National Aeronautics and Space Administration



High-Performance Spaceflight Computing (HPSC) Middleware Overview

Alan Cudmore

NASA Goddard Space Flight Center Flight Software Systems Branch (Code 582)

Alan.P.Cudmore@nasa.gov

This is a non-ITAR presentation, for public release and reproduction from FSW website.

www.nasa.gov/spacetech

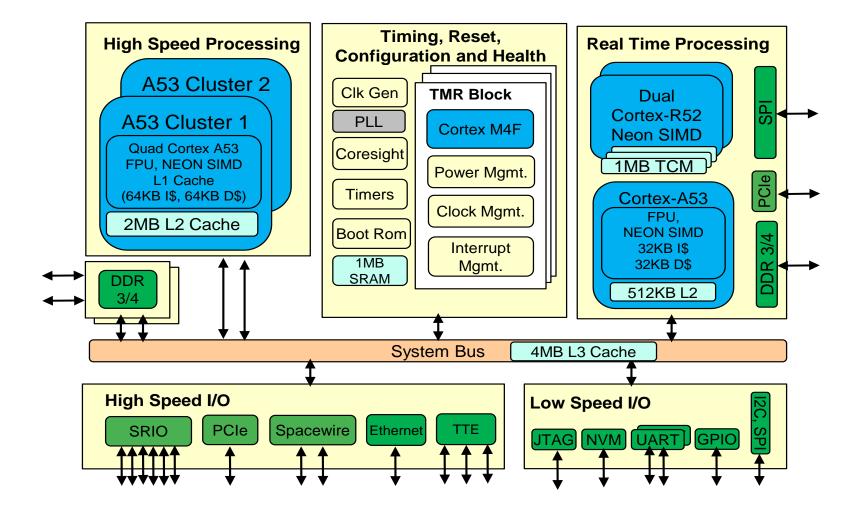




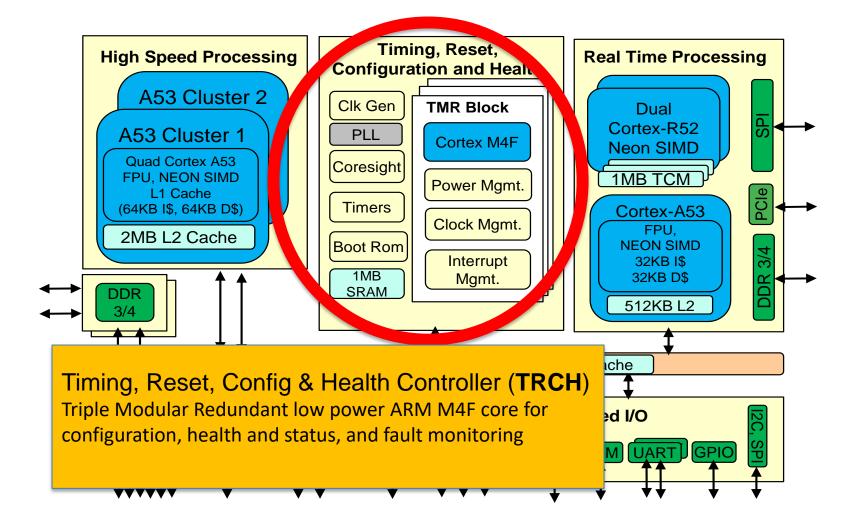
- High Performance Spacecraft Computing (HPSC) Overview
- HPSC Overview
- HPSC Contract
- HPSC Chiplet Architecture
- HPSC System Software
- HPSC Middleware
- NASA HPSC Use Cases
- HPSC Ecosystem
- Summary/Status



