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Abstract

We study dynamic panel data models where the long run outcome for a particular cross-
section is affected by a weighted average of the outcomes in the other cross-sections. We
show that imposing such a structure implies several cointegrating relationships that are
nonlinear in the coefficients to be estimated. Assuming that the weights are exogenously
given, we extend the dynamic ordinary least squares methodology and provide a dynamic
two-stage least squares estimator. We derive the large sample properties of our proposed
estimator and investigate its small sample distribution in a simulation study. Then our
methodology is applied to US financial market data, which consist of credit default swap
spreads, firm specific and industry data. A "closeness" measure for firms is based on input-
output matrices. Our estimates show that this particular form of spatial correlation of credit
default spreads is substantial and highly significant.
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1 Introduction

Periods with a high number of defaults have shown that contagion can play a substantial role when
pricing defaultable assets. The breakdowns of Lehman brothers and AIG are prominent examples for
the effects arising with interlinked firms. Additionally, the European Central Bank reported a very high
market concentration for the credit default swap (CDS) market, such that financial distress of one bank
is expected to have impacts on the financial status of other banks (see [ECB| (2009)). Based on these
observations, recent finance literature has drawn more attention to the correlation of credit risk and on
credit risk contagion (see e.g. [Tarashev and Zhu| (2008])). One possibility to account for cross-sectional
spillover effects in a statistical model is to include spatial lags following Cliff and Ord, (1973). Additional
complications arise due to the time series properties of the the economic variables of interest. Since credit
default swap time series, used as a measure for credit risk, as well as some financial time series often used
to predict or explain credit risk can be considered to be endogenous as well as integrated of order one, the
empirical methodology used to investigate these data has to allow for possible regressor endogeneity as well
as autocorrelation of the disturbances. In addition to this kind of endogeneity typically dealt with in panel
cointegration models (see e.g. Mark et al.| (2005)), the spatial lag results in further regressor endogeneity
of a different type. To address these issues, this article considers a high dimensional cointegrating system
including spatial lags.

Different approaches have emerged in the literature to estimate cointegrating relationships and to
perform statistical inference. Omne possibility is to use a simple estimation routine, e.g. ordinary least
squares (OLS) and then work out the (sometimes complicated) large sample distribution of the estimated
parameters, e.g. Phillips and Hansen (1990), Phillips and Loretan| (1991). Another opportunity is to
adjust the estimation routine, such that the large sample distribution is either simpler or free of nuisance
parameters. Examples along these lines are the fully modified least squares estimator (see e.g. [Phillips and
Hansen (1990)), Phillips and Moon (1999), Pedroni| (2000)), the integrated modified least squares estimator
(see [Vogelsang and Wagner| (2011)), where integrated modified least squares estimation is linked to fixed-b
inference) and the dynamic least squares approach. Dynamic least squares estimation includes time-series

leads and lags of the first differences of the regressors to control for the serial correlation and regressor



endogeneity. This kind of estimator has been proposed by |Phillips and Loretan| (1991)), Saikkonen| (1991)
and |Stock and Watson| (1993). It has been applied to panel data e.g. in |[Kao and Chiang| (2000]), [Mark
and Sul| (2003) and Mark et al.| (2005).

Motivated by our application in empirical finance, we develop an econometric tool suitable for inves-
tigating situations where the long run outcome for a particular cross-section cannot be assumed to be
independent of the outcomes of the other cross-sections and, at the same time, autocorrelation of the
disturbances and regressor endogeneity are present. We do so in a context of a model that includes non-
standard cointegrating relationships implied by the inclusion of peer or neighborhood effects, which are
modeled as spatial lags. Since existing estimation procedures do not cope adequately with the endogene-
ity of the spatial lags, we propose to use a dynamic two-stage least squares (D2SLS) estimator, which
combines dynamic least squares (DOLS) and two stage least squares (2SLS) estimation. In addition to
the serial leads and lags used by DOLS, our estimation procedure uses cross-sectional (or spatial) lags
of the regressors as instruments to control for the endogeneity of the spatial lags in the cointegrating
vectors. We derive the large sample distribution of our estimator and show how to correctly conduct
inference. We apply our methodology to our financial dataset, where we construct the economic space by
using a ”closeness” measure for firms based on input-output matrices. The weights matrix obtained from
input-output data should approximate possible correlation patterns due to technology and demand shocks
working their way through the economy. We find that our particular form of cross-sectional spillovers is
substantial and highly significant.

In the rest of the paper we first describe our model and the formal assumptions in Section |2} Section
provides the D2SLS estimation procedure and states our large sample results. We then investigate the
small sample properties of the D2SLS estimator in Section [4] and provide an illustrative application to

modeling correlation of credit default swaps in Section [5] Finally, Section [f] offers conclusions.



2 The Model

Suppose that the data are generated from

n

Yit = PZ Wijyje + B'%i + o + UL = pyi + B'xit + o + U;rt , (1)

j=1

where y;; is the scalar response random variable and x;; is a k x 1 vector of prediction random variables.
Next, t = 1,...,T is the time index and ¢ = 1,...,n is the cross-sectional index. We keep the cross-
sectional dimension n fixed throughout the following analysis and take the limits for 7" — oco. The term
Yl = 27:1 Wijyje is referred to as a spatial lag (see e.g. [Cliff and Ord| (1973), Kelejian and Prucha (1998),
Kelejian and Pruchal (1999) or Kapoor et al.| (2007))) and represents the long-run impact of the neighboring
observations on y;;. We collect the weights W;; into an n x n spatial weights matrix WD We follow the
spatial econometrics literature and maintain the following assumptions regarding the cross-sectional (or

spatial) structure of the model:

Assumption 1. [Spatial Lag|] The spatial weights W;; are non-stochastic and observable with Wy = 0

and W # Opxn. The parameter p is such that largest absolute eigenvalue of pW is smaller than one.

The restriction that W;; = 0 is a normalization of the model, which requires that no observation is its own
neighbor. The second part of the assumption guarantees that the matrix (I, — pW) is invertible (see e.g.
Corollary 5.6.16 in Horn and Johnson| (1985))); I,, stands for the identity matrix of dimension nE| The
invertibility of the matrix I,, — pW is needed in order to provide a unique solution of the model and rule
out multiple solutions for y;; that would be consistent with the explanatory variables and disturbances.
The inverse K := (I,, — pW) ! is used in the consistency proof of the D2SLS estimator developed in this
article.

The disturbance term is assumed to include an individual-specific effect o; and an idiosyncratic com-

!Throughout the analysis we only consider one spatial lag term. However, the theory considered in this article can also be
applied to a model where yit = p1 327 Wiijyje + -+ pr, 25—y Wh,,i595t + ... in a straightforward way. The restriction
that only one matrix W is included is used to keep the notation simple.

2The spectral radius is the lower bound for every induced matrix norm (cf. Theorem 5.6.9 in [Horn and Johnson| (1985)).
Our assumption will, for example, be satisfied when the maximum absolute row or column sums of pW are less than one.
Regarding notation 0,x» stands for an a X b matrix of zeros, 0, is an a-dimensional column vector of zeros.



ponent uL that is independent across ¢ but possibly dependent across t. Analogically to |[Saikkonen| (1991)
the prediction random variable x;; is assumed to be integrated of order one, I (1), and to be generated
from

AXit = Vit . (2)

In order to fully specify the model, we augment our set of assumptions by defining the process generating

the disturbances:

Assumption 2. [Error Dynamics I; see Mark and Sul| (2003)), Mark et al. (2005]), Phillips (2006))] Let us

/
define the stacked vector W;rt = <u;ft,v;t) . Then (wjt) has a moving average representation

where s}t is independent over both i and t with mean vector Ox11, k+ 1 X k+ 1 positive definite covariance

matriz 3_; and finite fourth moments. \Ilj (L) = >, \Il;erj is a k+1xk+ 1 dimensional matriz

polynomial in the lag operator L, with \Il;ro =Tps1 and 22, 7] [\Il;r} | < oo where [\Il” is the
/ I (mn) I (mn)

(m,n)-th element of the matrix \IIIJ

We shall denote the short-run k + 1 x k 4+ 1 covariance matrix of W;rt by I‘;ro, and the autocovariance

matrices by I‘L-, where
FzTo =E <WthW;rt/) and F;'rj =E <thW;r,/t—j) : (3)
We will also use the following notation: Flu,ij is the (1,1) element of I‘;rj, I‘Iw’ij corresponds to

vv,i corresponds to the k x k submatrix

T .
[F;rj}(Z:k—&-l,l)’ Fj}u,ij corresponds to [Fij](l,Z:k+1)7 while T’

[ H . The notation (a : b,c: d) stands for ”from row a to b and column ¢ to d”.
(2:k+1,2:k+1)

/ !/

Let us define w = (WJ{;, . ,WIL/t) ul = (UL, . 7ult> and v, = (V};,...,v,). Then the (k +1)-

n X (k + 1) - n covariance matrices I‘E =F WZWI/) and F;[ =E (WIWIL]) are block diagonal with the
(i=1,

blocks I‘IO and I‘gj along the main diagonal ...,n). The k+ 1 x k + 1 long run covariance matrix



Q;r of w;-rt is given by

o0 o0
of = Y E(whwli,)=vlzaeiay =1+ (1] +1}) (4)
j=—o00 j=1
!/
T T T T T T T T
_ Quu,i Qvu,i _ 1—‘uu,iO FUu,iO +i Fuu,ij Fvu,ij Fuu,ij Fvu,ij
ij,i Q. Ffw,z-o | R J=1 I‘Iw,ij rvv,ij F:rw,ij Fm;,ij

The long-run covariance matrix of th , denoted as QF, is then also block diagonal with the blocks QI along
the main diagonal. Analogically, the matrices Ql, and 2, contain the scalars QLM and the k x k blocks
vi,i along their main diagonal, where ¢ = 1,...,n.

Given the covariance structure, we want to exclude cointegration relationships between the terms of

x;¢. In addition, we also want to guarantee that y;; is I(1). Therefore we impose the following assumption:

Assumption 3. [Error Dynamics II; see [Phillips| (2006))]

\Pj(l) is non-singular and €, ; has full rank k. Furthermore, B # Of.

Note that by Assumption [3{ and the independence across i assumption (i.e. Assumption , the rank of
Q,, is nk and x;; is a full rank integrated process. In addition, observe that if 5 = 0y, the variable y;
becomes 1(0), see e.g. equation and equation below.

Assumption [2| implies that potentially all leads and lags of of Ax;; are correlated with uth' In the
next step we follow DOLS literature and remove the serial correlation by projecting on the leads and
lags of Ax;;. For each sample size, DOLS estimation uses a finite number leads and lags, denoted by p
in the following, to control for this correlation. Using such a truncation scheme will result in a specific

truncation error e;;. However, under the conditions provided in Saikkonen| (1991) this error will disappear

asymptotically. In particular, the projection of u;[t on the p leads and lags of Ax;; yields a truncation

component Z:ﬁ_p 51'-73Axi,t,s, a truncation error e; = Zs>p7s<_p 5§7SAXZ¢,S plus a new disturbance u;,
such that
+p
T / / 5 Y
ul, = 0; AKX s + 0; AX; t—s + wit = 0;Cit + €it + Uit = 0;Cit + Uy - (5)
s=—p s>p,s<—p



Ax; ;s and 0; ¢ are vectors of dimension k x 1, while the (2p + 1)k x 1 dimensional vectors of projection
variables and projection coefficients are given by

Git = (AX/-

tpr e AXG AX;,ter), = (vat,p, Vi ,v§7t+p), and & = (6] _ ..., 6} ), . (6)

? ,—pr T 7‘7+p

it is by construction orthogonal to the noise term u;;. The term w;; = e; + u;; can still be correlated with
Ax;; for some p < 0o. Now we impose an additional restriction on the error dynamics that will guarantee

that the truncation error e;; converges to zero:

Assumption 4. [Error Dynamics III; see Saikkonen| (1991), Mark et al.| (2005)]

Suppose that p = p(T'). Then p(T') has to fulfill p(%)?) — 0 and \/TZ|S|>p(T) 19isll2 = 0 as T'— oo, where

|.ll2 stands for the Euclidian norm.

Assumption [4f requires that p(7T") does not grow too fast, while the second part restricts the dependence
between the noise term and the regressors. Based on Assumptions [2[ to [4| and equation , if T' becomes
large then — due to the increase in the number of leads and lags p(T") — the truncation error e;; becomes
small. As a result, the difference between u,;, and u;; becomes small and u;, becomes orthogonal to {;; as
T — OOE| Hence we arrive at the new covariance stationary process wis = (ui, vi,) = ¥, (L)¢e,, which
has mean zero, covariance matrix I';o and autocovariance I';;. These matrices have the structure

Puwij  O1ixk

Fz’j =E (witw;t,j) = ) (7)
0  Tuuij

where 'y ij = E (irti—j), Tovij = E (vitvatﬂ-) and j € Z.

In addition, our model includes a full set of individual specific effects and hence a set of individual
dummies «a; has been included to the regression (fized effects specification). In order to simplify the
algebra, we shall use the within transformation and derive the asymptotic distribution of the estimates of
the slope coefficients p and § using within-transformed data. In a linear regression, these estimated slope

coefficients are algebraically equivalent to the least squares dummy variable estimates (see e.g. Baltagi

3For a short discussion on the truncation error and the Assumption [4] we refer the reader to [Saikkonen| (1991) and to
Liitkepohl| (2006) [Remark 1, p. 533]. For more technical details see [Saikkonen| (1991)[Theorem 4.1/Lemma A.5].



(2008)[p. 11]). Here it is important to note that while the time index ¢ goes from 1 to T in (I]), after the
projection facility is applied only the observations p+1,...,T —p can be used. We still use t as the index
for the time period which now runs from 1 to T}, where T, = T — 2p. The variables in deviations from

their individual means are
1 Ty 1 Tx n
Vit = Wit~ g > vit, Xie = Xi — R > xis Ui =Y Wigllie
* =1 * =1 j=1
~ 1 &
Gt = Git— > it (8)
* =1
such that after applying the within transform and the projection facility reads as follows:

n
Yie = PZ WiiGse + 8% + Uy = pyiy + /%t + 0
=

n
= pY_ Wil + B'%it + 6/Cit + Uy = pyis + B'%ir + 61Cit + Uy - (9)
j=1

Given the assumptions on the error dynamics, the functional central theorem (see e.g. Karatzas and

Shreve (1991)[Chapter 4] or Davidson, (1994 [Chapters 27-30]) can be applied. If T, — oo then

> wi 5 Bi(r) = P wi(r) (10)

where r € [0, 1] and % stands for weak convergence | convergence in distribution. B;(r) = (Bui(r), Bui(r)")',

where B,; and B,; are independent Brownian motions, in R and R¥, respectively. While B; stands for a
Brownian motion with covariance matrix €;, W; stands for a standard Brownian motion, where W;(r) =

Wi (1), Whi(r)")'. [Tr] denotes the integer part of T*r Q; is the k+1x k+1 long-run variance-covariance

4In some of the following expressions we omit the borders of integration as well as the continuous time index r of the
Brownian motion, i.e. we write [ W instead of fol W(r)dr, while fol W(r)dW(r) is abbreviated by [WdW.



matrix of w;;. Due to the independence of B,;(t) and By;(t), this matrix is of the structure

Quu,i 01><k > ’
Q; = =T+ Z (Tij +T%) (11)
Ok’ vi,i Jj=1
where the matrices I';; are given by 1’ For the demeaned term o, = wv; — T% Zf;l v we get
\/ﬁ Z[T*T] \ﬁ > [T.1] (vit 11 tT*l vzt> LS Byi(r) — rByi(1). Byi(r) — rByi(1) is a Brownian bm'dge.
Since x;; is an I(1) process, X;; arises from a partial sum process. Then X;; = ZL 1 Vie — T Z 11 Vir-

By the continuous mapping theorem (see Klenke (2008))[p. 257], Davidson| (1994)[Theorem 26.13 & 30.2])

the T, — oo limit is given by the demeaned Brownian motion

1
1 _> B’Ul B’U’L
VT /

fo ,i(s)ds will be abbreviated by By(r). [Davidson (1994)[Theorem 30.2] shows that

ﬁ Ztil X;tX}, converges in distribution to fo Byi(s)B.,(s)ds. Last but not least, Davidson| (1994)[Theo-
rem 30.13] and some algebra results in T Zt | Xit Uit A m fo i (1) AWy (1).

Before we proceed with the estimation part we would like to discuss our model for the n = 2 case.

Here we observe that the cointegration equations are non-linear and due to the spatial lag component an

additional source of endogeneity arises.

