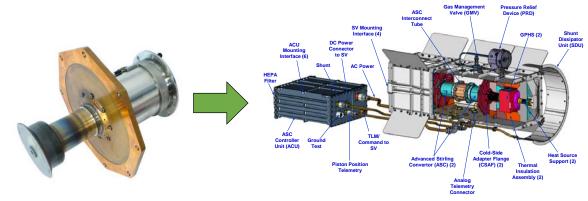
Dynamic

- Heat engines (Stirling, Brayton, Rankine)
- Moving parts (Pistons, turbines, alternators)
- Heat to mechanical, to electrical energy
- Can be designed to eliminate wear mechanisms, and have infinite fatigue life
- Never flown in space as power convertor
- Multiple free-piston Stirling cryocoolers have operated long-term in space, up to 20 years

Dynamic-Conversion Power System Background



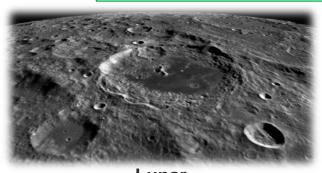
SRG-110


- ~114 W_e output
- Infinia's Technology Demonstration Convertor (TDC)
- 2 Pu-238 GPHS modules
- Overall efficiency = 23%
- 4.2 W_e/kg (before engineering unit build)
- Developed during 2001 to 2006 timeframe

ASRG

- ~140 W_e output
- Sunpower's Advanced Stirling Convertor (ASC)
- 2 GPHS modules
- Overall efficiency = 28%
- 4.4 W_e/kg
- Developed during 2006 to 2013 timeframe

SRG110, using flexure-bearing Stirling convertor (image credit: Lockheed Martin)



ASRG, using gas-bearing Stirling convertor (image credits: Sunpower, Lockheed Martin)

Current Dynamic Convertor Development

Item	Performance Goal	
Life	20 years	
Efficiency	≥ 24% at T _{cold} > 100 °C	
Specific Power	≥ 20 W _e /kg (convertor only)	
Partial power	Can be throttled down to 50%	
Degradation	< 0.5% / year	
Hot-End Temp	< 1000 °C	
Cold-End Temp	20 to 175 °C	
Random Vibe	Launch qual	
Static Accel	20g for 1 minute, 5g for 5 days	
Radiation	300 krad	
Size	Enables generator that can fit in DOE shipping container	

Goals make convertor designs applicable to a wide range of missions

Lunar (Far side & South Aitken Basin)

Europa

Robustness goals also defined:

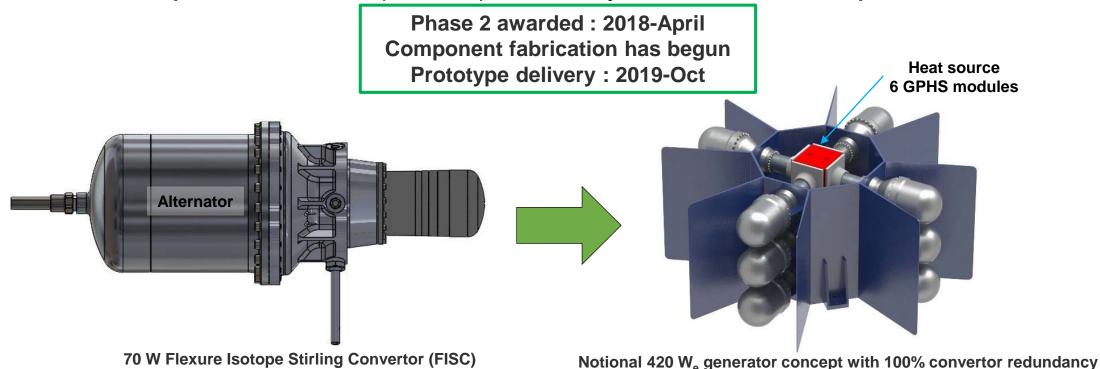
- Design has margin to tolerate events outside expected environments
- Fewer single-point-failures is more robust
- Number of fasteners minimized
- Tolerant of loss of electrical load
- Tolerant of operational error
- Manufacturability not dependent on specialized workmanship