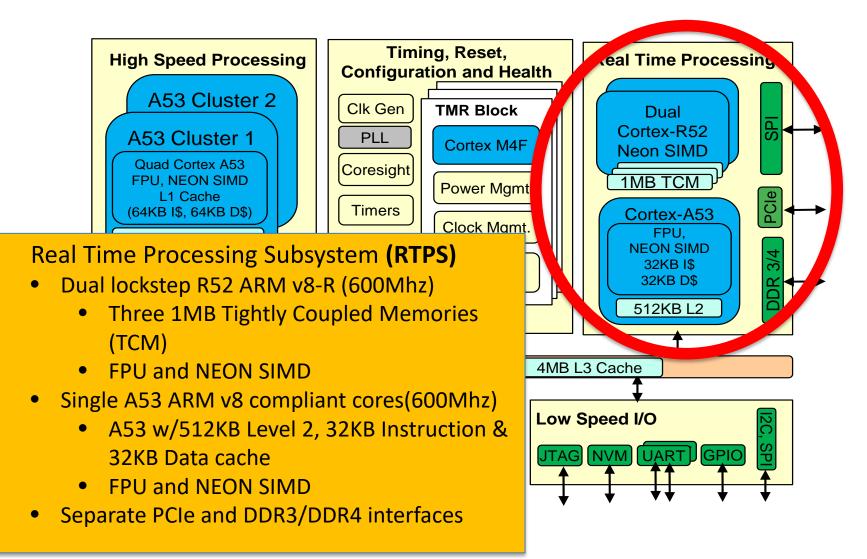
## High Performance Spaceflight Computing (HPSC) Overview




- The goal of the HPSC program is to dramatically advance the state of the art for spaceflight computing
- HPSC will provide a nearly two orders-of-magnitude improvement above the current state of the art for spaceflight processors, while also providing an unprecedented flexibility to tailor performance, power consumption, and fault tolerance to meet widely varying mission needs
- These advancements will provide game changing improvements in computing performance, power efficiency, and flexibility, which will significantly improve the onboard processing capabilities of future NASA and Air Force space missions
- HPSC is funded by NASA's Space Technology Mission Directorate (STMD), Science Mission Directorate (SMD), and the United States Air Force
- The HPSC project is managed by Jet Propulsion Laboratory (JPL), and the HPSC contract is managed by NASA Goddard Space Flight Center (GSFC)