Remark 1. Consider for the two-dimensional case, i.e. n = 2. Due to Assumption |1| the matrix

I — pW has to be invertible, such that

0 Wi 1 1 —pWa1
L=y =T AW (12)
W21 0 P 12VV21 —pW12 1
Combining and now results in
yue | 1 B'x1 —pWa1 %94 +UL 7PW21U£t +a1 — pWaran (13)
1 + p2W12W21 . / ’ T T _ .
Y2t pW128'x14 +8'x2¢ +uy, —pWiguy, +oo — pWinon



Equation shows the n = 2 coinintegrating equations. The cointegrating relationships do not have the
usual linear form in the sense that the solution for y;; is a nonlinear function of the parameter p.
Assumption [I| guarantees that I, — pW has the full rank n. Together with Assumptions 24 we observe

that for an arbitrary but fixed n € N the following equation ([14]) constitute n cointegrating relationships:

Y1t B'x1 o1+ “J{t
= (L, — pW) ™ o+ : . (14)
Ynt B'Xnt Qp + u:rzt

Summing up, when we consider the data generated by we observe that: (i) x;; and u}t are correlated
by the assumptions on \I/;r and 3. (ii) For p # 0, yj: depends on y;; and vice versa. (iii) u;-rt and u}t
are independent by Assumption (iv) Since y;j; depends on y; we know that pW;;y,; and u;-rt have to be
correlated (also for the within transformed data the same correlation structure is observed). Therefore

the standard DOLS method is not sufficient to remove all the correlation between the regressors and the

noise.

In the following section we shall construct an estimator where we account for ”serial” endogeneity by
means of the DOLS projection facility. In addition endogeneity enters via the spatial correlation modeled
by pW. To account for this kind of ”spatial” endogeneity we follow the 25 LS approach. Combining these

concepts will provide us with an estimator which accounts for both sources of endogeneity.

3 Estimation Procedure and Large Sample Results

The goal of the following analysis is to construct the D2SLS estimator and to show that it leads to
consistent estimates of the parameters p and 8. We then provide the large sample distribution of the
D2SLS estimator. The parameters § will be shown to be nuisance parameters. In order to write down

our estimator in a compact way, we first define the model in a stacked notation. For notational simplicity



we drop the tilde notation in the stacked model and define

Yy = (glly--wng*w--;ﬂnl,---;gnT*)ly
y* = (Mlkl?"'??AﬁT*a"'737?11?"'7@:T*)/7
x = ooy X X X))
U = (Upg,eosUygsee Ty s py,) s (15)

where y, y* and u are of dimension nT} x 1, while x is an nT} x k matrix. Furthermore, we have

¢ 015 (2p+1)k 01 (2p+1)k
811Cn ~E o1
5= _ CiT* le(~2p+1)k 015 (2p+1)k (16)
%T*EnT* 01 (2p+1)k Ca1 | 01x(2p 1)k 5
01x2pr1)k O1x(2p+1)k Cor,

¢isanTy x (2p + 1)k - n matrix, while (given ¢; of dimension (2p+1)k ) ¢ is of dimension (2p + 1)k - n x 1.
This provides us with model @]) in stacked form

y=py +x8+C0+u=(y x)y+¢+u=X (.8 +u, (17)

where v = (p, /). The right hand side variables are collected in X = (y*,x, ¢).

We shall estimate the model by using instruments for the endogenous variable y}, = Z;‘:l Wi;jt.
Here, we could proceed in an abstract way by assuming that g, instruments are available to fulfill the
properties necessary for instrumental variable estimation (see e.g. Kitamura and Phillips (1997))). In
contrast to this high level assumption, we follow Kelejian and Prucha/ (1998) and base the instruments on

the spatial lags of the explanatory variables. Our model can be solved as

y=lr® L~ oW) | (x84 ¢ ) . (18)

10



The matrix (I,, — pW) ! can then be expanded as (see e.g. Corollary 5.6.16 in [Horn and Johnson! (1985)):

(e.0)
(L= pW) ™ = (pW)* . (19)
s=0
This implies that variables of the form 7 WiZjt, D5, ijfjw, ... are suitable instruments for Wy.

Zjiy is the element v of Xj;. Note that these instruments have an intuitive interpretation: we instrument
the W;; weighted sum of the neighbors/peers y;; by the W;; weighted sum of the characteristics of the
neighbors (their x;; values). The higher order spatial lags as instruments then use the characteristics of

the neighbors of the neighbors, etc. Hence we assume that the following set of instruments is used:

Assumption 5. [Valid Instruments; see Kitamura and Phillips (1997)] The instruments are z},, =

> i1 Wil Tjte, where v = 1,...,q, and 7, € N. X}, = (%jtl,...,fftqp), is a vector of dimension q,.
We assume that these instruments fulfill the requirements for instrumental variable estimation as stated
e.g. in |Ruud (2000)[Chapter 20], Phillips and Hansen (1990) and Kitamura and Phillips (1997). ILe.
(i) the number of instruments is larger or equal to the number of parameters (order condition), (ii)

the Ty-limit of 73 I (s, %) (X5, %) is of rank k + 1 (almost surely) and (iii) the Ty-limit of

T%Q Zf;l((;(ft)’, %) ((x5), %)) is of rank k + q, (almost surely).

Appendix [B|shows that with 7, = 1 and some regularity conditions on W the rank conditions (ii) and (iii)
are satisfied. To keep the notation simple, we consider - as already stated at the beginning of Section [2] -
a model with one spatial lag (k, = 1). With g, = 1 we are in the just identified case, while if ¢, > 1 we

consider the over-identified case. We collect our instruments in the nT, X g, matrix

* font J ot} ok ok !

b :(xlll,...,xl'T*,...,xn'l,...,xn’T*) . (20)
The set of our instruments is then Z = (x*,x,¢). While the matrix of explanatory variables X is of
dimension Tin x 14k + (2p+ 1)k -n, the dimension of Z is Txn x ¢, +k+ (2p+ 1)k - nﬂ Before we present

our estimator, let us discuss why e.g. DOLS and two-stage least squares (2SLS) do not provide us with

®A variant of our model is ¥ (L) = ®'(L) for i = 1,...,n. Then X is of dimension Tyn x 1+ k + (2p + 1)k while Z is of
dimension Tin x g, + k + (2p + 1)k.

11



consistent estimators:

Remark 2. [Endogeneity] Let us consider . From the discussion in the last paragraph of Remark
we already know that ﬂ;ft is correlated with ¢, and with x;;. Given the k+ 1+ (2p + 1)k - n dimensional
vector of regressors X;; = (gjft,fc;t, 01 (2p4+1)k-(i—1)> o 01><(2p+1)k-(n—i—1))/ and the k 4+ ¢, + (2p+ 1)k - n
dimensional vector of instruments Z;; = (f(:‘t', Xity 015 (2p+1)k-(i—1) ol 01X(2p+1)k‘(n_i_1)), we observe that
u;, is still correlated with the first component of X;;. Therefore DOLS does not result in consistent
estimates. When applying 2SLS we get X259 = (7%, %.,)" and Z2°FS = (x}/,%},)'. Since no projection
72515

facility is used with 2S5LS, the residual term is given by ﬁj’t- Therefore, the term x,, contained in

)

is still correlated with i[;ft and 2SLS is not consistent.

In analogy to a standard regression setting with endogenous regressors, we now construct a two stage-
least square procedure for our panel setting where leads and lags of Ax;; are included. Let us define the
project operator Py projecting on the space spanned by Z (see e.g. Ruud| (2000)[Chapter 3]). In formal

terms

Py =7 (ZZ)'Z . (21)

Since Z is a Tyn X q, + k + (2p + 1)k - n matrix, Py has to be a Tyn x Tyn matrix. With two-stage least

squares the initial stage results in the projected values
Yy =Puy* =7 (Z'Z)"' Zy*, (22)

while Pyx = x and Py¢ = . The second stage estimator is

-1

-~ /= _— _ _—

p y'yt Xyt {y y*

B = ;’;/X x'x  ('x x|y (23)
-~ —

0 y*¢ x¢ (¢ ¢

D2SLS

In the first stage we project the endogenous variable gy}, on Z. In contrast to usual two stage least

squares estimates, the projected values g7, are still correlated with u;, and ;. To see this, we consider

Ui = 2 ma Wihje = 2200 Wiy 200 K <B/)~Clt + ﬂth) = 3o Wiy 2oiey K (8% + 6, + 1y, )5 Kt is

12



the (j,1) element of the matrix K = (I, — pW)~!. Since in general Kj; # 0, this also holds for | = i
such that the projected values éﬁ can still be correlated with the noise. Next we observe that by the
construction of Z, for each component 7 only the own leads and lags are considered, i.e. only AX;4,
are included in Z;. From the above calculations it follows that ¥, = > =1 Wijyje = ... includes the
terms x;; and ﬁ};, which are correlated as well by the model assumptions. Therefore, a priori it need
not be clear whether we obtain a Gaussian mixture distribution when 7, — oco. For example, one could
potentially include all the leads and lags Ailtip’ [=1,...,n, to get rid of this type of correlation. This
would increase the number of nuisance parameters enormously (the dimension of Z would increase from
Tnxq,+k+ 2p+1)k-ntoTnxq,+k+ (2p+ 1)k - n?). However, in the proof of Theorem [1| we
shall observe that due to the fact that "Z; 1., over T.” and "X 1.14x over T}” are considered, this
type of correlation becomes neglectable when taking limits. Therefore, we still attain a normal mixture
distributionﬁ Based on this discussion, we can now compactly write the dynamic two-stage least squares

estimator of (p, 8',6") = (v/,d") as

(V. )pasts = (X'PuX) X'Pry

= (7,8) + (X'PpX) ' X'Pyu. (24)

With g, = 1 we are in the just identified case, where the estimator is given by

-1

(V6 posrs = (ZX) ' Z'y = (+,8) + (ZX)"' Z'u . (25)

Given the definition of the D2SLS estimator in , we summarize its large sample properties in the

following result:

5Tn Appendixwe shall observe that in M,,r; = % ZtT*l it 11+k Lig 1. qp+% the impact of the terms including 'ZZL goes to

zero due to normalization with l/T for T, — oo. In addition for the ”last term” in we get = L Zt VATRE qu,_kult Since
&5 = > Wady,, with Wi; = 0 by Assumption [1] l is independent of %;; by the mod Assumptlon l no further correlation
terms arise when taking the limit. This results in the term m,,;z, presented in

If, however, @;: and the limit @;: were correlated with x;,, for i # [, a projection in the own leads and lags would not be

sufficient. To see this, the first ¢, elements of Zt 1Zit 1 :qp+k it are given by % Zz 1 WaZy, tig, where v = 1,..., qp.

By [Davidson| (1994)[Theorem 30. 13], T Zt L Rie iy 4 \/ uuﬁvadem + AW 1.~ The 1 x 1 correlation term A
is given by E (AXr,@at) + 3252 (Axmuzt j). If 43 and X;;, are correlated, then A
Assumption I in our analysis.

=ou,li,e

# 0. This was excluded by

=vu,li,e
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Theorem 1 (Limits for D2SLS Estimation). Consider the fized effects spatial correlation model and
the estimator based on the within-transformed model @ Suppose that the Assumptions to @ hold.
T, =T —2p(T). Then for n fized and T — oo it follows that

1. Tx(Ap2sLs — 7v) and \/T*(5D23LS7Z~ —0;) are asymptotically independent for each i =1,...,n.

2. /nTy (Ap2srs — ) converges in distribution to M;lmn, where m,, and M,, are given by (@) and

3. Given a s X k + 1 restriction matriz R, the Wald statistic Sy 7 defined in @ converges to a x>

random variable with s degrees of freedom.

Remark 3. By Assumption [4] if 7" — oo, then T, — oo. In Remark [2] we already observe that the
two-stage least squares estimator and the DOLS estimator are special cases of the dynamic two-stage
least squares estimator. Hence, the Wald-statistic presented in Appendix [A] can be used to obtain the

Wald statistic for the two-stage least squares estimator and the DOLS estimator.

4 Monte Carlo Simulations

This section investigates the small sample properties of the D2SLS estimator as well as the size and power
of the Wald tests defined in Theorem [I} We generate the data based on an error process that follows from
Assumptions To operationalize this we need to specify the lag polynomials \Ilj (L). In particular, we
have to specify the error dynamics of the vector WL. Here we assume the same error dynamics for all
cross sections i = 1,...,n. We use two explanatory variables x;; such that k = 2 and set § = (1,1)". The
number of instruments is g, = 2.

Regarding the error dynamics we use the stationary designs of Binder et al.| (2005) to generate the
data for the vector W;rt. The innovations 5;ft are generated as independent draws from 5;rt ~ N (0,%,).

For ¥.; we use (I) [¥5],; =1 for j = 1,...,3, the remaining elements are —0.2, (II) X.; = I3 and (III)

[Em-]jj =1for j =1,...,3, while the other elements are 0.2. In the first three designs we generate WL by
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means of the first order vector autoregressive system (VAR(1))
T T T
Wi = (I)wz',tfl + &€

where the 3 x 3 matrix ® comes from one of we use the following designs:

Design DGP = 1: A stationary VAR(1) with maximum eigenvalue of 0.6, where

04 0.1 0.1
=1 01 04 0.1
0.1 0.1 04

Design DGP = 2: A stationary VAR(1) with maximum eigenvalue of 0.8, where

0.6 0.1 0.1
=1 0.1 06 0.1
0.1 0.1 06

Design DGP = 3: A stationary VAR(1) with maximum eigenvalue of 0.95, where

0.75 0.1 0.1
P = 0.1 0.75 0.1
0.1 0.1 0.75

In addition we consider a finite-order vector moving average (M A) processes of the form

q
Tt 7T
Wiy =€ T Z Wi
=1

15

(26)

(29)

(30)



where we choose: Design DG P = 4, which is a first-order MA process where

04 01 0.1
ol =101 04 01 |, (31)
0.1 0.1 0.4

and Design DGP = 5, where w; follows a second-order MA process with

0.6 0.1 0.1 04 0.1 0.1
@i =101 06 01 | and ®L,=1] 01 04 01 | - (32)
0.1 0.1 06 0.1 0.1 04

Recall that the disturbance in the equation for y;; is given by the first element of the vector w, while its

it
remaining elements contain 0x;;. The maximum numbers of leads and lags of the explanatory variables
that are conditionally correlated with the disturbances is equal to one in the Designs 1-3, while for the
Designs 4 and 5 all lags of the explanatory variables are conditionally correlated with the disturbances.

In the case of the VAR(1) models, we generate the initial values for the process w;-[t from the implied

stationary distribution. Note that by backward substitution, we obtain

o0
WzTo = Z ‘I’Jgj,fj (33)
§=0
and hence W;ro is a random variable that is independent from &:L for ¢ > 0. When the innovations 5th are

normally distributed, it also follows that w;ro is normally distributed. Furthermore, it has a mean of zero

and k£ + 1 x k + 1 variance-covariance matrix F (WLWZ) = I‘ZTO where

!

o0 (o] [o¢]
Ch=E (Y @ | (D@l ;| |=) o, . (34)
J=0 :

)

7=0 7=0
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The above expression implies

o0 o
orij@ = &', @ =5, + > ®/5,.@7 = 5, + T} (35)
=0 =0

After vectorizing and solving for I‘j-o we obtain (see e.g. |[Liitkepohl (2006))[p. 29])
vec (F;[()) = (T2 — 2 ® <I>)_1 vec (Xg) . (36)

The remaining parameters of the model are chosen as follows: We generate the individual ef-
fects «; from «; ~ N (03,I3). The spatial correlation parameter p is chosen from the set
{-0.95,-0.5,-0.1,0,0.1,0.5,0.95}. The choice of W is based on Kapoor et al. (2007). In more de-
tails we consider: (i) A ”one step ahead-one step behind circular world” with corresponding entries 1/2.
Le. Wi;jt1 =05and Wipq1; =05fori=1,...,n—1. Wi, = 0.5 and W, 1 = 0.5, the other entries are
zero. (ii) A ”three step ahead-three step behind circular world” with corresponding entries 1/6. (iii) A
"five step ahead-five step behind circular world” with corresponding entries 1/10. (iv) A ”one step ahead-
one step behind Rook constellation” with corresponding entries 1/2. This design is non-circular. Here
Wiiv1 = 0.5 and Wjp1; = 0.5 for i = 1,...,n — 1; the other entries are zero. (v) A "two step ahead-two
step behind Queen constellation”. In this non-circular design W; ;11 = 0.3, Wj ;42 = 0.2, W41, = 0.3
and Wi, = 0.2 for ¢ = 1,...,n — 2; the other entries are zero. Thus we have in total 525 different data
generating processes (3, 5, 7, 5 different settings for X.;, the autoregressive structure of W;rt, the spatial
correlation parameter p and the spatial correlation matrix W, respectively).

For the estimation of the long run covariance €2, ; we applied the Bartlett and the truncated kernelﬂ

. A _s) 22 . . . . 2
ie. Q. = %Zthl ZST:1k (%—;) u;, where k(.) is a kernel function with bandwidth by and u; are

U,
the residuals. The truncated kernel exhibits a better performance than the Bartlett kernel. For the
truncated kernel we either kept the number of lags fixed for all ¢ = 1,...,n or stopped the summation

for component 7 at lag s if the mode of the autocorrelation of the residuals {ﬁit, ﬁi,t_s} becomes smaller

"Given these kernels and our model assumptions the conditions for consistent estimation provided in |[Jansson| (2002)) are
satisfied.
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than the 1.96/+/T bound. The later choice has lead to a better performance in our simulations. When
implementing the D2SLS estimator, the number of leads and lags p included in the regression has to
be chosen. Recent literature proposed to choose p by means of information criteria (see e.g. Kejriwal
and Perron| (2008) and Kurozumi and Tuvaandorj (2010)). With small 7" and n the implementation of
such criteria is straightforward. However, since a dataset with (relatively) large n and T is going to be
considered, working with small p becomes necessary due to computational restrictions. In particular, we
set p = 2 for all components ¢ = 1,...,n. For all designs working with p = 2 performed better than
working with p = 1. Last but not least M = 1000 is the number of Monte Carlo steps and m is the index
of the corresponding iteration. To obtain the DOLS estimates Z is replaced by X in . For the 2SLS
estimator Z and X do not contain any leads and lags, i.e. ¢ = (), while for OLS we use Z = X with ¢ = ().

