Internal thermal fluctuation noise in Mo/Au TES's

Nick Wakeham

NASA-Goddard Space Flight Center

Joseph Adams, Simon Bandler, Sophie Beaumont, James Chervenak, Aaron Datesman, Megan Eckart, Fred Finkbeiner, Ruslan Hummatov, R. Kelley, Caroline Kilbourne, Antoine Miniussi, F. Porter, John Sadleir, Kazuhiro Sakai, Stephen Smith[,], Edward Wassell

Simplest model of TES is a single body connected to bath by thermal conductance $\mathsf{G}_{\mathsf{bath}}$

Measured noise is in excess of single body prediction

Single-body

Simplest model of TES is a single body connected to bath by thermal conductance $\mathsf{G}_{\mathsf{bath}}$

- 3 contributions to current noise:
- 1. Thermal fluctuation noise between single body and bath P_{bath}

Simplest model of TES is a single body connected to bath by thermal conductance $\mathsf{G}_{\mathsf{bath}}$

- 3 contributions to current noise:
- 1. Thermal fluctuation noise between single body and bath
- 2. Johnson noise of shunt resistor J_{shunt}

Simplest model of TES is a single body connected to bath by thermal conductance $\mathsf{G}_{\mathsf{bath}}$

3 contributions to current noise:

- 1. Thermal fluctuation noise between single body and bath
- 2. Johnson noise of shunt resistor
- 3. (non-equilibrium) Johnson noise of TES J_{tes}

K. D. Irwin Nuclear Instruments and Methods in Physics Research A 559 (2006) 718–720

Can fit to measured data by adding another term $M^2 \; J_{tes}$

$$V_n = \sqrt{(4K_B T R)(1 + 2\beta)(1 + M^2)}$$

M² then parameterizes the magnitude of the excess noise in the device.

But what is the origin of this excess noise term?

Smith et al. J. Appl. Phys. 114, 074513 (2013);

Single-body

In two-body model, absorber and TES (for example) are separated by thermal conductance G_{ae}

Two-body

In two body model, absorber and TES (for example) are separated by thermal conductance ${\rm G}_{\rm ae}$

- Internal thermal fluctuation noise between the two bodies. - P_{ae}

Two-body

In two body model, absorber and TES (for example) are separated by thermal conductance ${\rm G}_{\rm ae}$

- Internal thermal fluctuation noise between the two bodies. - P_{ae}

No new theory here. It has been described by many others...

M. A. Lindeman, Ph.D. thesis, UC Davis, 2000; Lindeman et al. Review of Scientific Instruments 75, 1283 (2004) I. J. Maasilta AIP Advances 2, 042110 (2012); E Figueroa-Feliciano et al. Journal of Applied Physics 99, 114513 (2006);et al.

This additional noise has also been found to be significant in some

cases

H. F. C. Hoevers et al. Appl. Phys. Lett. 77 , 4422 (2000); K. M. Kinnunen et al. Journal of Applied Physics 112, 034515 (2012);et al.

In two body model, absorber and TES (for example) are separated by thermal conductance G_{ae}

- Internal thermal fluctuation noise between the two bodies. - P_{ae}

Two-body

No new theory here. It has been described by many others...

M. A. Lindeman, Ph.D. thesis, UC Davis, 2000; Lindeman et al. Review of Scientific Instruments 75, 1283 (2004) I. J. Maasilta AIP Advances 2, 042110 (2012); E Figueroa-Feliciano et al. Journal of Applied Physics 99, 114513 (2006);et al.

This additional noise has also been found to be significant in some cases H. F. C. Hoevers et al. Appl. Phys. Lett. 77, 4422 (2000); K. M. Kinnunen et al. Journal of Applied Physics 112, 034515 (2012);

.....et al.

Central question: In latest NASA Mo/Au bilayer TESs is internal thermal fluctuation noise significant?

TES design - Side view

TES design – Top View

Single-body

Single-body Vs Two-body

Single-body Vs Two-body

C_e = BCS Predicted C of TES including jump from superconductivity (+ membrane). **Relatively insensitive.**

C_a+C_e = measured heat capacity of device

 G_{bath} is measured value

 G_{ae} = constant in R/R_n

G_{ae} is a constant for all points on graph.

Measured excess noise well described by two-body model with fixed parameters over wide range of T_{bath} and R/R_n.

