@ https:/Intrs.nasa.gov/search.jsp?R=20190001055 2019-08-30T10:29:49+00:00Z

NASA/TM-2019-220247
NESC-RP-15-01097

Improvements to the Copernicus Trajectory
Design and Optimization System for Complex
Space Trajectories

Daniel G. Murri/NESC
Langley Research Center, Hampton, Virginia

Gerald L. Condon
Johnson Space Center, Houston, Texas

Jacob Williams and Anubhav H. Kamath
Jacobs Technology, Houston, Texas

Randy A. Eckman
Johnson Space Center, Houston, Texas

Ravishankar Mathur
Emergent Space Technologies, Laurel, Maryland

- ___
January 2019

NASA STI Program . . .

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the
auspices of the Agency Chief Information Officer.
It collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI
program provides access to the NTRS Registered
and its public interface, the NASA Technical
Reports Server, thus providing one of the largest
collections of aeronautical and space science STl in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

e TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
Programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counter-part of peer-
reviewed formal professional papers but has
less stringent limitations on manuscript length
and extent of graphic presentations.

e TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

e CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

in Profile

e CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or
co-sponsored by NASA.

e SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

e TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and feeds,
providing information desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI
program, see the following:

e Access the NASA STI program home page
at http://www.sti.nasa.gov

e E-mail your question to help@sti.nasa.gov

e Phone the NASA STI Information Desk at
757-864-9658

e \Write to:
NASA STI Information Desk
Mail Stop 148

NASA Langley Research Center
Hampton, VA 23681-2199

http://www.sti.nasa.gov/
file:///C:/Users/shstewar/Documents/Templates_Reports/Templates_PubWebSite/Templates_RevJan2009/help@sti.nasa.gov

NASA/TM-2019-220247
NESC-RP-15-01097

Improvements to the Copernicus Trajectory
Design and Optimization System for Complex
Space Trajectories

Daniel G. Murri/NESC
Langley Research Center, Hampton, Virginia

Gerald L. Condon
Johnson Space Center, Houston, Texas

Jacob Williams and Anubhav H. Kamath
Jacobs Technology, Houston, Texas

Randy A. Eckman
Johnson Space Center, Houston, Texas

Ravishankar Mathur
Emergent Space Technologies, Laurel, Maryland

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

January 2019

Acknowledgments

The authors wish to acknowledge those who have beta-tested the Copernicus
version 5.0 release: David E. Lee at the Johnson Space Center (JSC), Amelia
Batcha (JSC), Timothy Dawn (JSC), and Elizabeth Williams (JSC/, a.i.
Solutions).

The use of trademarks or names of manufacturers in the report is for accurate reporting and does not
constitute an official endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

Auvailable from:

NASA STI Program / Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199
Fax: 757-864-6500

NASA Engineering and Safety Center
Technical Assessment Report

Improvements to the Copernicus Trajectory Design and
Optimization System for Complex Space Trajectories

November 15, 2018

Page #: 1 0f 80

Report Approval and Revision History

NOTE: This document was approved at the November 15, 2018, NRB. This document was
submitted to the NESC Director on November 27, 2018, for configuration control.

Approved: Original Signature on File 11/27/18
NESC Director Date
Version Description of Revision Office of Primary Effective Date

Responsibility

1.0 Initial Release

Fel

Mr. Daniel Murri,
NASA Technical

low for Flight

Mechanics

11/15/18

Page #: 2 of 80

Table of Contents

Technical Assessment Report

1.0 Notification and AULNOFIZATIONcccoiiiiii s 5
2.0 YT F= L L=l = Vo SRRSO 6
3.0 =TT T T OSSR 7
3.1 ACKNOWIEAGEMENTS ...ttt 7
4.0 EXECULIVE SUMIMAKYottt sttt sttt ste et e e saeeseenteeneentenreeneeneeenes 8
5.0 ASSESSIMENT PIAN ...ttt et e et re et e ste e st e sreereetenre s 10
6.0 Copernicus ENNANCEMENTS..........cocioiiieic ettt sae e e 10
6.1 NEW COPEIMICUS GUIL....c.oiiiiiiieiiiie e 10
6.2 Benefits Of NEW GUIooiiiiiice ettt 10
6.3 3D GraphiCs UPGrates.......cccveiieiiiieie et ste e s e ettt s re et et s ae e sbesneesreens 15
6.3.1 OpenFrames with Qt and PYQL.........cooiiiiiiiiiiieeee e 16
6.3.2 3D ODJECE INTErACTION.uitiieieiieieciiee st 16
6.3.3 Synergy With Other NASA Programs........cccccueiiiiieiereeiiesieeieesteseeseesteseesrestaessesneesesseens 20
6.3.4 MacOS and Linux Testing and SUPPOIt........cceciiiiiieieeie et 21
6.3.5 Additional OpenFrames ENNanCemMENTS.........cccooiieiiriiiiine e 21
6.4 Cross-Platform Capability — New Linux and Mac VEersionsccccccevevevieeveeseeieesvene 22
B.4. 1 CIMAKE .. .ottt b et a e e e e 23
6.4.2 Software DevelopmENt PraCliCeScccciiiiiiiriiiieieiee st 23
6.4.3 COPEINICUS S @ SEIVICEcuviuierieiieiieiisie sttt sttt ettt bbb 24
6.4.4 Improved Plugins Capabilities..........cccoveiiiiiiiiiiii e 24
6.4.5 Software Architecture IMProVEMENTS.........cccoviiiiiiiiiiieee e s 25
6.4.6 Enhanced Python Scripting Capabilities............cccoeiiiiiiiiiiieeee 26
B.4.7 BUG FIXES .uiiiiiiiiecie ittt ettt sttt e st e e e st e e te e be s ae et e s teeaeesreeteebenreeneere e 29
7.0 SUIMIMBIY ...ttt bbb s e bt st R e ekt e bt ek £ e s b e e bt e b e e ARt s bt e et e b e e s b e nb e e b e e benreennenre e 29
8.0 Findings, Observations, and NESC Recommendations............cccccovvvrvereneiieneseeneseseenieseeas 29
8.1 FINAINGS oottt b e 29
8.2 ODSEIVALIONSvvvieiieieeie sttt sttt sttt s et e st et st e b et ese e s e e seereeseebesaenseeeneas 30
8.3 NESC RECOMMENUALIONSovveiieiiiiieiiesieeie e ee e sie e te e see e ssaestesteeaesre s essesseeneenee e 30
10.0 Other DElIVEFADIESc.voiiiiiiiiieiecie ettt sttt s e et e snesbe e neneeneas 30
12.0 Recommendations for NASA Standards and Specifications.............cccccocviviiiiie s, 30
GO I I 1=] 0 11 4 o I) =T 1 USSR 30
140 Acronyms and NOMENCIATUIE LiSt........ccciiiiiiiiiisieieieeiees s 31
T (- =] =] 1o SR 32
F AN o] 01T o [ToT RSP S 33

Page #: 3 0f 80

Figure 6.2-1.
Figure 6.2-2.
Figure 6.2-3.
Figure 6.2-4.

Figure 6.2-5.

Figure 6.3.2-1.

Figure 6.3.2.2-1.
Figure 6.3.2.2-2.
Figure 6.3.2.4-1.

Figure 6.4-1.

Figure 6.4.4-1.
Figure 6.4.5-1.
Figure 6.4.6-1.

Figure. 6.4.6-2.

List of Figures

PYQt COPErNICUS GUI ... 12
Ol VS NEBW GUI ..o ettt e 12
GUI Main Window shown in Brushed Metal theme in Constantia, size 8 font........... 13
Example Dialog (Graphics Options) shown in High Visibility/Contrast Dark

Button Theme, Calibri SIZ€ 8 TONL.cveviiiieiii e 14
Grids Support Indefinite Number of Undos/Redos to Allow Users to Correct

Common Mistakes QUICKIYcoiiiiiiiec e 15
Interactive Widgets in a 3D Scene with OpenFramesccccoveveiiiniiniencnenesenns 16
An osgEarth-generated Globe in OPENFramescccccvvveveiieie v 18
Accurate Sun-based Lighting on the Earth and Mooccoccevvveiiievin v 19
Viewing a Secondary Spacecraft as seen from the Primary Spacecraft....................... 19
Copernicus Running on Linux via the X2Go Remote Desktop Client............c..c........ 23
A Copernicus Mission is Constructed from Segments and Plugins.c.ccccevevunee. 24

Copernicus takes Advantage of the Strengths of Fortran 2008, Python, and C++.25
Simplified Example of Code to Create an Input Deck in Python that Represents a

Prototypical International Space Station (ISS) Trajectory.......cccccevveveviececie s cvnennenn, 27
Collection of RoboCopPy Input Deck Segment Object References.........cccoceevvevvennene, 28

Page #: 4 of 80

Technical Assessment Report

1.0 Notification and Authorization

The purpose of this assessment was to develop updates and new features for the NASA
Copernicus Spacecraft Trajectory Design and Optimization analysis tool (version 5.0) for
application to NASA programs and projects. These updates will significantly improve the ability
to design and optimize complex trajectories over multiple trajectory phases; will allow the use of
unique vehicle-specific guidance, control, and trajectory strategies and constraints; and the
creation of an almost unlimited number of unique user-defined capabilities. The primary
stakeholders for this assessment are the trajectory design and optimization analysts and
engineers, and the chief engineers and project managers for existing programs, projects, and/or
tasks that involve impulsive, finite burn, and/or continuous thrust trajectories (e.g., Sun, planet,
comet, asteroid, halo orbit, Lagrange point, and distant retrograde orbit). The breadth of
application spans the preliminary engineering and mission design concepts and optimization, to
the development of candidate reference missions and integrated mission design for vehicle
system design and operation, to the design and development of flight trajectories and associated
propulsive maneuvers for real-time operations.

Page #: 50f 80

2.0 Signature Page
Submitted by:

Team Signature Page on File — 11/28/18

Mr. Daniel G. Murri Date

Significant Contributors:

Mr. Gerald L. Condon Date
Mr. Jacob Williams Date
Mr. Randy A. Eckman Date

Mr. Anu H. Kamath

Date

Dr. Ravi Mathur

Date

Signatories declare the findings, observations, and NESC recommendations compiled in the
report are factually based from data extracted from program/project documents, contractor
reports, and open literature, and/or generated from independently conducted tests, analyses, and

inspections.

Page #: 6 of 80

3.0 Team List

Name Discipline Organization
Core Team
Daniel Murri NESC Lead LaRC
Jerry Condon Copernicus Development Team Lead JSC
Jacob Williams Copernicus Lead Developer JSC/JETS
Laura Burke Copernicus Development Support GRC
Randy Eckman Copernicus Developer JSC
Anu Kamath Copernicus Developer JSCIJETS
Melissa McGuire Copernicus Development Support GRC
Ravi Mathur OpenFrames Developer GSFC/Emergent
Matthew Ruschmann OpenFrames Developer GSFC/Emergent
Juan Senent Mission Design Analyst, Plug-in Support | JPL
Mark Jesick Mission Design Analyst, Plug-in Support | JPL
Consultants
Cesar Ocampo Copernicus Creator, Trajector

P Optpimization Expert J ! JSC/Odyssey
Joseph Guinn Integration with Monte JPL
Business Management
John LaNeave | Program Analyst | LaRC/MTSO
Assessment Support
Linda Burgess Planning and Control Analyst LaRC/AMA
Melinda Meredith Project Coordinator LaRC/AMA
Erin Moran Technical Editor LaRC/AMA

3.1 Acknowledgements

The authors wish to acknowledge those who have beta-tested the Copernicus version 5.0 release:
David E. Lee at the Johnson Space Center (JSC), Amelia Batcha (JSC), Timothy Dawn (JSC),
and Elizabeth Williams (JSC/, a.i. Solutions).

Page #: 7 of 80

4.0 Executive Summary

NASA'’s Copernicus spacecraft trajectory optimization and design analysis tool is a
comprehensive and generalized spacecraft trajectory design and optimization system. It forms
part of the suite of tools used by NASA, industry, and academia to study, design, and execute
spacecraft missions. It is intended to be a tool that evolves and conforms to current trends and
requirements associated with spacecraft trajectory optimization, design, and operation.
Copernicus is capable of solving a wide range of trajectory design and optimization problems.
These include trajectories centered about any celestial body or location in the solar system as
well as trajectories influenced by two or more bodies. Examples include: orbit-to-orbit transfers
about a given planet (or moon or asteroid, etc.), orbit to hyperbolic departure from a given body,
libration point trajectories/halo orbits, distant retrograde orbits, frozen orbits, other restricted
three body model trajectories, Earth-Moon and interplanetary transfers, asteroid and comet
missions, etc. At the NASA Johnson Space Center (JSC), Copernicus is the primary trajectory
optimization tool used for the design of integrated Space Launch System (SLS)/Orion Multi-
Program Crew Vehicle (MPCV) missions in the current NASA Exploration Mission (EM)
launch series.

This report details significant upgrades that were made to Copernicus in support of the NESC
assessment. These upgrades represent major new capabilities that have been added to the tool
for support of a variety of NASA projects and missions. The tool is more powerful, versatile,
and user friendly, and is built on a modern graphical user interface (GUI) toolkit (i.e., PyQt).

This work has resulted in major improvements and new capabilities for the Copernicus tool
including, but not limited to: improvements to the OpenFrames library, used to provide three-
dimensional (3D) OpenGL graphics, visualization capability; a NASA-developed GUI; a cross-
platform set of Copernicus versions that run natively on PC, Mac, or Linux operating systems; an
integrated Python scripting environment for manipulation of individual Copernicus input decks
and automated external assessment and response for active Copernicus runs; an enhanced plugin
technology allowing Copernicus to incorporate unique existing or user developed algorithms;
and a host of architectural modifications and improvements designed to provide a faster, more
user-friendly, more capable experience.

The result of these improvements and capabilities has been multi-faceted. Current primary
NASA programs (i.e., SLS, Orion MPCV) have seen the blossoming of not only single mission
trajectory optimization capability, but also ancillary benefits (e.g., easier to implement, yet more
sophisticated, application to large trajectory scans for design trade studies, and abort space
assessment of established reference mission trajectories).

The continuing enhancement of the visualization has made Copernicus a more visually
immersive tool, particularly for initial design, design modification, trouble-shooting, and
exploration of possible new trajectory options. In some cases, users have been able to visually
construct complex trajectories (e.g., distant retrograde orbit (DRO) with a propagated orbit
lifetime of many decades without need for orbit maintenance).

The OpenFrames Application Programming Interface (API) allows developers to embed real-
time 3D interactive visualizations into their simulations. The Copernicus trajectory design and
optimization tool has used OpenFrames for its visualizations for over a decade. During this
assessment, new features and enhancements to OpenFrames were developed that directly benefit
Copernicus. Examples include support for advanced user interfaces embedded in the 3D scene,

Page #: 8 of 80

realistic lighting on celestial bodies and spacecraft, hyper-realistic celestial body models that
increase resolution as the viewer approaches the surface, viewing a scene in consumer-grade
virtual reality (VR) hardware (e.g., Oculus Rift or HTC! Vive), and displaying visualizations in
Copernicus' PyQt-based GUI. Furthermore, because OpenFrames is Open Source Software
(OSS), the advancements made will benefit other NASA applications that use OpenFrames by
increasing software reuse and reducing software development costs. Examples include the
General Mission Analysis Tool (GMAT) and the Virtual Landscapes VR science exploration
tool.

The PyQt GUI has been a significant boost to user efficiency, environment customization, and
situational awareness by providing streamlined workflow and product development.
Additionally, NASA developed this GUI so it has full control over its design, update, and
modification.

The Copernicus version 5.0 improvements have advanced the capability of a single user in the
speed and accuracy of a mission design and the volume of data product that a single user can
generate. This has enhanced the potential and realized trajectory design/optimization capability
of the individual user and allows projects and programs to accomplish mission planning and
analysis with fewer people, and/or expand the scope and depth of analysis for key mission
related program decision-making (e.g., assessment of the scope of abort capability available to a
given reference mission).

In summary, the Copernicus version 5.0 development activity produced significant
improvements in several key areas of tool design and function, which include: improved
visualization, a PyQt-based GUI, expanded and updated Python scripting language
implementation, an enhanced plug-in implementation, and other improvements. The task
produced three independent platform versions (i.e., PC, Mac, and Linux) that run natively on
each respective platform. In addition, the assessment team was able to collaborate with the
Small Business and Innovative Research (SBIR) Program on two topic areas to obtain additional
visualization development beyond the scope of the original task.

L HTC is a company that makes the Vive model virtual reality headset.

Page #: 9 of 80

5.0 Assessment Plan

The main purpose of the initial assessment plan was to develop updates and new features for the
NASA Copernicus Trajectory Design and Optimization tool for application to NASA programs
and projects. The goal was to include numerous improvements to provide enhanced mission
optimization/performance, and reduced mission risk for human and science mission spaceflight
programs. The assessment included five major technical items:

1. Mac-based version of Copernicus

2. Linux-based version of Copernicus

3. Plug-ins and scripting improvements

4. GUI and 3D graphics visualization improvements
5. Copernicus software architecture improvements

Each item represented a significant upgrade or set of upgrades to the Copernicus tool. All major
items were completed (details are discussed in Section 6.0). The implementation details of some
items varied somewhat from how they were originally envisioned in the assessment plan. For
example, it was originally envisioned that the new cross-platform (i.e., Mac and Linux) builds of
Copernicus would be accomplished using the existing Winteracter-based toolkit that Copernicus
has used since its initial 1.0 release in 2006. However, upon further investigation, it was decided
that the best path forward, for the various reasons discussed in the following section, was to
replace this toolkit with an open source toolkit (i.e., PyQt). This proved to provide significant
advantages that would not have been possible using the existing toolkit.