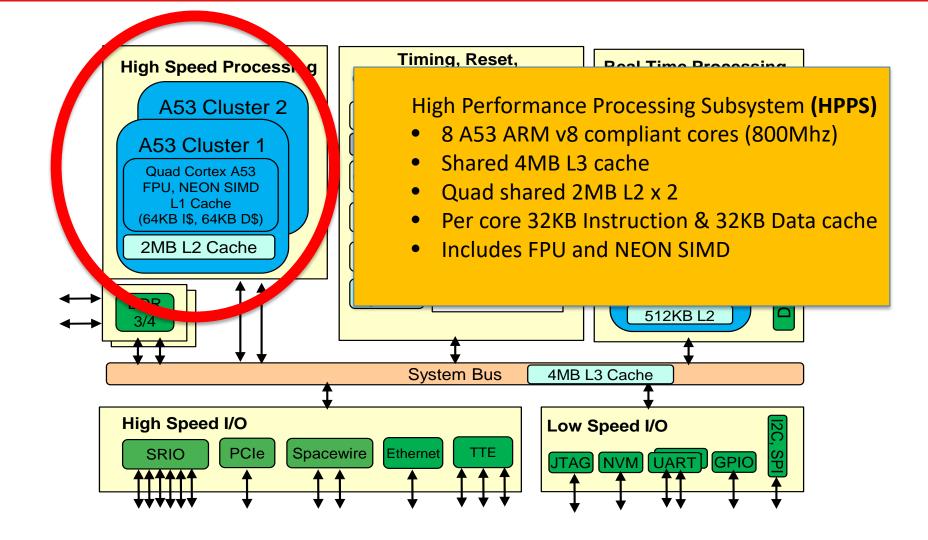



- Following a competitive procurement, the HPSC cost-plus fixed-fee contract was awarded to Boeing
- Under the base contract, Boeing will provide:
  - Prototype radiation hardened multi-core computing processors (Chiplets), both as bare die and as packaged parts
  - Prototype system software which will operate on the Chiplets
  - Evaluation boards to allow Chiplet test and characterization
  - Chiplet emulators to enable early software development
- Five contract options have been executed to enhance the capability of the Chiplet
  - On-chip Level 3 cache memory
  - Added a real-time processing subsystem containing two lockstepable ARM R-class processors and a single ARM A-class processor
  - Triple Time Triggered Ethernet (TTE) interfaces
  - Dual SpaceWire interfaces
  - Package amenable to spaceflight qualification
- Contract deliverables are due April 2021





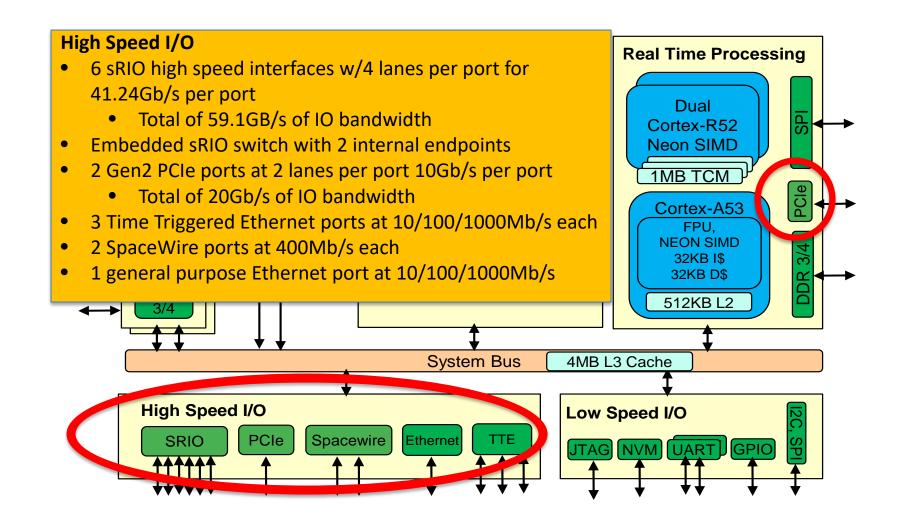


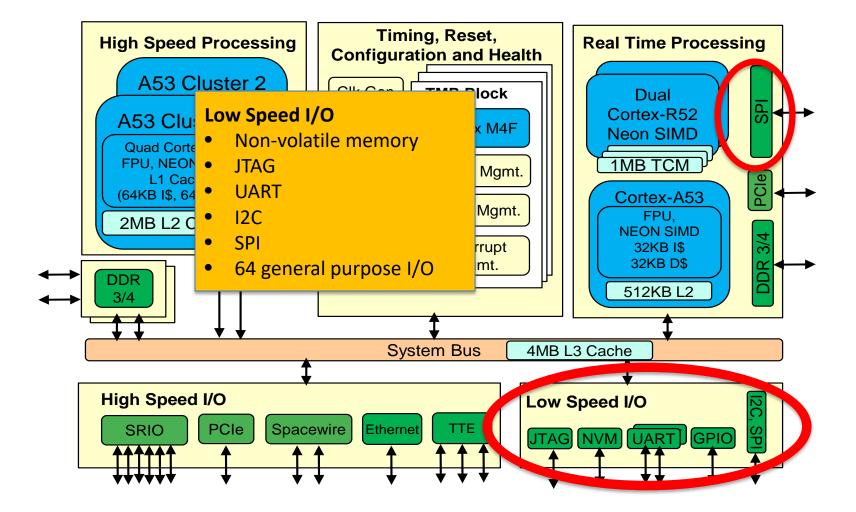





This is a non-ITAR presentation, for public release and reproduction from FSW website.













