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 Abstract/Executive Summary 

Mars surface conditions where liquid water is absent were simulated for the purposes of laboratory 

research.  A pressure-temperature (P-T) profile was maintained in which no combination of pressure or 

temperature corresponds to the liquid region of the water phase diagram.  The triple point of pure 

water occurs at T = 0.1oC and P(H2O) = 6.01 mbar; therefore all temperatures and pressures must be 

kept below these values, respectively.  A 35-day test was performed in a commercial planetary 

simulation system (Techshot, Inc., Greenville, IN) in which the minimum night-time temperature was -

80oC, the maximum daytime temperature was +26oC, the simulated day-night light cycle in earth hours 

was 12-on and 12-off, and the total pressure of the pure CO2 atmosphere was maintained below 11 

mbar.  Any water present was allowed to equilibrate with the changing temperature and pressure.  The 

gas phase was sampled into a CR1-A condensation-mirror low-pressure hygrometer, which uses liquid 

nitrogen (down to 77oK) to determine the dew point (Buck Technologies, Boulder, CO).  Dew point was 

measured once every hour and recorded on a data logger, along with the varying temperature in the 

chamber, from which the partial pressure of water was calculated.  The resulting calculated daily cycles 

were tracked on the water P-T diagram, and no points were found to fall within the liquid-phase region 

of the diagram.  It is concluded that there was no liquid water present throughout the test except during 

the initial pump-down period when aqueous specimens were introduced on the first day (less than 1 

hour).  Mars regolith simulant was present during this test, and further investigation is needed to 

determine whether liquid water could have been present or absent in the regolith in the form of brine.  

Biological samples consisting of Cyanobacteria:  Anabena sp., Chroococcidiopsis CCMEE171, Plectonema 

boryanum; Eubacteria: Bacillus subtilis, Pseudomonas aeruginosa, and Eukaryota: Chlorella ellipsoidia 

were maintained in the simulator under the above-described conditions.  The exposed specimens were 

tested for intracellular esterase activity, chlorophyll content (where appropriate) and reproductive 

survival.  All tests yielded low-level positive results in all cases.  In parallel to these terrestrial studies a 

planned design study was undertaken for the proposed test bed .  Design requirements include compact 

assembly for transport and installation on the planetary surface (multiple units per mission would be 

expected), protective internal package for the release of organisms, a means of atmosphere exchange, 

access to sunlight, a means of penetrating the planetary surface, and most importantly a means of 

acquiring regolith while meeting the requirements of planetary protection.  In consultation with advisers 

a design was created, and a large-scale mock-up of this design was fabricated by additive manufacturing 

at Techshot, Inc. with moving parts that simulated the components of the design.  The mock-up 

assembly has been demonstrated to interested parties.  A means of detecting live metabolism will also 

be included in the test bed.  Several options were reviewed, and it is concluded that, by the time the 

ecopoiesis test bed is ready for testing the optimum instrument will be the equivalent of a hand-held 

mass spectrometer for metabolic gas analysis.  This will maximize versatility and reveal much more 

information than could a detector of a single product (such as molecular oxygen), and the simple output 

signals will be compatible with telemetry.  The objectives of this project, (1) Model and test the 
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availability of liquid water in Techshot’s Mars simulator facility, (2) Identify current candidate pioneer 

organisms for testing and initiate a selection program, (3) Create a mechanical and electronic design 

concept for Mars surface shallow penetrator with planetary protection, and (4) Identify electronic 

biological activity tests, were fulfilled by the completion of the Phase-1 research described in this final 

report.       

Introduction 

The cover of Astrobiology , September 2015, “Celebrating 15 Years” features, in bold color, 

photosynthetic cells reacting with extraterrestrial  water to form hydrogen ions – the initial process in 

photosynthesis – within a microbial fuel cell.  The molecular oxygen produced is reduced to water at the 

cathode generating an electric current proportional to the diurnal levels of insolation as a proposed 

means of detecting extraterrestrial life [Figueredo et al., 2015].  Active life cannot be sought in the 

absence of liquid water and cannot be implanted in the absence of liquid water.  Mars orbital 

photographic evidence for the slow movement of perchlorate evaporites down slopes at Garni and Gale 

craters is currently taken as evidence that flowing brine may be responsible for recurring slope lineae on 

these steep slopes [Martin-Torres et al., 2015].  The high salinity and low temperatures that correspond 

to this transient liquid condition (certain times of day) may not be hospitable toward terrestrial 

extremophiles.  These recent findings further set the stage for searches for microbial life and ecopoiesis 

research.   

What is a Mars Ecopoiesis Test Bed? 