6.0 Copernicus Enhancements

A summary of Copernicus enhancements developed by this assessment are discussed in this
section. This updated version of Copernicus is version 5.0. As part of the development process
for version 5.0, some of the updates were distributed in versions 4.5 and 4.6. The current release
of Copernicus (version 4.6) is available at JSC Tech Transfer link,
https://software.nasa.gov/software/MSC-25863-1. The updated version 5.0 will be available at
this link once beta testing is completed. At any time, the latest version of Copernicus can be
obtained by going to this website and clicking on “Request Now!”

6.1 New Copernicus GUI
Background

Until version 4.6, Copernicus used a Fortran GUI toolkit Winteracter. However, as the
capabilities of Copernicus has increased, it has outgrown the available capabilities of
Winteracter, and a change to the PyQt GUI has provided the needed new capability. This section
outlines some of the benefits of the PyQt GUI.

6.2 Benefits of the PyQt GUI
GUI can be modified internally:

The Copernicus version 5.0 GUI was developed using open source Qt and PyQt. Since the GUI
source code was developed by NASA, there is freedom to modify the GUI and a rapid resolution
on bug fixes and incorporation of new features when needed. Previously, if there was a bug or

Page #: 10 of 80

https://software.nasa.gov/software/MSC-25863-1

feature that was needed inherent to the GUI, the Copernicus developers had to rely on
Winteracter developers to implement a change. In addition, the Python source code for the GUI
will be released with Copernicus, providing users the ability to modify it, if necessary or desired.

Decoupling of core capability and GUI logic:

The GUI code is contained within a set of Python files and is segregated from the core Fortran
code of Copernicus. The Python and Fortran code interact via an API and callback interface
used to pass data back and forth. Previously, the Winteracter API was collocated within the
Fortran code. This was not ideal because the separation of the GUI and core logic was often
unclear. Another benefit of separating the two code bases is that defects that pertain only to the
GUI do not require a Fortran rebuild. It is possible to release patches to fix GUI issues without
users having to fully upgrade the Copernicus software.

Another benefit is that by using the APl documentation, a completely different GUI using
something other than PyQt could be developed and used in the future without affecting the
Fortran code. This allows for the realization of potential future concepts, such as web- or mobile
app-based GUI.

Improved usability and layout:

From the outset, the PyQt GUI looks and feels more modern (Figures 6.2-1 through 6.2-5). The
user is able to customize the theme, font and size, layout, and has access to features that were not
available in Winteracter. The following is a list of features that are improved or were
unavailable in Winteracter:

e Highly customizable to user preferences (e.g., themes, fonts, undockable/hideable
widgets, layout of widgets, etc.). A widget is a useful tool or device, including, in the
case of a GUI, a radio button, a slider, a text field, etc.

e Full screen graphics window. In addition, the user can split the GUI window so that the
main GUI is on one monitor, and the 3D graphics are on another monitor.

e Reduced number of dialogs (e.g., previously a certain action needed 3 dialogs, it can now
be done in 2).

e New usability features (e.g., dialog tabbing, click and drag capability, easy access toolbar
buttons and shortcuts, search tool, and undo/redo in certain dialogs).

Page #: 11 0of 80

Propagate

Reration:

Objectwe Function:

1.664547e+00

Status:

View Frame:

Figure 6.2-1. PyQt Copernicus GUI

Figure 6.2-2. Old vs New GUL. Users of the old GUI (left) will find the new GUI (right) very
familiar. The new GUI is much more configurable, whereas the old GUI was very static.

Page #: 12 of 80

Easy access tool buttons Inline modification and click and drag
capability of segments and plugins.

s Widgets Help

fea

Segments

Propagate

Objective Function:

0.000000€400

Status:

Required accuracy achieved

Copy Data From Seg Clear This Data to Default

Tabbed dialog

Undockable widgets

Figure 6.2-3. GUI main window shown in brushed metal theme in Constantia, size 8 font.

NESC Document #: NESC-RP-15-01097 Page #: 13 of 80

Frame: |J2000 =

Center: |JUPITER {599) ~

Visualization Frame Visualization Frame Options Celestial Body Options:

Maximum Time Step (days): 5.0000E-02

¥ Plot X Axis
¥ | Name Label
Frame: 12000 v PlotY Axis v | Body-Fixed Axes
Center: JUPITER (599) ¥ Texture Maps
¥ Plot Z Axis v i itioni
Meodify Visualization Frame B (RES iy
v | Compute Orientation
Axes Length (lkm) 1 0000E+04 ¥| Auto Level of Detail
Major Ticks (km) 2 ODDDE+03 v Body Shadowing
Bodies to Plot Latitude Longitude Grid

Minor Ticks (km) 1 0oOOE+03
Latitude Spacing (deg) zp.000

selected bodies: Available bodies:

CALLISTO ADRASTEA (515) - X Plane))

EUROPA AMALTHEA (505) Longitude Spacing [deg) 30000

GANYMED! CALLISTO (504)

o] CALYPSO (614) Radius (km) 3 ODDOE+04 v | Plot Body Trajectories

JUPITER CHARON (301) Line Thick 1 -
DEIMOS (402))) _ ine Thickness
DIONE (604) Radial Spacing (km) 1.0000E+04
EARTH (393) Other options
EARTH BARYCENTER (3) Longitude Spacing (deg) =s5.000
ENCELADUS (602) Max # of Plotted Iterations:
fuRoRA(se2) Plane Opacity (%)
A 3 Date Format: [Calendar Date = l

'
frEiii = Sort by code Use printer friendly colors

Cancel

Large consistent buttons
and groupbox layouts
throughout all dialogs

Quick inline selections

Figure 6.2-4, Example dialog (Graphics Options) shown in high visibility/contrast dark button
theme, Calibri size 8 font.

Page #: 14 of 80

fsl

Time Functions

Segments
Node Seg == Node Seg <= = = <= <= =11 Weight —=0Bl

TO (day) 0.00 TO 1 L] TO 1 1.000E+00 1.000E+00

0.00000000000E+00

0.00000000000E+00

L] 1.00000000000E+20 1.000E+00 1 .000E+00

0.00000000000E+00

0.00000000000E+00

0.00000000000E+00

opy Data from Seg Clear This Data to Default

Hide data and columns Consistent layouts
that have no data or are throughout all dialogs
not applicable.

Figure 6.2-5. Grids support indefinite number of undos/redos to allow users to correct common
mistakes quickly.

6.3 3D Graphics Upgrades

Copernicus allows users to perform mission design using a variety of cutting-edge algorithms
and design tools. Among these is its 3D interactive visualization interface, which allows users to
view the design space from various viewpoints and adjust visualization parameters. Copernicus’
3D visualizations are provided by the OSS OpenFrames API, which allows simulation
developers to add real-time 3D interactive visualizations without having to write complex 3D
graphics (e.g., OpenGL) code.

The 3D graphics work for this task had two primary goals: (1) improve the OpenFrames API
with various features and capabilities needed by the Copernicus code, and (2) the development,
integration, and testing of OpenFrames into Copernicus’ PyQt-based GUI system. Specific
objectives to accomplish these goals were:

e Demonstrate the use of OpenFrames in a PyQt GUI framework

e Demonstrate 3D object interaction in an OpenFrames scene

Test OpenFrames in a VR environment, and demonstrate how Copernicus can integrate
this capability

Implement planet models of higher fidelity than existing spherical models

Add light sources and materials for more accurate day/night lighting

Enhance OpenFrames with additional user-definable viewpoints

Support Copernicus testing on MacOS and Linux, using the PyQt GUI

General OpenFrames capability and performance enhancements

Page #: 15 of 80

6.3.1 OpenFrames with Qt and PyQt

Two standalone OpenFrames demonstrations were developed that illustrate the use of
OpenFrames to display a 3D scene in a Qt and PyQt GUI. These demonstrations show how to
embed OpenFrames in a Qt/PyQt-created window, handle the appropriate callbacks that manage
double buffered rendering, and call OpenFrames functions from Python using the developed
OpenFrames/ Simplified Wrapper and Interface Generator (SWIG) interface. The
OpenFrames/PyQt demonstration was updated to display two OpenFrames scenes in two
windows, which enables Copernicus to implement multi-window visualizations.

The next step was adapting this capability into the Copernicus PyQt GUI. One challenge was
moving OpenFrames graphics between windows (e.g., from an embedded into a standalone
window). This is a necessary use-case because components of the new Copernicus PyQt GUI
can be docked within the primary GUI window, or undocked into a standalone window. This
challenge was overcome by restructuring how OpenFrames visualizations are paused and
resumed to deal with the graphics context moving between windows.

6.3.2 3D Object Interaction

A future capability of the Copernicus code is to allow user interaction directly inside the 3D
scene. For example, users could obtain information about spacecraft and trajectories by clicking
on them with the mouse. An important first step was taken towards this capability by
demonstrating object interaction in a standalone OpenFrames demonstration. As shown in
Figure .3.2-1, a prototype feature was developed in OpenFrames that allows multiple GUI
widgets to be added to the 3D scene. Users can interact with these widgets as they would on a
desktop application, and the application can take appropriate steps based on user actions. The Qt
GUI toolkit was used for this work, which provides a broad range of standardized widgets (e.qg.,
buttons, sliders, checkboxes, etc.).

[X N] Qt Controls Example

Figure 6.3.2-1. Interactive widgets in a 3D scene with OpenFrames. This capability will enable full-
featured in-scene GUI interactivity in future versions of Copernicus.

Page #: 16 of 80

6.3.2.1 OpenFrames in VR

At the start of this task, OpenFrames had the ability to display 3D visualizations in VR, but there
were several limitations and issues that prevented the capability from being seamlessly
integrated. For example, in certain situations a scene would appear “cut off” near the viewer.
Under this task, all outstanding issues were fixed in the OpenFrames VR framework, and
significant testing was performed on a Windows 10 system, which is the only operating system
that supports VR at this time.

During testing, test cases were first created that used large amounts of data, such as years-long
trajectories or point clouds with billions of points, both of which stress even the most powerful
computing systems. These test cases were then run on the Oculus Rift and HTC Vive VR
headsets (the two main consumer-level VR headsets available at the time), using computers with
a range of VR-capable graphics cards (Nvidia GTX 960, 980, and 1080). It was shown that
OpenFrames can display large numbers of trajectories, as well as trajectories with many points,
with a seamless end-user experience. This VR capability of OpenFrames was then incorporated
into Copernicus, and is currently enabled using a command-line flag.

6.3.2.2 Increased-Fidelity Planet Models

Prior to this task, OpenFrames support for rendering planets was limited to spheres. In this task,
OpenFrames was enhanced to support two additional forms of planet models:

e Ellipsoids: The OpenFrames sphere can be scaled per-axis to produce a triaxial
ellipsoid. This includes the rendering of a latitude-longitude grid overlay using triaxial
geodetic ellipsoid parameters. This is primarily useful for highly-ellipsoidal celestial
bodies such as some asteroids and moons.

e The osgEarth (a C++ geospatial software developer’s kit and terrain engine) API can be
used to display a hyper-realistic Earth model (Figure 6.3.2.2-1), using dynamically-
accessed online resources for terrain (e.g., Shuttle Radar Topography Mission (SRTM))
and textures (e.g., LandSat or Blue Marble). For example, if given SRTM data, then
osgEarth is accurate to 90 m. It can even be given custom data with meter (or less)
accuracy and render that just as seamlessly. osgEarth is an open source virtual globe API
that is license-compatible with OpenFrames and allows users to configure a dynamic
Earth model using extensible markup language (XML) input files. osgEarth can also be
used to render models of other celestial bodies (e.g., the Moon or Mars) given the
appropriate terrain and texture data, and this capability can be incorporated into
Copernicus in future development.

Page #: 17 of 80

Figure 6.3.2.2-1. An osgEarth-generated globe in OpenFrames. Hyper-realistic terrain and globe
parameters enable Copernicus to properly visualize all mission phases and enhance its usability and
appeal as a mission design tool at NASA.

6.3.2.3 Lighting and Material Support

Support for light sources was added (e.g., the Sun) to OpenFrames. Common light properties
can be customized (e.g., location, and ambient, diffuse, and specular components). Additionally,
customizable materials were added to all sphere objects. This enables specification of
reflectivity and emission components for celestial bodies, and separate day and night textures.
When sunlight is combined with correct materials, the resulting visualizations can be realistic
and most importantly useful to determining lighting conditions for spacecraft and trajectories
(see Figure 6.3.2.2-2).

Currently, the lighting feature can be used only for visual validation of expected lighting
conditions (e.g. to check if the correct side of the spacecraft is lit based on its current
orientation). This is a necessary first step towards more advanced lighting and engineering use-
cases, including:

o Extract the light intensity shining on the rendered spacecraft and translate that to a power
estimate using knowledge of solar panel efficiency

o Implement shadowing, which enables knowledge of when spacecraft parts are blocking
light from reaching solar panels or instrument cameras

These advanced features are not currently available, but the work in this task has laid the
groundwork for capabilities like these to be added as future work.

NESC Document #: NESC-RP-15-01097 Page #: 18 of 80

Figure 6.3.2.2-2. Accurate Sun-based lighting on the Earth and Moon. Apart from its visual appeal,
accurate lighting enables Copernicus to validate day/night visibility conditions for spacecraft.

6.3.2.4 Enhanced Viewpoints

OpenFrames can be used to define multiple cameras that follow various objects in the scene
(Figure 6.3.2.4-1). The ability was added for cameras to track secondary objects while following
the primary object. This allows users to follow an object while always maintaining their view
towards a secondary object of interest. For example, this is useful in cluster flight applications or
to determine eclipsing of an Earth-orbiting satellite.

Figure 6.3.2.4-1. Viewing a secondary spacecraft as seen from the primary spacecraft. To-From
views like this make it possible to visually identify times when line-of-sight communications
between spacecraft are lost.

Page #: 19 of 80

6.3.2.5 Benefits to NASA Programs

In addition to Copernicus, OpenFrames is used by multiple NASA programs, the GMAT, NASA
Goddard Space Flight Center (GSFC), and multiple applications created by the GSFC VR
Working Group. Since OpenFrames is OSS, its core usage philosophy is that advancements
provided by a project should provide a benefit to other NASA programs and projects. Because
of this philosophy, improvements made in this assessment to OpenFrames have been contributed
to the public OpenFrames code repository.

One OpenFrames benefit is GMAT has incorporated the “Lighting and Material Support” and
“Enhanced Viewpoints” updates. Because of these updates, GMAT’s visualizations show
accurate daytime and nighttime conditions for celestial bodies and spacecraft at any given time.
These updates enable users to define custom camera views that look towards bodies of interest
(e.g., from the Lunar Reconnaissance Orbiter (LRO) to the Moon). This has proven to be a
powerful capability in GMAT, and has increased its desirability for real-time operations in GSFC
Mission Operations Centers.

Another example of the multi-program benefit of this assessment comes from the GSFC Virtual
Landscapes (VL) project, which shows high-density planetary Light Detection and Ranging
(Lidar) data to scientists for virtual exploration. VL overlays the Lidar data on a hyper-accurate
Earth model provided by osgEarth. This capability was made possible by the “Increased-Fidelity
Planet Models” updates to OpenFrames.

6.3.3 Synergy with Other NASA Programs

Emergent Space Technologies has performed considerable research and development on
OpenFrames under NASA Phase 11 SBIR (i.e., NNX16CG16C). Based on the enhancements
provided by this assessment, the NASA SBIR has enabled a Phase 11-X extension of this effort
which will develop additional technologies of interest to Copernicus:

e Development of novel user interfaces inside a 3D scene. This is an extension of the “3D
Object Interaction” task, and will enable advanced Qt-based Ul widgets inside the 3D
scene. This will further enhance the ability to obtain information about spacecraft and
trajectories.

e Ability to render accurate shadows of celestial objects on each other and on spacecraft.
Computing shadowing is an advanced component of space mission design, and
visualizing these shadows in Copernicus will allow our users to more quickly determine
shadow-based constraints and adjust their mission designs accordingly.

This is an ideal example of multiple organizations (e.g., NESC and SBIR) collaborating to
provide a significant boost in capability to OpenFrames and all projects that use it, including
Copernicus.

Another example of multi-organization synergy comes from the VL project. VL required 3D Ul
widgets inside the VR scene, which is an extension of the “3D Object Interaction” task. VL
supported a Phase |11 SBIR [ref. 7] to develop and test the prototype developed under this task
using VR hardware including Oculus Rift and HTC Vive. These updates were committed to the
OpenFrames code repository, and are available for Copernicus when interactive Ul widget and
VR support are implemented. As before, the benefits of this Phase 111 SBIR were made possible
by this assessment’s development of a 3D Ul prototype, but were supported by the VL project.

Page #: 20 of 80

6.3.4 MacOS and Linux Testing and Support

The PyQt-based GUI allows Copernicus to support MacOS and Linux with a modern look-and-
feel, and OpenFrames was updated to support these operating systems. Some notable updates
include:

6.3.5

Support for Retina displays, which are standard on MacBook laptops. Retina displays
have high pixel densities, and Qt handles this by defining a “virtual pixel” that is different
from a physical pixel. This caused OpenFrames to render to only a portion of the desired
3D window. It was found that there is a ratio between virtual and real pixel size that can
be retrieved from PyQt. Applying this ratio to Copernicus allows full support for Mac
Retina displays.

