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1 Executive Summary

This study describes a new technology for discerning the gravity fields and mass distribution of a
solar system small body, without requiring dedicated orbiters or landers. Instead of a lander, a
spacecraft releases a collection of small, simple probes during a flyby past an asteroid or comet. By
tracking those probes from the host spacecraft, one can estimate the asteroid’s gravity field and
infer its underlying composition and structure. This approach offers a diverse measurement set,
equivalent to planning and executing many independent and unique flyby encounters of a single
spacecraft. This report assesses a feasible hardware implementation, derives the underlying models,
and analyzes the performance of this concept via simulation.

In terms of hardware, a small, low mass, low cost implementation is presented, which consists
of a dispenser and probes. The dispenser constains roughly 12 probes in a tube and has a total size
commensurate with a 6U P-Pod. The probes are housed in disc shaped sabots. When commanded,
the dispenser ejects the top-most probe using a linear motor. The ejected probe separates from
its sabots and unfolds using internal springs. There are two types of probes, each designed for a
particular tracking modality. The reflective probe type, tracked by a telescope, unfolds to form
a diffusely reflective sphere. The retroreflector probe type, tracked by a lidar, unfolds to form a
corner-cube retroreflector assembly. Both types are designed to spherical so that their attitude
doesn’t affect the spacecraft’s tracking performance.

This analysis indicates that the point-mass term of small bodies larger than roughly 500 m in
diameter can be observed from a host spacecraft that tracks locally deployed probes throughout a
flyby to an uncertainty of better than 5%. The conditions by which this measurement is possible
depends on the characteristics of the asteroid (size, type), the flyby velocity, and the type of
tracking available (angles-only or angles+ranging). For most encounters, a few (1-3) well placed
probes can be very effective, with marginal improvement for additional probes. Given realistic
deployment errors, an encounter may require roughly 10-12 probes to ensure that 1-3 achieve their
target. Long duration tracking of probes flying by large asteroids (>5 km diameter) can sometimes
provide observability of the gravity field’s first spherical harmonic, J2. In summary, this method
offers a feasible, affordable approach to enabling or augmenting flyby science.
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2 Introduction

Asteroid gravimetry has important relevance to space-science, planetary defense, and future human
spaceflight. Gravimetry gives insight into an asteroid or comet’s internal composition and structure,
which cannot be studied by imagers, spectrometers, or even surface samplers. It has implications for
the formation models of our solar system, since many small bodies are thought to be remnants of the
solar system’s early states. Consolmagno, Britt, and Macke1 suggest that just knowing an asteroid’s
or comet’s density and porosity can give important insights into the early solar system’s accretional
and collisional environment. Asteroid gravimetry also has implications for human spaceflight since
near-Earth objects are considered as targets for human exploration. There is a need to characterize
our near-Earth neighborhood in order to select candidate targets and assess their expected material
properties. There is value in being able to confidently predict how different handling, anchoring, or
landing approaches will operate on a particular class of target. Likewise, small body compositional
and structural knowledge is required for many proposed missions to mitigate asteroid impacts at
Earth. For example, an asteroid’s response to an impactor will depend principally on its interior
composition and mechanical properties. Asteroid interior data may suggest that certain classes of
asteroids would be more safely diverted using other concepts, such as gravitational tugs. Asteroid
composition models will improve the fidelity of asteroid-Earth impact predictions and thus provide
a more complete understanding of the risks posed by different asteroids.

A body’s gravity is typically observed by measuring its effect on the trajectory of a smaller
neighbor, such as a moon or spacecraft.2 That is, by tracking the moon or spacecraft’s motion, one
can estimate properties of the object’s gravitational field. If the gravitational effects are observable,
then the quality of the estimate depends on the number, geometric diversity, and accuracy of the
tracking measurements. For small bodies, these measurements are difficult to attain. Few asteroids
have companions that can be tracked, so we have to rely on observations of spacecraft for high
accuracy results. This is achieved by maneuvering a spacecraft to fly past, orbit, or land on a small
body while tracking the spacecraft from the ground. While orbiters and landers offer the highest
quality science, they require dedicated missions and are often constrained to a single target due to
practical ∆v limitations.

Flybys are favorable because they are often easily added to existing mission designs with little
impact to cost or operations;3,4 however, they present many challenges for gravimetry. Flybys are
typically short-lived events owing to relative velocities of many km/s. The magnitude of deflection
from an asteroid is a function of the mass of the asteroid, the asteroid-spacecraft relative velocity,
and close-approach range to the center-of-mass. For typical relative velocities (5-15 km/s) the
spacecraft must pass very close to the asteroid to achieve a measurable deflection. The high relative
velocity implies a short-time-duration conjunction and the asteroid exerts only a weak gravitational
force that diminishes in proportion to r−2. The close proximity represents a risk, or operations
challenge, to the mission. In addition, low-altitude passes may degrade the science from other
instruments that cannot accommodate the high spacecraft slew rates required to track the object
during a close pass (e.g., cameras or spectrometers).
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Figure 1: Spacecraft flyby of an asteroid with the spacecraft tracking its ejected probes.

This paper describes a method to enable or augment gravimetry during flybys of small-bodies
without imposing a low-altitude spacecraft flyby. Instead, the spacecraft acts a host to a group
of small deployable probes,5,6 as shown in Figure 1. The host spacecraft releases the probes just
prior to a flyby. The probes diverge from the host and pass the small body from a variety of ranges
and directions. Each probe’s motion represents an independent flyby. The host spacecraft tracks
each probe’s pre- and post-encounter relative positions and downlinks this data to the ground.
Once the measurements are received, an estimation technique is used to solve for the best-fit orbit
parameters and the small body’s mass. Given a large quantity of probes and a rich diversity of
probe trajectories, this solution can have sufficient fidelity to yield a gravity model. Combining
this model with a surface profile derived from optical or altimeter measurements may give insight
into the asteroid’s mass distribution and composition.

This approach is similar to that studied by Grosch and Paetznick7 and Psiaki8 who used a set
of relative measurements over a series of orbits to estimate the inertial position of deployed probes
and the central body’s gravitational terms. Likewise, Muller and Kachmar9 analyzed the use of
relative measurements of deployed probes to estimate inertial terms in a host spacecraft’s dynamics.

The probes need only be trackable, which implies that they may be very simple, low-cost,
and easily accommodated on-board a spacecraft. If properly deployed, they can yield many mea-
surements among many independent paths, which improves the observability of the gravimetry
problem. In addition, most measurement types benefit from short ranges, offering higher signal-
to-noise measurements relative to the host spacecraft than could be achieved relative to an Earth
based ground station. Finally, the probes can conceivably be deployed to pass within a very short
range of the small body’s surface, which allows the host spacecraft to maintain a safe distance that
is optimal for other instruments. The probes’ reduced magnitude of closest approach will yield a
corresponding increase of their trajectory change when compared to that of the spacecraft. For a
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nominally spherical asteroid of fixed mass, the efficacy of this technique is limited by the asteroid’s
density. Higher density asteroids will permit the probes to reduce their distance of closest approach
(relative to the center-of-mass), thus increasing the asteroid’s perturbation of the probes from their
nominal trajectories and improving the accuracy of the estimation results.