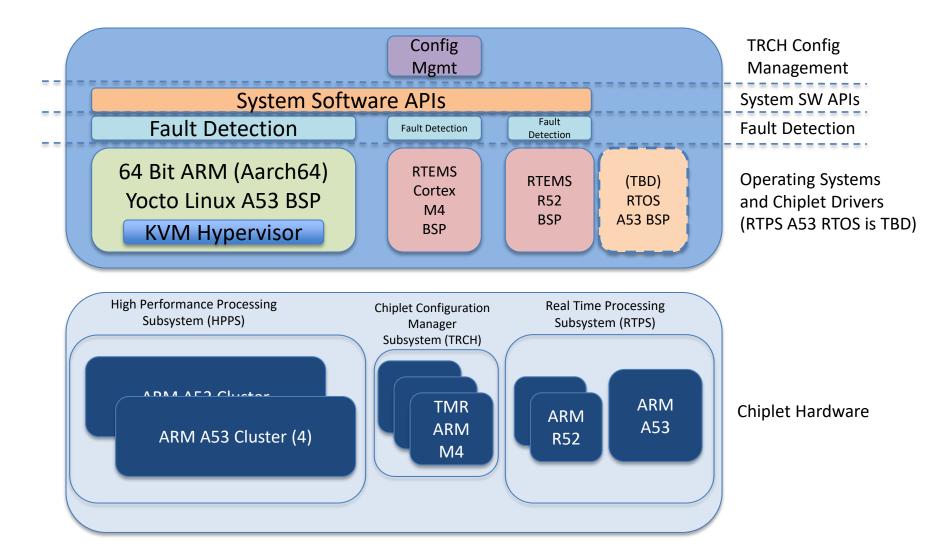





HW based fault tolerance

- EDAC, scrubbing
- TMR of critical logic
- ARM TrustZone
- Access isolation regions

**ARM Coresight debug and trace subsystem** 


### **HPSC System Software**



- The HPSC Chiplet will be delivered with a complement of prototype system software developed by Boeing subcontractor University of Southern California/Information Sciences Institute (USC/ISI)
- The System Software leverages a large complement of existing open source software including:
  - Libraries, operating systems, compilers, debuggers, and simulators.
  - Much of the of this software will be unmodified.
- The System Software consists of:
  - 1. Board support packages for Linux and RTEMS
  - 2. Development tools (e.g., compilers, debuggers, IDEs)
  - 3. Chiplet Configuration APIs
  - 4. Mailbox API
  - 5. Software-based fault tolerance libraries
  - 6. Chiplet emulators
- The goal is to build a sustainable software ecosystem to enable full lifecycle software development.

