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Abstract: Skin hydration is a complex process that influences the physical and mechanical properties
of skin. Various technologies have emerged over the years to assess this parameter, with the current
standard being electrical probe-based instruments. Nevertheless, their inability to provide detailed
information has prompted the use of sophisticated spectroscopic and imaging methodologies,
which are capable of in-depth skin analysis that includes structural and composition details.
Modern imaging and spectroscopic techniques have transformed skin research in the dermatological
and cosmetics disciplines, and are now commonly employed in conjunction with traditional methods
for comprehensive assessment of both healthy and pathological skin. This article reviews current
techniques employed in measuring skin hydration, and gives an account on their principle of
operation and applications in skin-related research.

Keywords: skin hydration; barrier function; stratum corneum

1. Introduction

The skin is the interface between humans and their environment. It acts as a means of adjusting
to variations in environmental temperatures through elegant controls that regulate microcirculation,
and as an impermeable barrier that allows the body to intake water without flooding its internal
organs, all while prohibiting the intrusion of various xenobiotics. The outermost layer of the skin,
known as the stratum corneum (SC), consists of piled-up layers of flattened corneocytes separated by
lipids in the intercellular space. Together, they serve as the primary skin barrier. The skin’s functions
and dysfunctions, which include many pathological conditions, have huge impact on both the physical
health and self-esteem of a person [1,2].

Over the years, numerous studies have contributed to understanding the skin, and provided many
tools for treatment and diagnostic purposes. An absolute interdisciplinary approach has been taken to
envelop many disciplines such as analytical sciences, instrumentation, and traditional dermatological
and cosmetic sciences, the latter playing a major role in assessing the ingredients of personal care
products and evaluating their functional efficacy.

Such advancements have greatly extended our understanding of the structural arrangement
and functional characteristics of skin, and led to the development of various instruments that can be
used for this purpose. Since previous interpretations of dry skin assumed a lack of water in the SC,
earlier methods and devices were focused on determining the water content of the SC, while more
recent techniques such as Raman analysers and infrared spectrometers, have aimed at addressing not
only the water content, but also other skin constituents such as lipids and proteins, and their overall
relationship with skin hydration.
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This paper reviews current techniques used for the assessment of skin hydration, including traditional
probe-based devices as well as spectroscopic and imaging modalities. Several techniques are correlated
with the gold standard skin capacitance method, and hence correlations and comparisons are also briefly
discussed within.

2. Differential Scanning Calorimetry

Differential Scanning Calorimetry (DSC) is a thermal technique used to determine the energy of
thermal transitions, and permits quantification of their temperature dependence. Initially developed
in the early 1960s, DSC remains the reference method for characterising bound, bulk and free water
molecule types inside the SC because it can directly measure the energies of interactions and phase
changes of multiple SC composites [3,4].

DSC instrumentation operate using heat flux or power compensation methods, both of which
measure the heat in or out of a sample relative to a reference. A sample of SC layer is usually studied
relative to a reference of distilled water, giving an output DSC thermogram that shows the instant
power provided or the absorbed power related to the transition phenomenon observed. Calculating the
area under each peak gives the enthalpy of the coinciding transition.

A typical thermogram of the SC is composed of several peaks. The first peak is not always apparent
and can disappear if an organic solvent is added to the SC sample due to the melting of sebaceous
lipids on the skin surface [4,5]. The second peak is assumed to reflect the melting of hydrophobic
chains present in the lipid bilayers and the third, although difficult to interpret, has been suggested
to relate to the changes imposed by heat in the lipid-protein complex between the intercellular lipids
and corneocyte membrane [4–6]. Moreover, this peak is highly sensitive to hydration, and when the
SC water content increases, its transition temperature and area are reduced [5,7]. The fourth and final
peak is thought to be linked to thermal denaturation of intracellular keratin, which is irreversible and
is also seen in lipid-free SCs [4,5,7–9].

Al-Saidan et al. [10] investigated the thermal transitions in desiccated SC membranes of adult
abdominal human skin and concluded that extraction of SC using solvents decreased the content of
bound water, whereas extraction by water maintained the same content.

Although earlier studies using DSC were focused on studying the mechanical or biophysical
properties of skin and its basic composition [11–14], the technique remains popular and continues to
be employed in studies of cosmetic ingredients [15–18] and liposome-assisted drug delivery [19–24],
where DSC serves as a primary tool in characterizing the matrix state, with polymorphism and drug
incorporation in lipid dispersions [3].

3. Electrical-Based Methods

The skin possesses electrical properties that relate to SC hydration through various types of
electroconductivity elements, with protonic conduction being the predominant type in electrical
measurements of skin hydration. Electrical-based methods consider a simple electrical model of the
skin as a resistor connected in parallel with a capacitor, which together, contribute to the total skin
impedance, Z. When an alternating current of frequency, f , is applied to the skin, the value of Z
will depend on the contribution of the resistance, R, and capacitance, C: Z = (R2 + 1/2p f C2)

1
2 . By

using measuring electrodes of adequate geometry, and a suitable applied frequency and design of
oscillating electronic circuit, electrical-based devices can determine either the capacitance, conductance,
or impedance contributions related to skin hydration.

Skin capacitance and conductance: This principle is based on the classical operation of a
capacitor, whose main role is to store electrical charge when it comes close to a charged field,
and is comprised of at least two electrical conductors separated by an insulating material acting
as a dielectric [25]. The dielectric constant of water differs from other substances, and is 81 compared
to roughly <7 from most others. Thus, water is much more powerful at enhancing the capacity of a
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capacitor, and this leads to the assumption that skin capacitance is directly proportional to skin water
content, and the higher the hydration level in the SC, the higher the capacitance [25].

