Emerging Technologies for Mars Exploration: Entry, Descent and Landing

IEEE Aerospace Conference
March 6, 2019
with special thanks to Michelle M. Munk \& Alicia Dwyer Cianciolo

MARS MISSIONS

Viking 1/2 Pathfinder MER A/B Phoenix MSL \& InSight

Diameter (m)
Entry Mass (kg)
Landed Mass (kg)
Landing Altitude (km)
Peak Heat Rate (W/cm²)
Max Thrust (kN)
Landing Ellipse (km)

$3.505 \quad 2.65$
930585
603
-3.5
24
2.6
$280 \times 130 \quad 200 \times 7$

$2.65 \quad 2.65$
4.5

840
602
3151
5393641541
-1.3
48
-3.5
-4.4
$56 \sim 120$
$3.5 \quad 25$
$280 \times 130 \quad 200 \times 70 \quad 150 \times 20 \quad 100 \times 20 \quad 20 \times 6.5$

Human Mars Missions EDL Concept Maturation Status

- Studies continue to inform near-term investments in technology and capabilities
- Recent work has led to significant EDL technology decisions:
- Parachutes are not viable for human class missions
- Supersonic retro-propulsion must be employed
- Precision landing is a must (< 50 m radius footprint)
-Separation events during entry should be minimized
- Hypersonic deceleration methods have been bounded; for further study
- Simulation capability has matured further than ever (including "real" payloads, 6-DOF detail, sensor models)

Deployable Decelerators:

Hypersonic Inflatable Aerodynamic Decelerator (HIAD) pictured below or Adaptable Deployable Entry and Placement Technology (ADEPT)

Rigid Decelerators:

Mid Lift to Drag Ratio vehicle (pictured below) or Capsule

Entry

AOA $=55 \mathrm{deg}$
Velocity $=4.7 \mathrm{~km} / \mathrm{s}$
FPA $=-10.8 \mathrm{deg}$
Powered Descent Initiation Mach $=1.98, \mathrm{Alt}=3.2 \mathrm{~km}$ Pitch up to 90 deg AOA

Supersonic Retro Propulsion

Engines Off

- Strong, detached shock near vehicle
- Heatshield is the flow obstruction
- Dominant forces and moments are steady
- Well-defined scaling relationships

Engines On

Source: A. Korzun (NASA LaRC), FUN3D solution, 2018.

- Shock displaced far upstream
- Complex, unsteady plume structure is part of the flow obstruction
- Aerodynamic forces and moments can be unsteady
- Less confidence in scaling relationships

Precision Landing

- Landing precision is improving with each mission
- To get to the current state of the art system changes have been made along the way:
- MSL had the first active hypersonic guidance
- Mars 2020 employs a range trigger on the parachute, and uses Terrain Relative Navigation
- Human missions will need integrated guidance, improved velocimetry, and hazard detection/ avoidance

Vehicle and Payload Protection: Aft Body Heating

- Increase payload delivery and access by eliminating ridged backshell and using thin flexible TPS over payloads.
- Direct flow impingement can be avoided by limiting the angle of attack
- Significant uncertainty in aft body environments for radiative and convective heating could be reduced with additional backshell

Radiative Heating measurements on future flights

Vehicle and Payload Protection: Plume-Surface Interaction

MSL/Curiosity

$5,600 \rightarrow 700 \mathrm{lbf}$ of thrust, $60+\mathrm{ft}$ from surface Damaged instrument
Est surface pressure ~ 2,000 Pa

Human Mars Lander

$180,000 \mathrm{lbf} \rightarrow \mathbf{3 6 , 0 0 0} \mathrm{lbf}$ of thrust, $10+\mathrm{ft}$ from surface - in proximity to other assets
Est surface pressure peaks ~ $140,000 \mathrm{~Pa}$ 50x greater thrust 70x greater surface pressure