Titan


Convertor Development Timeline

Status	Date	Description
✓	2016-Aug	RFP Release
✓	2016-Nov	Proposal review
✓	2017-Jul	Contract awards (4)
✓	2017-2018	Phase 1 - Design
✓	2018-Apr	Decision Gate 1
Ongoing	2018-2020	Phase 2 – Fab & Test
Future	2020-2021	Phase 3 – IV&V
Future	2021	Tentative Decision Gate 2
Future	2021	Goal : Begin DOE flight generator development

Convertor development contracts awarded in 2017:

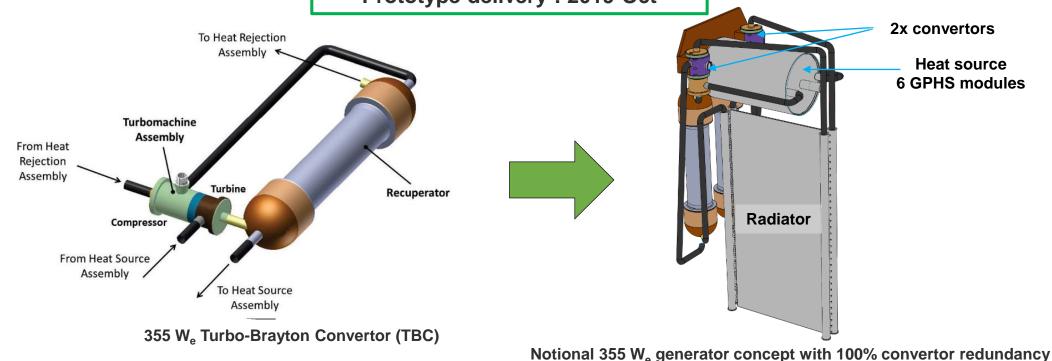

ltem	Flexure Isotope Stirling Convertor (FISC) American Superconductor, Inc.	Turbo-Brayton Convertor (TBC) Creare, LLC	Thermo-Acoustic Power Convertor (TAPC) Northrop Grumman	Sunpower Robust Stirling Convertor (SRSC) Sunpower, Inc.
Power (W _e)	70	355	110	65
Efficiency (%)	31	26	26	29
Hot-end Temp (°C)	650	730	700	720
Mass (kg)	3.3	15.5	6.4	2.0
Specific Power (W _e /kg)	21	22	17	33
Phase 2 awarded	Yes	Yes	No	Yes

Flexure Isotope Stirling Convertor (FISC)

American SuperConductor (AMSC), formerly Infinia Tech Corp.

FISC Characteristics

Power Output	70 W _e
Efficiency	31% @ T _{COLD} =100°C
Fraction of Carnot	0.52
Hot-end Temp	650 °C
Mass	3.3 kg (~21W _e /kg)


- Flexure-bearings, beta arrangement free-piston Stirling convertor
- Derivative of Technology Demonstration Convertor (TDC) from SRG-110 project
- TDCs have established long operational life via convertor testing at GRC
- Design deltas relative to TDC to improve the following:
- 1. Higher radial stiffness flexures, overstroke tolerance, hot-end temperature margin
- 2. Independently verifiable subassemblies
- 3. Higher efficiency alternator, higher cold-end temp capability
- System integration: Tailored interfaces

Turbo-Brayton Convertor (TBC)