The term Ecopoiesis was introduced by Bob Haynes and Chris McKay, in collaboration with Carl Sagan in 

the 1970’s [Sagan, 1973], and conferences were held on this subject [Haynes, 1992; McKay, 1989, 1991, 

2004].  McKay and Averner and others performed early calculations concerning the use of dark materials 

on the Mars polar caps, enhanced insolation and/or artificial greenhouse gases to initiate a runaway 

greenhouse effect that would result in conditions allowing liquid water to exist in abundance on the Red 

Planet [Averner, 1976; MacElroy, 1976; Haynes, 1992; Fogg, 1995; Gerstell, 2001; McInnes, 2006].  Our 

proposed concept emphasizes bio-ecopoiesis [McKay, 1989, 1997; Thomas, 1995], in which contained 

pioneer organisms will eventually be tested for bio-activity in a suitable location on the Martian surface 

(low latitude and low altitude, where pressure and temperatures combine to flirt with the possibility of 

metastable liquid water [Hecht, 2002; Heldmann, 2005; Carr, 1996; Jakosky, 1992; Levin, 2003]) using a 

robotic mechanism on a future rover.   

 

The proposed concept is illustrated diagrammatically in Figure 1. 
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Figure 1.  Rendering of the Mars surface shallow penetrator as originally proposed showing, from top 

to bottom: transparent dome for the admission of light for photosynthesis, porous ceramic ring that 

allows free exchange between the internal vapor phase and Mars atmosphere while providing 

planetary protection, sensor of biological activity (TBD) connected to datalink to a Mars orbiter for 

relaying signals, specimen containers that robotically release one set of contents onto the surface and 

one set of contents below the surface, threads that cause the penetrator to penetrate the regolith 

when rotated, the containment cylinder which constitutes the entire shell of the penetrator and 

which contains the sample of regolith to be tested, and at the very bottom the planetary protection 

seal that will be formed in situ after the penetrator is at full depth and before the release of 

specimens.       

 

Relevance to NASA Astrobiology Roadmap 

The objective of NASA Astrobiology Roadmap Goal 6.2 is Adaptation and evolution of life beyond Earth, 
and the following tasks are enumerated: “Explore the adaptation, survival and evolution of microbial 
and other organisms under environmental conditions that simulate conditions in space or on other 
potentially habitable planets. Identify survival strategies to evaluate the potential for interplanetary 
transfer of viable organisms and to establish requirements for effective planetary protection. Identify 
and validate roles that microorganisms might play in life support and resource acquisition during human 
missions envisioned by US Space Policy.  Develop tools to track the function and adaptation of microbes 
and other organisms to extraterrestrial environments during mankind’s exploration efforts.”   Example 
investigations are listed as:  “Document the effects of the space environment upon microbial 
ecosystems. Examine the survival, genomic alteration, and adaptation of microbial ecosystems in a wide 
range of simulated Martian environments. Interpret the significance of these experiments regarding the 
potential for the forward biological contamination of Mars and for utilizing microorganisms to support 
the needs of human exploration.  Examine the effects of the space environment upon the biosynthesis 
and utilization of biomolecules that play key roles in biogeochemical processes and also upon the 
viability of microbes that might be transferred between planets by natural processes (e.g., impact 
ejection).  Develop automated assay tools to monitor the adaptation of organisms in lunar and Martian 
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environments, especially those areas most likely to be visited by human explorers over the next 
century.”  Components of nearly all of these goals and tasks are included in the research being 
conducted on this project “Mars Ecopoiesis Test Bed”.  
 

Team Members and Their Contributions 
A core scientific and engineering team was assembled in Phase I.  The Phase-I activists have been:                                      
PI: Dr. Eugene Boland, Chief Scientist Techshot, Inc.  
Project Scientist: Dr. Paul Todd, Chief Scientist Emeritus, Techshot, Inc.  
Project Engineer: Mr. Michael (Andy) Kurk, Techshot, Inc.   
Project Astrobiologist: Prof. David J. Thomas, Professor, Lyon College   
Project Adviser: Dr. Lawrence Kuznetz, Principal, Spinoff, NASA, Retired  
Additional participating engineers were drawn from Techshot’s space-hardware-experienced staff, and 
the additional advisory scientists were drawn from Drs. Thomas’ and Todd’s circle of colleagues and 
were Dr. Chris McKay, NASA Ames Research Center and Dr. Chris House, Penn State University. 
 

Objectives of the Phase I Project 

The Phase I objectives, exactly as briefly stated in the proposal, were as follows: 

Objective 1.  Model and test the availability of liquid water in Techshot’s Mars simulator facility.  A low-

temperature hygrometer will be acquired, and conditions surrounding 7-10 mbar will be sampled by 

interrupting experiments at specific times in Martian sols and measuring regolith moisture and by 

monitoring the formation of mineral evaporites.    

Objective 2.  Identify current candidate pioneer organisms for testing, and initiate a selection program. 

Objective 3. Create a mechanical and electronic design concept for Mars surface shallow penetrator 

with planetary protection.   

Objective 4. Identify electronic biological activity tests (O2 sensor, for example); initiate testing in a 

laboratory simulator.   

Progress on Phase I Objectives 

Objective 1.  Model and test the availability of liquid water in Techshot’s Mars simulator facility.  A low-

temperature hygrometer will be acquired, and conditions surrounding 7-10 mbar will be sampled by 

interrupting experiments at specific times in Martian sols and measuring regolith moisture and by 

monitoring the formation of mineral evaporites.    