The skin capacitance method is widespread and has become the standard measure of skin
moisture, especially with a handheld device known as the Corneometer R (Courage & Khazaka,
Cologne, Germany). Since its development in 1980, the Corneometer R has been used in numerous
cosmetics and dermatological studies, either on its own or in conjunction with other devices, and is
still used in correlation studies of comparable methods. The MoistureMeter(Delphin Technologies
Ltd., Kuopio, Finland) is another commercial device based on capacitance measurements.

Skin conductance is an alternative approach for measurement of skin moisture derived from
alterations in the electrical properties of the SC. A layer of SC with high water content produces
stronger and more sensitive electrical conductivity than dehydrated SC, and increases the induction
of the dielectric constant [25]. Generally, this gives larger conductance and capacitance values but
reduces the impedance value of skin. A popular device implementing this method is the Skicon R

(IBS Co., Hamamatsu, Japan), which is often preferred because it overcomes the issue of false
or inaccurate readings experienced by capacitance and impedance measurements due to external
influences. The Skicon R can reduce these influences by applying a higher frequency of 3.5 MHz on
closely spaced electrodes inside a probe that maintains the electric field within the superficial layers of
skin [25].

More recently, a new technique based on image micro-sensing has been developed,
which performs in vivo mapping of skin surface capacitance and provides a non-optical image of SC
moisture [26]. The first device, known as the SkinChip R was developed by L’Oreal, with others such
as the MoistureMap (Courage & Khazaka, Cologne, Germany) soon following. A typical sensor of
this kind is composed of an array of micro-capacitors distributed on a thin silicon oxide plate that
produces grey level images once applied onto the skin with sustainable pressure at a level of every
50 �m [27,28]. Further analysis of the image via computer software gives the average grey level of the
image histogram, which can then be used to obtain the average capacitance of skin surface (Figure 1).
Comparative studies between the SkinChip R and Corneometer R showed a good correlation between
the two devices, and deemed it a necessary tool for complete analysis and quantification of skin surface
hydration [27,29].

Figure 1. Capacitance imageing of skin surface at six anatomical sites. (a) Lateral side of the neck,
(b) Abdomen. The arrow points to a ruby angioma appearing as a circumscribed lesion with an altered
pattern of skin linenetwork. (c) Inner aspect of the arm with a very dense network of microrelief lines.
(d) Dorsum of the hand, (e) Lower lip, (f) Forehead [29].

The combination of skin surface imaging and detailed analytical quantification of corneocyte
hydration provided by capacitance imaging has created new research opportunities in investigating
SC hydration [30–32], sweat gland activity [33–35], skin microrelief and ageing [36,37], and the effects
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of topical applications [38–40]. The technique has also been used for diagnostic purposes or general
examinations of skin physiology [26,27]. Furthermore, skin capacitance mapping has recently been
incorporated into the revised EEMCO guidelines for in vivo measurement of skin water [41].

Skin impedance: Opposite to capacitance and conductance, skin impedance evaluates the
resistance of skin, which increases with dehydration of the SC layer and is influenced by the
composition and metabolic activity of skin. Commercial products implementing this principle
include the Nova R Dermal Phase Meter (Nova, Waltham, MA, USA) and the Surface-Characterizing
Impedance monitor (SCIM) (U.S. Pat. No. 5353802, issued 11 October 1994). These instruments
integrate the readings taken at separate frequencies of the applied alternating current, and generate
impedance-based capacitance values. Unlike the Corneometer R and Skicon R, which use a low
frequency range or a fixed frequency, the Nova R Dermal Phase Meter measures samples along a
controlled rise time of up to 1 MHz. The Surface-Characterizing Impedance monitor is also capable of
magnitude and phase outputs.

4. Transepidermal Water Loss

Transepidermal Water Loss (TEWL) is characterised by the constitutive evaporation of water that
initiates from the deeper, more hydrated layers of the epidermis and dermis and then moves towards
the more superficial SC layer, in the absence of sweat gland activity. Depending on climate conditions,
a portion of this water evaporates through the SC whilst some is preserved within by the presence of
NMFs, which in turn, directly relate to skin hydration and barrier function. If the integrity of SC barrier
function is compromised, more water can escape, and TEWL increases. Nevertheless, elevated levels
of TEWL is not an indication of SC damage, particularly when is accompanied by alterations in
temperature and hydration, but it is a very valuable and commonly used tool in dermato-cosmetic tests,
particularly when examining the effects of various products and conditions on SC barrier function.

TEWL can be measured through four different mechanisms:
Open chamber: This mechanism follows the basic theory of Fick’s law of diffusion, and is the

traditional method for TEWL measurements. The set-up consists of a chamber made up of two pairs of
temperature and humidity sensors, placed inside a hollow cylinder. The overall system estimates the
water gradient through the open chamber and allows continuous readings of ambient air, with little
variation in the microclimate overlying the skin surface. Commercially available instruments include
the Tewameter R (Courage & Khazaka, Cologne, Germany), DermaLab R (Cortex Technology ApS,
Hadsund, Denmark) and the Evaporimeter R (ServoMed, Varberg, Sweden). When using these, it
is essential to maintain a controlled environment as many factors such as probe size, airflows from
atmosphere and the body, room temperature, air convection, and ambient humidity can easily alter
results [42,43].

Closed chamber: This system is composed of humidity and temperature sensors placed in a
closed cylindrical chamber. Upon application on the skin, the relative humidity (RH %) increases and
is used to detect the rate of TEWL [44,45]. A popular device of this type is the VapoMeter R (Delfin
Technologies Ltd., Kuopio, Finland), which has proved through comparative studies [45,46] to give
more accurate and rapid readings. Unlike open chamber instruments, the closed chamber system of
the VapoMeter R is not affected by ambient or body-induced airflows but its rapid assessment makes
it susceptible to interference from movements, surface moisture and tremor, and is unable to perform
continuous measurements because it uses the principle of single point readings [42].

