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Reducing the environmental impact of aviation is a primary goal of NASA aeronautics 

research. One approach to achieve this goal is to build lighter weight aircraft, which presents 

complex challenges due to a corresponding increase in structural flexibility. Wing flexibility 

can adversely affect aircraft performance from the perspective of aerodynamic efficiency and 

safety. Knowledge of the wing position during flight can aid active control methods designed 

to mitigate problems due to increased wing flexibility. Current approaches to measuring wing 

deflection, including strain measurement devices, accelerometers, or GPS solutions, and new 

technologies such as fiber optic strain sensors, have limitations for their practical application 

to flexible aircraft control. Hence, it was proposed to use a biomimetic optical sensor based on 

the common housefly’s vision system to track wing deflection in real-time. This fly eye sensor 

has several advantages over conventional sensors used for this application, including light 

weight, low power requirements, fast computation, and a small form factor. This paper 

reports on the fly eye sensor development and its application to real-time wing deflection 

measurement. 

I. Introduction 

n an effort to reduce the environmental impact of aviation, lighter weight aircraft configurations are being 

considered [1]. One challenge of light weight aircraft wings is increased flexibility that can adversely affect handling 

qualities and safety. Approaches using active control to mitigate problems associated with flexible wings have been 

proposed [2]-[6]. Knowledge of aircraft wing position during flight can provide significant advantages to the 

effectiveness of these approaches. Current approaches to measuring wing deflection, including strain measurement 

devices, accelerometers, or GPS solutions, and new technologies such as fiber optic strain sensors, have limitations 

for their practical application to flexible aircraft control. For instance, strain gauge measurement systems are quite 

heavy and need frequent recalibration, reducing their suitability for use in wing position sensing. While fiber optic 

based strain sensors are showing promise, some issues related to calibrating measured strain with wing twist remain. 

Traditional machine vision systems using charge coupled device (CCD) or complementary metal oxide semiconductor 

(CMOS) arrays have several disadvantages for applications requiring high sensitivity to motion and high speed 

extraction of certain image features such as the object edges of a target, including the blurring of objects moving at 

high speed, and the high computation and data throughput requirements for edge detection [7]-[8]. A machine vision 

system that can perform high speed target tracking in near real-time with low power requirements is desirable for wing 

deflection tracking. 

An optical sensor based on the physiological aspects of the eye (and vision-related neural layers) of the common 

housefly (Musca domestica) has been developed by researchers at the University of Wyoming [9]-[16] and NASA 

Ames Research Center. A biomimetic (also known as biologically inspired) engineering approach was used to extract 

salient features of the fly’s visual system for use in the optical sensor. The intent of the research is not to completely 

reproduce the ability, appearance, or function of the fly’s vision system. Rather, select features that are desirable in 

image processing are reproduced, including high functionality in low-light and low-contrast environments, sensitivity 

to motion, compact size, and low power and computation requirements. 
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There is a large body of research on the fly’s visual 

system (see fig. 1) that was leveraged to develop the fly 

eye sensor described here [16]-[20]. Laboratory tests 

were performed on flies at the University of Wyoming to 

characterize the arrangement and interaction of light 

sensitive cells (ommatidia) in the fly’s compound eye 

[16]. The fly uses a combination of quasi-Gaussian 

overlapping photoreceptor responses and neural 

superposition to achieve what has been described in the 

literature as “hyperacuity,” or the ability to detect image 

features, such as object motion, to a much higher degree 

than just the photoreceptor density would imply. See fig. 

2 for an image depicting the overlapping Gaussian 

response similar to that exhibited by the fly’s vision 

sysem. The overlapping Gaussian response fields-of-

view (FoVs) allow for very precise and very fine 

measurements of position, direction, and speed. 