Rationale 

Ecopoiesis will require water.  That means maximizing the chances of liquid-phase water being 

transiently present in the test bed with the most likely sites being found at Mars’ lowest altitudes and 

latitudes [Kuznetz, 2006].  A preliminary identification of these “landing” sites, already considered for 

certain past and future robots, is given briefly in Table 1.  The tidal pressure swings of +0.5 mbar need to 



5 
 

be considered.  These sites are also thought to contain evaporites, possibly including nitrates (all of 

which are water soluble) to provide nitrogen and magnesium salts [Tosca, 2006].  Recent results from 

the Curiosity Rover in Gale Crater are encouraging with regard to the availability of minerals to support 

autotrophic life [Navarro-González, 2013]. The big question of course has to do with the 

thermodynamics and transport processes of water in real and simulated Martian environments.  Even at 

11 mbar, the vapor pressure of water is well below the 6.1-mbar triple point, where, at increased 

temperature ice will normally sublime.  However, speculative calculations modeling the diffusion of 

water vapor from ice surfaces during sublimation indicate a local (within a few mm of ice) increase in 

water vapor concentration to some 60%, or the required 6.1 mbar in the 11 mbar environment [Levin 

and Weatherwax, 2004].  Therefore, early proposed research has used the Techshot simulator [N. 

Thomas et al., 2006] to test such hypotheses.        

Table 1.  Characteristics of potential Martian test venues.  

SITE NAME LATITUDE MAX DEPTH, m MAX P, mb MAX T 
O
C 

Elysium Planitia 3
O
N 45 6.2 32 

Isidis Planitia 3.0-12.9
O
N 3,600 7.5* 26 

Valles Marineris 13.9
O
S 7,000 11.0 26 

Gale Crater 4.5
o
S 4,500 7.8 28 

Triple Point    6.1 0.02 

*Approximate, based on linear interpolation. 

 

Improved simulator facility 

The Mars simulation facility has been upgraded with an automated power supply that can control the 
Martian sol by automatically firing the arc lamp (and confirming it lit) and tying the power and 
temperature output to a data logger.  Previously this was a manual process to confirm the arc lamp 
fired.  We attained the use of a cryogenic hygrometer to monitor moisture continuously and subjected it 
to testing to verify that we can produce the pressures and vapor pressure requirements set forth for the 
research. 
 
To maintain a Martian atmospheric environment, the sample is loaded into a 140 mm ID x 430 mm long 
quartz-tube chamber featuring a single open end.  Once loaded, within the tube, the open end of the 
tube is sealed with a stainless steel end cap that features all of the ports and valves necessary to 
maintain a vacuum, monitor temperature and pressure, and input a simulated Martian atmosphere or 
liquid water through external automated valves.  A photograph of the Mars Simulator Chamber within 
the environmental cabinet is shown in Figure 2.  
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Figure 2.  Interior of the Mars simulator environmental cabinet showing reflecting mirror, quartz 
chamber, sample tray, eighteen samples with twelve of them in direct illumination and six of them in 
shade, thermistor leads for temperature measurement in and out of regolith, end plate for pressure 
and electrical access, and cradle to hold quartz-tube Mars chamber.  This configuration was used in an 
uninterrupted five-week simulation campaign.   
 
Once the experiment loading is complete the quartz chamber is secured within a thermal cabinet and all 
external mechanical and data interfaces are connected to the sealing end plate.  Upon completion of 
this process, the inner volume of the simulator chamber is drawn down to the desired Martian 
atmospheric pressure by a Welch Reitschle Thomas vacuum pump.  To accommodate most very low 
pressure experiments the vacuum pump is required to run continuously.  If minor pressure adjustment 
is required, a ball and needle valve are located downstream of the experiment between a low pressure 
hygrometer and the vacuum pump.  When needed, the valves can be adjusted to obtain the desired 
pressure. 
 
In addition to control and measurement the Mars Simulator Chamber end plate contains a port through 
which liquid water or a gas can be periodically introduced to the test volume throughout the 
experiment.  Periodically CO2 or a specially mixed gas resembling the Martian atmosphere is introduced 
into the volume to flush any dry nitrogen that may have intruded into the volume and maintain an 
atmosphere consistent with that of the simulation objectives.  This function is fully automated and its 
frequency is programmed into the thermal cabinet’s Watlow controller as part of the experiment 
profile.  In this case, pure, dry CO2 was used as the chamber gas. 
 
The downstream hygrometer, a CR1-A condensation-mirror low-pressure hygrometer that uses liquid 
nitrogen (down to 77oK) to determine the dew point (Buck Technologies, Boulder, CO), is used to 
continuously sample the moisture content of the atmosphere within the Mars simulator chamber.  The 
hygrometer data are monitored along with pressure and temperatures and are recorded using a Fluke 
1586A Super DAQ data logger.   
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The Martian thermal environment is simulated by a highly insulated, modified, cryogenic thermal 

cabinet (Model ZBD-108 LN2 Cooled Chamber, Associated Environmental Systems, Ayer, MA) that is 

thermally maintained by the evaporation of liquid nitrogen.  Since the chamber is filled with dry nitrogen 

there is very little water present, and heavy frosting is avoided.  Thermal cycling of the chamber 

according to the Mars daily cycle is accomplished by programming a Watlow F4 Controller that is a 

standard component of the commercial thermal chamber.  This controller is programmed with a 

timeline that enables thermal ramping functions that can be programmed either on the user panel or 

with a GUI on the PC. 