Tables 1] to [§| present results from the simulation runs. We consider the cases where n = 5, T' = 200 and
n = 50, T'= 200. In the first three columns the numbers abbreviate the different designs: W = (i) for the
one-steps ahead setting, ..., W = (v) for the Queen constellation, DGP = 1,...,5 for the autoregressive
model used to generate wy, X = (I),(II),(I1]) stands for the covariance matrix used. With different
cross-sectional dimensions n we investigated the size of the Wald statistic and obtained the percentages
of the simulation runs where the true null hypothesis p = 0 has been rejected at o, = {0.01,0.05,0.1}
significance levels. For p = {—0.95,—-0.5,—0.1,0.1,0.5,0.95} the false null-hypothesis of p = 0 has been
rejected in all of the simulation runs for most simulation settings. The exceptions appear with n = 5,
p = £0.1 and the moving average designs DGP = 4 and DGP = 5. Here for different W and ¥.; we
sometimes observe rejection rates smaller than 99%. The smallest rejection rate was 0.45 in the case of
the M A(1) process, where W is of type (iii) and X.; of type (I). For n = 50 we observed that the false
null hypothesis p = 0 has always been always rejected.

Tables|[T], and [0 present the rejection rates of the Wald test for the true null hypothesis p = 0. Since
for p = 0 the DOLS estimation procedure is one of the theoretically correct tools presented in literature,
the comparison of D2SLS to DOLS is of special interest. With n = 5, for designs DGP = 1 — 3 the
oversizing remains modest for DOLS and D2SLS. The rejection rates observed are very similar although

the D2SLS uses the instrumental variables, where the numerical complexity is increased. With the moving
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average process stronger oversizing effects are obtained, for DOLS these effect can become very strong.
The highest oversizing with our D2SLS estimator is observed with X.; of type (I) - where the ”serial”
endogeneity is stronger - and W = (ii7), where many spatial lags are used. For n = 50 the performance
of DOLS is very close to the performance of our D2SLS estimator; here in some settings undersizing is
observed.

According to the Bias = p — %Zzzl pn and the bias adjusted root mean squared error RMSE =

\/Bz'a82 + (ﬁ Zranl p2 — (% 22:1 ﬁm)2) hardly any differences are observed between DOLS and D2SLS

with n = 5 for the designs DGP = 1 — 3, while substantial differences can be observed with DGP = 4
and 5 (see Tables |3| and [4] for p = 0.5). In addition these effects are more pronounced with X.; of type
(I) and W = (iii). Surprisingly, 25LS - sometimes also OLS - worked quite well for the different designs
considered although these methods do not cope with "serial” endogeneity still arising with p = 0. We
explain this phenomenon as follows: The Wald statistic S, ,7 includes estimates of the long-run covariance
matrix €2y, ; and the parameter estimates. We observed that the estimates of the covariance matrix with
OLS and 25 LS are in almost all cases much larger than the estimates with DOLS and D2SLS. However,
also the volatility of the estimator, e.g. measured by the RMSE, increases. Here we claim that these
effects can cancel out, such that the rejection rates are not too far away from the significance level o
considered. With D2SLS the rejection rates are in a lot of the cases even closer to o, than with DOLS
and D2SLS. Oversizing of Wald tests based on DOLS estimation (which also require the calculation of
the long run covariance matrix) have already been extensively reported in literature (e.g. [Mark and Sul
(2003))[Table 1]). For n = 50 the bias and the RMSE become smaller, as can be expected when using
more data (see Tables [7|and 8| for p = 0.95). Although most differences are small, we observe that the
bias and the RM SFE of our D2SLS estimator is smaller or equal to the bias and the RM SFE of the DOLS
estimator. In addition - except for W = (v), DPG = 4 and X; of type (I), D2SLS dominates the 25LS
estimator. D2SLS always dominates OLS in terms of the bias and the RMSE.

Since 25 LS did not perform so bad in a lot of the cases considered above, we also increased the degree
of serial "endogeneity”. We additionally investigate a 3.; where [X] j; =1forj=1,...,3, and the other

elements are 0.9. For n = 5, even with p = 0 the bias with 25LS is a factor two to ten larger than the
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bias observed with D2SLS. For p # 0 the bias increases. Things are even worse with OLS. Our D2SLS
estimator exhibits the usual oversizing behavior with p = 0 as well. Regarding the empirical analysis
carried out in the next section, it is important to note that even with p = 0, the bias with 25LS for the
estimates of the regressors (8 is approximately a factor two to three of the bias observed with D2SLS.
This can be explained by the fact that X;; is part of Z;;, where X;; is correlated with the noise term by the
construction of the model. For n = 50 the bias in most cases is the smallest one with D2SLS, however
the differences in absolute terms become small with n = 50.

Summing up, we observe that the estimator developed in Section [3| exhibits (in most cases) some
oversizing behavior as already observed in the literature where dynamic least squares estimation has been
applied. However, even with the true null-hypothesis p = 0, where no spatial endogenetiy is present, the
D2SLS estimator in most cases outperforms the DOLS estimator. By increasing, both - serial and spatial
endogeneity - we observe that the D2SLS estimator performs reasonably well. With the larger data sets,
where T' = 200 and n = 50, the bias and the RM SE decreases compared to T' = 200 and n = 5.

5 Empirical Illustration

In this section we apply the tools developed in the former sections to credit risk data. Quantitative
finance literature has mainly focused on the default risk of an entity (see e.g. [Eom et al.| (2004), |Crosbie
and Bohn (2003), Collin-Dufresne et al| (2001), Campbell and Taksler| (2003), |[Ericsson et al.| (2009),
Longstaff et al.| (2008), among others). In their seminal paper |Collin-Dufresne et al.| (2001) looked at the
residuals — arising from regressing bond spreads on usual credit risk factors — by means of a principal
component analysis, where the authors detected a strong factor in the residuals. While the coefficients
of determination in the initial regressions are surprisingly low, this factor has a higher explanatory power
than the regressors obtained from economic literature. |Collin-Dufresne et al.| (2001)) claim that the strong
factor is driven by liquidity risk or other joint market behavior. Based on these findings a lot of articles
also looked on joint determinants of credit spreads (see e.g. [Zhou (2001)), |Collin-Dufresne et al.| (2003),
Jorion and Zhang| (2007)) and Norden and Weber| (2009)). In the following a spatial correlation matrix W

will be derived from input-output data. Equipped with this matrix W we shall estimate model @ by the
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ac = 0.01 ac = 0.05 ac = 0.10
W DGP X, | OLS 2SLS DOLS D2SLS ‘ OLS 2SLS DOLS D2SLS ‘ OLS 2SLS DOLS D2SLS
i 1 I 1.0 1.0 3.0 2.9 5.4 5.7 9.2 9.4 10.8 11.0 15.1 15.2
i 1 II 1.2 1.2 2.4 2.2 5.3 5.3 8.7 8.8 10.9 11.2 15.1 14.9
i 1 IIT 1.2 1.2 3.6 3.5 6.0 5.8 8.9 9.0 11.1 11.2 14.9 14.7
i 2 I 1.7 1.6 2.5 2.5 4.7 4.7 7.8 7.7 8.3 8.4 12.0 12.1
i 2 II 1.8 1.8 3.4 3.2 5.5 5.6 10.1 10.3 9.0 9.1 16.8 16.5
i 2 111 2.6 2.6 3.8 3.8 6.3 6.3 11.8 12.0 11.7 11.7 18.1 17.5
i 3 I 1.6 1.6 1.9 2.0 4.4 4.5 6.8 6.7 8.3 8.4 10.9 11.0
i 3 II 1.8 1.8 2.3 2.3 5.7 5.6 9.2 9.0 8.8 8.9 15.2 15.2
i 3 111 3.0 2.9 3.6 3.6 6.2 6.4 11.4 11.4 11.5 11.4 17.7 17.6
i 4 I 1.4 1.4 1.6 1.6 4.8 5.0 6.6 6.8 9.7 8.1 12.8 12.9
i 4 II 1.2 1.3 2.0 2.1 4.5 4.7 7.1 6.9 8.7 8.7 12.5 12.5
i 4 IIT 1.3 1.3 2.0 2.0 4.9 4.8 7.0 7.2 10.4 10.4 12.6 12.6
i 5 I 3.8 3.1 7.2 7.8 10.5 9.2 17.2 16.7 18.6 15.4 23.5 23.8
i 5 II 3.1 3.0 5.0 5.4 9.6 9.5 13.8 13.5 16.8 16.8 21.7 21.6
i 5 111 3.2 3.2 5.0 5.0 10.2 10.4 12.5 12.5 16.5 16.6 21.4 21.4
ii 1 I 0.9 0.9 3.1 2.9 5.5 5.2 9.9 9.6 10.7 10.6 16.3 16.1
ii 1 II 1.4 1.3 3.0 2.6 6.3 6.0 9.7 9.6 12.3 12.5 17.4 17.3
ii 1 II1 2.0 1.9 2.7 3.1 6.9 6.9 10.2 10.3 13.0 13.4 17.3 17.3
ii 2 I 1.1 1.1 3.2 3.0 3.3 3.2 8.2 8.0 6.8 6.8 14.7 14.4
ii 2 II 1.0 1.0 3.1 3.0 4.3 4.4 9.2 9.0 7.2 7.1 16.6 16.1
ii 2 IIT 1.5 1.6 3.6 3.7 5.7 5.7 10.0 9.6 10.3 10.4 16.2 16.4
ii 3 I 1.0 1.0 2.5 2.6 3.5 3.4 7.4 7.4 6.9 6.9 13.4 13.7
ii 3 II 1.0 1.0 2.6 2.6 4.3 4.1 8.8 8.9 6.7 6.9 15.2 14.8
ii 3 II1 1.7 1.7 3.1 3.1 5.5 5.4 9.1 9.2 9.3 9.4 16.0 16.2
ii 4 I 1.3 1.2 2.0 1.8 4.8 3.9 7.2 7.5 10.4 8.8 12.6 11.9
ii 4 II 1.0 0.8 1.7 2.0 4.1 4.0 7.1 7.3 9.1 9.5 12.7 13.0
ii 4 11T 1.4 1.3 2.2 2.2 4.7 4.9 7.5 7.4 10.6 10.6 12.3 12.6
ii 5 I 4.2 2.7 7.2 7.1 11.9 9.3 17.4 17.9 18.9 16.5 25.8 27.6
ii 5 11 3.2 3.2 5.5 5.2 10.3 10.6 13.9 14.2 17.4 17.3 21.3 21.8
ii 5 IIT 3.2 3.2 5.7 5.5 10.5 10.6 14.0 14.0 18.2 18.2 20.4 20.9
iii 1 I 2.1 0.9 4.6 2.9 8.3 5.2 13.0 9.7 15.0 10.7 19.6 16.1
iii 1 II 2.3 1.3 4.9 2.7 9.3 6.0 13.4 9.7 16.2 12.5 19.8 17.4
iii 1 II1 3.0 1.8 5.4 3.1 11.0 6.9 15.9 10.5 18.3 13.4 22.7 17.3
iii 2 I 1.2 1.1 3.1 3.0 3.7 3.3 9.1 8.0 7.1 6.7 15.2 14.4
iii 2 II 1.1 1.0 3.9 3.0 4.3 4.4 10.9 8.9 7.8 7.4 17.7 16.2
iii 2 111 1.6 1.6 4.5 3.7 6.7 5.8 11.2 9.5 11.5 10.4 18.8 16.3
iii 3 I 1.0 1.0 2.6 2.6 3.8 3.4 8.5 7.4 6.7 6.9 13.7 13.6
iii 3 II 1.1 1.0 3.3 2.6 4.6 4.1 10.2 8.8 7.4 6.8 16.9 14.9
iii 3 IIT 2.0 1.7 4.1 3.1 6.2 5.4 10.7 9.2 10.5 9.3 17.8 16.4
iii 4 I 68.5 1.0 47.3 1.8 78.9 4.0 61.1 7.0 84.0 8.8 67.6 11.7
iii 4 II 5.0 0.9 6.0 2.0 11.4 4.0 14.4 7.3 18.7 9.3 21.8 13.0
iii 4 IIT 1.9 1.3 2.4 2.2 7.0 4.9 7.9 7.4 13.2 10.6 14.1 12.6
iii 5 I 75.5 2.4 61.0 7.1 84.9 9.1 69.9 17.7 88.7 16.2 76.1 27.5
iii 5 II 9.2 3.2 12.3 5.3 21.2 10.6 22.1 14.3 28.2 17.3 31.7 21.9
iii 5 11T 4.6 3.2 6.2 5.5 13.4 10.6 14.4 14.0 22.3 18.2 22.5 20.9

Table 1: Size for the parameter p: Rejections rates of the Wald test for the true null hypothesis p = 0 in percentage terms,
given the significance levels a. = {0.01,0.05,0.1}. M = 1000 simulation runs. Cross-sectional dimension n = 5, time series
dimension 7" = 200.

D2SLS approach.
Similar to |Berndt et al.| (2008) the left hand side variable is the CDS spread, while firm specific credit

risk proxies, interest rate data and the VIX volatility index are used as the right hand side variables. By
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ac = 0.01 ac = 0.05 ac =0.10
W DGP. X, | OLS 2SLS DOLS D2SLS ‘ OLS 2SLS DOLS D2SLS ‘ OLS 2SLS DOLS D2SLS
iv 1 I 0.9 0.9 3.1 3.1 4.6 4.7 8.6 8.2 10.0 9.9 15.5 15.7
iv 1 II 1.4 1.4 2.7 2.5 4.6 4.6 7.9 7.9 10.5 10.4 14.7 14.8
iv 1 II1 1.3 1.3 3.0 2.9 5.0 5.2 9.0 9.6 11.0 11.1 15.1 15.1
iv 2 I 1.8 1.8 1.9 1.8 5.7 5.9 7.4 7.5 9.1 8.9 13.6 13.3
iv 2 II 2.3 2.1 3.2 3.1 6.6 6.6 10.6 10.6 10.2 10.2 17.9 18.2
iv 2 111 2.6 2.6 5.1 4.9 7.4 7.6 13.0 12.9 12.5 12.3 18.8 19.0
iv 3 I 1.7 1.7 1.7 1.7 5.4 5.3 7.0 7.2 8.7 9.0 11.7 11.6
iv 3 II 2.2 2.1 2.8 2.8 6.3 6.5 9.5 9.6 9.8 9.9 16.4 16.6
iv 3 II1 2.4 2.4 4.1 4.5 7.0 6.9 11.6 11.8 11.4 11.2 17.7 17.8
iv 4 I 1.3 1.5 2.1 2.3 4.8 5.0 7.7 7.0 10.9 9.3 13.7 12.4
iv 4 II 1.0 1.0 2.2 2.5 5.2 5.5 7.1 7.5 10.6 10.4 13.8 14.4
iv 4 II1 1.5 1.5 2.3 2.3 6.1 6.2 8.4 8.5 11.3 11.2 13.9 14.2
iv 5 I 4.5 3.9 7.0 7.7 11.4 10.1 17.0 16.9 19.2 16.6 23.8 23.7
iv 5 II 4.1 4.0 6.1 6.1 10.8 10.7 13.8 13.8 17.3 17.2 21.2 20.9
iv 5 II1 4.2 4.2 6.0 5.9 11.2 11.4 13.9 14.2 18.1 18.2 21.0 20.9
v 1 I 0.9 0.9 3.2 3.3 5.1 5.0 9.4 9.4 9.9 10.0 15.8 15.9
v 1 II 1.1 1.1 2.6 2.6 5.5 5.6 8.9 8.9 10.8 10.7 14.5 14.4
v 1 II1 1.4 1.4 2.7 2.7 6.6 6.8 9.9 10.1 12.3 12.3 17.4 17.3
v 2 I 1.4 1.4 2.5 2.5 5.1 5.4 7.7 7.9 9.6 9.6 13.2 12.8
v 2 II 1.4 1.4 3.1 3.1 6.1 6.1 11.2 11.3 9.7 9.4 17.6 18.0
v 2 111 2.3 2.3 3.9 3.8 7.3 7.2 12.6 12.6 13.0 12.9 19.2 19.2
v 3 I 1.0 1.0 2.0 2.0 5.1 5.1 6.6 6.6 9.6 9.4 11.9 11.8
v 3 1I 1.4 1.4 2.7 2.7 5.9 5.6 9.4 9.5 9.8 9.8 15.9 16.2
v 3 II1 2.1 2.1 3.4 3.3 6.8 6.7 12.0 12.2 12.9 12.7 18.7 18.8
v 4 I 1.7 1.0 2.7 2.4 5.2 3.9 7.6 7.0 10.0 8.1 13.6 12.6
v 4 II 0.7 0.7 2.2 2.1 4.9 4.6 7.1 7.0 9.7 9.8 12.7 13.4
v 4 111 0.4 0.4 2.0 2.0 5.2 5.1 7.4 7.3 11.3 11.4 13.1 13.2
v 5 I 3.9 2.9 7.6 7.8 9.9 9.2 16.9 17.1 17.2 16.9 25.7 24.9
v 5 II 2.8 3.0 5.7 5.9 11.0 10.7 14.3 13.8 17.8 17.6 22.3 22.4
v 5 111 3.0 2.9 6.0 6.0 11.8 11.8 14.1 14.1 18.9 18.7 22.0 22.2

