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Abstract 

We study dynamic panel data models where the long run outcome for a particular cross-
section is affected by a weighted average of the outcomes in the other cross-sections. We 
show that imposing such a structure implies several cointegrating relationships that are 
nonlinear in the coefficients to be estimated. Assuming that the weights are exogenously 
given, we extend the dynamic ordinary least squares methodology and provide a dynamic 
two-stage least squares estimator. We derive the large sample properties of our proposed 
estimator and investigate its small sample distribution in a simulation study. Then our 
methodology is applied to US financial market data, which consist of credit default swap 
spreads, firm specific and industry data. A "closeness" measure for firms is based on input-
output matrices. Our estimates show that this particular form of spatial correlation of credit 
default spreads is substantial and highly significant. 
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1 Introduction

Periods with a high number of defaults have shown that contagion can play a substantial role when

pricing defaultable assets. The breakdowns of Lehman brothers and AIG are prominent examples for

the effects arising with interlinked firms. Additionally, the European Central Bank reported a very high

market concentration for the credit default swap (CDS) market, such that financial distress of one bank

is expected to have impacts on the financial status of other banks (see ECB (2009)). Based on these

observations, recent finance literature has drawn more attention to the correlation of credit risk and on

credit risk contagion (see e.g. Tarashev and Zhu (2008)). One possibility to account for cross-sectional

spillover effects in a statistical model is to include spatial lags following Cliff and Ord (1973). Additional

complications arise due to the time series properties of the the economic variables of interest. Since credit

default swap time series, used as a measure for credit risk, as well as some financial time series often used

to predict or explain credit risk can be considered to be endogenous as well as integrated of order one, the

empirical methodology used to investigate these data has to allow for possible regressor endogeneity as well

as autocorrelation of the disturbances. In addition to this kind of endogeneity typically dealt with in panel

cointegration models (see e.g. Mark et al. (2005)), the spatial lag results in further regressor endogeneity

of a different type. To address these issues, this article considers a high dimensional cointegrating system

including spatial lags.

Different approaches have emerged in the literature to estimate cointegrating relationships and to

perform statistical inference. One possibility is to use a simple estimation routine, e.g. ordinary least

squares (OLS) and then work out the (sometimes complicated) large sample distribution of the estimated

parameters, e.g. Phillips and Hansen (1990), Phillips and Loretan (1991). Another opportunity is to

adjust the estimation routine, such that the large sample distribution is either simpler or free of nuisance

parameters. Examples along these lines are the fully modified least squares estimator (see e.g. Phillips and

Hansen (1990), Phillips and Moon (1999), Pedroni (2000)), the integrated modified least squares estimator

(see Vogelsang and Wagner (2011), where integrated modified least squares estimation is linked to fixed-b

inference) and the dynamic least squares approach. Dynamic least squares estimation includes time-series

leads and lags of the first differences of the regressors to control for the serial correlation and regressor
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endogeneity. This kind of estimator has been proposed by Phillips and Loretan (1991), Saikkonen (1991)

and Stock and Watson (1993). It has been applied to panel data e.g. in Kao and Chiang (2000), Mark

and Sul (2003) and Mark et al. (2005).

Motivated by our application in empirical finance, we develop an econometric tool suitable for inves-

tigating situations where the long run outcome for a particular cross-section cannot be assumed to be

independent of the outcomes of the other cross-sections and, at the same time, autocorrelation of the

disturbances and regressor endogeneity are present. We do so in a context of a model that includes non-

standard cointegrating relationships implied by the inclusion of peer or neighborhood effects, which are

modeled as spatial lags. Since existing estimation procedures do not cope adequately with the endogene-

ity of the spatial lags, we propose to use a dynamic two-stage least squares (D2SLS) estimator, which

combines dynamic least squares (DOLS) and two stage least squares (2SLS) estimation. In addition to

the serial leads and lags used by DOLS, our estimation procedure uses cross-sectional (or spatial) lags

of the regressors as instruments to control for the endogeneity of the spatial lags in the cointegrating

vectors. We derive the large sample distribution of our estimator and show how to correctly conduct

inference. We apply our methodology to our financial dataset, where we construct the economic space by

using a ”closeness” measure for firms based on input-output matrices. The weights matrix obtained from

input-output data should approximate possible correlation patterns due to technology and demand shocks

working their way through the economy. We find that our particular form of cross-sectional spillovers is

substantial and highly significant.

In the rest of the paper we first describe our model and the formal assumptions in Section 2. Section 3

provides the D2SLS estimation procedure and states our large sample results. We then investigate the

small sample properties of the D2SLS estimator in Section 4 and provide an illustrative application to

modeling correlation of credit default swaps in Section 5. Finally, Section 6 offers conclusions.
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2 The Model

Suppose that the data are generated from

yit = ρ

n∑
j=1

Wijyjt + β′xit + αi + u†it = ρy∗it + β′xit + αi + u†it , (1)

where yit is the scalar response random variable and xit is a k × 1 vector of prediction random variables.

Next, t = 1, . . . , T is the time index and i = 1, . . . , n is the cross-sectional index. We keep the cross-

sectional dimension n fixed throughout the following analysis and take the limits for T → ∞. The term

y∗it =
∑n

j=1Wijyjt is referred to as a spatial lag (see e.g. Cliff and Ord (1973), Kelejian and Prucha (1998),

Kelejian and Prucha (1999) or Kapoor et al. (2007)) and represents the long-run impact of the neighboring

observations on yit. We collect the weights Wij into an n× n spatial weights matrix W.1 We follow the

spatial econometrics literature and maintain the following assumptions regarding the cross-sectional (or

spatial) structure of the model:

Assumption 1. [Spatial Lag] The spatial weights Wij are non-stochastic and observable with Wii = 0

and W 6= 0n×n. The parameter ρ is such that largest absolute eigenvalue of ρW is smaller than one.

The restriction that Wii = 0 is a normalization of the model, which requires that no observation is its own

neighbor. The second part of the assumption guarantees that the matrix (In − ρW) is invertible (see e.g.

Corollary 5.6.16 in Horn and Johnson (1985)); In stands for the identity matrix of dimension n.2 The

invertibility of the matrix In − ρW is needed in order to provide a unique solution of the model and rule

out multiple solutions for yit that would be consistent with the explanatory variables and disturbances.

The inverse K := (In− ρW)−1 is used in the consistency proof of the D2SLS estimator developed in this

article.

The disturbance term is assumed to include an individual-specific effect αi and an idiosyncratic com-

1Throughout the analysis we only consider one spatial lag term. However, the theory considered in this article can also be
applied to a model where yit = ρ1

∑n
j=1W1,ijyjt + · · · + ρkρ

∑n
j=1Wkρ,ijyjt + . . . in a straightforward way. The restriction

that only one matrix W is included is used to keep the notation simple.
2The spectral radius is the lower bound for every induced matrix norm (cf. Theorem 5.6.9 in Horn and Johnson (1985)).

Our assumption will, for example, be satisfied when the maximum absolute row or column sums of ρW are less than one.
Regarding notation 0a×b stands for an a× b matrix of zeros, 0a is an a-dimensional column vector of zeros.
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ponent u†it that is independent across i but possibly dependent across t. Analogically to Saikkonen (1991)

the prediction random variable xit is assumed to be integrated of order one, I (1), and to be generated

from

∆xit = vit . (2)

In order to fully specify the model, we augment our set of assumptions by defining the process generating

the disturbances:

Assumption 2. [Error Dynamics I; see Mark and Sul (2003), Mark et al. (2005), Phillips (2006)] Let us

define the stacked vector w†it =
(
u†it,v

′
it

)′
. Then (w†it) has a moving average representation

w†it = Ψ†i (L) ε†it ,

where ε†it is independent over both i and t with mean vector 0k+1, k+ 1×k+ 1 positive definite covariance

matrix Σεi and finite fourth moments. Ψ†i (L) =
∑∞

j=0 Ψ†ijL
j is a k + 1 × k + 1 dimensional matrix

polynomial in the lag operator L, with Ψ†i0 = Ik+1 and
∑∞

j=0 j|
[
Ψ†ij

]
(m,n)

| < ∞ where
[
Ψ†ij

]
(m,n)

is the

(m,n)-th element of the matrix Ψ†ij.

We shall denote the short-run k + 1 × k + 1 covariance matrix of w†it by Γ†i0, and the autocovariance

matrices by Γ†ij , where

Γ†i0 = E
(
w†itw

†′
it

)
and Γ†ij = E

(
w†itw

†′
i,t−j

)
. (3)

We will also use the following notation: Γ†uu,ij is the (1, 1) element of Γ†ij , Γ†uv,ij corresponds to[
Γ†ij

]
(2:k+1,1)

, Γ†vu,ij corresponds to
[
Γ†ij

]
(1,2:k+1)

, while Γvv,ij corresponds to the k × k submatrix[
Γ†ij

]
(2:k+1,2:k+1)

. The notation (a : b, c : d) stands for ”from row a to b and column c to d”.

Let us define w†t =
(
w†′1t, . . . ,w

†′
nt

)′
, u†t =

(
u†1t, . . . , u

†
nt

)′
and vt = (v′1t, . . . ,v

′
nt)
′. Then the (k + 1) ·

n × (k + 1) · n covariance matrices Γ†0 = E
(
w†tw

†′
t

)
and Γ†j = E

(
w†tw

†′
t−j

)
are block diagonal with the

blocks Γ†i0 and Γ†ij along the main diagonal (i = 1, . . . , n). The k + 1× k + 1 long run covariance matrix
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Ω†i of w†it is given by

Ω†i =

∞∑
j=−∞

E
(
w†itw

†′
i,t+j

)
= Ψ†i (1)ΣεiΨ

†
i (1)′ = Γ†i0 +

∞∑
j=1

(
Γ†ij + Γ†′ij

)
(4)

=

 Ω†uu,i Ω†vu,i

Ω†uv,i Ωvv,i

 =

 Γ†uu,i0 Γ†vu,i0

Γ†uv,i0 Γvv,i0

+
∞∑
j=1


 Γ†uu,ij Γ†vu,ij

Γ†uv,ij Γvv,ij

+

 Γ†uu,ij Γ†vu,ij

Γ†uv,ij Γvv,ij

′
 .

The long-run covariance matrix of w†t , denoted as Ω†, is then also block diagonal with the blocks Ω†i along

the main diagonal. Analogically, the matrices Ω†uu and Ωvv contain the scalars Ω†uu,i and the k× k blocks

Ωvv,i along their main diagonal, where i = 1, . . . , n.

Given the covariance structure, we want to exclude cointegration relationships between the terms of

xit. In addition, we also want to guarantee that yit is I(1). Therefore we impose the following assumption:

Assumption 3. [Error Dynamics II; see Phillips (2006)]

Ψ†i (1) is non-singular and Ωvv,i has full rank k. Furthermore, β 6= 0k.

Note that by Assumption 3 and the independence across i assumption (i.e. Assumption 2), the rank of

Ωvv is nk and xit is a full rank integrated process. In addition, observe that if β = 0k, the variable yit

becomes I(0), see e.g. equation (1) and equation (14) below.

Assumption 2 implies that potentially all leads and lags of of ∆xit are correlated with u†it. In the

next step we follow DOLS literature and remove the serial correlation by projecting on the leads and

lags of ∆xit. For each sample size, DOLS estimation uses a finite number leads and lags, denoted by p

in the following, to control for this correlation. Using such a truncation scheme will result in a specific

truncation error eit. However, under the conditions provided in Saikkonen (1991) this error will disappear

asymptotically. In particular, the projection of u†it on the p leads and lags of ∆xit yields a truncation

component
∑+p

s=−p δ
′
i,s∆xi,t−s, a truncation error eit =

∑
s>p,s<−p δ

′
i,s∆xi,t−s plus a new disturbance uit,

such that

u†it =

+p∑
s=−p

δ′i,s∆xi,t−s +
∑

s>p,s<−p
δ′i,s∆xi,t−s + uit = δ′iζit + eit + uit = δ′iζit + uit . (5)
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∆xi,t−s and δi,s are vectors of dimension k × 1, while the (2p+ 1)k × 1 dimensional vectors of projection

variables and projection coefficients are given by

ζit =
(
∆x′i,t−p, . . . ,∆x′i,t, . . . ,∆x′i,t+p

)′
=
(
v′i,t−p, . . . ,v

′
i,t, . . . ,v

′
i,t+p

)′
and δi =

(
δ′i,−p, ..., δ

′
i,+p

)′
. (6)

ζit is by construction orthogonal to the noise term uit. The term uit = eit+uit can still be correlated with

∆xit for some p <∞. Now we impose an additional restriction on the error dynamics that will guarantee

that the truncation error eit converges to zero:

Assumption 4. [Error Dynamics III; see Saikkonen (1991), Mark et al. (2005)]

Suppose that p = p(T ). Then p(T ) has to fulfill p(T )
3

T → 0 and
√
T
∑
|s|>p(T ) ‖δi,s‖2 → 0 as T →∞, where

‖.‖2 stands for the Euclidian norm.

Assumption 4 requires that p(T ) does not grow too fast, while the second part restricts the dependence

between the noise term and the regressors. Based on Assumptions 2 to 4 and equation (5), if T becomes

large then – due to the increase in the number of leads and lags p(T ) – the truncation error eit becomes

small. As a result, the difference between uit and uit becomes small and uit becomes orthogonal to ζit as

T → ∞.3 Hence we arrive at the new covariance stationary process wit = (uit,v
′
it)
′ = Ψi (L) εit which

has mean zero, covariance matrix Γi0 and autocovariance Γij . These matrices have the structure

Γij = E
(
witw

′
i,t−j

)
=

 Γuu,ij 01×k

0k Γvv,ij

 , (7)

where Γuu,ij = E (uitui,t−j), Γvv,ij = E
(
vitv

′
i,t−j

)
and j ∈ Z.

In addition, our model includes a full set of individual specific effects and hence a set of individual

dummies αi has been included to the regression (1) (fixed effects specification). In order to simplify the

algebra, we shall use the within transformation and derive the asymptotic distribution of the estimates of

the slope coefficients ρ and β using within-transformed data. In a linear regression, these estimated slope

coefficients are algebraically equivalent to the least squares dummy variable estimates (see e.g. Baltagi

3For a short discussion on the truncation error and the Assumption 4 we refer the reader to Saikkonen (1991) and to
Lütkepohl (2006)[Remark 1, p. 533]. For more technical details see Saikkonen (1991)[Theorem 4.1/Lemma A.5].
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(2008)[p. 11]). Here it is important to note that while the time index t goes from 1 to T in (1), after the

projection facility is applied only the observations p+ 1, . . . , T − p can be used. We still use t as the index

for the time period which now runs from 1 to T?, where T? = T − 2p. The variables in deviations from

their individual means are

ỹit = yit −
1

T?

T?∑
t=1

yit, x̃it = xit −
1

T?

T?∑
t=1

xit, ỹ∗it =
n∑
j=1

Wij ỹit ,

ζ̃it = ζit −
1

T?

T?∑
t=1

ζit , (8)

such that (1) after applying the within transform and the projection facility reads as follows:

ỹit = ρ
n∑
j=1

Wij ỹjt + β′x̃it + ũ†it = ρỹ∗it + β′x̃it + ũ†it

= ρ

n∑
j=1

Wij ỹjt + β′x̃it + δ′iζ̃it + ũit = ρỹ∗it + β′x̃it + δ′iζ̃it + ũit . (9)

Given the assumptions on the error dynamics, the functional central theorem (see e.g. Karatzas and

Shreve (1991)[Chapter 4] or Davidson (1994)[Chapters 27-30]) can be applied. If T? →∞ then

1√
T?

[T?r]∑
t=1

wit
d→ Bi(r) = Ω

1/2
i Wi(r) , (10)

where r ∈ [0, 1] and
d→ stands for weak convergence / convergence in distribution. Bi(r) = (Bui(r),Bvi(r)′)′,

where Bui and Bvi are independent Brownian motions, in R and Rk, respectively. While Bi stands for a

Brownian motion with covariance matrix Ωi, Wi stands for a standard Brownian motion, where Wi(r) =

(Wui(r),Wvi(r)
′)′. [T?r] denotes the integer part of T?r.

4 Ωi is the k+1×k+1 long-run variance-covariance

4In some of the following expressions we omit the borders of integration as well as the continuous time index r of the
Brownian motion, i.e. we write

∫
W instead of

∫ 1

0
W(r)dr, while

∫ 1

0
W(r)dW(r) is abbreviated by

∫
WdW.
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matrix of wit. Due to the independence of Bui(t) and Bvi(t), this matrix is of the structure

Ωi =

 Ωuu,i 01×k

0k Ωvv,i

 = Γi0 +

∞∑
j=1

(
Γij + Γ′ij

)
, (11)

where the matrices Γij are given by (7). For the demeaned term ṽit = vit − 1
T?

∑T?
t=1 vit we get

1√
T?

∑[T?r]
t=1 ṽit = 1√

T?

∑[T?r]
t=1

(
vit − 1

T?

∑T?
t=1 vit

)
d→ Bvi(r)− rBvi(1). Bvi(r)− rBvi(1) is a Brownian bridge.

Since xit is an I(1) process, xit arises from a partial sum process. Then x̃it =
∑t

ι=1 viι−
1
T?

∑T?
t=1

∑t
ι=1 viι.

By the continuous mapping theorem (see Klenke (2008)[p. 257], Davidson (1994)[Theorem 26.13 & 30.2])

the T? →∞ limit is given by the demeaned Brownian motion

1√
T?

x̃it
d→ Bvi(r)−

∫ 1

0
Bvi(s)ds .

Bvi(r) −
∫ 1
0 Bvi(s)ds will be abbreviated by B̃vi(r). Davidson (1994)[Theorem 30.2] shows that

1
T 2
?

∑T?
t=1 x̃itx̃

′
it converges in distribution to

∫ 1
0 Bvi(s)B

′
vi(s)ds. Last but not least, Davidson (1994)[Theo-

rem 30.13] and some algebra results in 1
T?

∑T?
t=1 x̃itũit

d→
√

Ωuu,i

∫ 1
0 B̃vi(r)dWui(r).

Before we proceed with the estimation part we would like to discuss our model for the n = 2 case.

Here we observe that the cointegration equations are non-linear and due to the spatial lag component an

additional source of endogeneity arises.

Remark 1. Consider (1) for the two-dimensional case, i.e. n = 2. Due to Assumption 1 the matrix

I2 − ρW has to be invertible, such that

I2 − ρ

 0 W12

W21 0

−1 =
1

1 + ρ2W12W21
·

 1 −ρW21

−ρW12 1

 . (12)

Combining (1) and (12) now results in

 y1t

y2t

 =
1

1 + ρ2W12W21
·

 β′x1t −ρW21β
′x2t +u†1t −ρW21u

†
2t +α1 − ρW21α2

−ρW12β
′x1t +β′x2t +u†2t −ρW12u

†
1t +α2 − ρW12α1

 . (13)

8



Equation (13) shows the n = 2 coinintegrating equations. The cointegrating relationships do not have the

usual linear form in the sense that the solution for yit is a nonlinear function of the parameter ρ.

Assumption 1 guarantees that In−ρW has the full rank n. Together with Assumptions 2-4 we observe

that for an arbitrary but fixed n ∈ N the following equation (14) constitute n cointegrating relationships:


y1t
...

ynt

 = (In − ρW)−1




β′x1t

...

β′xnt

+


α1 + u†1t

...

