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We investigate how systematically increasing the accuracy of various molecular dynamics modeling techniques
influences the structure and capacitance of ionic liquid electric double layers (EDLs). The techniques probed
concern long-range electrostatic interactions, electrode charging (constant charge versus constant potential
conditions), and electrolyte polarizability. Our simulations are performed on a quasi-two-dimensional, or slab-
like, model capacitor, which is composed of a polarizable ionic liquid electrolyte, [EMIM][BF4], interfaced
between two graphite electrodes. To ensure an accurate representation of EDL di↵erential capacitance, we
derive new fluctuation formulas that resolve the di↵erential capacitance as a function of electrode charge or
electrode potential. The magnitude of di↵erential capacitance shows sensitivity to di↵erent long-range elec-
trostatic summation techniques, while the shape of di↵erential capacitance is a↵ected by charging technique
and the polarizability of the electrolyte. For long-range summation techniques, errors in magnitude can be
mitigated by employing two-dimensional or corrected three dimensional electrostatic summations, which lead
to electric fields that conform to those of a classical electrostatic parallel plate capacitor. With respect to
charging, the changes in shape are a result of ions in the Stern layer (i.e. ions at the electrode surface) having
a higher electrostatic a�nity to constant potential electrodes than to constant charge electrodes. For elec-
trolyte polarizability, shape changes originate from induced dipoles that soften the interaction of Stern layer
ions with the electrode. The softening is traced to ion correlations vertical to the electrode surface that induce
dipoles that oppose double layer formation. In general, our analysis indicates an accuracy dependent di↵er-
ential capacitance profile that transitions from the characteristic camel shape with coarser representations to
a more di↵use profile with finer representations.

I. INTRODUCTION

In response to a charged electrode, ionic liquids form
electric double layers (EDLs). The EDL consists of al-
ternating layers of cations and anions that screen the
surface charge. Ionic liquid EDLs can have large values
(⇠10-20 µF/cm2) of di↵erential capacitance, Cdl, which
is the rate of change of surface charge density (h�i) with
respect to surface potential (h i) on a given electrode,

Cdl =
@h�i
@h i , (1)

making them well suited for non-Faradaic energy stor-
age. Recent experimental work has delineated the sensi-
tive relationship of the Cdl of ionic liquids to atomic-level
details of the EDL, including electrolyte molecular size1

as well as electrode surface structure.2–7 The key to im-
proved energy storage lies in the optimization of these
properties, which will require careful control of molecu-
lar level features. In this regard, theoretical techniques,
especially those that capture the full atomic detail of the
interface, will be a useful guide for future development.

Molecular dynamics (MD) has been broadly and suc-
cessfully employed to understand both the structure of
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ionic liquids at electrified interfaces8–17 as well as to es-
timate the electrode potential dependent di↵erential ca-
pacitance.18–28 A variety of ionic liquid interatomic po-
tentials have been applied to the study of EDLs, includ-
ing coarse grained,19,29–31 all atom,8–15,17,18,20–25,28,32,33

and polarizable models.34–39 Coarse grain simulations of
ionic liquids19,29–31 have provided important insight into
how ionic liquid size and shape influence the EDL struc-
ture and capacitance. For instance, coarse grained mod-
els19,40 have been used extensively to corroborate mean
field predictions that describe how disparities in ion size
and packing at the electrode surface lead to the experi-
mentally observed camel- and bell-shaped profiles of Cdl

with respect to h i. All atom interatomic potentials pro-
vide a richer representation of EDLs and have been used
to detail both the electrode potential dependent structure
and the di↵erential capacitance of specific ionic liquid
compounds.8–15,17,18,20–25,28,32,33 The predictive power of
these methods has been recently highlighted though the
excellent agreement of MD derived EDL structures with
atomic force microscopy measurements41 and the ability
to capture the magnitude and camel shaped profile of
Cdl.22–26,28 Adding a level of refinement beyond the all
atom models, polarizable models of ionic liquids, where
each atom has a dynamic dipole moment, have produced
highly accurate measures of bulk structure and trans-
port;34–39 however, they have had limited application to
the study of EDLs, with the only application at present
being to organic electrolyte systems.25

Several methodologies have been developed for apply-
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ing charge or, alternatively, setting the potential of elec-
trodes in a manner consistent with a metal in MD simu-
lations. The most direct of these methods applies a con-
stant charge to each electrode surface atom, referred to as
constant-� ensemble. Electrodes treated in this manner
have produced favorable comparisons of Cdl with cyclic
voltammetry measures on some carbon nanostructures.18

A more complex approach is to redistribute the electrode
surface charge over the course of the simulation such
that the potential di↵erence, � , between two electrodes
meets a pre-defined value. This approach, referred to as
the constant-� ensemble,42,43 has been employed to ob-
tain the di↵erential capacitance of ionic liquids at both
ideal and roughened graphitic electrodes,22–26,28 where
the application of the constant-� condition is not intu-
itive. Notably, the extensive simulations of Vatamanu
and coworkers23 using this approach have provided a de-
tailed description of how the electrode surface, including
spacing, curvature, and disorder, influences the magni-
tude and shape of Cdl.

In addition, numerical issues related to simulation
methodology can a↵ect the accuracy of EDL computa-
tions. Since slab-like, quasi-two-dimensional (2D) geom-
etry is often employed in these computations (see Fig. 1),
the appropriate technique for the long range electrostatic
summation must be considered. Typically, such summa-
tions assume three dimensional (3D) periodicity, which
conflicts with the quasi-2D symmetry of a slab in an infi-
nite vacuum and introduces spurious electrostatic inter-
actions between periodic images. To correct for this, the
computationally costly, though exact, 2D Ewald summa-
tion44 is often utilized. Alternatively, less expensive 2D
corrections the the 3D Ewald summation have also been
considered.45 The comparative accuracy of these options,
however, has yet to be rigorously determined.

Another source of potential error arises in the determi-
nation of Cdl, which is often computed as the numerical
derivative of h�i with respect to h i on a given elec-
trode. Due to the slow dynamics of ionic liquids and the
complexity of interfacial interactions, however, the noise
present in the numerical derivative is often large. Reduc-
ing the noise requires fitting the h�i data over many simu-
lations using a fine voltage mesh and taking the derivative
of the curve fit.24 Alternatively, fluctuation formulas for
Cdl have recently been derived,30,31,46 which remove the
ambiguity of a noisy numerical derivative and do not re-
quire many simulations over a dense potential grid. Thus,
Cdl can be determined at particular points of interest.
At present, the fluctuation formulas have not been ex-
tensively tested and are available for only two electrode
systems treated with the constant-� approach. Fur-
thermore, the available fluctuation expressions define the
quantity @h�i/@� , which is the total capacitance of two
electrodes, a positive electrode and oppositely charged
negative electrode, together as opposed to the capaci-
tance of an individual electrode. Fluctuation expressions
for the capacitance of individual electrodes, which are
commonly measured in experiments, are necessary to de-

scribe di↵erences in the EDL capacitance at negative and
positive electrodes, leading, for example, to asymmetric,
camel-shaped Cdl profiles.
Despite the considerable amount of work using MD

