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REACHABILITY SUBSPACE EXPLORATION USING
CONTINUATION METHODS

Julian Brew∗, Marcus J. Holzinger†, Stefan Schuet‡

Reachability manifold computation suffers from the curse of dimensionality and
for large state spaces is computationally intractable. This paper examines the use
of continuation methods to address this issue by formulating the reachability sub-
space manifold calculation into a number of initial value problems. As a result
of computing the reachability manifold for a subspace of interest, an exponential
improvement in computational cost occurs. This concept is applied to a position
subspace reachability problem of a spacecraft in a Keplerian orbit under maximum
thrust constraints. Future work includes a comparison of the proposed method
with computing reachability manifolds using viscosity solutions of the Hamilton
Jacobi Bellman partial differential equation.

INTRODUCTION

Reachability manifolds are volumes in state-space that can be reached given an integration con-
straint such as a final time horizon. The computation of reachability manifolds has been applied to
problems such as vehicle collision avoidance, operational safety planning, and capability demon-
stration. The theory supporting reachability has been discussed in controls literature as it’s derived
from optimal control theory.1, 2, 3 Computing the reachability manifold for a system involves solv-
ing the Hamilton-Jacobi-Bellman partial differential equation (HJB PDE). Commonly, minimum
time reachability allows for safety and capability analyses to be conducted. These minimum time
reachability manifolds are determined by computing viscosity solutions of the HJB PDE. The zero
level sets of the value function over time represent the boundary of the minimum time reachability
manifold.4, 5 This solution approach has many parallels with computational fluid dynamics (CFD)
problems in which space and time are discretized into a grid and the governing partial differential
equations are solved numerically.4, 6 There are many analogous problems that require performance
indices besides minimum time, such as minimum fuel or minimum control effort. Holzinger et al.
extended the typical optimal reachability framework to allow for integration constraints other than
fixed total time and performance indices other than minimum time.7

The computation of reachability manifolds are generally intractable for state space dimensions
greater than n = 4. To reduce the computation burden incurred by these problems, over/under-
approximations for the reachability set have been developed. Polytopic, ellipsoidal, and support
function approaches have been proposed and applied to several problems.1, 8, 9, 10, 11 However, the
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curse of dimensionality continues to hamper the computation of the reachability manifolds as the
required computation typically scales as an exponential of the problem dimension (O(kn−1) or
O(kn)).

In many cases the end user is only interested in a subset of states in a reachability analysis as
opposed to the full reachability set. Because of this, it is useful to only compute the reachability
set of the subspace that contains the states of interest. In this way, only the computational cost of
the subspace of interest is incurred as opposed to the computational cost due to the full description
of the reachability set. Holzinger et al. demonstrated application of the transversality conditions
on sampled individual trajectories to allow subspace reachability set computation with significantly
lower dimensionality-driven costs.12 In addition, applying the necessary conditions of optimality,
dynamics constraints, and initial condition constraints, a point solution of the subspace extremum
surface may be used to find nearby solutions. Using this continuation approach and an initial state
that satisfies the constraints, the computation of a point solution on the subspace extremum sur-
face is reduced to an initial value problem solvable through numerical integration. The required
computation under this proposed approach exponentially reduces from the problem dimension to
the subspace dimension (O(kn−1) → O(ks−1) where 1 ≤ s ≤ n). As a result, a large variety of
previously intractable reachability problems become computationally feasible.

The expected contributions from this research include: 1) The formulation of the optimal control
policy and continuation method approach for subspaces while addressing numerical issues such as
ill-conditioned constraint surface dynamics and numerical integration error. 2) Demonstration of
proposed approach for computation of two-dimensional position reachability subspace for a space-
craft in Keplerian motion under multiple orbit regimes which only requires a one-dimensional ex-
ploration.