This paper describes a set of candidate system architectures, including a variety of tracking
methods and a candidate deployment technique, which are analyzed via simulation. The analysis
includes a definition of the state vector, the dynamics model of the flyby, several different measure-
ment models, an appropriate estimation algorithm, and a covariance simulation. The simulation
and estimation approach are evaluated over a trade-space that assesses relevant parameters.
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3 System Architecture

The system is composed of three principal components: the tracking method, the probe design,
and the deployment method. A successful architecture addresses each of these components in a
manner that results in high-quality gravimetry while imposing as few constraints or burdens on
the host spacecraft or mission. The tracking method and probe design are tightly coupled and are
presented together, while the deployment method is considered separately.

3.1 Tracking Method and Probe Design

The host spacecraft must detect and track each probe throughout the flyby. For large numbers of
probes, the tracking method should ideally facilitate differentiation among the probes and measure-
ment attribution. Alternatively, one could pursue multiple hypothesis models that would consider
each measurement’s association with each probe. Table 1 lists six candidate tracking methods. In
addition to the parameters listed, the options also differ with respect to the required burdens to the
host spacecraft and required complexity of the probe design. Each of these approaches is described
in greater detail below.

Table 1: Candidate Tracking Methods
Sensing Type Power Source Measurement Type Differentiation

Optical Sunlight Reflection (Sun) Angles Challenging
LED Illuminators (Battery) Angles Possible
Laser Irradiation (Host Spacecraft) Angles and Range Built-In

Infrared Powered Heaters (Battery) Angles Possible
Radio RF Beacon (Solar, Battery) Doppler and/or Range Built-In

Radar Reflection (Host Spacecraft) Doppler and/or Range Possible

1. Sunlight Reflection - One favorable candidate method requires that the probes be reflective
to sunlight. The host-spacecraft then uses its on-board imager to detect and track the probes
as they drift away from the spacecraft and flyby the small body. This approach requires a
low solar phase angle (the angle connecting the sun-probe-imager points) so that the probes’
reflections are visible to the spacecraft. This can be achieved by deploying the probes in the
anti-sun direction. The reflection is dependent on the probe’s shape, size, and reflectivity
properties.

2. LED Illuminators - In this method, light-emitting-diodes (LED) are tracked by their optical
signature. These can operate independently of the sun-relative geometry. The probes would
consist of batteries and flashing LEDs. Here, the probes’ detectability depends on the number
and brightness of LEDs. This is reminiscent of the Japanese FITSAT-1 cubesat,10 which was
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observable at ranges of 100’s of kilometers using standard telescopes with long integration
times.

3. Lidar - Ranging lasers were used on the Gravity Recovery and Climate Experiment11 (GRACE)
and Gravity and Interior Laboratory12 (GRAIL) missions. This implementation offers the
highest quality measurements, but imposes requirements on the host spacecraft, which must
accommodate and point a laser. In this instantiation, the probes could consist of assemblies
of corner-cube retroreflectors,13,14 which would give very high returns at nearly any attitude.
This would help to mitigate the losses associated with range (d−4). It may be possible to use
an existing laser altimeter designed for surface science.

4. Powered Heaters - If the host spacecraft carries a focal plane sensitive to infrared wave-
lengths, it may be possible to detect heated probes’ thermal signatures. The performance
and duration of the probes are limited by the available on-board power storage. For prac-
tical battery sizes, the effective tracking range is relatively short. In addition, the tracking
accuracy is likely low given the poorer relative quality of available infrared focal plane arrays.

5. Radio Frequency (RF) Beacons - If each probe is equipped with a radio-frequency bea-
con, it could be readily identifiable with an on-board radio subsystem. Differentiation would
be straightforward via time-division, channel-division, or code-division multiple access ap-
proaches. One likely challenge is the measurement quality associated with an on-board oscilla-
tor. The change in relative velocity is quite small between the probes and the host-spacecraft.
This requires a very stable probe oscillator during the whole encounter. Otherwise, thermal
variation in the oscillator could overpower any induced frequency variation.

6. Radar Reflectors - If each probe is reflective in an RF sense, it may be possible to detect
and track very simple probes over long ranges using a radar instrument on the host spacecraft.
Here, the signature is defined by the probe’s radar cross section. One probe implementation
could consist of simple metal dipoles,15 as is used in radar chaff or was used in Project
West Ford.16 A higher return design would use corner cube retroreflector13 assemblies.14 The
longer wavelength of the radar signal eases the probe’s reflection and flatness tolerances, which
facilitates production. This approach burdens the host spacecraft with carrying a dedicated
radar payload, of which many space-qualified designs currently exist.

Two feasible deployable probe concepts were designed. The first probe design addresses the
sunlight-reflection case and constitutes of an expanding, 10 cm diffuse sphere. The exterior is a
white fabric wrapping a thin spring-metal frame. When compact, the probe fits in between two
sabots, which house it prior to ejection. This is illustrated in Figure 2.

The second probe design applies to the lidar and radar tracking methods. This design consists
of a central mirrored disc, with 8 unfolding mirrored sides. The compacted shape is a thin disc
that fits within two sabots. Once the sabots are removed, the probe’s sides unfolded (via torsion
springs), and the assembly consists of 8 corner-cube retroreflectors as illustrated in Figure 2.
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Both probe designs are spherical, such that they give a high signal-to-noise return in any
orientation. Additionally, this facilitates the characterization, calibration, and estimation of solar
radiation pressure, which is treated as an error source in this analysis.

3.2 Deployment

The host spacecraft must release each probe onto a trajectory that passes within a short range of
the target body along an independent, diverse path without subsequently interfering with the host
spacecraft. Given the very low values of imparted ∆v by the low-mass small-bodies, the probability
of a probe recontacting the spacecraft is insignificant.

A favorable deployment architecture consists of a combination of spacecraft pointing, spacecraft
thrusting, and a hardware deployment mechanism. Multi-payload deployment has been demon-
strated with cubesats, which are routinely deployed from launch vehicle upper stages without
interfering with the primary mission payloads. Here, the vehicle points the cubesat’s compressed-
spring deployer along a desired direction, releases a stop that allows a spring to extend and impart a
relative separation velocity to the cubesat, and then executes a small collision avoidance maneuver
to prevent any future recontacts. This process would be useful for the flyby application as well,
in that the deployment benefits from the spacecraft’s high-quality attitude control and timing, to
place the probe on a low-altitude pass of the small body. Compression springs introduce a non-
negligible level of uncertainty to the deployment. As an alternative, a small controllable solenoid
could be commanded to eject each probe. An accurate deployment process would include extensive
pre-launch component characterization, and it would include a study of performance degradation
due to the long storage times between assembly, launch, and use.