simulations to study EDL structure and capacitance, is-
sues related to simulation methodology have only begun
to be examined recently.29,47–49 In the present work, we
evaluate the impact of di↵erent modeling approaches on
the computed structure and capacitance of the EDL. We
begin with an evaluation of the numerical accuracy of
various long-range summation techniques on electrode
potential and EDL structure. We then investigate the
evaluation of di↵erential capacitance using constant-�
and constant-� electrodes. For both electrode ap-
proaches, we derive, benchmark, and evaluate new fluc-
tuation expressions for Cdl that extend previously de-
rived expressions and enable the analysis of single elec-
trodes. Di↵erences in capacitance are then rationalized
though an evaluation of the potential dependent density
and the configuration of the surface ion layer, or Stern
layer. Finally, we comment on the role of polarization
on EDL structure and capacitance. To perform these
simulations, we employ a model system consisting of an
electrolyte, 1-ethyl-3-methylimidazolium boron tetraflu-
oride ([EMIM][BF4]) as represented by the polarizable
force field, APPLE&P,50–52 interfaced between two ideal
graphite electrodes (see Fig. 1).

II. METHODS

A. Long-Range Electrostatics

Our capacitor system has a slab-like, or quasi-2D,
geometry, with the rk dimensions being fully periodic
and the z dimension, normal to the surface, being fi-
nite. While the covalent interactions are local and easily
amenable to such a geometry, the 3D periodic techniques
typically employed to perform long-range summation of
electrostatic interactions do not easily conform to slab-
like geometry and can lead to spurious interactions be-
tween electrode images. There are various approaches
that can be used to perform such a summation in slab
geometry, which include the exact 2-D Ewald summa-
tion, the 3-D Ewald summation with a slab correction,
and the 3-D Ewald summation with no correction.
The 2-D Ewald summation technique, as developed by

Parry,53 Heyes and coworkers,54 and Leeuw and cowork-
ers55 and further streamlined by Kawata and Mikami,44

is an exact method for the evaluation of the electrostatic
interactions in a system having slab geometry. Similar
to 3-D Ewald summation, one partitions the electrostatic
energy as UES = Ur +Uk,2D, where Ur is the real space
contribution and Uk,2D is the reciprocal space contribu-
tion. The real space contribution is given by

Ur =
X

i

X

j 6=i

qiqj
|rij |

erfc(↵|rij |), (2)
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FIG. 1. Representation of dual graphite electrodes interfaced with [EMIM][BF
4

]. The system has slab geometry and is periodic
in the directions parallel to the electrode surface (rk) and non-periodic in the direction perpendicular to the electrode surface
(z).Throughout this work, z = 0 is defined as the point equidistant to both electrodes. The spacing between the electrodes is
defined as Lz, and beyond the electrodes an infinite vacuum is assumed. The large purple and blue atoms are F and N atoms,
respectively, while the small grey and white atoms are C and H, respectively.

which represents the mutual interaction between atomic
charges as well as the interaction of atomic charges with
Gaussian distributed charges (the half maximum width
of these distributions is 2↵�1

p
ln(2) Å which is stan-

dard to the Ewald procedure). Each Gaussian is cen-
tered on a given atom and bears opposite charge to that
atom, screening the real space interaction and allowing
the use of a cuto↵. The long range interactions are han-
dled through the reciprocal space summation over a grid
of k-point in the rk directions according to

Uk,2D
kk 6=0 =

1

Ak

X

k 6=0

Z 1

�1
dh

1

|kk|2 + h2
⇥

exp

✓
�
|kk|2 + h2

4↵2

◆
|S2D(kk, h)|2,

(3)

where Ak is the area of the simulation cell in the rk di-
rections, kk are reciprocal space points the rk directions,
h is a real space integration variable in the direction of
z, and S2D(kk, h) =

PN
j=1 qjexp(ikk ·rk,j + ihzj). Unlike

the 3-D Ewald summation, the infinite contribution at
kk = 0 is dependent on the z direction according to

Uk,2D
kk=0

= � 1

Ak

NX

i=1

NX

j=1

qiqj⇥

⇢p
⇡

↵
exp(�[↵zij ]

2) + ⇡zijerf(↵zij)

�
.

(4)

Such an N2 contribution is not easily computed for large
systems without the use of basis splines, which reduce
this term to an order N operation. In the present work,
we compute this term exactly at 100 values of z and
employ 4th order basis splines to evaluate this quantity
at all atomic positions.

Alternatively, the relatively less computationally ex-
pensive 3-D Ewald summation with an approximate cor-
rection for slab-like geometry can be employed. In this

approach, a large amount of vacuum space is included
between the capacitor periodic images in the z direction
such that the electrostatic interactions between the im-
ages is considered small. The correction to the 3D-Ewald
summation, as given by Yeh and coworkers,45 may be
implemented to remove the remaining long-range inter-
action between the electrode images in the z direction.
Though originally developed for systems of interacting
point charges, we have extended this correction to ac-
count for the long-range interaction of point charges with
the atomic dipoles produced from the polarizable force
field according to

U2D
corr =

1

2✏0
M2

z , (5)

where ✏0 is the permittivity of free space and Mz is the
net dipole moment in the z direction,

PN
i=1 (qizi + µz).

We use a vacuum three times larger than the electrode
separation.

B. Constant Potential versus Constant Charge Electrodes

In the present work, our model capacitor consists of
electrodes composed of three layers of graphite, as shown
in Fig. 1. The position of an atom, r, is decomposed into
the direction normal to the electrode surface, z, and the
directions parallel to the electrode surface, rk. The elec-
trodes are separated by a distance Lz, and the region
beyond the electrodes in the z direction is considered
infinite vacuum. To characterize the double layers at
each surface accurately, it is important that they do not
interact. Accordingly, we find Lz = 10 nm meets this
criteria; however, for computational ease, select bench-
marking simulations are performed with smaller Lz =
4 nm systems. The electrode atoms interact with the
ionic liquids through both repulsive-dispersive Lennard-
Jones interactions as well as electrostatic interactions,
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though the atomic positions are held fixed throughout
the dynamics. To approximate a metallic surface, the
charges on the electrode atoms are taken to be Gaussian
distributed with a width at half maximum of

p
ln(2) Å.

Two approaches are employed in the present work
to induce a potential on the electrodes: the constant-
� emsemble and the constant-� ensemble. For the
constant-� ensemble, the charges on the electrodes are
determined through a modified version of the constant
potential formalism first implemented by Siepmann42,43

that ensures all atoms on a given electrode are at an
identical electrostatic potential and that the potential
di↵erence between the two electrodes is at the defined
target value, � . Similar approaches have found use in
simulations of ionic liquids in the presence of electrified
interfaces.24,27,48 In this method the system Hamiltonian,
H, for our dual electrode, model capacitor is given by

H = UK + URD + UES �A|�|� , (6)

where UK is the kinetic energy, URD is the total
repulsive-dispersive energy, UES is the total electrostatic
energy, A is the electrode cross sectional area, |�| is the
absolute value of the electrode surface charge density on
the positive (�+) or negative (��) electrode, and � 
is the imposed potential di↵erence between positive and
negative electrodes, given by  +� �. This Hamiltonian
results from a constrained optimization that distributes
charges on the electrode atoms such that �+ = ���.
Thus, all atoms on a given electrode are at an identi-
cal electrostatic potential, and the potential di↵erence
between the electrodes is the defined value of � . For
clarity, throughout the majority of this work the super-
scripts + and � are not explicitly given, but are indicated
through the sign of the surface potential or the charge.