 
Table 2. Customized Liquid Nitrogen Cooled Environmental Test Chamber Features 
Working Volume:   24” x 24” x 24” 
Insulation:    4” Fiberglass 
Power Requirements:   120 VAC, 1 phase, 60 Hz 
Refrigeration System:    LN2 Cooled 
Temperature Range:    -135o C to + 177o C 
Temperature Stability:   +/- 1/2o C at sensor 
Temperature Rise Time:   Ambient to upper limit – 20 minutes 
Temperature Pull Down Time:  Ambient to lower limit – 20 minutes 
Interior:     18 Gauge 304 Stainless Steel 
Illumination:    Double-paned quartz window  

Exterior:  18 Gauge cold rolled steel with two coats of textured epoxy paint 
Watlow F4 Programmable Controller with RS232 communications 
Dry Nitrogen Purge 
 
Simulated Solar energy is provided to the sample by an automated Sciencetech Solar Simulator that has 
been equipped with an AM0 filter to more closely resemble the mildly filtered solar radiation which 
reaches the Martian surface. A diagram of the unfiltered (top) output of the xenon arc lamp and the 
output spectrum after filtering with an AM0 filter (bottom) is shown in Figure 3.   
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Figure 3.  Light spectrum produced by the 1,000 W xenon arc illuminator without (above) and with 
(below) AM0 (Air Mass zero) light filter.  The similarity to the solar spectrum below about 300 nm is 
important in terms of its known biologically damaging action.   
 
               As part of the improved solar simulator automation package the user can preprogram a light 
cycle and intensity.  For this experiment a 12 hour, 1000 W cycle was preprogrammed prior to initiation.  
The ScienceTech illuminator and the added control technology is shown in Figure 4.  Modifications to 
the stock liquid nitrogen cooled thermal chamber, enable the solar simulator’s light beam line to pass 
into the thermal chamber through a 4” x 4” (10 x 10 cm) double paned opening after which it is reflected 
by a front-surface mirror inside the cabinet to illuminate the quartz Mars jar chamber as shown in Figure 
2.  A photograph detailing the light path from the solar simulator is shown in Figure 5. 
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Figure 4. ScienceTech solar simulator with power supply (UPS) and Techshot controller for 
automatically re-igniting the 1,000-W xenon arc lamp.  Also seen are the chamber gas supply cylinders 
(left) and environmental chamber (far right).  See also Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Light path from the solar simulator’s xenon arc lamp to the specimen chamber via double-

paned quartz window, front-surface mirror and quartz-tube chamber.  See also Figure 2.  

Nine variables were measured and logged as a function of elapsed time every 5 minutes for 5 weeks.  

These were ambient laboratory temperature, Mars-jar pressure, cabinet temperature, regolith 

temperature, Mars-jar temperature, hygrometer pressure, dew/frost point, illuminator on/off, and 

water concentration.  
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An example of measured values during days 10-20 is given in Figure 6.  The pressure pattern is seen to 

have spikes due to the hourly introduction of fresh CO2 to maintain the atmospheric composition.  The 

purpose of this operational procedure was to prevent cabinet nitrogen from entering the simulated 

atmosphere inside the chamber.   

 

Figure 6.  Example of environmental data logged over a 10-day period, showing four measurements: 

regolith temperature (red), chamber internal temperature (green), chamber internal pressure (blue), 

and solar simulator on/off (violet).  The “Days” on the abscissa are earth days and not Martian sols. 

Moisture Measurement and Control in the Laboratory Test Bed 

Nine parameters were logged during test and experimental operation of the laboratory test bed.  Of 

these, the CR-1A cryogenic hygrometer (Buck Research Instruments, LLC, Boulder, Colorado) recorded 

temperature, pressure and dew/frost point in extracted chamber atmosphere.  Figure 7 is a chart record 

of nine logged parameters during days 11-14 of a 35-day campaign.  The dew/frost point never 

exceeded the regolith temperature except when a pulse of liquid water was injected when the 

temperature was below -75 C.  At all other times humidity was well below saturation and the partial 

pressure of water was below the triple point (see Figure 8).       
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Figure 7.  Chart record of nine logged parameters during days 11-14 of a 35-day campaign.  The 

dew/frost point never exceeded the regolith temperature except when a pulse of liquid water was 

injected when the temperature was below -75 C.  At all other times humidity was well below 

saturation and the partial pressure of water was below the triple point (see Figure 8).      

Spikes in pressure and dew/frost point that appear on the chart are due to the periodic injections of 

fresh dry CO2 for maintenance of atmosphere composition.  From the data set of Figure 6 were 

extracted correlated time points for chamber pressure (as measured by the CR-1A hygrometer) and 

regolith temperature.  Figure 8 represents the repeated journey around the P-T diagram through three 

daily cycles.  The total pressure never exceeded values measured on the Martian surface.     
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Figure 8.  Trace of chamber pressure and regolith temperature over three daily cycles ending 03-01-15 

on days 11-14 of a 35-day campaign.   