MacOS handles 3D graphics contexts differently than Windows or Linux, and as a result
resizing the 3D graphics window resulted in graphical issues. It was found that
Copernicus was not using an OpenFrames function that resets the graphics context when
the window is resized, which is required on MacOS. The ability to resize a window was
restored on MacQOS after applying this update.

To run Copernicus on MacOS or Linux, users were required to set environment variables
to appropriate values so that the necessary third-party libraries (e.g., OpenFrames and
OpenSceneGraph) could be found by Copernicus. The ability was developed to encode
this information directly into the Copernicus application during build-time, so that the
application can find the prerequisite libraries without end-user input.

A Copernicus use-case is running the application remotely on a Linux server, with
visualizations being displayed on the local machine. This requires the ability to forward
the visualizations generated on the server to the user’s machine. OpenFrames was
updated to support this use-case, and performed testing on a NASA remote Linux server.
Formerly, if a large scan was run on a Linux server, the user would have to download the
resultant Copernicus mission files to their local machine to open them. Now this can all
be done on the server. It also means that Copernicus can be used from machines that do
not have Copernicus installed by accessing the server remotely.

Additional OpenFrames Enhancements

In addition to the primary enhancements discussed, the following improvements to OpenFrames’
capabilities and performance were implemented:

Updated OpenFrames to the most recent build of OpenSceneGraph 3.6.3 (a core
dependency). This contains feature improvements (e.g., text rendering, better multi-core
support, and full OpenGL Core Profile support for MacOS).

Support for custom fonts and sizes.

Support for heads-up-display (HUD) style text overlaid on main 3D scene.

Antialiasing support, in standalone OpenFrames windows and in Qt and PyQt-generated
windows. This feature eliminates jagged line edges and results in a more professional 3D
visualization. It was fundamentally unsupported under the Winteracter GUI, and is one
of many significant Qt GUI improvements.

Overhauled the OpenFrames time management system. It is simpler to specify the
simulation time and rate during animation with more accurate synchronization with the
wall clock.

Page #: 21 of 80

e Significant performance enhancement when adding the state and time data points to a 3D
trajectory (e.g., after an integration step). Previously, if Copernicus attempted to add a
point while the OpenFrames rendering thread was processing the trajectory, then
Copernicus would be forced to wait until the processing was completed. With updates,
Copernicus no longer needs to wait on the OpenFrames thread when adding new points,
which has resulted in a significant speedup when adding points to a trajectory.

e Fixed a thread starvation condition when attempting to pause animation. Thread
starvation occurs when multiple computing threads attempt to access the same resource,
but one of them is prevented from doing so for a long time (i.e., is "starved"). In this
case, Copernicus would request OpenFrames to pause animation when loading a new
input deck, but the OpenFrames rendering thread would prevent the request from being
completed. This resulted in Copernicus waiting for OpenFrames to pause animation, and
end-users observed this as Copernicus "freezing" while opening an input deck. This issue
was eliminated by placing higher priority on pause requests than on rendering, so that the
request is processed instantly. This resulted in a significant speedup when loading input
decks.

6.4 Cross-Platform Capability — Linux and Mac Versions

Prior to this task, the full version of Copernicus with the GUI and 3D graphics only existed on
the Windows platform (i.e., version 4.4). A command-line only version existed for Linux, and
no version existed for MacOS. Winteracter was fully functional on Windows, and to a limited
extent on MacOS and Linux where it was built on the outdated OpenMotif GUI toolkit. One of
the inherent benefits of the Qt-based GUI is that the same source code can be built for multiple
platforms. This reduces the amount of source code and facilitates maintainability and full cross-
platform development. In addition, the old GUI required the user to run Copernicus on a virtual
machine application when using a Mac. For the Mac version, the new GUI implementation
eliminates the slow refresh rates of the original Mac GUI and the unreliable operation of
Copernicus on a virtual machine.

With the use of the PyQt toolkit, a fully cross-platform GUI is available. The GUI is fully
functional and has the same behavior across Windows, MacOS and Linux platforms. This
capability allows users to run Copernicus natively on a preferred computer platform. See Figure
6.4-1 for a screenshot of Copernicus running on Linux. Various changes were made to the code
to enable this capability.

Page #: 22 of 80

Windows Widgets Help

Iterations Control
Iteration:

Objective Function
1.152125e+00

Status:

Constraint violation vector norm: o , e
2.275653e-05 s ~ Plugins
) Plugin Info
Inputs
Outputs

Propagation
Force Model
Segment Graphics
Data Output
~ DV Maneuvers
DVO
DVF
Lambert
 Finite Burn
Engine
soc
oCcT

~ Segment Functions

Figure 6.4-1. Copernicus running on Linux via the X2Go remote desktop client. The look and
behavior of the tool is identical on Windows, Linux, and MacOS platforms.

6.4.1 Cross Platform Make (CMake)

Additionally, a CMake build system was created to take advantage of its benefits. CMake is a
modern open-source, cross-platform software build system that can be used to dynamically
generate the files needed to build Copernicus for a given platform (e.g., Visual Studio, Make,
Eclipse, etc.). CMake automatically discovers system libraries and toolchains across platforms.
It dynamically generates platform specific build systems that do not have to be under version
control with the source code. This makes portability and initial setup of the build system on any
supported platform easier with no need to maintain platform or build system specific files.
Previously, there were two sets of files that were needed (i.e., Visual Studio files for Windows,
and Make files for Linux), and each set of files had to be under revision control and maintained
separately with redundant information. CMake reduces these files to a set of text files that
contain all the information to generate the build system files. The result is a greatly-simplified
cross-platform development process.

6.4.2 Software Development Practices

This assessment allowed for Copernicus to upgrade to the Git version-control system.
Previously, the Subversion (SVN) version-control system was used. For the Copernicus
development tasks, it was found that Git provided a number of desired development capabilities
over SVN, including better branching and merging features which are useful for simultaneous
development. In addition, a web-based JSC GitLab server is now being used for Copernicus
centralized control and issue tracking of tickets.

Page #: 23 of 80

6.4.3 Copernicus as a Service

Previous builds of Copernicus were monolithic applications that lacked a user-callable API. The
limitations of this approach became apparent and it was decided to move the tool toward a new
mode where it could be called by other tools as a service. To facilitate this, Copernicus was
rearchitected into a shared library: a Dynamic Link Library (DLL) on Windows, a Dynamic
Library (DYLIB) on MacOS, and a Shared Object (SO) file on Linux. This library contains all
the functionally of Copernicus, which allows the possibility of other systems incorporating this
library to enable access to this functionally. Currently, this mode has been incorporated into the
PyQt GUI. A forward work item is to expand the API to allow for more access to the core
features of Copernicus (e.g., as part of the new Python scripting environment). This approach
will provide a powerful toolset for a variety of applications (i.e., allowing a user-created script
access to the force models, integrators, and ephemerides that are already built-into Copernicus).

6.4.4 Improved Plugins Capabilities

Copernicus, while a capable tool, focuses on numerical trajectory optimization. The plugin
technology allows Copernicus to employ an unlimited number of possible externally-developed
algorithms. For example, one plugin could provide a closed-loop guided trajectory in place of a
Copernicus segment. Copernicus does not inherently contain guidance algorithms, but the plugin
capability allows the user to incorporate a guidance algorithm to assess how the spacecraft might
fly with the onboard flight software in a 3-degree-of-freedom mode. See Figure 6.4.4-1 for a
sample schematic of a Copernicus mission using plugins. Other possible examples could range
from an orbit monitoring trajectory that inserted orbit maintenance burns when needed, complex
Earth entry interface target lines, mass versus delta-velocity (AV) equations or algorithms for
assessing spacecraft size with AV requirement for preliminary vehicle sizing.

(High Thrust)
(High Thrust) g,
" £ x @ 5 -'-"::"

\3‘: ’ & . 2

et [§10) &

i, T~ Qﬁ .
. Seript Plugin
Ascent Trajectory ﬁ ate Continuity
Stage Disposal @ Constraunt

Parser]"Illgm

T/W Constraint Constraint

Body 1 State Continuity
Constraint

Flyby
Constraint

Figure 6.4.4-1. A Copernicus mission is constructed from segments and plugins. Segment are built-
in components, whereas plugins are used to incorporate user-defined algorithms.

A feature was added to Copernicus to specify custom coordinate frames via DLL plugins. This
provides a mechanism for Copernicus to use a user-defined frame. Various other new frame-
related features were added in the version 4.6 to make it easier to use frames for various
purposes, and to enable increased flexibility in Copernicus to match other tool frames. This
feature is being used by the Orion MPCV Program, to match the frames used in Copernicus with
the MPCV flight software and other analysis and operations tools.

Page #: 24 of 80

During MPCV mission analysis, it was discovered that a significant source of error between
modeling by various engineering teams was the result of inconsistent usage of Earth orientation
parameters. In an effort to unify trajectory modeling, Copernicus needed a way to provide
custom, dynamic Earth orientation modeling beyond what could be provided by Jet Propulsion
Laboratory’s (JPL) Spacecraft, Planet, Instrument, C-Matrix & Events (SPICE) library. A frame
plugin, utilizing the new interface developed during this task, was developed to provide an Earth-
fixed frame via the International Astronomical Union’s (IAU) Standards of Fundamental
Astronomy (SOFA) software library. The plugin parses a JavaScript Object Notation (JSON)
text configuration file that specifies the parameters to use when computing Earth orientation,
providing finer control than previously available. Currently, the plugin provides the ability to
use single constant values for the parameters. A planned enhancement will allow a table of time-
varying parameters to be provided (e.g., directly from files provided by the International Earth
Rotation and Reference Frames Service (IERS)).

Various other plugin-related improvements were made:

e DLL plugins can access the SPICE environment within Copernicus. This allows for
plugins to access data from the SPICE pool (e.g., the ephemeris, reference frames and
gravitational parameters). This feature allows for greater interaction between user-
created plugins and Copernicus.

e A plugin support library was also created that can be used by users when creating DLL
plugins. This library provides various modules that are useful for building DLL plugins
and interfacing with Copernicus. This library makes it easier for users to create plugins,
and will be expanded as future capabilities are added.

e Added plugins to the “groups” feature in Copernicus, which can be used to define
multiple optimization problems in the same mission file. These groups can contain
plugins. This updated “finishes” the groups feature, and provides Copernicus users with
maximum flexibility to define different optimization problems in a mission. Groups are
being used for the MPCV EM-1 mission design.

6.4.5 Software Architecture Improvements

This assessment provided an opportunity for upgrades to the Copernicus software architecture.
Copernicus takes advantage of the strengths of three programming languages (see Figure 6.4.5-
1): Fortran 2008 for the mathematical core of the program, Python for the GUI and scripting, and
C++ for 3D graphics and OpenGL interfacing.

ﬁ[m GUI & Scripting
¢ N\

Core Program “ “ penGL

Interactive 3D Graphics

Figure 6.4.5-1. Copernicus takes advantage of the strengths of Fortran 2008, Python, and C++.

Page #: 25 of 80

Numerous software architecture updates were made as part of this task. Several of the
significant changes were:

e Changes were made to the method that segment data is exported to the files. Output files
are cached internally and generated after the segment is propagated. The output files are
generated faster. For example, on one of the development machines, a 30-day
propagation with data file generation of a low-Earth orbit using an 8x8 gravity model,
using DDEABM (i.e., Adams-Bashforth-Moulton variable step-size integrator) with a
tolerance of 1e-12 took about 9 seconds with version 4.4, now takes about 4 seconds with
version 5.0.

e A new option was added to export the segment data to Hierarchical Data Format (HDF5)
binary format. This is a standard format used for scientific data, and makes it easy to
read the Copernicus-generated data by other tools that support this format.

e New user-friendly tools were added for finding eclipses, performing time
transformations, and performing state transformations.

e A new ramp control law option was added for finite burn engines. This control law uses
cubic spline equations to transition from the initial and final values to the ramp phase.
This feature is being used for SLS/MPCV to model the SLS startup and shutdown
transients.

e Added tri-axial ellipsoid state parameters were incorporated, which are useful for
ellipsoidal-shaped solar system bodies (e.g., asteroids).

e A new feature was added to allow the option of specifying SPICE pool variables in JSON
files. This is an alternative to the native text Planetary Constants Kernel (PCK) file
format supported by SPICE. The file format is a list of the pool variables and their
values. One advantage of Copernicus JSON kernels is they are cross-platform. Normal
SPICE PCK files are not cross-platform, which requires separate Windows and
Mac/Linux versions. Another advantage is that they can be easily created, parsed, and
manipulated by other tools.

e Various new command line options were added, improving the flexibility of using
Copernicus from the command line.

Numerous other features and improvements were made. See the version 4.5 and 4.6 Copernicus
release memos in Appendices A and B, respectively for details of these changes.

6.4.6 Enhanced Python Scripting Capabilities

The Copernicus capabilities are enhanced when matched with the ability to automate execution
and to solve problems in large batches. To that end, a package called CopPy was developed,
which provided a Python interface to Copernicus. However, CopPy only allowed modification
of existing items in a Copernicus mission file (i.e., input deck). CopPy could not be used to
construct missions (or individual trajectory segments from scratch, or add new elements

(e.g., finite burns) that were not in the original file. The package provided access to a limited
subset of input deck configuration values and actions. While a variety of workarounds to these
limitations were developed during practical use, a more robust and complete interface providing
all Copernicus options was desired. RoboCopPy, which was a new Python package for
interfacing with Copernicus, was developed to satisfy this need.

Page #: 26 of 80

The new package is an object-oriented Python approach to the problem. GUI fields have been
organized into classes that correspond to familiar dialogs. The classes provide a complete
mapping of every option and field available in each GUI dialog. This approach makes
developing scripts easier. By nature of its object-oriented design, RoboCopPy allows
construction of complete input decks by adding class instances to various collections. Figure
6.4.6-1 is a simplified example of code to create an input deck in Python that represents a
prototypical International Space Station (ISS) trajectory.

import robocoppy as rcpy

iss = rcpy.Ideck()

seqg rcpy.Segment ("ISS")

seg.mass.mOmm.value = 400000

For '"generic'" quantities, you don't need to specify the " .value' .
seg.time.t0 = 0

Jj2k = rcpy.Frame ()

j2k.frametype id = rcpy.CopFrameEnum.j2000
j2k.framecenter id = rcpy.FrameCenter.main
Jj2k.mainbody = rcpy.SpiceBodyEnum.earth

s = rcpy.State()
s.frame = j2k

P = s.param

p.params_id = [rcpy.ParamlEnum.sma, rcpy.Param2Enum.ecc,
rcpy.Param3Enum. inc, rcpy.Param4Enum.raan,
rcpy.ParambEnum.aop, rcpy.Param6Enum.ta]

p.angle unit = rcpy.AngleUnits.deg

s.sma = 6778.0
s.ecc = 0.001

s.inc = 51.66
s.raan 276.838
s.aop = 69.6

s.ta = 189.3489
seg.state = s
iss.segments = [seqg]

iss.save ('iss.ideck')

Figure 6.4.6-1. Simplified example of code to create an input deck in Python that represents a
prototypical International Space Station (ISS) trajectory.

A useful feature shown in Figure 6.4.6-1 is the ability to refer to state elements by user-friendly
names (e.g., “sma”), once the state parameterization has been configured. State elements may be
referenced by index (e.g., s.state[0] .value for the first state element).

Among the most powerful features of RoboCopPy is the implementation of segment

references. Throughout an input deck, values can be inherited between segments or constrained
by references to other segments. When loading an input deck into RoboCopPy, these references
are converted to Python object references. These references are converted to their Copernicus

Page #: 27 of 80

segment numbers when the final input deck is saved. This allows for reordering of segments
without needing to manually update numeric references throughout the file. Segment references
can optionally be made using segment names which are automatically resolved to the appropriate
Python object reference. Assuming all segment names in the input deck are unique, this provides
a useful way to refer to segments without needing to know their location in the sequence.
Because a RoboCopPy input deck is a collection of segment object references, multiple input
decks can refer to the same segment object in memory, and allowing for easy reuse. An example
demonstrating these references is shown in Figure 6.4.6-2.

>>> from robocoppy import Ideck, Segment
>>> seg a = Segment ('Segment A')

>>> seg b = Segment('Seg B')

>>> seg c = Segment('Seg C')

>>> seg d = Segment('Seg D')

>>> seg b.time.t0.inherit seg = seg a # not ambiguous!
>>> seg d.mass.mOmm.inherit seg = 1 # this is ambiguous...
>>> x = Ideck()

>>> x.segments = [seg a, seg d, seg Db]

>>> # now this will refer explicitly to seg a
>>> seg d.mass.mOmm.inherit seg.parent = x.segments
>>> seg d.mass.mOmm.inherit seg.segment.name

'Segment A'

>>> y = Ideck()

>>> y.segments = [seg c, seg a, seg d]

>>> seg c.sc _data.dry mass.inherit seg = 'Segment A' # this is ambiguous
>>> y.save ('foo.ideck"') # now this refers explicitly to seg a

>>> seg c.sc _data.dry mass.inherit seg.segment.name

'Segment A'

Figure. 6.4.6-2. Example of RoboCopPy input deck segment references.

In cases where a new segment may be spliced into an existing trajectory, it may be necessary to
update segment references in batch from one segment to another. Several methods exist to
facilitate this action. The Segment class provides methods replace inherits with_ seg,
to replace all references within that segment from one to another, or
replace_list_inherits_with_me, which replaces all references in a provided list to a
given segment with a reference to the current one.

These features, among other enhancements, make RoboCopPy a superior method for creating,
manipulating, and running Copernicus input decks in scripts. The RoboCopPy beta version has
facilitated the development of complex MPCV EM-1 abort trajectory studies with scripts to
generically model various scenarios. The originally planned effort to generate the complete set
of scenarios for the study would have taken many months to write scripts full of workarounds to
the limitations of CopPy. The advantages of RoboCopPy reduced the time to complete and the
team size required to develop the scenarios by nearly half.