A dispenser has been designed to accommodate the two types of probes. The dispenser consists
of a tube that contains roughly 12 probe assemblies. The probes are contained within low-friction
disc sabots. When commanded, the top-most probe assembly is ejected using a linear motor. The
motor pushes the probe assembly completely out of the “chamber” and then returns to a rest-state.
The next probe assembly is then pushed into place for ejection by a compression spring. The size
(35 cm x 25 cm x 15 cm) and mass (< 8 kg) of the dispenser is meant to be commensurate with a
6U P-Pod CubeSat deployer. The linear motor requires 20-200 W of power at the time of ejection.
The housing and sabots were rapid-prototyped, as shown in Figure 3.
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Figure 3: Photograph of dispenser concept prototype.
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4 Analysis

4.1 System State Definition

The following analysis is based on models of the probes, host spacecraft, and the asteroid. The
parameters that define these models are referred to as the states of the system. These states can
be combined to form one system state vector with the following definition:

X =
[
r1 , r2 , . . . , rN ṙ1 , ṙ2 , . . . , ṙN g1 , g2 , . . . , gM

]T
(1)

where ri is the 3-by-1 position vector of probe i for i = 1–N , ṙi is the 3-by-1 velocity vector of
probe i, gj is the jth coefficient of a yet-to-be-defined parameterization of the asteroid gravitational
field for j = 1–M , and ∗T is the transpose of the quantity ∗. The terms ri and ṙi are defined as:

ri = [xi yi zi]
T (2)

ṙi = [ẋi ẏi żi]
T (3)

The selection of the reference frame and the gravity model are deferred until the next subsection.
The following analysis is based on two different types of state-space models:17 a dynamics model

and a measurement model. The dynamics model describes the way that all of the states change
over time, and the measurement model defines the functional dependence of the measurements on
those same states.

4.2 System Dynamics

The dynamics of the probes are modeled as obeying the following equation:

r̈ = f (r) + d (4)

where r̈ is the second time derivative of the position vector r, f (r) is the position dependent
gravitational acceleration, and d is the acceleration term associated with all other perturbations,
including solar gravity, n-body gravity, and solar radiation pressure.

The secondary accelerations modeled by d, while non-negligible, are treated as constant over
the period of the flyby encounter among all the probes. This assumes that the value of these
terms is insensitive to variation in each probe’s local position over the encounter. In the case of
solar radiation pressure, this assumes that a campaign was conducted to characterize the optical
parameters for each probe prior to launch. Alternatively, the probes can be designed such that the
solar radiation pressure acting on each probe is attitude-independent and consistent among all of
the probes.

This work uses the center of mass of the asteroid as the center of its coordinate system. For
this analysis, gj consists of the first M coefficients in a spherical harmonic expansion.
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The system state vector’s nonlinear time derivative is:

Ẋ =
[
ṙ1 , ṙ2 , . . . , ṙN f (r1) , f (r2) , . . . , f (rN ) 01×M

]T
(5)

where the bottom subvector indicates that the gravitational parameters are constant throughout the
simulation. f (ri) is a 3-by-1 vector that represents the computation of the small body’s nonlinear
position-dependent gravitational acceleration for the ith probe.

The system state vector’s Jacobian A = ∂Ẋ/∂X, which is necessary to compute the model’s
state-transition-matrix, takes the form:

A =


[
∂ṙi
∂ri

] [
∂ṙi
∂ṙi

] [
∂ṙi
∂gj

][
∂r̈i
∂ri

] [
∂r̈i
∂ṙi

] [
∂r̈i
∂gj

][
∂ġj
∂ri

] [
∂ġj
∂ṙi

] [
∂ġj
∂gj

]
 (6)

Recognizing that gravity is dependent on position only, and that the gravitational parameters
are constant, many of these terms simplify:

A =

 0(3N×3N) I(3N×3N) 0(3N×M)[
∂r̈i
∂ri

]
0(3N×3N)

[
∂r̈i
∂gj

]
0(M×3N) 0(M×3N) 0(M×M)

 (7)

and where:

[
∂r̈i
∂ri

]
=



[
∂f(r1)
∂r1

]
03×3 . . . 03×3

03×3

[
∂f(r2)
∂r2

] . . .
...

...
. . .

. . . 03×3

03×3 . . . 03×3

[
∂f(rN )
∂rN

]

 (8)

[
∂r̈i
∂gj

]
=



[
∂f(r1)
∂g1

] [
∂f(r1)
∂g2

]
. . .

[
∂f(r1)
∂gM

][
∂f(r2)
∂g1

] [
∂f(r2)
∂g2

]
. . .

[
∂f(r2)
∂gM

]
...

...
. . .

...[
∂f(rN )
∂g1

] [
∂f(rN )
∂g2

]
. . .

[
∂f(rN )
∂gM

]

 (9)

Here,
[
∂f(ri)
∂ri

]
is the 3-by-3 matrix that represents the linearization of the ith probe’s gravitational

acceleration as a function of its position ri. The matrix
[
∂r̈i
∂ri

]
is diagonal because every probe is

assumed to have a negligible gravitational attraction on every other probe.
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As an example, for the point-mass case: M = 1, g1 = µ, f(ri) = −µri/‖ri‖
3, the linearization

is defined as [
∂f(ri)

∂ri

]
=
−µ
‖ri‖

3 I3×3 +
3µ

‖ri‖
5

 x2
i xiyi xizi

xiyi y2
i yizi

xizi yizi z2
i

 (10)

[
∂f(ri)

∂gj

]
=
−1

‖ri‖3

 xi
yi
zi

 (11)

Models and linearizations for spherical harmonic representations of gravity, such as J2, are available
in Ref. [18].

The propagation from one time to another, say tk to tk+1, is defined using the standard linear
systems equations:

Xk+1 = Φ (tk+1, tk, Xk)Xk (12)

where it has been assumed that there is no process noise or control inputs perturbing the state,
and Φ is the state-transition matrix. The inclusion of Xk in Equation (12) denotes a nonlinear
dependence on the state vector. The matrix Φ can be computed using any one of a variety of
numerical integration techniques.19,20,21

4.3 Measurement Models

The six different tracking methods presented earlier in this paper are categorized by measurement
type as either angles, range, or Doppler shift. This section presents models of the measurements’
dependence on components of the state vector X. There are multiple hardware designs that can
produce each of the following measurement types, and the following measurement models are ap-
propriate for a very wide range of design possibilities.

4.3.1 Angles

Four different tracking methods can generate angle-type measurements: sunlight reflection, LED
illumination, lidar, and powered heaters. The observable quantities in these tracking methods
are the azimuth (θ) and elevation (φ) angles. The model of the functional dependence of these
measurements on the state vector is the following:

θi = tan−1

(
(yi − yH)

(xi − xH)

)
(13)

φi = tan−1

(
(zi − zH)√

(xi − xH)2 + (yi − yH)2

)
(14)

where ∗H refers to the “host” spacecraft’s quantity ∗.
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Equations (13) and (14) are nonlinear functions of the probe states. Standard estimation
techniques approximate the nonlinear equations with Taylor series expansions that are typically
truncated after the first derivative. The resulting approximation is linearly dependent on the
system state vector. Therefore, the partial derivatives of the above equations with respect to the
state vectors are required:

∂θi
∂ri

=


−(yi−yH)

(xi−xH)2+(yi−yH)2

(xi−xH)
(xi−xH)2+(yi−yH)2

0


T

(15)

∂φi
∂ri

=


−(xi−xH)(zi−zH)

((xi−xH)2+(yi−yH)2)‖ri−rH‖
2

−(yi−yH)(zi−zH)

((xi−xH)2+(yi−yH)2)‖ri−rH‖
2

((xi−xH)2+(yi−yH)2)
‖ri−rH‖

2


T

(16)

4.3.2 Range

Three different tracking methods can generate range-type measurements: lidar, RF beacons, and
radar reflectors. The model of the functional dependence of the angle measurements on the state
vector is the following:

ρ = ‖ri − rH‖ (17)

with the resulting partial derivatives:

∂ρ

∂ri
=

[ri − rH ]T

ρ
(18)

4.3.3 Doppler Shift

Two different tracking methods can generate Doppler shift-type measurements: RF beacons and
radar reflectors. The model of the functional dependence of these measurements on the state vector
is the following:

p = (ṙi − ṙH)T ρ̂
iH

(19)

where ρ̂
iH

is the line-of-sight unit-vector from the host to probe i.
The partial derivative of the Doppler-shift measurement with respect to the state vector is:

∂p

∂ṙi
=

(ṙi − ṙH)T

ρ
− (ri − ṙH)T (ri − rH)

ρ3
(ri − rH)T (20)

∂p

∂ṙi
= ρ̂T

iH
(21)
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4.3.4 Line-Of-Sight Obscuration

It is possible that at some times the asteroid of interest will pass between the host spacecraft
and a probe. During these times the host spacecraft will not be able to make measurements of
the probe. This line-of-sight obscuration and resulting measurement loss has been included in the
results presented in this paper. Fortunately, this obscuration is brief and causes a negligible loss in
the total number of measurements.

4.3.5 Combined Measurement Model Formulation

The following mathematical formulation and subsequent explanation are facilitated by stacking the
measurements by type into a combined column vector:

y = [θ1 , θ2 , . . . , θN φ1 , φ2 , . . . , φN ρ1 , ρ2 , . . . , ρN p1 , p2 , . . . , pN ]T (22)

with the corresponding linearized measurement model:

y = HX + v (23)

where H is defined as:

H =



[
∂θk
∂ri

] [
∂θk
∂ṙi

] [
∂θk
∂gj

][
∂φk
∂ri

] [
∂φk
∂ṙi

] [
∂φk
∂gj

][
∂ρk
∂ri

] [
∂ρk
∂ṙi

] [
∂ρk
∂gj

][
∂pk
∂ri

] [
∂pk
∂ṙi

] [
∂pk
∂gj

]

 =



[
∂θk
∂ri

]
0P×3N 0P×M[

∂φk
∂ri

]
0P×3N 0P×M[

∂ρk
∂ri

]
0P×3N 0P×M[

∂pk
∂ri

] [
∂pk
∂ṙi

]
0P×M

 (24)

and v is the measurement noise. The measurement noise statistics are approximated as zero-mean,
white, and Gaussian: v ∼ N (0, R). The covariance matrix R is assumed to be a diagonal matrix
due to the uncorrelated noise between different probes and different measurement types:

R = blockdiagonal (Rθ, Rφ, Rρ, Rp) (25)

where:

R∗ =


σ2
∗1 0 . . . 0

0 σ2
∗2

. . .
...

...
. . .

. . . 0
0 . . . 0 σ2

∗N

 (26)

and with each measurement having the same covariance (σ∗i = σ∗j).
If only a subset of the measurement types are used, eg., a camera or a radar, then the above

equations would have the appropriate lines eliminated.
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4.4 Simulation and Estimator

This paper’s simulation assumes that no process noise and no control inputs perturb the state
vector. Therefore, the system’s behavior is fully defined by the initial state vector. This formulation
suggests that a batch-type estimator should be used for state estimation. This work estimated the
state vector X using a Maximum A-Posteriori batch estimator that is similar to the algorithm of
Tapley, Schulz, and Born.22 The Maximum A-Posteriori estimator requires an initial state estimate
and associated covariance. That initial state estimate is refined using the simulated measurements
in a least square process.

4.4.1 Initialization and Prior Distribution

To initialize the estimator, the system’s state vector covariance is required. If each probe’s initial
uncertainty is associated with the expected knowledge of the location and imparted separation
velocity at the time of deployment, it can be represented using additive, zero-mean Gaussian errors.[

ri
ṙi

]
est

=

[
ri
ṙi

]
true

+

[
er
eṙ

]
(27)

If the position and velocity errors are uncorrelated and zero-mean, then the errors er and eṙ can
be modeled as vector-valued Gaussian random variables:

eri ∼ N
(
0, Pri

)
(28)

eṙi ∼ N
(
0, Pṙi

)
(29)

where:

Pri =

 σ2
x 0 0

0 σ2
y 0

0 0 σ2
z


i

, Pṙi =

 σ2
ẋ 0 0

0 σ2
ẏ 0

0 0 σ2
ż


i

(30)

Likewise, the gravitational field uncertainty can be represented using additive zero-mean Gaus-
sian errors with error covariance Pg.

An a-priori (6N+M)× (6N+M) system state uncertainty can then be constructed:

P = blockdiagonal
(
Pr1 , Pr2 , . . . , PrN , Pṙ1 , Pṙ2 , . . . , PṙN , Pg

)
(31)

4.4.2 Estimation Algorithm Details

The derivation of the Maximum A-Posteriori batch estimator is provided in moderate detail in
the next few paragraphs. However, more information can be found in the references22,23 regarding
similar estimators.
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If the prior distribution and the measurement noise distribution are both modeled as vector-
valued Gaussian random variables, then the likelihood function is given by:22

L = f
(
Xj |ỹ1

, ỹ
2
, . . . , ỹ

j

)
=
f
(
ỹ
j
|Xj

)
f
(
Xj |ỹ1

, ỹ
2
, . . . , ỹ

j−1

)
f
(
ỹ
j

) (32)

=
1

(2π)(l)/2 |R̃j |
1
2

e
− 1

2

[(
ỹ
j
−H̃jXj

)T
R−1

j

(
ỹ
j
−H̃jXj

)]
...

1

(2π)(6N+M)/2 |Pj |
1
2

e
− 1

2

[
(Xj−X̄j)

T
P−1
j (Xj−X̄j)

]
1

f
(
ỹ
j

) (33)

where f (∗) is the probability density function (pdf) of the quantity ∗ and l is the total number
of measurements. The subscript js in Equations (32)–(33) indicate quantities associated with the
state vector at the initial time. The ∗̃ operator has been placed on y

j
and Hj to denote a stacking

of all of the measurements and measurement sensitivity matrices through the simulation into a
single quantity with l rows:

ỹ
j

=
[
y

1
, y

2
, . . . , y

k

]T
(34)

H̃j =


H(X1)Φ (t1, t0)
H(X2)Φ (t2, t0)

...
H(Xk)Φ (tk, t0)

 (35)

where measurements are assumed to be received k number of times and the H matrices’ dependence
on the state vector has been shown explicitly.

Equation (33) can now be optimized with respect to the state, i.e., we wish to select the state
X with the highest likelihood. Maximization of Equation (33) is mathematically equivalent to the
minimization of:

J (Xj) = −2ln (L) =
(
ỹ
j
− H̃jXj

)T
R̃−1
j

(
ỹ
j
− H̃jXj

)
+
(
Xj − X̄j

)T
P−1
j

(
Xj − X̄j

)
(36)

which is referred to as the Maximum A-Posteriori cost function. The optimization has the necessary
condition that the first partial derivatives of J (Xj) with respect to the state are zero at the
optimum:

∂J (Xj)

∂Xj
= 0 (37)

Equation (33) is a linearized version of a nonlinear function. This nonlinear function must be
driven to zero to satisfy the optimization conditions. This requirement is commonly accomplished
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with the Newton-Raphson technique for root-finding, where the function is approximated by its
Taylor series expansion and then minimized in an iterative manner. Unfortunately, in addition
to the Jacobian matrix this method requires the computation of the Hessian tensor because the

Newton-Raphson method requires the computation of
∂2J(Xj)

∂X2
j

. It is common practice22 to approx-

imate the Hessian as zero. This is true when the solution to nonlinear cost function is very close
to the optimum, under certain assumptions. This method is commonly referred to as the Gauss-
Newton method. Although not explicitly stated, this appears to be the method used by Tapley,
Schutz, and Born22 to arrive at their estimator.