Figure 3 shows a simplified diagram to illustrate the 

Gaussian overlapping photoreceptor response and neural 

superposition that both contribute to such desirable 

sensor capabilities. In this figure, the seven shaded 

photoreceptors from seven physically distributed 

ommatidia shown in (a) all view the same point at 

infinity. The overlapping visual field of the three receptors depicted in (b) is shown as (c). All seven visual fields (as 

half power radii) are shown perpendicular to the optical axis in (d). Signals from the physically distributed but optically 

coaligned photoreceptors combine in the neural layer and together are called a “cartridge.” While the fly has eight 

photoreceptors in each ommatidium, receptors R7 and R8 are “stacked” and share a single optical axis. Note that the 

Gaussian overlap for the artificial sensor comes from the front-end optical design, and the neural superposition is 

accomplished by how the signals are subsequently combined. 

Since the sensor excels in detection of even minute motion, a feasibility study using the sensor for detailed target 

tracking was proposed. The purpose is to track a known target pattern at relatively short range, and resolve the position 

 
Fig. 1. Scanning electron microscope image of 

Musca domestica with depiction of associated first 

neural layer neural superimposed showing neural 

superposition. Image courtesy of M. Wilcox. 

 
Fig. 2. Depiction of overlapping Gaussian response 

similar to that exhibited by compound eye of 

common house fly. 

 
Fig. 3. Simplified diagram showing Gaussian 

overlapping photoreceptor response and neural 

superposition of fly eye visual system; each 

hexagonal shape in (a) delineates the cross section 

of structure   called an ommatidium. 
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and velocity of the pattern relative to a neutral position. One application is the precise measurement of wing deflection 

in a fixed wing aircraft. This optical approach allows for a faster, more efficient approach than alternative methods 

(such as accelerometers or strain gages within the target object). This method does have drawbacks however, such as 

its reliance on a clean line-of-sight to the target. 

II. Sensor design and construction 

A. Sensor subsystems 

This section describes the function and composition of each subsystem within the fly eye sensor as designed by Dean 

[12], which includes lessons learned from several years of development by other researchers [9]-[16]. See fig. 4 for a 

block diagram of the functionality of one fiber optic channel of the sensor from input to output. The version of the 

sensor described here uses seven fiber-optically fed IFD91 photodarlington detectors [21]. These semiconductive 

devices output a current proportional to the number of photons impinging on the element (i.e. the quantity of light in 

front of the element). This current is small (on the order of 0.1 µA to 10 mA) and thus requires both conversion to a 

voltage as well as amplification. Following the photodarlingtons, a logarithmic compression amplifier circuit is used 

to achieve current-to-voltage conversion and to enable increased dynamic range of the output values. Use of the sensor 

in a wide variety of ambient lighting conditions, such as from dim light to extremely bright conditions, requires such 

increased dynamic range to ensure adequate image contrast for detection purposes. 

 

A set of active filters are used to remove noise present in the signal. These filters include a 4th-order Butterworth 

low-pass filter with a 50 Hz cutoff frequency and a notch filter centered at 60 Hz. These filters specifically target noise 

sources that manifest themselves as flicker in interior lighting, which is well within the detection range of the sensor. 

This is an inexpensive, efficient filtering approach that requires only a small number of components and very little 

space on the PCB. Since the signal of interest is in the near-DC range, a low-pass filter is used. 

Next the signals enter a light adaptation stage that is designed to allow the sensor to operate in a variety of ambient 

lighting conditions. The light adaptation stage makes use of the average value of the ambient lighting. The signal 

average is computed using a single-stage averaging amplifier arrangement. This circuit is a variation on a noninverting 

summing amplifier circuit, in which the gain for the signals coming from all 7 optical axes is set to approximately 1/7. 

The computed average is then filtered to near DC using a single stage active filter. This filter reduces oscillations 

caused by detected motion in the computation of the average, and thus mitigates the carry-over of those oscillations 

into the sensor output signals. The filter is only applied to the computed average value, and is not present in all 7 

signal channels. The average is designed to accommodate all seven channel voltages. If a particular application 

requires fewer sensor channels (such as mono-axial tracking), and the sensor needs to be manufactured as 

inexpensively as possible, this circuit can be redesigned. 