It is envisioned the RoboCopPy Python interface will be merged with the Python (PyQt) GUI.
This could provide significant new capabilities (e.g., real-time manipulation of the mission by
the user from within the GUI). This could be enabled by a set of built-in or user-defined macros,
which are Python scripts that operate on the current mission and update the GUI accordingly.
This could make it easier to perform repetitive tasks, and adding new capabilities to the tool via
Python-based GUI plugins.

Page #: 28 of 80

6.4.7 Bug Fixes

As part of the development activity, numerous bugs were fixed. For details on these fixes, see
the 4.5 and 4.6 release memos in Appendices A and B. As part of this task, the version 5.0 was
also beta tested by users at various NASA Centers.

7.0 Summary

The purpose of this assessment was to develop updates and new features for the NASA
Copernicus Trajectory Design and Optimization tool for application to NASA programs and
projects. These updates significantly improve the ability to design and optimize complex
trajectories over multiple trajectory phases and allow the use of unique vehicle-specific
guidance, control, and trajectory strategies and constraints, and the creation of an almost
unlimited number of unique user-defined capabilities. Products of the assessment are major
upgrades to the Copernicus tool that provide significant enhancements and effectiveness to the
user. The plug-in technology will open Copernicus to compatibility with an unlimited possibility
of user-defined algorithms that bi-directionally interact with the tool. The platform availability
of Copernicus has been expanded from PC-only to include Mac- and Linux-based operating
systems.

Products of this assessment will likely be used by Agency organizations, NASA-associated
contractors, and academia to provide potential benefit to all analysts, project leads, and managers
involved in trajectory design and optimization. The assessment currently affects multi-Center
projects and programs (e.g., Orion MPCV, SLS, and the Lunar Orbital Platform Gateway).
Additionally, it affects numerous government, commercial, and/or academic programs,
proposals, and studies requiring trajectory design and optimization.

To obtain the latest version of Copernicus, and the user guide, go to:
https://software.nasa.gov/software/MSC-25863-1 and click on “Request Now”. The updated
Copernicus User Guide is also accessible via hotlinks within the Copernicus GUI.

8.0 Findings, Observations, and NESC Recommendations
The following findings were identified:
8.1 Findings

F-1. The PyQt GUI provides significant new capability and increased usability of the
Copernicus tool.

F-2. The 3D graphics improvements (e.g., OSS OpenFrames) provide increased capabilities to
Copernicus. These same upgrades can be applied to other NASA tools (e.g., a current
GMAT development activity includes integration of OpenFrames graphics capability).

F-3. The new RoboCopPy Python scripting interface provides significant new capability for
scripting Copernicus.

F-4. Plugin improvements increase the ability of Copernicus to interoperate with other tools
and provided an ability to match external models used in analysis and operations.

F-5. The use of standard data formats (e.g., HDF5 and JSON) greatly improves the ability of
Copernicus to interoperate with other NASA analysis tools.

Page #: 29 of 80

https://software.nasa.gov/software/MSC-25863-1

8.2 Observations
The following observations were identified:

O-1. Copernicus is used in many projects across the Agency, including being the primary
trajectory optimization tool used in the integrated SLS/MPCV missions for pre-mission
design and has been identified as one of the software tools to be used in mission
operations.

O-2. The beta release of Copernicus 5.0 has facilitated the development of complex MPCV
EM-1 abort trajectories and reduced the time to complete and the team size required to
develop the scenarios by nearly half.

0-3. NASA Glenn Research Center (GRC) users have tested the beta release of the
Copernicus GUI and found that it provides a fast and reliable trajectory modeling tool
that runs on Macs, eliminating the slow refresh rates of the original Mac GUI and the
unreliable operation of Copernicus on Virtual Machine. This has resulted in a reduction
in the time required to develop or modify trajectory models in Copernicus and has greatly
increased usability. The beta version is being used for trajectory analysis supporting
NASA GRC’s Compass Team and the Mars Study Capability Team.

O-4. There are continued demands for enhanced existing capability and adding new
capabilities in Copernicus.

8.3 NESC Recommendations

The following NESC recommendations were identified and directed towards Copernicus users:

R-1. Upgrade to Copernicus version 5.0 to take advantage of new features and enhancements.
(F-1 through F-5)

10.0 Other Deliverables

No unique hardware, software, or data packages, outside those contained in this report, were
disseminated to other parties outside this assessment

12.0 Recommendations for NASA Standards and Specifications

No recommendations for NASA standards and specifications were identified as a result of this
assessment.

13.0 Definition of Terms

Corrective Actions Changes to design processes, work instructions, workmanship practices,
training, inspections, tests, procedures, specifications, drawings, tools,
equipment, facilities, resources, or material that result in preventing,
minimizing, or limiting the potential for recurrence of a problem.

Finding A relevant factual conclusion and/or issue that is within the assessment
scope and that the team has rigorously based on data from their
independent analyses, tests, inspections, and/or reviews of technical
documentation.

Page #: 30 of 80

Lessons Learned Knowledge, understanding, or conclusive insight gained by experience

Observation

Problem

that may benefit other current or future NASA programs and projects.
The experience may be positive, as in a successful test or mission, or
negative, as in a mishap or failure.

A noteworthy fact, issue, and/or risk, which may not be directly within the
assessment scope, but could generate a separate issue or concern if not
addressed. Alternatively, an observation can be a positive
acknowledgement of a Center/Program/Project/Organization’s operational
structure, tools, and/or support provided.

The subject of the independent technical assessment.

Proximate Cause The event(s) that occurred, including any condition(s) that existed

immediately before the undesired outcome, directly resulted in its
occurrence and, if eliminated or modified, would have prevented the
undesired outcome.

Recommendation A proposed measurable stakeholder action directly supported by specific

Root Cause

Finding(s) and/or Observation(s) that will correct or mitigate an identified
issue or risk.

One of multiple factors (events, conditions, or organizational factors) that
contributed to or created the proximate cause and subsequent undesired
outcome and, if eliminated or modified, would have prevented the
undesired outcome. Typically, multiple root causes contribute to an
undesired outcome.

Supporting Narrative A paragraph, or section, in an NESC final report that provides the detailed

explanation of a succinctly worded finding or observation. For example,
the logical deduction that led to a finding or observation; descriptions of
assumptions, exceptions, clarifications, and boundary conditions.

14.0 Acronyms and Nomenclature List

3D

API
CMake
COTS
DDEABM
DLL
DRO
DYLIB
EM-1
GMAT
GRC
GSFC
GUI
HDF5
HUD

Three-Dimensional

Application Programming Interface
Cross Platform Make
Commercial-Off-The Shelf
Adams-Bashforth-Moulton variable step-size integrator
Dynamic Link Library

Distant Retrograde Orbit

Dynamic Library (MacOS)
Exploration Mission 1

General Mission Analysis Tool
Glenn Research Center

Goddard Space Flight Center
Graphical User Interface
Hierarchical Data Format (version 5)
Heads-Up-Display

Page #: 31 of 80

IAU
IERS
ISS
JPL
JSC
JSON
LaRC
LRO
MPCV
NASA
0SS
PCK
PyQt
SBIR
SLS
SO
SOFA
SPICE
SRTM
SVN
SWIG
Ul

VL
VR
XML

International Astronomical Union

International Earth Rotation and Reference Frames Service
International Space Station

Jet Propulsion Laboratory

Johnson Space Center

JavaScript Object Notation

Langley Research Center

Lunar Reconnaissance Orbiter

Multi-Purpose Crew Vehicle

National Aeronautics and Space Administration
Open Source Software

Planetary Constants Kernel

Python Interface to Qt

Small Business and Innovative Research

Space Launch System

Shared Object

Standards of Fundamental Astronomy
Spacecraft, Planet, Instrument, C-Matrix & Events
Shuttle Radar Topography Mission

Subversion

Simplified Wrapper and Interface Generator
User Interface

Virtual Landscapes

Virtual Reality

Extensible Markup Language

15.0 References

1.

J. Williams, “Copernicus Version 4.5,” JSC Engineering, Technology and Science (JETS)
Contract, Technical Brief JETS-JE23-17-AFGNC-DOC-0066, December 12, 2017.

J. Williams, “Copernicus Version 4.6,” JSC Engineering, Technology and Science (JETS)
Contract, Technical Brief JETS-JE23-18-AFGNC-DOC-0009, April 20, 2018.

C. Ocampo, “An Architecture for a Generalized Trajectory Design and Optimization
System,” in Proceedings of the Conference: Libration Point Orbits and Applications (G.
Gbémez, M. W. Lo, and J. J. Masdemont, eds.), pp. 529-572, World Scientific Publishing
Company, June 2003. Aiguablava, Spain.

J. Williams, R. D. Falck, and 1. B. Beekman. “Application of Modern Fortran to Spacecraft
Trajectory Design and Optimization,” 2018 Space Flight Mechanics Meeting, AIAA SciTech
Forum, (AIAA 2018-1451).

J. Williams, “A New Plugin Architecture for the Copernicus Spacecraft Trajectory
Optimization Program,” AAS/AIAA Astrodynamics Specialist Conference, Vail, Colorado,
August 2015. AAS 15-606.

J. Williams, J. S. Senent, D. E. Lee, “Recent Improvements to the Copernicus Trajectory
Design and Optimization System,” Advances in the Astronautical Sciences, 2012.

SBIR Contract BONSSC18P0728. The COR was Thomas Grubb, NASA GSFC,
thomas.g.grubb@nasa.gov.

Page #: 32 of 80

mailto:thomas.g.grubb@nasa.gov

Appendices

A Copernicus Release 4.5.0
B. Copernicus Release 4.6.0

Page #: 33 of 80

Appendix A. Copernicus Release 4.5.0

NASA Johnson Space Center
EG/Aeroscience and Flight Mechanics Division
Flight Dynamics Team Technical Brief

Copernicus Version 4.5

FltDyn-CEV-17-66
December 12, 2017

Prepared by:

Jacob Williams
Senior Astrodynamics Engineer
GN&C and Aerosciences Section — JE23
JETS Engineering Department

Christopher W. Foster
Senior GN&C Engineer
Odyssey Space Research, LLC.

Approved by:

Gerald L. Condon
EG/Aeroscience and Flight Mechanics Division
NASA JSC Engineering Directorate

Page #: 34 of 80

)

JETS

JACOBS

JSC Engineering, Technology and Science (JETS) Contract
Engineering Department

Technical Brief
Date: December 12, 2017
Document Number: JETS-JE23-17-AFGNC-DOC-0066
Subject: Copernicus Version 4.5
Synopsis:

Version 4.5 of the Copernicus spacecraft trajectory design and optimization system is released.
This is an update to version 4.4 (which was released in October 2016). It includes various new
features and bug fixes. The following memo provides a brief overview of the release. For more

details, please consult the Copernicus User Guide.

Prepared by:

Jacob Williams Date
Senior Astrodynamics Engineer

GN&C and Acrosciences Section — JE23

JETS Engineering Department

Approved by:

Approved by:

Robert G. Reitz Date
Scction Manager - JE23

GN&C and Acrosciences Section — JE23

JETS Engineering Department

William H. Schoolmeyer
Division Technical Manager (EG)
JETS Engincering Department

Date

Page #: 35 of 80

JSC Engineering, Technology and Science (JETS) Contract

Title: Copernicus Version 4.5

JETS-JE23-17-AFGNC-DOC-0066

FINAL

Date: December 12, 2017

Page 2 of 34

Contents

List of Figures

List of Tables

1 Introduction

2 New Features

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

2.10 Miscellaneous Changes

New DataOutput Options
New'Tools s ams 8 78 555 0.5 8 08558 R EFHS 20855 R idd
Updated Differential Corrector Options
PluginTpddfes « o « « = s s s 5 6 5 5 8 mwmme s 5 5 5 8 wwmwwe
FramePlugins
New Ramp Control Law
New Command Line Options
New Group Options v v v v vt e et e e e

New Triaxial State Parameters

3 Bug Fixes

4 Python Interface

4.1
42
43
44
45
4.6

Renumbering Inherits and Constraints
Input Deck Differencing
MUultiprocessing v v v v v v e e e e e e e e e e e
Unit'Tests s aows s 188 55 688 § 585 BRI T 555 B
Miscellaneous Changes

BugFixes: « scwe o v 5 5 5 % moee v 0 5 5 % wommes & » ¥ 5 & oo

5 Matlab Interface

6 Developer Tools and Libraries

7 Future Changes

12
12
14
15
17
21
21
22

24

25
25
25
26
26
27
28

28
28

29

Page #: 36 of 80

JSC Engineering, Technology and Science (JETS) Contract

Title: Copernicus Version 4.5

JETS-JE23-17-AFGNC-DOC-0066

FINAL

Date: December 12, 2017

Page 3 of 34

8 Platforms and System Requirements
8.1 WINdows e e e e e e e e
8.2 LANUX ¢ 55 5.5 85 85 55 5,848 8 5855 S 85556 0BSd 80058 004

9 Version Control and Bug Reporting

10 Acknowledgments
Acronym List

References

29
29
29
30

32
32
32

33

Page #: 37 of 80

JSC Engineering, Technology and Science (JETS) Contract

Title: Copernicus Version 4.5 JELS-JEas-1I-ALONC-TIOL 0000

FINAL

Date: December 12, 2017

Page 4 of 34

List of Figures
1 Segment Data Output Dialog
2 HDF5 File Structuret
3 PythonCode: HDF5to CSV
4 EclipseFinderDialog
5 Time Transformation Dialog
6 State Transformation Dialog
7 Updated DIFFCORR Dialog
8 Frame Plugin Interfaces
9 New Ramp Control Law
10 Finite Burn Engine Options Dialog
11 EngineRampModes
12 GroupDialogs.
13 Appending Multiple Segments with CopPy
14 MacScreenshot « : + « v oo v v v s v v v s mm e s e s s e e

List of Tables
1 SPICE Routines Available in DLL Plugins
2 Valid cop_var State Choices for Plugins
3 New Command Line Options

Page #: 38 of 80

JSC Engineering, Technology and Science (JETS) Contract

Title: Copernicus Version 4.5

JETS-JE23-17-AFGNC-DOC-0066

FINAL

Date: December 12, 2017

Page 5 of 34

1 Introduction

Copernicus [1] is a spacecraft trajectory design and optimization software application developed
at the NASA Johnson Space Center (JSC). The latest Copernicus release (version 4.5) is an update
to version 4.4 (which was released in October 2016). JSC makes Copernicus available free of
charge to other NASA centers, government contractors, and universities, under the terms of a US
government purpose license. Organizations interested in obtaining Copernicus should contact:

Technology Transfer and Commercialization Office
NASA Johnson Space Center

2101 NASA Parkway (Mail Code: AOS)

Houston, Texas 77058

Phone: (281) 483-3809

E-mail: jsc-techtran@mail.nasa.gov

URL: https://software.nasa.gov/software/MSC-25863-1

2 New Features

The following sections describe the significant new features included in the release.

2.1 New Data Output Options

Significant internal changes were made to how the segment data is exported to the files. The new
GUI dialog is shown in Figure 1. Output files are now cached internally and generated all at once
after the segment is propagated. This has the following effects:

e The output files are now generated much faster than before. For example, on one of the
development machines, a 30-day propagation (with data file generation) of a low-earth orbit
using an 8x8 gravity model, using DDEABM with a tolerance of 1 x 10712 took about 9
seconds with v4.4, and now takes about 4 seconds.

¢ The various output formats (CSV, JSON, SPK, and HDF5) can now be generated indepen-
dently of each other. The user can select any combination (or none at all) to be generated.
Formerly, for example, the JSON and SPK files were generated by reading the data from the
CSV file. This results in increased speed when generating the non-CSV output files.

¢ Reversing the output files (for segments where At < 0) no longer requires reading and resav-
ing each file. The data is now written in reverse order immediately.

Page #: 39 of 80

TSC Engineering, Technology and Science (JETS) Contract

JETS-JE23-17-AFGNC-DOC-0066

FINAL

Title: Copernicus Version 4.5

Date: December 12, 2017

Page 6 of 34

@ Segment 1: Data Output 22 X
File Tools Actions Segments Windows Help

Copy Data From Seg '-: { Clear Data To Default
Files to Generate

[csv [AJson [HDF5 [sPk

Output Format
Modify Tim History Format

[[] Output backwards propagated segments from TF->T0

CSV Options

[Merge CSVfiles

SPK Options

Kemel Type: Type 9: Lagrange Intempolation - Unequal Time Steps
Polynomial Degree: I: |

SPICE ID: ':

HDF5 Options

Compression Level: ‘j =

Chunk Size: : y

Figure 1: New Segment Data Output Dialog. The dialog now allows for independent generation
of each of the output file formats (only the ones checked are generated). Also added was a new

HDFS5 file format.

NESC Document #: NESC-RP-15-01097

Page #: 40 of 80

JSC Engineering, Technology and Science (JETS) Contract
JETS-JE23-17-AFGNC-DOC-0066 FINAL
Date: December 12, 2017 Page 7 of 34

Title: Copernicus Version 4.5

A new option has been added to export the segment data in HDF5 [2] binary format. The com-
pression level and chunk size can be specified in the GUIL. The data in the HDF5 file is identical
to what is stored in the CSV file for each segment. Each column in the CSV file corresponds to
a group in the HDFS5 file that contains the data and the column label datasets (see Figure 2). The
files can be read with any of the available HDFS5 interfaces (such as h5py in Python). See Figure 3
for an example of reading the Copernicus-produced HDF?5 files with Python and converting them
to CSV format.