An alternative to treating the electrodes in the
constant-� ensemble is to simply define a static charge
distribution on the electrode, referred to as the constant-
� ensemble. For our model capacitor, we distribute equal
charge to all surface atoms (i.e. those on the graphite
plane nearest the liquid) on a given electrode and en-
sure �+ = ���. The Hamiltonian in this case is simply,
H = UK +URD +UES . Care must be taken when defin-
ing the electrode potential, however, as

 =
@H

@�
=

1

N

X

i

@H

@qi

@qi
@�

, (7)

which implies any electrode atom, “i,” not participat-
ing in the charging process (@qi/@� = 0) should not be
included in the potential computation. For the present
work, because we smear charge only on the graphite plane
nearest the electrolyte, we tabulate the potential on only
atoms in this plane. This method is clearly more straight-
forward than the constant-� formalism; however, as
the surface structure grows in complexity, the assignment
of charges in this manner may not be trivial.

C. Capacitance Fluctuation Formulas

For the constant-� ensemble, the Helmholtz free en-
ergy of our model capacitor can be written as F =
���1ln(⌦), where � is the inverse product of Boltz-
mann’s constant and temperature and ⌦ the partition
function of our system. The partition function is equal toR
e��HdRdP , where

R
...dRdP represents a phase space

integration and H is given by Eq. 6. The derivative of F
with respect to � may then be written as,

@F

@� 
= �Ah|�|i �A� 

⌧
@|�|
@� 

�
+

⌧
@UES

@� 

�
, (8)

where h...i represents the ensemble average of a given
quantity. The final two terms that describe the ensemble
average of the derivatives of |�| and UES with respect
to � arise from the implicit, and instantaneous, depen-
dence of the electrode charge on � introduced through
our constant-� formalism. The integral of Eq. 8 with
respect to � gives a direct means to obtain di↵erences
in free energy from molecular dynamics simulations. We
include this expression here to provide a complete outline
of the thermodynamics of our model capacitor system.
Further evaluation and implementation of this expression
can be found in an alternate work.56

Expressions for the di↵erential capacitance of our
model system can also be derived.31,46,57,58 The aver-
age surface charge of our constant-� electrode is given
by h�i = ⌦�1

R
�e��HdRdP . As described in recent

work,31,46 the derivative of h�i with respect to � yields
the combined di↵erential capacitance of the two elec-
trodes in our model capacitor. This quantity can be
written as

@h�i
@� 

=�A h|�|��i+
⌧

@�

@� 

�

+ �A� 

⌧
@|�|
@� 

��

�
� �

⌧
@UES

@� 
��

�
,

(9)

where � is the inverse product of Boltzmann’s constant
and temperature, UES is the electrostatic energy, and
�� = � � h�i. Eq. 9 is the full fluctuation formula for
the total di↵erential capacitance of two electrodes in the
constant-� ensemble. The final three terms in Eq. 9,
which have not been included in previous derivations of
@h�i/@� , account for the implicit dependence of elec-
trode charge on the value of � . For the system studied
here, the first term on the right side of Eq. 9 is by and
large the leading contribution to the total di↵erential ca-
pacitance. Included in the second and third terms, h@�/
@� i represents the self-capacitance of the electrodes
under the influence of the electrolyte structure. Simi-
larly, in the fourth term, h@UES/@� i is dominated by
changes in the self-energy of the electrode. The value of
h@�/@� i, being the capacitance of the electrode only,
is an order of magnitude smaller than �A h|�|��i, though
non-neglegible. We find that h@�/@� i and hUES/
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@� i are relatively constant for the model system con-
sidered in the present work. As such, the final two terms
in Eq. 9 that include fluctuations of these values are van-
ishingly small. We thereby truncate the expression after
the first two terms. For other systems, however, these
terms may not be negligible.

Of experimental interest, the resolution of capacitance
for a single electrode, @h�i/@h i, yields information on
the comparative behavior of the EDL at positive and neg-
ative potential conditions. An expression for @h�i/@h i,
which has not previously been reported, can be derived
for use with our model capacitor system by starting with
an expansion of di↵erential capacitance,

@h�i
@h i =

@h�i
@� 

@� 

@h i , (10)

where the ensemble averages, h�i and h i, are taken to
be on the same electrode. The average potential on one
of our electrodes is given by h i = ⌦�1

R
 e��HdRdP .

As with surface charge previously, the derivative of this
quantity with respect to � may be taken to yield


@� 

@h i

��1

= �A h|�|� i+
⌧

@ 

@� 

�

+ �A� 

⌧
@|�|
@� 

� 

�
� �

⌧
@U

@� 
� 

�
,

(11)

where � =  � h i. For the systems of interest in the
present work, we have found, numerically, that

⌦
@ 
@� 

↵
,

representing the instantaneous change of electrode po-
tential with a change in potential di↵erence, is 0.5 and
-0.5 for the positive and negative electrodes, respectively,
to within the nearest thousandth. For reasons previously
described, the final two terms in Eq. 11 are vanishingly
small and are not included in the current computations.
The total expression for di↵erential capacitance for either
the positive or negative electrodes is then given as

C� =
@h�i
@h i =


�A h|�|��i+

⌧
@�

@� 

��
⇥


�A h|�|� i+

⌧
@ 

@� 

���1

,

(12)

where C� indicates capacitance in the constant-� en-
semble.

Complementary thermodynamic expressions can be
derived for our model capacitor in the constant-� ensem-
ble. The Helmholtz free energy can again be determined
from F = ���1ln(⌦); however, the simpler form of the
constant-� Hamiltonian when compared to that of the
constant-� case leads to

@F

@�
=

X

i

@F

@qi

@qi
@�

. (13)

As a constant value is used for each surface charge atom,
@F@� further reduces to h i, the average potential on

the electrode. Concerning capacitance using constant-�
electrodes, the quantities of interest are @�/@h� i and
@�/@h i, where the potential di↵erence between the elec-
trode and the potential of each electrode are ensemble
averages as the potential is free to fluctuate in time. Em-
ploying a procedure similar to that used for the constant-
� ensemble, the fluctuation expressions can be written
as

@|�|
@h� i =

⌧
@� 

@|�|

�
� �A h� �� i

��1

(14)

and

C� =
@�

@h i =

⌧
@ 

@�

�
� �A h| |�� i

��1

, (15)

where �� = � � h� i and C� indicates capacitance
in the constant-� ensemble.