The above derivation results in an iterative procedure with the following solution for a given
linearization state Xq

0 :

Xq+1
0 =∆X +Xq

0 (38)

∆X =
[
H̃T R̃−1H̃ + P−1

]−1 [
H̃T R̃−1

(
ỹ − H̃Xq

0

)
+ P−1

(
Xq

0 − X̄0

)]
(39)

where Xq
0 is updated after each iteration to the most recently determined Xq+1

0 , and that is used

to relinearize the dynamics and measurement equations that define H̃ via Equation (35). Tapley,
Schutz, and Born22 discuss an efficient way to compute some of the terms in Equation (35).

This paper’s algorithm diverges from Tapley, Schutz, and Born’s algorithm at this point. One
primary difference is that the state vector increment ∆X is guarded. The increment determined
by the evaluation of Equation (39) is the result of a linear approximation that is valid in only some
small region about the linearization point Xq

0 . If the recommended perturbation is too large then
the new state vector may fall far outside of the linearization validity range, and the resulting state
vector Xq+1

0 may actually be a poorer fit and have a higher cost than the previous state vector Xq
0 .

If this process is performed repeatedly, then the estimator may move within a region around the
optimal solution, it may diverge, or it may oscillate. Convergence can be enforced by redefining
the state vector step-size for use in an iterative procedure:

Xq+1′

0 = α∆X +Xq
0 (40)

where α starts at 1 and is halved until the resulting state vector estimate Xq+1′

0 produces a decreased

cost when compared to the previous cost from Xq
0 . Once a cost decrease is realized Xq+1

0 is set

equal to Xq+1′

0 , and then the procedure starts again. However, this convergence procedure will
only be successful if the initial state estimate is sufficiently close to the optimal state estimate.
A discussion of the criteria used to terminate this iterative procedure is beyond the scope of this
work, but more detail can be found in the References.24

4.4.3 Estimation Algorithm Summary

The estimation approach requires five steps:
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1. Linearize the dynamics and measurement model equations about an initial state vector.
2. Map each measurement’s “innovation” to initial time t0 using the state transition matrix Φ.
3. Compute the state vector perturbation α∆X that reduces the cost function J (Xj).
4. Update the state vector estimate using α∆X and relinearize the necessary equations.
5. Repeat steps 2-4 until the nonlinear iteration convergence criteria are satisfied.

4.4.4 Covariance Simulation

Covariance simulations can provide estimates of state estimation error statistics without generating
simulated noisy measurements. In this method, the covariance is propagated and updated in the
standard Maximum A-Posteriori manner:

Pj =
[
H̃T
j R̃
−1H̃j + P

]−1
(41)

but the state is not estimated. The statistics of the estimation method can be accurately de-
termined if the true state is known, as is the case with truth-model simulations. Issues such as
nonlinear convergence and estimator pull-in range are not considered in this method. Therefore,
the covariance simulations constitute a lower-bound on the estimation error covariance. Fortu-
nately, testing with the previously discussed estimator showed that the nonlinear nature of this
system is mild, and the estimator converges on a very consistent basis. Therefore, the covariance
simulation results presented in this paper are a good representation of the expected performance
of the estimator when many different realizations of the system are averaged together.
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5 Results

The previously described equations were implemented in a MATLAB simulation and the results of
that simulation are provided here in the form of a parametric trade study.

5.1 Parametric Trade Study

This study explores the following quantities for the trade-space of an asteroid flyby: measurement
type, asteroid classification, asteroid size, and spacecraft-asteroid relative flyby velocity. Three
different measurement classes are considered: a camera, a camera and radar, and a lidar. Four
different asteroid classes are examined: C (carbonaceous chondrite), S (chondrite), M (metallic),
and P, with densities2 of 1.0, 2.0, 4.0, and 0.8 g/cm3, respectively. The asteroid sizes vary from a
radius of 0.1–10 km, and the flyby speed spans 5–15 km/s.

5.1.1 Success Criteria

The trade-space is cast in terms of the number of probes required to satisfy a given error require-
ment. This study uses the 1 σ estimation error standard deviation associated with the asteroid’s
gravitational parameter as the metric, and sets the threshold to be 5% of the true value. For ex-
ample, if four probes provide an estimate of the asteroid’s gravitational parameter that is accurate
to only 10% (1 σ) of its true value, then the number of probes are increased until the estimation
error standard deviation is less than or equal to 5% . The maximum number of probes that could
be used in any one flyby was limited to 100 probes.

5.1.2 Deployment Budget and Methodology

The probes are deployed from the host spacecraft prior to the asteroid flyby. Earlier deployments
require less deployment ∆v, while later deployments allow less time for errors to accumulate. The
approach taken in this study was to identify many of the sources of error in the deployment process
and combine them in a root-sum-of-squares approach. This approach assumes an unbiased Gaussian
error model for each error source. Table 2 summarizes the deployment budget and the approximate
expected magnitude of each error. The derivation and equations used to compute each quantity is
omitted for the sake of brevity, but they are mostly derived from simple linearizations of nonlinear
equations. The final deployment standard deviation using these approximations is 5.3 kilometers
for a deployment 1.75 days prior to close-approach.

For the purposes of a trade-study, the probes were assumed to be deployed perfectly and in
such a way that they created a ring about the asteroid at their closest approaches. This eliminates
variation associated with stochastic deployment errors. The probes were simulated to pass the
asteroid at 15 kilometers above the equivalent spherical radius of the asteroid. The 15 kilometers
act as a buffer that is approximately 3 σ of the deployment budget, allowing for a significant
deployment error. It is very unlikely that any of the probes will impact the asteroid. A perfect
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Table 2: Deployment control budget components for a flyby speed of 15 km/s, a deployment speed
of 3 m/s, and a lead time of closest approach of 1.75 days.

Error Source Error Magnitude Propagated Error

Spacecraft
Relative Position Knowledge 3000 m 3000 m
Relative Velocity Knowledge 0.1 m/s 1512 m
Attitude Knowledge 5 × 10−5 rad 23 m

Deployment Mechanism
Alignment Knowledge 8.7 × 10−3 rad 3959 m
Impulse Knowledge 0.001 m/s 151 m
Timing Knowledge 0.001 s 15 m

Environment
Mismodeled Accelerations 1 × 10−7 m/s2 1143 m

deployment will not occur in practice, but even the non-ideal deployments will provide similar
results for a very high percentage of the samples of the stochastic (Gaussian) deployment budget.