THEORY

Hamilton Jacobi Bellman PDE

An optimal reachability problem is defined as a continuum of Optimal Control Problems (OCPs)
with initial conditions satisfying an inequality constraint on the initial value function V (x, t0) ≤ 0.
The Optimal Control Problem is formally stated as

sup
u∈U

[ ∫ tf

t0

L(x(τ),u(τ), τ)dτ + V (xf , tf )

]
ẋ = f(x,u, t)

h(x, t) ≤ 0

g(x0, t0,xf , tf ) = 0

(1)

where x ∈ Rn is the state, u ∈ Rm is the control input, t ∈ [t0, tf ] is time, L : Rn ×Rm ×R→ R
is the trajectory Lagrangian, V : Rn×R→ R is the terminal performance function, f : Rn×Rm×
R→ Rn captures the system differential equations, h : Rn ×R→ Rq defines trajectory inequality
constraints, g : Rn × R× Rn × R→ Rv expresses boundary conditions, and U ⊆ Rm defines the
set of admissible controls. The admissible control set U is typically defined as

U = {u | uTu ≤ u2
m} (2)
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where um ∈ R+. This definition of the admissible control set is assumed for the remainder of this
paper. Rearranging Eq. (1) into differential form yields the traditional HJB PDE as follows

∂V

∂t
+ sup
u∈U

[
L(x,u,p, t) + pTf(x,u, t)

]
= 0 (3)

where the adjoint variable p is the value function gradient with respect to the state and the second
term in Eq. (3), denoted byH(x,u,p, t), is called the Hamiltonian as it shares the same properties
of the canonically defined Hamiltonian.

Commonly, minimum time reachability analyses are performed. In this case, the trajectory term
L(x,u,p, t) = 1. The minimum time HJB PDE is then reduced as

∂V

∂t
+ sup
u∈U

[
pTf(x,u, t)

]
= 0 (4)

This is the form of the HJB PDE that will be used in this subspace reachability problem demon-
stration of this paper.

Subspace Reachability Formulation for Minimum Time

To avoid unnecessary computational cost by calculating the full state reachability manifold, the
reachability computation is performed on a subspace Rs of the full state space Rn (Rs ⊆ Rn).
This can be performed by decomposing the full state into the subspace of interest and residual
subspace such that x = [xTs x

T
r ]T . This reduces the dimensionality of the problem which leads

to exponential improvement in computational tractability and complexity (O(kn−1) → O(ks−1)
where 1 ≤ s ≤ n).

To compute points on the subspace reachability manifold after an amount of time, the final sub-
space distance must be maximized in a direction of interest in the given subspace.12 This approach
is analogous to the weighted Lp method in multi-objective optimization.13 A search direction in Rs

can be described using d̂s = R(θ)ê1, where R(θ) ∈ Rs×s is an s × s right handed orthonormal
rotation matrix parametrized by the rotation θ ∈ SO(s− 1) and ê1 is the unit vector in the direction
of the first state in xs,f .

The squared distance of the final state xf along the search direction d̂s is

xTs,f d̂sd̂
T
s xs,f = xTs,fR(θ)ê1ê

T
1R(θ)Txs,f (5)

It is then possible to construct the performance index for a point solution on the subspace ex-
tremum surface as

V (xs,f , tf ,θ) =
1

2
xTs,fR(θ)DR(θ)Txs,f =

1

2
xTs,fGxs,f (6)

where D = ê1ê
T
1 . For minimum time reachability without inequality constraints, the OCP given

by Eqn. (1) then reduces to
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sup
u∈U

1

2
xTf

[
Gs×s 0s×r
0r×s 0r×r

]
xf

ẋ = f(x,u, t)

g(x0, t0) = 0

(7)

where s is the dimension of the subspace of interest,G ∈ Ss×s is symmetric matrix, and g(x0, t0) =
V (x0, t0) = 0 where V (x0, t0) is an initial boundary condition defined by the problem. An ellipsoid
can be specified as the initial boundary of the reachability set as follows

V (x0, t0) = xT0Ex0 − 1 = 0 (8)

where E ∈ S+
n×n > 0, is a symmetric positive definite matrix and x0 is the initial state. Ellipsoidal

initial reachability sets are useful because they can represent the set of states that exist within a
level set of a Gaussian probability density function. These probability ellipsoids can be generated
from the estimate error covariance from typical estimation algorithms such as minimum variance
estimators or batch filters.14

Figure 1. Search Direction Illustration

Each of the final states xf are solutions to the optimal control problem (7) and compose the
optimal reachability set. By choosing g(x0, t0) = V (x0, t0) = 0, the initial states of optimal
trajectories lie on the surface of the initial reachability set. Maximizing the final distance subject to
the OCP constraints is equivalent to finding a trajectory to the final distance in minimum time. Since
the optimal control policy u∗(x(t),p(t)) is known, the optimal x∗f can be acquired by optimizing
Eq. (6) in a given search direction parametrized by θ. Figure 1 visualizes the idea of parameterizing
the final point solutions xs,f to the subspace reachability problem using the rotation parameter θ.

