National Aeronautics and Space Administration

Emerging Technologies for Mars Exploration: Entry, Descent, and Landing

IEEE Aerospace Conference

March 6, 2019

Tara Polsgrove NASA Marshall Space Flight Center with special thanks to Michelle M. Munk & Alicia Dwyer Cianciolo

MARS MISSIONS

	Viking 1/2	Pathfinder	MER A/B	MER A/B Phoenix MSL & InSight			
Diameter (m)	3.505	2.65	2.65	2.65	4.5		
Entry Mass (kg)	930	585	840	602	3151		
Landed Mass (kg)	603	360	539	364	1541		
Landing Altitude (km)	-3.5	-1.5	-1.3	-3.5	-4.4		
Peak Heat Rate (W/cm ²)	24	106	48	56	~120		
Max Thrust (kN)	2.6			3.5	25		
Landing Ellipse (km)	280x130	200x70	150x20	100x20	20x6.5		

Steady progression of "in family" EDL

	Viking 1/2	Pathfinder	MER A/B Phoenix & InSight		MSL	Human Scale	
						Lander (Projected)	
Diameter (m)	3.505	2.65	2.65	2.65	4.5	16-19	
Entry Mass (kg)	930	585	840	602	3151	47-62 t	
Landed Mass (kg)	603	360	539	364	1541	36-47 t	
Landing Altitude (km)	-3.5	-1.5	-1.3	-3.5	-4.4	0	
Peak Heat Rate (W/cm ²)	24	106	48	56	~120	~120-350	
Max Thrust (kN)	2.6			3.5	25	~800-960	
Landing Ellipse (km)	280x130	200x70	150x20	100x20	20x6.5	0.1x0.1	

New Approach Needed for Human Class Landers

Steady progression of "in family" EDL

Human Mars Missions EDL Concept Maturation Status

- Studies continue to inform near-term investments in technology and capabilities
- Recent work has led to significant EDL technology decisions:
 - Parachutes are not viable for human class missions
 - Supersonic retro-propulsion must be employed
 - Precision landing is a must (< 50 m radius footprint)
 - Separation events during entry should be minimized
 - Hypersonic deceleration methods have been bounded; for further study
- Simulation capability has matured further than ever (including "real" payloads, 6-DOF detail, sensor models)

Deployable Decelerators:

Hypersonic Inflatable Aerodynamic Decelerator (HIAD) pictured below or Adaptable Deployable Entry and Placement Technology (ADEPT)

Rigid Decelerators:

Mid Lift to Drag Ratio vehicle (pictured below) or Capsule

Supersonic Retro Propulsion

Engines Off

- Strong, detached shock near vehicle
- Heatshield is the flow obstruction
- Dominant forces and moments are steady
- Well-defined scaling relationships

Engines On

Shock displaced far upstream

- Complex, unsteady plume structure is part of the flow obstruction
- Aerodynamic forces and moments can be unsteady
- Less confidence in scaling relationships

Precision Landing

- Landing precision is improving with each mission
- To get to the current state of the art system changes have been made along the way:
 - MSL had the first active hypersonic guidance
 - Mars 2020 employs a range trigger on the parachute, and uses Terrain Relative Navigation
- Human missions will need integrated guidance, improved velocimetry, and hazard detection/ avoidance

NASA

Vehicle and Payload Protection: Aft Body Heating

- Increase payload delivery and access by eliminating ridged backshell and using thin flexible TPS over payloads.
- Direct flow impingement can be avoided by limiting the angle of attack
- Significant uncertainty in aft body environments for radiative and convective heating could be reduced with additional backshell measurements on future flights

Vehicle and Payload Protection: Plume-Surface Interaction

Pressure (Pa) 1919.90 1514.83 1109.76 704.70 299.63

MSL/Curiosity

5,600 → 700 lbf of thrust, 60+ft from surface -Damaged instrument Est surface pressure ~ 2,000 Pa

Human Mars Lander

180,000 lbf → 36,000 lbf of thrust, 10+ft from surface - in proximity to other assets
Est surface pressure peaks ~ 140,000 Pa
50x greater thrust
70x greater surface pressure