Following computation of the average value, an instrumentation amplifier is used to subtract the average from 

each of the 7 signals independently. This operation achieves what is referred to as “light-adaptation” through mean 

removal, a process by which the sensor can adapt to different levels of ambient lighting [12]. A low-power 

instrumentation amplifier is used to perform this subtraction. The outputs from this stage are considered the final 

sensor output signals, which can then be sampled by a computer.  

Used by itself, the light adaptation circuit reacts almost instantaneously, which is detrimental to the sensor 

performance. Light adaptation is meant to adjust for relatively slow changes in ambient lighting to allow a wider 

dynamic range of operation than would otherwise be possible. It was found, not unexpectedly, that if the light 

adaptation is allowed to be too fast, it will “adapt” to light changes due to objects of interest instead of to ambient 

lighting, and make objects of interest harder to detect. The solution is to add a time delay to the light adaptation 

subsystem. All biological creatures incorporate such a time delay into their light adaptation physiology. 

Traditional electronic time delay methods, such as memory/shift registers, are not feasible due to the need to 

preserve the analog nature of the signal. A method employing analog-to-digital conversion followed by a delay 

 
Fig. 4. Block diagram of sensor functionality through a single channel, where i represents current and v 

represents voltage. 
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followed by digital-to-analog conversion would be too expensive in terms of computation power and time and it could 

introduce too much quantization error. Older analog methods such as resistive-capacitive (RC) or resistive-inductive 

(RL) delay lines suffer from poor stability and unrealistic component values for the delay needed, which was 

determined to be approximately one second. The resulting solution includes a sample and hold circuit with a timer 

that samples the analog signal, but does not quantize or digitally encode the signal. Thus delay was achieved without 

compromising the analog nature of the sensor signal [12]. 

B. Sensor platform 

A block diagram incorporating all of the above mentioned 

subsystems is provided in Fig. 4 and represents the sensor 

platform. A photodarlington pair produces a current 

(denoted by i) that is fed into a logarithmic compression 

amplifier. The output from that stage is a voltage (denoted 

by v), which is filtered, and the mean is removed as a form 

of light-adaptation. Figure 4 represents a single channel of 

a seven-channel system, and this process occurs in parallel 

for each channel. A printed circuit board (PCB) layout of 

the sensor circuits and components described above was 

designed and the board was built using industry standard 

reflow techniques [17]. 

The housing for the sensor head is the result of several 

iterations of development [9]-[16]. The version of the 

sensor being described here has an optically optimized 

dime-sized sensor head, see fig. 5. The sensor head housing 

was optimized with respect to response, motion acuity, and 

scalability for commercial production of the sensor, and it 

was designed to incorporate the multi-aperture nature of the 

Musca domestica eye. Results of the optimization suggested 

an ideal distance between the lens and the image plane of 

about w = 2.4 mm for pre-blurring, and an inter-lens angle 

of Δ φ = 7.5 deg for 50% overlap, shown in fig. 6. The 

sensor head is a circular housing that is reasonably simple 

to manufacture and facilitates the tessellation of the sensors 

on a spherical surface. The circular housing holds seven 

lenses and seven optical fibers. The head is machine milled 

aluminum, with 1 mm, multi-modal, single-fiber optical 

light guides connecting it to the circuit board. The 3 mm 

lenses focus the incoming light onto the terminating ends of 

the light guides. To ensure the guides are the correct 

distance from the lenses, a specially designed tool is 

inserted into the housing and provides a temporary solid 

plane the guide can rest against until it can be secured in 

place. When all seven light guides and lenses are secured to 

the sensor head housing, and the guides are properly 

connected to the PCB, the sensor is considered fully 

assembled. 

Once the sensor is physically assembled, it must be properly calibrated within the desired test environment. The 

sensor is calibrated by directing all facets toward an evenly lit, single-color, specular reflection free background and 

then adjusting the 50 kΩ potentiometers so that all outputs (one from each of the seven channels) are as near to the 

same value as possible. In an ideal lab setup, a curved Lambertian surface would be used to ensure that each of the 

seven channels is receiving stimulus that is not dependent on the viewing angle. This arrangement cannot be achieved 

with the facilities available, so an alternative approach is used. The maximum output voltage difference measured 

after calibration in the lab is approximately 0.682 volts (about 5.4% of full-scale). An automatic calibration technique 

using digital potentiometers can also be used [12]. 