D. Polarizable Force Field

We employ the atomistic polarizable potential for liq-
uids, electrolytes, and polymers (APPLE&P)50–52 to rep-
resent [EMIM][BF4]. In this potential, each atom has a
polarizability, ↵, which induces an atomic dipole, µ, ac-
cording to

µi = ↵i ·Ei, (16)

where Ei is the electric field due to charge-charge and
charge-dipole interactions at atomic site i. The dipoles
are iteratively evaluated at each step of the simulation
until the polarization energy converges to within 1E-9
kcal/mol. The polarization energy, Upol, can be given as

Upol = �1

2

X

i

µ ·E0
i , (17)

where E0
i is the charge contribution to the electric field.

Because the dipole-charge interactions are long range, we
have extended both the 2D and 3D Ewald summations
to include contributions from charge-dipole interactions.
The dipole-dipole interactions are alternatively treated
with a reaction field to approximate their long-range in-
teractions during the iterative update procedure. For all
long-range techniques, the k-space grid is chosen to pro-
duce a 0.01% error in the long-range energy.

E. Molecular Dynamics Simulations

All simulations are performed in the canonical ensem-
ble using the Nosé-Hoover formalism having a tempera-
ture of 363 K. The rRESPA formalism is used for time
integrate, with the time step being 3 fs. We employ
three rRESPA levels, with bonds, angles, and dihedrals
being determined on the first level; impropers and non-
bonded interactions between atoms no further than 6 Å
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apart being determined on the second level; and all non-
bonded interactions, long-range interactions, dipole up-
dates, and surface charge updates being performed on
the third level. There are 9 first level integrations and
3 second level integrations for every 3 fs outer integra-
tion. For the constant-� simulations, the potential is
updated in the 3rd rRESPA step, and the charges are
determined such that the variance of  on each atom is
within 0.025 V of the electrode average. As previously
mentioned, our model capacitor is composed of two elec-
trodes, a positive and negative electrode, between which
is the ionic liquid electrolyte. The electrodes are com-
posed of three layers of graphite having the basal plane
exposed to the electrolyte. For our investigation into
the influence of method on EDL structure and capaci-
tance, we use a large capacitor system with Lz = 10 nm
and 216 [EMIM][BF4] pairs, which, based on average ion
density profiles, is free of size errors related to the in-
teraction of the EDLs of the positive and negative elec-
trodes. In a limited number of numerical tests, however,
we also employ a small capacitor with an electrode spac-
ing, Lz = 4 nm and 140 [EMIM][BF4] pairs as an e�cient
means of comparing the accuracy of various methods.

III. RESULTS

A. Long-Range Electrostatics

To begin our study on di↵erential capacitance, we ad-
dress the issue of the performance of electrostatic summa-
tion techniques with respect to accuracy of the electrode
potential and EDL structure. To do this, we use a small
capacitor system consisting of [EMIM][BF4] interfaced
with electrodes Lz = 4 nm apart at 363 K, which allows
the e�cient comparison of our most expensive, and accu-
rate, numerical methods to those having approximations
that reduce computational expense.

Ideally, our model capacitor should electrostatically
conform to the slab condition, periodic in the plane of
the electrode and having infinite vacuum exterior to the
electrode. To understand the implications of this condi-
tion on the electrostatic potential, we refer to the classical
case of parallel plate capacitors separated by a distance
Lz and having uniform charge densities of ±�. For such
a system, the magnitude of the electric field between the
plates is �/✏0, while the field is zero external to the plates.
The lack of electric field external to the plates indicates
that the potential is constant in these regions, and a path
integral yields a potential di↵erence of �Lz/✏0 between
the plates. A direct extension of this model to that of a
parallel plate capacitor filled with a medium of a given di-
electric constant yields similar results. Therefore, for our
model capacitor to be consistent with the classical elec-
trostatic system, the potential external to the electrodes
should be constant. Some deviation from this behavior,
however, could be expected near the electrodes because
the charges in our system are localized to atoms.

To compare the behavior of the multiple electrostatic
summation techniques in this respect, we provide a mea-
sure of the electrostatic potential averaged in the rk di-
rections, given as a function of z in Fig. 2 for our small
capacitor in the constant-� ensemble. We immediately
note a distinct di↵erence between the 3D-Ewald and the
other summation techniques. This is, in part, because
the 3D Ewald summation necessitates the use of a pe-
riodic boundary condition in the z direction, which has
been applied to allow a vacuum of 3Lz to separate the
electrode periodic images, leading to a periodic bound-
ary at ±80 Å. Because of periodicity in the perpendic-
ular direction in the 3D-Ewald approach, the potential
must necessarily cross zero in the vacuum region, which
is seen at the intersection of the potential from the pos-
itive and negative electrodes at the periodic boundary.
According to our assumption of an infinite medium be-
yond the boundary of the electrodes, the 2D-Ewald and
3D/slab Ewald techniques conform with our expectations
from the parallel plate capacitor model, having constant
potential for |z| > 1

2Lz. Interestingly, the internal struc-
ture of the ionic liquid appears similar between the three
summation techniques.
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FIG. 2. Electrostatic potential profiles obtained from an
Lz = 4 nm capacitor having a constant � of 6 V. The pro-
files are obtained from simulations employing the 3D-Ewald
(dashed line), the 2D-Ewald (dotted line), and the 3D/slab-
Ewald (solid line) summation techniques. The profiles are
shown from the center of the capacitor to z = 80 Å, which
represents the periodic boundary for the 3D and 3D/slab-
Ewald techniques.

To better understand the implications of the various
potential profiles, we examine the relationship between �
and � using the di↵erent electrostatic summation tech-
niques for our model capacitor systems in the constant-
� and constant-� ensembles, given in Fig. 3. In both
electrode ensembles, we find the 3D/slab-Ewald approach
to be commensurate with the 2D-Ewald correction. Be-
tween the constant-� and constant-� values using these
summation techniques, we see close agreement, which
suggests the average �-� relationship is weakly depen-
dent on electrode conditions for the ideal graphite system
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used here. For the 3D-Ewald summation, we find di↵er-
ent behaviors that depend on the specific electrode condi-
tions. For constant-� electrodes, shown in Fig. 3a, we
find that average surface charge, h�i, is overestimated by
5-10%, which is a result of the interaction between oppo-
sitely charged electrodes across the vacuum. The reduced
potential is compensated by a larger h�i. For constant-�
electrodes, shown in Fig. 3b, the average potential drop,
h� i, is an underestimate of the 3D/slab and 2D Ewald
techniques, again due to interaction across the vacuum.
Across the range of explored values, the overestimation
of h�i and the underestimation of h� i for constant-� 
and � electrodes, respectively, by the 3D-Ewald summa-
tion is ⇠5-10%. The error in the estimates of h�i and
h� i using the 3D-Ewald approach directly translates
to a 10-20% error in di↵erential capacitance of a single
electrode, which is approximately twice the derivate of
surface charge with respect to the potential di↵erence
between the two electrodes.
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FIG. 3. Influence of long-range electrostatic summation (2D,
3D, and 3D/slab Ewald summation) on the �- relationship
of the Lz = 4 nm model capacitor for both (a) constant-� 
and (b) constant-� conditions.