Table 2: Size for the parameter p: Rejections rates of the Wald test for the true null hypothesis p = 0 in percentage terms,
given the significance levels a. = {0.01,0.05,0.1}. M = 1000 simulation runs. Cross-sectional dimension n = 5, time series
dimension 7" = 200.

means of the matrix W we model a specific form of default risk correlation. The Wald test developed in
Theorem [I| checks whether the impact of spatial correlation described by W is significant. Although our
approach cannot ”solve” the economic problem highlighted by |Collin-Dufresne et al.| (2001), the following

analysis tries to add a further part to the puzzle of modeling credit spreads.
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Bias RMSE
OLS 2SLS DOLS D2SLS OLS 2S5LS DOLS D2SLS

-5.3E-4 2.4E-5 -4.3E-4 1.6E-5 | 2.16E-3 2.04E-3 2.04E-3 1.95E-3
II -5.9E-4 1.0E-5 -5.7TE-4 2.0E-5 | 2.32E-3 2.15E-3 2.15E-3 2.36E-3
III | -5.9E-4 1.1E-4 -6.0E-4 1.4E-4 | 244E-3 2.37E-3 2.37E-3 2.61E-3
I -3.7TE-4 -9.7TE-5 -2.0E-4 -6.2E-5 | 2.44E-3 2.60E-3 2.60E-3 1.25E-3
II -4.3E-4 -1.5E-4 -29E-4 -1.0E-4 | 2.49E-3 2.63E-3 2.63E-3 1.55E-3
1 | -4.4E-4 -1.1E-4 -42E-4 -1.3E-4 | 2.66E-3 2.80E-3 2.80E-3 2.11E-3
I -3.6E-4 -9.0E-5 -1.7E-4 -48E-5 | 2.38E-3 2.55E-3 2.55E-3 1.04E-3
II -4.2E-4 -14E-4 -24E-4 -7.7E-5 | 2.40E-3 2.54E-3 2.54E-3 1.27E-3
II1 | -4.2E-4 -9.6E-5 -3.5E-4 -1.1E-4 | 2.50E-3 2.64E-3 2.64E-3 1.71E-3
I -4.2E-2 -8.0E-4 -2.0E-2 -6.2E-4 | 5.93E-2 1.86E-2 1.86E-2 2.95E-2
II -8.4E-4 -7.2E-5 -84E-4 -6.9E-5 | 2.50E-3 2.10E-3 2.10E-3 2.57E-3
I | -1.4E-4 -1.3E-5 -1.0E-4 -1.9E-5 | 7.18E-4 7.15E-4 7.15E-4 6.81E-4
I -4.2E-2 -85E-4 -2.0E-2 -T.0E4 | 5.97E-2 1.84E-2 1.84E-2 2.96E-2
II -8.5E-4 -7T8E-5 -84E-4 -83E-5 | 2.50E-3 2.10E-3 2.10E-3 2.57E-3
I | -1.4e-4 -1.5E-5 -9.7E-5 -2.7E-5 | 7.17E-4 7.10E-4 7.10E-4 6.89E-4
I -9.7E-4  -29E-4 -5.7E-4 3.4E-5 | 4.98E-3 4.66E-3 4.66E-3  4.44E-3
II -8.9E-4 -9.6E-5 -8.1E-4 -1.3E-5 | 5.44E-3 5.21E-3 5.21E-3 5.73E-3
III | -8.1E-4 3.0E-4 -12E-3 -1.2E-4 | 6.11E-3 6.01E-3 6.01E-3 6.83E-3
I -7.1E-4 -4.7E-4 -3.1E-4 -1.5E-4 | 5.12E-3 5.06E-3 5.06E-3 2.96E-3
II -7.9E-4 -5.1E-4 -49E-4 -2.7E-4 | 5.26E-3 5.17TE-3 5.17E-3  3.60E-3
I | -6.7E-4 -3.0E-4 -7.0E-4 -3.7E-4 | 5.68E-3 5.63E-3 5.63E-3 4.69E-3
I -7.0E-4 -4.7E-4 -25E-4 -1.1E-4 | 4.96E-3 4.90E-3 4.90E-3 2.45E-3
II -7.7E-4 -5.0E-4 -4.0E-4 -2.0E-4 | 5.03E-3 4.95E-3 4.95E-3 2.95E-3
I | -6.6e-4 -3.2E-4 -5.7E-4 -29E-4 | 5.28E-3 5.22E-3 5.22E-3 3.79E-3
I -5.2E-2 7.0E-3 -2.5E-2 -1.5E-4 | 7.88E-2 5.40E-2 5.40E-2 4.48E-2
II -1.7E-3 -3.9E-4 -1.5E-3 -1.5E-4 | 6.53E-3 5.81E-3 5.81E-3 6.60E-3
I | -5.4E-4 -39E-4 -21E-4 -6.9E-5 | 2.20E-3 2.07E-3 2.07E-3 1.96E-3
I -5.2E-2 6.5E-3 -2.6E-2 -34E-5 | 7.83E-2 5.22E-2 5.22E-2 4.39E-2
II -1.7E-3 -3.8E-4 -14E-3 -8.1E-6 | 6.59E-3 5.91E-3 5.91E-3 6.61E-3
III | -5.4E-4 -3.8E-4 -9.3E-5 5.4E-5 | 2.23E-3  2.09E-3 2.09E-3  2.00E-3
I -4.1E-3 -5.0E-4 -3.1E-3 5.8E-5 | 1.09E-2 8.05E-3 8.05E-3  9.20E-3
II -45E-3 -1.7E-4 -43E-3 -2.2E-5 | 1.19E-2 9.01E-3 9.01E-3 1.22E-2
III | -5.4E-3 5.1E-4 -59E-3 -2.0E-4 | 1.41E-2 1.04E-2 1.04E-2 1.58E-2
I -2.3E-3  -8.2E-4 -1.1E-3 -2.7E-4 | 9.29E-3 8.76E-3 8.76E-3 5.29E-3
II -2.5E-3 -89E-4 -1.7TE-3 -4.7E-4 | 9.62E-3 8.94E-3 8.94E-3 6.55E-3
I | -2.6e-3 -5.3E-4 -24E-3 -6.4E-4 | 1.03E-2 9.74E-3 9.74E-3 8.62E-3
I -2.3E-3 -82E-4 -95E-4 -1.8E-4 | 9.00E-3 8.48E-3 8.48E-3 4.38E-3
II -2.5E-3 -8.8E-4 -14E-3 -3.5E-4 | 9.22E-3 8.56E-3 8.56E-3 5.38E-3
I | -2.5E-3  -5.5E-4 -2.0E-3 -5.0E-4 | 9.62E-3 9.04E-3 9.04E-3  7.00E-3
I -2.7E-1 1.2E-2 -13E-1 -1.2E-4 | 3.80E-1 9.70E-2 9.70E-2 1.88E-1
II -7.6E-3 -6.8E-4 -7.3E-3 -2.6E-4 | 1.77E-2 1.01E-2 1.01E-2 1.73E-2
III | -1.5E-3 -6.8E-4 -8.6E-4 -1.2E-4 | 4.49E-3 3.59E-3 3.59E-3 3.69E-3
I -2.7E-1 1.1E-2 -1.3E-1 9.2E-5 | 3.81E-1 9.34E-2 9.34E-2  1.88E-1
II -7.7E-3 -6.5E-4 -7.3E-3 -1.3E-5 | 1.80E-2 1.02E-2 1.02E-2 1.73E-2
III | -1.5E-3 -6.6E-4 -6.9E-4 9.3E-5 | 4.54E-3 3.61E-3 3.61E-3  3.64E-3
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Table 3: Bias and RMSE for the parameter estimates for p = 0.5. Cross-sectional dimension n = 5, time series dimension
T = 200. M = 1000 Monte Carlo steps.
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Bias RMSE
W DGP X OLS 2SLS DOLS D2SLS OLS 2S5LS DOLS D2SLS

I -5.6E-4 3.0E-5 -4.5E-4 2.7E-5 | 2.57TE-3  2.42E-3 2.42E-3 2.27E-3
II -5.9E-4 6.3E-5 -5.6E-4 7.5E-5 | 2.67TE-3  2.54E-3 2.54E-3  2.68E-3
III | -6.1E-4 1.3E-4 -6.2E-4 1.5E-4 | 2.90E-3 2.79E-3 2.79E-3 3.11E-3
I -4.2E-4 -14E-4 -25E-4 -9.6E-5 | 2.93E-3 3.02E-3 3.02E-3 1.46E-3
II -4.9E-4 -2.1E-4 -3.5E-4 -14E-4 | 3.07E-3 3.13E-3 3.13E-3 1.89E-3
I | -5.0E-4 -1.6E-4 -4.7E-4 -1.7E-4 | 3.27TE-3 3.32E-3 3.32E-3 2.57E-3
I -4.0E-4 -1.3E-4 -2.1E-4 -78E-5 | 287E-3 2.96E-3 2.96E-3 1.21E-3
II -4.6E-4 -19E-4 -28E-4 -1.1E-4 | 2.96E-3 3.01E-3 3.01E-3 1.53E-3
II1 | -4.8E-4 -1.5E-4 -4.0E-4 -14E-4 | 3.08E-3 3.12E-3 3.12E-3 2.08E-3
I -4.5E-2 -1.6E-3 -2.1E-2 -84E-4 | 6.40E-2 2.20E-2 2.20E-2 3.22E-2
II -9.7E-4 -19E-4 -9.2E-4 -14E-4 | 2.92E-3 247E-3 247E-3 2.92E-3
I | -1.9E-4 -6.3E-5 -1.3E-4 -44E-5 | 8.76E-4 8.35E-4 8.35E-4 8.20E-4
I -4.5E-2 -1.6E-3 -22E-2 -8.7E-4 | 6.42E-2 2.17E-2 2.17E-2 3.24E-2
II -9.6E-4 -1.8E-4 -9.1E-4 -14E-4 | 2.88E-3 245E-3 245E-3 2.92E-3
III | -1.8E-4 -6.0E-5 -1.2E-4 -44E-5 | 8.68E-4 8.28E-4 8.28E-4 8.21E-4
I -7.5E-4 -1.6E-4 -54E-4 -5.0E-5 | 3.49E-3 3.28E-3 3.28E-3 3.07E-3
II -7.4E-4 -5.6E-5 -6.6E-4 1.2E-5 | 3.78E-3 3.60E-3 3.60E-3 3.77E-3
III | -6.3E-4 1.7E-4 -7.2E-4 1.0E-4 | 4.28E-3 4.12E-3 4.12E-3 4.62E-3
I -5.2E-4 -2.6E-4 -3.2E-4 -1.8E-4 | 4.06E-3 4.21E-3 4.21E-3 2.09E-3
II -5.9E-4 -3.0E-4 -44E-4 -24E-4 | 4.23E-3 4.35E-3 4.35E-3 2.62E-3
III | -5.5E-4 -1.8E-4 -5.7E-4 -2.5E-4 | 4.46E-3 4.56E-3 4.56E-3 3.51E-3
I -5.0E-4 -24E-4 -26E-4 -14E-4 | 3.97E-3 4.12E-3 4.12E-3 1.72E-3
II -5.6E-4 -2.8E-4 -3.6E-4 -1.8E-4 | 4.08E-3 4.21E-3 4.21E-3 2.13E-3
III | -5.4E-4 -1.8E-4 -4.7E-4 -2.1E-4 | 420E-3 4.31E-3 4.31E-3 2.84E-3
I -4.7E-2  -2.4E-4 -22E-2 -1.0E-3 | 6.81E-2 2.98E-2 2.98E-2 3.70E-2
II -1.2E-3  -3.2E-4 -1.0E-3 -1.8E-4 | 3.91E-3 3.46E-3 3.46E-3 3.88E-3
I | -3.0e-4 -1.7E-4 -16E4 -6.7E-5 | 1.27E-3 1.22E-3 1.22E-3 1.14E-3
I -4.7E-2  -3.1E-4 -23E-2 -1.0E-3 | 6.84E-2 2.92E-2 2.92E-2 3.66E-2
II -1.2E-3  -3.1E-4 -1.0E-3 -1.5E-4 | 3.86E-3 3.43E-3 3.43E-3 3.85E-3
III | -29E-4 -1.7E-4 -1.2E-4 -3.5E-5 | 1.26E-3 1.21E-3 1.21E-3 1.14E-3
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Table 4: Bias and RM SFE for the parameter estimates for p = 0.5. Cross-sectional dimension n = 5, time series dimension
T = 200. M = 1000 Monte Carlo steps.

5.1 Data

In this analysis CDS spreads are used to describe the implied credit risk of a ﬁrmﬁ The insurance premium
the buyer has to pay to the seller is the CDS premium. The CDS premium is the amount payable per year
to insure against the event of default of any underlying with notational amount 1; it is usually measured in
basis points. With the usual quarterly frequency, the buyer pays premium/(4 - 10000) times the nominal
value stipulated in the contract to the seller. The probability of default and the loss given default (one

minus the recovery rate) should be the main driving forces of the CDS spreads (see e.g. |Hull (2006),