A hyperacuity to motion is a compelling attribute of this sensor package, and is one of the main reasons for this 

research. As a target moves within the FOV of the sensor, the response is nearly immediate. The photodarlingtons 

 
 

Fig. 5. Front view of sensor head with U.S. dime for 

comparison. 

 
Fig. 6. Detail of two photo receptors in sensor head, 

where w represents the distance between the lens 

and the image plane and Δ φ represents the angle 

between two lenses. 
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measure the quantity of light within their range. For example, a target that is darker than the background causes a 

decrease in the output of a photodarlington sensing the target. Tracking multiple outputs at once allows for the 

determination of the direction and speed of such a target. 

 
Table 1. Characterization parameters for sensor measured over numerous trails. 

Parameter Min Typical Max 

Output [V] ~0.0 0.49 0.72 

Operating Range [cm]  25.4 ~130-150 

Sensor, PCB, and Cables Weight [g]  135  

Input Illuminance [lx] 1 520 36,000 

Power Consumption [W]  3.3  

 

Characterization tests have indicated a number of operating parameters for the system, see Table 1. These describe 

general operating conditions for the sensor package. Extreme conditions may result in different behavior. The 

logarithmic compression system is designed to operate up to 72,000 luminance (or lux) [12], which, as Table 1 

indicates, is far above the highest generated in the lab setting. While the operating range between the sensor and the 

target indicated in Table 1 is sufficient for the demands of this project, augmented range may be realized for other 

applications by using additional optics in front of the sensor head. 

III. Sensor Simulation 

A MATLAB™ simulation program has been developed for the fly eye sensor described in the previous section. This 

program can simulate the sensor output for a moving target of arbitrary shape and size against a background. The 

target-background contrast can be varied, and the target movement can be controlled in front of the sensor. The 

simulation has the flexibility of enabling a change in the sensor to target distance and the relative orientation of the 

sensor and target. The assumption of paraxial theory of light together with small angle approximation is used to 

simulate the sensor response to the target-background combination. This assumption is found valid from the simulation 

results, because the simulation program incorporates only the total amount of light from the scene that is brought to 

focus on the tip of the fibers. Uniformity of the light intensity, and Lambertian reflectance throughout the surface of 

the background is also assumed. The output of the sensor is deemed ideal (disregarding the non-ideality due to higher 

order optical properties such as diffraction of the lenses). A correction factor can be introduced to match the simulated 

output to the actual sensor output. Also, noise with different distributions and power levels can be added to the 

simulated output to analyze the real world application scenario. 

Figure 7a shows the experimental setup used for simulating a moving target on the target plane at a certain distance 

d from the virtual converging point of the sensor housing. The inter-lens angle Δφ = 7.5 d comes from the optical front 

end design, which increases motion sensitivity at small object distances [2]. At the same time, an overlap of 50% 

between adjacent pixel responses has been used to maximize the motion detection capability [2]. Since, the sensor is 

 
 (a)  (b) 

Fig. 7. (a) Simulation experimental setup. (b) Sensor-target relative orientation 
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designed to have 50% overlap at all object distances (but not beyond the optical infinity of the sensor, which is about 

1 m [13]), the angular roll off of an individual lens’ response must decrease with the increase in object distance. This 

implies the spread of the Gaussian response must increase with the increase in sensor-target distance (as shown in 

Figure 7 for inter-lens angle 0 d instead of 7.5 d). The spread σ that provides 50% overlap between adjacent pixels 

over all usable object distances (i.e., object distance less than 1 m) is a function of distance d and inter-lens angle Δφ 

(as shown in Figure 7), and expressed as 

 𝜎 =
𝑑 tan (

∆𝜑

2
)

√ln (4)
 (1) 

This is drawn from two 50% overlapping standard Gaussian equations with the spread σ for both. 