Variable G_{ae}

Allow G_{ae} to float in fitting of twobody model.

Largely independent of bias point

Variable G_{ae}

Allow G_{ae} to float in fitting.

Can then do same analysis on other devices

 $75 \mu m$ TES with Au banks

 \succ Little variation in fitted value $G_{ae} \sim 100 \text{ nW/K}$

Variable G_{ae}

What is origin of finite G_{ae}?

Estimated G from stem pillars 90 µW/K → Too large

Estimated G from electronphonon interaction 2 nW/K → Too small

Estimated G of bilayer from Wiedemann-Franz law and measured sheet resistance (50 mΩ/□) → 50 nW/K.

Suggests finite thermal conductance (G_{ae}) is from finite resistance of bilayer itself

G_{ae} [nW/K]

Reported before in 200 m Ω Ti/Au bilayers

H. F. C. Hoevers et al. Appl.

Phys. Lett. 77, 4422 (2000);

Low R bilayer

If bilayer resistance is responsible for internal thermal fluctuation noise.

EXPECT: Lower R $_{\Box}$ bilayer \rightarrow Higher G_{ae}

Ce

Heat bath

R/Rn [%]

TES

 G_{bath}

Measured and fitted devices with 400 M² ~ 1 bilayer with factor ~4 smaller R_{\Box} High R (120µm) High R (75µm) 300 Fitted $G_{ae} \sim$ factor 4 larger - High R (75 μ m with Au banks) G_{ae} [nW/K] - High R (100 μ m with Au banks) $M^2 \sim 10$ 200 Clearly a crude estimate of Low R (120 μ with Au banks) thermal conductance of TES but captures coarse trends. 100 0 10 20 30 40 0 27 50

Where two-body model doesn't work...

Z

Cannot fit within our assumptions around kinks

- Regions with rapid changes in α .
- For example in this 120µm device with banks.

No stripes \rightarrow smoother transitions.

Perhaps in other devices small transition features may have given additional noise largely not present in our small no-stripe devices

Conclusion

Fit measured noise in our "no-stripe" devices with a two-body model.

Internal thermal fluctuation noise appears to dominate excess noise

Finite thermal conductance responsible appears to be from resistance of the bilayer.

In regions with rapidly changing α this model is insufficient.

It's likely there that an additional noise mechanism may be present in that case.

Two-body

Insensitivity to C_e

,

75um TES

With constant Gae through \searrow the transition. M^2 calculated from two body model is only partial agreement with measured values.

If we allow Gae to vary then we are able to fit at all points

Where this doesn't work

In kink-like region excess noise far exceeds expectation from our twobody model with reasonable value of Gae.

In fact noise fits can not be good within our assumptions even with very low Gae.

Speculate that in this region there is a separate noise term.

This other noise term may have dominated in older devices (e.g. with normal metal stripes)

Where this doesn't work

Why does this fitting work in these devices?

Removing stripes in general produces smoother transitions.

But sometimes see "kinks" low in transition

For example in this 120um device with banks.

Subtle features is alpha_IV

Dramatic spike in Alpha.

Assumptions

35

Our simple TES design

Some have Au banks

What is the origin of this additional noise?

Is it related to the Johnson noise (higher order terms)? Is it related to phase-slip line behavior? Or is it additional thermal fluctuations noise not captured in single-body model?

Single-body

TES design

Some have Au banks

Typical TES design

Au stripes reduce unexplained (excess) noise

Simplest model of TES is a single body connected to bath by thermal conductance $\mathsf{G}_{\mathsf{bath}}$

3 noise sources:

- 1. Johnson noise of TES
- 2. Johnson noise of shunt resistor
- 3. Thermal fluctuation noise between TES/Absorber and bath
- 4. Quantify magnitude of excess noise by adding another TES Johnson noise term M² J_{tes}

Assumptions

Single-body Vs Two-body

Internal thermal fluctuation noise can also be used to fit data.

Frequency dependence very similar to J_{tes}

Therefore, I will still quantify magnitude of this excess noise term with M²

Assumptions:

Ce = BCS Predicted heat capacity of TES including jump from superconductivity (+ membrane). Relatively insensitive

Ca+Ce = measured heat capacity of device

G_{bath} is measured value

Fit for Gae but initially assume Gae is not a function of R/Rn or T_{bath}