8 With a CDS contract a protection buyer acquires insurance against the default of a specified company. The protection
seller declares his willingness to compensate the protection buyer for a loss arising in the case of default of the specified entity.
For more details on the specification of credit default swap contracts we refer the reader to the International Securities and
Derivatives Association (ISDA); www.isda.org.
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ac = 0.01 ac = 0.05 ac = 0.10
W DGP X, | OLS 2SLS DOLS D2SLS ‘ OLS 2SLS DOLS D2SLS ‘ OLS 2SLS DOLS D2SLS
i 1 I 1.3 1.3 1.9 1.9 5.3 5.6 8.8 9.2 10.9 10.9 14.2 14.0
i 1 II 1.4 1.4 2.2 2.4 6.5 6.5 8.9 8.8 11.6 11.7 15.8 15.8
i 1 IIT 1.4 1.4 2.9 3.0 6.6 6.6 9.5 9.3 11.4 11.4 14.5 14.6
i 2 I 1.2 1.1 0.8 0.9 5.1 5.2 4.7 4.9 9.7 9.6 10.2 10.4
i 2 II 1.0 1.1 2.1 2.3 5.4 5.5 8.2 8.3 10.5 10.4 14.1 13.8
i 2 111 1.6 1.7 4.0 3.9 6.7 6.8 10.3 10.2 13.5 13.7 16.6 16.8
i 3 I 1.1 1.1 0.4 0.5 4.9 4.9 4.0 4.0 9.8 9.5 7.9 7.9
i 3 II 0.9 1.0 1.2 1.2 5.2 5.3 7.1 7.3 10.2 10.4 12.2 12.5
i 3 111 1.6 1.6 3.3 3.2 6.7 6.5 9.8 9.9 13.5 13.5 15.6 15.5
i 4 I 0.2 0.2 0.8 0.8 3.2 3.0 6.2 6.0 7.8 6.8 12.4 12.2
i 4 II 0.0 0.0 0.6 0.8 3.2 3.2 5.8 6.0 8.4 8.4 11.8 11.8
i 4 IIT 0.4 0.4 1.0 1.0 4.0 4.0 6.4 6.4 8.8 8.8 12.0 12.0
i 5 I 2.4 2.0 5.6 6.2 8.2 7.6 14.2 14.2 14.4 13.2 21.0 20.8
i 5 II 2.0 2.0 4.8 4.6 8.4 8.6 13.4 12.4 15.6 15.4 21.0 21.2
i 5 IIT 2.2 2.2 4.0 4.0 8.2 8.2 11.8 11.8 15.4 15.4 20.0 20.2
ii 1 I 1.3 1.3 2.0 2.1 5.6 5.5 8.2 8.2 11.2 11.0 16.0 16.0
ii 1 II 1.3 1.2 1.7 1.5 6.3 6.3 9.5 9.4 11.2 11.3 15.9 16.1
ii 1 II1 1.2 1.2 1.9 2.0 6.3 6.0 9.4 9.7 11.9 12.0 16.2 16.4
ii 2 I 0.8 0.8 1.1 1.0 4.1 4.1 4.9 4.7 8.5 8.4 10.4 10.6
ii 2 II 1.4 1.4 1.8 1.8 4.3 4.3 7.0 7.0 9.0 9.4 13.8 13.8
ii 2 IIT 1.8 1.8 2.5 2.4 6.4 6.6 10.0 9.8 11.2 11.0 15.1 15.6
ii 3 I 0.9 0.9 0.9 0.9 3.8 3.9 3.8 3.8 8.3 8.3 8.2 8.0
ii 3 II 1.3 1.2 2.0 2.0 4.6 4.4 6.4 6.3 8.4 8.6 12.2 12.1
ii 3 II1 1.6 1.6 2.2 2.2 6.5 6.5 8.8 9.0 11.3 11.2 14.4 14.8
ii 4 I 0.0 0.4 0.6 1.2 4.0 3.8 6.0 5.0 7.8 7.2 9.6 9.8
ii 4 II 0.2 0.2 0.4 0.4 3.8 3.8 6.0 5.6 7.8 7.8 10.4 10.2
ii 4 11T 0.2 0.2 0.6 0.6 4.6 4.6 5.6 5.6 7.8 8.0 11.2 11.2
ii 5 I 3.6 2.8 4.8 4.6 9.2 8.0 12.8 13.4 16.0 13.6 22.8 22.2
ii 5 11 3.6 3.4 5.0 4.6 8.4 8.6 11.2 11.0 15.4 15.0 19.0 18.8
ii 5 IIT 3.0 3.0 4.4 4.4 9.2 9.0 11.2 11.0 16.0 15.8 20.0 20.2
iii 1 I 1.6 1.7 2.4 2.6 5.6 5.7 8.0 7.9 13.0 13.0 12.9 12.9
iii 1 II 1.3 1.3 2.3 2.4 6.6 6.7 7.5 7.6 12.9 12.7 13.7 13.8
iii 1 II1 1.2 1.3 2.2 2.3 6.8 6.6 9.3 9.0 12.4 12.3 13.7 13.6
iii 2 I 1.0 0.9 1.5 1.5 4.0 4.2 4.2 4.2 8.0 7.9 8.9 8.9
iii 2 II 1.4 1.3 2.3 2.4 5.1 5.1 8.0 7.9 10.0 9.8 13.7 13.5
iii 2 111 1.6 1.6 3.3 3.3 6.3 6.6 9.9 9.9 12.2 12.1 15.1 15.2
iii 3 I 0.9 1.0 1.0 0.9 4.3 4.2 3.7 3.6 8.0 8.0 7.0 7.0
iii 3 II 1.1 1.2 1.8 1.9 5.3 5.1 7.3 7.4 9.9 10.4 11.9 12.1
iii 3 IIT 1.4 1.4 2.8 2.8 7.0 6.8 8.7 8.5 12.5 12.6 15.4 15.3
iii 4 I 0.6 0.6 2.2 2.4 4.0 3.6 6.0 5.0 9.0 7.8 12.0 10.8
iii 4 II 0.6 0.6 1.0 1.0 4.2 4.2 6.6 6.6 9.8 9.6 12.4 12.4
iii 4 IIT 0.4 0.4 1.0 1.0 4.6 4.6 7.2 7.2 9.0 9.0 11.8 11.8
iii 5 I 3.6 2.6 4.8 5.0 10.2 10.0 13.6 13.6 16.4 15.8 23.2 21.2
iii 5 II 3.0 3.0 5.6 5.2 10.8 11.2 14.0 13.6 18.2 18.6 22.6 22.2
iii 5 11T 3.2 3.2 5.2 5.2 9.8 9.8 14.4 14.4 17.4 17.6 22.4 22.4

Table 5: Size for the parameter p: Rejections rates of the Wald test for the true null hypothesis p = 0 in percentage terms,
given the significance levels o = {0.01,0.05,0.1}. M = 1000 simulation runs. Cross-sectional dimension n = 50, time series
dimension 7" = 200.

Schonbucher| (2003))).
We utilize the dataset already used in [Schneider et al.|(2010]), where CDS spreads of 278 firms obtained

from the Markit Group have been investigated. We focus on the five year maturities which are typically
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ac = 0.01 ac = 0.05 ac = 0.10
W DGP X, | OLS 2SLS DOLS D2SLS ‘ OLS 2SLS DOLS D2SLS ‘ OLS 2SLS DOLS D2SLS
iv 1 I 1.3 1.4 1.7 1.7 5.5 5.4 8.6 8.6 11.0 10.7 15.2 15.0
iv 1 II 1.6 1.5 2.3 2.4 6.4 6.4 9.1 9.1 12.1 12.1 15.9 15.8
iv 1 IIT 1.5 1.4 3.3 3.1 6.9 6.9 8.7 8.9 11.7 11.6 15.1 15.0
iv 2 I 1.0 1.0 0.8 0.8 5.2 5.1 5.0 4.8 9.5 9.5 9.8 9.6
iv 2 II 1.3 1.2 1.9 2.0 5.2 5.3 7.5 7.6 10.4 10.2 13.9 13.8
iv 2 111 1.6 1.6 3.5 3.7 6.9 7.0 10.1 9.8 13.0 13.1 16.4 16.4
iv 3 I 1.0 1.0 0.5 0.5 4.7 4.7 3.6 3.6 9.5 9.5 8.2 8.2
iv 3 II 1.1 1.1 1.2 1.1 5.0 4.9 6.8 6.6 10.6 10.6 12.2 12.0
iv 3 111 1.6 1.6 3.2 3.2 6.5 6.5 8.9 9.0 12.9 12.9 15.7 15.4
iv 4 I 0.2 0.2 0.8 0.8 3.6 3.8 5.8 5.8 7.4 7.0 11.4 11.6
iv 4 II 0.2 0.2 1.0 1.0 3.8 3.8 7.0 7.0 7.8 8.0 12.8 12.8
iv 4 IIT 0.6 0.6 1.2 1.2 4.2 4.2 6.8 6.8 8.8 8.8 13.2 13.0
iv 5 I 2.6 2.4 5.6 5.8 8.6 7.6 13.8 14.4 14.2 15.2 22.2 22.4
iv 5 II 2.4 2.4 4.8 4.8 8.2 8.4 13.2 13.2 16.4 16.2 20.8 20.8
iv 5 IIT 2.2 2.2 3.8 3.8 9.0 9.0 12.6 12.6 15.6 15.4 19.2 19.6
v 1 I 1.3 1.3 1.7 1.6 4.5 4.6 7.9 7.7 10.4 10.3 14.0 13.9
v 1 II 1.2 1.2 2.1 2.1 4.7 4.7 7.7 7.5 10.7 10.5 14.9 14.6
v 1 II1 1.1 1.2 2.1 2.1 5.4 5.4 8.0 7.9 10.7 10.6 15.3 15.1
v 2 I 0.7 0.7 0.8 0.9 4.6 4.8 3.9 3.9 9.4 9.4 9.1 9.0
v 2 11 1.0 0.9 1.6 1.6 5.0 5.1 7.2 7.5 10.9 11.1 13.6 13.4
v 2 IIT 1.8 1.6 3.1 3.1 6.9 7.0 10.5 10.4 11.3 11.4 16.5 17.0
v 3 I 0.6 0.6 0.6 0.6 4.7 4.7 2.8 2.8 9.5 9.3 6.9 7.1
v 3 1I 0.9 1.0 1.3 1.3 4.6 4.8 6.5 6.4 10.3 10.3 12.3 12.1
v 3 III 2.0 1.9 2.6 2.6 7.0 7.0 9.4 9.4 11.0 11.1 16.5 16.4
v 4 I 0.0 0.2 1.4 1.4 3.4 4.0 6.4 5.4 8.0 6.8 10.4 11.0
v 4 II 0.4 0.4 2.0 2.0 4.8 5.0 6.0 6.2 7.6 7.6 13.0 12.6
v 4 11T 0.2 0.2 2.0 2.0 5.0 5.0 6.4 6.4 8.4 8.2 11.6 11.6
v 5 I 1.0 1.7 4.0 4.0 6.0 4.7 10.3 10.0 11.7 9.0 20.0 18.0
v 5 II 2.3 2.3 4.3 4.3 5.7 5.7 10.3 10.0 12.3 12.3 17.0 17.3
v 5 11T 2.0 2.0 3.7 3.7 6.7 6.7 10.3 10.3 13.0 12.3 17.7 18.0

Table 6: Size for the parameter p: Rejections rates of the Wald test for the true null hypothesis p = 0 in percentage terms,
given the significance levels a. = {0.01,0.05,0.1}. M = 1000 simulation runs. Cross-sectional dimension n = 5, time series
dimension 7" = 200.

the most liquid ones (see e.g. Hull et al.| (2004)). The observation period is January 2, 2001 to May 30,
2008. In line with a bulk of quantitative finance literature we stick to weekly data, such that T" = 230.
Using weekly data instead of daily observations is often done to avoid day of the week effects.

Next the CDS data are matched with firm specific characteristics obtained from Thomson Datastream
and Compustat data. We construct the KMV distance to default, D D, from firm specific data by following
Crosbie and Bohn| (2003). Moreover, we calculate the debt to value ratio, DV R;;. This firm specific data
was available for 176 out of the 278 firms. Following Berndt et al.|(2008)) we also include the VI X volatility
index from the Chicago Board Options Exchange (http://www.cboe.com/micro/VIX/vixintro.aspx) as
an explanatory variable. Additionally, we include a short run and a long run interest rate obtained from

the Federal Reserve (http://federalreserve.gov/releases/hi5/data.htm). In more detail we use
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Bias RMSE
OLS 2SLS DOLS D2SLS OLS 2S5LS DOLS D2SLS

-3.1E-5 -2.1E-6 -28E-5 -3.4E-6 | 6.96E-5 8.49E-5 8.49E-5 6.00E-5
II -3.4E-5 -2.2E-6 -3.5E-5 -4.1E-6 | 7.54E-5 9.02E-5 9.02E-5 7.29E-5
I | -3.9e-5 -1.4E-6 -3.9E-5 -3.1E-6 | 8.10E-5 9.51E-5 9.51E-5 8.52E-5
I -3.6E-5 -8.6E-6 -1.5E-5 -6.9E-7 | 1.19E-4 1.72E-4 1.72E-4 5.36E-5
II -3.8E-5 -5.1E-6 -2.1E-5 1.4E-8 | 1.23E-4 1.74E-4 1.74E-4 6.80E-5
III | -3.9E-5 1.3E-6 -2.9E-5 6.3E-7 | 1.25E-4 1.74E-4 1.74E-4 8.86E-5
I -3.5E-5 -8.5E-6 -1.3E-5 -9.2E-7 | 1.18E-4 1.70E-4 1.70E-4 4.52E-5
II -3.7E-5 -5.2E-6 -1.8E-5 -2.0E-7 | 1.20E-4 1.71E-4 1.71E-4 5.64E-5
II1 | -3.7E-5 1.2E-6 -2.4E-5 6.1E-7 | 1.21E-4 1.68E-4 1.68E-4 7.24E-5
I -2.7E-3 -2.1E-5 -1.3E-3 -29E-5 | 3.39E-3 6.25E-4 6.25E-4 1.65E-3
II -3.3E-5 -2.,5E-6 -3.3E-5 -29E-6 | 6.14E-5 6.52E-5 6.52E-5 6.44E-5
I | -4.7E-6 -7.2E-7 -3.9E-6 -8.1E-7 | 1.64E-5 2.20E-5 2.20E-5 1.65E-5
I -2.7E-3 -23E-5 -1.3E-3 -3.1E-5 | 3.40E-3 6.22E-4 6.22E-4 1.65E-3
II -3.3E-5 -2.6E-6 -3.3E-5 -24E-6 | 6.17TE-5 6.53E-5 6.53E-5 6.41E-5
1 | -4.8e-6 -7.5E-7 -3.7E-6 -6.8E-7 | 1.65E-5 2.21E-5 2.21E-5 1.65E-5
I -4.0E-5 -4.5E-6 -3.5E-5 -6.8E-6 | 1.12E-4 1.25E-4 1.25E-4 9.73E-5
II -4.2E-5 -2.0E-6 -42E-5 -5.9E-6 | 1.18E-4 1.32E-4 1.32E-4 1.12E-4
III | -4.4E-5 3.2E-6 -4.6E-5 -2.1E-6 | 1.20E-4 1.33E-4 1.33E-4 1.26E-4
I -4.1E-5 -1.8E-5 -1.5E-5 -1.1E-8 | 1.73E-4 2.29E-4 2.29E-4 8.23E-5
II -4.6E-5 -1.7E-5 -2.1E-5 3.8E-7 | 1.82E-4 2.31E-4 2.31E-4 1.04E-4
II1 | -44E-5 -6.0E-6 -3.1E-5 2.5E-6 | 1.85E-4 2.31E-4 2.31E-4 1.35E-4
I -4.1E-5 -1.8E-5 -1.3E-5 -1.6E-7 | 1.71E-4 2.27E-4 227E-4 6.93E-5
II -4.6E-5 -1.8E-5 -1.8E-5 24E-8 | 1.79E-4 2.28E-4 2.28E-4  8.56E-5
III | -4.4E-5 -6.6E-6 -2.6E-5 2.1E-6 | 1.79E-4 2.23E-4 2.23E-4 1.10E-4
I -3.1E-3  -3.2E-5 -14E-3 -6.7E-5 | 4.29E-3 8.83E-4 8.83E-4 2.12E-3
II -3.9E-5 -5.0E-6 -3.8E-5 -6.1E-6 | 9.11E-5 9.20E-5 9.20E-5 9.37E-5
1 | -6.5E-6 -1.6E-6 -4.3E-6 -1.7E-6 | 2.64E-5 3.13E-5 3.13E-5 2.61E-5
I -3.1E-3 -4.2E-5 -14E-3 -6.6E-5 | 4.31E-3 8.79E-4 8.79E-4 2.10E-3
II -4.0E-5 -6.0E-6 -3.7E-5 -5.3E-6 | 9.19E-5 9.19E-5 9.19E-5 9.25E-5
I | -6.8E-6 -2.0E-6 -3.6E-6 -1.4E-6 | 2.64E-5 3.16E-5 3.16E-5 2.59E-5
I -5.3E-5 -9.0E-6 -46E-5 -T.1E-6 | 1.64E-4 1.71E-4 1.71E-4 141E-4
II -5.6E-5 -8.9E-6 -5.5E-5 -8.0E-6 | 1.73E-4 1.83E-4 1.83E-4 1.63E-4
IIr | -5.7E-5 -4.4E-6 -5.9E-5 -5.5E-6 | 1.7T1E-4 1.85E-4 1.85E-4 1.77E-4
I -4.6E-5 -2.1E-5 -1.5E-5 -84E-7 | 2.12E-4 2.84E-4 2.84E-4 1.08E-4
II -5.2E-5 -2.0E-5 -2.3E-5 1.5E-6 | 2.28E-4 2.99E-4 2.99E-4 1.39E-4
III | -4.6E-5 -5.2E-6 -3.4E-5 -84E-7 | 2.32E-4 3.20E-4 3.20E-4 1.76E-4
I -4.7E-5 -2.2E-5 -1.3E-5 -7.8E-7 | 2.10E-4 2.80E-4 2.80E-4 9.01E-5
II -5.3E-5 -2.1E-5 -1.9E-5 1.4E-6 | 2.23E-4 294E-4 294E-4 1.14E-4
IITI | -4.6E-5 -6.5E-6 -2.9E-5 -4.0E-7 | 2.24E-4 3.09E-4 3.09E-4 1.44E-4
I -3.6E-3 -49E-5 -1.7E-3 -T.0E-5 | 5.45E-3 1.27E-3 1.27E-3 2.68E-3
II -5.0E-5 -1.1E-5 -4.6E-5 -89E-6 | 1.29E-4 1.38E-4 1.38E-4 1.30E-4
III | -9.3E-6 -44E-6 -49E-6 -2.8E-6 | 3.78E-5 4.64E-5 4.64E-5 3.63E-5
I -3.6E-3 -6.5E-5 -1.7E-3 -7.2E-5 | 5.46E-3 1.26E-3 1.26E-3 2.64E-3
II -5.1E-5 -1.3E-5 -4.5E-5 -8.0E-6 | 1.32E-4 1.38E-4 1.38E-4 1.27TE-4
III | -9.6E-6 -49E-6 -3.7TE-6 -2.2E-6 | 3.82E-5 4.68E-5 4.68E-5 3.59E-5
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Table 7: Bias and RM SFE for the parameter estimates for p = 0.95. Cross-sectional dimension n = 50, time series dimension
T = 200. M = 1000 Monte Carlo steps.

two year and ten year US treasury yields, denoted by ry; and rig¢, respectively. Since a firm’s cost of
capital is usually affected by interest rates, government bond yields are often included when credit risk is
investigated. A more detailed description of the data and the construction of the explanatory variables is

provided in Appendix [C]
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Bias RMSE
OLS 2SLS DOLS D2SLS OLS 2S5LS DOLS D2SLS