Other data output changes include:

¢ Added a new command line flag (-outfilesdir) to generate the output files in a user-
specified directory. Formerly, all output files were always generated in the same directory as
the input deck. Redirecting them to a different location may be useful for scripting purposes.

¢ Increased the maximum number of time history variables in a segment from 100 to 256. In
a future release, the upper limit will be eliminated entirely.

 If an error occurs during segment propagation, none of the output files are generated.

¢ In the JSON segment output files, a column of data is now printed on one row (without line
breaks) to make the file a bit smaller and more human readable.

2.2 New Tools

Some new dialogs were added to the Tools menu:

¢ A “SPICE Tools” submenu was added. It contains two new dialogs:

— A new eclipse finder dialog (shown in Figure 4). This is simply a wrapper for the
SPICE gfoclt() routine [3].

— A new time transformation dialog (shown in Figure 5). This is simply a wrapper for
the SPICE str2et() and timout() routines [4, 5].

¢ A new “State Transformation Tool” was added (shown in Figure 6). This can be used to
display the data (R, R, ¥4, and V;,4,s) needed to transform a Cartesian state [r;, v;] from
one Copernicus frame to another using the equations:

re | R 0 I; Ttrans
MEFIEE- ®

¢ A new dialog was added that shows all available units for each variable type.

Page #: 41 of 80

o e

w

JSC Engineering, Technology and Science (JETS) Contract

JETS-JE23-17-AFGNC-DOC-0066 FINAL
Date: December 12, 2017 Page 8§ of 34

Title: Copernicus Version 4.5

((ideckname (SEGMENT _1) .h5)

Segment 1
Time History

Figure 2: Copernicus HDFS5 File Structure. Each “column” of data is a group (within the segment
“Time History” group) that contains two datasets: “data” (which can be a vector of real numbers
or strings), and “labels” (a single string containing the variable name). In the future, other groups
may also be included within the segment group.

import h5py
import pandas as pd
def hdf52csv(filenamein, filenameout):
428 Convert a Copernicus HDFS file te .a CSY file "%
data = hbpy.File(filenamein,'r') # read the hdf5 file
df = pd.DataFrame () # create output pandas structure
get the data by column
note: currently there is only one segment
and time history group per file
for seg in data:
for th in datal[seg]:
num_cols = len(datalseg][th])
for i in range(num_cols):
¢ = str(i+1) # column number
label = datalsegl[thl[c]['labels '][@].decode('utf-8")
if (isinstance(datalseg]l[th]J[cl['data’'][@],bytes)):
df[label] = [d.decode('utf-8") \
for d in datal[segl[th][c]['data’']]
else:
df[label] = datalsegl[thl[c]['data’]
write it as a csv file
df . to_csv(filenameout, index_label=False, index=False)

Figure 3: Example Python Code for Conversion of HDFS5 to CSV. This routine uses the h5py and
pandas libraries and is specific to the file layout produced by Copernicus (see Figure 2).

Page #: 42 of 80

JSC Engineering, Technology and Science (JETS) Contract

Title: Copernicus Version 4.5 JETS-JE23-17-AFGNC-DOC-0066 FINAL
PP ’ Date: December 12, 2017 Page 9 of 34
@ Eclipse Finder X
Observing body |EARTH (359, =
Occuting frort) body MOON (301)][v
Occulted (back) body SUN (10) v

Initial Ephemesis Time (sec) 0.556545600000000E+09] | Set
Final Ephemeris Time (sec) 0.557496000000000E+09| | Set

Output Time System: UTC (Coordinated Universal Time) v
Occultation Type Any v
Aberation Comection L'I; w
Step size (sec) | 360.000000000000
Maximum # of intervals | 100I‘ :‘

Results

Observer: EARTH

Occulting body: MOON

Occulted bedy: SUN

Occultation type: Any

Count Start Time (UTC) Stop Time (UIC) Duration (s)
1 2017 AUG 21 17:51:03.1466590 (UIC) 2017 AUG 21 19:00:00.4608€2 (UTC) 4137.314171314240
=

Figure 4: New Eclipse Finder Dialog. This can be used to find the epochs of occultation events
among SPICE ephemeris objects.

@ Time Transformations X

From

Time Sting [Oct 21, 1805 11:45:00 UTC |

To

Format [Mon DD. YYYY HR:MN:SC.###### : TDB |
Ephemeris Time (sec) [-0.61282664588175669&10 |

Time String [Oct 21, 1805 11:45:41.1824 |

o] [

Figure 5: New Time Transformation Dialog. This can be used to quickly convert between different
string representations of date and time.

NESC Document #: NESC-RP-15-01097 Page #: 43 of 80

ISC Engineering, Technology and Science (JETS) Contract

Title: Copernicus Version 4.5

JETS-JE23-17-AFGNC-DOC-0066

FINAL

Date: December 12,2017

Page 10 of 34

6 State Transformation Tool

Initial Frame Final Frame
Frame [TRF93 Frame 2000
Center EARTH Center MOON
Modfy Initial Frame | Modify Final Frame
Times

Initial Ephemeris Time (sec) |

0.316224000000000E+03] st

Final Ephemeris Time (sec) l

0.864000000000000E-05| | Set

Transformation Ephemeris Time (sec) l

0.3456000000000005+06] | set

rot = [1.8955711150835236E-01,
-5.8186969643216382E-01, 1.89557112858248839E-01, -1.3894436038053293E-05,
—-2.8548452555896773E-05, -6.4216450988335838E-05, 9.59995599758571356E-01]

9.8186969443052485E-01, ©.8084635255225885E-05,

rotd = [7.1599068107410326E-05, -1.3822722723992204=-05, 1.08103839062933094E-12,
1.3822722818518351E-05, 7.1599068244111442E-05, 1.4465783971123330E-10,
—4.5409072789939859E-03, 1.50746135139343511E-03, 1.5363369663103753E-15]
tras = [-5.5610557190365707E+03, 3.8012621040579642E+05, 1.4269987301201219E+05]

trasd = [-9.65925106249862292E-01, -4.6016985505200475E-02, €.1854179533724914E-02]

=N

r_final =rot *r_initial +tras; v_final = rot * v_initial + rotd * r_initial +trasd

Figure 6: State Transformation Dialog. This dialog can be used to display the transformation
matrices used by Copernicus to transform a Cartesian state from one frame to another. The user
inputs the initial frame and epoch, the final frame and epoch, and the epoch at which to perform

the transformation.

NESC Document #: NESC-RP-15-01097

Page #: 44 of 80

ISC Engineering, Technology and Science (JETS) Contract

Title: Copernicus Version4.5

JETS-JE23-17-AFGNC-DOC-0066

FINAL

Date: December 12,2017

Page 11 of 34

}Canoel

& DIFFCORR Options X
Stopping Criteria
Maximum kterations ,:_
Feasibility Tolerance 1.0000E-06
Convergence Tolerance for X 1.0000E-08

Step Factor Options

Step Modo Backtracking Linesearch |
Minimum Step Factor 1.0000E-01
Maximum Step Factor 1.0000E+00
Other Options
[Use Broyden update

0 Convert inequality constraints to equality constraints
using slack varables

j ' Clearto defaukt

Figure 7: Updated DIFFCORR Dialog. The “Backtracking Linesearch™ step mode and the Broy-

den update are new options in this release.

NESC Document #: NESC-RP-15-01097

Page #: 45 of 80

JSC Engineering, Technology and Science (JETS) Contract
JETS-JE23-17-AFGNC-DOC-0066 FINAL
Date: December 12, 2017 Page 12 of 34

Title: Copernicus Version 4.5

2.3 Updated Differential Corrector Options

The release includes some new options for the differential corrector solution method (DIFFCORR),
which is a basic nonlinear equation solver. See Figure 7 for the updated dialog. The new additions
are:

¢ A new backtracking line search option has been added for computing the step factor. When
this mode is selected, a backtracking line search (minimizing the sum of the squares of the
constraint violations) is used to determine the step size to take at each iteration.

¢ A Broyden update option [6] was also added, which uses a secant method to estimate the
Jacobian matrix, rather than computing it using finite differences. The Jacobian computed in
this manner is less accurate but much faster to compute, so the iterations will proceed faster
but more may be required for convergence (this is the same type of algorithm used in the
BROYDEN solution method).

2.4 Plugin Updates

Updates related to Copernicus plugins in this release include:

« DLL plugins can now access a small set of SPICE routines!. This allows for plugins to ac-
cess data from the SPICE pool (such as frames and gravitational parameters). This requires
linking the plugin with the provided plugin-support library. The full set of available rou-
tines are listed in Table 1. In the future, the set of available routines may be expanded. Note
that it is not “safe” for plugins to add or remove pool variables, or change the loaded SPICE
kernels, so those routines are not available.

¢ Also added a new option for plugins to inherit/push directly from/to the six initial state seg-
ment variables without doing a state transformation. This may be useful in some cases where
the user knows what they are doing. The complete list of segment state plugin variables is
shown in Table 2. The new variables (STATEVARI1, etc.) are scalar plugin variables. It is
important to note that, when using these variables, unit conversions are performed like any
other variable, but unlike the full STATE variable specification, no coordinate frame or pa-
rameterization transformation is done. For example, when pushing to STATEVAR1, the value
is directly inserted into the first state variable as though the user had typed it directly in the
GUI “State” dialog.

When loading a config file associated with an existing ideck, Copernicus will now strip away
just the plugin name from the file name and use that to construct the new config file name.
This prevents unusually long file names when a user does this.

Ihttps://naif.jpl.nasa.gov/pub/naif/toolkit_docs/FORTRAN/spicelib/index.html

Page #: 46 of 80

JSC Engineering, Technology and Science (JETS) Contract

Title: Copernicus Version 4.5

JETS-JE23-17-AFGNC-DOC-0066

FINAL

Date: December 12, 2017

Page 13 of 34

Table 1: SPICE Routines Available in DLL Plugins

| Name | Description |
bodc2n | Body ID code to name translation
bodn2c | Body name to ID code translation
bodved | Return d.p. values from the kernel pool
bodvrd | Return d.p. values from the kernel pool
cidfrm | Center ID to frame id and name
dtpool | Data for a kernel pool variable
et2lst | ET to local solar time
failed | Error status indicator
frmchg | Frame change
gcpool | Get character data from the kernel pool
gdpool | Get d.p. values from the kernel pool
getmsg | Get error message
gipool | Get integers from the kernel pool
gnpool | Get names of kernel pool variables
namfrm | Frame name to frame id
occult | Find occultation type at time
pgrrec | Planetographic to rectangular
phaseq | Phase angle quantity between bodies centers
plnsns | Planetographic longitude sense
prop2b | Propagate a two-body solution
recpgr | Rectangular to planetographic
refchg | Reference frame change
reset | Reset error status
spkez | S/P Kernel, easy reader
spkgeo | S/P kernel, geometric state
spkgps | S/P kernel, geometric position

Table 2: Valid cop_var State Choices for Plugins

Variable Type | cop_var String ‘ Description | Valid Nodes
STATE Full segment state variable structure | 5,75, t7, 1}
STATEVAR1 First segment state variable
STATEVAR2 Second segment state variable
State STATEVAR3 Third segment state variable -
STATEVAR4 Fourth segment state variable 0
STATEVARS Fifth segment state variable
STATEVARG Sixth segment state variable

Page #: 47 of 80

JSC Engineering, Technology and Science (JETS) Contract
JETS-JE23-17-AFGNC-DOC-0066 FINAL
Date: December 12, 2017 Page 14 of 34

Title: Copernicus Version 4.5

« Failure to load a plugin config file is now a fatal error in command-line mode (formerly,
Copernicus would print warnings, remove the plugin, and continue).

¢ The plugin dialogs are now separate dialogs accessible in the Mission Config window.

¢ Arrays of integers in plugin info structures are now displayed in the treeview (e.g., the group
list). All info variables are now displayed (the modify button is disabled for the ones that
should not be modified).

¢ A new plugin-support library is now included with Copernicus that can be linked with
a user-created DLL plugin. The library includes the following modules that are useful for
building DLL plugins:

— d11_message_module — Allows the DLL to send messages to the input deck log file
(which is also displayed in the GUI).

— spice_module — Required for the DLL plugin to access the SPICE environment in
Copernicus.

— json_module — Required for all DLL plugins to communicate with Copernicus (see
Chapter 17 in the Copernicus User Guide for details).

¢ The plugin input and output variable grids now have an additional column to display the
variable types.

2.5 Frame Plugins

A new feature has been added to Copernicus to specify custom coordinate frames via DLL plu-
gins. These plugins are different from the mission attribute plugins, and only exist to define the
transformation between the J2009 frame and the user-defined frame. The DLL must export the
transformation subroutines with the exact interfaces shown in Figure 8. These subroutines return
the 3 x 3 R (and optionally the R and R) rotation matrices (see Equation 1).

A frame plugin DLL is configured using a JSON config file, which is specified by adding the file
name to the SPICE pool variable COP_PLUGIN_FRAMES in a PCK file. Any number of frames can
be added in this way. For example:

COP_PLUGIN_FRAMES += ('example-frame-plugin/bin/frameplugin.json')

This path must be a subdirectory of the <Copernicus>/support_files/plugins/frames direc-
tory. Frame plugin config files cannot be in any other location. An example config file is shown
here:

Page #: 48 of 80

JSC Engineering, Technology and Science (JETS) Contract

JETS-JE23-17-AFGNC-DOC-0066

FINAL

Title: Copernicus Version 4.5

Date: December 12, 2017

Page 15 of 34

{
"name": "MY_NEW_FRAME",
a1l “frampploginm.dll”;
"id": 1401805,
Y15 ineftial": Triie

5| 3

The frame plugin config file contains the following variables:

¢ name — The name of the frame (this will be the name listed in the various frame menus in the
GUI). The name should not be the name of any frame already in Copernicus, or one of the
built-in SPICE frames [7]. If multiple user-defined frames are to be loaded in the same input
deck, care must be taken to ensure that they each have a unique name.

¢ id — A unique ID code that Copernicus will use to identify the frame. It must not be the ID
code of any frame already in Copernicus, or one of the built-in SPICE frames. According to
the SPICE documentation [7], the range 1400000 to 2000000 has been set aside as ranges
of Frame IDs that can be used freely by SPICE users without fear of conflict with “officially
recognized” frames. It is recommended to use a value in this range. If multiple user-defined
frames are to be loaded in the same input deck, care must be taken to ensure that they each
have a unique ID code.

¢ d11 — The name of the frame DLL plugin. This must have the extension .d11 on Windows
and .so on Linux (Copernicus will select the proper extension for the platform). The file
must be in the same directory as the corresponding config file. In the example above, the
DLL file is located at <Copernicus>/support_files/plugins/frames/example-frame-
plugin/bin/frameplugin.dll.

¢ is_inertial — An optional parameter that indicates if the frame is inertial (i.e., non-rotating).
For inertial frames, the R and R matrices are not used, so the transformation routines will
be called without these arguments. If this variable is not present, its value is assumed to be
false (i.e., a rotating frame is assumed).

Frame plugins must be compiled with the Intel Fortran compiler (to avoid issues, the same version
used to compile Copernicus is recommended). An example project is included in the release.

2.6 New Ramp Control Law

A new ramp control law option has been added for finite burn engines. The new control law uses
cubic spline equations to transition from the initial and final values to the ramp phase (see Figure
9). It can be selected in the finite burn engine options dialog (shown in Figure 10). Consider the

Page #: 49 of 80

NESC Document #: NESC-RP-15-01097

JSC Engineering, Technology and Science (JETS) Contract

Title: Copernicus Version 4.5 JETS-JE23-17-AFGNC-DOC-0066 FINAL

Date: December 12, 2017 Page 16 of 34

subroutine j2000_to_frame(et, rot, istat, rotd, rotdd)

!DEC$ ATTRIBUTES DEFAULT, DLLEXPORT, ALIAS:"j2000_to_frame" :: j2000@_to_frame
real(wp),intent(in) :: et !! ephemeris time (TDB sec)
real(wp),intent(out),dimension(3,3) :: rot !! R matrix
integer,intent(out) :: istat !! status code (@=no errors)
real(wp),intent(out),dimension(3,3),optional :: rotd !! R matrix
real(wp),intent(out),6 dimension(3,3),optional :: rotdd !! R matrix

end subroutine j2000_to_frame_interface

(a) Subroutine to transform from J20@9 to the user-defined frame.

subroutine frame_to_j2000(et, rot, istat, rotd, rotdd)

!DEC$ ATTRIBUTES DEFAULT, DLLEXPORT, ALIAS:"frame_to_j200@" :: frame_to_j2000
real(wp),intent(in) :: et !! ephemeris time (TDB sec)
real(wp),intent(out),dimension(3,3) :: rot !! R matrix
integer,intent(out) :: istat !! status code (9=no errors)

real (wp),intent(out),dimension(3,3),optional :: rotd !! R matrix
real(wp),intent (out), dimension(3,3),optional :: rotdd !! R matrix

end subroutine frame_to_j2000@_interface

(b) Subroutine to transform from the user-defined frame to J2000.

subroutine get_status_message(istat,6msg)

!DEC$ ATTRIBUTES DEFAULT, DLLEXPORT, ALIAS:"get_status_message" :: get_status_message
integer ,intent(in) :: istat !! a status code
character(len=:),allocatable,intent(out) :: msg !! the error message

end subroutine get_status_message_interface

(c) Subroutine to retreive an error message string for the integer istat error code returned by the other two
routines.