The sensor orientation relative to the target’s movement direction is described with an additional parameter 

“offset”, which is simply the angle between the horizontal axis, and the position of the optical element interfaced with 

the photo-diode D1 of channel 1 (the first pixel). The parameter “offset” is introduced here to describe how much the 

sensor head has to be rotated for a particular application with respect to the horizontal axis (i.e., the axis parallel to 

the ground). Figure 7b shows the sensor orientation with offset = 90 d, where D1 to D7 denote the positions of the 

seven photodiodes associated with the seven optical axes of the sensor. This arrangement is done to make the target 

movement vector (up-down) parallel to the line passing through diodes D1, D7, D4. 

IV. Application Specification 

A key requirement of the application proposed 

here is to measure the deflection of an aircraft wing 

from its resting position in real or near-real time. We 

consider a small Unmanned Aerial System (UAS), 

where the wing can bend a maximum of 3 cm from its 

resting position, with oscillation frequencies of less 

than 3 Hz. The sensor-target distance would be about 

1 m, and the size of the target can be increased up to 

25 cm in width. The height of the target can be 

increased up to the span of a wing (which is very large 

compared to the FOV of the sensor for this 

application). That is, we have some flexibility in 

determining the shape and size of the target, and the 

distance between the sensor and the target. The wing 

deflection may include bending and twist, but for this 

research twist is ignored. So, the key goal of this 

research is the real, or near-real, time tracking of a linearly moving target. A top level diagram of the sensor-target 

arrangement is shown in Figure 8, where the sensor is mounted on the fuselage of the aircraft, and the target is painted 

on the surface of the wing. The sensor is looking down at the wing and out the wing. The out-of-plane bending motion 

of the wing is defined as when the wing bends in the direction up or down.  Measuring the torsion or twist of the wing 

is a long term goal of the project, but for now, the most important measure is the out-of-plane bending measured by 

one target on the wing. 

Many researchers report on studies to estimate out-of-plane displacements by measuring in-plane strains. Using a 

cantilevered plate in the laboratory, Haugse et al. [22, 23] developed a modal transformation algorithm to recover 

deformations from strains. In a similar procedure, Pisoni and Santolini [24] determined the displacements at any given 

point in a vibrating clamped-end beam under different loading conditions using two strain gages. Li and Ulsoy [25] 

presented a method to measure tool-tip displacement of precision line boring machine. Davis et al. [26] and Kim et al. 

[27] measured vertical deflections of a simple beam models using fiber Bragg grating (FBG) sensor signals. The key 

concept of these strain based techniques is the vibration displacement can be expressed in terms of an infinite number 

of vibration modes and be related to the measured strains through the displacement-relationship. Most of the developed 

techniques used conventional strain gages, which need complex wiring in order to measure the strains at several points. 

Also, most of them can only detect static deformations or the deflections at few interesting points of the moving 

structures. These indirect shape estimation techniques using strain measurements, which can come from foil gages 

and/or fiber-optics Bragg gratings (FBG) become inefficient because of the weight of the gages, and cost associated 

 

 
 

Fig.  8. Sensor-target arrangement on an aircraft. 
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with strain-displacement transformation. Besides these, airplane may go under extreme temperature changes which 

greatly affects the sensitivity of the strain 

gages, and also requires external excitation 

source for their operations. 

A. Simulation Study 

The application scenario described in the 

previous section was analyzed using the 

simulation program. A black target of size 7 

mm × 511 mm was placed at a distance d = 

28 cm (the definition of d was shown in 

Figure 7a) from the sensor, and swept twice 

vertically (i.e., offset = 90 d) within the FOV 

of the sensor and beyond that. The distance 

d = 28 cm was chosen to have a sensor-target 

distance of about 25 cm for the actual setup. 

The sensor output was simulated for this 

setup, and the inter-pixel differences were 

calculated. The results are shown in Figure 9.  

It is interesting to note the quasi-linearity 

of the inter-pixel difference results over 

certain displacements of the target (shown as 

thicker lines in Figure 9). This implies that 

direct mapping of the inter-pixel differences 

to a deflection measurement without any 

sophisticated algorithm is viable, if we can 

somehow restrict the movement of the target 

within this quasi-linear region. Therefore, the 

displacement of the target was limited to one 

of these regions (the region under the blue 

thicker lines in Figure 9, which is about 3.2 

cm). The sensor output was simulated under 

these conditions, and then the inter-pixel 

difference D7-D1 was calculated.  