Continuation Methods

Applying the transversality conditions to the subspace OCP defined in (7) the following boundary
conditions on the adjoints of a given optimal trajectory are written as

p0 = − ∂V
∂x0

− λ ∂g

∂x0
= −λ ∂g

∂x0
(9)

pf =
∂V

∂xf
+ λ

∂g

∂xf
=

[
Gxs,f
0r×1

]
(10)
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where λ ∈ R is the Lagrange multiplier corresponding to the initial condition constraint g(x0, t0).

As the final time horizon, tf = t0 +T , is chosen, specific values of x0(T ) and λ(T ) can be found
to maximize (6). After applying the transversality constraints, the optimal state x∗ and adjoint p∗

along the optimal trajectory can be combined into the constraint

κ(x∗0(T ),p∗0(T ), λ∗(T ),θ) = 0 (11)

enforcing the full state dynamics and necessary conditions of optimality.12

After applying the necessary conditions of optimality, dynamics constraints, and initial condition
constraints, a point solution of the subspace extremum surface may be used to find nearby solu-
tions.12 Combining the full state x and Lagrange multiplier λ into a parameter state z ∈ Rn+1 and
defining an independent parameter ϑ ∈ R, moving along the constraint surfaces satisfies

dκ

dϑ
=
∂κ(ϑ)

∂z

dz(ϑ)

dϑ
+
∂κ(ϑ)

∂ϑ
= 0 (12)

After rearranging the terms, if ∂κ/∂z is left-invertible, the parameter dynamics along the con-
straint surface κ(z(ϑ), ϑ) as ϑ changes are described by the first-order nonlinear differential equa-
tion

dz(ϑ)

dϑ
= −

[
∂κ(ϑ)

∂z

]−1(∂κ(ϑ)

∂ϑ

)
= M−1b (13)

whereM represents the Jacobian matrix of the constraints with respect to the parameter state z and
b represents the dynamics of the constraints with respect to the independent parameter ϑ. Using this
concept, Holzinger et al.12 has shown that the unique first order differential equation that represents
the motion of x0(T ) and λ(T ) along the optimal trajectory constraint surface is given as

[
dx0
dT
dλ
dT

]
=

[
∂κ1
∂x0

∂κ1
∂λ

∂κ2
∂x0

0

]−1
[G 0

0 0

]
ẋ− ṗ

0

 (14)

where T = tf−t0 is the time horizon over which the reachability set is computed, κ1(x0(T ), λ(T )) =
0n×1 represents the equality constraint for transversality conditions, and κ2(x0(T )) = 0 represents
the equality constraint for the initial condition constraint g(x0(T ), t0). Using this continuation ap-
proach and an initial state z0(T ) = [zT0 (T ) λT (T )]T that satisfies the constraints contained in κ,
the exploration of the subspace extremum surface is reduced to an initial value problem solvable
through numerical integration.

Potential Numerical Issues

Depending on the constraint dynamics and scale between the coordinates of the initial parameter
state z0, as T increases the numerical condition number ofM may increase arbitrarily. In numerical
linear algebra, the condition number of a matrix, denoted in this paper as κ̃(M), gives a measure
of the sensitivity of the solution to the general linear system My = b.15 As κ̃(M) from (14)
increases, the accuracy of the solution may decrease. As a general rule of thumb, if the condition
number κ̃(M) is on the order of 10k then it is possible to lose up to k digits of accuracy in the
solution to a given linear system.15
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To maintain a specified level of accuracy in the constraint dynamics, a maximum allowable ab-
solute tolerance in the solution can be set. In many numerical integrator routines, such as ode45 in
MATLAB, an absolute tolerance (AbsTol) can be specified to bound the largest acceptable solver
error. Additionally, the numerical accuracy of the integrated solution will be limited by the precision
of the floating point numbers used. For example, using double-precision floating-point format num-
bers will result in approximately 16 decimal digits (log10 252 ≈ 15.65). As a result, the following
condition may be set on the condition number κ̃(M)

log10(AbsTol) + log10(κ̃(M)) ≤ log10

(
1

10k ε

)
(15)

which simplifies to the following conservative upper bound on κ̃(M)

log10(κ̃(M)) ≤ log10

(
AbsTol

10k ε

)
(16)

where k is the user-specified number of accurate decimal digits in the integrator solution and ε is
the numerical precision of the digital number format (such as 2−52 for double-precision numbers).
This condition (16) can be used in the numerical integration routine that solves (14) as a terminal
condition or a trigger to modify the integration tolerances.