Figure 8: Frame Plugin Subroutine Interfaces. A frame plugin must include the j2000_to_
frame() and frame_to_j200@() subroutines. The get_status_message() routine is optional.
The !DEC$ compiler directives are necessary on Windows to indicate that the routines are exported
by the DLL.

Page #: 50 of 80

JSC Engineering, Technology and Science (JETS) Contract
JETS-JE23-17-AFGNC-DOC-0066 FINAL
Date: December 12, 2017 Page 17 of 34

Title: Copernicus Version 4.5

following example thrust ramp parameters:

Th,=10N
Tr=100N
%TH = 40%
T — (2)
0Ty = 40%
7 =360 sec
Ar=1hr

The resultant thrust history is shown in Figure 11. In the cubic spline law, the T parameter is 1 /2 the
time to transition from the initial value to the ramp phase, and 1/2 the time to transition from the
ramp phase to the final value. The spline segments are constructed to be tangent at both ends to the
perfect tracking curve (if no time constant was used). The cubic spline law is guaranteed to begin
and end on the specified values, whereas the original “first order system” law is not (depending
on the value of 7). Note that this is enforced by internally reducing 7 if the user-specified value
cannot achieve the transition in the time allowed.

2.7 New Command Line Options

Various new command line options are included in the release (they are shown in Table 3). In
addition, the following changes were made:
¢ Added the SPICE and HDFS5 version numbers to the -v command line help display.

¢ Copernicus will now quit if an error is encountered in command-line mode when using the
-importx command line argument (rather than continuing as before).

¢ Various updates to the command line help messages.

An example command-line usage is shown below. In this example, an input deck is solved using
a pointmass field only, then the resultant solution is exported back to the original input deck, and
then it is solved again.

> copernicus -solve "example.ideck" -pointmass -exportx pointmass.json
> copernicus -solve "example.ideck" -importx pointmass.json -save

This scheme may be useful for some missions where a pointmass solution (which presumably can
be generated faster) can be used as a good initial guess for the high-fidelity solution.

Page #: 51 of 80

JSC Engineering, Technology and Science (JETS) Contract
JETS-JTE23-17-AFGNC-DOC-0066 FINAL
Date: December 12, 2017 Page 18 of 34

Title: Copernicus Version 4.5

Linear interpolation between f(t1) and f(¢2)

f(ts)

\.Cubi spline tangent to
| f(t2 —7) and f(ts +7)

Cubic spline tangent to
f(tx —7) and f(t1 +7)

f(to)
s

to {1 {2 ty

Figure 9: New Ramp Control Law. The control law determines the time history of an engine
parameter (e.g., Thrust) from 7o to ¢ (with a ramp phase from 1 to #3). In this figure, f(z) (black)

is the “perfect tracking™ law, which can be smoothed using cubic polynomials at the corners using
a time constant 7 (red).

Finite Burn Engine Options

Engine Model
Power Source Intemal Power Source
Efficiency Model UDO‘?; Efficiency v

[[] Specify Initial Effective Detta-V

Engine Controls Specify Min and Max Engine Limits
Thrust COMin - [Max
[TnstTom) | [ISPTOGed)
Isp CMin - [JMax
Ramp v Default v
Use Ramp Time Constant
Ramp Mode | Cubic Spline v

xancel

Figure 10: Finite Burn Engine Options Dialog. The new option is available in the “Ramp Mode”

menu. The choices are “First Order System” (the original mode) and “Cubic Spline” (the new
one).

NESC Document #: NESC-RP-15-01097 Page #: 52 of 80

JSC Engineering, Technology and Science (JETS) Contract
JETS-JE23-17-AFGNC-DOC-0066 FINAL
Date: December 12, 2017 Page 19 of 34

Title: Copernicus Version 4.5

100
90
80
70
60
50

Thrust (N)

40
30
20
10

Perfect Tracking (7 not used)
—— First Order System (7 = 360 s)

—— Cubic Spline (7 = 360 s)

0.0 0.1 U2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Time (hr)

Figure 11: Two Engine Ramp Time Constant Modes. These results use the parameters in Equation
2. The original version in Copernicus is the “First Order System” option. The new mode is the
“Cubic Spline” option. The new mode is always guaranteed to begin and end on the specified
values, whereas the original is not (depending on the value of 7).

Table 3: New Command Line Options

Command Line Flag Argument | Description
-randomizexseed <integer value> Specify the seed value for -randomizex
; Specify the 3D graphics frame rate (the default is 30 frames per second,
-fps <integer value>
as before)
-outfilesdir <directory name> Send the segment output files to a specified directory
—exporbspansiiy <file names Export the sparsity pattern t?sao .1 i(jl;af;l)e (can be used only with the

Change the mission epoch while also adjusting all the segment 7o, #7,
and plugin time input variables so that the mission remains the same.
The argument can be a string understood by the SPICE routine STR2ET

~updaite: epoch <epochstring> | 141 o <1798 August 1, 18:20:00 UTC’’), or a string indicating a
segment time node from which to get the epoch (e.g., the initial time of
segment 1 would be ‘ ‘S1 T@’”)
-pointmass Convert the central bodies of all segments to a pointmass gravity model
-printemd Print the command used to invoke the program

Page #: 53 of 80

JSC Engineering, Technology and Science (JETS) Contract

Title: Copemicus Version 4.5

JETS-JE23-17-AFGNC-DOC-0066

FINAL

Date: December 12, 2017

Page 20 of 34

@ Group Summary X

B Al Segmerts & Pluges|
-§1: 1st Opp LEO

--§2: 1st Opp TLI

- §3: 1st Opp post-TLI

- 34: 1st Opp LOI

--§5: 1st Opp LLO

- §6: 1st Opp LOI Vinf

- §7: 2nd Opp Coast

- §8: 2nd Opp TLI

- §9: 2nd Opp post-TL!

§10: 2nd Opp LOI

--$§11: 2nd Opp LLO

- $§12: 2nd Opp LOI Virf

- §13: Moon plane

- P1: ARGLAT

[=}- 1st Cpportunity

811t Opp | FO

--§2: 1st Opp TLI

- §3: 1st Opp post-TLI
- §4: 1st Opp LOI

- §5: 1st Opp LLO

- §6: 1st Opp LOI Vinf

[=1- 2nd Opportunity

- §7: 2nd Opp Coast
-$8: 2nd Opp TLI

- §9: 2nd Opp post-TLI
--$10: 2nd Opp LOI

--§11: 2nd Opp LLO

- §12: 2nd Opp LOI Virf

= Othe

- $13: Moon plane

“-P1: ARGLAT

(a) Group Summary

Groups

ltems in croup

All Segments & Plugins
1st Opportunity

2nd Oﬁionun'a

513 : Moon plane
P1: ARGLAT

Add | [Delete ||

0 Modify Group

Group name: IOther |

Segments in group ffor example: 1.3.5-7): |13 |

Plugins in group {for example: 1,3.5-7): |

xancel ‘

(b) Other Group Dialogs

Figure 12: Group Dialog Updates. Groups can now contain plugins in addition to segments. In this
example, a plugin is included in the “Other” group. A group can contain any number of plugins,
and must contain at least one segment.

NESC Document #: NESC-RP-15-01097

Page #: 54 of 80

JSC Engineering, Technology and Science (JETS) Contract
JETS-JE23-17-AFGNC-DOC-0066 FINAL
Date: December 12, 2017 Page 21 of 34

Title: Copernicus Version 4.5

2.8 New Group Options
The release includes the following changes to the groups feature:

¢ Added a “group summary” dialog to display all the groups and their contents (see Figure
12a).

¢ Groups can now also contain plugins (previous versions only allowed groups to contain
segments, and plugins were global to all groups). Now, a group may contain any number of
segments and any number of plugins, and only these included elements are included in the
optimization problem. There must still be at least one segment in each group. See Figure 12b
for an example. Note that the plugin list in the Mission Attributes dialog now only displays
the plugins that are in the currently-selected group (this is the same behavior as the segment
list).

¢ Some updates to the GUI display logic when modifying groups.

2.9 New Triaxial State Parameters

Three new state parameters were added to the geographic state parameterization:

¢ hr —triaxial ellipsoid altitude
¢ Ar —triaxial ellipsoid longitude
e ¢r — triaxial ellipsoid latitude

These parameters are analogous to the normal geodetic parameters (ip, A, and ¢p), but are com-
puted using an algorithm [8] that takes into account the triaxial shape of a body. In the SPICE pool,
three distinct RADII values can be defined for celestial bodies. For example, for Europa:

BODY502_RADII = (1562.6 1560.3 1559.5)

If we define the three radii values as:
a, = BODY502_RADII(1) 3)
ay = BODYSOQ_RADII(Q) (G
b= BODY502_RADII(3) 5)

then the Cartesian position vector components [x,y,z] can be computed from the triaxial compo-
nents using:

x = (v+hr)cosdrcosAr ©)
y=(v(1—e2)+hr)cos¢rsinAr)
2= (v(1—é)+hr)singr 8)

Page #: 55 of 80

JSC Engineering, Technology and Science (JETS) Contract
Title: Copernicus Version 4.5 JETS-JE23-17-AFGNC-DOC-0066 FINAL
Fop ' Date: December 12, 2017 Page 22 of 34
where:
e = (@~ a)/a ©)
= (@ - b)) e (10)

are the first equatorial eccentricity and the first polar eccentricity, and:
Ay

\/ 1 —e2sin? g7 — e2 cos? gy sin® Ay

Vv

(11)

is the radius of curvature in the prime vertical. Note that a;, > ay > b is assumed. An iterative
method is used for the inverse transformation (Cartesian to triaxial parameters).

2.10 Miscellaneous Changes

The following other changes and new features are also included:

¢ Changed some real number formats in the GUI from D to E.

If a SPICE body ID is encountered without a defined name (say, from a user-loaded SPK
file), then Copernicus will now generate a name (“BODY<ID>") so it can be used without
requiring the user to create a PCK file. It is still good practice under some circumstances
to include a PCK file since that is the only way to specify other body properties such as the
RADII or GM (a body with no associated PCK data will only have a defined name and no other

properties).

¢ Added a new button in the SPICE dialog to export all the pool variables to a single kernel
file.

¢ Added two new objective function modes, “RSS”: J =):}Zi L (J?), and “Sum of Squares”:

J= }:;Z 1 (Jl-z), where n; is the number of objective function variables specified by the user,
and J is the objective function sent to the optimizer.

Removed the old Subversion (SVN) version info from the input deck and command line help
display (Copernicus is no longer using SVN for version control).

Added a Python plotting option to the GUI for segment data output. This requires that
Python be installed and visible in the system path. When clicking this button, a Python
script is constructed to plot the data using Matplotlib, and then Python is called (note that
the plot window blocks the rest of the GUI until it is closed). The new Python mode allows
for panning and zooming which was not available before.

Now displaying the full unit names in the state parameterization menus.

Page #: 56 of 80

JSC Engineering, Technology and Science (JETS) Contract

JETS-JE23-17-AFGNC-DOC-0066 FINAL
Date: December 12, 2017 Page 23 of 34

Title: Copernicus Version 4.5

Updated the linear solver routine to use LAPACK DGESV() and DGELS() rather than comput-
ing the inverse explicitly [9]. This routine is used by the Newton, Broyden, and DIFFCORR
solution methods.

Updated the toolbar icons.

¢ Segments and plugins are now subtabs under the main window “Mission Attributes” sidebar.
Only the segments and plugins in the currently-selected group are shown in these fields.

¢ Added some more info to the PCK files that are created when creating a SPICE kernel in the
GUL

¢ Now saving real values with 17 digits of precision in the input deck and output files.

¢ Updates to ensure that the floating-point model compiler options are consistent for all plat-
forms (Windows, Linux, and Mac). There were some inconsistencies in previous releases.

¢ Renamed “Auto” in the SNOPT gradient dialog to “Default” which is more descriptive.

¢ Added import and export optimization variable menus to the GUIL. This feature now also
includes the scale factors (in addition to the values).

Separated all the text output tabs into individual dialogs.
¢ Added some additional error checking when exporting SPICE kernels.

¢ Added some new input deck examples.

Updated to the latest SPICELIB release (N66).

¢ Now allowing any available Copernicus frame to be used as a spherical harmonic gravity
frame (the user has to be aware of the frames appropriate to use for different bodies).

¢ Added the ability to change the default “printer friendly” 3D option via a COP_DEFAULT_
PRINTER_FRIENDLY kernel variable. This allows the user to specify if the 3D starmap should
be enabled by default when Copernicus starts up.

Updated the help menu with the new GitLab link.

¢ Made the segment state dialog resizable to be consistent with the others.

Increased the allowable string length for variable name and label fields.

Page #: 57 of 80

JSC Engineering, Technology and Science (JETS) Contract
JETS-JE23-17-AFGNC-DOC-0066 FINAL
Date: December 12, 2017 Page 24 of 34

Title: Copernicus Version 4.5

3 Bug Fixes
The following bug fixes are included in this release:

* Fixed a bug where the unit conversions were not being done for the v, component of the
geographic state parameterization (when the last three parameters were [vy, vy, v.]).

¢ Fixed an issue where a stale Copernicus sparsity pattern was causing an “invalid input” error
from SNOPT under some circumstances.

Fixed an SNOPT bug where it would crash if the sparsity pattern had all 0’s in a row.

Fixed a GUI issue where changing the solution method did not update the simple bound
columns in the plugin input variable grid.

¢ Copernicus now checks to make sure the user-specified inherit_node is valid in a plugin
config file for inherits and pushes (formerly it would silently ignore some and crash on
others).

¢ Fixed an issue where the absolute path to a SPICE kernel could be inserted into the input
deck when it does the filename conversions on Linux. Note that this did not cause any
problems, since Copernicus would normally fix it anyway.

¢ When changing the selected group in the Algorithms dialog, the selected segment and plugin
is now updated if necessary.

¢ Fixed an issue where the freeze/unfreeze menu label was not always right for a newly-opened
dialog.

¢ Fixed an issue where adding an OCT variable to the objective function would crash Coper-
nicus.

Fixed a glitch where the Mission summary file display was not updated in all cases.

¢ Fixed a bug where using the “scale norm of x vector” menu item could sometimes produce
a negative scale factor, which would be displayed in the GUI as “sx%xx",

¢ Fixed a bug where attempting to save an input deck that was read only would crash Coper-
nicus.

¢ Fixed a typo in the DIFFCORR dialog (changed “Maximum” to “Minimum”). See Figure 7.

e Fixed an issue where, in some situations, only a maximum of 999 segments were being
accounted for (for example, when plotting the trajectories).

¢ Fixed an issue where pushes to an initial segment state from a plugin may have produced an
incorrect frame transformation if either frame was a rotating frame.

Page #: 58 of 80

JSC Engineering, Technology and Science (JETS) Contract
JETS-JE23-17-AFGNC-DOC-0066 FINAL
Date: December 12, 2017 Page 25 of 34

Title: Copernicus Version 4.5

¢ Fixed an issue where clicking a checkbox in the Av to finite burn dialog would cause the
other fields to reset.

4 Python Interface

The Copernicus/Python interface (CopPy) is included in the release in the “python” directory.
Many updates have been made since the last release. They are described in the following sections.

4.1 Renumbering Inherits and Constraints

Previously, when using CopPy, if segments were inserted into or deleted from an input deck any
remaining segment-linked inheritances and constraints were left as is. The CopPy module now
increments/decrements the segment linkages appropriately to maintain linkages as they existed
before the modification, unless those linkages point to the segment that was deleted. Those linkages
remain as is. A second modification to the segment insertion software allows the user to copy
multiple segments as a block from one input deck to another. Any segment linkages internal to this
copied block are maintained and renumbered according to their location in the destination input
deck. Any segment linkages that point to segments external to the copied block can be reassigned
by the user. In this way, a block of segments can be hooked up to the destination input deck at the
time the segments are inserted (see Figure 13 for an example).

4.2 Input Deck Differencing

Because the Copernicus input decks are structured in segments, using a standard text diff can
sometimes obscure the actual differences. To address this, a capability was developed to evaluate
the differences in two input decks on a segment by segment basis. This capability uses the segment
name as the unique identifier and matches segments accordingly. The software evaluates whether
segments have been added or deleted and evaluates the specific line differences between matched
segments.

The input deck differencing capability was designed with a few applications in mind:

¢ Evaluating differences between input decks (and their plugins) in a way that is easier to
interpret than a basic text diff. To aid in this, a capability is included to convert a diff file to
an HTML file that gives the user a more visual sense of the differences.

¢ Enabling data-lean storage of alarge scan by saving one base input deck and a list of diff files
such that no data is lost. To this end, the diff file identifies deleted segments by name and
line numbers, repeats added segments in their entirety, and lists individual line differences
between matched segments.

Page #: 59 of 80

JSC Engineering, Technology and Science (JETS) Contract

Title: Copernicus Version 4.5

JETS-JE23-17-AFGNC-DOC-0066

FINAL

Date: December 12, 2017

Page 26 of 34

Ideck 1 Ideck 2
(Source) (Destination) Result
Segment 1 Segment | — Segment 1
Segment 2 Segment 2 — Segment 2
S 3 S 3 3 inherits from 2
egmen egmen
& S ARTE 4 inherits from 3
Segment 4 _~ _~Segment 4
Segment 5 // D
6 inherits from 5 (External) o //
Segment 6~ -
7 inherits from 6 (Internal) e
Segment 7

Figure 13: Appending Segments with CopPy. In this example, segments 6-7 from the source ideck
are appended to the destination ideck. Segment 6 in the source ideck contains an external linkage
to segment 5 (which the user maps to segment 2 in the destination ideck). The internal linkages
are automatically renumbered.