I -3.2E-5 -28E-6 -29E-5 -3.9E-6 | 7.52E-5 8.86E-5 8.86E-5 6.35E-5
II -3.5E-5 -29E-6 -3.7E-5 -4.7E-6 | 8.05E-5 9.38E-5 9.38E-5 7.66E-5
III | -4.0E-5 -2.2E-6 -4.1E-5 -3.9E-6 | 8.46E-5 9.98E-5 9.98E-5 8.89E-5
I -3.7E-5 -9.1E-6 -1.6E-5 -6.4E-7 | 1.28E-4 1.80E-4 1.80E-4 5.63E-5
II -3.9E-5 -5.8E-6 -2.2E-5 -2.8E-7 | 1.30E-4 1.81E-4 1.81E-4 7.15E-5
III | -4.0E-5 3.2E-7 -3.0E-5 1.1E-8 | 1.31E-4 1.82E-4 1.82E-4 9.20E-5
I -3.6E-5 -9.1E-6 -14E-5 -9.2E-7 | 1.27E-4 1.78E-4 1.78E-4 4.76E-5
II -3.8E-5 -5.9E-6 -19E-5 -4.7E-7 | 1.28E-4 1.78E-4 1.78E-4 5.93E-5
I | -3.8E-5 2.3E-7 -2.5E-5 1.3E-7 | 1.26E-4 1.76E-4 1.76E-4 7.52E-5
I -29E-3 -28E-5 -14E-3 -2.7E-5 | 3.64E-3 6.75E-4 6.75E-4 1.76E-3
II -3.6E-5 -3.5E-6 -3.6E-5 -3.7E-6 | 6.58E-5 6.98E-5 6.98E-5 6.87E-5
I | -5.3E-6 -1.1E-6 -44E-6 -1.1E-6 | 1.74E-5 2.35E-5 2.35E-5 1.73E-5
I -29E-3 -3.1E-5 -14E-3 -29E-5 | 3.65E-3 6.73E-4 6.73E-4 1.76E-3
II -3.6E-5 -3.7E-6 -3.6E-5 -3.2E-6 | 6.60E-5 6.98E-5 6.98E-5 6.82E-5
1 | -5.4E-6 -1.2E-6 -4.1E-6 -94E-7 | 1.75E-5 2.35E-5 2.35E-5 1.73E-5
I -3.6E-5 -4.4E-6 -3.2E-5 -6.5E-6 | 9.37E-5 1.06E-4 1.06E-4 7.87E-5
II -3.9E-5 -5.3E-6 -4.0E-5 -83E-6 | 9.92E-5 1.11E-4 1.11E-4 9.35E-5
I | -42E-5 -43E-6 -43E-5 -7.3E-6 | 1.02E-4 1.17E-4 1.17E-4 1.08E-4
I -3.9E-5 -1.1E-5 -1.7E-5 1.3E-6 | 1.57TE-4 2.00E-4 2.00E-4 7.08E-5
II -4.2E-5 -8.8E-6 -2.3E-5 2.3E-6 | 1.62E-4 2.00E-4 2.00E-4 8.97E-5
I | -4.2E-5 -3.4E-6 -3.2E-5 3.5E-6 | 1.63E-4 2.02E-4 2.02E-4 1.17E-4
I -3.9E-5 -1.2E-5 -14E-5 6.2E-7 | 1.55E-4 1.98E-4 1.98E-4 5.99E-5
II -4.1E-5 -9.6E-6 -2.0E-5 1.3E-6 | 1.59E-4 1.96E-4 1.96E-4 7.43E-5
I | -4.1E-5 -4.2E-6 -2.7E-5 2.9E-6 | 1.57TE-4 1.94E-4 1.94E-4 9.52E-5
I -3.1E-3  -3.0E-6 -1.5E-3 -1.8E-5 | 4.06E-3 7.96E-4 7.96E-4 1.98E-3
II -3.9E-5 -2.3E-6 -39E-5 -2.5E-6 | 8.13E-5 8.20E-5 8.20E-5 8.37E-5
I | -6.1E-6  -9.0E-7 -4.6E-6 -7.0E-7 | 2.26E-5 2.75E-5 2.75E-5 2.21E-5
I -3.0E-3 -5.1E-6 -14E-3 -1.9E-6 | 3.92E-3 7.04E-4 7.04E-4 1.86E-3
II -3.7E-5 -2.,5E-6 -3.6E-5 -1.8E-6 | 7.89E-5 7.41E-5 T7.41E-5 7.90E-5
I | -6.1E-6 -1.1E-6 -4.1E-6 -6.7E-7 | 2.22E-5 2.53E-5 2.53E-5 2.09E-5
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Table 8: Bias and RMSE for the parameter estimates for p = 0.95. Cross-sectional dimension n = 50, time series dimension
T = 200. M = 1000 Monte Carlo steps.

To apply and estimate the spatial autocorrelation model, the spatial weights matrix W has to be
constructed. We use the industry-by-industry total requirements matrix for the year 2002 provided by
the Bureau of Labor Statistics (BLS) and match each firm in our data to a particular BLS industry.
In this data set the total requirements matrix contains for each industry i the proportion of inputs
ultimately stemming from each other industry j relative to its own sales. We use this to proxy for possible
correlation of shocks coming through the supply chain. In more formal terms we consider the weights
W;; = {Inputs from industry j in US$}/{Total sales in industry i in US$ }. If firm i operates in industry
i and firm j in industry j, the weights W, are set equal to W;;. This results in the n x n matrix W.
Then we set the elements of the matrix W along the main diagonal equal to zero, which yields the

matrix W. To improve the numerical properties and to be able to interpret the estimated coefficients, we
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2 3 4 5 6 7| Total
AA 0O 4 1 5 00 10
A 4 19 5 16 0 1 45
BBB |16 25 18 &8 1 4 72
BB 1 6 6 1 0 O 14
B 1 3 2 0 1 0 7
Total | 22 57 32 30 2 5 148

Table 9: Distribution of firms according to industry and rating. Horizontally first digit of the firm’s NAIC Code. Cross-
sectional dimension n = 148.

normalize the matrix W by its largest absolute eigenvalue. As a result we get our matrix W. The range
for the spatial autocorrelation parameter is bounded by one and, as a result, p can be interpreted in a
manner comparable to the time series autocorrelation parameter. With the zeros in the main diagonal
and p € (—1,1), the requirements of Assumption |1] are fulfilled.

After matching the CDS data with the data collected from Thomson Datastream, Compustat and the
Bureau of Labor Statistics and correcting for firms where we detected problems in the data (e.g. extreme
spikes, missing values, unclear industry affiliation, etc) we arrived at a cross-section of n = 148 firms. A
clustering of the data toward the first digit of the NAICs industry classification and the S&P rating results
in Table[9] A NAICs code starting with 2 stands for mining, utilities or construction, 3 for manufacturing,
4 for trade and transportation, 5 for information, banking and finance, 6 for educational services, health
care and social assistance, while 7 stands for arts, entertainment, and accommodation and food services.
For more details see http://www.naics.com.

Before we proceed with the econometric model, let us briefly discuss the expected impacts (expected
based on economic theory, intuition and literature). The reader should note that the CDS spread is often
used as an indicator for the probability of default of a firm. Since the distance to default measures the
distance to the default boundary, we expect a lower spread if the distance to default increases. A raise in
the firm’s leverage should increase the default probability and therefore the CDS spread. If the interest
rate increases the cost of capital increases for a leveraged firm. This should drive up the CDS spread.
With the volatility measure VIX we expect higher spreads in periods of higher volatility. The rating of

a firm should also reflect the probability of default. Rating effects should be included in the fixed effects
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a;, 1 = 1,...,n in model . Last but not least, due to possible credit risk correlation and contagion
effects we expect that the CDS spreads are positively correlated. So we expect a positive p when @ is
estimated. Finally, we want to remark that this econometric specification includes the ” common variables”
Xt = (Arg, A, AVIXy)', where wo = (Arg, Arigr, AVIXy). To include x4 in model we only
have to augment Assumption [2[ by the assumption that w, = W, (L)e,, is independent of wy; for all
1 =1,...,n, and Assumption [3| by assuming that also x. is a full rank integrated process with 2. > 0.
In this case x. can be included into X and Z, where x.; is part of each X;; and Z;;. Theorem [1] still
continues to hold [

By Assumption the explanatory variables x;; should be I(1). The question arises whether our model
assumptions are compatible with the data observed. Our variables include the distance to default which
should follow a geometric Brownian motion as long as the firm does not default based on the model
assumptions (see e.g. |Crosbie and Bohn| (2003), |Schonbucher] (2003)). Observe that by construction, it
must be that DD;; > 0. Translated to discrete time the distance to default should follow a random walk
with an absorbing barrier. Only firms that do not hit this barrier are observed in the sample. Among the
remaining variables, the debt to value ratio lives on the interval [0, 100], the VI X index measures volatility
and is therefore be non-negative. Following applied literature, we run augmented Dickey-Fuller tests for
a unit root for these data and the CDS spreads themselves and find that the null of a unit root is not
rejected for almost all time series with a five percent significance level. We also used the Im, Pesaran and
Shin tests provided in in the EViews package and arrived at the same results. For the distance to default
the null of a unit root is rejected, although the serial correlation is quite high. For the debt-to-value
ratios, the VIX and the interest rates there is strong evidence for the presence of a unit root. Given these
results, we conjecture that our theoretical model considered in Section [2| provides a useful approximation

of the (unknown) data generating process of the empirical data considered.

9Maybe the independence assumption between w;; and w.; may be a strong assumption. By relaxing this assumption
and allowing for correlation between all components would require to project on all leads and lags as already discussed in
the paragraph below equation . For large n we would suffer from the curse of dimensionality arising with the nuisance
parameters. This problem will be subject to further research.
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A OLS 25LS DOLS D2SLS

p 0.5211 < 0.001 0.3920  0.0331 0.4936 < 0.001 0.3928 < 0.001
Bpvr | -14.6912  0.0092 | -15.2656  0.4317 | -21.5765 < 0.001 | -22.2903 < 0.001
Bpp 5.3419 < 0.001 5.4718 < 0.001 5.1182 < 0.001 5.2172 < 0.001
Bro 4.6310  0.4589 4.2952  0.0025 9.9653  0.0256 9.9547  0.0260
Brio -39.5642  0.0024 | -42.4143  0.8117 | -49.7624 < 0.001 | -52.4572 < 0.001
Bvix -0.0472  0.8319 | -0.0233 < 0.001 | -0.1985  0.2076 | -0.1869  0.2293

Table 10: Parameter Estimates: Model @]) applied to CDS data. y;+ is the CDS spread on a firm level. The explanatory
variables are the distance to default, DD;;, the debt to value ratio, DV R;;, a two year bond yield r2:, a ten year bond yield
r10t, and the VIX volatility index VIX;. T' =230, n = 148, p = 2 and ¢, = 2.

5.2 Results

Using our data set, we estimate the parameter vector v by means of two-stage least squares, DOLS,
OLS and D2SLS. The results are presented in Table Based on the theoretical considerations above,
only the D2SLS estimator should be used. The results from the other estimation methods are included
only for comparison. When instrumental variables are used in the estimation, the debt-to-value ratio
and the VIX are used in )., W, i.e. g, = 2. For these two variables we observed the highest
correlation with >°7" | Wyg;. All the p-values presented in Table are obtained by means of a Wald
test as described in Theorem [l For the distance to default and the debt to value ratio the parameters
are highly significant and have the expected signs. Both interest rates are significant but work in oppsite
directions. Whereas the short term interest rate ro; increases the CDS spread, the long term interest
rate decreases the spread. In contrast to some results obtained in literature, the VIX volatility index is
not significant when D2SLS estimation is performed and default significance levels (1%, 5%, 10%) are
applied. The additional parameter which has been investigated in our analysis is the spatial correlation
p. With the dynamic two stage least squares estimator the spatial correlation parameter p is positive
as expected and highly significant. I.e. in addition to the methodological results obtained in the former
sections, our model allows to include and to test for spatial correlation. Here we observed a significant

effect.
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6 Conclusions

In this paper we have studied panel data models with a cointegration relationship including a spatial lag.
Due to this spatial lag standard estimation techniques do not provide us with appropriate tools to estimate
the parameters and to perform inference. Based on this problem we stick to the usual assumptions used in
the dynamic least squares estimation and develop a dynamic two stage least squares estimator. We show
that the parameter vector of interest is asymptotically independent of the nuisance parameters. Moreover,
we derive the asymptotic distribution of the parameters, which also allows constructing a Wald test to
perform statistical inference. Our estimation methodology is applied to simulated data to investigate the
small sample properties and to financial data to test for the impact of spatial correlation on credit default
swap spreads. Given this financial data set and a spatial correlation matrix obtained from input-output

data, our analysis shows that spatial correlation is highly significant.
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A Proof of Theorem

The two stage least squares estimator is given by and hence

— _1
(7,0 )paszs — (7,07 = (X'PyX)" X'Pyu, (37)
where with Py = Z (Z'Z) ' Z we get

= (X'z (z'z)" Z’X>_1 X'Z (Z'2) " Z'u

XisaTnx14k+ (2p+ 1)k -n matrix while Z is of dimension Tn x g, + k + (2p + 1)k - n. Note that

the orthogonal projection Py on (x4, ) is (x¢, ¢). This yields

y* y'Pu
X,PH = x! Py = x/ (38)
¢ ¢

Z;; was defined in Remark [2| as the transpose of the row of Z corresponding to the index it. It is of
dimension g, + k + (2p + 1)kn x 1. Z;; 1.4, consists of the first d, elements of Z;;, where d, = ¢, + k x 1.
The remaining elements of Z;; contain ;. The ”"non-it elements” of this vector are zero. In the same
way we obtained X;; which is of dimension and 1+ &+ (2p + 1)kn x 1. The first d, elements are Xj; .4, ,
where d, = k+ 1. d, < d, hold throughout the following analysis.

Due to Assumption 4| the number of leads and lags used in the projection is p = p(T"). Note that
T, =T — 2p(T), where T, — oo if T — oo. Therefore it is not necessary to distinguish between the
T, — oo and T'— oo when taking limits in the following analysis. In addition note that u,;, converges to
u; (this follows from Saikkonen| (1991)[Theorem 4.1/ Lemma A.5]). u; is orthogonal to ;.

Step 1: Let us consider the term X'P gy X. We normalize the elements of Z and X as follows: expand

the first d, and d, elements by T%, the remaining terms (accounting for ¢;) are multiplied by \/% Based
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on this we arrive at:

Definition 1. The d, + (2p+ 1)k - n X d; + (2p + 1)k - n matrix M7 is given by:

YU (TEn)  yUx/(Tn)  y ¢/ (TV/Ty)
= xXx*/(Tin)  x'x/(T¢n)  X'¢/(TVT)
(X (TVT) Cx/(TVT) ¢¢/(VTVT)

xx*(Tin)  x*x/(T¢n)  x"¢/(TV/TL)
xX'x*/(Tin)  x'x/(T{n)  X'¢/(TWT)
¢x/(TWT) ¢x/(TVT) ¢'¢/(VTNT)
Xy [(Tin)  x"x*/(Tin)  x*¢/(TWT)
Xy /(Tin)  xx/(T{n)  X{/(TVT) | (39)
¢y /(TVT) ¢x/(TwT) ¢'¢/(VTVTL)

where the T'— oo and therefore the T, — oo limit of M is denoted by M. In addition we define the

dy x d; matrices M, . and M

| T -1 1 T
Muri = (Tfn szit713dacz;t,1:dz> (T*gnzzzit,lsdzZEtJ:dz) ﬁZth,Ldeit,lzdza

i=1 t=1 i=1 t=1 * t=1

1TL
M,r = — M,1; . 4

We denote their T'— oo limits in distribution by M,,; and M,,, respectively.

Remark 4. In Remark [2] we already noted that the two-stage least squares estimator and the DOLS
estimator are special cases of the dynamic two-stage least squares estimator. When we consider M,,1;
and assume that x* = y*, the product of the first two terms has to result in the identity matrix. In
this case M,,1; = T%Q Z?;l Z;t,lsdz Xit 1:d, = T%Q ZtT;l X;t,l:dz Xit.1:d,- This term exactly corresponds to the

term M, p; in the DOLS paper of Mark and Sul (2003)). The same argument holds with m,,p;.

In the following steps we observe that M, is a submatrix of M}. To obtain the T'— oo limit of M., we
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are confronted with the terms

T T T
1 <. . 4 - = 1 << 1 <. . 3
72 ZXitiju — /BviAijL " Tw Z Cinkje 20, Tr Z%t,\xg‘u 50 for K > 3 (41)
t=1 t=1 t=1
The terms of the form of % Zf;l X1 Xit A i B'WIS’LZ In addition we meet terms of the structure
T, ¢ for i
1 o - or j € Z and
N A T (12)
VIR =1 Onyr  else.

ﬁ Z?;l Cit€jt converges to a matrix of zeros by the independence across i assumption (i.e. Assump-
* *

tion . For each fixed i = 1,...,n, the matrix " ¢ . contains the k x k covariance matrices I

o, , Where

VU,ij
jEeZ.