Dynamics

This approach of exploring the reachability subspace is demonstrated on the case of a spacecraft
in Keplerian orbit with maximum thrust constraints where only the orbital planar motion is con-
sidered. As such, the full state of the system will be described by two position and two velocity
states.

While the condition above describes the conservative upper bound on κ̃(M), it is possible to
reduce κ̃(M) through scaling time and distance in the dynamics or change of units. For example,
describing the inertial position and velocity of an object near GEO requires the position scale (‖r‖ ≈
42164 km) to be approximately 4 orders of magnitude larger than the velocity scale (‖v‖ ≈ 3 km/s)
when SI units are used. To better condition the dynamics, it is possible to scale time and scale such
that the first and second order variations of the state coordinates are on the same order of magnitude.
If the new time coordinate s = αt and x̃ = γx with α, γ ∈ R+, then the scaled dynamics for a
single variable are be rewritten as follows

˚̃x =
dx̃

ds
=
d(γx)

dt
· dt
ds

=
γ

α
ẋ , ˚̊̃x =

d2x̃

ds2
=

γ

α2
ẍ (17)

Depending on the initial state dynamics, α can then be chosen to be used in (17) to appropriately
scale the first and second variations of the state in the new time coordinate s such that M is better
conditioned. A convenient choice of α is 1/n where n is the mean motion of the object in orbit.
This choice of α results in a full orbit period P = 2π in the scaled time units. Similarly, scaling
the spatial dimensions could also help alleviate numerical conditioning issues for the proposed ap-
proach. Another alternative to improve the conditioning of κ̃(M) is to utilize a change of units.
For example, describing the inertial position and velocity of an object near GEO requires the posi-
tion scale (‖r‖ ≈ 6.6 DU) to be approximately 1 order of magnitude larger than the velocity scale
(‖v‖ ≈ 0.4 DU/TU) when Earth canonical units are used.16
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The exact nonlinear relative equations of motion for a spacecraft about a given arbitrary reference
orbit xr(t) are

ẋ =


ẋ
ẏ
ẍ
ÿ

 =


ẋ
ẏ

2ḟr
(
ẏ − y ṙrrr

)
+ xḟ2

r + µ
r2r
− µ

r3
(rr + x) + ux

−2ḟr
(
ẋ− x ṙrrr

)
+ yḟ2

r −
µ
r3
y + uy

 (18)

where the true anomaly rate (ḟr), reference radius (rr), and reference radius time derivative (ṙr)
can be directly computed using Keplerian dynamics and the inertial radius of the spacecraft is r,
defined as r =

√
(rr + x)2 + y2.16 Because the motion in the z direction is weakly coupled with

the x and y motion, the problem is restricted to motion in the x and y directions, causing x0 ∈ R4.
These equations of motion represent the relative motion between a spacecraft and a reference object
in a reference orbit. The dynamics are expressed in a rotating Hill frame, where the radial axis (x)
points from the center of the Earth to the reference object and the along-track axis (y) is defined as
perpendicular to the radial vector and is positive in the direction of the reference orbit velocity.

If both time and position are scaled such that s = αt, x̃ = γx, and ỹ = γy, the scaled exact
nonlinear relative equations of motion for a spacecraft about a given reference orbit xr(t) are

˚̃x =
dx̃

ds
=


˚̃x
˚̃y
˚̊̃x
˚̊̃y

 =



˚̃x
˚̃y

γ
α2

(
2α

2

γ f̊r
(
˚̃y − 1

γ ỹ
˚̃rr
r̃r

)
+ α2

γ x̃f̊
2
r + γ2 µ̃

r̃2r
− γ2 µ̃

r̃3
(r̃r + x̃) + ũx

)
γ
α2

(
− 2α

2

γ f̊r
(
˚̃x− 1

γ x̃
˚̃rr
r̃r

)
+ α2

γ ỹf̊
2
r − γ2 µ̃

r̃3
ỹ + ũy

)


(19)

where r̃r = γrr , ˚̃rr = γ
αrr , r̃ = γr , µ̃ = γ3

α2µ , ũx = γ
α2ux , and ũy = γ

α2uy. For the results
generated in this paper, α is set to 1/n where n is mean motion and the distance scale is unchanged
(γ = 1).