While the potential on the electrode is a↵ected by the
choice of long range summation technique, the associated
influence on structure is not clear. To probe structural ef-
fects, we have computed the ion density profile (⇢) along
z using the three summation techniques as well as the
deviation of ⇢ obtained by the 3D Ewald and 3D/slab
Ewald from that of the 2D-Ewald technique (�⇢) for the
constant-� and � conditions. The density profiles, as
shown in Fig. S1a and b of the supplemental material,59

indicate that all three summation techniques for both
electrode conditions result in almost identical measures
of ⇢. An analysis of the �⇢, given in Fig. S1c and d,59 in-
dicates that the resulting deviation in density when using
3D/slab-Ewald and 3D-Ewald summations is only a few

percent. The similarity in the magnitude of �⇢ between
the two techniques indicates the structure is relatively
insensitive to the up to 10% error in � or � inherent
to the 3D-Ewald summation.
Our results suggests that the 3D/slab-Ewald summa-

tion technique is appropriate for the system of inter-
est here, providing an accuracy comparable to the 2D-
Ewald summation with the lower computational expense
of the 3D-Ewald summation technique. For other more
general systems, we conjecture that the 3D/slab-Ewald
will be a good approximation to the exact 2D-Ewald ap-
proach if the periodic slab images are su�ciently sep-
arated such that their leading interaction is dipolar in
nature. In the remainder of this work, therefore, we ap-
ply the 3D/slab-Ewald summation technique. With re-
gards to the constant-� and constant-� ensembles, our
results suggest both methods behave in a qualitatively
similar manner. As shown in Fig. 3, the �-� relation-
ship is similar for both surface conditions, leading to our
expectation of similar magnitudes of di↵erential capaci-
tance.

B. Electrode Ensemble: Capacitance Sensitivity

We now turn to an investigation of the comparative
behavior of di↵erential capacitance in the constant-� 
and constant-� ensembles. We first describe the general
behavior and function of the terms present in the fluctu-
ation expressions used to compute Cdl. For the expres-
sion for constant-� electrodes in Eq. 12, the dominant
terms include �Ah|�|��i, h@�/@� i, and �Ah|�|� i.
The value of �Ah|�|��i and h@�/@� i on the positive
and negative electrodes are of equal magnitude but op-
posite sign as �+ = ���. Alternatively, the value of
�Ah|�|� i is of equal magnitude and sign for both elec-
trodes because � =  +� � is constant. The function
of �Ah|�|��i is to include the capacitance that is pri-
marily attributed to electrolyte interaction with the elec-
trode, while h@�/@� i encapsulates the self-capacitance
of the electrodes. Any asymmetry in C� related to the
di↵erent screening properties of the EDL at the positive
and negative electrodes is manifested through �Ah|�|� i.
From Eq. 12, we then see that from a single simulation
at a given value of � , two values of C� are obtained
using @h|�|i/@� 

h@�/@� i±�Ah|�|� i , where the addition or subtrac-
tion in the denominator yields the capacitance of the pos-
itive and negative electrode, respectively. With regard
to the simpler fluctuation expression used for constant-�
electrodes, Eq. 15, both h@ /@�i and �Ah� �| |i are
positive for both electrodes. As with the constant-� 
expression, the capacitance contribution from the liquid
and self-capacitance of the electrode are primarily con-
tained in the h@ /@�i and �Ah� �| |i terms, respec-
tively.
We now perform a convergence study on @h�i/@h i, as

defined in Eq. 12, on our prototype Lz = 4 nm capacitor
using the constant-� ensemble for potential di↵erences
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of 0, 2, and 4 V. Regarding the value of �Ah|�|��i, shown
in Fig. 4a, we find the magnitude reaches to within 10%
of its long-time average after ⇠10 ns. Longer simula-
tions lead to subtle variations, which can be seen in the
crossing of the value of �Ah|�|��i for 0 and 2 V poten-
tial di↵erences near 45 ns. These long time processes
that a↵ect capacitance are di�cult to characterize and
are likely related to minor changes in the EDL struc-
ture, such as the ion density at the electrode surface. We
have also provided a measure of the instantaneous deriva-
tive of surface charge with respect to surface potential,
h@�/@ i, as a function of simulation time. As given in
Fig. 4b, this term converges within ⇠ 10 ns and is nearly
constant and for multiple values of � , exhibiting varia-
tions on the order of 10�3, which are orders of magnitude
smaller than the total value of capacitance. We therefore
conclude that this term is e↵ectively constant across our
potential di↵erence range and here further determine its
value from a single simulation at � = 0 V. The third
term, �Ah|�|� i, in Fig. 4c also shows similar conver-
gence trends with the prior two terms. It is important to
note that at � = 0 V, this term is nearly zero, which is
necessary as the positive and negative electrodes are iden-
tical in this case. Furthermore, the value of this term at
2 and 4 V is small, and this indicates that in our specific
system, there is little di↵erence between the capacitance
of the positive and negative electrodes.

The convergence behavior of @�/@h i for constant-�
electrodes is qualitatively similar to that of the constant-
� electrodes. The value of �Ah| |�� i, shown in
Fig. 4d, shows reasonable convergence within ⇠25 ns,
which is longer than required for constant-� electrodes.
The value of fluctuations on constant-� electrodes may
converge more slowly due to harder electrostatic interac-
tions between the electrode and surface ions when com-
pared to the constant-� electrodes, where the charge
redistributes on the electrode in response to the surface
ion environment and could lead to a more favorable ion
interactions. As given in Fig. 4e, the value of h@ /@�i
appears to be converged again within 25 ns, though the
spread in values is relatively small, on the order of 10�3.
Based on our convergence tests, all further measures of
di↵erential capacitance in the present work are obtained
from 50-100 ns simulations.

To better understand the e↵ect of electrode ensemble,
we compare the di↵erential capacitance of our prototype
Lz = 4 nm system using constant-� and � electrodes
as obtained from both fluctuation expressions and nu-
merical derivatives of � with respect to  . To provide a
� profile su�ciently dense enough in  space to take
a numerical derivative, we have performed 11 simula-
tions equally spaced between 0 and 2 V for the constant-
� condition and between 0 and 4.44 µC/cm2 for the
constant-� condition. Beyond these limits, we have per-
formed additional simulations at 3 V (6.58 µC/cm2) and
4 V (8.78 µC/cm2) for the constant-� (�) electrodes.
Following previous approaches,27 � is fit to a high order
polynomial, the derivative of which provides a smooth,

well-behaved measure of Cdl. Furthermore, we fit the re-
sults of our fluctuation formulas to a high order polyno-
mial to highlight the general trends in di↵erential capac-
itance. The exact values resulting from the fluctuation
formula as well as the derivative of surface charge as ob-
tained from a central di↵erences approach of raw data are
shown in Fig. S2 of the supplemental material.59 The re-
sult of this procedure, shown in Fig. 5, indicates that the
fluctuation expressions provide close agreement with the
numerical derivative approach. This validates our fluc-
tuation expressions for di↵erent electrode ensembles and
enables the treatment of larger systems, where obtaining
a dense �( ) curve is prohibitively expensive.
While there are minor variances between capacitances