5.1.3 Baseline Simulation Parameters

The simulation parameters used in the baseline scenario are listed in Table 3. The range of the
camera, radar, and lidar were derived from several known instrument designs. The camera baseline
is the Long Range Reconnaissance Imager25 (LORRI) that is on the New Horizons spacecraft.
Given a one second integration time, a 10 cm diffuse sphere is observable at 2000 km. For this
duration, the imager is sensitive enough to identify stars of at least 15th magnitude, which improves
the measurement accuracy by removing spacecraft pointing uncertainty. The radar is taken to be
Ku band pulsed transmitter with 20W peak power for 400 µs. The antenna is a 1.5 m parabolic
dish, which could be dual-purposed as the spacecraft’s communications high-gain antenna. For a
10 cm retroreflector assembly, this radar could achieve detection at roughly 200 km. The lidar is
modeled as a 1064 nm source with 0.5 mJ, 5 ns pulses and a beam divergence of 0.1 mrad. These
values are not unlike the laser altimeter flown on the Near Earth Asteroid Rendezvous Mission.26

The silicon avalanche photodiode detector can operate in one of two modes: linear amplification
and Geiger mode. The linear mode, which is traditionally used, offers ranges of roughly 200 km to
a 10 cm retroreflector. The Geiger mode is extremely sensitive, achieving detection ranges of over
2000 km, but generates false-positives that must be reduced statistically by integrating multiple
returns and cooling to reduce thermal noise.

The trajectory of the host spacecraft and the probes is depicted in Figures 4 and 5. The host
spacecraft is at bottom of the figure, the asteroid is in the top right, and the probes are arranged
in a ring and are about to pass-by the asteroid. The figure is meant as a visualization aid only;
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Table 3: Simulation parameters used for the trade-study.
Simulation Parameter Value

A priori asteroid mass estimate (1 σ) 100%
Simulation duration 10 days
Time between measurements 10 minutes
Spacecraft/asteroid closest approach 500 km
Probe position deployment accuracy (1 σ) 1 m
Probe velocity deployment accuracy (1 σ) 0.1 m/s
Camera angular measurement accuracy (1 σ) 0.75/3600 deg
Camera maximum measurement range 2000 km
Radar range measurement accuracy (1 σ) 0.5 m
Radar velocity measurement accuracy (1 σ) 1 m/s
Radar maximum measurement range 200 km
Lidar angle measurement accuracy (1 σ) 0.1 mrad
Lidar range measurement accuracy (1 σ) 10 cm
Lidar maximum measurement range 2000 km
Asteroid density, C Class 1.0 g/cm3

Asteroid density, S Class 2.0 g/cm3

Asteroid density, M Class 4.0 g/cm3

Asteroid density, P Class 0.8 g/cm3

none of its components are to scale.

5.1.4 Baseline Results

The number of probes that are needed to estimate the asteroid’s gravitational parameter to a 5%
threshold with the given set of parameters is shown in Figure 6. The number of probes required for
each parameter combination is depicted by the color. The white area indicates that the maximum
considered quantity of 100 probes were insufficient to recover the gravity information to to the re-
quired threshold. The number of probes needed to accurately estimate the gravitational parameter
decrease as the asteroid increases in size, as the flyby speed decreases, and as the density increases.
The rows of contour plots each indicate the type of tracking used (camera, camera and radar, or
lidar). The columns of contour plots indicate the class of the asteroid that is being considered (C,
S, M, or P).

Figure 7 shows the results of the same computation, but using the estimation error threshold
on the g2 term, which corresponds to the first zonal harmonic, J2. The point-mass term can be
more readily estimated than the g2 term because its effect drops-off at a rate proportional to r−2

instead of r−3. Several probes are always required to estimate the g2 term.
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5.1.5 Time-Dependence Estimation Results

The accuracy of the estimation results improves as the probes are tracked for a longer period of
time after the flyby. Figure 8 has been included to illustrate this point, which gives estimation
accuracy as a function of time. The results are shown for the camera and the lidar using the
simulation parameters mentioned previously. The combined radar and camera case is identical to
the camera-only case in performance, owing to the radar’s short effective range. In this simulation
the spacecraft is moving parallel to the probes past a 1.0 km radius asteroid with a closest-approach
of 500 kilometers and a flyby velocity of 10 km/s. With the camera and lidar, the host spacecraft
can always detect the probes.

The estimation error begins at 100% because it is assumed that the asteroid’s gravitational
parameter can be estimated to at least that well using a priori information, i.e., before any mea-
surements are taken of the probes. The simulation was ended after 8 days because it is very
likely that mismodeled accelerations, such as solar radiation pressure, will accumulate sufficiently
to degrade the estimation results. The accuracy in the figure improves dramatically once the flyby
occurs, near 1 day. The improvement is very significant over a time-span of approximately 1/2–1
day for the lidar case but requires more time for the camera. This observation motivates a second
trade-study, one with a series of maneuvers that bring the spacecraft closer to the probes and keeps
them in close proximity for a significant amount of time.

5.1.6 Trade-Study Results from a Scenario with a Maneuver

This trade study uses the maneuver portrayed in Figure 9. The spacecraft starts approaching
the target asteroid directly. A small thrust is performed to move the spacecraft downward in the
figure, then an equal thrust is provided in the opposite direction to move halt the spacecraft’s
lateral motion with respect to the asteroid. This second maneuver occurs once the spacecraft
has moved sufficiently distant that it is in no danger of collision with the asteroid. Once the
flyby occurs another thrust is performed to move the spacecraft upward in the figure. Once the
spacecraft has come close to the probes the thruster is again used to halt the spacecraft’s lateral
motion. The distance between the host spacecraft and the asteroid at flyby was approximately 500
kilometers, and the distance between the centroid of the probes and the host spacecraft post flyby
was approximately 75 kilometers. Each thrust can be very small if the first one is initiated far in
advance. This simulation used a ∆v of 10 m/s for each thrust, but half of that amount, or even
less, would be possible. The sensor resolutions are the same as in the previous no-maneuver case,
but their effective range requirements are significantly reduced: a range of 100 kilometers for the
camera and radar, and 200 kilometers for the lidar. These reduced range requirements are easily
met with heritage sensors.

Figures 10 and 11 show the results of the trade study, but for the case when the spacecraft
maneuvers. As expected, the estimation algorithm is typically able to more accurately determine
the gravitational parameters.
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Figure 4: Top view of baseline deployment of ring of probes.

Figure 5: View along host spacecraft velocity at time of close-approach.
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Figure 9: Top view of maneuvered deployment of ring of probes.
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5.2 Flyby Tour Example

An example flyby tour was generated to illustrate the effectiveness of the technology in a realistic
mission context. In this case, the spacecraft is launched into a trajectory that is roughly tangent
with the inner main belt asteroids. This approach has the advantage of yielding many slow (4-8
km/s) flybys. The launch is low energy (C3 of 21.0 km2/s2) consistent with small class Atlas or
Delta launch vehicles. The trajectory includes 8 asteroid flybys in 4.7 years (3 apoapse passes).
Shortly after each flyby, the spacecraft executes a trajectory correction maneuver to target the
next flyby. The total ∆v is 1950 m/s, which is within the range of many current small spacecraft
missions. As a reference, if the spacecraft were launched on an Atlas V 401 vehicle and were
equipped with a bipropellant hydrazine propulsion system, it would have an available wet-mass
of 1830 kg and dry-mass of 974 kg. In short, this design would be readily feasible for a NASA
Discovery class mission. The trajectory is shown in Figure 12.