The result of the tracking algorithm for 

this test condition is shown in Figure 10. Note that the “position truth” of this figure is scaled to match the result for 

comparison purposes. From the figure, it is obvious that the inter-pixel difference is congruent with the position of the 

target (disregarding a small nonlinearity in the result). Thus, the inter-pixel difference alone can be used to determine 

the instantaneous position of a moving target, when the target movement is limited as described above. This result 

seems promising, and therefore, it was implemented in a circuit using the actual sensor hardware. The details of the 

implementation and results using the actual sensor are described in the following section. 

B. Sensor Hardware Study 

A study was performed to track a simple target moving in a plane in front of the sensor. The distance between the 

top surface, and the virtual converging point of the actual sensor head housing was measured, and found to be 

approximately 3 cm. A vertical black target of width around 7 mm was placed at distance 25 cm from the top surface 

of the sensor head, resulting in a sensor-target distance of about d = 28 cm. The target was moved horizontally in front 

of the sensor, with its movement limited to around 3.8 cm. The outputs of all seven channels were measured before 

the light adaptation stage of the signal conditioning and processing hardware. This was done to avoid complications 

 
Fig. 10. Real-time tracking of a target which movement was limited 

within the region shown as blue thick line in Figure 9. 

 
Fig. 9. Inter-pixel differences of the sensor output for a moving 

target placed at d = 28 cm with offset = 90◦. 

 
Fig. 11. Circuit for processing sensor output to perform real-time tracking of a moving target.  
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due to the near DC filter, and the average subtraction process of the light adaptation stage. The inter-pixel difference 

was determined using an instrumentation amplifier from Analog Devices (an AD620). The system is extremely simple, 

see Figure 11. The amplification stage, as shown in Figure 11, was used to scale the system output. This stage can be 

replaced with an interfacing circuit based on the requirements of the system that can be cascaded for further 

manipulation of the tracking result. 

The output of the 

tracking system is analog, 

and was observed using an 

oscilloscope. The output was 

sampled with a 30 Hz 

sampling frequency. The 

sampled data is shown in 

Figure 12 (blue solid line) 

along with the signal from 

the function generator that 

drives the target (black 

dashed line). Note, the 

system output shown in this 

figure is just a raw signal 

from the circuit without any 

kind of processing (the 

amplifier gain was set to 1). 

The time delay between the 

signal from the function 

generator and the system 

output is expected due to the 

mechanical delay of the plotter, imprecise positioning of the target in front of the sensor, and the delay from the signal 

conditioning and processing circuit. The bias in the output is due to the signal acquisition process using a DATAQ 

DI148U. Disregarding the amplitude level, the output clearly shows the real-time tracking capability of the system. 

One important point to be observed in the system output is a small amount of noise. The noise is expected due to 

the test setup. During the test, a vertical target with an unsupported top end was used. The unsupported end of the 

target vibrates when the target moves horizontally. Therefore, the noise in the output is actually capturing the 

instantaneous position of the vibrating target in front of the sensor. 

The output of the tracking system was observed when placing the target at different distances from the sensor, and 

in different ambient lighting conditions. From the results, it was found that the tracking system can successfully track 

the moving target, but the amplitude of the tracking system output varies with the variation in ambient light intensity, 

and sensor-target distance. 

V. Conclusions 

This paper reports on efforts to develop a biomimetic fly eye sensor to track a target for real-time measurement of 

aircraft wing deflection. The fly eye sensor has several advantages over conventional sensors used for this application, 

including light weight, low power requirements, fast computation, and a small form factor. Tests were run in which 

data was obtained from the sensor when a target moved in a horizontal direction in front of the sensor, simulating an 

aircraft wing moving under bending loads. A simple differencing algorithm that was implemented in hardware showed 

good target tracking results providing a real-time solution to tracking the deflection of an aircraft wing. 
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