Ventilated closed chamber: This approach follows the flow principle, and measures the humidity
of ambient air flowing into a closed chamber. The closed chamber is placed onto the skin surface
with air passing through it, which causes TEWL to be removed. Air humidity is calculated before it
is released back into the surrounding, and thus, the rate of TEWL is determined by estimating the
difference in humidity before and after contact with skin [45]. The set-up allows continuous recording
of TEWL rates, but can be unreliable if the carrier gas is too dry because it will artificially enhance
evaporation [25].
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Condenser chamber: This is a more recent method whereby a closed chamber contains a cold
plate that condenses moisture into ice using a Peltier system. The system eliminates accumulation
of moisture by removing it from the chamber, a problem that normally occurs in unventilated
chambers [45]. The Biox Aquaflux R (Biox Systems Ltd., London, UK) is an example of this technique,
which uses diffusion gradient to give TEWL readings. Its probe is designed with a closed top, achieved
by a condenser that is constantly removing water vapour from air in its vicinity by freezing [47]. It has
two sensors; one positioned halfway of the chamber and the other inside the condenser. Replacement
caps are available for measurements on several body sites [47]. Again, comparative studies on this
method have shown its data to correlate well with alternative instruments, even under several climate
conditions and geometric dimensions [47–49].

Measurements of TEWL are often employed in regulatory testing, and to claim support for
cosmetic products [50]. Some claim-support parameters for which TEWL readings have been used
include reduction of irritating skin reactions, skin mildness, modulation of SC barrier function,
increase in skin hydration, and protection against sun damage. Moreover, TEWL measurements
are used in aiding the development of novel cosmetic ingredients, and products designed to repair
SLS damage [51,52], or for atopic/eczematic [53,54] and aged skin [55–59]. Additional applications
include improving topical therapeutic treatments, and as a non-invasive tool in skin compatibility
testing of cosmetic products on human skin.

5. Skin Elasticity

Skin elasticity relates to the elastic properties of skin and its flexibility. It is determined through
measurement of tensile, rheological, and biochemical parameters under mechanical stress. Assessment
of skin elasticity is important in both cosmetics and dermatology because it is believed to decrease
with chronological and photo- ageing, and has experimentally proved to rise with hydration levels.

Measurements of skin elasticity are typically performed using non-invasive techniques, of which
two methodologies exist that apply skin deformation either in the plane of the skin e.g., torsion,
or horizontally to it e.g., suction or indentation. In this case, measured parameters are obtained
indirectly and can reveal complex skin attributes including the arrangement of dermal collagen
and elastic fibres, and the desquamation process. Therefore, it is difficult to solely rely on
mechanical methods for hydration measurements and additional techniques are often incorporated
into this assessment.

Methods using deformation in the plane of the skin tend to focus more on the properties of
superficial tissues, which give information regarding geometric dimensions and require smaller
deformations. This includes the torsion technique, which evaluates the skin’s resistance to torsion as
applied by a rotating disc, and it is beneficial when trying to lessen the effects of dermis-hypodermis
interrelations [60]. Initially, torsion-based systems lacked ability to restrict the geometry of the
measurement zone but following vast improvements, commercial devices such as the Dermal Torque
Meter R and Twistometer R (Both from Dia-Stron, Hampshire, UK) became available. The operating
principle involves induction of a given amount of stress using a rotating disc adhered to the skin,
and then measuring the angular displacement of the resulting skin deformation. A concentric guard
ring, also adhered to the skin, limits the size of the area subject to stress. Using the geometry and a
few simplifying approximations, the Young’s modulus i.e., stiffness measure of an elastic material,
can be determined.

An experiment carried out by De Rigal and Leveque [61] showed that for a distance of 1 mm and
coupling of 0.6 N m, the dermis was undeformed, and only the epidermis and SC were deformed.
Thus, for a given torsion couple, an increase in the distance between the central disc and the guard
ring deepens the deformation of skin during torsion [61].

The torsion method has been widely used to assess moisturiser formulations and their hydrating
efficacy [62–64], as well as complementing capacitance/conductance measurements [65] in evaluating
performance claims of skin care ingredients, an alliance that continues to be implemented today.
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Outside of cosmetic applications, racial and gender differences have been examined in relation to
skin structure and function [66–68], and in studies of skin ageing [69–73] investigating changes
in mechanical properties, particularly the elastic return feature, and the effects of sun exposure and
photodamage. A successful implementation of this technique is the creation of the “skin condition chart”
by Salter et al. [70], which is based on the torsional mechanical characteristics of skin, assessed using
the Dermal Torque Meter R.

As for techniques applying deformation horizontal to the skin, suction is most commonly selected
in commercial devices such as the Cutometer R (Courage & Khazaka, Cologne, Germany) and the
DermaFlex R (Cortex Technology, Hadsund, Denmark), with the former considered the standard
instrument in dermatology and cosmetology for the measurement of skin elasticity. These are
merely suction devices that work by inducing a vacuum suction perpendicular to the skin surface,
and then determine the resulting displacement and relaxation of skin. Data is expressed by the
same standardised parameters regardless of whether the force is applied horizontally or in parallel
to the plane of skin. Skin thickness has strong influence on the measured parameters, and in turn,
is dependent on the geometry and size of the probes exercised. Therefore, measurements must be
carried out under controlled settings and many factors including pressure, vacuum load, position,
time of application and relaxation, and pretension of the skin must remain constant throughout the
examination period [60,74].