αn + u†nt


 . (14)

Summing up, when we consider the data generated by (1) we observe that: (i) xit and u†it are correlated

by the assumptions on Ψ†i and Σεi. (ii) For ρ 6= 0, yjt depends on yit and vice versa. (iii) u†it and u†jt

are independent by Assumption 2. (iv) Since yjt depends on yit we know that ρWijyjt and u†it have to be

correlated (also for the within transformed data the same correlation structure is observed). Therefore

the standard DOLS method is not sufficient to remove all the correlation between the regressors and the

noise.

In the following section we shall construct an estimator where we account for ”serial” endogeneity by

means of the DOLS projection facility. In addition endogeneity enters via the spatial correlation modeled

by ρW. To account for this kind of ”spatial” endogeneity we follow the 2SLS approach. Combining these

concepts will provide us with an estimator which accounts for both sources of endogeneity.

3 Estimation Procedure and Large Sample Results

The goal of the following analysis is to construct the D2SLS estimator and to show that it leads to

consistent estimates of the parameters ρ and β. We then provide the large sample distribution of the

D2SLS estimator. The parameters δ will be shown to be nuisance parameters. In order to write down

our estimator in a compact way, we first define the model in a stacked notation. For notational simplicity

9



we drop the tilde notation in the stacked model and define

y = (ỹ11, . . . , ỹ1T? , . . . , ỹn1, . . . , ỹnT?)
′ ,

y∗ =
(
ỹ∗11, . . . , ỹ

∗
1T? , . . . , ỹ

∗
n1, . . . , ỹ

∗
nT?

)′
,

x =
(
x̃′11, . . . , x̃

′
1T? , . . . , x̃

′
n1, . . . , x̃

′
nT?

)′
,

u =
(
ũ11, . . . , ũ1T? , . . . , ũn1, . . . , ũnT?

)′
, (15)

where y, y∗ and u are of dimension nT? × 1, while x is an nT? × k matrix. Furthermore, we have

ζδ =


δ′11ζ̃11

...

δ′nT? ζ̃nT?

 =



ζ̃′11 01×(2p+1)k 01×(2p+1)k

...

ζ̃′1T? 01×(2p+1)k 01×(2p+1)k

01×(2p+1)k ζ̃21 01×(2p+1)k

. . .

01×(2p+1)k 01×(2p+1)k ζ̃nT?




δ1
...

δn

 . (16)

ζ is a nT? × (2p+ 1)k · n matrix, while (given δi of dimension (2p+1)k ) δ is of dimension (2p+ 1)k · n× 1.

This provides us with model (9) in stacked form

y = ρy∗ + xβ + ζδ + u = (y∗,x) γ + ζδ + u = X
(
γ′, δ′

)′
+ u , (17)

where γ = (ρ, β′)′. The right hand side variables are collected in X = (y∗,x, ζ).

We shall estimate the model by using instruments for the endogenous variable ỹ∗it =
∑n

j=1Wij ỹjt.

Here, we could proceed in an abstract way by assuming that qρ instruments are available to fulfill the

properties necessary for instrumental variable estimation (see e.g. Kitamura and Phillips (1997)). In

contrast to this high level assumption, we follow Kelejian and Prucha (1998) and base the instruments on

the spatial lags of the explanatory variables. Our model can be solved as

y =
[
IT ⊗ (In − ρW)−1

]
(xβ + ζδ + u) . (18)

10



The matrix (In − ρW)−1 can then be expanded as (see e.g. Corollary 5.6.16 in Horn and Johnson (1985)):

(In − ρW)−1 =

∞∑
s=0

(ρW)s . (19)

This implies that variables of the form
∑n

j=1Wij x̃jtv,
∑n

j=1W
2
ij x̃jtv, . . . are suitable instruments for Wy.

x̃jtv is the element v of x̃jt. Note that these instruments have an intuitive interpretation: we instrument

the Wij weighted sum of the neighbors/peers ỹjt by the Wij weighted sum of the characteristics of the

neighbors (their x̃it values). The higher order spatial lags as instruments then use the characteristics of

the neighbors of the neighbors, etc. Hence we assume that the following set of instruments is used:

Assumption 5. [Valid Instruments; see Kitamura and Phillips (1997)] The instruments are x̃∗itv =∑n
j=1W

τv
ij x̃jtv, where v = 1, . . . , qρ and τv ∈ N. x̃∗it =

(
x̃∗it1, . . . , x̃

∗
itqρ

)′
is a vector of dimension qρ.

We assume that these instruments fulfill the requirements for instrumental variable estimation as stated

e.g. in Ruud (2000)[Chapter 20], Phillips and Hansen (1990) and Kitamura and Phillips (1997). I.e.

(i) the number of instruments is larger or equal to the number of parameters (order condition), (ii)

the T?-limit of 1
T 2
?

∑T∗
t=1(y

∗
it, x̃

′
it)
′((x̃∗it)

′, x̃′it) is of rank k + 1 (almost surely) and (iii) the T?-limit of

1
T 2
?

∑T?
t=1((x̃

∗
it)
′, x̃′it)

′((x̃∗it)
′, x̃′it) is of rank k + qρ (almost surely).

Appendix B shows that with τv = 1 and some regularity conditions on W the rank conditions (ii) and (iii)

are satisfied. To keep the notation simple, we consider - as already stated at the beginning of Section 2 -

a model with one spatial lag (kρ = 1). With qρ = 1 we are in the just identified case, while if qρ > 1 we

consider the over-identified case. We collect our instruments in the nT? × qρ matrix

x∗ =
(
x̃∗′11, . . . , x̃

∗′
1T? , . . . , x̃

∗′
n1, . . . , x̃

∗′
nT?

)′
. (20)

The set of our instruments is then Z = (x∗,x, ζ). While the matrix of explanatory variables X is of

dimension T?n×1 +k+ (2p+ 1)k ·n, the dimension of Z is T?n× qρ+k+ (2p+ 1)k ·n.5 Before we present

our estimator, let us discuss why e.g. DOLS and two-stage least squares (2SLS) do not provide us with

5A variant of our model is Ψ†i (L) = Ψ†(L) for i = 1, . . . , n. Then X is of dimension T?n× 1 + k + (2p+ 1)k while Z is of
dimension T?n× qρ + k + (2p+ 1)k.

11



consistent estimators:

Remark 2. [Endogeneity] Let us consider (17). From the discussion in the last paragraph of Remark 1

we already know that ũ†it is correlated with ỹ∗it and with x̃it. Given the k + 1 + (2p+ 1)k · n dimensional

vector of regressors Xit =
(
ỹ∗it, x̃

′
it,01×(2p+1)k·(i−1), δ̃

′
it,01×(2p+1)k·(n−i−1)

)′
and the k + qρ + (2p + 1)k · n

dimensional vector of instruments Zit =
(
x̃∗′it , x̃

′
it,01×(2p+1)k·(i−1), δ̃

′
it,01×(2p+1)k·(n−i−1)

)′
we observe that

ũit is still correlated with the first component of Xit. Therefore DOLS does not result in consistent

estimates. When applying 2SLS we get X2SLS
it = (ỹ∗it, x̃

′
it)
′ and Z2SLS

it = (x̃∗′it , x̃
′
it)
′. Since no projection

facility is used with 2SLS, the residual term is given by ũ†it. Therefore, the term x̃it contained in Z2SLS
it ,

is still correlated with ũ†it and 2SLS is not consistent.

In analogy to a standard regression setting with endogenous regressors, we now construct a two stage-

least square procedure for our panel setting where leads and lags of ∆x̃it are included. Let us define the

project operator PH projecting on the space spanned by Z (see e.g. Ruud (2000)[Chapter 3]). In formal

terms

PH := Z
(
Z′Z

)−1
Z′ . (21)

Since Z is a T?n× qρ + k + (2p+ 1)k · n matrix, PH has to be a T?n× T?n matrix. With two-stage least

squares the initial stage results in the projected values

ŷ∗ = PHy∗ = Z
(
Z′Z

)−1
Zy∗ , (22)

while PHx = x and PHζ = ζ. The second stage estimator is


ρ̂

β̂

δ̂


D2SLS

=


ŷ∗
′
ŷ∗ x′ŷ∗ ζ′ŷ∗

ŷ∗
′
x x′x ζ′x

ŷ∗
′
ζ x′ζ ζ′ζ


−1

ŷ∗
′

x′

ζ′

y. (23)

In the first stage we project the endogenous variable ỹ∗it on Z. In contrast to usual two stage least

squares estimates, the projected values ̂̃y∗it are still correlated with ũjt and ũjt. To see this, we consider

ỹ∗it =
∑

j=1Wij ỹjt =
∑

j=1Wij
∑n

l=1Kjl

(
β′x̃lt + ũ†lt

)
=
∑

j=1Wij
∑n

l=1Kjl (β
′x̃lt + δ′lζlt + ũlt); Kjl is

12



the (j, l) element of the matrix K = (In − ρW)−1. Since in general Kjl 6= 0, this also holds for l = i

such that the projected values ̂̃y∗it can still be correlated with the noise. Next we observe that by the

construction of Z, for each component i only the own leads and lags are considered, i.e. only ∆x̃it±p

are included in Zit. From the above calculations it follows that ỹ∗it =
∑

j=1Wij ỹjt = . . . includes the

terms x̃lt and ũ†lt, which are correlated as well by the model assumptions. Therefore, a priori it need

not be clear whether we obtain a Gaussian mixture distribution when T? → ∞. For example, one could

potentially include all the leads and lags ∆x̃lt±p, l = 1, . . . , n, to get rid of this type of correlation. This

would increase the number of nuisance parameters enormously (the dimension of Z would increase from

Tn × qρ + k + (2p + 1)k · n to Tn × qρ + k + (2p + 1)k · n2). However, in the proof of Theorem 1 we

shall observe that due to the fact that ”Zit,1:qρ+k over T?” and ”Xit,1:1+k over T?” are considered, this

type of correlation becomes neglectable when taking limits. Therefore, we still attain a normal mixture

distribution.6 Based on this discussion, we can now compactly write the dynamic two-stage least squares

estimator of (ρ, β′, δ′)′ = (γ′, δ′)′ as

(γ̂′, δ′)′D2SLS =
(
X′PHX

)−1
X′PHy

= (γ′, δ′)′ +
(
X′PHX

)−1
X′PHu . (24)

With qρ = 1 we are in the just identified case, where the estimator is given by

̂(γ′, δ′)′D2SLS =
(
Z′X

)−1
Z′y = (γ′, δ′)′ +

(
Z′X

)−1
Z′u . (25)

Given the definition of the D2SLS estimator in (24), we summarize its large sample properties in the

following result:

6In Appendix A we shall observe that in MnTi = 1
T2
?

∑T?
t=1 Xit,1:1+kZ

′
it,1:qρ+k the impact of the terms including ũ†lt goes to

zero due to normalization with 1/T 2
? for T? →∞. In addition for the ”last term” in (24) we get 1

T?

∑T?
t=1 Zit,1:qρ+kũit. Since

x̃∗it =
∑n
l=1Wilx̃ltι, with Wii = 0 by Assumption 1, is independent of ũit by the model Assumption 2, no further correlation

terms arise when taking the limit. This results in the term mniZu presented in (57).
If, however, ũit and the limit ũit were correlated with x̃lt, for i 6= l, a projection in the own leads and lags would not be

sufficient. To see this, the first qρ elements of 1
T?

∑T?
t=1 Zit,1:qρ+kũit are given by 1

T?

∑T?
t=1

∑n
l=1Wilx̃ltιũit, where ι = 1, . . . , qρ.

By Davidson (1994)[Theorem 30.13], 1
T?

∑T?
t=1 x̃ltιũit

d→
√

Ωuu,i
∫
B̃vldWui + ∆vu,li,ι. The 1 × 1 correlation term ∆vu,li,ι

is given by E (∆x̃ltιũit) +
∑∞
j=1 E (∆x̃ltιũit−j). If ũit and x̃ltι are correlated, then ∆vu,li,ι 6= 0. This was excluded by

Assumption 2 in our analysis.
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Theorem 1 (Limits for D2SLS Estimation). Consider the fixed effects spatial correlation model (1) and

the estimator (24) based on the within-transformed model (9). Suppose that the Assumptions 1 to 5 hold.

T? = T − 2p(T ). Then for n fixed and T →∞ it follows that

1. T?(γ̂D2SLS − γ) and
√
T?(δ̂D2SLS,i − δi) are asymptotically independent for each i = 1, . . . , n.

2.
√
nT? (γ̂D2SLS − γ) converges in distribution to M−1

n mn, where mn and Mn are given by (59) and

(60).

3. Given a s × k + 1 restriction matrix R, the Wald statistic Sγ,nT defined in (67) converges to a χ2

random variable with s degrees of freedom.

Remark 3. By Assumption 4, if T → ∞, then T? → ∞. In Remark 2 we already observe that the

two-stage least squares estimator and the DOLS estimator are special cases of the dynamic two-stage

least squares estimator. Hence, the Wald-statistic presented in Appendix A can be used to obtain the

Wald statistic for the two-stage least squares estimator and the DOLS estimator.

4 Monte Carlo Simulations

This section investigates the small sample properties of the D2SLS estimator as well as the size and power

of the Wald tests defined in Theorem 1. We generate the data based on an error process that follows from

Assumptions 2-4. To operationalize this we need to specify the lag polynomials Ψ†i (L). In particular, we

have to specify the error dynamics of the vector w†it. Here we assume the same error dynamics for all

cross sections i = 1, . . . , n. We use two explanatory variables xit such that k = 2 and set β = (1, 1)′. The

number of instruments is qρ = 2.

Regarding the error dynamics we use the stationary designs of Binder et al. (2005) to generate the

data for the vector w†it. The innovations ε†it are generated as independent draws from ε†it ∼ N (0,Σεi).

For Σεi we use (I) [Σεi]jj = 1 for j = 1, . . . , 3, the remaining elements are −0.2, (II) Σεi = I3 and (III)

[Σεi]jj = 1 for j = 1, . . . , 3, while the other elements are 0.2. In the first three designs we generate w†it by
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means of the first order vector autoregressive system (V AR(1))

w†it = Φw†i,t−1 + ε†it , (26)

where the 3× 3 matrix Φ comes from one of we use the following designs:

Design DGP = 1: A stationary V AR(1) with maximum eigenvalue of 0.6, where

Φ =


0.4 0.1 0.1

0.1 0.4 0.1

0.1 0.1 0.4

 . (27)

Design DGP = 2: A stationary V AR(1) with maximum eigenvalue of 0.8, where

Φ =


0.6 0.1 0.1

0.1 0.6 0.1

0.1 0.1 0.6

 . (28)

Design DGP = 3: A stationary V AR(1) with maximum eigenvalue of 0.95, where

Φ =


0.75 0.1 0.1

0.1 0.75 0.1

0.1 0.1 0.75

 . (29)

In addition we consider a finite-order vector moving average (MA) processes of the form

w†it = ε†it +

q∑
l=1

Ψ†ilε
†
i,t−l, (30)
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where we choose: Design DGP = 4, which is a first-order MA process where

Ψ†i1 =


0.4 0.1 0.1

0.1 0.4 0.1

0.1 0.1 0.4

 , (31)

and Design DGP = 5, where w†it follows a second-order MA process with

Ψ†i1 =


0.6 0.1 0.1

0.1 0.6 0.1

0.1 0.1 0.6

 and Ψ†i2 =


0.4 0.1 0.1

0.1 0.4 0.1

0.1 0.1 0.4

 . (32)

Recall that the disturbance in the equation for yit is given by the first element of the vector w†it, while its

remaining elements contain δxit. The maximum numbers of leads and lags of the explanatory variables

that are conditionally correlated with the disturbances is equal to one in the Designs 1-3, while for the

Designs 4 and 5 all lags of the explanatory variables are conditionally correlated with the disturbances.

In the case of the VAR(1) models, we generate the initial values for the process w†it from the implied

stationary distribution. Note that by backward substitution, we obtain

w†i0 =

∞∑
j=0

Φjε†i,−j (33)

and hence w†i0 is a random variable that is independent from ε†it for t > 0. When the innovations ε†it are

normally distributed, it also follows that w†i0 is normally distributed. Furthermore, it has a mean of zero

and k + 1× k + 1 variance-covariance matrix E
(
w†itw

†′
it

)
= Γ†i0 where

Γ†i0 = E

 ∞∑
j=0

Φjε†i,−j

 ∞∑
j=0

Φjε†i,−j

′ =
∞∑
j=0

ΦjΣεiΦ
′j . (34)
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The above expression implies

ΦΓ†i0Φ
′ =

∞∑
j=0

Φj+1ΣεiΦ
′j+1 = Σεi +

∞∑
j=0

ΦjΣεiΦ
′j = Σεi + Γ†i0. (35)

After vectorizing and solving for Γ†i0 we obtain (see e.g. Lütkepohl (2006)[p. 29])

vec
(
Γ†i0

)
=
(
I(k+1)2 −Φ ⊗Φ

)−1
vec (Σεi) . (36)

The remaining parameters of the model are chosen as follows: We generate the individual ef-

fects αi from αi ∼ N (03, I3). The spatial correlation parameter ρ is chosen from the set

{−0.95,−0.5,−0.1, 0, 0.1, 0.5, 0.95}. The choice of W is based on Kapoor et al. (2007). In more de-

tails we consider: (i) A ”one step ahead-one step behind circular world” with corresponding entries 1/2.

I.e. Wi,i+1 = 0.5 and Wi+1,i = 0.5 for i = 1, . . . , n − 1. W1,n = 0.5 and Wn,1 = 0.5, the other entries are

zero. (ii) A ”three step ahead-three step behind circular world” with corresponding entries 1/6. (iii) A

”five step ahead-five step behind circular world” with corresponding entries 1/10. (iv) A ”one step ahead-

one step behind Rook constellation” with corresponding entries 1/2. This design is non-circular. Here

Wi,i+1 = 0.5 and Wi+1,i = 0.5 for i = 1, . . . , n− 1; the other entries are zero. (v) A ”two step ahead-two

step behind Queen constellation”. In this non-circular design Wi,i+1 = 0.3, Wi,i+2 = 0.2, Wi+1,i = 0.3

and Wi+2,i = 0.2 for i = 1, . . . , n− 2; the other entries are zero. Thus we have in total 525 different data

generating processes (3, 5, 7, 5 different settings for Σεi, the autoregressive structure of w†it, the spatial

correlation parameter ρ and the spatial correlation matrix W, respectively).

For the estimation of the long run covariance Ωuu,i we applied the Bartlett and the truncated kernel,7

i.e. Ω̂uu,i = 1
T

∑T
t=1

∑T
s=1 k

(
t−s
bT

)
ˆ̃u
2
it, where k(.) is a kernel function with bandwidth bT and ˆ̃uit are

the residuals. The truncated kernel exhibits a better performance than the Bartlett kernel. For the

truncated kernel we either kept the number of lags fixed for all i = 1, . . . , n or stopped the summation

for component i at lag s if the mode of the autocorrelation of the residuals {ˆ̃uit, ˆ̃ui,t−s} becomes smaller

7Given these kernels and our model assumptions the conditions for consistent estimation provided in Jansson (2002) are
satisfied.
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than the 1.96/
√
T bound. The later choice has lead to a better performance in our simulations. When

implementing the D2SLS estimator, the number of leads and lags p included in the regression has to

be chosen. Recent literature proposed to choose p by means of information criteria (see e.g. Kejriwal

and Perron (2008) and Kurozumi and Tuvaandorj (2010)). With small T and n the implementation of

such criteria is straightforward. However, since a dataset with (relatively) large n and T is going to be

considered, working with small p becomes necessary due to computational restrictions. In particular, we

set p = 2 for all components i = 1, . . . , n. For all designs working with p = 2 performed better than

working with p = 1. Last but not least M = 1000 is the number of Monte Carlo steps and m is the index

of the corresponding iteration. To obtain the DOLS estimates Z is replaced by X in (25). For the 2SLS

estimator Z and X do not contain any leads and lags, i.e. ζ = ∅, while for OLS we use Z = X with ζ = ∅.