The CR-1A Cryogenic Hygrometer measured, and the data logger recorded dew/frost point at each 

sampling time.  From the recorded dew/frost points the partial pressure of pure water was calculated 

using the empirical formula 

  pw = 6.11*10^[7.5*Td/(273.3+ Td)]     

using pw = water partial pressure in mbars and Td = dew/frost point in oC.  For 814 time points 

accumulated over days 11-14 of a 35-day campaign this partial pressure is plotted against temperature 

on a traditional P-T diagram, on which the liquidus line for pure water is also shown (Figure 9).   

  

 

 

 

 

 

 

 

Figure 9.  Water partial pressure during the period ending 03-01-15, days 11 through 14 of a 35-day 

campaign (814 data points).  The liquidus line for water on this P-T diagram is shown in red, with the 

triple point shown as a red square.     

 

 

Figure 3.  Water partial pressure during the period ending 03-01-15, days 11 through 14 of a 35-day  
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Performance record:  A review of all data sets was made to create a list of “bumps in the road”.  The CR-

1A hygrometer must be cooled below the chamber temperature at all times, and cooling was lost on a 

small number of occasions during the 35-day campaign; however, the maintenance of environmental 

conditions did not depend on continuous hygrometer readings, and its temperature and pressure 

readings are redundant.  The hygrometer only contributed data, and hygrometer-related events are 

noted by an asterisk in Table 3.  Some maintenance of the solar illuminator, including xenon arc lamp 

replacement was required toward the end of the campaign. 

Table 3. Descriptions of individually recorded data sets during 35-day Mars surface simulation 

campaign.     

DAYS OBSERVATIONS 

1,2 Breaking in.  Chamber pressure rose to 14-20 mbar for 5 min during hourly CO2 injection 

2-4 Pressure maintained <10 mbar. Hygrometer cooling lost; hygrometer data not taken*  

4,5 Same as days 11-14, which were used as model for detailed report data 

5-8 Loss of hygrometer  function on day 8* 

8 Hygrometer recovery period; tube pressure spike to 70 mbar for 2 h* 

9-11 Same as days 11-14 

11-14 Chosen as source for model data 

14-16 Same as days 11-14; spike in measured dew/frost point on day 15 

16-18 Same as days 11-14 

18-21 Same as days 11-14 

21-24 Loss of hygrometer cooling, days 23,24* 

25-30 Loss of hygrometer cooling, day 29*  

30-36 Loss of light day 31, ½ of day 32, day 35.  Repression recorded when campaign ended. 

*Losses of hygrometer function have no impact on environment control. 

The data above demonstrate the continued presence of water in the solid and vapor phases throughout 

this 35-day campaign.  At the end of the campaign the chamber was repressurized for sample recovery, 

at which time two observations on liquid water were made.  There had been an accumulation of some 

10 cm3 of liquid water, melted from the solid and condensed from the vapor phases of the chamber 

upon its return to earth-ambient conditions, and the regolith simulant in the shaded specimen jars was 

dark due to moisture while the regolith in the illuminated specimens was the color of dry regolith.  

 

Objective 2.  Identify current candidate pioneer organisms for testing, and initiate a selection program. 

 

The project officially kicked off internally with the convening of the advisory panel consisting of Dr. Larry 

Kuznetz (Advisory council chair), Dr. Christopher House and Dr. David Thomas.  Unfortunately, Dr. Chris 

McKay was unable to attend the first meeting because of commitments with Curiosity Rover results. 

The first key outcome of the meeting was the identification of test organisms.  Due to the size of our 

Mars simulator and past experience, we decided to proceed with 3 cyanobacteria and an alga.  Space 
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permitting, we would add two species of heterotrophic eubacteria, which actually was done.  The final 

selections are given in the following list.   

Organisms: 
Anabaena sp. (cyanobacteria) 
Chroococciopsis sp. CCMEE171 (cyanobacteria) 
Plectonema boryanum UTEX485 (cyanobacteria) 
Chlorella ellipsoidea (algae) 
Bacillus subtilis (bacteria) 
Pseudomonas aeruginosa (bacteria) 
  
A single test was designed for a 5-week period, to start after simulator improvements and physical tests 
were completed. 
 
A single 5-week simulation was performed using 100% CO2 at pressures between 3 and 10 mbar and 

water supplementation as described in Figures 2-10.  Multiple samples of each species were subjected 

to four conditions for 5 weeks for comparison:  Mars simulator, -80 C in darkness, +4 C in darkness and 

25 C in diurnal illumination.     

 

The following test organisms were used: 

Cyanobacteria:  Anabena sp., Chroococcidiopsis CCMEE171, Plectonema boryanum 

Eubacteria: Bacillus subtilis, Pseudomonas aeruginosa 

Eukaryota: Chlorella ellipsoidia 

 

As in previous work [Thomas et al., 2008] the production of fluorescence by samples resuspended in 

aqueous solution was used as a test for the presence of intact cells containing esterases using the 

fluorescein diacetate (FDA) test.  Figure 10 is a summary of the resulting measurements on suspended 

regolith samples. 
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Figure 10.  Rate of FDA hydrolysis by 1 gram of regolith containing each of the six species exposed, 

measured as rate of increase in fluorescence intensity. 