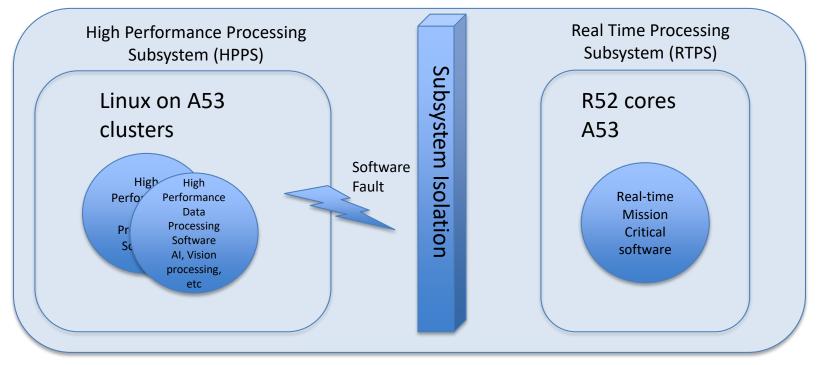
### HPSC System Software





## **HPSC System Software**

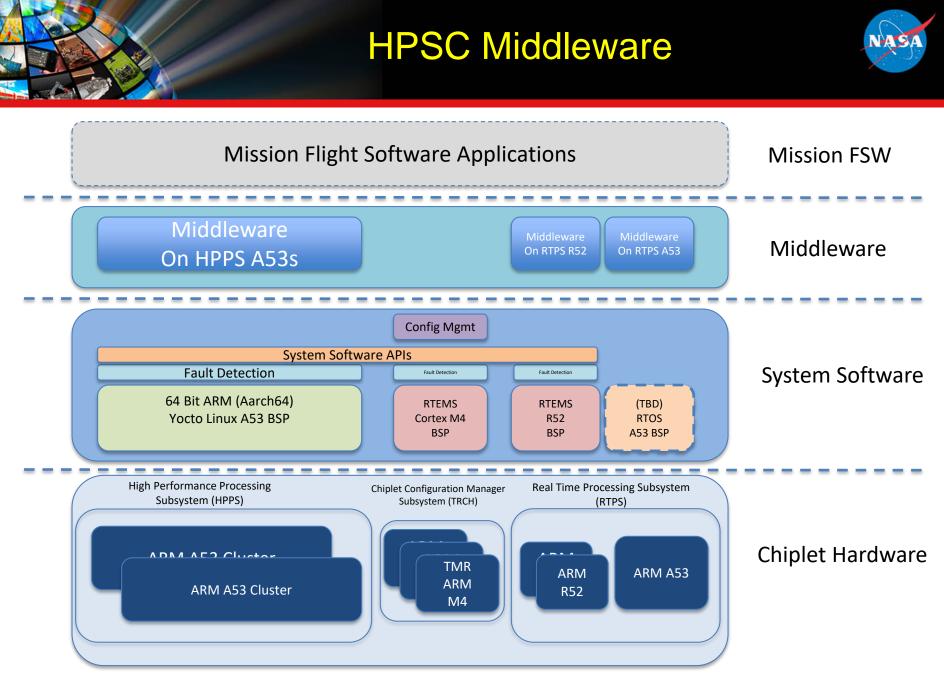



- HPSC Reference Board Support Package (BSP) Features:
  - TRCH Cortex-M4 will execute RTEMS with support for:

3/5/2

- SRIO, low speed I/O, configuration registers, windowed-access into all memories.
- RTPS Cortex-R52 will execute RTEMS with support for:
  - SRIO, PCIe, Spacewire, TTE, low speed I/O, RTPS DDR, windowed access into HPPS DDR, NVRAM.
- HPPS Cortex-A53 clusters will execute Yocto Linux with support for:
  - SRIO, PCIe, Spacewire, Ethernet, TTE, HPPS DDR, NVRAM
- HPSC Chiplet supports running Linux, which makes available a rich and familiar development environment. This improves efficiency of software development in particular for science applications
  - Many science applications already start off development in Linux only to be ported to a different OS. With HPSC, no extra porting step is required, saving effort and reducing risk

### **HPSC Fault Isolation**






- The HPSC Chiplet ensures that misbehavior in HPPS cannot interfere with critical functions in the RTPS
  - The HPSC Chiplet provides a Trusted Computing Base (TCB) that is small relative to the overall capability of the system.
  - For example, a minimal TCB would consist of flight control, communications, health monitor, and software update management running on the RTOS. These high criticality functions remain safely isolated from any misbehavior in Linux
- One of many potential examples of fault isolation in the HPSC
  - Other examples include the use of a hypervisor or partitioned OS on the HPPS



- The Air Force Research Laboratory (AFRL) is funding NASA Jet Propulsion Laboratory (JPL) and NASA Goddard Space Flight Center (GSFC) to develop HPSC Middleware
- HPSC Middleware will provide a software layer that provides services to the higher-level application software to achieve:
  - Configuration management
  - Resource allocation
  - Power/performance management
  - Fault tolerance capabilities of the HPSC chiplet
- Serving as a bridge between the upper application layer and lower operating system or hypervisor, the middleware will significantly reduce the complexity of developing applications for the HPSC Chiplet



This is a non-ITAR presentation, for public release and reproduction from FSW website.