Tables 1 to 8 present results from the simulation runs. We consider the cases where n = 5, T = 200 and

n = 50, T = 200. In the first three columns the numbers abbreviate the different designs: W = (i) for the

one-steps ahead setting, ..., W = (v) for the Queen constellation, DGP = 1, . . . , 5 for the autoregressive

model used to generate wit, Σεi = (I), (II), (III) stands for the covariance matrix used. With different

cross-sectional dimensions n we investigated the size of the Wald statistic and obtained the percentages

of the simulation runs where the true null hypothesis ρ = 0 has been rejected at αc = {0.01, 0.05, 0.1}

significance levels. For ρ = {−0.95,−0.5,−0.1, 0.1, 0.5, 0.95} the false null-hypothesis of ρ = 0 has been

rejected in all of the simulation runs for most simulation settings. The exceptions appear with n = 5,

ρ = ±0.1 and the moving average designs DGP = 4 and DGP = 5. Here for different W and Σεi we

sometimes observe rejection rates smaller than 99%. The smallest rejection rate was 0.45 in the case of

the MA(1) process, where W is of type (iii) and Σεi of type (I). For n = 50 we observed that the false

null hypothesis ρ = 0 has always been always rejected.

Tables 1, 2, 5 and 6 present the rejection rates of the Wald test for the true null hypothesis ρ = 0. Since

for ρ = 0 the DOLS estimation procedure is one of the theoretically correct tools presented in literature,

the comparison of D2SLS to DOLS is of special interest. With n = 5, for designs DGP = 1 − 3 the

oversizing remains modest for DOLS and D2SLS. The rejection rates observed are very similar although

the D2SLS uses the instrumental variables, where the numerical complexity is increased. With the moving
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average process stronger oversizing effects are obtained, for DOLS these effect can become very strong.

The highest oversizing with our D2SLS estimator is observed with Σεi of type (I) - where the ”serial”

endogeneity is stronger - and W = (iii), where many spatial lags are used. For n = 50 the performance

of DOLS is very close to the performance of our D2SLS estimator; here in some settings undersizing is

observed.

According to the Bias = ρ − 1
M

∑M
m=1 ρ̂m and the bias adjusted root mean squared error RMSE =√

Bias2 +
(

1
M−1

∑M
m=1 ρ̂

2
m −

(
1
M

∑M
m=1 ρ̂m

)2)
hardly any differences are observed betweenDOLS andD2SLS

with n = 5 for the designs DGP = 1 − 3, while substantial differences can be observed with DGP = 4

and 5 (see Tables 3 and 4 for ρ = 0.5). In addition these effects are more pronounced with Σεi of type

(I) and W = (iii). Surprisingly, 2SLS - sometimes also OLS - worked quite well for the different designs

considered although these methods do not cope with ”serial” endogeneity still arising with ρ = 0. We

explain this phenomenon as follows: The Wald statistic Sγ,nT includes estimates of the long-run covariance

matrix Ωuu,i and the parameter estimates. We observed that the estimates of the covariance matrix with

OLS and 2SLS are in almost all cases much larger than the estimates with DOLS and D2SLS. However,

also the volatility of the estimator, e.g. measured by the RMSE, increases. Here we claim that these

effects can cancel out, such that the rejection rates are not too far away from the significance level αc

considered. With D2SLS the rejection rates are in a lot of the cases even closer to αc than with DOLS

and D2SLS. Oversizing of Wald tests based on DOLS estimation (which also require the calculation of

the long run covariance matrix) have already been extensively reported in literature (e.g. Mark and Sul

(2003)[Table 1]). For n = 50 the bias and the RMSE become smaller, as can be expected when using

more data (see Tables 7 and 8 for ρ = 0.95). Although most differences are small, we observe that the

bias and the RMSE of our D2SLS estimator is smaller or equal to the bias and the RMSE of the DOLS

estimator. In addition - except for W = (v), DPG = 4 and Σεi of type (I), D2SLS dominates the 2SLS

estimator. D2SLS always dominates OLS in terms of the bias and the RMSE.

Since 2SLS did not perform so bad in a lot of the cases considered above, we also increased the degree

of serial ”endogeneity”. We additionally investigate a Σεi where [Σεi]jj = 1 for j = 1, . . . , 3, and the other

elements are 0.9. For n = 5, even with ρ = 0 the bias with 2SLS is a factor two to ten larger than the
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bias observed with D2SLS. For ρ 6= 0 the bias increases. Things are even worse with OLS. Our D2SLS

estimator exhibits the usual oversizing behavior with ρ = 0 as well. Regarding the empirical analysis

carried out in the next section, it is important to note that even with ρ = 0, the bias with 2SLS for the

estimates of the regressors β is approximately a factor two to three of the bias observed with D2SLS.

This can be explained by the fact that x̃it is part of Zit, where x̃it is correlated with the noise term by the

construction of the model. For n = 50 the bias in most cases is the smallest one with D2SLS, however

the differences in absolute terms become small with n = 50.

Summing up, we observe that the estimator developed in Section 3 exhibits (in most cases) some

oversizing behavior as already observed in the literature where dynamic least squares estimation has been

applied. However, even with the true null-hypothesis ρ = 0, where no spatial endogenetiy is present, the

D2SLS estimator in most cases outperforms the DOLS estimator. By increasing, both - serial and spatial

endogeneity - we observe that the D2SLS estimator performs reasonably well. With the larger data sets,

where T = 200 and n = 50, the bias and the RMSE decreases compared to T = 200 and n = 5.

5 Empirical Illustration

In this section we apply the tools developed in the former sections to credit risk data. Quantitative

finance literature has mainly focused on the default risk of an entity (see e.g. Eom et al. (2004), Crosbie

and Bohn (2003), Collin-Dufresne et al. (2001), Campbell and Taksler (2003), Ericsson et al. (2009),

Longstaff et al. (2008), among others). In their seminal paper Collin-Dufresne et al. (2001) looked at the

residuals – arising from regressing bond spreads on usual credit risk factors – by means of a principal

component analysis, where the authors detected a strong factor in the residuals. While the coefficients

of determination in the initial regressions are surprisingly low, this factor has a higher explanatory power

than the regressors obtained from economic literature. Collin-Dufresne et al. (2001) claim that the strong

factor is driven by liquidity risk or other joint market behavior. Based on these findings a lot of articles

also looked on joint determinants of credit spreads (see e.g. Zhou (2001), Collin-Dufresne et al. (2003),

Jorion and Zhang (2007) and Norden and Weber (2009)). In the following a spatial correlation matrix W

will be derived from input-output data. Equipped with this matrix W we shall estimate model (9) by the
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αc = 0.01 αc = 0.05 αc = 0.10
W DGP Σεi OLS 2SLS DOLS D2SLS OLS 2SLS DOLS D2SLS OLS 2SLS DOLS D2SLS

i 1 I 1.0 1.0 3.0 2.9 5.4 5.7 9.2 9.4 10.8 11.0 15.1 15.2
i 1 II 1.2 1.2 2.4 2.2 5.3 5.3 8.7 8.8 10.9 11.2 15.1 14.9
i 1 III 1.2 1.2 3.6 3.5 6.0 5.8 8.9 9.0 11.1 11.2 14.9 14.7
i 2 I 1.7 1.6 2.5 2.5 4.7 4.7 7.8 7.7 8.3 8.4 12.0 12.1
i 2 II 1.8 1.8 3.4 3.2 5.5 5.6 10.1 10.3 9.0 9.1 16.8 16.5
i 2 III 2.6 2.6 3.8 3.8 6.3 6.3 11.8 12.0 11.7 11.7 18.1 17.5
i 3 I 1.6 1.6 1.9 2.0 4.4 4.5 6.8 6.7 8.3 8.4 10.9 11.0
i 3 II 1.8 1.8 2.3 2.3 5.7 5.6 9.2 9.0 8.8 8.9 15.2 15.2
i 3 III 3.0 2.9 3.6 3.6 6.2 6.4 11.4 11.4 11.5 11.4 17.7 17.6
i 4 I 1.4 1.4 1.6 1.6 4.8 5.0 6.6 6.8 9.7 8.1 12.8 12.9
i 4 II 1.2 1.3 2.0 2.1 4.5 4.7 7.1 6.9 8.7 8.7 12.5 12.5
i 4 III 1.3 1.3 2.0 2.0 4.9 4.8 7.0 7.2 10.4 10.4 12.6 12.6
i 5 I 3.8 3.1 7.2 7.8 10.5 9.2 17.2 16.7 18.6 15.4 23.5 23.8
i 5 II 3.1 3.0 5.0 5.4 9.6 9.5 13.8 13.5 16.8 16.8 21.7 21.6
i 5 III 3.2 3.2 5.0 5.0 10.2 10.4 12.5 12.5 16.5 16.6 21.4 21.4
ii 1 I 0.9 0.9 3.1 2.9 5.5 5.2 9.9 9.6 10.7 10.6 16.3 16.1
ii 1 II 1.4 1.3 3.0 2.6 6.3 6.0 9.7 9.6 12.3 12.5 17.4 17.3
ii 1 III 2.0 1.9 2.7 3.1 6.9 6.9 10.2 10.3 13.0 13.4 17.3 17.3
ii 2 I 1.1 1.1 3.2 3.0 3.3 3.2 8.2 8.0 6.8 6.8 14.7 14.4
ii 2 II 1.0 1.0 3.1 3.0 4.3 4.4 9.2 9.0 7.2 7.1 16.6 16.1
ii 2 III 1.5 1.6 3.6 3.7 5.7 5.7 10.0 9.6 10.3 10.4 16.2 16.4
ii 3 I 1.0 1.0 2.5 2.6 3.5 3.4 7.4 7.4 6.9 6.9 13.4 13.7
ii 3 II 1.0 1.0 2.6 2.6 4.3 4.1 8.8 8.9 6.7 6.9 15.2 14.8
ii 3 III 1.7 1.7 3.1 3.1 5.5 5.4 9.1 9.2 9.3 9.4 16.0 16.2
ii 4 I 1.3 1.2 2.0 1.8 4.8 3.9 7.2 7.5 10.4 8.8 12.6 11.9
ii 4 II 1.0 0.8 1.7 2.0 4.1 4.0 7.1 7.3 9.1 9.5 12.7 13.0
ii 4 III 1.4 1.3 2.2 2.2 4.7 4.9 7.5 7.4 10.6 10.6 12.3 12.6
ii 5 I 4.2 2.7 7.2 7.1 11.9 9.3 17.4 17.9 18.9 16.5 25.8 27.6
ii 5 II 3.2 3.2 5.5 5.2 10.3 10.6 13.9 14.2 17.4 17.3 21.3 21.8
ii 5 III 3.2 3.2 5.7 5.5 10.5 10.6 14.0 14.0 18.2 18.2 20.4 20.9
iii 1 I 2.1 0.9 4.6 2.9 8.3 5.2 13.0 9.7 15.0 10.7 19.6 16.1
iii 1 II 2.3 1.3 4.9 2.7 9.3 6.0 13.4 9.7 16.2 12.5 19.8 17.4
iii 1 III 3.0 1.8 5.4 3.1 11.0 6.9 15.9 10.5 18.3 13.4 22.7 17.3
iii 2 I 1.2 1.1 3.1 3.0 3.7 3.3 9.1 8.0 7.1 6.7 15.2 14.4
iii 2 II 1.1 1.0 3.9 3.0 4.3 4.4 10.9 8.9 7.8 7.4 17.7 16.2
iii 2 III 1.6 1.6 4.5 3.7 6.7 5.8 11.2 9.5 11.5 10.4 18.8 16.3
iii 3 I 1.0 1.0 2.6 2.6 3.8 3.4 8.5 7.4 6.7 6.9 13.7 13.6
iii 3 II 1.1 1.0 3.3 2.6 4.6 4.1 10.2 8.8 7.4 6.8 16.9 14.9
iii 3 III 2.0 1.7 4.1 3.1 6.2 5.4 10.7 9.2 10.5 9.3 17.8 16.4
iii 4 I 68.5 1.0 47.3 1.8 78.9 4.0 61.1 7.0 84.0 8.8 67.6 11.7
iii 4 II 5.0 0.9 6.0 2.0 11.4 4.0 14.4 7.3 18.7 9.3 21.8 13.0
iii 4 III 1.9 1.3 2.4 2.2 7.0 4.9 7.9 7.4 13.2 10.6 14.1 12.6
iii 5 I 75.5 2.4 61.0 7.1 84.9 9.1 69.9 17.7 88.7 16.2 76.1 27.5
iii 5 II 9.2 3.2 12.3 5.3 21.2 10.6 22.1 14.3 28.2 17.3 31.7 21.9
iii 5 III 4.6 3.2 6.2 5.5 13.4 10.6 14.4 14.0 22.3 18.2 22.5 20.9

Table 1: Size for the parameter ρ: Rejections rates of the Wald test for the true null hypothesis ρ = 0 in percentage terms,
given the significance levels αc = {0.01, 0.05, 0.1}. M = 1000 simulation runs. Cross-sectional dimension n = 5, time series
dimension T = 200.

D2SLS approach.

Similar to Berndt et al. (2008) the left hand side variable is the CDS spread, while firm specific credit

risk proxies, interest rate data and the V IX volatility index are used as the right hand side variables. By
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αc = 0.01 αc = 0.05 αc = 0.10
W DGP. Σεi OLS 2SLS DOLS D2SLS OLS 2SLS DOLS D2SLS OLS 2SLS DOLS D2SLS

iv 1 I 0.9 0.9 3.1 3.1 4.6 4.7 8.6 8.2 10.0 9.9 15.5 15.7
iv 1 II 1.4 1.4 2.7 2.5 4.6 4.6 7.9 7.9 10.5 10.4 14.7 14.8
iv 1 III 1.3 1.3 3.0 2.9 5.0 5.2 9.0 9.6 11.0 11.1 15.1 15.1
iv 2 I 1.8 1.8 1.9 1.8 5.7 5.9 7.4 7.5 9.1 8.9 13.6 13.3
iv 2 II 2.3 2.1 3.2 3.1 6.6 6.6 10.6 10.6 10.2 10.2 17.9 18.2
iv 2 III 2.6 2.6 5.1 4.9 7.4 7.6 13.0 12.9 12.5 12.3 18.8 19.0
iv 3 I 1.7 1.7 1.7 1.7 5.4 5.3 7.0 7.2 8.7 9.0 11.7 11.6
iv 3 II 2.2 2.1 2.8 2.8 6.3 6.5 9.5 9.6 9.8 9.9 16.4 16.6
iv 3 III 2.4 2.4 4.1 4.5 7.0 6.9 11.6 11.8 11.4 11.2 17.7 17.8
iv 4 I 1.3 1.5 2.1 2.3 4.8 5.0 7.7 7.0 10.9 9.3 13.7 12.4
iv 4 II 1.0 1.0 2.2 2.5 5.2 5.5 7.1 7.5 10.6 10.4 13.8 14.4
iv 4 III 1.5 1.5 2.3 2.3 6.1 6.2 8.4 8.5 11.3 11.2 13.9 14.2
iv 5 I 4.5 3.9 7.0 7.7 11.4 10.1 17.0 16.9 19.2 16.6 23.8 23.7
iv 5 II 4.1 4.0 6.1 6.1 10.8 10.7 13.8 13.8 17.3 17.2 21.2 20.9
iv 5 III 4.2 4.2 6.0 5.9 11.2 11.4 13.9 14.2 18.1 18.2 21.0 20.9
v 1 I 0.9 0.9 3.2 3.3 5.1 5.0 9.4 9.4 9.9 10.0 15.8 15.9
v 1 II 1.1 1.1 2.6 2.6 5.5 5.6 8.9 8.9 10.8 10.7 14.5 14.4
v 1 III 1.4 1.4 2.7 2.7 6.6 6.8 9.9 10.1 12.3 12.3 17.4 17.3
v 2 I 1.4 1.4 2.5 2.5 5.1 5.4 7.7 7.9 9.6 9.6 13.2 12.8
v 2 II 1.4 1.4 3.1 3.1 6.1 6.1 11.2 11.3 9.7 9.4 17.6 18.0
v 2 III 2.3 2.3 3.9 3.8 7.3 7.2 12.6 12.6 13.0 12.9 19.2 19.2
v 3 I 1.0 1.0 2.0 2.0 5.1 5.1 6.6 6.6 9.6 9.4 11.9 11.8
v 3 II 1.4 1.4 2.7 2.7 5.9 5.6 9.4 9.5 9.8 9.8 15.9 16.2
v 3 III 2.1 2.1 3.4 3.3 6.8 6.7 12.0 12.2 12.9 12.7 18.7 18.8
v 4 I 1.7 1.0 2.7 2.4 5.2 3.9 7.6 7.0 10.0 8.1 13.6 12.6
v 4 II 0.7 0.7 2.2 2.1 4.9 4.6 7.1 7.0 9.7 9.8 12.7 13.4
v 4 III 0.4 0.4 2.0 2.0 5.2 5.1 7.4 7.3 11.3 11.4 13.1 13.2
v 5 I 3.9 2.9 7.6 7.8 9.9 9.2 16.9 17.1 17.2 16.9 25.7 24.9
v 5 II 2.8 3.0 5.7 5.9 11.0 10.7 14.3 13.8 17.8 17.6 22.3 22.4
v 5 III 3.0 2.9 6.0 6.0 11.8 11.8 14.1 14.1 18.9 18.7 22.0 22.2

Table 2: Size for the parameter ρ: Rejections rates of the Wald test for the true null hypothesis ρ = 0 in percentage terms,
given the significance levels αc = {0.01, 0.05, 0.1}. M = 1000 simulation runs. Cross-sectional dimension n = 5, time series
dimension T = 200.

means of the matrix W we model a specific form of default risk correlation. The Wald test developed in