The Cutometer R can yield reasonably accurate and reproducible stress-strain and strain-time
curves that can emphasis the pure elasticity and viscoelasticity of the dermis [74]. Evaluating the SC
alone is difficult, and thus elasticity data is normally presented as a ratio e.g., Ur/U f , known as the
biologic elasticity. Alternatively, The DermaFlex R employs a proportional full-thickness strain method
rather than the disproportional superficial strain system used by the Cutometer R. This method is
regularly employed in studies of skin pathology and scars [75–83], environmental and natural effects
on skin [84–88], as well as anti-ageing cosmetic preparations [89–94]. Quite often, the DermaFlex R

is used for dermatologic purposes whereas the Cutometer R is more commonly used in cosmetic
studies [60,74].

6. Photothermal Radiometry

Photothermal radiometry, also termed Opto-Thermal Transient Emission Radiometry (OTTER), is
a non-invasive, non-occlusive method, which uses excitation and thermal emission wavelengths that
are strongly absorbed by the top few microns of the SC and are specific to the spectral properties of
water [95]. Excitation and radiation from deeper layers of the skin do not affect measurements due to
the low thermal diffusivity of skin, and the effects of optical scattering are also negligible because of
the dominance of absorption and the low turbidity of skin at the long wavelengths used [95]. Together,
this gives results that resemble a semi-infinite homogeneous material. In principle, the excitation
wavelength (a) is greater than the wavelength of emitted thermal radiation (b), and so the resulting
excitation is in photothermal saturation, and the signal S(t) can be described by:

S(t) = Ae
t
t er f c(

p
t/t (1)

with A being a constant, t, the opto-thermal decay time (defined as t = 1
b2D ), and D,

the thermal diffusivity.
Subsequently, a single parameter, t, can be used to determine skin hydration, and can be obtained

in vivo as it is insensitive to experimental variables such as optical alignment and amounts of absorbed
energy. Moreover, the opto-thermal decay time (t) relates to two fundamental parameters, b and D,
thereby permitting absolute calibration of the instrument once their dependence on hydration is found [95].

Initial experimentation was introduced by Imhof et al. [96,97] followed by Xiao et al. [98],
and has been applied in a range of skin measurements including SC water content [99–102],
pigmentation (particularly port wine stains) [103–105], nails [106], solvent penetration [107,108],
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and computational modelling of skin [109–111]. A study on the water-keratin interaction in relation
to free and bound water in the SC [99] correlated OTTER results with previous findings from
Leveque et al. [112], showing that the absorption band of bound water at low humidity shifted
towards high wavelengths, and was narrower than the band associated with bulk water. A downward
shift of 30 nm was observed when the relative humidity increased from 3% to 100%, and showed a
plateau between 10% and 40% RH on delipidized samples. For normal SC, the decay was normal.

Further studies on SC hydration include measurement of epidermal thickness [113], SC renewal
time [114] and SC water concentration gradient [100–102]. These concluded that OTTER is capable of
measuring water content at the skin surface as well as water concentration gradient within the SC,
water status in the SC, SC thickness, and SC swelling during hydration. Moreover, combining the
OTTER with TEWL allowed determination of SC water-holding capabilities (Figure 2). Recent efforts in
combining OTTER with infrared spectroscopy [115,116] or even 2D detection promises photothermal
spectroscopy/photothermal microscopy that is depth resolved and could simultaneously obtain
spectral information from the skin surface and deeper layers.

Figure 2. Water vapour flux density (WVFD) data (Method A) versus opto-thermal transient emission
radiometry (OTTER) (Method B) from the volar forearm [102].

7. Attenuated Total Reflection Infrared Spectroscopy

Attenuated Total Reflection Infrared (ATR-IR or ATR-FTIR) spectroscopy is based on the
attenuation of the evanescent wave generated by totally reflected IR radiation on an internal reflectance
element (IRE) crystal. Every time a reflection occurs by the surface of the attached crystal, the skin
absorbs part of the energy due to the evanescent wave theory and the electromagnetic nature of light.
The amount of energy absorbed by the skin is recorded on a spectrum by a suitable infrared detector,
and has the advantage of only analysing the first micron of the SC due to the submicronic penetration
of evanescent waves.

For skin hydration measurements, a beam of polychromatic IR light is shone on the skin surface,
and depending on the type of crystal used, several reflections are produced between the upper surface
of the crystal and that of the skin before light is returned to the spectrometer. Every time a reflection
occurs on the skin, the beam penetrates a small distance into the SC, where it is absorbed. The generated
IR spectrum shows the IR absorption bands of the SC.

Various approaches have been reported for measuring SC water content using this technique,
including calculating the ratio between the amide I and amide II bands at 6.06 and 6.45 �m, or between
the absorbance at 1.95 and 1.8 �m, or by measuring the absorbance at 8.94 �m and 9.65 �m and then
calculating the area of the water absorbance peak at 4.76 �m. Nevertheless, measurements may require
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calibration with standards, and absorption intensities are susceptible to influences from the presence
of moisturisers or other products on the skin surface. As mentioned earlier, results are also limited to
superficial SC layers due to weak IR beam penetrations, which are only capable of reaching a depth of
5–20 �m.

An early study by Potts et al. [117] used this technique to quantitatively determine the water
content in the SC through a combination of in vivo and in vitro examinations, and again later by
Bommannan [118] to assess the SC barrier function in vivo. Boncheva et al. [119] used second derivative
IR spectra for evaluation of lateral lipid chain packing, and was able to detect the presence and extent
of OR and HEX phases. The report suggested that ATR-FTIR can be used for both in vivo and ex
vivo assessments of SC barrier function and lateral lipid organisation changes resulting from topical
application of products, and to provide information on the molecular basis of interactions. It has
also been possible to study lipid molecular organisation in relation to SC integrity and cohesion in
healthy human skin [120] using ATR-FTIR, as well as lipid-lamellae phase behaviours in the axilla,
which showed reduced barrier function in this anatomical region [121]. At present, the technique
is commonly combined with additional modalities such as Raman Spectroscopy for evaluation of
molecular organisation of SC lipids and corneocytes in drug penetration [122–126] and detection of
unwanted drug crystallisation within skin [127], as well as in cosmetic studies of the distribution of
phospholipids-based formulations [128] and moisturiser penetration [129,130].