 

When specimens were returned to ambient temperature and pressure liquid water present in the 

samples was tested for biological activity.  Figure 11 is a summary of the resulting measurements of FDA 

conversion in liquid water samples. 

 



16 
 

 
 Figure 11.  Rate of FDA hydrolysis by 1 mL of water residue obtained from each of the six species 

exposed, measured as rate of increase in fluorescence intensity. 

 

Samples were streaked for growth on semisolid media and assessed for colony counts on a 4-unit scale.  

Many plates had too many colonies to count, so an area-coverage scale of 0 – 4 was used to characterize 

growth, using 25 C diurnal samples as control, identified as a score of 4.  These results are summarized 

in Figure 12.  
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Figure 12. Relative phototrophic growth of cyanobacteria on nutrient plates based on a 4-unit scale 

with 25 C diurnal controls defining a score of 4. 

 

The colony-forming ability of the two heterotrophic bacteria was assayed directly on the basis of colony 

counts on nutrient agar.  The results are shown in Figure 13 and indicate the survival of reproducing cells 

under all treatment conditions. 
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Figure 13.  Counts of cfu/mL of two species of heterotrophic eubacteria.   

   

Chlorophyll was extracted from samples of the four autotrophs and measured spectrophotometrically.  

Figure 14 indicates that chlorophyll could be detected in all specimens under all treatments, and Mars 

simulation was found less destructive of chlorophyll than the other two test treatments. 

 
Figure 14.  Chlorophyll concentrations in extracts of phototrophs after treatments. 
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Nitrite tests were performed to determine remaining functions for denitrification and converting nitrate 

to nitrite.  Table 4 summarizes the results of nitrite tests (vs. optical standards) for all six species tested.  

Only the heterotrophic eubacteria retained denitrification ability after exposure to Mars conditions. 

 

Table 4.  Nitrate reduction and denitrification by the tested microbial species. 

Organism 
Mars 

simulator 

-80C 
Dark 

control 
4C Dark 
control 

25C 
Diurnal 
control 

Anabaena sp. None None None NO2 

Chlorella ellipsoidea None None None NO2 
Chroococcidiopsis 
CCMEE171 None None None NO2 

Plectonema boryanum None None None NO2 

Bacillus subtilis N2 None N2 N2 

Pseudomonas aeruginosa N2 NO2 N2 N2 

  
   

  

No nitrate reduction None 
   Nitrate  Nitrite reduction NO2 
  

  

Denitrification N2       

      Images of the streaked plates all showed evidence of surviving reproducing cells after exposure to 

the simulated Mars conditions.  Figures 15 and 16, respectively, consist of images of plates streaked 

with phototrophic and heterotrophic cells from the Mars exposure (bottom row) compared with plates 

streaked with cells from cultures kept at 25 C with diurnal lighting (top row). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Images of plates streaked with phototrophic cells from the Mars exposure (bottom row) 

compared with plates streaked with cells from cultures kept at 25 C with diurnal lighting (top row).   
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 Figure 16. Images of plates streaked with heterotrophic cells from the Mars exposure(bottom row) 

compared with plates streaked with cells from cultures kept at 25 C with diurnal lighting (top row).   

 

 

 
 

Objective 3. Create a mechanical and electronic design concept for Mars surface shallow penetrator 

with planetary protection.   

Proposed details of this task are seen in Figure 1.  The advisory team held substantial discussions on how 
we would seal the bottom of the testbed after boring it into the Martian regolith as well as 
understanding the size scale.  Since the organisms of choice are photosynthetic, we anticipate depths of 
no more than 3cm are required so an overall depth of 15 cm was considered adequate.  Requirements 
are clear that it must prevent bacterial escape but allow the hollow shaft to be filled with Martian 
regolith prior to sealing.  Sealing concepts ranged from a chemical and civil engineering approach using 
regolith-based composite or concrete to mechanical approaches that lock the system closed after 
penetration and filling.  The Techshot mechanical design team took this on and produced a number of 
CAD concepts.  A design was selected, and 3-D printing of prototypes of all parts was undertaken in 
order to assemble a partially functional mock-up of the penetrator at an enlarged scale.   
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Selection of penetrator design 
 
The overall design concept is understood by viewing the CAD model presented in Figure 17.  It consists 
of, from top to bottom, a star-nose regolith drill to break up regolith, a threaded penetration shaft to 
drive the drill and shaft downward, four regolith-collecting scoops that pick up and deliver regolith to 
the interior of the shaft, an O-ring seal closure that closes the scoops for planetary protection, a flange 
that defines the depth of penetration, an internal means to release organisms, a ceramic or steel 
microfilter for gas exchange with the Martian atmosphere, a transparent dome to allow illumination, an 
“avionics” module with photovoltaic cells to provide power for telemetry,  and a means for detecting 
metabolic activity of cells (Objective 4).  
 

