
NASA NIFS - Internship Final report

Kennedy Space Center 1 10-11-2018

Command and Control Systems Widgets

Maher Ismail

NASA KENNEDY SPACE CENTER

Major: Computer Engineering

Fall 2018 Session

Date: 10-11-2018

https://ntrs.nasa.gov/search.jsp?R=20190001412 2019-08-30T10:40:22+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/189597044?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NASA NIFS - Internship Final report

Kennedy Space Center 2 10-11-2018

The Engineering Directorate at NASA’s Kennedy Space Center (KSC) is designing a
command and control system to launch future rockets. Part of this effort involves designing
new visual representations for operator displays for monitoring and commanding the Space
Launch System (SLS), Launch Control Systems (LCS), and future rockets. The purpose of my
semester long internship as a software developer includes the design, development,
integration, and verification of widgets that will be used in the firing rooms operator console
displays.

Nomenclature

 DSF = Display Services and Frameworks
 KSC = Kennedy Space Center
 SCCS = Spaceport Command and Control System

I. Introduction

he SCCS engineers at NASA KSC currently use a numeric representation to show different qualities
and attributes of the vehicle and ground data on launch day. The engineers using these displays have
requested a more visual representation of the data. The type of visual representation used for this effort

is widgets. The widgets would allow the engineers to take in significantly more information at once with
much more efficiency and ease. Instead of just showing the value of a specific element and its unit, a gauge
could be used to show where that value lies in a specified range, like a speedometer in a car. The engineers
have requested several widgets including bar fill, radial fill, bar pointer, radial pointer, and wind direction.
The widgets were also envisioned to change colors depending on the severity state of the values they
represent. Having these widgets will provide an enhanced situational awareness on console as to how close
a measurement is to a limit and can potentially make launch day operations run more smoothly.

II. Objectives

Various gauges can be created to visually represent vehicle and ground system data. The gauge
choice for each measurement will be determined by the type of data the gauge will represent. It is up to the
designer of the display to select the desired gauge based on both personal preference and type of data to be
displayed. The following gauges can be used interchangeably with the option to use more than one gauge
to represent a given measurement: a radial pointer gauge that rotates from left to right, a radial fill gauge
that fills up from left to right, a needle pointer that points at the value inwards with a small indicator while

T

NASA NIFS - Internship Final report

Kennedy Space Center 3 10-11-2018

rotating from left to right, a bar fill that fills upwards, a pointer fill that moves upwards, a bar fill that fills
from left to right, a pointer fill that moves from left to right, a circular wind direction widget that points
inwards with the value in the center displaying angle values in the range from 0 to 360.

Gauge Sketch by Maher Ismail

After talking to the engineers, they requested a set of specific features that can optionally be
applied to any of the widgets. Not all features are applicable to all the widgets so they were designed each
having their own set of features. Some of these features include: allowing the object’s range to adapt the
maximum and minimum values that can later be changed, adjusting severity signs dynamically (colored
indicators to where warning starts), adding a pulsing severity color affect, allowing more parts of the
widgets to pulse during red severity, inserting a label on the widget and allow it to be dynamically changed,
adjusting the number of tick marks (main and intermediate) dynamically, allowing minimum and maximum
values to be changed dynamically, using default colorblind colors for all colors shown, allowing the user to
turn off severity signs, having the option to toggle the flashing of severity colors, adding the ability to
invert all colors, adding an option for an invalid state, allowing widget to be resizable, allowing widgets to
take colors directly from the system, and dynamically adjusting the font of numbers on scale.

III. Approach

A. Learning the Software

NASA NIFS - Internship Final report

Kennedy Space Center 4 10-11-2018

Since there were no area experts for the tool I was working on still working the project, the only
way for me to learn how to use the software was reverse engineering existing widgets while exploring more
options and looking online for articles and tutorials. After a few days, I learned that the software was similar
in many ways to software I have used in the past, and that allowed me to learn it much faster.

B. Design

The design of the widgets was requested to be minimalistic, not having too many distracting colors
and not being too graphically advanced, so as to not distract the user when there are many of the widgets on
the screen at once. The design also needed to be easy on the eyes so the user would not experience
unnecessary eyestrain. Using these instructions, I made a series of prototype designs and showed them to
mentors, interns, and engineers. I then polled them for input on pros and cons of each design. I compiled their
input into a combined list of all the positive aspects of each and modified the design, constantly improving it
with feedback from the engineers who made the request for the widgets. As time passed, the engineers kept
requesting functional and aesthetic improvements until they were satisfied with the design.