Consider the now terms in . By the above arguments each of the three matrices converges to
a block diagonal matrix. For the first matrix we obtain a non-zero block in the north-west of dimen-

sion d; X d;, and a non-zero block consisting of T' The south-west and the north-east blocks are

VV,87°
zero. With the second matrix we observe almost the same effect. The non-zero north-west block is of
dimension d, X d,, the south-east block is the same as the south-east block of the first matrix. The
south-west and the north-east blocks are zero. The third matrix is the transpose of the first matrix.

Therefore, the limit matrix M;; is block diagonal. From M} we can extract the matrix M, focusing on

the index 4. The limit of the submatrix [M}](1:541,1:641) 18 Mp; while the limit of [M}].x41,1:641) 18

The second and the third term converge to zero in probability. This also follows from [Johansen| (1995)[Chapter 13 &
Appendix], |Saikkonen| (1991) and |Davidson| (1994)). We already know that (e.g. |[Davidson| (1994)[Theorem 30.13])

Ty Ty

1 < = 1 ~

Ti E Cit)\s(ltb i /dBui)\BvlL and ? § iln@it i \Y4 Quu,i/Bvldeui +éq,u71i’b .
t=1 t=1

* *

=ou,line
then A =0for¢t=1,...,k. With independent components (7,1) all A =0 for i # 1. A random variable convergent

=ou,ii,e =ou,li,e

in distribution is bounded in probability, or O,(1) in Landau notation (see e.g. |White| (2001)[Lemma 4.5]). We can now

. T, = T . . .
consider # 21 Ciaxje, as the product a - b, where a = % and b = % D21 Ciaxje.. Since a is converging to zero,
* *

it is o(1) and therefore also o,(1). b converges in distribution and therefore (its Euclidian norm) is O,(1). We obtain
convergence in probability to zero since the product o,(1)Op(1) behaves like 0p(1). Landau symbols are e.g. discussed in
Poirier| (1995) [page 196].

The correlation term A is derived by means of E (AXy, @) + Z;’il E (AXy,tie—j5). If e.g. us and vy are independent,
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M, M7 (k- 2:k 14 (2p(T) 1) km ht-2:k+ 14+ (2p(T)+1)ken) 18 @ block diagonal matrix consisting of ng,ij‘ The
elements in the north-eastern and the south-western blocks of M, and M are zero. By this result, in the
limit only the first d, and d, columns have an impact of the estimates of ~y, while the remaining non-zero

block affects the estimates of §. Next we consider X'P yu. Let us define the following terms:
Definition 2. Consider the 1 + & + (2p(T") 4+ 1)k - n dimensional vector
yUx*[(Tin)  y"x/(Tin)  y"¢/(TVT)

mir = | xXx/(I2n)  xXx/(TPn)  XC¢/TNT) |- (43)
O /(T Cx/(TT) ¢/ (VT

x'x*[(T2n)  x'x/(T2n)  x¢/(T/T) x /(T /1)
Xx*/(T2n)  Xx/(T2n)  XC¢/TVT) | | X/(T/m) |u-
Ox/(TNT) Cx/(TT) ¢/ (VTT) ¢IVT

The T — oo limit is denoted by m}. In addition we define

| o | o5 -1 | I
mnri = | Z Z Xt 1:dy Lt 1.0, T2, Z Z Zit1:4.Ziy 1., T Z Zit 1.4,y
s i=1 t=1 X1 i=1 t=1 * t=1
1
m,r = ﬁmnTi . (44)

We denote their T'— oo limits by m,; and m,, respectively.

The first and the second matrix have been considered in , where we have already observed that only
the first d, and d, elements affect v as T'— oo. The product of these two matrices is multiplied with
EtT;l (Zit- D7)u;y, where Dp = ((71* “14.), (ﬁ . l(gp(T)+1)k.n)’>/ and 1, is a vector of ones of dimension
a. Last but not least |Saikkonen| (1991)[Theorem 4.1/ Lemma A.5] has shown that for the truncation error
et we observe that || ngl(zit - Dr)eitlla = op(p'/?) such that w,; converges in probability to u; as
T — oo. u is uncorrelated with ¢ = Zit 4, 1:d.+(2p(T)+1)kn- By this we observe that only the first d;

components of X;; and the first d, components of Z;; enter into the limit of the estimator . Therefore
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we have arrived at the first result: When T" — oo the limit distribution of v is given by the inverse of M,

times my,,. By the block diagonal structure obtained in the above paragraphs, elements of m7,» and M7 .

outside (1 : d;) and (1 : d, x 1 : d,) do not affect the asymptotic distribution of . Hence v and § are

asymptotically independent. The submatrix [M7 1] (k4-2:k+14(2p(T)+1)kn k+2:k+ 1+ (2p(T)+1)k-n) CONVErges to

a matrix consisting of I',, ;;, v and ¢; are independent for i =1,. ..

M.

Step 2: Based on this asymptotic independence result we are permitted to focus on the matrix M, -

and on the k + 1 dimensional vector m, ;- to investigate the limit behavior of 7. In more detail

1 & ,
Mgzznri == 72 5 Zit1:d. 2Lt 1.q,
* =1

n n
_ 2:2: 14 2: Tap ~ ~//§:
= T2 l‘Jﬂ,..., Wij I‘thp,xit)(

j=1 j=1

* =1 j=1

Using the results for the functional central limit we derive

1 ’ d
T2 D Zit1.4. 2 1.4, <> Mzzni
*

where

MZZ,ni,(l:qp,lqu) =

I Wi By Y 1Wi?l§vjlv fZ] W,

fZJ 1 WquBqup Z}Ll Wz‘?gvﬂv ij W

f Z?:l WZEIBU]]_BNUl]_, . e

MZZ,ni,(l:qp,qp+1:qp+k:) =
fzj 1 ijqumlv
Y U
M2 2 i (ap+ 1ap+h,1:00) = M7 205 (1305054 1ig,+k) >

o 2 1R/
MZZ,m',(qp+1:qp+k,qp+1:qp+k) = /BmBm

37

n
T1 7 2 : ap ~
I/Vl-jll‘jﬂ,..., w.
j=1

-
[~ )
ij Titgp Xjt) -

Tqp
vjl Z] 1W ijqp

ijqp Zg W,

W,

ijl

BU]Q/J

j ijl Bvik

Bv] ap Bmk
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Based on (46 we arrive at

1 ¢ d 1 &
Mzzri = - 21 Mzznri = Mzzn = - Z Mzzni - (47)
= —

In a similar way we derive the limit of
Xit,l:dz it,l:d, — Z leyjt7 zt Z %jtly .. Z xjtqpv ) . (48)

Based on our model assumptions we obtain yj; = > ;" Kj; (ﬁ Xt + ult> where K . = [(I — pW)fl} '
J
Then

Z Wijﬂjt = Z Z Winjl (5/}2” + ﬂ};) . (49)
j=1 Jj=11=1
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By means of and we arrive at the k 4+ 1 x k + g, matrix

’
T n n n
1 T
P — M/~ ! |/]/T1~. W 9oz rd)
Mxznri = T2 E E ijYjt, Xt g ij Xjgtls -+ g ij Xt Xit (50)

Mz n7i,(1:1,1:9,) ‘ My 7 nTi,(1:1,qp+ 1:k+4,)

M znTi,(2:k41,1:q,) ‘ M x ZnTi,(2:k41,qp+1:k+4,)

where

Mz n7i,(1:1,1:q,) =
1 5 251 2= Wi K (/8,;(“ + azrt> e Wik
732 5 ’
t=1

*
~ ~ T ~
Dt 2o Wi K <5'Xlt + Uth) i Wil Fratg,
1 &
MXZ,nTi,(l:l,qurl:kJrqp) = ﬁ Z Zgbzl Zlnzl Winjl (ﬁlilt + ﬂ;rt) . i;t )
* =1

1 T, n n
o o i~ <z Tap ~
My 7 nTi,(2:k41,1:,) = T2 5 Xit - E Wil Tty .- Xt - 5 W,." Tutq, | »
* =1 k=1 k=1

s

T
1
Mz nTi,(2:k41,0p+1:k+q,) “= T2 E Xit X -
* =1
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The T' — oo limit of the matrix M x z,7; is given by:

MXZ,ni, 1:1,1:q ]-VIXZ,'M7 1:1,qp+1:k+q,
o o p

Mxzni =
M x 7 ni,(2:k+1,1:9,) ‘ M x 7 ni,(2:k+1,gp+1:k+q,)

where

Mz n7i,(1:1,1:9,) 4
Do Wi 2201 20 Wi K (B/Bvlgvnl)
: =Mx2zni,(1:1,1:0,) > (51)
ZZ 1 Wqu Z] 1 Zl 1 Wi Kji (5 Blevﬁqp)
M x 7 nTi,(1:1,qp+14q, k) 4
D1 2oy Wi K (B/BUlBNU’il)
> =1 2oy Wi K (5'5'@131”'2)

/

= MXZ,ni,(l:l,qp+1+qp+k) ) (52)

D1 2oy Wi K (5'[3’@13@@‘1@)

d
Mx znTi (2+k+1,1:00) = (53)

( WTl /B’UZB’UH:M" ZWqu /Bvafeqp> = MXZ,m’,(Q:kJrl,lqu) ) (54)

MXZ,nTi,(2+k+1,qp+1:qp+k) _>

/Z’S’vilg’;i = MXx 7 ni,(2:k+1,qp+1:4+qp+k) - (55)

When taking limits we also meet terms of the structure described in . Since ﬁ yields terms bounded
in probability, with % these terms converge to zero in probability. Note that ij. is a scalar while By; a

k dimensional vector. Summing up we arrive at

d
Mxznri — Mxzni,
1 — d 1 —
Mxznr = > Mxznri = Mxzn = - > Mxzmi - (56)
=1 ‘
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Remark 5. By Assumption [5| we have assumed that the matrix M xz , has rank k + 1, while the matrix
Mzz,, has rank k +¢q, > k+ 1. Therefore Mx 7, (MZZ7,1)_1 Mzx ,, has rank k+ 1. Lemmashows that
this assumption is non-empty. If the conditions of Lemma [I| hold, then the matrices Mxz, and Mz,

have rank, k£ + 1 and k + g,, respectively.

Next we derive m,; and m,. For the term T% ZtT;1 Xit 2:d, Wiy = T%ZtT;l Xit 1:d, Ui the Ty — 00
limit is already given by /€y f l?m-dWm-. By using the functional central limit theorem and |Saikkonen
(1991)[Theorem 4.1/ Lemma A.5] (e.g. || 312, (Zit - Dr)eitll2 = 0p(p'/?) such that u;, = uy as T — o)

the term % ZtTil Z;t 1.4, u; converges in distribution to
* == )

!/

n n /
My;zu = / Quu,i Z W;j—l /[;’vjldwuia B 72 Wi;'qp /ijquwui7 </ Bdem> : (57)
j=1 j=1

To obtain the first term of m, we have to combine Mzz,, provided by , Mx zni given by and

Mmy;z,. Then the continuous mapping theorem yields
S Wi [ BujidWai
i 1 < :
m,7r — ﬁ Z \/ Quu,i MXZvnMEIZ,n - 5 . (58)
i=1 Z?:l Wijqp f ijquwui

Mgz, is a k+q, X k + g, matrix, while m,,;z, as well as

!/

n n /
Z / Wl‘;‘lévjldwuiv B 72 Wi;qp /ijquwuia </ szdwqu)
j=1 j=1

are vectors of dimension ¢,+k. The elements 2 to k+1 of m,, are given by a sum of the k dimensional vectors

f ByidW,i. Since the application of the projection operator Py on X 2.4, is X 2.4, (see equation ),
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the rows (2 : k 4+ 1) have to be equal to the limit of T% 2121 Xit 2:d, Wiy = T% Zf;l Xty This yields

S0 W [ BujrdWai

—1
MXZ,HMZZ,n n Tap ~
" S W [ Bujg, dWs

myr £> \/1> Z \V4 Quu,i

_ =m,, . (59)
n i=1 vadem

It remains to calculate the limit distribution of . By the asymptotic independence arguments for ~y
and d, we are allowed to restrict to X/, Z.4, (z’lzdzzlzdz)*l Z\.,. X1.a, (weighted by 1/T, and 1/y/n).

Using the above results and the continuous mapping theorem we get

—1 /
M,; = Mxz.Myy My .

1 & 1 B
M, = nlen: EMXZ,HMZ;WM;(ZW. (60)
1=

This yields the second result: (+',0") can be consistently estimated. /nTy (Yp2srs — ) converges in
distribution to M,,'m,, as T — oo, where m,, and M,, are given by and , respectively. With
these estimates we can derive the residuals, which allow us to consistently estimate €2, ;.

Step 3: Finally we construct the Wald statistic S, ,. We follow [Phillips and Hansen| (1990), |Johansen
(1995) and [Park and Phillips| (1988)) to derive the so called observed Wald-statistic S, 7 and its limit
Sy n. Consider the s x k 4 1 restriction matrix R. Since S-ancillarity is implied by strong exogeneity as
observed in our model, the ancillarity results presented in |[Johansen! (1995) can be used. With B,,; fixed

forall i =1,...,n: (i) the terms M,,; and M, are constant matrices; (ii) m,, is a mixed Gaussian vector
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with mean zero and variance V,, wherd']

1 -
V, = - Z Vni where V,,; = Quu,i 8 SV (61)
n
=1
’ /
My 7, M. } [M M, -
Tm _ / |: XZnV 77 MZ ni (11) XzZnVlz 7 M Z ni (1) 7
Bvi Bvi
/
n B n 7—
my, = ZVV;} Uj17"‘7ZWijqu’UJ(1p7B, . (62)
=1 =1

The term my ,; is given by

ZJ 1 vajl

mgzn; = T _ . (63)
Z] 1 W 2 fBquP

f Bvi

Then the asymptotic covariance matrix of v/nT (Yp2srs — ) becomes
D, =M,'V,M,!. (64)
V., provides an estimate of V,,, which is derived by means of means of

1 n 1 Tk
Vor = E Z Quu,zﬁ Z TnTiT%TZ'
i=1 * =1
-1
Ty Ty
I:(Z?:l Zt:l Xit,1:d, th,kdz) (Z?:l Zt:l Zjt1:d. Z}m:dz) Zit715dz:|

Y. = (1,1) . (65)
Xit
I
UNote that as with m,r the term MXZ’T"MZZ TnTiz tT*l( ;:1 Wig-lZit,l,..., W ? Zit,g, X ”> is equal to
’ I
([MXZ,TTLMZZ T le f*l ( ;.1:1 W[jl Zit 1y, ;’:1 Wl-jq’) Zit,q,, i;t) ](1 Y ,i;t) by the fact the projection Py applied

to X;t 1S Xit.
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Combining and M,,r, which is an estimate of M,,, we arrive at an estimate of the covariance matrix
D,r =M, V,sM [ . (66)
Equipped with these terms we obtain

Syar = (VTR (Fp2sis — 7)) (RDurR) ™ (VATR (Fpascs — 7)) (67)

Somt S Sy = (VAT.R (Apascs — 7)) (RDnR')_l (vVnT.R (Fp2sLs — 7)) -

Under the null hypothesis the Wald statistic S, ,r follows a x? distribution with s degrees of freedom.
This yields the third result: S, 7 i) S+.n; Dpr provides us with an estimate of the asymptotic covariance

of the estimator D,,.

Remark 6 (Identification). From |[Deistler and Seifert| (1978)[Theorem 4] it follows that if there exists
a consistent estimator for the internal characteristics Cy of the model, the model is identifiable (i.e. an
identifying function exists). In our setup the internal characteristics can be described by means of the
parameters p and 3 and the covariances of the noise. Based on our Theorem we have obtained a (super)
consistent estimator for the parameters p, 5. The covariance matrices can be estimated consistently due
to [Jansson| (2002). The reasons why 4pesrs becomes consistent are Assumption [5[ on the instruments
(Appendix shows that this assumption is non-empty, there also Assumption becomes important; in ad-
dition Assumption [3|is important to obtain the corresponding ranks of in limits required in Assumption

and Assumption [4] such that the truncation error goes to zero.
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B Instruments and the Rank Condition

Consider the instruments z},, = Z?zl WZ-T].” Zjw, v =1,...,q,. In the following we show that the require-
ment of valid instruments (see also Assumption [5) can be fulfilled under fairly mild restrictions. It is
important to note that this implies that our "high level” Assumption [5]is non-empty. For the W used in

the applied part we use the following lemma:

Lemma 1. Given the model Assumptions |1| to 4| of Section Suppose that 7}, = Z?Zl I/Vig-vfﬁjtv,
v=1,...,9, and 7, = 1 and W;; # 0 for at least one j, j # ¢, for each row 7. Then the g, +k x g, + k
matrices Mzz ,; and Myzz, have rank g, + k almost surely. Additionally, the rank of the k +1 x g, + k

matrices Mxz n; and Mxz,, is k + 1 almost surely.