Creare, LLC

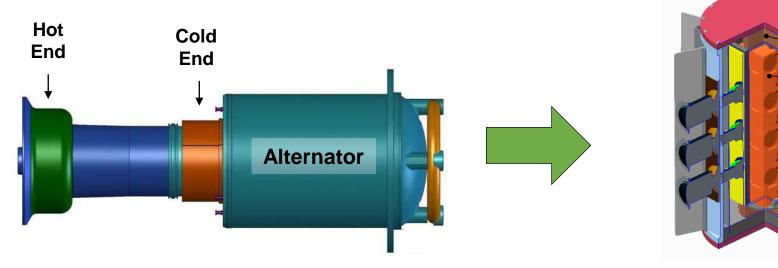
Phase 2 awarded : 2018-April
Component fabrication has begun
Prototype delivery : 2019-Oct

TBC Characteristics

Power Output	355 W _e
Efficiency	26% @ T _{COLD} =100°C
Fraction of Carnot	0.41
Turbine Inlet Temp	730 °C
Mass	15.5 kg (22 W _e /kg)

- Closed Brayton continuous flow cycle with recuperation
- · Scaled-down from previous designs
- Life-limiting engineering : Hot-end material creep from centrifugal stress
- Recuperator is large portion of convertor mass
- Two counter-rotating units permits redundancy, and nullifies angular momentum
- Flexible component placement on spacecraft

Sunpower Robust Stirling Convertor (SRSC)


Sunpower, Inc.

Phase 1 : Complete

Phase 2 awarded in process

Prototype delivery: 2019-Jan

65 W_e Sunpower Robust Stirling Convertor (SRSC)

Notional 500 W_e generator concept with 25% convertor redundancy

Heat source support
Heat source stack
Graphite distributor

Heat pipe heat spreading

SRSC Characteristics

Power Output	65W _e
Efficiency	29% @ T _{COLD} =100°C
Fraction of Carnot	0.46
Hot-End Temp	720 °C
Mass	2.0 kg (33 W _e /kg)

- Gas-bearing based, beta arrangement free-piston Stirling convertor
- Derivative of Advanced Stirling Convertor (ASC) from ASRG Project
- Enables wide generator design space
- Design deltas relative to ASC to improve the following:
- Higher radial gas bearing stiffness, overstroke tolerance
- 2. Regenerator robustness, debris tolerance
- Higher cold-end temp and static acceleration capability

Path to Flight

Goal:

Achieve convertor TRL 6, then initiate generator flight development

NASA definition of TRL 6: "System/subsystem model or prototype demonstration in a relevant environment (ground or space)"

Relevant environments can be simulated

Surrogate Mission Team (SMT), chartered by RPS Program

- NASA, DOE, JPL, APL, GSFC
- Formulated requirements to provide mission pull
- Integrated with convertor contract progress monitoring
- Formulated a TRL evaluation method
- Providing failure mode and probability of success analysis
- Work phases and deliverables tied to TRL advancement

Phase 1 : Design Preliminary design Power, thermal, structural analyses FMEA Req. compliance matrix Design review TRL 4,6 Phase 2 : Fab and Test Demonstrate steady-state perf. Performance mapping Initial extended operation Validate physics-based models

TRL 6

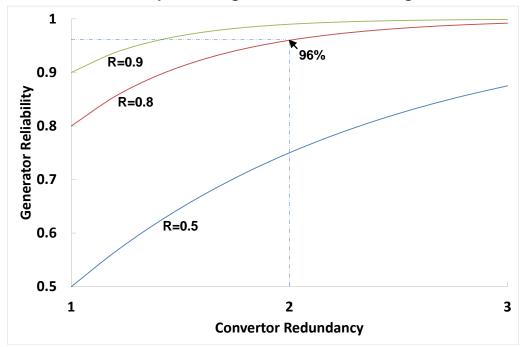
Phase 3: IV&V

Independent modeling and analysis
Component accelerated tests
Launch vibration exposure
Static acceleration exposure
Performance mapping
Half-power operation
Durability/robustness tests
Extended operation

Flight Generator Development

National Aeronautics and Space Administration

(


First Mission Potential

First flight-mission use of any new conversion technology must accept some risk

20 year life requirement is atypical

- Demonstrating 2x life via experiment is not realistic
- Statistical reliability analysis will have small number of hardware data points
- Fabrication of tens of hardware data points not possible on current timeline
- Convertor-level accelerated testing not possible
- Convertor component accelerated testing is possible
- Convertor redundancy has significant effect on generator reliability

Lunar mission is an attractive first use

- Short cruise time (days, not years)
- Short mission duration (2 years instead of 20)
- Significant science return
- Many candidate missions enabled or enhanced by nuclear power:
 - o 330-hr darkness
 - o Permanently-shadowed craters

Generator and Convertor Risk Mitigation

Is dynamic conversion worth the risk? What can be done to encourage adoption?