## **Middleware Functions**



- The HPSC Middleware provides the following key functions:
  - Boot and Load Services
  - Chiplet Configuration Management
  - Chiplet Resource Allocation and Management
  - Chiplet Power and Performance Management
  - Fault Tolerance and Redundancy Management
  - Messaging Services
- These functions are implemented through 13 Middleware Services





- Middleware functions are provided by the following services
  - 1. Deployment and Multicore Programming Services
    - Deployment of time critical vs computational intensive applications to RTPS & HPPS
    - Thread creation and assignment to specific processing cores for execution
    - Utilize multicore environment to establish parallel processing capability
      - Utilize Linux/MPI features
      - Utilize OpenMP library for multicore programming functions
  - 2. Machine Information Services
    - Get information about cores, clusters, chiplets, and system
  - 3. Resource Management/Arbitration Services
    - Manage configuration files and assign available resources to software clients
  - 4. Memory Management Services
    - MMU configuration, memory allocation to applications
  - 5. Interrupt Services
    - Configure Interrupt controller to route interrupts to specific cores at runtime
  - 6. Timing Services
    - Establish, synchronize, and distribute time

### Middleware Services (2 of 2)



- 7. Messaging Services
  - Send/receive messages between tasks on the same or different cores and Chiplets
- 8. Power Management Services
  - Power on/off setting for cores/clusters/Chiplets, and set clock rates
- 9. Debug and Trace Services
  - Support the interface for software debugging during development
  - Support the capability for performance metrics collection during execution
- 10. Boot and Load Process and System Configuration Services
  - Provide an Initial Program Loader (IPL) and support various boot types/processes
- 11. Peripheral IO Services
  - Allocate and configure Chiplet Peripheral I/O to software clients
- 12. Multi-Chiplet Management Services
  - Configure and manage Inter-Chiplet interfaces (e.g., boot, messaging, resources)
- 13. Fault and Redundancy Management Services
  - Fault detection (HW/SW faults) and recovery

### HPSC Use Cases – Rovers and Landers



### \_

#### **Compute Needs**

- Vision Processing
- Motion/Motor Control
- GNC/C&DH
- Planning
- Science Instruments
- Communication
- Power Management
- Thermal Management
- Fault detection/recovery

### Rover

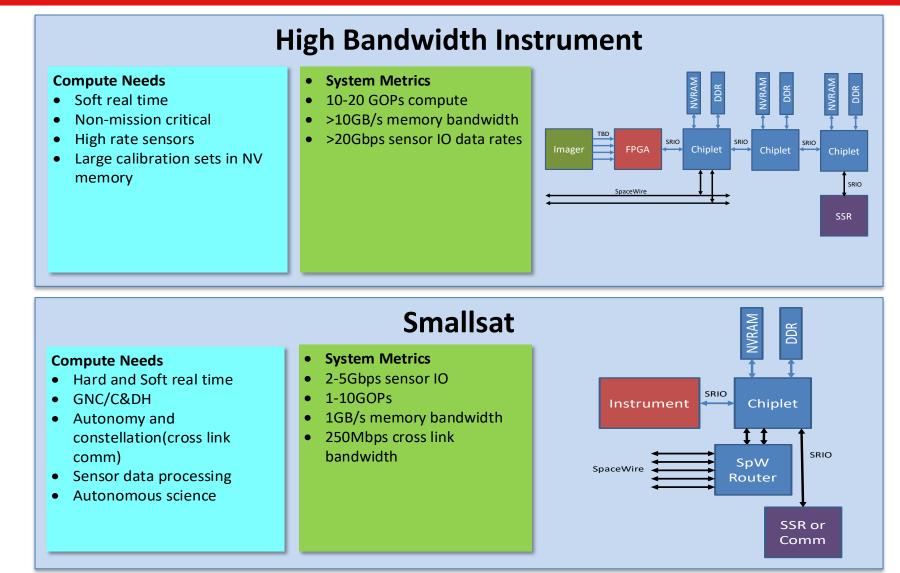
- System Metrics
- 2-4 GOPs for mobility(10x RAD750)
- >1Gb/s science instruments
- 5-10GOPs science data processing
- >10KHz control loops
- 5-10GOPS, 1GB/s memory BW for model based reasoning for planning