The main limitation of ATR-IR/FTIR stems from the pressure required to obtain a good
signal-to-noise ratio, which can cause occlusion and accumulation of water at the test site. Furthermore,
the water band at 1640 cm�1 exhibits a frequency that coincides with the protein amide I vibration
at 1645 cm�1, and is thus susceptible to variations from moisture levels. Although Potts et al. [96]
substituted this band with 2100 cm�1, which had the betterment of being in the mid-IR region and
away from protein or formulation ingredients peaks, it is very weak and sometimes inconspicuous in
dry skin [131].

8. Nuclear Magnetic Resonance

Nuclear Magnetic Resonance (NMR) takes advantage of the magnetic properties of the nucleus
to sense the proximity of electronegative atoms, double bonds, and other magnetic nuclei nearby
in the molecular structure. In practice, NMR measurements are acquired by placing a sample in an
intense magnetic field, causing a nuclear spin that is aligned with the field axis. Radiofrequency waves
are then used to excite the nuclei, resulting in vibrations or resonance perpendicular to the field axis.
At the end of the excitation process, the induced spin begins to relax and finally returns to a state
of equilibrium. This relaxation creates the NMR signal, which is then used to specify the atoms and
molecules of the sample in question. The final NMR signal can be portrayed as a spectrum of resonance
by magnetic resonance spectroscopy or as an image, using Magnetic Resonance Imaging (MRI).

A study by Hasen and Yellin [132] combined NMR and IR modalities to investigate the state of
water in a variety of in vitro human SC. NMR served as a direct measure of molecular mobility whereas
IR spectroscopy was used to provide information on the strength of inter-molecular hydrogen bonding.
Their results confirmed the existence of three species of water in hydrated SC, but unlike IR spectra,
NMR time-scale spectra were only able to distinguish bulk liquid-like water. Many studies afterwards
focused on measurement of free and bound water [133] or on the relationship between water and
non-aqueous skin components i.e., lipids and proteins within healthy SC [134,135], and even that
affected by psoriasis [136]. A more recent study by Silva et al. [137] carried out a detailed assessment of
the hydration process in extracted SC lipids, isolated corneocytes and intact SC using micro-calorimetry
and NMR. Some of the findings were later confirmed by Bjorklund et al. [138] who found that heating
had a strong effect on lipid mobility, and hydration in excess of 85% RH caused abrupt changes to
keratin filament dynamics. Moreover, the structure of anti-ageing and moisturiser ingredients are
commonly investigated using NMR prior to formulation [139–141], and in investigations of molecular
mobility of SC barrier function [142,143].
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As for MRI images, each point within an image is pertained to a particular signal intensity caused
by a given small volume of tissue. Compared to alternative imaging modalities, MRI has proved
advantageous in assessing skin water content and other parameters due to its ability to provide
tissue imaging as well as physical-chemical classification, where alternatives such as radiography and
ultrasound only give information pertaining to tissue density and mechanical interface differences,
respectively. Unfortunately, an MRI device suitable for skin measurements is not available, which would
require a minimum resolution of 100 �m due to variations in skin thickness [60].

Nevertheless, an imaging probe connected to a standard whole-body imager at 1.5 Tesla was
attempted by Bittoun et al. [144], who then used the accessory to record in vivo images of multiple
anatomical sites at an axial resolution of 70 �m. The images produced were able to differentiate the
epidermis, dermis, and hypodermis from various anatomical sites, and were then used to evaluate
skin hydration in young and old individuals using proton density data that correspond to the content
of unbound or free water [145].

Franconi et al. [146] reported an alternative approach to measuring skin hydration by using the
BIOSPEC R imager (Bruker Optik GmbH, Ettlingen, Germany). When combined with a specific probe
and image acquisition sequence, the device produces images of forearm skin with an axial resolution
of 86 �m. The study measured the relaxation time (T2) at the epidermal level and showed an increase
after use of hydrating creams. As this function is wedded to the content of free water, its increase
signified betterment in epidermal hydration. Furthermore, the moisturising effect of cosmetic products
was investigated by Szayna and Kuhn [147] using high-field MRI and NMR microscopy, and then
later by Mesrar et al. [148] who examined MRI images acquired in vivo prior to and after moisturiser
application, and reported a T2 increase in both SC and epidermis without significant difference in the
dermis layer (Figure 3).

Figure 3. MRI T2 mapping (seconds); (a) before—with ROI’s in the stratum corneum, epidermis and
dermis; and (b) 1 h after moisturiser application [148].

Although most NMR studies evaluated the entire skin including the dermis, a report by Salter [149]
and a similar one by Mirrashed and Sharp [150], visualised the hydration-dehydration process using
MRI with a resolution of 0.6 mm after 1 h of skin occlusion. The brightness and SC thickness of the
two layers were different depending on their hydration levels, and after some time, the outer band
disappeared as the surface became dry. Thus, despite its expensive and complicated operation, MRI
provides global analysis with high resolution of the various skin layers down to the hypodermis and
the muscular fascia, and remains a valuable tool in skin-related research.

9. Optical Coherence Tomography

Optical Coherence Tomography (OCT) is an imaging technique that uses broadband near-IR
light waves, and works by reconstructing a depth profile of a sample’s structure using the time-delay
information present in the light waves that were reflected from different depths inside the sample.
A 3-dimensional image can then be produced by scanning a light beam laterally across the surface of
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the sample. The lateral resolution is arbitrated by the spot size of the light beam, whereas the depth
resolution relies primarily on the optical bandwidth of the radiation source. As a result, OCT methods
can give high axial resolutions with large field depths, and are useful for in vivo imaging of thick
sections of biological mediums.