The flybys are listed in Table 4. Little is known about these targets, other than their absolute
magnitude. In the absence of other information, it can reasonably be assumed that they are S-type
asteroids, since those are the most common type in the solar system. Given this, we can estimate
the mean size of the object using published absolute magnitude values and a representative S-type
V-band albedo of 0.19.27 The resulting sizes are relatively small compared to the sizes shown to be
effective in the trade-studies illustrated in Figures 6-7.

The most feasible of the tracking methods is the approach that uses an on-board camera to
image diffuse spheres against the star background. This could be easily implemented on a typical
spacecraft. There are a variety of TRL 9 options that would be compatible with this approach,
including LORRI as was used in the trade-study above.

Table 4: Flyby bodies in asteroid tour mission.

Name Abs. Magnitude Radius, km Flyby Speed, km/s

1 1998 TN30 15.1 1.47 6.32
2 2000 QY95 16.2 0.89 8.08
3 1996 BZ3 18.1 0.37 5.13
4 2007 TT32 17.8 0.43 5.88
5 2006 UA71 17.0 0.61 5.40
6 2002 TH273 17.4 0.51 6.36
7 2004 FR38 17.1 0.59 4.45
8 1998 ST96 17.6 0.47 4.86
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Figure 12: Sample 8 flyby trajectory. The asteroid flybys occur in the inner main-belt. The
spacecraft completes 3 orbits. Each of the flyby asteroid orbits is colored for +/- 90 days around
the flyby event.
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Figure 13: Representative random samples from the deployment budget for (a) 3 probe positions
and (b) 12 probe positions. Concentric rings of 5 km increments are shown.

In the case of the trade-study, the probes were deployed with perfect accuracy in a ring with
an altitude of 15 km above the surface of the asteroid. For this example mission, each probe is
deployed with the same nominal ring configuration, albeit with a random error consistent with
the deployment budget given in Table 2. In order to characterize the effects of the deployment
uncertainty on the results, 20 simulations were conducted, each with a random draw from the
deployment statistics. This is illustrated in Figure 13, which shows 100 representative draws from
the deployment budget for 3 and 12 probe deployment target positions. The concentric circles show
range from asteroid center in 5 km increments.

Two sets of results are presented in Table 5. The first set includes the case of a host spacecraft
deploying 3 probes per asteroid flyby. In this case, the results are highly dependent on the delivered
flyby location of the probes. In deployment cases where the close-approach range for at least one
of the probes is very low, the results show point-mass estimates with less than 5% uncertainty.
In deployment cases where the close-approach range for all the probes is comparatively high, the
measurements do not offer useful observability for the asteroid’s mass.

Given the importance of delivering a probe to a low altitude, the second set of results addresses
the case of a host spacecraft deploying 12 probes per asteroid flyby. Here, the higher number of
probes is intended to increase the likelihood of any one probe achieving a low altitude. The results
are significantly improved, with the mean uncertainty less than 15% for most cases. A 15% error
would represent a valuable measurement for many asteroid applications.
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Though not simulated here, one could consider a potentially riskier approach, where the host
would attempt to deploy the probes directly at the asteroid, recognizing that errors will tend to make
the probes miss the asteroid and pass at close ranges. For a 1 km asteroid and the deployment
budget used here, one would expect only 1 in roughly 175 probes to impact the asteroid. The
operational risk is that the error budget could be conservative, in which case the odds of impact
would be higher. Even so, if the errors were halved, only 1 in 45 probes would be predicted to
impact.

Table 5: Sample point-mass results for 20 simulations of the example asteroid flyby mission de-
ploying 3 or 12 probes.

Point Mass Percent Uncertainty
3 Probes 12 Probes

Name Min Mean Max Min Mean Max

1 1998 TN30 0.2 9.4 53.9 < 0.1 2.9 10.6
2 2000 QY95 0.9 12.7 64.8 0.3 4.9 19.8
3 1996 BZ3 7.6 27.9 58.2 4.0 23.2 49.3
4 2007 TT32 3.6 33.7 96.0 1.5 19.5 66.5
5 2006 UA71 0.3 22.0 86.6 < 0.1 7.5 30.4
6 2002 TH273 0.8 23.2 70.6 < 0.1 13.9 46.2
7 2004 FR38 0.9 22.7 80.8 0.3 8.6 22.7
8 1998 ST96 2.5 31.2 72.4 1.1 12.4 27.6

35



6 Conclusions

The mass of small bodies in the solar system is a relevant but challenging measurement to obtain.
This analysis indicates that the point-mass term of small bodies larger than roughly 500 m in
diameter can be observed from a host spacecraft that tracks locally deployed probes throughout
a flyby to an uncertainty of better than 5%. Of the estimated asteroid populations, this suggests
that gravimetry would be useful for roughly 3000 near-Earth asteroids,28 107 main-belt asteroids29

and the vast majority of known comets.30 The conditions by which this measurement is possible
depends on the characteristics of the asteroid (size, type), the flyby velocity, and the type of tracking
available (angles-only or angles+ranging). This analysis indicates that a few (1-3) probes can be
very effective for most encounters, with marginal improvement for additional probes. However,
given practical deployment errors, the system may need to deploy many probes to ensure that at
least a few arrive close to the target body. The solution accuracy is sensitive to the amount of
post-encounter time that the probes are tracked. For some instruments, particularly angles-only
methods, this may require that the host spacecraft maneuver in order to continue tracking the
probes for meaningful durations (roughly 2-5 days). Long duration tracking of probes flying by
large asteroids (>5 km diameter) can sometimes provide observability of the gravity field’s first
spherical harmonic, J2. In summary, this method offers a feasible approach to augmenting flyby
science.
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7 Next Steps

The analysis to-date has focused on establishing feasibility in practical mission contexts. Having
determined that the approach is feasible under reasonable assumptions, there are a variety of
compelling follow-on activities for this research. These activities can be divided into three broad
categories: Additional Applications, Simulation Fidelity, and Implementation Readiness.

7.1 Additional Applications

The research to date has focused on exploring asteroid flybys by spacecraft on interplanetary
trajectories. There are a variety of other relevant applications or scenarios that the technique could
impact.

7.1.1 Binary Flybys

Approximately 16% of Near-Earth asteroids over 200 m in diameter are thought to be binary
systems (two asteroids co-orbiting a barycenter).31 In this case, the mass of the system can be
estimated by observing the orbital period of the two objects. This type of target would make an
excellent experimental “control” for swarm flyby gravimetry, in that there would two independent
methods of determining the gravity. That said, one would need to analyze the gravimetry concept
in such a system, and characterize the system performance when there are two massive bodies in
the system.

7.1.2 Planetary Systems

Many flyby missions operate within planetary systems, such as Galileo at Jupiter, Cassini at Sat-
urn, or the proposed Clipper mission at Jupiter. Here, the spacecraft orbits the central planet in
resonance orbits with moons of interest. The spacecraft collects science on the moon during the
short flyby period. These flybys have produced gravity models for many moons, giving insight
into interior composition. In the case of the proposed Clipper mission, gravity science is attempt-
ing to help understand subsurface ocean depths and properties of Europa. This science is being
achieved using the recently developed Deep Space Atomic Clock. Even so, the measurements and
observability are limited. Swarm flyby gravimetry could potentially be a feasible, low-cost means
of improving this type of science.