Theorem 1 checks whether the impact of spatial correlation described by W is significant. Although our

approach cannot ”solve” the economic problem highlighted by Collin-Dufresne et al. (2001), the following

analysis tries to add a further part to the puzzle of modeling credit spreads.
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Bias RMSE
W DGP Σεi OLS 2SLS DOLS D2SLS OLS 2SLS DOLS D2SLS

i 1 I -5.3E-4 2.4E-5 -4.3E-4 1.6E-5 2.16E-3 2.04E-3 2.04E-3 1.95E-3
i 1 II -5.9E-4 1.0E-5 -5.7E-4 2.0E-5 2.32E-3 2.15E-3 2.15E-3 2.36E-3
i 1 III -5.9E-4 1.1E-4 -6.0E-4 1.4E-4 2.44E-3 2.37E-3 2.37E-3 2.61E-3
i 2 I -3.7E-4 -9.7E-5 -2.0E-4 -6.2E-5 2.44E-3 2.60E-3 2.60E-3 1.25E-3
i 2 II -4.3E-4 -1.5E-4 -2.9E-4 -1.0E-4 2.49E-3 2.63E-3 2.63E-3 1.55E-3
i 2 III -4.4E-4 -1.1E-4 -4.2E-4 -1.3E-4 2.66E-3 2.80E-3 2.80E-3 2.11E-3
i 3 I -3.6E-4 -9.0E-5 -1.7E-4 -4.8E-5 2.38E-3 2.55E-3 2.55E-3 1.04E-3
i 3 II -4.2E-4 -1.4E-4 -2.4E-4 -7.7E-5 2.40E-3 2.54E-3 2.54E-3 1.27E-3
i 3 III -4.2E-4 -9.6E-5 -3.5E-4 -1.1E-4 2.50E-3 2.64E-3 2.64E-3 1.71E-3
i 4 I -4.2E-2 -8.0E-4 -2.0E-2 -6.2E-4 5.93E-2 1.86E-2 1.86E-2 2.95E-2
i 4 II -8.4E-4 -7.2E-5 -8.4E-4 -6.9E-5 2.50E-3 2.10E-3 2.10E-3 2.57E-3
i 4 III -1.4E-4 -1.3E-5 -1.0E-4 -1.9E-5 7.18E-4 7.15E-4 7.15E-4 6.81E-4
i 5 I -4.2E-2 -8.5E-4 -2.0E-2 -7.0E-4 5.97E-2 1.84E-2 1.84E-2 2.96E-2
i 5 II -8.5E-4 -7.8E-5 -8.4E-4 -8.3E-5 2.50E-3 2.10E-3 2.10E-3 2.57E-3
i 5 III -1.4E-4 -1.5E-5 -9.7E-5 -2.7E-5 7.17E-4 7.10E-4 7.10E-4 6.89E-4
ii 1 I -9.7E-4 -2.9E-4 -5.7E-4 3.4E-5 4.98E-3 4.66E-3 4.66E-3 4.44E-3
ii 1 II -8.9E-4 -9.6E-5 -8.1E-4 -1.3E-5 5.44E-3 5.21E-3 5.21E-3 5.73E-3
ii 1 III -8.1E-4 3.0E-4 -1.2E-3 -1.2E-4 6.11E-3 6.01E-3 6.01E-3 6.83E-3
ii 2 I -7.1E-4 -4.7E-4 -3.1E-4 -1.5E-4 5.12E-3 5.06E-3 5.06E-3 2.96E-3
ii 2 II -7.9E-4 -5.1E-4 -4.9E-4 -2.7E-4 5.26E-3 5.17E-3 5.17E-3 3.60E-3
ii 2 III -6.7E-4 -3.0E-4 -7.0E-4 -3.7E-4 5.68E-3 5.63E-3 5.63E-3 4.69E-3
ii 3 I -7.0E-4 -4.7E-4 -2.5E-4 -1.1E-4 4.96E-3 4.90E-3 4.90E-3 2.45E-3
ii 3 II -7.7E-4 -5.0E-4 -4.0E-4 -2.0E-4 5.03E-3 4.95E-3 4.95E-3 2.95E-3
ii 3 III -6.6E-4 -3.2E-4 -5.7E-4 -2.9E-4 5.28E-3 5.22E-3 5.22E-3 3.79E-3
ii 4 I -5.2E-2 7.0E-3 -2.5E-2 -1.5E-4 7.88E-2 5.40E-2 5.40E-2 4.48E-2
ii 4 II -1.7E-3 -3.9E-4 -1.5E-3 -1.5E-4 6.53E-3 5.81E-3 5.81E-3 6.60E-3
ii 4 III -5.4E-4 -3.9E-4 -2.1E-4 -6.9E-5 2.20E-3 2.07E-3 2.07E-3 1.96E-3
ii 5 I -5.2E-2 6.5E-3 -2.6E-2 -3.4E-5 7.83E-2 5.22E-2 5.22E-2 4.39E-2
ii 5 II -1.7E-3 -3.8E-4 -1.4E-3 -8.1E-6 6.59E-3 5.91E-3 5.91E-3 6.61E-3
ii 5 III -5.4E-4 -3.8E-4 -9.3E-5 5.4E-5 2.23E-3 2.09E-3 2.09E-3 2.00E-3
iii 1 I -4.1E-3 -5.0E-4 -3.1E-3 5.8E-5 1.09E-2 8.05E-3 8.05E-3 9.20E-3
iii 1 II -4.5E-3 -1.7E-4 -4.3E-3 -2.2E-5 1.19E-2 9.01E-3 9.01E-3 1.22E-2
iii 1 III -5.4E-3 5.1E-4 -5.9E-3 -2.0E-4 1.41E-2 1.04E-2 1.04E-2 1.58E-2
iii 2 I -2.3E-3 -8.2E-4 -1.1E-3 -2.7E-4 9.29E-3 8.76E-3 8.76E-3 5.29E-3
iii 2 II -2.5E-3 -8.9E-4 -1.7E-3 -4.7E-4 9.62E-3 8.94E-3 8.94E-3 6.55E-3
iii 2 III -2.6E-3 -5.3E-4 -2.4E-3 -6.4E-4 1.03E-2 9.74E-3 9.74E-3 8.62E-3
iii 3 I -2.3E-3 -8.2E-4 -9.5E-4 -1.8E-4 9.00E-3 8.48E-3 8.48E-3 4.38E-3
iii 3 II -2.5E-3 -8.8E-4 -1.4E-3 -3.5E-4 9.22E-3 8.56E-3 8.56E-3 5.38E-3
iii 3 III -2.5E-3 -5.5E-4 -2.0E-3 -5.0E-4 9.62E-3 9.04E-3 9.04E-3 7.00E-3
iii 4 I -2.7E-1 1.2E-2 -1.3E-1 -1.2E-4 3.80E-1 9.70E-2 9.70E-2 1.88E-1
iii 4 II -7.6E-3 -6.8E-4 -7.3E-3 -2.6E-4 1.77E-2 1.01E-2 1.01E-2 1.73E-2
iii 4 III -1.5E-3 -6.8E-4 -8.6E-4 -1.2E-4 4.49E-3 3.59E-3 3.59E-3 3.69E-3
iii 5 I -2.7E-1 1.1E-2 -1.3E-1 9.2E-5 3.81E-1 9.34E-2 9.34E-2 1.88E-1
iii 5 II -7.7E-3 -6.5E-4 -7.3E-3 -1.3E-5 1.80E-2 1.02E-2 1.02E-2 1.73E-2
iii 5 III -1.5E-3 -6.6E-4 -6.9E-4 9.3E-5 4.54E-3 3.61E-3 3.61E-3 3.64E-3

Table 3: Bias and RMSE for the parameter estimates for ρ = 0.5. Cross-sectional dimension n = 5, time series dimension
T = 200. M = 1000 Monte Carlo steps.

23



Bias RMSE
W DGP Σεi OLS 2SLS DOLS D2SLS OLS 2SLS DOLS D2SLS

iv 1 I -5.6E-4 3.0E-5 -4.5E-4 2.7E-5 2.57E-3 2.42E-3 2.42E-3 2.27E-3
iv 1 II -5.9E-4 6.3E-5 -5.6E-4 7.5E-5 2.67E-3 2.54E-3 2.54E-3 2.68E-3
iv 1 III -6.1E-4 1.3E-4 -6.2E-4 1.5E-4 2.90E-3 2.79E-3 2.79E-3 3.11E-3
iv 2 I -4.2E-4 -1.4E-4 -2.5E-4 -9.6E-5 2.93E-3 3.02E-3 3.02E-3 1.46E-3
iv 2 II -4.9E-4 -2.1E-4 -3.5E-4 -1.4E-4 3.07E-3 3.13E-3 3.13E-3 1.89E-3
iv 2 III -5.0E-4 -1.6E-4 -4.7E-4 -1.7E-4 3.27E-3 3.32E-3 3.32E-3 2.57E-3
iv 3 I -4.0E-4 -1.3E-4 -2.1E-4 -7.8E-5 2.87E-3 2.96E-3 2.96E-3 1.21E-3
iv 3 II -4.6E-4 -1.9E-4 -2.8E-4 -1.1E-4 2.96E-3 3.01E-3 3.01E-3 1.53E-3
iv 3 III -4.8E-4 -1.5E-4 -4.0E-4 -1.4E-4 3.08E-3 3.12E-3 3.12E-3 2.08E-3
iv 4 I -4.5E-2 -1.6E-3 -2.1E-2 -8.4E-4 6.40E-2 2.20E-2 2.20E-2 3.22E-2
iv 4 II -9.7E-4 -1.9E-4 -9.2E-4 -1.4E-4 2.92E-3 2.47E-3 2.47E-3 2.92E-3
iv 4 III -1.9E-4 -6.3E-5 -1.3E-4 -4.4E-5 8.76E-4 8.35E-4 8.35E-4 8.20E-4
iv 5 I -4.5E-2 -1.6E-3 -2.2E-2 -8.7E-4 6.42E-2 2.17E-2 2.17E-2 3.24E-2
iv 5 II -9.6E-4 -1.8E-4 -9.1E-4 -1.4E-4 2.88E-3 2.45E-3 2.45E-3 2.92E-3
iv 5 III -1.8E-4 -6.0E-5 -1.2E-4 -4.4E-5 8.68E-4 8.28E-4 8.28E-4 8.21E-4
v 1 I -7.5E-4 -1.6E-4 -5.4E-4 -5.0E-5 3.49E-3 3.28E-3 3.28E-3 3.07E-3
v 1 II -7.4E-4 -5.6E-5 -6.6E-4 1.2E-5 3.78E-3 3.60E-3 3.60E-3 3.77E-3
v 1 III -6.3E-4 1.7E-4 -7.2E-4 1.0E-4 4.28E-3 4.12E-3 4.12E-3 4.62E-3
v 2 I -5.2E-4 -2.6E-4 -3.2E-4 -1.8E-4 4.06E-3 4.21E-3 4.21E-3 2.09E-3
v 2 II -5.9E-4 -3.0E-4 -4.4E-4 -2.4E-4 4.23E-3 4.35E-3 4.35E-3 2.62E-3
v 2 III -5.5E-4 -1.8E-4 -5.7E-4 -2.5E-4 4.46E-3 4.56E-3 4.56E-3 3.51E-3
v 3 I -5.0E-4 -2.4E-4 -2.6E-4 -1.4E-4 3.97E-3 4.12E-3 4.12E-3 1.72E-3
v 3 II -5.6E-4 -2.8E-4 -3.6E-4 -1.8E-4 4.08E-3 4.21E-3 4.21E-3 2.13E-3
v 3 III -5.4E-4 -1.8E-4 -4.7E-4 -2.1E-4 4.20E-3 4.31E-3 4.31E-3 2.84E-3
v 4 I -4.7E-2 -2.4E-4 -2.2E-2 -1.0E-3 6.81E-2 2.98E-2 2.98E-2 3.70E-2
v 4 II -1.2E-3 -3.2E-4 -1.0E-3 -1.8E-4 3.91E-3 3.46E-3 3.46E-3 3.88E-3
v 4 III -3.0E-4 -1.7E-4 -1.6E-4 -6.7E-5 1.27E-3 1.22E-3 1.22E-3 1.14E-3
v 5 I -4.7E-2 -3.1E-4 -2.3E-2 -1.0E-3 6.84E-2 2.92E-2 2.92E-2 3.66E-2
v 5 II -1.2E-3 -3.1E-4 -1.0E-3 -1.5E-4 3.86E-3 3.43E-3 3.43E-3 3.85E-3
v 5 III -2.9E-4 -1.7E-4 -1.2E-4 -3.5E-5 1.26E-3 1.21E-3 1.21E-3 1.14E-3

Table 4: Bias and RMSE for the parameter estimates for ρ = 0.5. Cross-sectional dimension n = 5, time series dimension
T = 200. M = 1000 Monte Carlo steps.

5.1 Data

In this analysis CDS spreads are used to describe the implied credit risk of a firm.8 The insurance premium

the buyer has to pay to the seller is the CDS premium. The CDS premium is the amount payable per year

to insure against the event of default of any underlying with notational amount 1; it is usually measured in

basis points. With the usual quarterly frequency, the buyer pays premium/(4 · 10000) times the nominal

value stipulated in the contract to the seller. The probability of default and the loss given default (one

minus the recovery rate) should be the main driving forces of the CDS spreads (see e.g. Hull (2006),

8 With a CDS contract a protection buyer acquires insurance against the default of a specified company. The protection
seller declares his willingness to compensate the protection buyer for a loss arising in the case of default of the specified entity.
For more details on the specification of credit default swap contracts we refer the reader to the International Securities and
Derivatives Association (ISDA); www.isda.org.
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αc = 0.01 αc = 0.05 αc = 0.10
W DGP Σεi OLS 2SLS DOLS D2SLS OLS 2SLS DOLS D2SLS OLS 2SLS DOLS D2SLS

i 1 I 1.3 1.3 1.9 1.9 5.3 5.6 8.8 9.2 10.9 10.9 14.2 14.0
i 1 II 1.4 1.4 2.2 2.4 6.5 6.5 8.9 8.8 11.6 11.7 15.8 15.8
i 1 III 1.4 1.4 2.9 3.0 6.6 6.6 9.5 9.3 11.4 11.4 14.5 14.6
i 2 I 1.2 1.1 0.8 0.9 5.1 5.2 4.7 4.9 9.7 9.6 10.2 10.4
i 2 II 1.0 1.1 2.1 2.3 5.4 5.5 8.2 8.3 10.5 10.4 14.1 13.8
i 2 III 1.6 1.7 4.0 3.9 6.7 6.8 10.3 10.2 13.5 13.7 16.6 16.8
i 3 I 1.1 1.1 0.4 0.5 4.9 4.9 4.0 4.0 9.8 9.5 7.9 7.9
i 3 II 0.9 1.0 1.2 1.2 5.2 5.3 7.1 7.3 10.2 10.4 12.2 12.5
i 3 III 1.6 1.6 3.3 3.2 6.7 6.5 9.8 9.9 13.5 13.5 15.6 15.5
i 4 I 0.2 0.2 0.8 0.8 3.2 3.0 6.2 6.0 7.8 6.8 12.4 12.2
i 4 II 0.0 0.0 0.6 0.8 3.2 3.2 5.8 6.0 8.4 8.4 11.8 11.8
i 4 III 0.4 0.4 1.0 1.0 4.0 4.0 6.4 6.4 8.8 8.8 12.0 12.0
i 5 I 2.4 2.0 5.6 6.2 8.2 7.6 14.2 14.2 14.4 13.2 21.0 20.8
i 5 II 2.0 2.0 4.8 4.6 8.4 8.6 13.4 12.4 15.6 15.4 21.0 21.2
i 5 III 2.2 2.2 4.0 4.0 8.2 8.2 11.8 11.8 15.4 15.4 20.0 20.2
ii 1 I 1.3 1.3 2.0 2.1 5.6 5.5 8.2 8.2 11.2 11.0 16.0 16.0
ii 1 II 1.3 1.2 1.7 1.5 6.3 6.3 9.5 9.4 11.2 11.3 15.9 16.1
ii 1 III 1.2 1.2 1.9 2.0 6.3 6.0 9.4 9.7 11.9 12.0 16.2 16.4
ii 2 I 0.8 0.8 1.1 1.0 4.1 4.1 4.9 4.7 8.5 8.4 10.4 10.6
ii 2 II 1.4 1.4 1.8 1.8 4.3 4.3 7.0 7.0 9.0 9.4 13.8 13.8
ii 2 III 1.8 1.8 2.5 2.4 6.4 6.6 10.0 9.8 11.2 11.0 15.1 15.6
ii 3 I 0.9 0.9 0.9 0.9 3.8 3.9 3.8 3.8 8.3 8.3 8.2 8.0
ii 3 II 1.3 1.2 2.0 2.0 4.6 4.4 6.4 6.3 8.4 8.6 12.2 12.1
ii 3 III 1.6 1.6 2.2 2.2 6.5 6.5 8.8 9.0 11.3 11.2 14.4 14.8
ii 4 I 0.0 0.4 0.6 1.2 4.0 3.8 6.0 5.0 7.8 7.2 9.6 9.8
ii 4 II 0.2 0.2 0.4 0.4 3.8 3.8 6.0 5.6 7.8 7.8 10.4 10.2
ii 4 III 0.2 0.2 0.6 0.6 4.6 4.6 5.6 5.6 7.8 8.0 11.2 11.2
ii 5 I 3.6 2.8 4.8 4.6 9.2 8.0 12.8 13.4 16.0 13.6 22.8 22.2
ii 5 II 3.6 3.4 5.0 4.6 8.4 8.6 11.2 11.0 15.4 15.0 19.0 18.8
ii 5 III 3.0 3.0 4.4 4.4 9.2 9.0 11.2 11.0 16.0 15.8 20.0 20.2
iii 1 I 1.6 1.7 2.4 2.6 5.6 5.7 8.0 7.9 13.0 13.0 12.9 12.9
iii 1 II 1.3 1.3 2.3 2.4 6.6 6.7 7.5 7.6 12.9 12.7 13.7 13.8
iii 1 III 1.2 1.3 2.2 2.3 6.8 6.6 9.3 9.0 12.4 12.3 13.7 13.6
iii 2 I 1.0 0.9 1.5 1.5 4.0 4.2 4.2 4.2 8.0 7.9 8.9 8.9
iii 2 II 1.4 1.3 2.3 2.4 5.1 5.1 8.0 7.9 10.0 9.8 13.7 13.5
iii 2 III 1.6 1.6 3.3 3.3 6.3 6.6 9.9 9.9 12.2 12.1 15.1 15.2
iii 3 I 0.9 1.0 1.0 0.9 4.3 4.2 3.7 3.6 8.0 8.0 7.0 7.0
iii 3 II 1.1 1.2 1.8 1.9 5.3 5.1 7.3 7.4 9.9 10.4 11.9 12.1
iii 3 III 1.4 1.4 2.8 2.8 7.0 6.8 8.7 8.5 12.5 12.6 15.4 15.3
iii 4 I 0.6 0.6 2.2 2.4 4.0 3.6 6.0 5.0 9.0 7.8 12.0 10.8
iii 4 II 0.6 0.6 1.0 1.0 4.2 4.2 6.6 6.6 9.8 9.6 12.4 12.4
iii 4 III 0.4 0.4 1.0 1.0 4.6 4.6 7.2 7.2 9.0 9.0 11.8 11.8
iii 5 I 3.6 2.6 4.8 5.0 10.2 10.0 13.6 13.6 16.4 15.8 23.2 21.2
iii 5 II 3.0 3.0 5.6 5.2 10.8 11.2 14.0 13.6 18.2 18.6 22.6 22.2
iii 5 III 3.2 3.2 5.2 5.2 9.8 9.8 14.4 14.4 17.4 17.6 22.4 22.4

Table 5: Size for the parameter ρ: Rejections rates of the Wald test for the true null hypothesis ρ = 0 in percentage terms,
given the significance levels αc = {0.01, 0.05, 0.1}. M = 1000 simulation runs. Cross-sectional dimension n = 50, time series
dimension T = 200.

Schönbucher (2003)).