Proof. We consider the vectors
n T1 5.
> j=1 Wi Tjn

n TQp ~
Zj:l Wij T jtq,
Zit1.4, = and

Litl

Ttk
> Wigje D 2ot Wi K (8% + 0;Gie + Tyy)

Tit1 Tit1
Xit1:d, = _ = . (68)

Titk Titk

of dimension g, + k and 1+ k, respectively. Z;‘:l Wi;9it follows from , where K, = [(I — pW)_l} -

In the following we calculate the limits of # Zf;l Zit 1.4, Z;t,lzdz’ % Yoy # Zf;l Zit 1.4, Z;t,lzdz’
Ty Ty : T

# 221 Xit1:d, Ly 1.9, and ﬁ 2imy 2oy Xitved, Ly y.q, - Let us start with 2% Zi 1.0, 2], 1.4, Where

we get

45



7 7 7 2 17 9b2( =0 . 7 C 1=C
ANTAN Y xRy g 7b3! .&.EC\S MW A TH .RC\S :N
) 7 7 2 17 9b3 0 2 . 7 r 2 —
ARy A Targ 7ba! REC.\S :HW 14! .&C\S :N 1=1
&E&QSNH 1= ﬁN . :NHQEQ 1= NN é:&ét& 1 |NN 1= mN L. :N&QEQ 1 iN = nN
QE\S §\S QE\S &s M QE T
112l L0 T=C 1120 =0 b 3 =17 1={ Con 1200 L0 T=1r7 T=0
wrtte im K bl i 17X nei, g IR et Smom e K LK
1=1%
— P FpiTe H W
AONV - P WA LN/
*L
. M9l ? 1=17 1=(r7 _ mglpagl 1={ 1=t
s w0yt oq weo (9] xuyenw ogy e,y Sy S TR = ety Sy TR S X eowg
2 7 7 2 Iyl =0 2 - I3 =0 7
ARTAR L Hyisy 2! R.&Q\S ”W Ay T2 HC\S :N Ay
N22m T2 21 2 Ipal : 1=C 2 [ =0 2 =
ARy [ ARy 2! Hav.h ”W Ty T2 HC\S :MW Ty =1
2179b2L 1=C 207 9b3C =0 byl 1=0(r7 9pyr =0 2 1=0(r7 9pyr =0 HW
g,y K e P R ¢ 7ML P UK vz S I I TR |
1012 =0 1 12C =0 Ibal 1= 2c 1=C 120 1=C 2 1=
gl g 1T gty Ay 7Y oM N vl fn K zim M vz n K

=1
_ Py FpiTt
— @H\Nw:@N w
L

(69)
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(70) is a symmetrlc matrix. Now we set 7, = 1 and take the limit of ” divided by T.?”. With
Ty, = Z W Zjw, v =1,...,q, and 7, = 1, we observe that g, < k. By the functional central limit

theorem we obtaln

1 Ix

Mzz,n: = Hm, .2 Z Zit:d, Loy 1ia, = (71)
I Xio Tl Wiy WaBuji B oo [ X7 Sl WigWaBujiBog, | S Xjo1 WijBojiBoin oo [ XFoq WijBujiBua,
S e Wi WaBujg, B oo [0 S0 Wiy WaiBoja, Botg, | [ X721 WigBuja,Boin - [ 371 WiBujq, Buik

S5 WisBoyji Buit e I 3= Wijévjqp Byi1 S Byi1Byin e [ BuiiBuit
S 7oy WiiByjiBuik e I X521 WijBujq, Buik S ByinBui1 o S BuikByik

When we consider we observe that for any fixed ¢ the row v is a linear combination of Z;t,l: 4, With
the element [Zim: dz]v' This also translates to the limit , where we observe that in each row each
element includes a term arising from [Zit’l:dzh. E.g. Z;'l:1 I/Vijgvjl for the first row, Z;‘:l Wijlg’vjqp for
row ¢, Byi1 for row g, + 1, ... and By, for row d, = g, + k. The important ingredients to have a matrix
Mz i of full rank are (i) Assumption 3| (based on [Phillips| (2006)) to consider terms where i = j, (ii)
Phillips and Hansen| (1990) [Lemma A.3] to consider terms where i # j and (iii) the assumption that
Wi # 0. By W;; # 0 the terms in the first g, rows and the first g, columns of are non-zero almost
surely. Note that by Assumption [3| the matrix [ Bm[;’;l is positive definite and of full rank k. By [Phillips
and Hansen| (1990) [Lemma A.3] the k x k matrix [ Bmlg’;j is also positive definite and of rank & (almost
surely)H By our assumption (in Lemma (1)) that W; 1., is not equal to a row vector of zeros, we meet
a sum of matrics f ijglvz weighted by W;;W;; in the north-western part of the matrix Mzz ,; in .
Wi; # 0 and Wy # 0 for some j,l # ¢ by Assumption [I} note that W;;W;; # 0 for j = l. For each pair j
and [ the term [ Byj 1.4 PB;JZ,I: g, has rank g, by Assumption 3 or Phillips and Hansen (1990) [Lemma A.3].

Additionally, these terms are positive definite. Therefore, the term [ 2?21 Yo Wij I/Vill;'vj,l;q pl’;” has

vl,1:qp
rank g, (see also Horn and Johnson| (1985)[Obs. 7.1.3, page 398]). The south-eastern part has rank k by

Assumption (3| The south-western part and the north-eastern part mix Bvl,l:q , with l’;’;l Since g, < k the

ranks of these matrices are < k. Since the rank of the k + ¢, % ¢, submatrix [My va-]( is < k,

1:k+qp.1:qp)

there exist some scalars Ay, ..., Ag; to express the rows ¢, £ =1,...,q,, by means of a linear combination

2Given the notation in |Phillips and Hansen| (1990)[Lemma A.3]. Our v; corresponds to Azz, while v; corresponds to Axs.
Ifi=jin [ Bm-B;j, then the full rank process assumption is used, with ¢ # j the Lemma A.3 can be applied.
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of the other k rows. Le. in the north-western part of the matrix Mz ,,; we meet mixtures of components
lg’vj with components of By, | = 1,...,n where [ # i (Wi = 0 by Assumption (1| while some Wy # 0 as
assumed above). In the north-eastern part of the matrix Mz ,,; we meet mixtures of the components l’;’vj
with the components of By;. By % By, (almost surely) by the properties of Brownian motion. Therefore
the corresponding rows of the north-eastern submatrix cannot be reconstructed by the mixture weights
Aets ..., Agg. Note that in each of the rows 1,..., g, we meet different mixtures, from ijl in the first row
to ijqp in the g,th row. That is to say we cannot rebuild rows ¢, £ € {1,...,q,} from the other rows.
Since the matrix is symmetric this also holds for the columns. Summing up, the rank of the k+4¢q, x k+q,
matrix Mzz n; is k + ¢, (almost surely).

The limit of % Z?’:l # Zf;l Zit1:4, Z;t,l:dz still has rank g, + k. In the same way as for some Mz ;,
we cannot reconstruct the columns/rows from the other columns/rows when the sum % > Mgz is

considered.

Remark 7. Note that Mzz 7, Mzznr, Mz 0 are Mzz,, symmetric matrices.
In the next step we investigate M x z ,1;. Hence we consider

Ty

’
> Xitid, Zie1id, = (72)
t=1
n ~ n T1 4 n ~ n Tap - n ~ = n ~ =
Sioa WUt oy Wi Beer - 0 W@ 0 Wi, W kta, | 20720 WigUseBaen - 271 Wi U548k

~ T ~ - Tap - = = - -
% Zit1 D1 Wi, Trtl e Zit1 D=1 Wi Trtap Zit1Tig1 e Tit1 &tk
t=1

5 n_ oyl % n_ oyl By d B0

Zitk Don=1 Wi, Trtl e Titk D=1 W, Trtqp TitrTitl ces TithTitk

. n ~ n Tw _ n n CTTw S . : .
Since ijl WiiUit Doy Wi ey = ijl Yo WiW™ G4 ety the matrix 1’ can be written as:
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Since Wi 1. # O1xy (which is assumed in Lemma (1) and 8 # 0j (which follows from Assumption

the north-western term in is not equal to zero, this also follows for [MXZ’M]( and

1,qp+1:k+qp)
[MXZ,M](2;2+1€ Ligy)" The rank of these matrices has to be < k. l.e. we can write the first row of the

submatrix [Mx Z,m’]( as superposition of the remaining k£ rows of this submatrix. Due to the

Lgp+1:k+qp)
fact that W;; # 0 for some j, we observe that the first row of the matrix Mxz ,; cannot be expressed
by the other rows (we also meet the index ¢ in the remaining submatrix). Therefore, the matrix has
rank k + 1 almost surely.

Last but not least by considering the limit of the sum %2?21 #Zﬁl Xit,l:dzzgtylzdz we obtain

Mxzn = %2?:1 Mx zni- By the same reasoning as with My z,; we observe that this sum of matrices

has rank k + 1. O

’ / /
Remark 8. Note that MZX,nTi = MXZ,nTi? MZX,m’ = MXZ,m‘? MZX,nT = MXZ,nT and MZX,n =

!
My -

If necessary the conditions of Lemma (1] can be replaced by less stringent assumptions. To keep the
notation simple and by the fact that 7, = 1 in the applied part, Lemma [I| assumes 7, = 1. One way to

extend Lemma [1lis as follows:

Lemma 2. Given the model Assumptions [1| to |4 of Section 2| and the instruments z7,, = Z?Zl Wi Zjtw,
v=1,...,q, and g, < k. Suppose that Wig-“ # 0 for at least one j where j # i. Then the q, +k x g, + k
matrix Mz, has rank g, + k almost surely. Additionally, the rank of the k£ + 1 x g, + k matrix Mxz,,

is k + 1 almost surely.

Proof. By taking the sum over the components ¢ = 1,...,n of the limits of ” divided by T.?n” we get

Mzzn. Mgz, is equal to
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[MZZ nz}(l 4p,1:q,) ‘ [MZZ m](l 4p.qp+1:k+q,)

Mzzn = — }H&TZ’ZZmd Zy 1.4 =
*
=1 IMzznil (g, 410 gp,1:0,) | MZZ0i) (g1 100400 g0+ 1:84,)
where
[Mzzvni](l:q‘,,lzqﬂ)
n n n T T1 s - qu 5 5
fZZ-:l Z]‘:1 Zl Wi Wzl BvJIBvll IZZ 1 Zg 1 Zz 1 W Wi BvJIBvlqp
1
E . )

S o S W Wit Bugg, Bon o [ S Y Wi Wi Bujg, Bug,

) f Z:‘l:l Bvil Z;L:l WiTll BU“ s f Z:'L:l Bﬂil Zln:1 W;l—qp Bvlqp
[MZZ’ni](Qp+1:k+Qp=1:Qp) - E . . - ’
f Ez 1 Buzk Z Wﬁ vll f Z?:l Bm‘k 22;1 Wiqu Bvlqp
. f Z?:l Z?:l Wz‘;‘l ijlgvil tee IZ?:l Z?:l Wile BUjlém'k
[MZZ’ni](l:QO»(Ip""l:k""(Ip) - E ' ’
sz 1 Z] Wi ququmel sz 1 Z] Wi quvaqumk
2/
[MZZ,nz](q +1: k+qp;qp+1 k+qp) /Z BU’LBM . (75)

First, the south-eastern part [M Zz,m]( is a sum of positive definite matrices of rank

ap+1:k+qp,qp+1:k+qp)

k (see Assumption , by Assumption [2 these matrices are also independent. Therefore this block is of

rank k almost surely. Second, we consider the submatrix [Mzz,m‘]( where we meet the terms

1:qp+k,1:qp)
Bm,évj,, possibly with ¢ = j. By the assumptions of this lemma at least one term ij” % 0 with ¢ # j.

Therefore [MZZvni](lqu—l-k,l:qp) # 0y, 1k, Since g, < k the rank of the submatrix [MZZvni](lqu—l-k,l:qp) is
< min{k, ¢,} and therefore smaller or equal to k. L.e. we can express row ¢ € {1,...,q,} by some linear
combination of the rows ¢, +1,...,k + g, with weights A1,..., A\gr. Now we take these weights and the

submatrix [Myz ] Let us try to express row £ by means of a linear combination of the

(1:qp+k,qp+1:k+qp)”
weights Ag1,..., Ay and the rows g, + 1 to g, + k of this submatrix. This would require to express terms
of the structure l”;’vl,[;’vj., where j,[ # ¢ for at least one summand, by means of the terms Bm,l’;’m. which is

not possible by the properties of the Brownian motion. In other words since By * l’;’vj (almost surely),

this cannot work for row ¢. In addition we observe that we mix with ijl in the first row, with l?ng in
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the second row until ijq , in row g,. Therefore the argument that we cannot express row £ € {1,...,¢,}
by some linear combination of the rows ¢, + 1,...,k + g, holds for all £ € {1,...,q,}. Since Mgz 7 is
symmetric this also holds for the columns. Hence the rank of the k + g, x k + g, matrix Mzz,, is k + ¢,
(almost surely).

If W/» # 0 for some diagonal element(s), then K;; = [(I - pW)_l} - has some non-zero off diagonal
element(s) as well. 8 # 0}, makes the terms ('B,; non-zero (almost surely). Thus, in the same way we
have shown that the rank of Myzz,, is k + q,, we can show that the rank of the k + 1 x k + ¢, matrix

Myzz, is k+ 1 (almost surely). O
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C Data

CDS Data: We use the CDS dataset already used in [Schneider et al. (2010]), which was obtained from
the Markit Group. After concentrating on the US market only and by excluding firms with a too large
percentage of missing values, 278 firms had been used. The data set also includes the beginning of the
financial crises.

Firm specific and industry data: To estimate a model, where the default probabilities are driven by firm
and industry factors, the following data has been downloaded from Thomson Datastream and Compustat:
(i) Share prices p;; (in US$) and the number of shares NumS;;. The Value of preferred stock PS;;, where
quarterly records are available. To get weekly data we follow literature and perform linear interpolations.
34 of 176 companies issued preferred stock. In this article we assign preferred stock to equity. Since
PS;; is small compared to debt and the remaining equity, the impact of the assignment to equity is of
minor importance, with both the debt to value ratio and the distance to default, respectively. (ii) Short
term (SDj;) and long term debt (LDj;), quarterly records. To get weekly data, we follow literature and
perform linear interpolations. As mentioned in Section matching data form these different data sources
provides us with 176 firms.

In addition the following data was collected: (iii) US treasury yields r; for the maturities 1, 2,
3, 5, 7, 10 and 30 years (in percentage terms). (iv) Data of the VIX index which is a volatility in-
dex obtained from implied Black-Scholes volatilities from the US stock market (for a description see
http://www.cboe.com/micro/VIX/vixintro.aspx). (v) NAICs industry classification codes. (vi) Stan-
dard and Poors (S&P) ratings. (vii) Input-Output data from the BLS Employment Projection Program
(http://www.bls.gov/emp/ep_data_input_output matrix.htm). We excluded firms where we detected
further data problems (e.g. extreme spikes, missing values, unclear industry), such that n = 148 firms
were still remaining.

From the above balance sheet and stock market data we calculate the debt to value ratio measured in

percentage terms:
Di

PV fti = {sw

} -100 , (76)
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where S;; = p;it NumS;; + PSj; is the market capitalization and Dy = SDjy; + LDy is the market value of
a firm’s debt. As usual in industry and applied academic research we assume that the market value of a
firm’s debt is equal to the corresponding book value available in the firm’s balance sheets.

In Merton type models and in the financial industry the distance to default is frequently used to
forecast the conditional probability of default (see e.g. |[Schonbucher| (2003))). Intuitively, the distance to
default is the number of standard deviations of the annual asset growth by which the firm’s expected
assets at a given maturity exceed a measure of book liabilities. The distance to default is usually derived
by a calibration procedure that matches both market value of equity and equity volatility to the figures
that can be observed in the market (for details see |Crosbie and Bohn| (2003)). In this paper the distance

to default is derived from
VA —DPy

DD, = 7
g V Ait0 ait ( )

V Ay is the firm value. The default point D Pj; is the sum of short-term liabilities +1/2 long-term liabilities,
iie. DPy = SDj + 1/2LD;;. 0444 is the standard deviation of the firm value; og; is a measure of the

equity volatility. Based on |Crosbie and Bohn| (2003]):

VA = VEgN(diit)+ exp(—yumM)(SDit + LDi)N (d2it) ,
P 2
At — Eit VAzt 5

o low(VAW/(SDi + LDir)) + (yem + §0%) M
1t — )

\ oAuM
dgit = dlit — ”0-124itM . (78)

The standard deviation of the firm value, o 45, is derived by an implicit estimation from the Black/Scholes

formula. We derived estimates of V A;; and o 4;; by minimizing a weighted sum of the squared distances
between the model implied value of equity, V E;;, and the market capitalization S;;, and the terms o 45V Azt
and ogyV E;, respectively. Following industry praxis we set M = 1 and y,, equal to the one year treasury
yield r1;. We have to point out that the minimization strongly depends on how all these values are scaled.

0]25“ is estimated from log asset returns. Here e.g. the sample variance &?E (resulting in a constant equity
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volatility op; over time ) can be used. In this article we follow |[Ericsson et al. (2009) and approximate

the equity volatility by means of exponential smoothing, where

6t = Aopu_1+ (1—N)(Alogpy)? (79)

with A = 0.94. This (32Eit has been used in the calculation of the distance to default.
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