

Impact of Geostationary Aerosol Observations on the GEOS Aerosol Forecasting System: Preliminary Results for ABI on GOES-16

Arlindo da Silva, Patricia Castellanos, Robert Levy and Shana Mattoo GMAO and Climate and Radiation Lab NASA/Goddard Space Flight Center <u>arlindo.m.dasilva@nasa.gov</u>

> AGU Fall Meeting 2018 Washington, DC , 13 December 2018

Aerosols in the GEOS Earth System Model

- GOCART Aerosols in GEOS-FP
- > QFED: GMAO's NRT biomass burning emission

Aerosol Data Assimilation

- Homogenizing the aerosol observing system
- > AOD assimilation with Local Displacement Ensembles

Geostationary Aerosol Retrievals from ABI

- Summary of DT algorithm and processing
- Impact of ABI aerosol data on GEOS analysis
- Concluding Remarks

GMA

GEOS FP Configuration

Biomass Burning Emissions

QFED: Quick Fire Emission Dataset

- Top-down algorithm based on MODIS Fire Radiative Power (AQUA/TERRA)
- FRP Emission factors tuned by means of inverse calculation based on MODIS AOD data.
- Daily mean emissions, NRT
- Prescribed diurnal cycle
- In GEOS-5 BB emissions are deposited in the PBL.

Field Campaign Support

- Global 5-day chemical forecasts
 - O3, aerosols, CO, CO2,
 SO2
 - Nominally 12.5 km
- Driven by real-time biomass emissions from MODIS FRP (OFED)
- Constituents transported online, interactively
- Since 2007 supported several field missions including TC4, ARCTAS, GloPac, ATTREX, DISCOVER-AQ, HS3, SEAC4RS, ATom, ORACLES, etc.

Comparison of observed (top) and simulated (bottom) aerosol backscatter for a slight during the 2013 SEAC4RS campaign.

Aerosol Analysis: Splitting

2D AOD ANALYSIS

- Observable 550 nm AOD is 2D
 - Constrains column averaged optics
 - Cannot constrain speciation or vertical distribution
- Analysis in observation space:

 $\tau^{a} \equiv Hq^{a} = H\left(q^{b} + \delta q^{a}\right)$ $= \tau^{b} + \delta \tau^{a}$

GOING TO 3D CONCENTRATIONS

- Based on error covariances: $\delta q^a = B H^T \left(H B H^T \right)^{-1} \delta \tau^a$
- Using ensemble perturbations, $\delta q^{a} = XY^{T} \left(YY^{T}\right)^{-1} \delta \tau^{a}$
- Current GEOS uses Local Displacement Ensembles (LDE), in 1D
- (Could also use actual aerosol ensembles)

$\frac{\text{MODIS}/\text{MISR vs. AERONET}}{\eta = \log(\text{AOD}_{550} + 0.01)}$

MISR (Ocean+Land)

C5 MODIS-Terra (Ocean)

GMAO

Global Modeling and Assimilation Office gmao.gsfc.nasa.gov

Observation bias correction is necessary.

Ocean Predictors

- Multi-channel
 Operational AOD retrieval
 TOA reflectances
- Solar and viewing geometry:
 - □ Glint
 - Solar
 - □ Sensor
- Cloud fraction (<70%)</p>
- Wind speed
- Target: AERONET
 η = log(AOD+0.01)

Land Predictors

- Multi-channel
 - Operational AOD retrieval
 - TOA reflectances
- Solar and viewing geometry:

Solar

- □ Sensor
- Cloud fraction (<70%)</p>
- Surface Albedo or BRDF Kernels
- Target: AERONET
 η = log(AOD+0.01)

GMAC

Observational Bias $\eta = \log(AOD_{550}+0.01)$

MODIS Neural Net AOD₅₅₀ Retrievals trained on AERONET

Dark Target (DT) ABI Aerosol Retrievals

Algorithm is adapted from MODIS-DT and VIIRS-DT

- Uses wavelengths in VIS, NIR and SWIR for aerosol retrieval and TIR for cloud masking.
- Accounts for wavelength shifts and gas absorptions
- ➢ Retrieves on NxN boxes of nativeresolution pixels → product is ~10 km resolution.
- Like MODIS-DT, retrieves
 - ✓ AOD at 550 nm,
 - ✓ spectral AOD,
 - diagnostics and
 - ✓ QA confidence flags

Sensor wavelengths/native pixel resolution

	MODIS	VIIRS	ABI
Blue	0.47/0.5	0.49/0.75	0.47/1.0
ireen	0.55/0.5	0.55/0.75	
Red	0.66/0.25	0.67/0.75	0.64/0.5
NIR	0.86/0.25	0.86/0.75	0.86/1.0
NIR	1.24/0.5	1.24/0.75	
Cirrus	1.38/0.5	1.38/0.75	1.38/2.0
SWIR	1.61/0.5	1.61/0.75	1.61/1.0
SWIR	2.11/0.5	2.25/0.75	2.25/2.0

Dark Target (DT) ABI Aerosol Retrievals

- DT relevant for GEOS assimilation effort:
 - Provides "cloud cleared" reflectance values used for the retrieval (at ~10 km product resolution)
 - Variable names are same as MODIS
 - Product files are NetCDF format
- Currently processing ABI on GOES-16, and AHI on Himawari-8. Plan is to eventually process entire 5+ years of AHI8, 2+ years of ABI16, and also work with ABI17.

Observations of diurnal aerosol!

Additional ABI Data Screening for DA

Cloud Screening:

- Cloud fraction < 0.7 for AOD<2</p>
- Cloud fraction <0.25 for AOD>2
- Sensor Zenith angle < 60 degrees

Over land:

> Only retrievals with BEST quality mark were included

Over ocean:

- > All retrievals with non-zero quality marks were included
- Glint angle > 75 deg
- Scattering angle < 170 deg</p>

The Before Picture

Snapshot 18Z 10Aug2018

Global Modeling and Assimilation Office gmao.gsfc.nasa.gov

AOD Analysis Increments: Impact of ABI

Snapshot 18Z 10Aug2018

Global Modeling and Assimilation Office gmao.gsfc.nasa.gov

AOD Analysis: Impact of ABI

Snapshot 18Z 10Aug2018

Global Modeling and Assimilation Office gmao.gsfc.nasa.gov

AOD Analysis: Impact of ABI

Monthly Means: Aug 2018

Global Modeling and Assimilation Office gmao.gsfc.nasa.gov

AERONET Verification

August 2018

AERONET Verification

August 2018

Global Modeling and Assimilation Office gmao.gsfc.nasa.gov

Contextual Biases

Global Modeling and Assimilation Office gmao.gsfc.nasa.gov

GMAO

Bias correction is necessary

Concluding Remarks

Dark Target (DT) aerosol retrievals based on MODIS-heritage algorithms by Rob Levy's group

- Currently processing ABI on GOES-16, and AHI on Himawari-8.
- > Plan is to eventually process entire 5+ years of AHI8, 2+ years of ABI16, and also work with ABI17
- We have performed a preliminary evaluation of the impact of DT ABI retrievals on the GEOS Aerosol Data Assimilation System for August 2018.
 - > DT retrievals shows high bias compared to MODIS NNR retrievals currently used in GEOS
 - Independent AERONET verification shows clear benefits of assimilating ABI aerosol data, although bias correction may be necessary before implementation.
 - Impact on diurnal cycle and Aerosol forecast skill being evaluated.
- Aerosol analysis migrating to an EnKF based system
 - > New observables: multi-spectral AOD, attenuated backscatter
 - New active/passive sensors: VIIRS, ABI, AHI, TropOMI