7.1.3 Collaborative Tracking

If the flyby encounter were near enough to Earth, it’s conceivable that the ground-based assets could
participate in the gravimetry measurement. For example, one could include radar observations from
Arecibo or VLBI acting independently or as a component of a bistatic system.
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7.1.4 Flybys of Bodies that Outgas or have Atmospheres

When flying by a moon with an atmosphere (e.g. Titan) or comet that is outgassing, the probe’s
orbit will be perturbed by atmospheric drag or outgassing. It may be possible to estimate these
accelerations in addition to the body’s gravity. This estimate would represent an observation of
atmosphere density, possibly measured at a variety of altitudes simultaneously.

7.1.5 Second Order Measurements

Dr. Brin of the NIAC External Council suggested that the probes could be designed to offer
measurements via gravity-gradient torques. Here, two probes would be connected by a thin tether
and the orientation time-history would be used as a second measurement type. This, and other
second order measurements, may represent additional observations into the small body’s unknown
gravity field.

7.2 Simulation Fidelity

7.2.1 Accelerations

The current simulation has a number of assumptions and limitations that should be addressed. In
terms of modeling accuracy, it lacks the following accelerations:

1. “Third-body” acceleration from additional bodies, e.g. Sun and Jupiter

2. Solar radiation pressure

3. Higher order gravitational terms associated with the asteroid, i.e. beyond J2

4. Relativity, especially for higher flyby velocities

In some instances, it may also be useful to quantify or simulate acceleration contributions associated
with comet outgassing, radiant acceleration due to reflected sunlight or thermal emission, dust
impacts, ant atmospheric drag.

Finally, in operation, one would use a known or generated shape model for the small-body that
the asteroid passed. These are typically generated using the host spacecraft’s on-board imager.
Given this, the estimation algorithms would directly estimate the density of the object, rather than
the mass. That is, the partial derivatives would be associated with the acceleration with respect
to a constant density. One could even consider other parameterizations of density, which would be
applicable for moons within planetary systems. For example, one could attempt to estimate the
density of an inner core and an outer shell of ice. This possibility is discussed more in Section 7.1.2.
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7.2.2 Numerical Stability

For poorly performing flyby scenarios, the numerical conditioning of the problem can yield erro-
neous results. Currently, we accommodate these cases by checking the condition number of certain
key matrices and excluding any results that violate a predefined value. However, a more appropri-
ate approach is to use a square-root information implementation of a nonlinear Bayesian estimator,
such as an extended Kalman Filter. These types of algorithms are known to give a square-root
improvement in condition number and enable better numerical conditioning. In addition to im-
proving the quality of the result, this will enable the deployment optimization study described in
Section 7.2.4, the results of which are currently limited by numerical issues.

7.2.3 Coordinate Selection

The baseline simulation was constructed in Cartesian coordinates. For angles-only tracking there
is evidence32 showing that curvilinear coordinates improve observability. It would be prudent to
assess the benefits of this approach for the highly hyperbolic flyby case.

Additionally, the simulation is currently constructed using a frame that is located at the center
of a fixed-velocity asteroid. In truth, the asteroid’s path is nonlinear, owing to the sun’s gravity.
As we increase the fidelity of the models, the system should be modeled in a truly inertial frame.

7.2.4 Deployment Optimization

The current trade-study and example mission used a “ring” deployment approach, in which the
probes were deployed in a circle centered at the asteroid. Although this approach is intuitive,
it doesn’t incorporate known sensitivities associated with measurement range, duration, or type.
For example, deploying a probe on the far side of the asteroid, while giving unique observability
into the far side’s gravity, suffers from poorer measurement accuracy and shorter measurement
duration (since it is drifting away from the host faster). Additionally, if its motion is coplanar with
the host, there is high observability into the gravitational perturbation using range measurements
and poor observability using angles-only measurements. An optimized deployment approach would
incorporate these detrimental factors and select a location that maximized the information provided
by the measurement set while accounting for expected deployment errors.

7.3 Implementation Readiness

Although the deployment and tracking methods are likely feasible, there remain a number of key
concerns that should be readily addressed.

7.3.1 Target and Star Rendering for Camera

The angles-only tracking associated with the camera is enabled by its high accuracy. This accuracy
results from the ability to co-image the target and a background star-field. There is a possibility
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that there will be insufficient stars to accurately locate the probe, particularly at short integration
times before the probe has passed the asteroid. This could be resolved using a medium-to-high
fidelity scene renderer, which would model the telescope, focal plane, target, star-field, and glare.
This software has been developed for other programs at JHU/APL, but has not been applied to
this particular case.

7.3.2 Lidar Geiger Mode

The long range tracking of the Lidar was enabled by a so-called Geiger mode, in which the Lidar’s
avalanche photodiode responds to as few as a single photon. This gives detection sensitivities out
to beyond 2000 km. To our knowledge, this mode has not been operated on a spacecraft. The
challenge is that some portion of background light or thermal noise will generate false-positives.
That is, it is so sensitive that it will sometimes report a detection and range when none has
occurred. To reduce thermal noise, one can cool the photodiode, though this comes at a non-trivial
cost to implement on-board a spacecraft. This would need to be assessed to identify what options,
including passive cooling, are available. To reduce background light, a narrow filter can be used
on the receiving optics. Additionally, one can use something called “range-gating”, in which the
photodiode is left inactive except for a short period when one expects to receive a true return. This
is equivalent to filtering the incoming photons based on range. Even with this technique, there
are false positives. However, this rate can be assessed by looking at a blank portion of sky and
determining the background level of signal. Another approach, which has not been implemented
to our knowledge, is to use techniques from signals-processing where a known time-series of pulses
are transmitted and then searched for. This is analagous to pseudorandom codes used in GPS
detection and tracking. Here, a time-independent (e.g. white noise) background can be separated
from the time-dependent signal. The eventual goal is to develop a statistical hypothesis test for
this measurement approach.

7.3.3 Unfolding Retroreflector

The unfolding retroreflector design illustrated in Figure 2 represents a compact way to store an
axisymmetric (attitude independent), high reflectivity target probe shape. In it, a set of 8 mirrors
would unfold to produce a set of 8 corner-cube retroreflectors oriented to form a sphere. There is
some concern that the tolerances required for Lidar returns are too stringent for a folding design. It
would be straightforward to characterize or even test these tolerances to identify the sensitivity of
surface smoothness and orientation to detectability. Pending this investigation, we would continue
to consider additional designs.

7.3.4 Deployment Accuracy

The control and knowledge of the deployment state of the probe is very relevant to the system’s
performance. From the stand-point of control, the example mission demonstrated that expected

40



uncertainties can significantly affect the results, insomuch as distant probe flybys give little to no
useful information. In terms of knowledge, the angles-only tracking method used by the camera is
sensitive to the initial uncertainty. For example, if no information were available, the method would
likely be unobservable for any probe flyby configuration. To this end, it would be useful to better
assess and test the dispenser design. It would be straightforward to purchase and test the linear
motor, which is relatively inexpensive, to identify the expected repeatability of the deployment.
This test would inform the deployment error budget, which is a key parameter in the simulations.
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