We utilize the dataset already used in Schneider et al. (2010), where CDS spreads of 278 firms obtained

from the Markit Group have been investigated. We focus on the five year maturities which are typically
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αc = 0.01 αc = 0.05 αc = 0.10
W DGP Σεi OLS 2SLS DOLS D2SLS OLS 2SLS DOLS D2SLS OLS 2SLS DOLS D2SLS

iv 1 I 1.3 1.4 1.7 1.7 5.5 5.4 8.6 8.6 11.0 10.7 15.2 15.0
iv 1 II 1.6 1.5 2.3 2.4 6.4 6.4 9.1 9.1 12.1 12.1 15.9 15.8
iv 1 III 1.5 1.4 3.3 3.1 6.9 6.9 8.7 8.9 11.7 11.6 15.1 15.0
iv 2 I 1.0 1.0 0.8 0.8 5.2 5.1 5.0 4.8 9.5 9.5 9.8 9.6
iv 2 II 1.3 1.2 1.9 2.0 5.2 5.3 7.5 7.6 10.4 10.2 13.9 13.8
iv 2 III 1.6 1.6 3.5 3.7 6.9 7.0 10.1 9.8 13.0 13.1 16.4 16.4
iv 3 I 1.0 1.0 0.5 0.5 4.7 4.7 3.6 3.6 9.5 9.5 8.2 8.2
iv 3 II 1.1 1.1 1.2 1.1 5.0 4.9 6.8 6.6 10.6 10.6 12.2 12.0
iv 3 III 1.6 1.6 3.2 3.2 6.5 6.5 8.9 9.0 12.9 12.9 15.7 15.4
iv 4 I 0.2 0.2 0.8 0.8 3.6 3.8 5.8 5.8 7.4 7.0 11.4 11.6
iv 4 II 0.2 0.2 1.0 1.0 3.8 3.8 7.0 7.0 7.8 8.0 12.8 12.8
iv 4 III 0.6 0.6 1.2 1.2 4.2 4.2 6.8 6.8 8.8 8.8 13.2 13.0
iv 5 I 2.6 2.4 5.6 5.8 8.6 7.6 13.8 14.4 14.2 15.2 22.2 22.4
iv 5 II 2.4 2.4 4.8 4.8 8.2 8.4 13.2 13.2 16.4 16.2 20.8 20.8
iv 5 III 2.2 2.2 3.8 3.8 9.0 9.0 12.6 12.6 15.6 15.4 19.2 19.6
v 1 I 1.3 1.3 1.7 1.6 4.5 4.6 7.9 7.7 10.4 10.3 14.0 13.9
v 1 II 1.2 1.2 2.1 2.1 4.7 4.7 7.7 7.5 10.7 10.5 14.9 14.6
v 1 III 1.1 1.2 2.1 2.1 5.4 5.4 8.0 7.9 10.7 10.6 15.3 15.1
v 2 I 0.7 0.7 0.8 0.9 4.6 4.8 3.9 3.9 9.4 9.4 9.1 9.0
v 2 II 1.0 0.9 1.6 1.6 5.0 5.1 7.2 7.5 10.9 11.1 13.6 13.4
v 2 III 1.8 1.6 3.1 3.1 6.9 7.0 10.5 10.4 11.3 11.4 16.5 17.0
v 3 I 0.6 0.6 0.6 0.6 4.7 4.7 2.8 2.8 9.5 9.3 6.9 7.1
v 3 II 0.9 1.0 1.3 1.3 4.6 4.8 6.5 6.4 10.3 10.3 12.3 12.1
v 3 III 2.0 1.9 2.6 2.6 7.0 7.0 9.4 9.4 11.0 11.1 16.5 16.4
v 4 I 0.0 0.2 1.4 1.4 3.4 4.0 6.4 5.4 8.0 6.8 10.4 11.0
v 4 II 0.4 0.4 2.0 2.0 4.8 5.0 6.0 6.2 7.6 7.6 13.0 12.6
v 4 III 0.2 0.2 2.0 2.0 5.0 5.0 6.4 6.4 8.4 8.2 11.6 11.6
v 5 I 1.0 1.7 4.0 4.0 6.0 4.7 10.3 10.0 11.7 9.0 20.0 18.0
v 5 II 2.3 2.3 4.3 4.3 5.7 5.7 10.3 10.0 12.3 12.3 17.0 17.3
v 5 III 2.0 2.0 3.7 3.7 6.7 6.7 10.3 10.3 13.0 12.3 17.7 18.0

Table 6: Size for the parameter ρ: Rejections rates of the Wald test for the true null hypothesis ρ = 0 in percentage terms,
given the significance levels αc = {0.01, 0.05, 0.1}. M = 1000 simulation runs. Cross-sectional dimension n = 5, time series
dimension T = 200.

the most liquid ones (see e.g. Hull et al. (2004)). The observation period is January 2, 2001 to May 30,

2008. In line with a bulk of quantitative finance literature we stick to weekly data, such that T = 230.

Using weekly data instead of daily observations is often done to avoid day of the week effects.

Next the CDS data are matched with firm specific characteristics obtained from Thomson Datastream

and Compustat data. We construct the KMV distance to default, DDit, from firm specific data by following

Crosbie and Bohn (2003). Moreover, we calculate the debt to value ratio, DV Rit. This firm specific data

was available for 176 out of the 278 firms. Following Berndt et al. (2008) we also include the V IX volatility

index from the Chicago Board Options Exchange (http://www.cboe.com/micro/VIX/vixintro.aspx) as

an explanatory variable. Additionally, we include a short run and a long run interest rate obtained from

the Federal Reserve (http://federalreserve.gov/releases/h15/data.htm). In more detail we use
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Bias RMSE
W DGP Σεi OLS 2SLS DOLS D2SLS OLS 2SLS DOLS D2SLS

i 1 I -3.1E-5 -2.1E-6 -2.8E-5 -3.4E-6 6.96E-5 8.49E-5 8.49E-5 6.00E-5
i 1 II -3.4E-5 -2.2E-6 -3.5E-5 -4.1E-6 7.54E-5 9.02E-5 9.02E-5 7.29E-5
i 1 III -3.9E-5 -1.4E-6 -3.9E-5 -3.1E-6 8.10E-5 9.51E-5 9.51E-5 8.52E-5
i 2 I -3.6E-5 -8.6E-6 -1.5E-5 -6.9E-7 1.19E-4 1.72E-4 1.72E-4 5.36E-5
i 2 II -3.8E-5 -5.1E-6 -2.1E-5 1.4E-8 1.23E-4 1.74E-4 1.74E-4 6.80E-5
i 2 III -3.9E-5 1.3E-6 -2.9E-5 6.3E-7 1.25E-4 1.74E-4 1.74E-4 8.86E-5
i 3 I -3.5E-5 -8.5E-6 -1.3E-5 -9.2E-7 1.18E-4 1.70E-4 1.70E-4 4.52E-5
i 3 II -3.7E-5 -5.2E-6 -1.8E-5 -2.0E-7 1.20E-4 1.71E-4 1.71E-4 5.64E-5
i 3 III -3.7E-5 1.2E-6 -2.4E-5 6.1E-7 1.21E-4 1.68E-4 1.68E-4 7.24E-5
i 4 I -2.7E-3 -2.1E-5 -1.3E-3 -2.9E-5 3.39E-3 6.25E-4 6.25E-4 1.65E-3
i 4 II -3.3E-5 -2.5E-6 -3.3E-5 -2.9E-6 6.14E-5 6.52E-5 6.52E-5 6.44E-5
i 4 III -4.7E-6 -7.2E-7 -3.9E-6 -8.1E-7 1.64E-5 2.20E-5 2.20E-5 1.65E-5
i 5 I -2.7E-3 -2.3E-5 -1.3E-3 -3.1E-5 3.40E-3 6.22E-4 6.22E-4 1.65E-3
i 5 II -3.3E-5 -2.6E-6 -3.3E-5 -2.4E-6 6.17E-5 6.53E-5 6.53E-5 6.41E-5
i 5 III -4.8E-6 -7.5E-7 -3.7E-6 -6.8E-7 1.65E-5 2.21E-5 2.21E-5 1.65E-5
ii 1 I -4.0E-5 -4.5E-6 -3.5E-5 -6.8E-6 1.12E-4 1.25E-4 1.25E-4 9.73E-5
ii 1 II -4.2E-5 -2.0E-6 -4.2E-5 -5.9E-6 1.18E-4 1.32E-4 1.32E-4 1.12E-4
ii 1 III -4.4E-5 3.2E-6 -4.6E-5 -2.1E-6 1.20E-4 1.33E-4 1.33E-4 1.26E-4
ii 2 I -4.1E-5 -1.8E-5 -1.5E-5 -1.1E-8 1.73E-4 2.29E-4 2.29E-4 8.23E-5
ii 2 II -4.6E-5 -1.7E-5 -2.1E-5 3.8E-7 1.82E-4 2.31E-4 2.31E-4 1.04E-4
ii 2 III -4.4E-5 -6.0E-6 -3.1E-5 2.5E-6 1.85E-4 2.31E-4 2.31E-4 1.35E-4
ii 3 I -4.1E-5 -1.8E-5 -1.3E-5 -1.6E-7 1.71E-4 2.27E-4 2.27E-4 6.93E-5
ii 3 II -4.6E-5 -1.8E-5 -1.8E-5 2.4E-8 1.79E-4 2.28E-4 2.28E-4 8.56E-5
ii 3 III -4.4E-5 -6.6E-6 -2.6E-5 2.1E-6 1.79E-4 2.23E-4 2.23E-4 1.10E-4
ii 4 I -3.1E-3 -3.2E-5 -1.4E-3 -6.7E-5 4.29E-3 8.83E-4 8.83E-4 2.12E-3
ii 4 II -3.9E-5 -5.0E-6 -3.8E-5 -6.1E-6 9.11E-5 9.20E-5 9.20E-5 9.37E-5
ii 4 III -6.5E-6 -1.6E-6 -4.3E-6 -1.7E-6 2.64E-5 3.13E-5 3.13E-5 2.61E-5
ii 5 I -3.1E-3 -4.2E-5 -1.4E-3 -6.6E-5 4.31E-3 8.79E-4 8.79E-4 2.10E-3
ii 5 II -4.0E-5 -6.0E-6 -3.7E-5 -5.3E-6 9.19E-5 9.19E-5 9.19E-5 9.25E-5
ii 5 III -6.8E-6 -2.0E-6 -3.6E-6 -1.4E-6 2.64E-5 3.16E-5 3.16E-5 2.59E-5
iii 1 I -5.3E-5 -9.0E-6 -4.6E-5 -7.1E-6 1.64E-4 1.71E-4 1.71E-4 1.41E-4
iii 1 II -5.6E-5 -8.9E-6 -5.5E-5 -8.0E-6 1.73E-4 1.83E-4 1.83E-4 1.63E-4
iii 1 III -5.7E-5 -4.4E-6 -5.9E-5 -5.5E-6 1.71E-4 1.85E-4 1.85E-4 1.77E-4
iii 2 I -4.6E-5 -2.1E-5 -1.5E-5 -8.4E-7 2.12E-4 2.84E-4 2.84E-4 1.08E-4
iii 2 II -5.2E-5 -2.0E-5 -2.3E-5 1.5E-6 2.28E-4 2.99E-4 2.99E-4 1.39E-4
iii 2 III -4.6E-5 -5.2E-6 -3.4E-5 -8.4E-7 2.32E-4 3.20E-4 3.20E-4 1.76E-4
iii 3 I -4.7E-5 -2.2E-5 -1.3E-5 -7.8E-7 2.10E-4 2.80E-4 2.80E-4 9.01E-5
iii 3 II -5.3E-5 -2.1E-5 -1.9E-5 1.4E-6 2.23E-4 2.94E-4 2.94E-4 1.14E-4
iii 3 III -4.6E-5 -6.5E-6 -2.9E-5 -4.0E-7 2.24E-4 3.09E-4 3.09E-4 1.44E-4
iii 4 I -3.6E-3 -4.9E-5 -1.7E-3 -7.0E-5 5.45E-3 1.27E-3 1.27E-3 2.68E-3
iii 4 II -5.0E-5 -1.1E-5 -4.6E-5 -8.9E-6 1.29E-4 1.38E-4 1.38E-4 1.30E-4
iii 4 III -9.3E-6 -4.4E-6 -4.9E-6 -2.8E-6 3.78E-5 4.64E-5 4.64E-5 3.63E-5
iii 5 I -3.6E-3 -6.5E-5 -1.7E-3 -7.2E-5 5.46E-3 1.26E-3 1.26E-3 2.64E-3
iii 5 II -5.1E-5 -1.3E-5 -4.5E-5 -8.0E-6 1.32E-4 1.38E-4 1.38E-4 1.27E-4
iii 5 III -9.6E-6 -4.9E-6 -3.7E-6 -2.2E-6 3.82E-5 4.68E-5 4.68E-5 3.59E-5

Table 7: Bias and RMSE for the parameter estimates for ρ = 0.95. Cross-sectional dimension n = 50, time series dimension
T = 200. M = 1000 Monte Carlo steps.

two year and ten year US treasury yields, denoted by r2t and r10t, respectively. Since a firm’s cost of

capital is usually affected by interest rates, government bond yields are often included when credit risk is

investigated. A more detailed description of the data and the construction of the explanatory variables is

provided in Appendix C.
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Bias RMSE
W DGP Σεi OLS 2SLS DOLS D2SLS OLS 2SLS DOLS D2SLS

iv 1 I -3.2E-5 -2.8E-6 -2.9E-5 -3.9E-6 7.52E-5 8.86E-5 8.86E-5 6.35E-5
iv 1 II -3.5E-5 -2.9E-6 -3.7E-5 -4.7E-6 8.05E-5 9.38E-5 9.38E-5 7.66E-5
iv 1 III -4.0E-5 -2.2E-6 -4.1E-5 -3.9E-6 8.46E-5 9.98E-5 9.98E-5 8.89E-5
iv 2 I -3.7E-5 -9.1E-6 -1.6E-5 -6.4E-7 1.28E-4 1.80E-4 1.80E-4 5.63E-5
iv 2 II -3.9E-5 -5.8E-6 -2.2E-5 -2.8E-7 1.30E-4 1.81E-4 1.81E-4 7.15E-5
iv 2 III -4.0E-5 3.2E-7 -3.0E-5 1.1E-8 1.31E-4 1.82E-4 1.82E-4 9.20E-5
iv 3 I -3.6E-5 -9.1E-6 -1.4E-5 -9.2E-7 1.27E-4 1.78E-4 1.78E-4 4.76E-5
iv 3 II -3.8E-5 -5.9E-6 -1.9E-5 -4.7E-7 1.28E-4 1.78E-4 1.78E-4 5.93E-5
iv 3 III -3.8E-5 2.3E-7 -2.5E-5 1.3E-7 1.26E-4 1.76E-4 1.76E-4 7.52E-5
iv 4 I -2.9E-3 -2.8E-5 -1.4E-3 -2.7E-5 3.64E-3 6.75E-4 6.75E-4 1.76E-3
iv 4 II -3.6E-5 -3.5E-6 -3.6E-5 -3.7E-6 6.58E-5 6.98E-5 6.98E-5 6.87E-5
iv 4 III -5.3E-6 -1.1E-6 -4.4E-6 -1.1E-6 1.74E-5 2.35E-5 2.35E-5 1.73E-5
iv 5 I -2.9E-3 -3.1E-5 -1.4E-3 -2.9E-5 3.65E-3 6.73E-4 6.73E-4 1.76E-3
iv 5 II -3.6E-5 -3.7E-6 -3.6E-5 -3.2E-6 6.60E-5 6.98E-5 6.98E-5 6.82E-5
iv 5 III -5.4E-6 -1.2E-6 -4.1E-6 -9.4E-7 1.75E-5 2.35E-5 2.35E-5 1.73E-5
v 1 I -3.6E-5 -4.4E-6 -3.2E-5 -6.5E-6 9.37E-5 1.06E-4 1.06E-4 7.87E-5
v 1 II -3.9E-5 -5.3E-6 -4.0E-5 -8.3E-6 9.92E-5 1.11E-4 1.11E-4 9.35E-5
v 1 III -4.2E-5 -4.3E-6 -4.3E-5 -7.3E-6 1.02E-4 1.17E-4 1.17E-4 1.08E-4
v 2 I -3.9E-5 -1.1E-5 -1.7E-5 1.3E-6 1.57E-4 2.00E-4 2.00E-4 7.08E-5
v 2 II -4.2E-5 -8.8E-6 -2.3E-5 2.3E-6 1.62E-4 2.00E-4 2.00E-4 8.97E-5
v 2 III -4.2E-5 -3.4E-6 -3.2E-5 3.5E-6 1.63E-4 2.02E-4 2.02E-4 1.17E-4
v 3 I -3.9E-5 -1.2E-5 -1.4E-5 6.2E-7 1.55E-4 1.98E-4 1.98E-4 5.99E-5
v 3 II -4.1E-5 -9.6E-6 -2.0E-5 1.3E-6 1.59E-4 1.96E-4 1.96E-4 7.43E-5
v 3 III -4.1E-5 -4.2E-6 -2.7E-5 2.9E-6 1.57E-4 1.94E-4 1.94E-4 9.52E-5
v 4 I -3.1E-3 -3.0E-6 -1.5E-3 -1.8E-5 4.06E-3 7.96E-4 7.96E-4 1.98E-3
v 4 II -3.9E-5 -2.3E-6 -3.9E-5 -2.5E-6 8.13E-5 8.20E-5 8.20E-5 8.37E-5
v 4 III -6.1E-6 -9.0E-7 -4.6E-6 -7.0E-7 2.26E-5 2.75E-5 2.75E-5 2.21E-5
v 5 I -3.0E-3 -5.1E-6 -1.4E-3 -1.9E-6 3.92E-3 7.04E-4 7.04E-4 1.86E-3
v 5 II -3.7E-5 -2.5E-6 -3.6E-5 -1.8E-6 7.89E-5 7.41E-5 7.41E-5 7.90E-5
v 5 III -6.1E-6 -1.1E-6 -4.1E-6 -6.7E-7 2.22E-5 2.53E-5 2.53E-5 2.09E-5

Table 8: Bias and RMSE for the parameter estimates for ρ = 0.95. Cross-sectional dimension n = 50, time series dimension
T = 200. M = 1000 Monte Carlo steps.

To apply and estimate the spatial autocorrelation model, the spatial weights matrix W has to be

constructed. We use the industry-by-industry total requirements matrix for the year 2002 provided by

the Bureau of Labor Statistics (BLS) and match each firm in our data to a particular BLS industry.

In this data set the total requirements matrix contains for each industry i the proportion of inputs

ultimately stemming from each other industry j relative to its own sales. We use this to proxy for possible

correlation of shocks coming through the supply chain. In more formal terms we consider the weights

Wij = {Inputs from industry j in US$}/{Total sales in industry i in US$ }. If firm i operates in industry

i and firm j in industry j, the weights W ij are set equal to Wij. This results in the n × n matrix W.

Then we set the elements of the matrix W along the main diagonal equal to zero, which yields the

matrix W. To improve the numerical properties and to be able to interpret the estimated coefficients, we
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2 3 4 5 6 7 Total

AA 0 4 1 5 0 0 10
A 4 19 5 16 0 1 45
BBB 16 25 18 8 1 4 72
BB 1 6 6 1 0 0 14
B 1 3 2 0 1 0 7

Total 22 57 32 30 2 5 148

Table 9: Distribution of firms according to industry and rating. Horizontally first digit of the firm’s NAIC Code. Cross-
sectional dimension n = 148.

normalize the matrix W by its largest absolute eigenvalue. As a result we get our matrix W. The range

for the spatial autocorrelation parameter is bounded by one and, as a result, ρ can be interpreted in a

manner comparable to the time series autocorrelation parameter. With the zeros in the main diagonal

and ρ ∈ (−1, 1), the requirements of Assumption 1 are fulfilled.

After matching the CDS data with the data collected from Thomson Datastream, Compustat and the

Bureau of Labor Statistics and correcting for firms where we detected problems in the data (e.g. extreme

spikes, missing values, unclear industry affiliation, etc) we arrived at a cross-section of n = 148 firms. A

clustering of the data toward the first digit of the NAICs industry classification and the S&P rating results

in Table 9. A NAICs code starting with 2 stands for mining, utilities or construction, 3 for manufacturing,

4 for trade and transportation, 5 for information, banking and finance, 6 for educational services, health

care and social assistance, while 7 stands for arts, entertainment, and accommodation and food services.

For more details see http://www.naics.com.