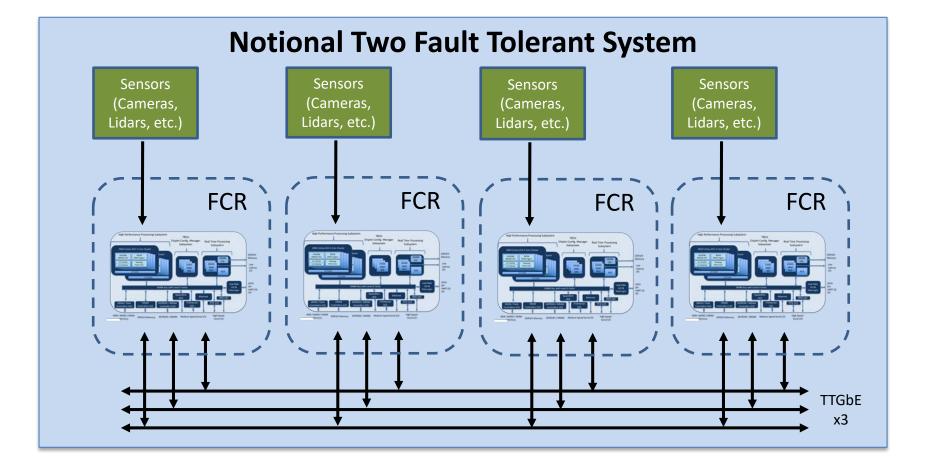
### Lander

#### **Compute Needs**

- Hard Real time compute
- High rate sensors w/zero data loss
- High level of fault protection/ fail over


#### • System Metrics

- >10 GOPs compute
- 10Gb/s+ sensor rates
- Microsecond I/O latency
- Control packet rates >1Kpps
- Time tagging to microsecond accuracy




### HPSC Use Cases - High Bandwidth Instruments and SmallSats/Constellations











- Beyond the HPSC Chiplet, System Software, and Middleware developments, further investments can implement a robust HPSC avionics ecosystem
  - Advanced Spaceflight Memory
  - Increased RTOS Support
  - Multi-Output Point-Of-Load Converters
  - Coprocessors (GPU, Neuromorphic, etc.)
  - Special Purpose Chiplets (Security Chiplet, etc.)
  - Advanced Packaging (Multiple Chiplets in a Package)
  - Single Board Computers

### **Conclusion/Status**



### Conclusion

- As illustrated by the NASA use cases, our future missions demand the capabilities of HPSC
- Improved spaceflight computing means enhanced computational performance, energy efficiency, and fault tolerance
- With the ongoing HPSC development, we are well underway to meeting future spaceflight computing needs
- The NASA-developed Middleware will allow the efficient infusion of the HPSC Chiplet into those missions
- Further investments can implement a full HPSC avionics ecosystem

### Status

- USC/ISI delivered System Software Release 1.0 at the May 2018 HPSC Preliminary Design Review
  - Consists of a QEMU based software emulator and initial Yocto Linux based software development kit
- The NASA JPL and GSFC HPSC Middleware team will complete Middleware release R1 this month (December 2018)
  - Middleware release R1 consists of a subset of the services, mostly targeting A53 Linux functionality while the hardware is being developed

Acknowledgements: Wes Powell (GSFC), Rich Doyle (JPL), Rafi Some (JPL), Jim Butler (JPL), Irene Bibyk (GSFC), Jonathan Wilmot (GSFC), John Lai (JPL), J.P. Walters (USC/ISI), and Jon Ballast (Boeing) for diagrams and use case definitions.