 
 
Figure 17.  CAD model cross-section of Mars ecopoiesis test bed design with mechanical features 
labeled. 
Figure 18 is an exploded view (on left) showing the individual modules accompanied by two frames 
(available in video) indicating how the test bed might look as it penetrates the regolith by rotating 
clockwise (center) and after it is deployed (right), connected to the avionics unit that receives signals 
from the proposed gas analyzer.  The exploded view indicates how the inner cylinder fits inside the 
penetrator and seals off the regolith scoops by being pressed down inside the scoop holes.  This act 
would prevent contamination of the planet exterior to the experiment.    
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TRANSPARENT DOME

GAS EXCHANGE FILTER

REGOLITH RIM

REGOLITH SCOOPS (4)

POST-PENETRATION SEAL

PENETRATOR THREADS
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Figure 18.  CAD models of Mars ecopoiesis test bed showing exploded view (left), test bed as it 
penetrates the regolith (center) and after it is deployed (right), connected to the avionics unit.  
 
Penetrator Mock-up  
A plastic mock-up of the CAD-designed mechanical components of the Mars ecopoiesis test bed was 
fabricated by additive manufacturing using the design depicted in figures 17 and 18.  These components 
could be assembled as planned, and they were photographed in the expected configurations as shown 
in Figure 19.  This shows a clearer view of how the inner cylinder is moved downward into the outer 
cylinder and engages the sealing mechanism, shown in black in the left-most photo.  In parallel with 
Figure 18 the photos show the exploded view, the totally assembled system, the configuration that 
penetrates the regolith, the sealed volume and the deployed avionics package.  
 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19.  Photographs of Mars ecopoiesis test bed mock-up.  From left to right: Exploded  view, as 
packaged for deployment with photovoltaic arms furled, in position for regolith penetration, after 
sealing of inner cylinder, and as deployed with avionics module positioned and unfurled. 



23 
 

Selection of final components: 
A ceramic filter that allows atmosphere into, but not organisms out from, the testbed was originally 
proposed.  However, filter material with 0.5 µm pore size is also available in PEEK 
(polyetheretherketone) and stainless steel, and these materials are preferred because they are less 
frangible than porous ceramic filters.  Identification of a miniaturized biosensor approach was the goal 
of Objective 4 study, which follows. 

 

Objective 4. Identify electronic biological activity tests (O2 sensor, for example); initiate testing in a 
laboratory simulator.   
 
Lengthy discussions on sensor design and function to “detect” biological activity.  Simply measuring O2 

may not be adequate so further discussions are scheduled to look into biomarkers that may serve as 
surrogates for O2 production or an optical method of adding Fluorescein to detect the presence of liquid 
water enabling the production of O2.  It is the goal of the Phase 1 project to identify at least 1 method to 
move forward into phase 2.  Further discussions led toward more versatile sensing of volatile 
biomarkers and the use of spectrophotometry, gas chromatography or mass spectrometry (MS).   
A literature-based trade study was performed to select an approach to detecting biological activity 
within the test bed, according to Objective 4 and Task 4 as stated in the application from Techshot to 
NIAC.  It was found early on that off-the-shelf commercial technology is not the way to think about 
instrumentation that is to be used some decade or more in the future.  Potential methods include 
electrochemical oxygen sensing, spectrophotometry of the vapor phase, gas chromatography requiring  
a molecular detection system, and mass spectrometry.  The merits and drawbacks of each were 
considered. 
 
Oxygen sensing 
The most likely test organisms are presently expected to have photosynthetic activity and to produce 
molecular oxygen as a metabolic product.  Commercial electrochemical oxygen sensors, such as used in 
the headspace of bioreactors, for example, are suited to measuring molecular oxygen concentration in 
the vapor phase but not at the low concentrations expected in a Mars ecopoiesis experiment.   The 
electrochemical sensing of oxygen production, heavily dependent on liquid water, has been proposed 
for the detection of extraterrestrial life [Figueredo et al., 2015].   There is a definite possibility, no matter 
what miniaturization and sensitivity progress is made in the next decade, that sensing of potentially 
minute oxygen concentration relative to the 0.13% already present in the Mars atmosphere would be 
neither feasible nor definitive.  Furthermore sensing a single molecule as a “signature” is less likely to 
validate metabolic activity than a more versatile sensing system that reflects a pattern of biological 
products in the vapor phase. 
 
Spectrophotometry 
Seeking the appearance of new absorption peaks, and hence new molecular species in the vapor phase 
is more versatile than oxygen sensing and potentially more revealing about metabolic processes.  
However, either great sensitivity or long path length (not available within the test bed) would be 
required, and lower-level species would be completely missed.    
 