C. Functionality

To make the pulsing effect, I let the desired color blink between different colors with a high
frequency. I added twenty one colors and then decremented the RBG value by thirty until I reached five, then
incremented by thirty to create the pulsing effect. To make the needle and the pointer move clockwise, I
bound the object from a minimum value of -20 to a maximum value of 200, then oriented it to the center of
the widget. Since when an angle is increased, it moves counter clockwise from zero to 180, any value must
be multiplied by -1 to move in the opposite, clockwise direction. To allow the object to change depending on
the parameter, the following formula was inserted in the rotation value on the object

(𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 − 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) ∗
200 − −20

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 𝐼𝐼𝐼𝐼𝐼𝐼𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
+ −20

For the radial fill, the only way to produce that same effect was to create an arc and allow the size
to change depending on the incoming value. The arc fits perfectly in the gauge but it only has two attributes,
a start angle and a delta angle (how far it goes). Since the arc was not designed to move dynamically, it only
increased in size counterclockwise so the size was always added to the left side of the starting angle. This
was incorrect, since the gauge was intended to fill clockwise, like any other mechanical gauge. When I tried
to add a negative delta angle, the arc always became a full circle. Therefore, any negative number was not
accepted and there was no way to change the direction of the fill. Instead of changing direction, I allowed the
size to increase counter clockwise while simultaneously moving the starting angle the same amount so as to
create the illusion of filling up clockwise. It also needed to be bound by a specific visual range and an
incremental range depending on what the user chose as maximum and minimum values. This resulted in the
following formulas to calculate the start angle and the delta angle:

 Start Angle: (200 − 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉) ∗ 200− −20
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼−𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

Delta Angle: (𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉) ∗ 200− −20
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼−𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

+ 1

For the bar fills I added the same formulas above but inserted it in the size value instead of rotation
value. The formula changes the height of the fill for the vertical bar and the width of the fill for the horizontal
bar was added. For the pointer fills, the same formulas were used, but instead of size they changed the position
value: Y position for the vertical pointer and X position for the horizontal pointer fill. Later I noticed an issue
with the needles or bars exceeding the widget’s enclosure if their runtime values exceeded the chosen range.

NASA NIFS - Internship Final report

Kennedy Space Center 5 10-11-2018

To fix this issue, when the value was higher than the maximum, I replaced every occurrence of maximum
values in the formulas with the value itself. If the value was lower than the minimum, I replaced every
occurrence of the minimum value in the formulas with the value itself. This also solved the issue of the arc
changing into a complete circle when given a number lower than zero.

D. Perfecting the widget

As I became more familiar with the software, it was easier to understand its capabilities. After

creating the prototype, I was able to implement additional features and modify aesthetic properties to meet
user requirements. I was able to get a better understanding of what the user needs and how it will work in
real time, thus providing more relevant widgets. Since these widgets were designed with constant input from
the users, the engineers may be able to reuse these widgets on future projects.

E. Connecting widgets to the System
To connect the newly designed widgets to the existing displays, I attempted to try to “trick” the

system into thinking I was using one of its already existing widgets. I gave it the same name as an existing
widget and observed the result. Although this technique didn’t work, it gave me insight into how the widgets
take information from the other programs, allowing me to dissect the widget to see which parts were essential
for it to function. Knowing which part is essential allowed me to know where to look and what I needed for
my widgets to function in a similar way. After a lot of troubleshooting, and with the help of some of the
engineers who work closely with this program, I was able to connect the widgets to the system as well as
control it dynamically with different parameters.

IV. Conclusion

The use of widgets rather than numerical data can increase productivity and attention during

launch activities. The widgets allow the engineers to spot abnormalities easier, thus getting a jump on
fixing problems. Once testing is complete, theses widgets will be used for the launch of Exploration
Mission 1 .This internship allowed me to apply my computer, problem solving, and creative skills.
Combining and further developing these skills towards something that will be used to further the space
program has been a great privilege. Being able to contribute to this mission is one of the highlights of my
technical career.

Acknowledgements

 I would like to thank my mentors Jill Giles and Jamie Szafran. I would also like to thank Jonathan

Serrano, Mario Blalock, and Thong Tran for always supporting me and answering any questions.
Additionally, I would like to thank Jason Kapusta for always providing guidance, as well as Jordan Kiser.
Furthermore, Oscar Brooks for his career development input and branch supervision. Finally, I would like
to thank Gwendolyn Gamble and Kathleen Wilcox from the NASA KSC Education office, for being
friendly and patient with all the interns and supporting us throughout the whole process.

	Nomenclature