¢ Enabling the reconstruction of an input deck by applying a diff file to a base input deck. This
is the converse of the preceding application. If a diff file is generated to save storage space,
a full input deck must be reconstructed in order for Copernicus to be able to open it.

¢ Streamlining the modification of input decks for a scan by enabling the application of a diff
file to multiple input decks. This can be used for things like changing the optimizer, adding
trajectory segments (like an abort), changing the reference epoch, etc.

4.3 Multiprocessing

The solve() method in the copernicus_executable class was modified to allow a user to take
advantage of the multiple processor cores on their desktop machine or on a remote computing clus-
ter. This multiprocessing capability allows the user to provide a multiprocessing job administrator
of their choice (provided that it implements a submit_job() method).

4.4 Unit Tests

A suite of 1000 unit tests was added. These unit tests verify the expected operation of each of the
methods in the CopPy module and use the Python unit test framework. The full suite of 1000 tests
runs in less than 30 seconds and represents 95% code coverage by line as of this writing.

Page #: 60 of 80

JSC Engineering, Technology and Science (JETS) Contract

Title: Copernicus Version 4.5

JETS-JE23-17-AFGNC-DOC-0066

FINAL

Date: December 12, 2017

Page 27 of 34

4.5 Miscellaneous Changes

The following other changes have been made since the 4.4 release of CopPy:

¢ Updated check_solution() to also check the optimization variable bounds. Also, this
method can now return more information (by using the optional return_all argument).

¢ Added get_group () method.

¢ Added an optional timeout argument for solve() and propagate(). Also, run() now
returns the exit code and any exceptions raised from check_call.

¢ Added experimental support for the future JSON input deck format. Note that CopPy can
create and manipulate these files, but Copernicus can not yet open or save them. Also note
that the final format of this file may change somewhat from its current form.

¢ Some updates in support of plugins:

— When reading input decks, the plugin config structures (if present in external files) are
now also read and added to the structure.

— A save() is now required to update the plugin configs (and they are now always saved

when save() is called).

— The behavior of some of the plugin-related routines has changed. Also, it is no longer
allowed to use the config file names to get/set plugin config data.

— The plugin indices are now 1-based to be consistent with the segment numbering.

— Added a new append_plugin() method.

¢ Added some missing get/set methods for various segment variables.

¢ Added new set_seg_name() and set_seg_trajectory_color() methods.

¢ Added support for f99nml versions > v0.18.

¢ Added support for the new Copernicus command-line arguments (see Section 2.7).

¢ Added new group-manipulation methods: number_of_groups(), get_group_names() and
create_group() routines. Updated set_seg_group() so that now a segment can be re-

moved from all groups.

¢ Added a utility routine to convert a segment HDFS5 file to a CSV file (see Figure 3).

Page #: 61 of 80

JSC Engineering, Technology and Science (JETS) Contract

Title: Copernicus Version 4.5

JETS-JE23-17-AFGNC-DOC-0066

FINAL

Date: December 12, 2017

Page 28 of 34

4.6 Bug Fixes

The release includes the following bug fixes:

¢ Fixed bugs when using anglewrap

argument.

¢ Fixed abug in get_reference_epoch().

¢ Fixed abug in extract_iteration().

¢ Fixed some typos in various variable names and methods.

¢ Fixed an issue where some very long variable names were not being written properly to the

input deck.

5 Matlab Interface

The Copernicus/Matlab interface is now discontinued and will no longer be updated or distributed
with Copernicus. Users that require a scripting capability for Copernicus are encouraged to use the

Python interface (CopPy).

6 Developer Tools and Libraries

The following is a list of the various developer tools and libraries used to compile this version of

Copernicus:
Name Version
Microsoft Visual Studio 2013 Update 5
NET Framework 452
Intel Fortran Compiler 2017 Update 4
Intel Math Kernel Library 2017 Update 3
Winteracter 10.10i
OpenSceneGraph 3.5.4 (aae78b8)
OpenFrames Revision e650d0b
SPICELIB N0066
SNOPT 7.2-4
JSON-Fortran 6.1.0
Bspline-Fortran 5.3.0
SLSQP 1.0.0
HDF5 1.8.18

Page #: 62 of 80

JSC Engineering, Technology and Science (JETS) Contract
JETS-JE23-17-AFGNC-DOC-0066 FINAL
Date: December 12, 2017 Page 29 of 34

Title: Copernicus Version 4.5

7 Future Changes

In the next major release of Copernicus, it is planned to switch to a new JSON format for the input
deck file. This change will enable new features going forward, and will also eliminate the separate
plugin config files (they will be merged with the input deck). A backward-compatibility option
will be provided so that existing . ideck files will be able to be opened and/or converted to the new
format.

Another major change in the works is a complete rewrite of the Copernicus GUI using PyQt?. This
will allow for a much more flexible and modern GUI and will be cross-platform for Windows,
Linux, and Mac.

8 Platforms and System Requirements

Copernicus is a 64 bit application, and is available on three platforms (Windows, Linux, and Mac).
To use the 3D graphics (on Windows and Mac), a graphics card that supports OpenGL. and Open-
SceneGraph [10] is required. Some users have reported that updates to their graphics card drivers
were necessary to enable proper functioning of the 3D graphics (these should be downloaded
from the graphics card manufacturer’s website). The graphics card tested by the developers is an
NVIDIA Quadro K5000, with driver version 341.21 (WHQL).

Platform-specific details are described in the following sections:

8.1 Windows

The Windows build of Copernicus is developed and tested on 64 bit Windows 7 and Windows 10.
Microsoft’s .NET Framework 4.5 (with the latest Service Pack) must be installed for Copernicus
to work properly. The Windows build of Copernicus has also been known to work on a Mac
using Apple Boot Camp, Parallels Desktop, or VMware to emulate Windows 7. However, this
configuration is not tested by the developers and may also have issues.

8.2 Linux

The Linux command line build of Copernicus was built and tested on a 64 bit CentOS 6 system. It
does not run on CentOS 5 since that system uses an earlier version of the GNU C Library (GLIBC)
that is not compatible with the latest Intel Math Kernel shared library used by Copernicus (see
Section 6 for the version numbers of the tools used to compile Copernicus).

The Linux build of Copernicus (the “cop” file in the bin_v4-5_11inux folder) does not have a GUI,
and can only be used in command-line mode. Otherwise, it has the same features as the Windows

Zhttps: //www. riverbankcomputing.com/sof tware/pyqt/intro

Page #: 63 of 80

JSC Engineering, Technology and Science (JETS) Contract
JETS-JE23-17-AFGNC-DOC-0066 FINAL
Date: December 12, 2017 Page 30 of 34

Title: Copernicus Version 4.5

build. In order to run on Linux, Copernicus requires various shared libraries from the Intel Fortran
compiler to be installed [11]. These are located in the bin_v4-5_linux folder. To run Copernicus
on Linux, this directory must be added to the system’s shared library path. For example, by adding
the following to your .bash_profile (or equivalent) login file:

export LD_LIBRARY_PATH="/path/to/Copernicus/bin_v4-5_linux:$LD_LIBRARY_PATH"

Note that Copernicus may experience problems running on a Linux system where the sysctl flag
kernel.exec-shield is set to 2 or 3. If so, setting this flag to 0 or 1 may be necessary.

8.3 Mac

The 4.5 release includes the first experimental Mac build of Copernicus (which includes a full
GUI). A screenshot is shown in Figure 14. The Mac build is an X11/OpenMotif® application
that has the same capabilities as the Windows version (both GUI and command-line), with a few
exceptions. To run the program, it is necessary that XQuartz 2.7.11* be installed on the system.
It is also necessary to set environment variables to enable the application to locate the various
runtime libraries present in the bin_v4-5_mac directory that Copernicus requires (e.g., the Intel,
OpenFrames, and OpenSceneGraph . dylib files). For example, by adding the following to your
.bashrc (or equivalent) login file:

export COP_BIN=/path/to/Copernicus/bin_v4-5_mac
export DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH: $COP_BIN
export DYLD_BIND_AT_LAUNCH

To launch the Copernicus GUI, simply cd to the bin_v4-5_mac directory from a Terminal and type
./cop. The normal command-line flags also work, as on Windows and Linux. The Mac build of
Copernicus is developed and tested on a Mid 2015 MacBook Pro running OS X 10.11.4. No other
configurations have been tested.

It should be noted that support for X11/OpenMotif on the Mac is not great, and some GUI glitches
will be encountered. The command-line version should work well, but the GUI will be much
slower to refresh/redraw than the Windows version. There is currently nothing known that can be
done about this (see Section 7 for the future direction of the Copernicus GUI). Any problems
encountered when running in command-line mode should be reported to the developers. The
following features are not yet available on the Mac:

¢ The “No Graphics™ and “2D Graphics™ tabs.
¢ HDF5 data export.

¢ Support for shared library plugins (it is possible that this works, but has not been tested).

3http: //www.winteracter. com/macmotif . htm
*https: //www.xquartz.org/

Page #: 64 of 80

JSC Engineering, Technology and Science (JETS) Contract

ETS-JE23-17-AFGNC-DOC-)
Title: Copernicus Version 4.5 N i el

FINAL

Date: December 12, 2017

Page 31 of 34

& XQuartz Applications Edit Window Help

e \ Optimization Variables Copernicus - Testing_OCT.FB_Earth_Mars_Transfer SNOPT.ideck
Select Optimization Varlabie Fle Tk Actons Ssnits Fugns Wndovs Hep

YeEED 226
e — | N

Optimality conditions satisficd

@ < ma Thu308PM Q

Plugin: v ‘
[mesetvien][crapics opions..| View frame [vis W Time [Way 03, 2005 13:40.11.89 08 !
Plugins : v
51 Transter
Otner Parameters
oPert Otax Scale
T000E08 [5.000E+00 |1 0ooE+0z || | i
sice
Algortznms

M

state
Propagation
Force Mocel

10V ancuvers
e on

= Seament Functiors \
‘

§ T

Figure 14: Copernicus on a Mac. The Mac build is an X11/OpenMotif application that runs in

XQuartz. It contains almost all the same features as the Windows GUI.

Page #: 65 of 80

JSC Engineering, Technology and Science (JETS) Contract
JETS-JE23-17-AFGNC-DOC-0066 FINAL
Date: December 12, 2017 Page 32 of 34

Title: Copernicus Version 4.5

9 Version Control and Bug Reporting

Version control, issue tracking and bug reporting for Copernicus is hosted at JSC on the following
GitLab server:

https://gitlab-fsl.jsc.nasa.gov/copernicus

Note that an AGDL. account is required to access this system, which is currently only avail-
able to NASA personnel. The Copernicus 4.5 release corresponds to revision in the
copernicus-devel git repository. Other repositories available on this site include various plugin
examples and CopPy. The CopPy repository is public on the system and users with access are
encouraged to clone the repository and submit merge requests with any changes or updates they
want to contribute. The version of the Python interface released with Copernicus 4.5 corresponds

to revision | {67b00b | in the CopPy repository.

For users without access to the JSC network, bug reports for Copernicus and CopPy may be sent
to Jerry Condon at gerald.l.condon@nasa.gov (NASA JSC).

10 Acknowledgments

The author wishes to acknowledge Jerry Condon, Roland Martinez, Dave Dannemiller, and Dan
Murri for their support of this work. Development for this update to Copernicus was funded by
NASA JSC under contracts NNJ13HAO1C and NNJ12HB20C, and included support from the
NASA Engineering & Safety Center (NESC).

Acronym List

AGDL Advanced Guidance, Navigation and Control Development L.aboratory
CSv Comma Separated Values

DLL Dynamic-Link Library

GLIBC GNU C Library

GUI Graphical User Interface

HDF5 Hierarchical Data Format

HTML Hypertext Markup Language

JSC Johnson Space Center

JSON JavaScript Object Notation

Page #: 66 of 80

JSC Engineering, Technology and Science (JETS) Contract
Title: Copernicus Version 4.5 JETS-JE23-17-AFGNC-DOC-0066 FINAL
Date: December 12, 2017 Page 33 of 34
NASA National Aeronautics and Space Administration
NESC NASA Engineering & Safety Center
PCK Planetary Constants Kernel
SPICE Spacecraft, Planet, Instruments, C-matrix and Events
SPK Spacecraft and Planet Kernel
SVN Subversion
References

[1] C. Ocampo, “An Architecture for a Generalized Trajectory Design and Optimization Sys-
tem,” in Proceedings of the Conference: Libration Point Orbits and Applications (G. Gémez,
M. W. Lo, and J. J. Masdemont, eds.), pp. 529-572, World Scientific Publishing Company,
June 2003. Aiguablava, Spain.

[2] The HDF Group, “Hierarchical Data Format,” 1997-2017. http://www.hdfgroup.org/
HDF5/.

[3] NAIF, “GFOCLT.” https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/FORTRAN/
spicelib/gfoclt.html.

[4] NAIF, “STR2ET.” https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/FORTRAN/
spicelib/str2et.html.

[5] NAIF, “TIMOUT” https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/FORTRAN/
spicelib/timout.html.

[6] C. G. Broyden, “A class of methods for solving nonlinear simultaneous equations,” Mathe-
matics of Computation, vol. 19, no. 92, pp. 577-593, 1965.

[71 NAIF, “Reference Frames.” https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/
FORTRAN/req/frames.html.

[8] M. Ligas, “Cartesian to geodetic coordinates conversion on a triaxial ellipsoid,” Journal of
Geodesy, vol. 86, pp. 249-256, Apr 2012.

[9] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide. Philadelphia,
PA: Society for Industrial and Applied Mathematics, third ed., 1999.

[10] “OpenSceneGraph.” http://www.openscenegraph.org/.

Page #: 67 of 80

JSC Engineering, Technology and Science (JETS) Contract

Title: Copernicus Version 4.5

JETS-JE23-17-AFGNC-DOC-0066

FINAL

Date: December 12, 2017

Page 34 of 34

[11] “Redistributable Libraries for Intel C++ and Fortran 2017 Compilers for Linux,”
May 2017. https://software.intel.com/en-us/articles/redistributables-for-

intel-parallel-studio-xe-2017-composer-edition-for-linux.

Page #: 68 of 80

Appendix B. Copernicus Release 4.6.0

Page #: 69 of 80

)

JETS

JACOBS .)
JSC Engineering, Technology and Science (JETS) Contract
Engineering Department

Technical Brief
Date: April 30, 2018
Document Number: JETS-JE23-18-AFGNC-DOC-0009
Subject: Copernicus Version 4.6

Synopsis:

This memo documents the 4.6 release of the Copernicus spacecraft trajectory design and opti-
mization system. This is an update to the 4.5 release, with several bug fixes, minor modifications,
and the addition of a few new features (such as expanded reference frame options and a new JSON
kernel file format). For more details, please consult the Copernicus User Guide.

Prepared by:

Jacob Williams Date
Senior Astrodynamics Engincer

GN&C and Aerosciences Section — JE23

JETS Engineering Department

Approved by: Approved by:

Robert G. Reitz Date William H. Schoolmeyer Date
Section Manager - JE23 Division Technical Manager (EG)

GN&C and Aerosciences Section — JE23 JETS Engineering Department

JETS Engineering Department

Page #: 70 of 80

JSC Engineering, Technology and Science (JETS) Contract

JETS-JE23-18-AFGNC-DOC-0009

FINAL

Title: Copernicus Version 4.6

Date: April 30, 2018

Page 2 of 11

Contents

List of Figures

List of Tables

1 Introduction

2 Bug Fixes

3 New Feature: JSON Kernel Files
4 New Features: Reference Frames
5 Miscellaneous Changes

6 Addendum to the 4.5 Release Memo
7 Developer Tools and Libraries

8 Acknowledgments

Acronym List

References

11

Page #: 71 0f 80

JSC Engineering, Technology and Science (JETS) Contract
. . . JETS-JE23-18-AFGNC-DOC-0009 FINAL
Title: Copernicus Version 4.6 Date: April 30, 2018 Page 3 of 11

List of Figures

1 JSONKernel Example 000 i 5

2 Frame Plugin Interfaces 7
List of Tables

1 Developer Tools & Libraries 10

Page #: 72 of 80

JSC Engineering, Technology and Science (JETS) Contract
JETS-JE23-18-AFGNC-DOC-0009 FINAL
Date: April 30, 2018 Page 4 of 11

Title: Copernicus Version 4.6

1 Introduction

Copernicus [1] is a spacecraft trajectory design and optimization software application developed
at the NASA Johnson Space Center (JSC). The latest Copernicus release (version 4.6) is an update
to version 4.5 (which was released in January 2018). JSC makes Copernicus available free of
charge to other NASA centers, government contractors, and universities, under the terms of a US
government purpose license. Organizations interested in obtaining Copernicus should contact:

Technology Transfer and Commercialization Office

NASA Johnson Space Center

2101 NASA Parkway (Mail Code: AOS)

Houston, Texas 77058

Phone: (281) 483-3809

E-mail: jsc-techtran@mail.nasa.gov

URL: https://software.nasa.gov/software/MSC-25863-1

2 Bug Fixes

The following bug fixes are included in this release:

¢ A bug in the geographic state parameterization that had been introduced in the 4.5 release has
been fixed. This bug caused incorrect state transformations when the first three parameters
were [r, RA_P, DEC_P] (magnitude, right ascension, and declination of the position vector).

¢ Fixed a long-standing issue in the 3D graphics on Windows which would sometimes cause
the program to become unresponsive. This would sometimes occur for missions with many
segments or with specific graphics cards when the system was under heavy load.

¢ Fixed a bug where Copernicus could crash if a dialog was opened immediately after the
program launched, but before the 3D graphics had finished initializing.