OCT instrumentation come in two categories: Time-Domain OCT (TDOCT) or Spectral-Domain
OCT (FDOCT or SDOCT). Early OCT systems were mostly based on TDOCT technology and used in
earlier experiments. However, SDOCT is more sensitive and offers higher image acquisition speed,
thereby rapidly replacing TDOCT in many applications.

For healthy skin measurements, OCT allows real-time in vivo imaging that is capable of
distinguishing thickened layers of SC as shown in Figure 4, and can clearly identify the epidermis,
the dermo-epidermal junction, as well as the normal regional differences and well defined anatomical
sites [60,151–153]. The information acquired at each depth of skin is achieved by adjusting the reference
beam path length by scanning with the mirror.

Figure 4. Speckle reduced OCT image obtained by combining 8 individual scans to suppress speckle
noise. The SC is marked by the white-coloured top layer [154].

Due to short coherence length, spatial depth resolution can be less than 10 �m, but owing to multiple
scattering, this can be restricted to reconnaissance depths of a few 100 �m, increasing accordingly with
depth. Deeper exploration depths of >1 mm are attainable with a decline in resolution.

It was revealed by multiple studies [155–157] that by altering the focus of light in the measurement
arm at different refractive index (n) of skin and if the focal point is found for varying lens configurations
by analysing the acquired image data, n can be quantitatively reconstructed (Figure 4). In turn,
the refractive index of skin is significantly linked to its water content, and so the technique can be used
for skin hydration measurements. Knuttel et al. [157] extracted optical scattering properties using the
Huygens-Fresnel model simultaneously with refractive index measurements, and related the effects of
skin hydration levels to the optical characteristics retrieved from OCT images.

Furthermore, OCT has been extensively used in investigations of skin pathology including
Nonmelanoma skin cancer [158–168], and inflammatory skin conditions such as contact dermatitis
and psoriasis [151,167,169]. Welzel [151] applied OCT in patients suffering from contact dermatitis
and psoriasis, and found that light scattering in the upper dermis was reduced in healthy
skin, indicating that edema provided enhanced optical settings for imaging of collagen fibres.
Although variations in OCT images did not entirely correlate with those shown by other methods,
the technique can effectively determine epidermal thickness and the signal attenuation coefficient in
the upper dermis in both skin conditions. The use of OCT for measurement of SC, epidermal and full
skin thickness remains employed in current reports on the effects of topical moisturisers [170–172],
and on skin ageing [173,174].
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10. Raman Spectroscopy

When a ray of light becomes incident on a sample, several processes can occur. Light may
travel through and remain unaltered, or it can be reflected or absorbed. It can also be scattered in
different directions while maintaining its energy. The latter is known as elastic or Rayleigh scattering.
Alternatively, light can undergo an inelastic scattering process, whereby energy is transferred to or
from the medium, and the scattered photon has less or more energy than that of the incident photon.
When the scattered photon has less energy, the process is known as Raman stokes scattering, while the
opposite is referred to as Raman anti-stokes scattering. This is the mechanism of Raman scattering
which forms the basis of Raman Spectroscopy (RS), and deals with the Raman Effect resulting from
energy exchange between incident photons and molecular scattering.

Because Raman signals are generally weak, all commercial Raman spectrometers employ a laser
as a source of radiation, accompanied by very sensitive detectors particularly in in vivo applications.
Other essential components include a sampling stage and a spectrometer that separates and records the
different frequency components. A typical output of a Raman spectrometer is a spectrum of scattered
intensity versus the frequency shift between the incident and scattered photons. This frequency shift is
proportional to the energy difference, and is distinctive of the molecule that the photon collided with.
The final spectrum features a series of Raman bands that are consistent with the various vibrational
modes of the sample molecule. Raman peaks are often spectrally narrow and mostly relate to the
vibration of a specific molecular bond.

Most biological molecules are Raman-active and have fingerprint spectral properties. Therefore,
Raman spectra include information pertaining to the molecular composition or chemical fingerprint,
structure, phase, orientation, and even concentration of chemical substances, hence the technique is
especially suited to studies of molecular composition in pathological skin [175–187].

Due to the natural fluorescence of mammalian skin presenting an obstacle in Raman spectroscopic
measurements, it is only when longer wavelength near-IR excitation was developed that the technique
was applied to the skin [188]. Earlier reports focused on identifying key Raman biomarkers that
could be implemented to investigate skin molecular components, and the possibility of characterising
healthy and diseased skin tissue [189]. Such reports included investigations into the state of skin
hydration [190,191], on the role of skin NMFs [192–195], and the effects of UV protective agents,
photoageing, and chronic ageing on water and protein structure [196,197].

The use of RS to examine lateral packing and conformational order of SC lipids is well
established, as well as in evaluations of SC water profiles [198], and determinations of lipid/protein
ratio through calculations of lipid and protein intensity peaks [199]. Such attributes have been
employed in a variety of skin-related studies of barrier permeability in dry skin conditions [199–202],
substance penetration [203], and evaluations of the efficacy of moisturisers [204] and anti-ageing
ingredients and formulations [56,205].

11. Confocal Raman Microscopy

Confocal Raman Microscopy (CRM), also termed Confocal Raman Spectroscopy, combines a
Raman spectrometer and a standard optical microscope, together offering highly magnified sample
visualisation as well as Raman analysis with a microscopic laser spot. The arrangement includes a
spatial filter, which enables spatial filtering of the analysis volume of the sample in the xy (lateral) and
z (depth) axes. This makes it possible to analyse individual particles or layers with dimensions down
to 1 �m and below.