# Acronyms (1)



| Acronym | Meaning                                       | Acronym | Meaning                               |
|---------|-----------------------------------------------|---------|---------------------------------------|
| AFRL    | Air Force Research Laboratory                 | FPGA    | Field programmable Gate Array         |
| АМВА    | Advanced Microcontroller Bus Architecture     | GNC     | Guidance Navigation and Control       |
| ΑΡΙ     | Application Programmer Interface              | GOPS    | Giga Operations Per Second            |
| ARM     | Advanced RISC Machines                        | GPIO    | General Purpose Input Output          |
| BIST    | Built In Self Test                            | GPU     | Graphics Processing Unit              |
| BSP     | Board Support Package                         | GSFC    | Goddard Space Flight Center           |
| C&DH    | Command and Data Handling                     | HEO     | Human Exploration and Operations      |
| СРИ     | Central Processing Unit                       | HPPS    | High Performance Processing Subsystem |
| DDR     | Double Data Rate                              | HPSC    | High Performance Spacecraft Computing |
| DMIPS   | Dhrystone Millions of Instructions per Second | нw      | Hardware                              |
| DMR     | Dual Modular Redundancy                       | ı/o     | Input / Output                        |
| DRAM    | Dynamic Random Access Memory                  | I2C     | Inter-Integrated Circuit              |
| FCR     | Fault Containment Region                      | IDE     | Integrated Development Environment    |

# Acronyms (2)



| Acronym | Meaning                                       | Acronym | Meaning                                        |
|---------|-----------------------------------------------|---------|------------------------------------------------|
| IPL     | Initial Program Loader                        | NVRAM   | Non Volatile Random Access Memory              |
| ISA     | Instruction Set Architecture                  | PCle    | Peripheral Component Interconnect express      |
| ISI     | Information Sciences Institute                | QEMU    | Quick Emulator                                 |
| ITAR    | International Traffic In Arms Regulations     | RTEMS   | Real Time Executive for Multiprocessor Systems |
| JPL     | Jet Propulsion Laboratory                     | RTOS    | Real Time Operating System                     |
| кум     | Kernel Based Virtual Machine                  | RTPS    | Real Time Processing Subsystem                 |
| MIPS    | Millions of Instructions per Second           | SCP     | Self Checking Pair                             |
| мми     | Memory Management Unit                        | SIMD    | Single Instruction Multiple Data               |
| МЫ      | Message Passing Interface                     | SMD     | Science Mission Directorate                    |
| MRAM    | Magnetoresistive Random Access Memory         | SPI     | Serial Peripheral Interface                    |
| NAND    | NOT-AND logic                                 | SPW     | Spacewire                                      |
| NASA    | National Aeronautics and Space Administration | SRAM    | Static Random Access Memory                    |
| NEON    | Single Instruction Multiple Data architecture | SRIO    | Serial Rapid Input Output                      |

# Acronyms (3)



| Acronym | Meaning                                     | Acronym | Meaning |
|---------|---------------------------------------------|---------|---------|
| SSR     | Solid State Recorder                        |         |         |
| STMD    | Space Technology Mission Directorate        |         |         |
| sw      | Software                                    |         |         |
| твр     | To Be Determined                            |         |         |
| TMR     | Triple Modular Redundancy                   |         |         |
| TRCH    | Timing, Reset, Configuration, and Health    |         |         |
| TTE     | Time Triggered Ethernet                     |         |         |
| UART    | Universal Asynchronous Receiver Transmitter |         |         |
| USC     | University of Southern California           |         |         |
| VMC     | Vehicle Management Computer                 |         |         |
|         |                                             |         |         |
|         |                                             |         |         |
|         |                                             |         |         |