Before we proceed with the econometric model, let us briefly discuss the expected impacts (expected

based on economic theory, intuition and literature). The reader should note that the CDS spread is often

used as an indicator for the probability of default of a firm. Since the distance to default measures the

distance to the default boundary, we expect a lower spread if the distance to default increases. A raise in

the firm’s leverage should increase the default probability and therefore the CDS spread. If the interest

rate increases the cost of capital increases for a leveraged firm. This should drive up the CDS spread.

With the volatility measure V IX we expect higher spreads in periods of higher volatility. The rating of

a firm should also reflect the probability of default. Rating effects should be included in the fixed effects
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αi, i = 1, . . . , n in model (1). Last but not least, due to possible credit risk correlation and contagion

effects we expect that the CDS spreads are positively correlated. So we expect a positive ρ when (9) is

estimated. Finally, we want to remark that this econometric specification includes the ”common variables”

xct = (∆r2t,∆r10t,∆V IXt)
′, where wct = (∆r2t,∆r10t,∆V IXt)

′. To include xct in model (1) we only

have to augment Assumption 2 by the assumption that wct = Ψc (L) εct is independent of wit for all

i = 1, . . . , n, and Assumption 3 by assuming that also xct is a full rank integrated process with Ωc > 0.

In this case x̃ct can be included into X and Z, where xct is part of each Xit and Zit. Theorem 1 still

continues to hold.9

By Assumption 2 the explanatory variables xit should be I(1). The question arises whether our model

assumptions are compatible with the data observed. Our variables include the distance to default which

should follow a geometric Brownian motion as long as the firm does not default based on the model

assumptions (see e.g. Crosbie and Bohn (2003), Schönbucher (2003)). Observe that by construction, it

must be that DDit ≥ 0. Translated to discrete time the distance to default should follow a random walk

with an absorbing barrier. Only firms that do not hit this barrier are observed in the sample. Among the

remaining variables, the debt to value ratio lives on the interval [0, 100], the V IX index measures volatility

and is therefore be non-negative. Following applied literature, we run augmented Dickey-Fuller tests for

a unit root for these data and the CDS spreads themselves and find that the null of a unit root is not

rejected for almost all time series with a five percent significance level. We also used the Im, Pesaran and

Shin tests provided in in the EViews package and arrived at the same results. For the distance to default

the null of a unit root is rejected, although the serial correlation is quite high. For the debt-to-value

ratios, the V IX and the interest rates there is strong evidence for the presence of a unit root. Given these

results, we conjecture that our theoretical model considered in Section 2 provides a useful approximation

of the (unknown) data generating process of the empirical data considered.

9Maybe the independence assumption between wit and wct may be a strong assumption. By relaxing this assumption
and allowing for correlation between all components would require to project on all leads and lags as already discussed in
the paragraph below equation (23). For large n we would suffer from the curse of dimensionality arising with the nuisance
parameters. This problem will be subject to further research.
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γ̂ OLS 2SLS DOLS D2SLS

ρ 0.5211 < 0.001 0.3920 0.0331 0.4936 < 0.001 0.3928 < 0.001
βDV R -14.6912 0.0092 -15.2656 0.4317 -21.5765 < 0.001 -22.2903 < 0.001
βDD 5.3419 < 0.001 5.4718 < 0.001 5.1182 < 0.001 5.2172 < 0.001
βr2 4.6310 0.4589 4.2952 0.0025 9.9653 0.0256 9.9547 0.0260
βr10 -39.5642 0.0024 -42.4143 0.8117 -49.7624 < 0.001 -52.4572 < 0.001
βV IX -0.0472 0.8319 -0.0233 < 0.001 -0.1985 0.2076 -0.1869 0.2293

Table 10: Parameter Estimates: Model (9) applied to CDS data. yit is the CDS spread on a firm level. The explanatory
variables are the distance to default, DDit, the debt to value ratio, DV Rit, a two year bond yield r2t, a ten year bond yield
r10t, and the VIX volatility index V IXt. T = 230, n = 148, p = 2 and qρ = 2.

5.2 Results

Using our data set, we estimate the parameter vector γ by means of two-stage least squares, DOLS,

OLS and D2SLS. The results are presented in Table 10. Based on the theoretical considerations above,

only the D2SLS estimator should be used. The results from the other estimation methods are included

only for comparison. When instrumental variables are used in the estimation, the debt-to-value ratio

and the VIX are used in
∑n

i=1 Wx̃itι, i.e. qρ = 2. For these two variables we observed the highest

correlation with
∑n

i=1 Wỹit. All the p-values presented in Table 10 are obtained by means of a Wald

test as described in Theorem 1. For the distance to default and the debt to value ratio the parameters

are highly significant and have the expected signs. Both interest rates are significant but work in oppsite

directions. Whereas the short term interest rate r2t increases the CDS spread, the long term interest

rate decreases the spread. In contrast to some results obtained in literature, the V IX volatility index is

not significant when D2SLS estimation is performed and default significance levels (1%, 5%, 10%) are

applied. The additional parameter which has been investigated in our analysis is the spatial correlation

ρ. With the dynamic two stage least squares estimator the spatial correlation parameter ρ is positive

as expected and highly significant. I.e. in addition to the methodological results obtained in the former

sections, our model allows to include and to test for spatial correlation. Here we observed a significant

effect.
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6 Conclusions

In this paper we have studied panel data models with a cointegration relationship including a spatial lag.

Due to this spatial lag standard estimation techniques do not provide us with appropriate tools to estimate

the parameters and to perform inference. Based on this problem we stick to the usual assumptions used in

the dynamic least squares estimation and develop a dynamic two stage least squares estimator. We show

that the parameter vector of interest is asymptotically independent of the nuisance parameters. Moreover,

we derive the asymptotic distribution of the parameters, which also allows constructing a Wald test to

perform statistical inference. Our estimation methodology is applied to simulated data to investigate the

small sample properties and to financial data to test for the impact of spatial correlation on credit default

swap spreads. Given this financial data set and a spatial correlation matrix obtained from input-output

data, our analysis shows that spatial correlation is highly significant.
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A Proof of Theorem 1

The two stage least squares estimator is given by (24) and hence

(γ̂′, δ
′
)′D2SLS − (γ′, δ′)′ =

(
X′PHX

)−1
X′PHu, (37)

where with PH = Z
(
Z′Z

)−1
Z′ we get

=
(
X′Z

(
Z′Z

)−1
Z′X

)−1
X′Z

(
Z′Z

)−1
Z′u .

X is a Tn × 1 + k + (2p + 1)k · n matrix while Z is of dimension Tn × qρ + k + (2p + 1)k · n. Note that

the orthogonal projection PH on (xt, ζt) is (xt, ζt). This yields

X′PH =



y∗

---

x′

---

ζ′


PH =



y∗PH

-------

x′

-------

ζ′


. (38)

Zit was defined in Remark 2 as the transpose of the row of Z corresponding to the index it. It is of

dimension qρ + k + (2p+ 1)kn× 1. Zit,1:dz consists of the first dz elements of Zit, where dz = qρ + k × 1.

The remaining elements of Zit contain ζit. The ”non-it elements” of this vector are zero. In the same

way we obtained Xit which is of dimension and 1 + k+ (2p+ 1)kn× 1. The first dx elements are Xit,1:dx ,

where dx = k + 1. dx ≤ dz hold throughout the following analysis.

Due to Assumption 4 the number of leads and lags used in the projection is p = p(T ). Note that

T? = T − 2p(T ), where T? → ∞ if T → ∞. Therefore it is not necessary to distinguish between the

T? →∞ and T →∞ when taking limits in the following analysis. In addition note that uit converges to

uit (this follows from Saikkonen (1991)[Theorem 4.1/ Lemma A.5]). uit is orthogonal to ζit.

Step 1: Let us consider the term X′PHX. We normalize the elements of Z and X as follows: expand

the first dz and dx elements by 1
T?

, the remaining terms (accounting for ζt) are multiplied by 1√
T?

. Based
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on this we arrive at:

Definition 1. The dx + (2p+ 1)k · n× dx + (2p+ 1)k · n matrix M?
nT is given by:

M?
nT =


y∗′x∗/(T 2

? n) y∗′x/(T 2
? n) y∗′ζ/(T?

√
T?)

x′x∗/(T 2
? n) x′x/(T 2

? n) x′ζ/(T?
√
T?)

ζ′x∗/(T?
√
T?) ζ′x/(T?

√
T?) ζ′ζ/(

√
T?
√
T?)

 ·

·


x∗′x∗/(T 2

? n) x∗′x/(T 2
? n) x∗′ζ/(T?

√
T?)

x′x∗/(T 2
? n) x′x/(T 2

? n) x′ζ/(T?
√
T?)

ζ′x∗/(T?
√
T?) ζ′x/(T?

√
T?) ζ′ζ/(

√
T?
√
T?)


−1

·

·


x∗′y/(T 2

? n) x∗′x∗/(T 2
? n) x∗ζ′/(T?

√
T?)

x′y∗/(T 2
? n) x′x/(T 2

? n) x′ζ/(T?
√
T?)

ζ′y∗/(T?
√
T?) ζ′x/(T?

√
T?) ζ′ζ/(

√
T?
√
T?)

 , (39)

where the T → ∞ and therefore the T? → ∞ limit of M?
nT is denoted by M?

n. In addition we define the

dx × dx matrices MnTi and MnT :

MnTi =

(
1

T 2
? n

n∑
i=1

T?∑
t=1

Xit,1:dxZ
′
it,1:dz

)(
1

T 2
? n

n∑
i=1

T?∑
t=1

Zit,1:dzZ
′
it,1:dz

)−1
1

T 2
?

T?∑
t=1

Z′it,1:dzXit,1:dx ,

MnT =
1

n

n∑
i=1

MnTi . (40)

We denote their T →∞ limits in distribution by Mni and Mn, respectively.

Remark 4. In Remark 2 we already noted that the two-stage least squares estimator and the DOLS

estimator are special cases of the dynamic two-stage least squares estimator. When we consider MnTi

and assume that x∗ = y∗, the product of the first two terms has to result in the identity matrix. In

this case MnTi = 1
T 2
?

∑T?
t=1 Z′it,1:dzXit,1:dx = 1

T 2
?

∑T?
t=1 X′it,1:dzXit,1:dx . This term exactly corresponds to the

term MnTi in the DOLS paper of Mark and Sul (2003). The same argument holds with mnTi.

In the following steps we observe that Mn is a submatrix of M?
n. To obtain the T →∞ limit of M?

nT , we

34



are confronted with the terms

1

T 2
?

T?∑
t=1

x̃itλx̃jtι
d→
∫
B̃viλB̃vjι ,

1

T κ?

T?∑
t=1

ζ̃itλx̃jtι
p→ 0 ,

1

T κ?

T?∑
t=1

ũitλx̃jtι
p→ 0 for κ ≥ 3

2
. (41)

The terms of the form of 1
T 2
?

∑T?
t=1 x̃itx̃it

d→
∫
B̃viB̃′vi.10 In addition we meet terms of the structure

1√
T?
√
T?

T?∑
t=1

ζ̃itζ̃it
p→


Γζ
vv,ij for j ∈ Z and

0k×k else.

(42)

1√
T?
√
T?

∑T?
t=1 ζ̃itζ̃jt converges to a matrix of zeros by the independence across i assumption (i.e. Assump-

tion 2). For each fixed i = 1, . . . , n, the matrix Γζ
vv,ij contains the k × k covariance matrices Γvv,ij , where

j ∈ Z.

Consider the now terms in (39). By the above arguments each of the three matrices converges to

a block diagonal matrix. For the first matrix we obtain a non-zero block in the north-west of dimen-

sion dx × dx, and a non-zero block consisting of Γvv,ij . The south-west and the north-east blocks are

zero. With the second matrix we observe almost the same effect. The non-zero north-west block is of

dimension dz × dz, the south-east block is the same as the south-east block of the first matrix. The

south-west and the north-east blocks are zero. The third matrix is the transpose of the first matrix.

Therefore, the limit matrix M?
n is block diagonal. From M?

n we can extract the matrix M?
ni focusing on

the index i. The limit of the submatrix [M?
ni](1:k+1,1:k+1) is Mni while the limit of [M?

n](1:k+1,1:k+1) is

10The second and the third term converge to zero in probability. This also follows from Johansen (1995)[Chapter 13 &
Appendix], Saikkonen (1991) and Davidson (1994). We already know that (e.g. Davidson (1994)[Theorem 30.13])

1

T?

T?∑
t=1

ζ̃itλx̃ltι
d→

∫
dB̃viλB̃vlι and

1

T?

T?∑
t=1

x̃ltιũit
d→
√

Ωuu,i

∫
B̃vlιdWui + ∆vu,li,ι .

The correlation term ∆vu,li,ι is derived by means of E (∆x̃ltιũit) +
∑∞
j=1 E (∆x̃ltιũit−j). If e.g. uit and vit are independent,

then ∆vu,ii,ι = 0 for ι = 1, . . . , k. With independent components (i, l) all ∆vu,li,ι = 0 for i 6= l. A random variable convergent
in distribution is bounded in probability, or Op(1) in Landau notation (see e.g. White (2001)[Lemma 4.5]). We can now
consider 1

T
3/2
?

∑T?
t=1 ζ̃itλxjtι as the product a · b, where a = 1√

T?
and b = 1

T?

∑T?
t=1 ζ̃itλxjtι. Since a is converging to zero,

it is o(1) and therefore also op(1). b converges in distribution and therefore (its Euclidian norm) is Op(1). We obtain
convergence in probability to zero since the product op(1)Op(1) behaves like op(1). Landau symbols are e.g. discussed in
Poirier (1995)[page 196].
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Mn. [M?
ni](k+2:k+1+(2p(T )+1)k·n,k+2:k+1+(2p(T )+1)k·n) is a block diagonal matrix consisting of Γζ

vv,ij . The

elements in the north-eastern and the south-western blocks of M?
ni and M?

n are zero. By this result, in the

limit only the first dx and dz columns have an impact of the estimates of γ, while the remaining non-zero

block affects the estimates of δ. Next we consider X′PHu. Let us define the following terms:

Definition 2. Consider the 1 + k + (2p(T ) + 1)k · n dimensional vector

m?
nT =


y∗′x∗/(T 2

? n) y∗′x/(T 2
? n) y∗′ζ/(T?

√
T?)

x′x∗/(T 2
? n) x′x/(T 2

? n) x′ζ/(T?
√
T?)

ζ′x∗/(T?
√
T?) ζ′x/(T?

√
T?) ζ′ζ/(

√
T?
√
T?)

 · (43)

·


x∗′x∗/(T 2

? n) x∗′x/(T 2
? n) x∗′ζ/(T?

√
T?)

x′x∗/(T 2
? n) x′x/(T 2

? n) x′ζ/(T?
√
T?)

ζ′x∗/(T?
√
T?) ζ′x/(T?

√
T?) ζ′ζ/(

√
T?
√
T?)


−1

·


x∗′/(T?

√
n)

x′/(T?
√
n)

ζ′/
√
T?

u .

The T →∞ limit is denoted by m?
n. In addition we define

mnTi =

(
1

T 2
? n

n∑
i=1

T?∑
t=1

Xit,1:dxZ
′
it,1:dz

)(
1

T 2
? n

n∑
i=1

T?∑
t=1

Zit,1:dzZ
′
it,1:dz

)−1
1

T?

T?∑
t=1

Zit,1:dzuit ,

mnT =
1√
n

mnTi . (44)

We denote their T →∞ limits by mni and mn respectively.

The first and the second matrix have been considered in (39), where we have already observed that only

the first dx and dz elements affect γ as T → ∞. The product of these two matrices is multiplied with∑T?
t=1(Zit ·DT )uit, where DT =

(
( 1
T?
· 1dz)′, ( 1√

T?
· 1(2p(T )+1)k·n)′

)′
and 1a is a vector of ones of dimension

a. Last but not least Saikkonen (1991)[Theorem 4.1/ Lemma A.5] has shown that for the truncation error

eit we observe that ‖
∑T?

t=1(Zit · DT )eit‖2 = op(p
1/2) such that uit converges in probability to uit as

T → ∞. uit is uncorrelated with ζ̃it = Zit,dz+1:dz+(2p(T )+1)k·n. By this we observe that only the first dx

components of Xit and the first dz components of Zit enter into the limit of the estimator γ. Therefore
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we have arrived at the first result: When T →∞ the limit distribution of γ is given by the inverse of Mn

times mn. By the block diagonal structure obtained in the above paragraphs, elements of m?
nT and M?

nT

outside (1 : dx) and (1 : dx × 1 : dx) do not affect the asymptotic distribution of γ. Hence γ and δ are

asymptotically independent. The submatrix [M?
nT ](k+2:k+1+(2p(T )+1)k·n,k+2:k+1+(2p(T )+1)k·n) converges to

a matrix consisting of Γvv,ij , γ and δi are independent for i = 1, . . . , n.

Step 2: Based on this asymptotic independence result we are permitted to focus on the matrix MnT

and on the k + 1 dimensional vector mnT to investigate the limit behavior of γ. In more detail

MZZ,nT i :=
1

T 2
?

T?∑
t=1

Zit,1:dzZ
′
it,1:dz (45)

=
1

T 2
?

T?∑
t=1

(

n∑
j=1

W τ1
ij x̃jt1, . . . ,

n∑
j=1

W
τqρ
ij x̃jtqρ , x̃

′
it)
′(

n∑
j=1

W τ1
ij x̃jt1, . . . ,

n∑
j=1

W
τqρ
ij x̃jtqρ , x̃

′
it) .

Using the results for the functional central limit we derive

1

T 2
?

∑
Zit,1:dzZ

′
it,1:dz

d→MZZ,ni (46)

where

MZZ,ni,(1:qρ,1:qρ) :=
∫ ∑n

j=1W
τ1
ij B̃vj1

∑n
j=1W

τ1
ij B̃vj1, . . . ,

∫ ∑n
j=1W

τ1
ij B̃vj1

∑n
j=1W

τqρ
ij B̃vjqρ

...
. . .

...∫ ∑n
j=1W

τqρ
ij B̃vjqρ

∑n
j=1W

τ1
ij B̃vj1, . . . ,

∫ ∑n
j=1W

τqρ
ij B̃vjqρ

∑n
j=1W

τqρ
ij B̃vjqρ

 ,

MZZ,ni,(1:qρ,qρ+1:qρ+k) :=


∫ ∑n

j=1W
τ1
ij B̃vj1B̃vi1, . . . ,

∫ ∑n
j=1W

τ1
ij B̃vj1B̃vik

...∫ ∑n
j=1W

τqρ
ij B̃vjqρB̃vi1, . . . ,

∫ ∑n
j=1W

τqρ
ij B̃vjqρB̃vik

 ,

MZZ,ni,(qρ+1:qρ+k,1:qρ) := M′
ZZ,ni,(1:qρ,qρ+1:qρ+k)

,

MZZ,ni,(qρ+1:qρ+k,qρ+1:qρ+k) :=

∫
B̃viB̃′vi .
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Based on (46) we arrive at

MZZ,T i =
1

n

n∑
i=1

MZZ,nT i
d→MZZ,n =

1

n

n∑
i=1

MZZ,ni . (47)

In a similar way we derive the limit of

Xit,1:dxZ
′
it,1:dz = (

n∑
j=1

Wij ỹjt, x̃
′
it)
′(

n∑
j=1

W τ1
ij x̃jt1, . . . ,

n∑
j=1

W
τqρ
ij x̃jtqρ , x̃

′
it) . (48)

Based on our model assumptions we obtain yjt =
∑n

l=1Kjl

(
β′xlt + ũ†lt

)
, where Kjl =

[
(I− ρW)−1

]
(jl)

.