obtained with di↵erent electrode conditions, both the
magnitude and global, camel-shaped profile of Cdl are
similar. However, the prototype system used to obtain
these results necessarily introduces confinement e↵ects
into the measure of Cdl. We therefore perform compu-
tations on larger Lz = 10 nm systems to remove size
e↵ects, the results of which are shown in Fig. 6. Follow-
ing our previous convention, we show a fit to the fluc-
tuation formula results to highlight trends in the data,
while the exact values can be found in Fig. S3 of the
supplemental material.59 As with the smaller capacitor,
the magnitude of di↵erential capacitance is similar be-
tween the constant-� and constant-� ensembles, each
resulting in averaged capacitances of 4.8 µF/cm2. We
also note that for both electrode ensembles the value of
capacitance is larger at negative potentials that at pos-
itive potentials. A few di↵erences, however, are appar-
ent between the ensembles. Constant-� electrodes pro-
duce a highly resolved camel-shaped profile (akin to ex-
pectations from mean field theory), with the peaks be-
ing centered on ±0.5 V, while constant-� electrodes
lead to a more di↵use capacitance with lower maximum
values. The value of surface potential at � = 0 and
� = 0, or the potential of zero charge, is virtually zero
for our system in both electrode ensembles, which some-
what appears to be nearer to the maximum in C� at
negative potentils on constant-� electrodes and in a
well between the dual peaks of the camel-shaped C� on
constant-� electrodes. At larger magnitudes of potential
(> |1| V), constant-� electrodes have larger values of
di↵erential than constant-� electrodes. The error asso-
ciated with both measures of capacitance, shown in Fig.
S3, are obtained from the standard deviation of Cdl as a
function of simulation length and are similar in magni-
tude for both electrode systems, ⇠0.1-0.2 µF/cm2.

C. Electrode Ensemble: Structural Sensitivity

To understand the origin of the noted di↵erences in
Cdl with respect to electrode ensemble, we now investi-
gate the potential dependent structural behavior of the
EDL from the Lz = 10 nm capacitor. As a first step in
this direction, we have evaluated the ion density (⇢) as
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a function of distance (�z) from both constant-� and
constant-� electrodes, shown for neutral, negative, and
positive electrodes in Fig. S4 of the supplemental mate-
rial. For the case of neutral electrodes displayed in Fig.
4a and b, the total density, which includes both cations
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FIG. 6. Di↵erential capacitance of an Lz = 10 nm capacitor
as obtained from the use of constant-� (dashed lines) and
constant-� (solid lines) electrodes.

and anions, shows a sharp signature within �z < 5 Å,
indicating a dense layer of adsorbed ions at the electrode
surface. The electrode surface ion layer shares similari-
ties with the Stern layer, which in the classical picture of
the EDL is the layer closest to the surface. Less promi-
nent accumulations in ⇢ occur at larger values of �z,
5 < �z < 15 Å, and represent the liquid response to
the ordering and possible imbalance of cations and an-
ions in the surface ion layer. Further decomposing ⇢ into
its ionic components, the surface ion layer shows a sin-
gle, strong cation signature near the surface and two pri-
mary anion signatures, one overlapping the cation sig-
nature and one more distance from the surface. This
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suggests a finer structure within the surface ion layer,
where anions assume district configurations. Compar-
ing ⇢ between the two electrode conditions, the surface
ion layer at the constant-� electrodes (Fig. S4a) has
a higher initial peak than the one at the constant-��
electrodes (Fig. S4b). This implies constant-� elec-
trodes lead to a denser surface ion layer. Such a result is
plausible considering the electrode charges respond to the
surface ion environment in the constant-� approach,
allowing for more energetically favorable charge distri-
butions than that of the constant-� approach and thus
stronger ion binding at the surface.

Extending our analysis of the EDL density, we pro-
vide ⇢ profiles for electrodes having a constant � of
4.2 V or, equivalent in terms of potential, a constant-
|�| of 9.63 µC/cm2. The density as a function of �z
from the positive electrodes is shown in Fig. S4c and
d, while density from the negative electrodes is shown
in Fig. S4e and f. Beyond the expected di↵erences of
a cation and anion dominated surface ion layer at the
negative and positive electrodes, respectively, the same
general structure described for the neutral electrode is
present at the charged surfaces. This includes a strong
signature at small �z, representing the surface ion layer,
and less prominent signatures at larger �z, represent-
ing ion accumulations that compensate for an imbalance
of cations and anions in surface ion layer. The surface
ion layer occurs at �z < 7 Å at the positive electrode
and �z < 4 Å at the negative electrode. The close ap-
proach of the cations near the negative electrode suggests
[EMIM] assumes a highly aligned conformation with re-
spect to the surface, which is somewhat surprising con-
sidering it is considerably larger than [BF4]. We again
note that di↵erent ion distributions at the constant-� 
and constant-� electrode surfaces imply a denser surface
ion layer at the constant-� electrode.

A simple comparison of the ion density profiles indi-
cates that constant-� electrodes lead to a denser sur-
face ion layer than constant-� electrodes. To quantify
this, we have explicitly evaluated the number of ions in
the surface layer per unit area, N, by simply integrating
over the initial peak found in the ⇢(�z) profile. The re-
sults of this procedure are shown in Fig. 7a for constant-
� and constant-� electrodes. For both electrode con-
ditions, we find a slight tendency toward more anions
than cations in the surface layer at h i = 0 V, which
is likely a result of the small radius of [BF4]. With an
increase in h i, we see an increase in the number of an-
ions and a decrease in the number of cations, leading to
more negatively charged surface ion layer; naturally, the
opposite e↵ect is noted when decreasing potential. We
note that the number of [EMIM] cations is generally large
and weakly varying, changing by only ⇠0.25 nm�2 across
the investigated range of potential. On the other hand,
[BF4] exhibits large changes with potential, varying by
⇠1.25 nm�2 from the lowest to highest surface poten-
tials. This implies [EMIM] interacts more favorably with
the surface than [BF4].
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FIG. 7. Properties of the electrode surface ion layer as a
function of surface potential h i for constant-� (solid lines)
and constant-� (dashed lines) electrodes of an Lz = 10 nm
model capacitor. Both the (a) surface density, N , and (b)
alignment with respect to the electrode surface, ⇧, are given
for cations and anions.

Contrasting both electrode ensembles, we see that
there are, indeed, more cations and anions in the sur-
face layer at constant-� electrodes than the one at
constant-� electrodes. At the largest magnitude of sur-
face potential, | ± 2.1| V, the ion density is on the or-
der of 10-20% higher at constant-� electrodes. Cor-
relating this observation with the previously noted dif-
ferences in Cdl, we suggest that the energetic favorabil-
ity of having more of both ionic species in the surface
ion layer on constant-� electrodes makes their sepa-
ration, and thus the polarization of the electrode, more
di�cult. Essentially, this suggests that to obtain a given
value of � requires larger potentials on constant-� elec-
trodes than on constant-� electrodes. This is consis-
tent with the larger values of Cdl at low potentials on
constant-� electrodes and larger values at high potentials
on constant-� electrodes. The average capacitance
on both electrodes are practically identical because the
charge accumulation attributed to higher capacitances at
low potentials obtained from constant-� electrodes is es-
sentially spread over a larger potential range in the case
of constant-� electrodes.