For an ideal confocal design, the extents of spatial resolution are illustrated principally by the laser
wavelength, the quality of the employed laser beam, and the selected type of microscope objective.
As this poses a significant technical challenge, it was some time before commercial instruments suitable
for skin measurements became available, the first being the Raman skin analyzer R 3510 (RiverD
International B.V., Rotterdam, The Netherlands).
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In recent years, CRM has gained much interest and is considered a powerful technique
in biomolecular analysis that can directly measure skin molecular composition and structure,
and allow acquisition of depth profiles of SC and deeper skin layers. In relation to skin hydration,
the first series of studies were carried out by Caspers et al. [192–195] who performed in vivo
studies of human skin, and demonstrated the variations in water concentration within the SC and
epidermis at penetration depths of up to 100 �m (Figure 5). The same author investigated skin
components that produced Raman signals [193], and reported temporal and spatial changes for the
penetration-enhancer dimethyl sulfoxide in the SC [192]. Moreover, the technique allowed construction
of water concentration profiles of human SC with obvious consequences for penetration of exogenous
hydrophilic molecules [193,206,207].

Figure 5. Raman spectra obtained at different depths below the skin surface by means of the qualitative
least-squares fit. (a) (1) Difference between Raman spectra obtained at the skin surface and at 10 �m
below; (2) fit result; (3) residual (curve 1–curve 2). (b) (1) Difference between Raman spectra obtained
at 60 �m and 70 �m below skin surface; (2) fit result; (3) residual (curve 1–curve 2) [193].
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Further studies from cosmetics research focused on the effects of moisturising ingredients and the
ability to monitor Raman-active molecules which have been topically applied on the skin, to study the
evolution in time of concentration profiles. One performed by Sieg et al. [208] compared the efficacy of
three different moisturisers in vivo over a period of 3 weeks. The obtained Raman spectra were used to
build concentration profiles of water and NMFs, and the thickness of SC was determined at different
anatomic sites from the water concentration profiles.

Furthermore, evaluations of intercellular lipids packing and ordering, and SC thickness are
commonly performed using CRM [209–214], and include applications in skin ageing [211,212]
and topical oils [209]. Eklouh-Molinier [211] combined CRM and cutometric data into a Partial
Least-Squares (PLS) model in an attempt to profile spectral markers associated with ageing, and used
this to create a “biological age” chart that mapped skin age based on its molecular state rather than
its chronological age. Besides SC thickness and water content, measurements of ceramides/fatty
acids and NMF content are possible with CRM, and can be used to assess barrier function [215,216],
as well as the penetration of sunscreens [217,218], cosmetic ingredients [219–221], and other
substances [220,222–228].

Overall, CRM is finding increasing use in the characterisation of skin in biomedical,
pharmaceutical and cosmetic studies, and further optimisation of its instrumentation and data
analysis [229,230] are likely to reinforce its employment in skin-related applications.

12. Near Infrared Spectroscopy

Near Infrared (NIR) Spectroscopy is a subset of IR spectroscopy that addresses the broad and less
intense peaks in the NIR region between 750–2500 nm of the electromagnetic spectrum. Unlike mid-IR
measurements, NIR spectroscopy is capable of deeper sample penetrations and gives the absorptivity
of the given species based on its molecular overtone and combination vibrations.

Nonetheless, due to the broad nature of these vibrations and the complexity of NIR spectra, it is
difficult to assign specific attributes to a definite chemical component, and therefore, multivariate
calibrations techniques such as Principal Component Analysis (PCA), PLS, or Artificial Neural
Networks (ANN) are often necessary to extract relevant information.

A typical NIR spectrum of skin contains absorption bands related to water, and their intensity
directly proportional to skin water content. NIR spectra can differentiate the types of water present
inside the SC, as demonstrated by Martin [231], who applied diffuse reflectance NIR and found
four types of water to exist. These were: water linked to the lipid phase within the SC, bulk water,
secondary water, and primary water.

NIRS was used in several studies determining SC water contents at multiple anatomical
sites [232–237], while several others focused on the characterization of dry skin. Characterization
of skin lesions and tumours [238–240] were also investigated in cancer-related studies, but a limited
number of reports are available regarding spongiotic disorders. Dreassi et al. [241–243], published a
series of reports on atopic skin, where pattern recognition statistics were combined with reflectance
NIRS and showed that it was possible to differentiate between atopic and healthy samples and between
the different fomblins that were applied. Works on skin characterisation were performed on healthy
skin [244], and on pathological skin e.g., scoring the severity of psoriasis conditions [245].

More popular, are studies testing the efficacy of moisturising formulations to answer the question
of whether skin which appeared dry was in fact low in water [233,246,247]. Arimoto and Egawa [234]
performed in vivo and in vitro measurements and compared NIR spectroscopic data with the
capacitance method. They also used multivariate analysis and Monte Carlo simulation to fit NIR data,
and reported that the sampling depth was strongly dependent on water absorption in the spectral
region between 1250–2500 nm, and that NIRS monitors water from regions deeper than the capacitance
method. Moreover, the same group [237], as well as Mohamad et al. [248] conducted experiments on
regional differences of water content [237]. The former assumed that regional differences relied on
sampling depths, variations in skin surface reflection and SC thickness.
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All spectra obtained from previous reports showed the peak characteristics of water near 1940
and 1450 nm. Wirchrowski & Khaiat [249] expressed the absorbance at 1940 nm as a function of
a reference absorption at 1100 nm in isolated samples of SC placed under increasingly controlled
humidity settings. These results correlated well with those reported by Abuzahra & Baron [158] using
OCT, which signified the absorbance at 1940 nm as relative to a reference at 1850 nm.