Then

n∑
j=1

Wij ỹjt =
n∑
j=1

n∑
l=1

WijKjl

(
β′x̃lt + ũ†lt

)
. (49)
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By means of (48) and (49) we arrive at the k + 1× k + qρ matrix

MXZ,nT i =
1

T 2
?

T?∑
t=1

 n∑
j=1

Wij ỹjt, x̃
′
it

′ n∑
j=1

W τ1
ij x̃jt1, . . . ,

n∑
j=1

W
τqρ
ij x̃jtqρ , x̃

′
it

 (50)

=

 MXZ,nT i,(1:1,1:qρ) MXZ,nT i,(1:1,qρ+1:k+qρ)

MXZ,nT i,(2:k+1,1:qρ) MXZ,nT i,(2:k+1,qρ+1:k+qρ)

 ,

where

MXZ,nT i,(1:1,1:qρ) :=

1

T 2
?

T?∑
t=1


∑n

j=1

∑n
l=1WijKjl

(
β′x̃lt + ũ†lt

)
·
∑n

κ=1W
τ1
iκ x̃κt1

...∑n
j=1

∑n
l=1WijKjl

(
β′x̃lt + ũ†lt

)
·
∑n

j=1W
τqρ
iκ x̃κtqρ


′

,

MXZ,nT i,(1:1,qρ+1:k+qρ) :=
1

T 2
?

T?∑
t=1

∑n
j=1

∑n
l=1WijKjl

(
β′x̃lt + ũ†lt

)
· x̃′it ,

MXZ,nT i,(2:k+1,1:qρ) :=
1

T 2
?

T?∑
t=1

(
x̃it ·

n∑
κ=1

W τ1
iκ x̃κt1, . . . , x̃it ·

n∑
κ=1

W
τqρ
iκ x̃κtqρ

)
,

MXZ,nT i,(2:k+1,qρ+1:k+qρ) :=
1

T 2
?

T?∑
t=1

x̃itx̃
′
it .
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The T →∞ limit of the matrix MXZ,nT i is given by:

MXZ,ni =

 MXZ,ni,(1:1,1:qρ) MXZ,ni,(1:1,qρ+1:k+qρ)

MXZ,ni,(2:k+1,1:qρ) MXZ,ni,(2:k+1,qρ+1:k+qρ)

 ,

where

MXZ,nT i,(1:1,1:qρ)
d→

∑n
κ=1W

τ1
iκ

∑n
j=1

∑n
l=1WijKjl

(
β′B̃vlB̃vκ1

)
...∑n

κ=1W
τqρ
iκ

∑n
j=1

∑n
l=1WijKjl

(
β′B̃vlB̃vκqρ

)

′

= MXZ,ni,(1:1,1:qρ) , (51)

MXZ,nT i,(1:1,qρ+1+qρ+k)
d→

∑n
j=1

∑n
l=1WijKjl

(
β′B̃vlB̃vi1

)
∑n

j=1

∑n
l=1WijKjl

(
β′B̃vlB̃vi2

)
...∑n

j=1

∑n
l=1WijKjl

(
β′B̃vlB̃vik

)



′

= MXZ,ni,(1:1,qρ+1+qρ+k) , (52)

MXZ,nT i,(2+k+1,1:qρ)
d→ (53)(

n∑
κ=1

W τ1
iκ

∫
B̃viB̃vκ1, . . . ,

n∑
κ=1

W
τqρ
iκ

∫
B̃viB̃vκqρ

)
= MXZ,ni,(2:k+1,1:qρ) , (54)

MXZ,nT i,(2+k+1,qρ+1:qρ+k)
d→∫

B̃viB̃′vi = MXZ,ni,(2:k+1,qρ+1:+qρ+k) . (55)

When taking limits we also meet terms of the structure described in (42). Since 1

T
3/2
?

yields terms bounded

in probability, with 1
T 2
?

these terms converge to zero in probability. Note that B̃vj· is a scalar while B̃vi a

k dimensional vector. Summing up we arrive at

MXZ,nT i
d→ MXZ,ni ,

MXZ,nT =
1

n

n∑
i=1

MXZ,nT i
d→ MXZ,n =

1

n

n∑
i=1

MXZ,ni . (56)
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Remark 5. By Assumption 5 we have assumed that the matrix MXZ,n has rank k+ 1, while the matrix

MZZ,n has rank k+ qρ ≥ k+ 1. Therefore MXZ,n (MZZ,n)−1 MZX,n has rank k+ 1. Lemma 1 shows that

this assumption is non-empty. If the conditions of Lemma 1 hold, then the matrices MXZ,n and MZZ,n

have rank, k + 1 and k + qρ, respectively.

Next we derive mni and mn. For the term 1
T?

∑T?
t=1 Xit,2:dxuit = 1

T?

∑T?
t=1 x̃it,1:dxuit the T? → ∞

limit is already given by
√

Ωuu,i

∫
B̃vidWui. By using the functional central limit theorem and Saikkonen

(1991)[Theorem 4.1/ Lemma A.5] (e.g. ‖
∑T?

t=1(Zit ·DT )eit‖2 = op(p
1/2) such that uit = uit as T → ∞)

the term 1
T?

∑T?
t=1 Zit,1:dzuit converges in distribution to

mniZu =
√

Ωuu,i

 n∑
j=1

W τ1
ij

∫
B̃vj1dWui, . . . ,

n∑
j=1

W
τqρ
ij

∫
B̃vjqρdWui,

(∫
B̃vidWui

)′′ . (57)

To obtain the first term of mn we have to combine MZZ,n provided by (47), MXZ,ni given by (56) and

mniZu. Then the continuous mapping theorem yields

mnT
d→ 1√

n

n∑
i=1

√
Ωuu,i


MXZ,nM

−1
ZZ,n



∑n
j=1W

τ1
ij

∫
B̃vj1dWui

...∑n
j=1W

τqρ
ij

∫
B̃vjqρdWui∫

B̃vidWui




. (58)

MZZ,n is a k + qρ × k + qρ matrix, while mniZu as well as

 n∑
j=1

∫
W τ1
ij B̃vj1dWui, . . . ,

n∑
j=1

W
τqρ
ij

∫
B̃vjqρdWui,

(∫
B̃vidWui

)′′

are vectors of dimension qρ+k. The elements 2 to k+1 of mn are given by a sum of the k dimensional vectors∫
B̃vidWui. Since the application of the projection operator PH on Xi,2:dx is Xi,2:dx (see equation (38)),
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the rows (2 : k + 1) have to be equal to the limit of 1
T?

∑T?
t=1 Xit,2:dxuit = 1

T?

∑T?
t=1 xituit. This yields

mnT
d→ 1√

n

n∑
i=1

√
Ωuu,i




MXZ,nM

−1
ZZ,n



∑n
j=1W

τ1
ij

∫
B̃vj1dWui

...∑n
j=1W

τqρ
ij

∫
B̃vjqρdWui∫

B̃vidWui




(1,1)

------------------------------------------------------------------∫
B̃vidWui


= mn . (59)

It remains to calculate the limit distribution of (39). By the asymptotic independence arguments for γ

and δ, we are allowed to restrict to X′1:dxZ1:dz

(
Z′1:dzZ1:dz

)−1
Z′1:dzX1:dx (weighted by 1/T? and 1/

√
n).

Using the above results and the continuous mapping theorem we get

Mni = MXZ,nM
−1
ZZ,nM

′
XZ,ni,

Mn =
1

n

n∑
i=1

Mni =
1

n
MXZ,nM

−1
ZZ,nM

′
XZ,n . (60)

This yields the second result: (γ′, δ′)′ can be consistently estimated.
√
nT? (γ̂D2SLS − γ) converges in

distribution to M−1
n mn as T → ∞, where mn and Mn are given by (59) and (60), respectively. With

these estimates we can derive the residuals, which allow us to consistently estimate Ωuu,i.

Step 3: Finally we construct the Wald statistic Sγ,n. We follow Phillips and Hansen (1990), Johansen

(1995) and Park and Phillips (1988) to derive the so called observed Wald-statistic Sγ,nT and its limit

Sγ,n. Consider the s × k + 1 restriction matrix R. Since S-ancillarity is implied by strong exogeneity as

observed in our model, the ancillarity results presented in Johansen (1995) can be used. With Bvi fixed

for all i = 1, . . . , n: (i) the terms Mni and Mn are constant matrices; (ii) mn is a mixed Gaussian vector
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with mean zero and variance Vn where11

Vn =
1

n

∑
i=1

Vni where Vni = Ωuu,i · Υ̃ni . (61)

Υ̃ni =

∫ 

[
MXZ,nM

−1
ZZ,nmZ,ni

]
(1,1)

B̃vi



[
MXZ,nM

−1
ZZ,nmZ,ni

]
(1,1)

B̃vi


′ ,

mZ,n =

 n∑
j=1

W τ1
ij B̃vj1, . . . ,

n∑
j=1

W
τqρ
ij B̃vjqρ , B̃

′
vi

′ . (62)

The term mZ,ni is given by

mZ,ni =



∑n
j=1W

τ1
ij

∫
B̃vj1

...∑n
j=1W

τqρ
ij

∫
B̃vjqρ∫

B̃vi


. (63)

Then the asymptotic covariance matrix of
√
nT? (γD2SLS − γ) becomes

Dn = M−1
n VnM

−1
n . (64)

VnT provides an estimate of Vn, which is derived by means of means of

VnT =
1

n

n∑
i=1

Ω̂uu,i
1

T?
2

T?∑
t=1

ΥnTiΥ
′
nTi

ΥnTi =


[(∑n

l=1

∑T?
t=1 Xlt,1:dxZ

′
lt,1:dz

)(∑n
j=1

∑T?
t=1 Zjt,1:dzZ

′
jt,1:dz

)−1
Zit,1:dz

]
(1,1)

xit

 . (65)

11Note that as with mnT the term MXZ,TnM−1
ZZ,Tn

1
T?2

∑T?
t=1

(∑n
j=1W

τ1
ij Zit,1, . . . ,

∑n
j=1W

τqρ
ij Zit,qρ , x̃

′
it

)′
is equal to([

MXZ,TnM−1
ZZ,Tn

1
T?2

∑T?
t=1

(∑n
j=1W

τ1
ij Zit,1, . . . ,

∑n
j=1W

τqρ
ij Zit,qρ , x̃

′
it

)′]
(1,1)

, x̃′it

)′
by the fact the projection PH applied

to x̃it is x̃it.
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Combining (65) and MnT , which is an estimate of Mn, we arrive at an estimate of the covariance matrix

DnT = M−1
nTVnTM−1

nT . (66)

Equipped with these terms we obtain

Sγ,nT =
(√
nT?R (γ̂D2SLS − γ)

)′ (
RDnTR′

)−1 (√
nT?R (γ̂D2SLS − γ)

)
, (67)

Sγ,nT
d→ Sγ,n =

(√
nT?R (γ̂D2SLS − γ)

)′ (
RDnR

′)−1 (√nT?R (γ̂D2SLS − γ)
)
.

Under the null hypothesis the Wald statistic Sγ,nT follows a χ2 distribution with s degrees of freedom.

This yields the third result: Sγ,nT
d→ Sγ,n; DnT provides us with an estimate of the asymptotic covariance

of the estimator Dn.

Remark 6 (Identification). From Deistler and Seifert (1978)[Theorem 4] it follows that if there exists

a consistent estimator for the internal characteristics CI of the model, the model is identifiable (i.e. an

identifying function exists). In our setup the internal characteristics can be described by means of the

parameters ρ and β and the covariances of the noise. Based on our Theorem 1 we have obtained a (super)

consistent estimator for the parameters ρ, β. The covariance matrices can be estimated consistently due

to Jansson (2002). The reasons why γ̂D2SLS becomes consistent are Assumption 5 on the instruments

(Appendix B shows that this assumption is non-empty, there also Assumption 1 becomes important; in ad-

dition Assumption 3 is important to obtain the corresponding ranks of in limits required in Assumption 5)

and Assumption 4 such that the truncation error goes to zero.
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B Instruments and the Rank Condition

Consider the instruments x̃∗itv =
∑n

j=1W
τv
ij x̃jtv, v = 1, . . . , qρ. In the following we show that the require-

ment of valid instruments (see also Assumption 5) can be fulfilled under fairly mild restrictions. It is

important to note that this implies that our ”high level” Assumption 5 is non-empty. For the W used in

the applied part we use the following lemma:

Lemma 1. Given the model Assumptions 1 to 4 of Section 2. Suppose that x̃∗itv =
∑n

j=1W
τv
ij x̃jtv,

v = 1, . . . , qρ and τv = 1 and Wij 6= 0 for at least one j, j 6= i, for each row i. Then the qρ + k × qρ + k

matrices MZZ,ni and MZZ,n have rank qρ + k almost surely. Additionally, the rank of the k + 1× qρ + k

matrices MXZ,ni and MXZ,n is k + 1 almost surely.

Proof. We consider the vectors

Zit,1:dz =



∑n
j=1W

τ1
ij x̃jt1

...∑n
j=1W

τqρ
ij x̃jtqρ

x̃it1
...

x̃itk


and

Xit,1:dx =



∑n
j=1Wij ỹjt

x̃it1
...

x̃itk


=



∑n
j=1

∑n
l=1WijKjl (β

′x̃lt + δ′iζlt + ũlt)

x̃it1
...

x̃itk


(68)

of dimension qρ +k and 1 +k, respectively.
∑n

j=1Wij ỹit follows from (49), where Kjl =
[
(I− ρW)−1

]
(jl)

.

In the following we calculate the limits of 1
T?2
∑T?

t=1 Zit,1:dzZ
′
it,1:dz

, 1
n

∑n
i=1

1
T?2
∑T?

t=1 Zit,1:dzZ
′
it,1:dz

,

1
T?2
∑T?

t=1 Xit,1:dxZ
′
it,1:dz

and 1
T?2n

∑n
i=1

∑T?
t=1 Xit,1:dxZ

′
it,1:dz

. Let us start with
∑T?

t=1 Zit,1:dzZ
′
it,1:dz

where

we get
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T
? ∑ t=
1

Z
it
,1
:d
z
Z

′ it
,1
:d
z

=
(6

9)

T
? ∑ t=
1

              ∑ n j
=
1
W

τ
1
ij
x̃
j
t1

∑ n j
=
1
W

τ
1
ij
x̃
j
t1

..
.

∑ n j
=
1
W

τ
1
ij
x̃
j
t1

∑ n j
=
1
W

τ
q
ρ

ij
x̃
j
tq
ρ

∑ n j
=
1
W

τ
1
ij
x̃
j
t1
x̃
it
1

..
.

∑ n j
=
1
W

τ
1
ij
x̃
j
t1
x̃
it
k

. . .
. .

.
. . .

. . .
. .

.
. . .

∑ n j
=
1
W

τ
q
ρ

ij
x̃
j
tq
ρ

∑ n j
=
1
W

τ
1
ij
x̃
j
t1

..
.
∑ n j

=
1
W

τ
q
ρ

ij
x̃
j
tq
ρ

∑ n j
=
1
W

τ
q
ρ

ij
x̃
j
tq
ρ

∑ n j
=
1
W

τ
q
ρ

ij
x̃
j
tq
ρ
x̃
it
1

..
.
∑ n j

=
1
W

τ
q
ρ

ij
x̃
j
tq
ρ
x̃
it
k

x̃
it
1

∑ n j
=
1
W

τ
1
ij
x̃
j
t1

..
.

x̃
it
1

∑ n j
=
1
W

τ
q
ρ

ij
x̃
j
tq
ρ

x̃
it
1
x̃
it
1

..
.

x̃
it
1
x̃
it
k

. . .
. .

.
. . .

. . .
. .

.
. . .

x̃
it
k

∑ n j
=
1
W

τ
1
ij
x̃
j
t1

..
.

x̃
it
k

∑ n j
=
1
W

τ
q
ρ

ij
x̃
j
tq
ρ

x̃
it
k
x̃
it
1

..
.

x̃
it
k
x̃
it
k

              .

S
in

ce
∑ n j=

1
W

τ v ij

∑ n j=
1
W

τ w ij
x̃
jt
v
x̃
jt
w

=
∑ n j=

1

∑ n l=
1
W

τ v ij
W

τ w il
x̃
jt
v
x̃
lt
w

th
e

m
at

ri
x

(6
9
)

ca
n

b
e

w
ri

tt
en

a
s:

T
? ∑ t=
1

Z
it
,1
:d
z
Z

′ it
,1
:d
z

=
(7

0)

T
? ∑ t=
1

              ∑ n j
=
1

∑ n l=
1
W

τ
1
ij
W

τ
1

il
x̃
j
t1
x̃
lt
1

..
.

∑ n j
=
1

∑ n l=
1
W

τ
1
ij
W

τ
q
ρ

il
x̃
j
t1
x̃
lt
q
ρ

∑ n j
=
1
W

τ
1
ij
x̃
j
t1
x̃
it
1

..
.

∑ n j
=
1
W

τ
1
ij
x̃
j
t1
x̃
it
k

. . .
. .

.
. . .

. . .
. .

.
. . .

∑ n j
=
1

∑ n l=
1
W

τ
q
ρ

ij
W

τ
1

il
x̃
j
tq
ρ
x̃
l t
1

..
.
∑ n j

=
1

∑ n l=
1
W

τ
q
ρ

ij
W

τ
q
ρ

il
x̃
j
tq
ρ
x̃
lt
q
ρ

∑ n j
=
1
W

τ
q
ρ

ij
x̃
j
tq
ρ
x̃
it
1

..
.
∑ n j

=
1
W

τ
q
ρ

ij
x̃
j
tq
ρ
x̃
it
k

∑ n j
=
1
W

τ
1
ij
x̃
j
t1
x̃
it
1

..
.

∑ n j
=
1
W

τ
q
ρ

ij
x̃
j
tq
ρ
x̃
it
1

x̃
it
1
x̃
it
1

..
.

x̃
it
1
x̃
it
k

. . .
. .

.
. . .

. . .
. .

.
. . .

∑ n j
=
1
W

τ
1
ij
x̃
j
t1
x̃
it
k

. .
.

∑ n j
=
1
W

τ
q
ρ

ij
x̃
j
tq
ρ
x̃
it
k

x̃
it
k
x̃
it
1

..
.

x̃
it
k
x̃
it
k

              .
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(70) is a symmetric matrix. Now we set τv = 1 and take the limit of ”(70) divided by T?
2”. With

x̃∗itv =
∑n

j=1W
τv
ij x̃jtv, v = 1, . . . , qρ and τv = 1, we observe that qρ ≤ k. By the functional central limit

theorem we obtain

MZZ,ni = lim
t→∞

1

T?2

T?∑
t=1

Zit,1:dzZ
′
it,1:dz

= (71)



∫ ∑n
j=1

∑n
l=1WijWilB̃vj1B̃vl1 . . .

∫ ∑n
j=1

∑n
l=1WijWilB̃vj1B̃vlqρ

∫ ∑n
j=1Wij B̃vj1B̃vi1 . . .

∫ ∑n
j=1Wij B̃vj1B̃vik

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.∫ ∑n
j=1

∑n
l=1WijWilB̃vjqρ B̃vl1 . . .

∫ ∑n
j=1

∑n
l=1WijWilB̃vjqρ B̃vlqρ

∫ ∑n
j=1Wij B̃vjqρ B̃vi1 . . .

∫ ∑n
j=1Wij B̃vjqρ B̃vik∫ ∑n

j=1Wij B̃vj1B̃vi1 . . .
∫ ∑n

j=1Wij B̃vjqρ B̃vi1
∫
B̃vi1B̃vi1 . . .