In addition to surface ion density, we also compute the
potential-dependent ion configuration at the electrode
surface. The possible alignments are shown in Fig. S5
of the supplemental material,59 with [EMIM] having a
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planar configuration, where the charge center is highly
exposed to the surface, and a perpendicular configura-
tion, where the interactions are primarily with the chain
and the charge center is more removed from the surface.
Similarly, [BF4] can assume highly interacting configura-
tions with three F atoms close to the surface and others
with fewer F atoms, one or two, in proximity to the sur-
face. We define the percent of highly interacting planar
[EMIM] cations and [BF4] having three F atoms near the
surface with ⇧. The value of ⇧ is determined from the
angular distribution of the ring normal in [EMIM] or the
B-F bond in [BF4] with respect to the electrode surface.
Values of ⇧ as a function of surface potential for constant-
� and constant-� surfaces are given in Fig. 7b.

The value of ⇧ is also influenced by electrode ensemble,
with constant-� electrodes leading to a higher value of
⇧ for [BF4] at h i > 0 V than constant-� electrodes.
The higher level of alignment of [BF4] with the electrode
surface, and thus more compact packing, naturally ac-
companies the higher density noted at constant-� elec-
trodes. There is no apparent, systematic di↵erence in the
value of ⇧ for [EMIM] between the two electrodes, though
alignment appears to be higher at positive potentials
for constant-� electrodes when compared to constant-
� electrodes. These trends are consistent with interac-
tions of surface ions being more favorable with constant-
� electrodes than constant-� electrodes, which leads
to more ion alignment at the surface. This further adds
veracity to the argument that a higher density, and thus
more aligned, neutral surface ion layer on constant-� 
electrodes resists the formation of an EDL at low val-
ues of � . This washes out the marked camel-type Cdl

profile that result from surface ions being less strongly
bound, and thus having a lower � barrier to ion segre-
gation and EDL formation, on constant-� electrodes.

Common to both electrode ensembles, the alignment of
[BF4] shows a strong dependence on h i, with ⇧ increas-
ing from ⇠25% to ⇠75% across the 4.2 V potential range.
At neutral surfaces, [EMIM] cations predominantly as-
sume the highly interacting planar configuration at the
electrode surface, having ⇧ of ⇠70 %. The value of ⇧
for [EMIM] changes little as potential decreases, suggest-
ing the surface is saturated with planar cations even at
neutral conditions. Such a fact agrees with the previous
observation of a closely packed surface ion layer at the
negative electrode. At the positive electrode, the value of
⇧ for [EMIM] decreases, reaching 42% at a surface poten-
tial of 2.1 V. Overall, this agrees with the previous asser-
tion, based on the behavior of N in Fig. 7a, that [EMIM]
has more conformational freedom at the electrode sur-
face than [BF4]. Planar conformations of [EMIM] can
exist at the negative electrode through chain interacting
configurations where the charge center is moved form the
surface.

D. Electrolyte Polarizability

The inclusion of atomic polarizability into interatomic
potentials has been shown to be important to accurately
represent the dynamics of ionic liquids. Ionic liquid
EDLs, on the other hand, are commonly studied through
non-polarizable potentials, and the e↵ect of polarization
on such interfaces has not been systematically charac-
terized. As an initial means of understanding the influ-
ence of polarization on EDL properties, we have com-
puted the average induced dipole moment perpendicular
to the electrode surface (µz) as obtained from constant-
� simulations where � = 0 V, given in Fig. 8a. The
value of µz is provided as a function of distance from the
electrode, �z. Negative and positive values of µz imply
atomic dipoles pointing toward and away from the sur-
face, respectively. The µz profile shares similarities with
the ion density profile, shown in Fig. S4, specifically in
that the atomic dipoles oscillate with the same period in
�z as ⇢. The resulting oscillations dampen to µz ⇠ 0
after the first few ion layers, which can be seen from a
comparison with ⇢ in Fig. S4.
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FIG. 8. Comparison of (a) the average induced dipole nor-
mal to the electrode, µz, for [EMIM] and [BF

4

] and (b) the
net ion distribution, �g = gcations � ganions, as a function
of distance from a surface cation in the rk direction and the
electrode surface, �z. Results are shown for our Lz = 10 nm
model capacitor having � = 0 V. More cation concentra-
tion is represented by blue regions while anion concentration
is represented by red regions. The direction of the average
induced dipole in a given accumulation of ions is indicated by
black arrows.

The ion resolved induced dipole moments at � =
0 V, again provided in Fig. 8 a, further show surface
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cations to have dipoles directed away from the electrode,
while surface anion induced dipoles are directed toward
the electrode. As such, the induced dipoles are ener-
getically unfavorable to EDL formation. For instance,
at negative values of h i, there is an electric field di-
rected toward the electrode. While this attracts cations,
it opposes the cation dipole moment, which is directed
away from the electrode. The same mechanism is also
at play for anions. Thus, the induced dipoles will soften
the electrostatic interaction between the surface ion layer
and the electrode surface. For instance, as the electrode
becomes negatively charged, the electric field originat-
ing from the electrode opposes the alignment of induced
dipoles on cations, while it is aligned with the induced
dipoles of anions. This leads to a lower and higher inter-
action between the negative electrode with cations and
anions, respectively. A similar behavior is noted as the
electrode becomes positively charged, with cations being
less repulsed and anions being less attracted to the elec-
trode surface. The net e↵ect of induced dipoles, then, is
to create an energetic barrier to EDL formation.

We rationalize the behavior of the induced dipoles
through an analysis of surface structure using a rk and
z dependent net ion distribution function, �g(rk,�z),
for surface cations, given in Fig. 8b. (The value
of �g(rk,�z) is computed as the di↵erence between
the cation and anion distribution surrounding surface
cations, where the distribution is converted to distance
from the cation in the rk direction and from the electrode
surface in the z direction for ease of comparison with the
z-dependent induced dipole profile.) In e↵ect this pro-
vides a map of ion probability as a function of distance
from a surface cation, with a net cation accumulation
represented by blue regions and net anion accumulation
represented by red regions. Within the surface layer of
ions, which occurs as �z < 5 Å, we see surface anions
at rk = ±5 Å crowding the surface cation at rk = 0 Å.
Beyond these surface anions are aggregations of cations
occurring at rk = ±8 Å, which suggests electrostatic or-
dering at the surface. Interestingly, the second molecu-
lar layer, occurring at 5 Å < �z < 10 Å shows corre-
lation with the surface ions. Specifically, for a surface
ion at a given rk, we see a corresponding accumulation
of counterions at the same rk in the second layer. This
is in agreement with the noted induced dipoles, surface
cations have dipoles which point away from the surface
toward their correlated anions in the second layer, while
surface anions point toward the surface and away from
their correlated cations in the second layer. This further
underlines the three-dimensional nature of the EDL.