Skin spectra acquired in vitro by De Rigal et al. [4,246] showed that the dermis alone had a much
larger absorbance compared to the remainder of skin, probably due to its larger volume, a decrease
in surface diffusion and the elimination of the less hydrated layer. The same investigation of dry
skin [246] first carried out a visual assessment of the legs of participants prior to measurements and
gave each a score between 1 and 5. Each given score was then compared to acquired spectra, and clearly
indicated that absorbance decreased with the severity of dry skin condition. The study also compared
the efficacy of five daily cosmetic treatments over a period of 4 weeks. Walling [233] concluded that
after calibration, it was possible to use NIRS to predict the score of dry skin.

Finally, a series of studies by Qassem et al. [250–253] combined NIR data with both PCR and
PLS techniques and found clear spectral differences associated with frequency of moisturiser use
(Figure 6), and highlighted the possibility of using this technique to detect changes in barrier function
by measuring water penetration after wet patch testing. The authors suggested that NIR spectroscopy
can provide comprehensive skin analysis in a fast and simple manner.

Figure 6. Scores plot of PCA analysis of NIR spectra acquired from individuals with varied moisturizing
patterns. (Group 1) daily, (Group 2) none, (Group 3) daily & dry skin, and (Group 4) random.
Vairability indicated by size of oval grouping [250].

13. Discussion

Traditional methods such as capacitance, TEWL and mechanical-based techniques are considered
the standard in skin-related measurements, and use SC water content as a primary factor in determining
SC hydration and barrier function without precisely analysing its composition nor its structure.
However, it is important to evaluate additional skin parameters such as lipid and protein compositions
to truly understand the phenomena quantified by indirect methods that are normally used, and monitor
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the efficacy of various formulations applied on the skin. For this purpose, several spectroscopic and
imaging techniques have been employed in recent years.

Capacitance/resistance measuring probes that determine skin moisture by means of skin
conductivity or impedance are often occlusive, which can lead to inaccuracies resulting from water
build up on the examination site [131], and according to their theory of operation, the flow of electrical
current through the SC is associated with its water content, but this flow is also influenced by alterations
in ion movement and by re-orientation of protein dipole moments. Therefore, the presence of salts
from formulations or perspiration can impact ion mobility, and other chemicals can disrupt the protein
arrangement, thereby modifying the orientation of protein dipole moments. Besides their principal
drawbacks, electrical-based devices provide arbitrary outputs, without further details on additional
factors that influence this parameter, though their quick operation is beneficial in many settings.

Similarly, TEWL and mechanical-based devices have proved excellent in highlighting the
biomechanical nature of SC, but nonetheless, they do not provide direct measurements of skin
hydration or barrier function and merely serve as indicators of changes in these parameters.

In recent years, the availability of spectroscopic and imaging techniques suitable for skin
measurements has placed greater interest on detailed analysis of skin structure and composition
in relation to skin hydration and barrier function. Prior to this, evaluations of the state of SC water
and characterisation of SC water types were only possible using DSC, which remains the standard
but involves complex and time-consuming procedures, and only feasible for ex vivo measurements.
Furthermore, emerging techniques such as multimodal sensors of skin hydration [254–256] claim to
offer “skin-like” devices that integrate with skin without application of pressure for real-time, in vivo
hydration assessment but these remain in early research.

Spectroscopic techniques such as OTTER, IR, NIR, and Raman are well established for
skin-related measurements and enable assessment of multiple attributes including SC thickness,
water concentration gradient within the SC, and lipid molecular organisation. This is the same for
imaging techniques such as MRI, OCT, and CRM, which can provide clear images of skin layers and
constituents that encompass structural details on morphology, thickness, and water content. CRM is
even able to establish water concentration profiles of skin in regions such as the palms and forearm,
with a 5 cm�1 resolution and up to 100 mm in depth.

The mentioned spectroscopic and imaging techniques are capable of direct measurements, but due
to the complex nature of acquired data, advanced data analysis techniques e.g., multivariate methods,
are often necessary, though their primary limitations are the expensive costs of instrumentation,
and as most are bench-top instruments, measurements are restricted to specific anatomical sites.
Exceptions to this are NIR spectroscopy and OTTER. NIR spectroscopic instrumentation can be easily
coupled with flexible fibre optics and portable spectrometers for reduced costs and restrictions on
selection of examination site, and can offer increased stability against environmental conditions such as
temperature and relative humidity [248,250,257]. Moreover, techniques such as ATR-IR are occlusive,
which can cause accumulation of water at the test site, and as for OCT, the coherence length is short,
and resolution can be less than 10 �m. Despite their limitations, sophisticated spectroscopic and
imaging techniques provide detailed analysis of various skin attributes, and although traditional
methods remain employed, they are now commonly accompanied by spectral or imaging data for
comprehensive assessment of skin.
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Abbreviations

The following abbreviations are used in this manuscript:

SC Stratum Corneum
RH Relative Humidity
DSC Differential Scanning Calorimetry
SCIM Surface-Characterizing Impedance monitor
TEWL Transepidermal Water Loss
OTTER Opto-Thermal Transient Emission Radiometry
WVFD Water vapor flux density
ATR-IR Attenuated Total Reflection Infrared
ATR-FTIR Attenuated Total Reflection Fourier Transform Infrared
IRE Internal Reflectance Element
NMR Nuclear Magnetic Resonance
MRI Magnetic Resonance imaging
OCT Optical Coherence Tomography
TDOCT Time-Domain Optical Coherence Tomography
SDOCT Spectral-Domain Optical Coherence Tomography
RS Raman Spectroscopy
CRM Confocal Raman Microscopy
PLS Partial Least-Squares
NIR Near Infrared
PCA Principal Component Analysis
ANN Artificial Neural Networks
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