∫
B̃vi1B̃vi1

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.∫ ∑n
j=1Wij B̃vj1B̃vik . . .

∫ ∑n
j=1Wij B̃vjqρ B̃vik

∫
B̃vikB̃vi1 . . .

∫
B̃vikB̃vik


.

When we consider (70) we observe that for any fixed t the row v is a linear combination of Z′it,1:dz with

the element
[
Zit,1:dz

]
v
. This also translates to the limit (71), where we observe that in each row each

element includes a term arising from
[
Zit,1:dz

]
v
. E.g.

∑n
j=1WijB̃vj1 for the first row,

∑n
j=1WijB̃vjqρ for

row qρ, B̃vi1 for row qρ + 1, . . . and B̃vik for row dz = qρ + k. The important ingredients to have a matrix

MZZ,ni of full rank are (i) Assumption 3 (based on Phillips (2006)) to consider terms where i = j, (ii)

Phillips and Hansen (1990)[Lemma A.3] to consider terms where i 6= j and (iii) the assumption that

Wij 6= 0. By Wij 6= 0 the terms in the first qρ rows and the first qρ columns of (71) are non-zero almost

surely. Note that by Assumption 3 the matrix
∫
B̃viB̃′vi is positive definite and of full rank k. By Phillips

and Hansen (1990)[Lemma A.3] the k × k matrix
∫
B̃viB̃′vj is also positive definite and of rank k (almost

surely).12 By our assumption (in Lemma 1) that Wi,1:n is not equal to a row vector of zeros, we meet

a sum of matrics
∫
B̃vjB̃′vl weighted by WijWil in the north-western part of the matrix MZZ,ni in (71).

Wij 6= 0 and Wil 6= 0 for some j, l 6= i by Assumption 1; note that WijWil 6= 0 for j = l. For each pair j

and l the term
∫
B̃vj,1:qρB̃′vl,1:qρ has rank qρ by Assumption 3 or Phillips and Hansen (1990)[Lemma A.3].

Additionally, these terms are positive definite. Therefore, the term
∫ ∑n

j=1

∑n
l=1WijWilB̃vj,1:qρB̃′vl,1:qρ has

rank qρ (see also Horn and Johnson (1985)[Obs. 7.1.3, page 398]). The south-eastern part has rank k by

Assumption 3. The south-western part and the north-eastern part mix B̃vl,1:qρ with B̃′vi. Since qρ ≤ k the

ranks of these matrices are ≤ k. Since the rank of the k + qρ × qρ submatrix [MZZ,ni](1:k+qρ,1:qρ) is ≤ k,

there exist some scalars λ`1, . . . , λ`k to express the rows `, ` = 1, . . . , qρ, by means of a linear combination

12Given the notation in Phillips and Hansen (1990)[Lemma A.3]. Our vi corresponds to ∆x2, while vj corresponds to ∆x3.
If i = j in

∫
B̃viB̃′vj , then the full rank process assumption is used, with i 6= j the Lemma A.3 can be applied.
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of the other k rows. I.e. in the north-western part of the matrix MZZ,ni we meet mixtures of components

B̃vj with components of B̃vl, l = 1, . . . , n where l 6= i (Wii = 0 by Assumption 1 while some Wil 6= 0 as

assumed above). In the north-eastern part of the matrix MZZ,ni we meet mixtures of the components B̃vj

with the components of B̃vi. B̃vi 6= B̃vl (almost surely) by the properties of Brownian motion. Therefore

the corresponding rows of the north-eastern submatrix cannot be reconstructed by the mixture weights

λ`1, . . . , λ`k. Note that in each of the rows 1, . . . , qρ we meet different mixtures, from B̃vj1 in the first row

to B̃vjqρ in the qρth row. That is to say we cannot rebuild rows `, ` ∈ {1, . . . , qρ} from the other rows.

Since the matrix is symmetric this also holds for the columns. Summing up, the rank of the k+qρ×k+qρ

matrix MZZ,ni is k + qρ (almost surely).

The limit of 1
n

∑n
i=1

1
T?2
∑T?

t=1 Zit,1:dzZ
′
it,1:dz

still has rank qρ +k. In the same way as for some MZZ,ni,

we cannot reconstruct the columns/rows from the other columns/rows when the sum 1
n ·
∑n

i=1 MZZ,ni is

considered.

Remark 7. Note that MZZ,nT i, MZZ,nT , MZZ,ni are MZZ,n symmetric matrices.

In the next step we investigate MXZ,nT i. Hence we consider

T?∑
t=1

Xit,1:dzZ
′
it,1:dz

= (72)

T?∑
t=1



∑n
j=1Wij ỹjt

∑n
κ=1W

τ1
iκ x̃κt1 . . .

∑n
j=1Wij ỹjt

∑n
κ=1W

τqρ
iκ x̃κtqρ

∑n
j=1Wij ỹjtx̃it1 . . .

∑n
j=1Wij ỹjtx̃itk

x̃it1
∑n
κ=1W

τ1
iκ x̃κt1 . . . x̃it1

∑n
κ=1W

τqρ
iκ x̃κtqρ x̃it1x̃it1 . . . x̃it1x̃itk

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

x̃itk
∑n
κ=1W

τ1
iκ x̃κt1 . . . x̃itk

∑n
κ=1W

τqρ
iκ x̃κtqρ x̃itkx̃it1 . . . x̃itkx̃itk


.

Since
∑n

j=1Wij ỹjt
∑n

κ=1W
τw
iκ x̃κtw =

∑n
j=1

∑n
κ=1WijW

τw
iκ ỹjtx̃κtw the matrix (72) can be written as:
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T
? ∑ t=
1

X
it
,1
:d
z
Z

′ it
,1
:d
z

=
(7

3)

T
? ∑ t=
1

        ∑ n j
=
1

∑ n κ
=
1
W
ij
W

τ
1
iκ
ỹ j
t
x̃
κ
t1

..
.
∑ n j

=
1

∑ n κ
=
1
W
ij
W

τ
q
ρ

iκ
ỹ j
t
x̃
κ
tq
ρ

∑ n j
=
1
W
ij
x̃
j
t
x̃
it
1

..
.
∑ n j

=
1
W
ij
ỹ j
t
x̃
it
k

x̃
it
1

∑ n κ
=
1
W

τ
1
iκ
x̃
κ
t1

..
.

x̃
it
1

∑ n κ
=
1
W

τ
q
ρ

iκ
x̃
κ
t,
q
ρ

x̃
it
1
x̃
it
1

..
.

x̃
it
1
x̃
it
k

. . .
. .

.
. . .

. . .
. .

.
. . .

x̃
it
k

∑ n κ
=
1
W

τ
1
iκ
x̃
κ
t1

..
.

x̃
it
k

∑ n κ
=
1
W

τ
q
ρ

iκ
x̃
κ
t,
q
ρ

x̃
it
k
x̃
it
1

..
.

x̃
it
k
x̃
it
k

        .
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)
d

iv
id

ed
b
y
T
?
2
”

p
ro

v
id

es
u

s
w

it
h

M
X
Z
,n
i
=

li
m

t
→

∞

1

T
?
2

T
? ∑ t

=
1

X
i
t
,1

:d
x
Z

′ it
,1

:d
z

=
(7

4
)

         ∫ ∑
n j
=

1

∑ n l=
1
W
i
j
K
j
l
∑ n κ

=
1
W
τ
1
i
κ
β
′ B̃
v
l
B̃
v
κ
1

.
.
.

∫ ∑
n j
=

1

∑ n l=
1
W
i
j
K
j
l
∑ n κ

=
1
W
τ
q
ρ

i
κ

β
′ B̃
v
l
B̃
v
κ
q
ρ

∫ ∑
n j
=

1

∑ n l=
1
W
i
j
K
j
l
β
′ B̃
v
l
B̃
v
i
1

.
.
.

∫ ∑
n j
=

1

∑ n l=
1
W
i
j
K
j
l
β
′ B̃
v
l
B̃
v
i
k

∫ B̃ v
i
1
∑ n κ

=
1
W
τ
1
i
κ
B̃
v
κ
1

.
.
.

∫ B̃ v
i
1
∑ n κ

=
1
W
τ
q
ρ

i
κ
B̃
v
κ
q
ρ

∫ B̃ v
i
1
B̃
v
i
1

.
.
.

∫ B̃ v
i
1
B̃
v
i
k

. . .
. .
.

. . .

. . .
. .
.

. . .
∫ B̃ v

j
k
∑ n κ

=
1
W
τ
1
i
κ
B̃
v
κ
1

.
.
.

∫ B̃ v
i
k
∑ n κ

=
1
W
τ
q
ρ

i
κ
B̃
v
κ
q
ρ

∫ B̃ v
i
k
B̃
v
i
1

.
.
.

∫ B̃ v
i
k
B̃
v
i
k

         .
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Since Wi,1:n 6= 01×n (which is assumed in Lemma 1) and β 6= 0k (which follows from Assumption 3)

the north-western term in (74) is not equal to zero, this also follows for [MXZ,ni](1,qρ+1:k+qρ)
and

[MXZ,ni](2:2+k,1:qρ). The rank of these matrices has to be ≤ k. I.e. we can write the first row of the

submatrix [MXZ,ni](1,qρ+1:k+qρ)
as superposition of the remaining k rows of this submatrix. Due to the

fact that Wij 6= 0 for some j, we observe that the first row of the matrix MXZ,ni cannot be expressed

by the other rows (we also meet the index i in the remaining submatrix). Therefore, the matrix (74) has

rank k + 1 almost surely.

Last but not least by considering the limit of the sum 1
n

∑n
i=1

1
T?2
∑T?

t=1 Xit,1:dzZ
′
it,1:dz

we obtain

MXZ,n = 1
n

∑n
i=1 MXZ,ni. By the same reasoning as with MXZ,ni we observe that this sum of matrices

has rank k + 1.

Remark 8. Note that MZX,nT i = M′
XZ,nT i, MZX,ni = M′

XZ,ni, MZX,nT = M′
XZ,nT and MZX,n =

M′
XZ,n.

If necessary the conditions of Lemma 1 can be replaced by less stringent assumptions. To keep the

notation simple and by the fact that τv = 1 in the applied part, Lemma 1 assumes τv = 1. One way to

extend Lemma 1 is as follows:

Lemma 2. Given the model Assumptions 1 to 4 of Section 2 and the instruments x̃∗itv =
∑n

j=1W
τv
ij x̃jtv,

v = 1, . . . , qρ and qρ ≤ k. Suppose that W τv
ij 6= 0 for at least one j where j 6= i. Then the qρ + k × qρ + k

matrix MZZ,n has rank qρ + k almost surely. Additionally, the rank of the k + 1× qρ + k matrix MXZ,n

is k + 1 almost surely.

Proof. By taking the sum over the components i = 1, . . . , n of the limits of ”(70) divided by T?
2n” we get

MZZ,n. MZZ,n is equal to
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MZZ,n =
1

n

n∑
i=1

lim
t→∞

1

T?
2

T?∑
t=1

Zit,1:dzZ
′
it,1:dz =

 [MZZ,ni](1:qρ,1:qρ) [MZZ,ni](1:qρ,qρ+1:k+qρ)

[MZZ,ni](qρ+1:k+qρ,1:qρ)
[MZZ,ni](qρ+1:k+qρ,qρ+1:k+qρ)


where

[MZZ,ni](1:qρ,1:qρ) =

1

n
·


∫ ∑n

i=1

∑n
j=1

∑n
l=1W

τ1
ij W

τ1
il B̃vj1B̃vl1 . . .

∫ ∑n
i=1

∑n
j=1

∑n
l=1W

τ1
ij W

τqρ
il B̃vj1B̃vlqρ

...
. . .

...∫ ∑n
i=1

∑n
j=1

∑n
l=1W

τqρ
ij W τ1

il B̃vjqρ B̃vl1 . . .
∫ ∑n

i=1

∑n
j=1

∑n
l=1W

τqρ
ij W

τqρ
il B̃vjqρ B̃vlqρ

 ,

[MZZ,ni](qρ+1:k+qρ,1:qρ)
=

1

n
·


∫ ∑n

i=1 B̃vi1
∑n
l=1W

τ1
il B̃vl1 . . .

∫ ∑n
i=1 B̃vi1

∑n
l=1W

τqρ
il B̃vlqρ

...
. . .

...∫ ∑n
i=1 B̃vik

∑n
l=1W

τ1
il B̃vl1 . . .

∫ ∑n
i=1 B̃vik

∑n
l=1W

τqρ
il B̃vlqρ

 ,

[MZZ,ni](1:qρ,qρ+1:k+qρ)
=

1

n
·


∫ ∑n

i=1

∑n
j=1W

τ1
ij B̃vj1B̃vi1 . . .

∫ ∑n
i=1

∑n
j=1W

τ1
ij B̃vj1B̃vik

...
. . .

...∫ ∑n
i=1

∑n
j=1W

τqρ
ij B̃vjqρ B̃vi1 . . .

∫ ∑n
i=1

∑n
j=1W

τqρ
ij B̃vjqρ B̃vik

 ,

[MZZ,ni](qρ+1:k+qρ,qρ+1:k+qρ)
=

1

n
·
∫ n∑

i=1

B̃viB̃′vi . (75)

First, the south-eastern part [MZZ,ni](qρ+1:k+qρ,qρ+1:k+qρ)
is a sum of positive definite matrices of rank

k (see Assumption 3), by Assumption 2 these matrices are also independent. Therefore this block is of

rank k almost surely. Second, we consider the submatrix [MZZ,ni](1:qρ+k,1:qρ) where we meet the terms

B̃vi.B̃vj., possibly with i = j. By the assumptions of this lemma at least one term W τv
ij 6= 0 with i 6= j.

Therefore [MZZ,ni](1:qρ+k,1:qρ) 6= 0qρ+k,qρ . Since qρ ≤ k the rank of the submatrix [MZZ,ni](1:qρ+k,1:qρ) is

≤ min{k, qρ} and therefore smaller or equal to k. I.e. we can express row ` ∈ {1, . . . , qρ} by some linear

combination of the rows qρ + 1, . . . , k + qρ with weights λ`1, . . . , λ`k. Now we take these weights and the

submatrix [MZZ,ni](1:qρ+k,qρ+1:k+qρ)
. Let us try to express row ` by means of a linear combination of the

weights λ`1, . . . , λ`k and the rows qρ + 1 to qρ + k of this submatrix. This would require to express terms

of the structure B̃vl.B̃vj., where j, l 6= i for at least one summand, by means of the terms B̃vi.B̃vi. which is

not possible by the properties of the Brownian motion. In other words since B̃vi 6= B̃vj (almost surely),

this cannot work for row `. In addition we observe that we mix with B̃vj1 in the first row, with B̃vj2 in
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the second row until B̃vjqρ in row qρ. Therefore the argument that we cannot express row ` ∈ {1, . . . , qρ}

by some linear combination of the rows qρ + 1, . . . , k + qρ holds for all ` ∈ {1, . . . , qρ}. Since MZZ,nT is

symmetric this also holds for the columns. Hence the rank of the k + qρ × k + qρ matrix MZZ,n is k + qρ

(almost surely).

If W τv
ij 6= 0 for some diagonal element(s), then Kij =

[
(I− ρW)−1

]
(ij)

has some non-zero off diagonal

element(s) as well. β 6= 0k makes the terms β′B̃vj non-zero (almost surely). Thus, in the same way we

have shown that the rank of MZZ,n is k + qρ, we can show that the rank of the k + 1 × k + qρ matrix

MZZ,n is k + 1 (almost surely).
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C Data

CDS Data: We use the CDS dataset already used in Schneider et al. (2010), which was obtained from

the Markit Group. After concentrating on the US market only and by excluding firms with a too large

percentage of missing values, 278 firms had been used. The data set also includes the beginning of the

financial crises.

Firm specific and industry data: To estimate a model, where the default probabilities are driven by firm

and industry factors, the following data has been downloaded from Thomson Datastream and Compustat :

(i) Share prices pit (in US$) and the number of shares NumSit. The Value of preferred stock PSit, where

quarterly records are available. To get weekly data we follow literature and perform linear interpolations.

34 of 176 companies issued preferred stock. In this article we assign preferred stock to equity. Since

PSit is small compared to debt and the remaining equity, the impact of the assignment to equity is of

minor importance, with both the debt to value ratio and the distance to default, respectively. (ii) Short

term (SDit) and long term debt (LDit), quarterly records. To get weekly data, we follow literature and

perform linear interpolations. As mentioned in Section 5.1, matching data form these different data sources

provides us with 176 firms.

In addition the following data was collected: (iii) US treasury yields r.t for the maturities 1, 2,

3, 5, 7, 10 and 30 years (in percentage terms). (iv) Data of the VIX index which is a volatility in-

dex obtained from implied Black-Scholes volatilities from the US stock market (for a description see

http://www.cboe.com/micro/VIX/vixintro.aspx). (v) NAICs industry classification codes. (vi) Stan-

dard and Poors (S&P) ratings. (vii) Input-Output data from the BLS Employment Projection Program

(http://www.bls.gov/emp/ep data input output matrix.htm). We excluded firms where we detected

further data problems (e.g. extreme spikes, missing values, unclear industry), such that n = 148 firms

were still remaining.

From the above balance sheet and stock market data we calculate the debt to value ratio measured in

percentage terms:

DV Rit =

[
Dit

Sit +Dit

]
· 100 , (76)
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where Sit = pitNumSit + PSit is the market capitalization and Dit = SDit + LDit is the market value of

a firm’s debt. As usual in industry and applied academic research we assume that the market value of a

firm’s debt is equal to the corresponding book value available in the firm’s balance sheets.

In Merton type models and in the financial industry the distance to default is frequently used to

forecast the conditional probability of default (see e.g. Schönbucher (2003)). Intuitively, the distance to

default is the number of standard deviations of the annual asset growth by which the firm’s expected

assets at a given maturity exceed a measure of book liabilities. The distance to default is usually derived

by a calibration procedure that matches both market value of equity and equity volatility to the figures

that can be observed in the market (for details see Crosbie and Bohn (2003)). In this paper the distance

to default is derived from

DDit =
V Ait −DPit
V AitσAit

. (77)

V Ait is the firm value. The default point DPit is the sum of short-term liabilities +1/2 long-term liabilities,

i.e. DPit = SDit + 1/2LDit. σAit is the standard deviation of the firm value; σEit is a measure of the

equity volatility. Based on Crosbie and Bohn (2003):

V Ait = V EitN (d1it) + exp(−ytmM)(SDit + LDit)N (d2it) ,

σAit = σEit
V Eit
V Ait

,

d1it =
log (V Ait/(SDit + LDit)) +

(
ytm + 1

2σ
2
Ait

)
M√

σ2AitM
,

d2it = d1it −
√
σ2AitM . (78)

The standard deviation of the firm value, σAit, is derived by an implicit estimation from the Black/Scholes

formula. We derived estimates of V Ait and σAit by minimizing a weighted sum of the squared distances

between the model implied value of equity, V Eit, and the market capitalization Sit, and the terms σAitV Ait

and σEitV Eit, respectively. Following industry praxis we set M = 1 and ytm equal to the one year treasury

yield r1t. We have to point out that the minimization strongly depends on how all these values are scaled.

σ2Eit is estimated from log asset returns. Here e.g. the sample variance σ̂2iE (resulting in a constant equity

54



volatility σEit over time t) can be used. In this article we follow Ericsson et al. (2009) and approximate

the equity volatility by means of exponential smoothing, where

σ̂2Eit = λσ̂2Eit−1 + (1− λ)(∆ log pit)
2 (79)

with λ = 0.94. This σ̂2Eit has been used in the calculation of the distance to default.
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