¢ Fixed various bugs in the computation of angular inequality constraints among segments.
Note that the sign of angular constraint violations is now the opposite of before, in order to
be consistent with non-angular constraints. Also updated angular constraint computations
for the Differential Evolution (DE) solution method to account for angle wrapping.

Segment SPK data file exporting now works in the Mac and Linux builds.
¢ Fixed an issue that caused SPK exporting to fail for segments with long names.

¢ A minor issue was corrected where the last row of the iterations file after calling the solu-
tion method was not being properly finished (it only had, for example, "SNOPTA" | "EXITS
WITH","1", and not the other empty columns). This was not a problem in Copernicus, but
may have caused problems if the user was parsing this file with other tools.

Page #: 73 of 80

JSC Engineering, Technology and Science (JETS) Contract
JETS-JE23-18-AFGNC-DOC-0009 FINAL
Date: April 30, 2018 Page 5 of 11

Title: Copernicus Version 4.6

¢ Fixed an issue in the SLSQP solution method that could cause the program to crash under
some circumstances if the number of equality constraints was greater than the number of
optimization variables.

« Fixed an issue where the 4.5 release was not properly identifying the line number if an invalid
line was encountered in an input deck.

 Fixed an issue in the SPICE Pool Variables popup dialog where string variables were being
truncated to 64 characters (SPICE allows up to 80 characters for string variables).

¢ Fixed a bug where the VF13AD solution file was not being generated.

3 New Feature: JSON Kernel Files

"COP_GGM@3C_GM": 398600.4356, // Change the u for GGM@3C gravity model
"BODY399_TEXTUREMAP": "Earth_with_clouds.png", // Earth texturemap
"BODY399_BODYFIXEDGEOGRAPHIC": false, // Use input frame for Earth geographic
"+COP_PLUGIN_FRAMES": ["sofa/IAU_76_8@. json",

"sofa/IAU_@6_00A.json"] // Custom frame plugins

Figure 1: JSON Kernel Example. This example shows how to add variables to the SPICE pool
using a JSON file.

A new feature has been added to allow the option of specifying SPICE pool variables in JSON
files. This is an alternative to the native text PCK file format supported by SPICE. The file format
is simply a list of the pool variables and their values. Scalars and 1D arrays of reals, integers,
character strings, and booleans are supported. An example is shown in Figure 1.

JSON kernels are loaded like normal kernels in the SPICE dialog, and Copernicus allows both
types to be used in the same mission. The format is a standard JSON file [2], with the ad-
dition that comments are also supported (using the // syntax). The new format also supports
adding new elements to an existing pool variable (analogous to the “+=" syntax in PCK files [3]).
This is done by adding a “+” character to the beginning of the variable name (as shown with the
COP_PLUGIN_FRAMES variable in Figure 1).

One advantage of Copernicus JSON kernels is that they are cross-platform (normal SPICE PCK
files are not, thus requiring separate Windows and Mac/Linux version). Another advantage is
that they can be easily created, parsed, and manipulated by other tools. In a future release of
Copernicus, the default Copernicus_Variables kernel may be converted to the JSON format.

Page #: 74 of 80

JSC Engineering, Technology and Science (JETS) Contract
JETS-JE23-18-AFGNC-DOC-0009 FINAL
Date: April 30, 2018 Page 6 of 11

Title: Copernicus Version 4.6

4 New Features: Reference Frames
Various updates were made in this release related to reference frames:

¢ Frame plugins can now use the plugin-support library to call SPICE routines and send
messages to Copernicus (in the same why that normal DLL plugins can do this).

¢ Added two new optional routines that can be present in DLL frame plugins:

— initialize() — called when the plugin is loaded.

— destroy() — called when the plugin is unloaded.

The interfaces to the frame plugin routines were changed to accommodate these new features
(note that this does break backward compatibility for frame plugins created for use with the
4.5 release). The interfaces to all the frame plugin routines are shown in Figure 2. Note that
all routines now have an integer ID code input, which corresponds to the unique ID code
for the frame. This means that it is now possible for a single frame plugin DLL to manage
multiple frames (it is up to the plugin to properly handle this, for example, by returning the
proper transformation matrices based on the input ID code).

¢ Frame plugins can now be assigned to the BODY_FIXED frame associated with a celestial
body.

¢ Added anew option to specify whether the geographic state parameterization uses the body’s
BODY_FIXED frame for geodetic elements or the input frame. By default, the BODY_FIXED
frame is used for all bodies (this is the original behavior in Copernicus). To disable the
default behavior and instead use the input frame for a certain body, you can now use a kernel
variable such as (for the Earth):

BODY399_BODYFIXEDGEOGRAPHIC = (@)

If using this feature, it is up to the user to make sure that a frame is appropriate for use as
a body-fixed frame for the specified body (Copernicus will not complain if an inappropriate
frame is specified).

¢ Environment variables are now allowed in the specification of the location of frame plugin
config files.

¢ Minor change to allow for more frames to be used in different circumstances. Any inertial
SPICE frame can now be used for the mission’s force base frame. Any non-inertial, non-
2body frame can now be used as a gravity model or atmosphere frame. It is up to the user to
choose the appropriate frames to use depending on the application.

¢ Added the TAU_BENNU frame to the set of IAU body-fixed frames recognized by Copernicus.
This frame was added in the SPICELIB N66 release [4].

Page #: 75 of 80

JSC Engineering, Technology and Science (JETS) Contract

. . . JETS-JE23-18-AFGNC-DOC-0009 FINAL
Title: Copernicus Version 4.6 -
Date: April 30, 2018 Page 7 of 11
1| subroutine initialize(id,config,config_path,plugin_path, istat)
2| !DEC$ ATTRIBUTES DEFAULT, DLLEXPORT, ALIAS:"initialize” :: initialize
3| integer ,intent(in) :: id !! frame ID code
4| type(json_file),intent(inout) :: config !! JSON data for config file
5| character (len=#), intent(in) :: config_path !! plugin config file path
¢| character (len=%), intent(in) :: plugin_path !! plugin DLL file path
7| integer ,intent(out) :: istat !! status code (@=no errors)
gl end subroutine initialize
(a) Subroutine for plugin frame initialization (optional).
1| subroutine j200o_to_frame(id, et, rot, istat, rotd, rotdd)
2| !DEC$ ATTRIBUTES DEFAULT, DLLEXPORT, ALIAS:"j200@_to_frame” :: j2000_to_frame
3| integer,intent(in) :: id !! frame ID code
4| real(wp),intent(in) :: et !! ephemeris time (TDB sec)
5| real(wp), intent(out),dimension(3,3) :: rot !! R matrix
6| integer ,intent(out) :: istat !! status code (@=no errors)
7| real(wp),intent (out),dimension(3,3),optional :: rotd !! R matrix
3{ real(wp), intent(out) ,dimension(3,3),optional :: rotdd !! R matrix
9| end subroutine j200e_to_frame_interface
(b) Subroutine to transform from J20@9 to the user-defined frame.
1| subroutine frame_to_j2eee(id, et, rot, istat, rotd, rotdd)
2| !DEC$ ATTRIBUTES DEFAULT, DLLEXPORT, ALIAS:"frame_to_j20ee" :: frame_to_j2000
3| integer ,intent(in) :: id !! frame ID code
4| real(wp), intent(in) :: et !! ephemeris time (TDB sec)
s|real(wp),intent(out),dimension(3,3) :: rot !! R matrix
gl integer ,intent(out) :: istat !! status code (@=no errors)
7| real(wp),intent(out),dimension(3,3),optional :: rotd !! R matrix
3{ real(wp), intent(out) ,dimension(3,3),optional :: rotdd !! R matrix
9| end subroutine frame_to_j2000_interface
(c¢) Subroutine to transform from the user-defined frame to J2000.
1| subroutine get_status_message(id, istat,msg)
2| IDEC$ ATTRIBUTES DEFAULT, DLLEXPORT, ALIAS:"get_status_message” :: get_status_message
3| integer ,intent(in) :: id !! frame ID code
4| integer ,intent(in) :: istat !! a status code
5| character (len=:),allocatable, intent(out) :: msg !! the error message
¢l end subroutine get_status_message_interface
(d) Subroutine to retrieve an error message string for the istat error code returned by the other routines.
1| subroutine destroy(id, istat)
2| !DEC$ ATTRIBUTES DEFAULT, DLLEXPORT, ALIAS:"destroy” :: destroy
3| integer ,intent(in) :: id !! frame ID code
4| integer ,intent(out) :: istat !! status code (@=no errors)
5/ end subroutine destroy

(e) Subroutine for frame plugin destruction (optional).

Figure 2: Frame Plugin Subroutine Interfaces. A frame plugin must include the j2000_to_
frame() and frame_to_j2@0@() subroutines. The others are optional. The !DEC$ compiler direc-
tives are necessary on Windows to indicate that the routines are exported by the DLL.

NESC Document #: NESC-RP-15-01097 Page #: 76 of 80

JSC Engineering, Technology and Science (JETS) Contract

JETS-JE23-18-AFGNC-DOC-0009 FINAL
Date: April 30, 2018 Page § of 11

Title: Copernicus Version 4.6

5 Miscellaneous Changes

¢ Added the ability to specify the gravitational parameter ({) for spherical harmonic gravity
models in a SPICE pool variable. This will overwrite the one in the gravity model CSV file.
For example, changing the g for the GGMO3C model could be done in a text PCK kernel by
adding the line:

COP_GGM@3C_GM = (398600.4356)

Note that, for the Earth, the g in the gravity model CSV file is consistent with the TDT time
scale. Since Copernicus uses the TDB time scale for integration, the TDB g above should
be used for total consistency [5].

¢ Added the following additional SPICE routines to the plugin interface (i.e., the set of SPICE
routines that can be called from within a DLL plugin): et21st(), str2et(), timout(),
unitim(), deltet(), utc2et(), et2utc(), and ttrans(). See the SPICE documentation
for details on these routines [6].

¢ A change was made to the escaping logic for “/” characters in JSON files. The previous
release would always escape these (producing “\/”), which was not really desirable in unit
strings or parser equations. Since it is optional for this character to be escaped in JSON [2],
Copernicus will no longer escape it.

¢ The segment name can now be obtained from an HDF5 segment output file. This is stored
in the “name” dataset in a new “Attributes” group. In the future more information may be
added to the “Attributes” group.

¢ When generating the segment time history output files, all existing output files associated
with the input deck (.CSV, .json, and .h5) are first deleted before the new files are gener-
ated. Formerly, only the .CSV files were deleted.

Updated the logic for locating a plugin DLL or script file. The input path specified in the
plugin config file (which can contain environment variables using the “${DIR}” syntax) is
now interpreted in the following three ways (in order of precedence):

— Use the input path as an absolute path or path relative to the Copernicus executable.

— Strip away the input path directories, and append only the file name (DLL or script)
to the input deck directory. This allows for putting the plugin in the same directory as
the input deck (similar to the fallback behavior for locating SPICE kernels). This was
always the fallback behavior for DLL plugins, and is now the same for script plugins.

— Append the input path in its entirety to the input deck directory. This option is new to
this release, and allows for the specification of a plugin in a subdirectory relative to the
input deck. For example, if the input deck is being stored in a git repository, the plugin
could be imported from a git submodule, without having to specify the absolute path
or use an environment variable to locate it.

Page #: 77 of 80

JSC Engineering, Technology and Science (JETS) Contract
JETS-JE23-18-AFGNC-DOC-0009 FINAL
Date: April 30, 2018 Page 9 of 11

Title: Copernicus Version 4.6

¢ Added a new command line argument (-onlypropselectedgroup) which disables propa-
gation for segments and plugins not in the currently-selected group.

¢ The -nopropfrozen command line argument now also applies to plugins (formerly, it only
applied to segments).

6 Addendum to the 4.5 Release Memo

The build date in the “About Copernicus” window for the 4.5 release was not correct (the year
should have been 2018, not 2017). The actual Copernicus 4.5 release was revision in
the JSC copernicus-devel git repository. The following additional changes were also included
in the 4.5 release but were not mentioned in the release memo [7]:

« Fixed a bug where inherit/push operations for SOC plugin variables did not work properly.

¢ The PCK kernels Copernicus_Variables. tpc and Copernicus_Variables. tpc.pc were
modified so that the starmap database is used by default rather than the starmap image file.
See the header in that file for details. This applies when the “Use Printer-Friendly Colors”
option is not checked in the 3D graphics options dialog.

7 Developer Tools and Libraries

Table 1 shows a list of the various developer tools and libraries used to compile this release of
Copernicus.

8 Acknowledgments

The author wishes to acknowledge Jerry Condon, Dan Murri, Ravi Mathur, and Randy Eckman
for their support and contributions to this work. Development for this update to Copernicus was
funded by NASA JSC under contract NNJ13HAO1C, and also included support from the NASA
Engineering & Safety Center (NESC).

Acronym List

CSvV Comma Separated Values

DE Differential Evolution

Page #: 78 of 80

JSC Engineering, Technology and Science (JETS) Contract

Title: Copernicus Version 4.6

JETS-JE23-18-AFGNC-DOC-0009

FINAL

Date: April 30, 2018

Page 10 of 11

DLL
HDF5
IAU
JSC
JSON
NASA
NESC
PCK
SPICE
SPK
TDB
TDT

Table 1: Developer Tools & Libraries

Name Version
Microsoft Visual Studio 2013 Update 5
NET Framework 452

Intel Fortran Compiler 2017 Update 4
Intel Math Kernel Library 2017 Update 3
Winteracter 10.10i

XQuartz 2.7.11

Open Motif 2.3.6 patched
OpenSceneGraph 3.5.4 (aae78b8)
OpenFrames Revision e650d0b
SPICELIB NO066

SNOPT 7.2-4
JSON-Fortran 6.3.0
Bspline-Fortran 5.3.0

SLSQP 1.0.2

HDF5 1.8.18

Dynamic-Link Library

Hierarchical Data Format

International Astronomical Union

Johnson Space Center

JavaScript Object Notation

National Aeronautics and Space Administration
NASA Engineering & Safety Center

Planetary Constants Kernel

Spacecraft, Planet, Instruments, C-matrix and Events
Spacecraft and Planet Kernel

Barycentric Dynamical Time

Terrestrial Dynamical Time

Page #: 79 of 80

JSC Engineering, Technology and Science (JETS) Contract

Title: Copernicus Version 4.6

JETS-JE23-18-AFGNC-DOC-0009 FINAL

Date: April 30, 2018 Page 11 of 11

References

(1]

(2]
[3]

[4]

(5]

(6]

(7]

C. Ocampo, “An Architecture for a Generalized Trajectory Design and Optimization System,”
in Proceedings of the Conference: Libration Point Orbits and Applications (G. Gémez, M. W.
Lo, and J. J. Masdemont, eds.), pp. 529-572, World Scientific Publishing Company, June 2003.
Aiguablava, Spain.

“JSON Website.” http://www. json.org/.

NAIF, “SPICE Kernel Pool Required Reading”” https://naif.jpl.nasa.gov/pub/naif/
toolkit_docs/FORTRAN/req/kernel.html.

NAIF, “What’s New in SPICE.” https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/
FORTRAN/info/whatsnew.html.

D. D. McCarthy and G. Petit, eds., International Earth Rotation and Reference Systems Ser-
vice (IERS) Conventions (2003), IERS Technical Note No. 32. Frankfurt am Main: Verlag
des Bundesamts fiir Kartographie und Geodisie, 2004. https://www.iers.org/IERS/EN/
Publications/TechnicalNotes/tn32.html.

NAIF, “Index of SPICELIB Functions.” https://naif. jpl.nasa.gov/pub/naif/toolkit_
docs/FORTRAN/spicelib/index.html.

J. Williams, Copernicus Version 4.5. JSC Engineering, Technology and Science (JETS) Con-
tract, NASA Johnson Space Center, Dec. 2017. JETS-JE23-17-AFGNC-DOC-0066.

Page #: 80 of 80

REPORT DOCUMENTATION PAGE o Ao

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) | 2. REPORT TYPE 3. DATES COVERED (From - To)
01/17/2019 Technical Memorandum
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Improvements to the Copernicus Trajectory Design and Optimization System

for Complex Space Trajectories 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Murri, Daniel G.; Condon, Gerald L.; Williams, Jacob; Kamath, Anubhav H.;
Eckman, Randy A.; Mathur, Ravishankar

5e. TASK NUMBER

5f. WORK UNIT NUMBER
869021.05.05.02.15

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
NASA Langley Research Center REPORT NUMBER

Hampton, VA 23681-2199 L-20994 NESC-RP-15-01097

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
National Aeronautics and Space Administration NASA

Washington, DC 20546-0001

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

NASA/TM-2019-220247

12. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 16 Space Transportation and Safety
Availability: NASA STI Program (757) 864-9658

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The purpose of this assessment was to develop updates and new features for the NASA Copernicus Spacecraft Trajectory
Design and Optimization analysis tool (version 5.0) for application to NASA programs and projects. This report details
significant upgrades that were made to Copernicus in support of the NESC assessment. These upgrades represent major
new capabilities that have been added to the tool for support of a variety of NASA projects and missions.

15. SUBJECT TERMS
Copernicus, Trajectories; Space Launch System; Graphical User Interface; Python Interface to Qt

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF |18. NUMBER|19a. NAME OF RESPONSIBLE PERSON
ABSTRACT OF . ,
a. REPORT | b. ABSTRACT | c. THIS PAGE paces | STI Help Desk (email: help@sti.nasa.gov)

19b. TELEPHONE NUMBER (Include area code)
U U U uu 85 (443) 757-5802

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