Dynamic Conversion Advantages:

- Higher thermal-to-electric efficiency (up to 40%)
- Lower waste heat to output power ratio
- No degradation
- Low generator power decline (fuel decay only)
- Large multi-mission generator design space
- Extensible to high power levels

Convertor risk mitigation:

- Long-term material property data (metals and organics)
- Radiation endurance
- Component accelerated tests
- Robustness demonstrations (perhaps test to destruction)
- Develop enhancing products (e.g. debris-free regenerator)

Ideal spacecraft power source (target these traits):

- Reliable, always producing power
- Consistent output through every mission environment (behaves as a constant-voltage power source)
- High power density and specific power
- No disturbance to spacecraft (EMI, vibration, thermal)
- Simple con-ops (for fueling, launch, EDL, cruise)
- No human-in-the-loop needed at any mission stage
- No ground-command intervention needed
- Robust (capable of unexpected situations outside norm, capable of internal component failure)

Generator risk mitigation:

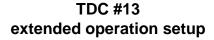
- Demonstrate concept with convertor redundancy
- Demonstrate radiant heat source coupling to convertor
- Simple controller development, with fault tolerance
- Test multiple generators on spacecraft electrical bus

Stirling Convertor Reliability Demonstrations

NASA GRC has demonstrated zero-degradation long-term operation of several flight-relevant convertors

Project & Provider	Test Article	Bearing Technology	Years of Operation (Cumulative)	Status
	TDC #13*	Flexure	12.8	On-going
SRG-110	TDC #14		12.1	Shutdown for disassembly and inspection
Infinia, Corp.	TDC #15		11.9	On-going
I IIIIII a, Gorpi	TDC #16		11.9	On-going
	SES #2**		0.5	On-going
	ASC-0 #3**	Gas	8.6	On-going
	ASC-E3 #3		2.5	Shutdown for disassembly and inspection
ASRG	ASC-E3 #4**		3.5	On-going
Sunpower, Inc.	ASC-E3 #6**		2.8	On-going
	ASC-E3 #8		2.3	On-going
	ASC-E3 #9		1.9	On-going
	ASC-L**		4.4	On-going

Cumulative Per-Convertor Runtime as of September 2018


TDC #14 disassembled and inspected after 12 years of operation:

- No evidence of degradation
- Robustness demonstrated
- Tolerated debris, oxygen ingress, and overstroke
- Further disassembly commencing
- Will enable inspection of flexure bearings

ASC-E3 #3 will also be inspected (after 2.5 yrs of operation)

Suspect an assembly error causing fluctuations in performance

ASC-E3 pair extended operation setup

National Aeronautics and Space Administration Dynamic RPS 12

^{*}Current record-holder for maintenance-free heat engine runtime

^{**}Have undergone launch-vibe portion of life certification

Conclusions and Next Steps

NASA's dynamic power convertor development for high-efficiency RPS is progressing as planned, and will result in advancements in power options for Exploration and Science missions

- 3 DPC contracts have passed Decision Gate 1, and have been awarded Phase 2 (convertor prototype fabrication and test)
- NASA GRC is preparing for DPC prototype IV&V, ~2020
- Ongoing research utilizing existing hardware supports viability of dynamic power conversion for RPS
- Next steps:
 - 1. Finalize IV&V and risk mitigation plans
 - 2. Execute these plans
 - 3. Finalize generator flight development path