RESULTS

This approach of exploring the reachability subspace is demonstrated on the case of a spacecraft
in Keplerian orbit with maximum thrust constraints where only planar motion is considered. The
two-dimensional position subspace reachability manifold is then computed using Eq. (4) and the
outlined methodology. As the reachability set for the two-dimensional subspace is explored with
a one-dimensional search (θ), these examples demonstrate subspace reachability calculations with
computations O(k) as opposed to O(k4) or O(k3). In addition to demonstrating the generation of
the position subspace reachability set for two dimensions, this example demonstrates the capability
to compute the reachability set boundaries under nonlinear dynamics.

The initial reachability set represented by V (x0, t0) is chosen to be defined by the ellipsoidal
constraint

V (x0, t0) =

[
d0

v0

]T [ 1
r2d
I 02×2

02×2
1
r2v
I

] [
d0

v0

]
− 1 = 0
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Figure 2. Orbital Geometry of LEO, GTO, and GEO

with rd set to 1 m and rv set to 0.1 m/s.

The following examples demonstrate the 2D minimum time position reachability set calculation
over 3 different orbital regimes: Low Earth Orbit (LEO), Geostationary transfer orbit (GTO), and
Geostationary orbit (GEO). The chosen reference orbits are all equatorial with the reference object
starting at perigee at t0. The control has an upper bound of um = 2e−5 m/s2, which is equivalent
to a 500 kg spacecraft with a 0.01 N thruster. In using Eqn. (7), the search direction d̂s(θ) is varied
within the x-y plane over [0, 2π] at samplings sufficient enough to generate detailed surfaces.

For each of the following orbit regimes, the subspace reachability set is computed for up to half an
orbit period. At this point for each of the cases, the problem becomes numerically ill-conditioned.
By altering the values of the dynamics scaling using α and γ, subspace reachability set computations
at longer time horizons are possible.

LEO Orbit

The chosen reference orbit is an equatorial circular low Earth orbit (LEO) with an altitude of 400
km. Fig. 3 shows the maximal position subspace reachability set and associated optimal trajectories
in the Hill frame after one half orbit period of about 46.2 minutes.

Fig. 4 shows the same LEO position reachability set evolve with time as tf = [1
8P,

1
4P,

3
8P,

1
2P ].
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Figure 3. Position-reachability set for 2-DOF nonlinear relative Keplerian motion in
rotating Hill frame - LEO Orbit

Figure 4. Position-reachability set for 2-DOF nonlinear relative Keplerian motion at
times tf = [ 18P,

1
4P,

3
8P,

1
2P ] in rotating Hill frame - LEO Orbit
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GEO Orbit

The chosen reference orbit is an equatorial circular geostationary orbit (GEO) with an altitude
of 35786 km. Fig. 5 shows the maximal position subspace reachability set and associated optimal
trajectories in the Hill frame after one half orbit period of 12 hours.

Figure 5. Position-reachability set for 2-DOF nonlinear relative Keplerian motion in
rotating Hill frame - GEO Orbit

Fig. 6 shows the same GEO position reachability set evolve with time as tf = [1
8P,

1
4P,

3
8P,

1
2P ].

Figure 6. Position-reachability set for 2-DOF nonlinear relative Keplerian motion at
times tf = [ 18P,

1
4P,

3
8P,

1
2P ] in rotating Hill frame - GEO Orbit

10



GTO Orbit

The chosen reference orbit is in an equatorial geostationary transfer orbit with a perigee radius of
7000 km and a apogee at GEO altitude of 35786 km. Fig. 7 shows the maximal position subspace
reachability set and associated optimal trajectories in the Hill frame after one half orbit period of
about 5.33 hours.

Figure 7. Position-reachability set for 2-DOF nonlinear relative Keplerian motion in
rotating Hill frame - GTO Orbit

Fig. 8 shows the same GTO position reachability set evolve with time as tf = [1
8P,

1
4P,

3
8P,

1
2P ].