To further elucidate the implications of the induced
dipoles, we have performed a suite of simulations in
the constant-� ensemble using the APPLE&P elec-
trolyte potential without atomic polarization. From
these simulations, we have computed the di↵erence in
capacitance between polarized and non-polarized com-
putations, given by �Cdl and shown in Fig. 9 a. We
see negative regions of �Cdl around ±0.5 V and posi-

tive region for 1 V < h i < -1 V. Overall, this leads to
a net decrease in capacitance. The regions of negative
�Cdl occur where highly resolved maxima in Cdl were
noted for constant-� electrodes. Having higher capacity
at lower surface potentials suggests less resistance in the
non-polarizable force field to formation of the EDL.
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FIG. 9. Potential dependent influence of electrolyte polar-
ization on (a) di↵erential capacitance (�C

dl

) and (b) surface
ion alignment (�⇧) for a Lz = 10 nm model capacitor using
the constant-� formalism.

To evaluate the structural origins of the trends in
�Cdl, we compute the di↵erence in surface ion alignment,
�⇧, between polarized and non-polarized simulations, as
given in Fig. 9 b. We see significant di↵erences in surface
ion alignment, with the anion layer at the positive elec-
trode showing 10% lower alignment, which allows the in-
corporation of more cations into the surface and results in
a 10-15% increase in alignment of cations at the positive
electrode. A similar trend, though less marked, is seen at
the negative electrode. The alignment of surface cations
is decreased by up to 5%, while anions are 5-10% more
aligned with the surface. The relatively small change in
the value of ⇧ for [EMIM] at the negative electrode is an
additional indication that the surface is saturated with
planar cations, which was previously suggested from the
small changes in [EMIM] density and configuration in
the polarizable system (see Fig. 7). The increased degree
of configurational disorder in the polarizable EDL corre-
sponds to the noted negative regions of �Cdl at relatively
low potentials, which as previously noted results from
the induced dipole softening of electrostatic interactions
with the electrode.
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IV. CONCLUSIONS

The present work is an investigation of various ap-
proaches for the MD modeling of ionic liquid EDLs. The
system of focus is a model capacitor of slab-like geom-
etry that is composed of two graphite electrodes inter-
faced with a polarizable electrolyte, [EMIM][BF4]. On
this system, we have quantified the influence of electro-
static summation technique, the method of charging the
electrode, and the electrolyte atomic polarizability on
the EDL structure and di↵erential capacitance. Further-
more, we have compared and contrasted di↵erent meth-
ods of computing di↵erential capacitance.

To ensure the validity of our model capacitor, we have
evaluated the interplay between electrostatic summation
and the assumption of quasi-2D system geometry. In
this regard, our model capacitor should conform to the
classical, quasi-2D parallel plate capacitor and have no
electric field external to the electrodes. We find both the
3D Ewald summation corrected for slab geometry and
the more expensive, though exact, 2D Ewald summa-
tion yield model capacitors that are e↵ectively quasi-2D.
Alternatively, the use of an uncorrected 3D Ewald sum-
mation is not compatible with quasi-2D geometry, which
leads to errors in the electrode potential and charge.

We have additionally investigated how di↵erent tech-
niques for charging the electrode, namely constant-� 
and constant-� ensembles, influence di↵erential capaci-
tance. To e�ciently perform this analysis, we derive fluc-
tuation expressions for Cdl for both constant-� (C� )
and constant-� (C�) ensembles. These expressions pro-
vide di↵erential capacitance on a per electrode basis and
are validated through a comparison to the direct deriva-
tive of � with respect to  . Di↵erential capacitance com-
putations performed for both constant-� and constant-
� electrodes show di↵erences in overall shape, but pro-
vide similar averages over �2 V < h i < 2 V. Constant-
� electrodes produce capacitance profiles with highly
resolved peaks conforming to the camel-shaped profile,
while constant-� electrodes yield a capacitance that is
more di↵use and does not as clearly exhibit camel-type
character.

The di↵erences in Cdl with respect to electrode ensem-
ble originate in the behavior of the surface ion layer, or
Stern layer. An analysis of the h i-dependent density
of this layer shows more ions, both cations and anions,
are present at the constant-� electrode than at the
constant-� electrode. Such an e↵ect likely arises from
the variable surface charge on the constant-� electrode,
which, unlike the constant-� approach, responds to sur-
face ions to create a more favorable electrostatic interac-
tion. The denser surface ion layer on constant-� elec-
trodes, then, requires a higher value of h i to achieve
the same polarization as the layer on the constant-�
electrode. Thus, large values of Cdl present between
�0.75 V < h i < 0.75 V on constant-� electrodes are
distributed over a larger potential range on constant-� 
electrodes, leading to a more di↵use profile with lower

maximum values of Cdl.
The role of electrolyte polarization has been ana-

lyzed through comparisons with non-polarizable elec-
trolyte models on constant-� electrodes. We find that
the average value of capacitance increases slightly and
that the camel shaped profile becomes more resolved
when polarization is removed. This e↵ect has been re-
lated the fact that induced dipoles oppose the field gener-
ated by the electrode, thereby softening the electrostatic
interaction between ions and the electrified surface. This
can be further traced to ion correlation e↵ects between
surface ions and those in the second layer, which un-
derscore the three dimensional nature of the EDL. For
charged electrodes, there is a competition between the
electrode surface charge and the second molecular layer,
whose electric fields oppose, to determine the direction
of induced dipoles on the surface ions.
We have shown, then, how details of MD simulation

can a↵ect the resulting h i-dependent profile of Cdl. Our
results suggest that simpler models, such as electrolytes
interacting through charge alone and surfaces having a
constant �, lead to highly idealized camel-type di↵er-
ential capacitance profiles that more clearly reflect the
predictions of mean field models of ionic liquid behavior
at ideal metallic electrodes. As additional atomic detail
is incorporated into the simulation, such as electrolyte
polarization and charge redistribution on the electrode
surface, the h i-dependent profile of Cdl becomes more
complex and, in our case, loses some of its camel-type
character. This reflects the sensitive balance of forces
that influence the density and configuration of ions in
the Stern layer and underscores potential challenges in
comparing the experimentally obtained values of capaci-
tance with those obtained from theory.
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Figure S1. Influence of long-range electrostatic summation technique
(2D, 3D, and 3D/slab Ewald summation) on structure. Both the (a,b)
total ion density and (c,d) deviation of density obtained from simulations
using the 3D and 3D/slab summation techniques from that given by the
2D Ewald summation technique are shown. The simulations are performed
using (a,c) constant-∆Ψ electrodes having a potential drop of 6 V and (b,d)
constant-σ electrodes having a surface charge density of 13.18 µC/cm2.
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Figure S5. Cation and anion alignment with the electrode surface rep-
resenting high and low values of Π.
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