Gas Chromatography 
Gas chromatography is a highly sensitive, extensively practiced method for quantifying multiple analytes 
in the vapor phase.  Extremely promising is the single-chip gas chromatograph developed and described 
by Akbar et al., [2015], which incorporates a photoionization detector and requires only a few mW of 
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electrical power.  As with any gas chromatograph a support gas must be fed at a controlled flow rate – a 
complexity to be avoided in multiply deployed robotically operated miniature devices.   Gas 
chromatography is nowadays frequently followed by mass spectrometry (GC-MS) to characterize vapor-
phase mixtures with built-in “ground truth” in the form of precise molecular mass determination at the 
MS step.  
 
Mass Spectrometry 
The molecular mass of a compound is an almost completely unambiguous identifier, and the best hand-
held technology for adaptation for bioproduct sensing in the Mars Ecopoiesis Test Bed is micro-
manufactured MS.  This is not current off-the-shelf technology but will be the technology of the time 
frame in which launching and operating the Mars Ecopoiesis Test Bed are expected to occur.    
Impressive recent advances in the miniaturization of MS point to MS as the most promising analytical 
technique.  We refer specifically to the progress being made by an active research group led by L. F. 
Velásquez-García at MIT in which the development of an integrated hand-held micro-manufactured MS 
system, including sampling [Hill et al., 2014), ionization source [Dong et al, 2015; Chen et al., 2011], 
quadrupole separator and event detector and even an on-chip vacuum pump are presently becoming 
reality.  Fortunately, the smaller the chip, the less vacuum required.  One of the obvious drawbacks of 
MS is the requirement for high vacuum; however, with current advancements allowing ionization of 
gases in in the 0.1 mbar range [Fomani et al., 2014] it is quite possible that, within a decade, the Mars 
atmosphere itself could function as the vacuum environment for MS so that a postage-stamp-sized, 
multichip analyzer could simply be submerged, fully open, into the Mars atmosphere, and therefore the 
atmosphere of the Ecopoiesis Test Bed,  for the unambiguous identification of all vapor-phase 
constituents.  Therefore the best hand-held technology for adaptation for bioproduct sensing in the 
Mars Ecopoiesis Test Bed is micro-manufactured mass spectrometry.  These tiny systems are suitable for 
mass measurements 1-400 Da and thereby cover the full range of biological volatiles that can be 
expected.  The mass resolution that may be lost due to miniaturization is not expected to interfere with 
the interpretation of mass spectra [Taylor and France, 2009]. Therefore it was decided that Techshot will 
plan to collaborate, to the extent possible, with developers of microminiaturized MS on a parallel track 
to adapt this new and promising technology to bioproduct sensing on Mars.  Parallel tracking of such 
development is also totally consistent with NIAC goals, which include the blending of future 
technologies for future research.   The following concept is therefore considered: 
 
Sampling.  The pressure of the vapor phase to be sampled is already at 10 mbar or below, so the 
sampling step could be simplified to a passive microfluidic orifice sampler [Hill et al., 2014] or nanofilter, 
depending on vacuum requirements [Blain et al., 2009]. 
Ionization.  The gas molecules could also be ionized at the Mars ambient pressure or slightly below 
[Fomani et al., 2014] using micro-manufactured field-emission technology [Dong et al, 2015; Chen et al., 
2011; Blain et al., 2005].  
Acceleration.  The energy requirement is minimized by the short flight distances required, and all 
features could be operated using a few mW of power at a few volts.   
Separation.  Micro-manufactured (<1 cm length) quadrupole design [Taylor and France, 2009] or ion-
trap arrays [Blain et al., 2005] can result in sufficiently high resolution even in a small space. 
Detection.  Detecting ion traps can be spaced a few micrometers apart providing high resolution in 
micro-space, and quadrupole separators may require only a single semiconductor element to record 
events or ion current.  Their signals could be digitally converted on the same chip.   
 
A block diagram of this concept is shown in Figure 20 – micro mass spectrometer schematic.  By the time 
of initiation of phase 2 of this project 
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Figure 20.  Schematic diagram of micro mass spectrometer architecture.  Molecules from the test bed 

atmosphere enter through the nanoporous membrane into the field emission ionization stage, where 

DC and RF potentials drive them through the quadrupole electrode array where they are selected to 

exit to the detection plane.  A microfabricated on-chip vacuum pump is likely to be adequate in the 

<10 mbar atmosphere.  A miniature power supply, which may not need to generate more than 10 v, 

will cable power from the avionics unit to the mass spectrometer.  Digital output signals will return 

using the same cable harness.      

Conclusions 

The objectives of this project, (1) Model and test the availability of liquid water in Techshot’s Mars 

simulator facility, (2) Identify current candidate pioneer organisms for testing and initiate a selection 

program, (3) Create a mechanical and electronic design concept for Mars surface shallow penetrator 

with planetary protection, and (4) Identify electronic biological activity tests, were fulfilled by the 

completion of the Phase-1 research described in this final report.   All of the outcomes point to the 

feasibility of successful Phase 2 research in which a functioning high-fidelity prototype of the Mars 

Ecopoiesis Test Bed can be designed, fabricated and tested under accurately simulated Mars-surface 

conditions prior to manifesting on a post-2020 planetary rover mission.        
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