In general, as T increases, dense or sparse densities of point solutions may form on the reacha-
bility surface. To better describe the reachability set at a given time horizon, it is possible to insert
additional trajectories to generate additional point solutions. This is performed by searching for the
largest point-wise distances along the boundary of the reachability set and identifying which initial
search directions encompass this region. Then additional d̂s(θ) can be inserted into the grid by bi-
secting the neighboring initial search directions. This technique of binary discretization refinement
is demonstrated at the final time horizon of the GTO case in Fig. 9. Fig. 10 shows how large point-
wise distances can be lessened in the subspace reachability set at a given time horizon through the
introduction of these bisecting search directions.
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Figure 8. Position-reachability set for 2-DOF nonlinear relative Keplerian motion at
times tf = [ 18P,

1
4P,

3
8P,

1
2P ] in rotating Hill frame - GTO Orbit

Figure 9. Position-reachability set for 2-DOF nonlinear relative Keplerian motion in
rotating Hill frame with binary discretization refinement - GTO Orbit

12



(a) Point-wise distance in reachable position subspace
with and without surface refinement

(b) Histogram of distances between point solutions
with and without surface refinement

Figure 10. Visualization of binary discretization refinement

CONCLUSIONS AND FUTURE WORK

By sampling the initial reachability subspace, it is shown that the reachability subspace after a
given time horizon T may be found by numerically integrating the constraint surface dynamics with
computation timeO(ks−1). This approach of exploring the reachability subspace using continuation
methods is demonstrated with the case of a spacecraft in Keplerian orbit with maximum thrust
constraints. Reduction in computation load is achieved as the reachability manifold is computed for
only the two position states as opposed to the full four dimensional state. This reduces the subspace
reachability problem into a one-dimension exploration, exponentially reducing the computational
cost from O(k3) → O(k). Potential numerical issues that may arise due to the conditioning of the
constraint dynamics are introduced and numerical techniques to better condition the problem are
discussed. Future work will focus on the potential numerical issues such as cusps and concavities
that can arise if a final state x∗f (T ) is reachable from multiple initial conditions x∗0(T ). Further
comparisons are to be made between this approach and alternate reachability solution methods such
as viscosity methods4 in terms of computation load and accuracy of the position subspace extremum
surface. Additionally, future work includes a further investigation into the numerical scaling of the
problem as well as incorporating ∆V costs for constrained time and fuel reachability.
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[8] I. Hwang, D. M. Stipanović, and C. J. Tomlin, Polytopic Approximations of Reachable Sets Applied to
Linear Dynamic Games and a Class of Nonlinear Systems, pp. 3–19. 2005, doi:10.1007/0-8176-4409-1.

[9] M. J. Holzinger and D. J. Scheeres, “Reachability Results for Nonlinear Systems with Ellipsoidal Initial
Sets,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 48, April 2012, pp. 1583–1600,
doi:10.1109/TAES.2012.6178080.

[10] A. Girard and C. L. Guernic, “Efficient Reachability Analysis for Linear Systems using Support Func-
tions,” IFAC Proceedings Volumes, Vol. 41, No. 2, 2008, pp. 8966–8971, doi:10.3182/20080706-5-kr-
1001.01514.

[11] B. HomChaudhuri, M. Oishi, M. Shubert, M. Baldwin, and R. S. Erwin, “Computing reach-avoid sets
for space vehicle docking under continuous thrust,” 2016 IEEE 55th Conference on Decision and Con-
trol (CDC), Dec 2016, pp. 3312–3318, doi: 10.1109/CDC.2016.7798767.

[12] M. J. Holzinger and D. J. Scheeres, “Reachability set subspace computation for nonlinear systems using
sampling methods,” IEEE Conference on Decision and Control and European Control Conference,
Institute of Electrical and Electronics Engineers (IEEE), Dec 2011, doi:10.1109/cdc.2011.6160728.

[13] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. New York, NY, USA: John
Wiley & Sons, Inc., 2001.

[14] A. Gelb, Applied Optimal Estimation. Cambridge, MA: MIT Press, 1974.
[15] L. N. Trefethen and D. B. III, Numerical Linear Algebra. SIAM: Society for Industrial and Applied

Mathematics, June 1997.
[16] H. Schaub and J. L. Junkins, Analytical Mechanics of Space Systems. Reston, VA: AIAA Education

Series, October 2003, 10.2514/4.861550.

14


	Introduction
	Theory
	Hamilton Jacobi Bellman PDE
	Subspace Reachability Formulation for Minimum Time
	Continuation Methods
	Potential Numerical Issues
	Dynamics

	Results
	LEO Orbit
	GEO Orbit
	GTO Orbit

	Conclusions and Future Work
	Acknowledgements

