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Abstract 

 The deubiquitylase (DUB) family of enzymes maintains the dynamic state of the cellular 

ubiquitome by releasing ubiquitin from proteins. Accordingly, DUBs occupy key roles in almost all 

aspects of cell behaviour. Many DUBs show selectivity for particular linkage-types or positions 

within ubiquitin chains. Others show chain-type promiscuity, but select a distinct palette of 

protein substrates via interactions, established through binding modules outside the catalytic 

domain. The ubiquitin chain cleavage mode or chain linkage specificity has been related directly 

to biological functions. Examples include proteasomal ubiquitin recycling, DNA repair pathways 

and innate immune signaling. DUB cleavage specificity is also being harnessed for analysis of 

ubiquitin chain architecture. The recent development of highly specific DUB inhibitors heralds 

their emergence as a new class of therapeutic targets, linked to numerous disease states. 
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Introduction 

 Conjugation of the 76 amino acid polypeptide ubiquitin to substrate proteins is a reversible 

post-translational modification, involved in the regulation of most cellular processes. The ubiquitin 

system may be considered as the complement of proteins that convert free ubiquitin molecules to 

a complex code written upon 1000s of different substrate proteins 1-4. The net ubiquitylation 

status of the cell reflects the combined activities of several hundred ubiquitin conjugating 

enzymes (E1, E2 and E3s), counterbalanced by 99 currently identified deubiquitylases (or 

deubiquitinases, hereafter DUBs). The ubiquitin system has two main outputs: control of protein 

turnover by providing proteasomal and lysosomal targeting signals and governance of cell 

signaling networks by regulation of protein interactions and activities, akin to phosphorylation. 

Thus, the balance between ubiquitylation and deubiquitylation is tightly coupled to the regulation 

of protein levels and activity. DUBs also maintain cellular ubiquitin levels by processing newly 

synthesised ubiquitin molecules and reclaiming ubiquitin from proteins destined for degradation 

(Figure 1). The DUBs are currently drawn from 7 evolutionarily conserved families, two of which 

(MINDY and ZUP1) have been discovered only recently (Figure 2). 

 Ubiquitylation most commonly occurs at lysine residues of substrate proteins. Importantly 

ubiquitin’s seven internal lysine residues (Lys6, Lys11, Lys27, Lys29, Lys33, Lys48 and Lys63) 

allow for the generation of isopeptide linked ubiquitin chains of diverse architecture and length. 

Ubiquitin derives from 4 genes that code for linear fusion proteins incorporating one or more 

ubiquitin molecules, from which free ubiquitin is generated by DUB cleavage of the peptide bond 
5.  Linear or Met1-linked ubiquitin chains can also be assembled enzymatically from single 

ubiquitin moieties, through a unique E3 ligase complex known as the linear Ub chain assembly 

complex (LUBAC) 6. Further complexity is provided by post-translational modification of ubiquitin 

(e.g. phosphorylation, acetylation) and by linking to other ubiquitin-like molecules (e.g. SUMO, 

NEDD8, ISG15). These complex patterns constitute a “ubiquitin code”, which is read by hundreds 

of proteins that incorporate ubiquitin binding domains 1,7. 

 In a typical mammalian cell, more than half of total ubiquitin is represented by single 

ubiquitin molecules conjugated to lysine residues in the substrate (mono-ubiquitylation) 2,8. A 

further 10-20% of ubiquitin is incorporated into chains, for which the representation of each 

linkage type varies between cell types and cell states 2,8. Accordingly, DUBs handle ubiquitin 

modifications in two fundamentally distinct manners. Many are directed towards specific protein 

substrates via protein interaction domains distinct from the catalytic domain (catalogued in 

previous reviews 9,10). Other DUBs recognise and show selectivity for particular ubiquitin chain 

architectures and may not be able to remove the proximal ubiquitin molecule that is directly 

attached to the protein (recently reviewed in 11). Linkage selectivity can either be encoded within 

the catalytic domain, or conferred through co-operation with ubiquitin binding domains within 

DUBs or their interaction partners. 
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 Here, we will focus on recent advances in understanding the physiological functions of 

DUBs, emphasising examples where selectivity towards particular ubiquitin chain architectures 

connects with defined cellular roles, e.g. in DNA repair, cell cycle and innate immune signaling 

pathways. We also discuss how selective DUBs can provide analytical tools for investigation of 

ubiquitin chain architecture and conclude by highlighting recent advances spurring their 

development as therapeutic targets. 

 

DUB families 

 Six of the seven families of DUBs (USPs, UCHs, OTUs, MJDs, MINDYs, ZUP1) are 

classified as cysteine proteases, whilst the JAMM/MPN family are zinc-dependent 

metalloproteases. With the exception of the MJDs each family is conserved from yeast to humans 

(Figure 1). Eleven of ninety-nine family members are considered to be pseudoenzymes, in that 

they have lost residues critical for DUB activity, but can nevertheless perform vital functions 12. 

This is particularly common in the twelve member JAMM family, which contains five 

pseudoDUBs.  The phylogenetic relationships and domain structures of the five longest 

established families (USP, OTU, Josephin (MJD) , UCH and JAMM) have been covered 

extensively elsewhere 9,10. Two new families of DUBs have recently been discovered. The MINDY 

family has two members in S. cerevisiae, and is expanded to five in humans, including one 

pseudoDUB 13. Little is known about cellular function of this family, but each member tested to 

date shows specificity for Lys48 linked ubiquitin chains, strongly indicating roles in protein 

homeostasis 14. The human genome contains one representative of the ZUP1 family, whose 

specificity for Lys63-linked chains is conferred by multiple ubiquitin binding domains and which 

has been linked to genome maintenance pathways 15-18. Figure 1 provides an updated overview of 

DUB conservation across species from yeast to man. 

 

 

DUB specificity 

 DUBs are proteases which cleave peptide or isopeptide bonds between conjoined 

ubiquitin molecules or between ubiquitin and a modified protein. The complexity of ubiquitin chain 

architectures dictates a wide variety of distinct DUB activities and preferences (Table 1)11. 

Adjacent ubiquitin molecules, within a chain, are not equivalent: throughout, we will refer to the 

“distal” ubiquitin, as that which presents its C-terminal glycine to the DUB active site and which 

links to a “proximal” moiety via the scissile bond. Aside from discriminating chain linkage type, 

DUBs may choose between processing from the distal end, gradually chewing down the chain 

(exo-DUB activity), or cleaving within chains (endo-DUB activity). Chain length provides another 

variable, with some DUBs preferring longer chain types (e.g. MINDY, OTUD2 and ATXN3) 13,19,20. 

Others will specialise in the cleavage of monoubiquitin from specific protein substrates (e.g. 
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histone directed DUBs, see below) or clipping off an intact ubiquitin chain (en-bloc cleavage, e.g. 

proteasomal DUBs, see below). Three enzymes containing DUB catalytic domains were later 

shown to specifically target ubiquitin like molecules; USPL1 is a SUMO protease 21,  USP18 is an 

ISG15 specific protease 22 and the COP9 signalosome component CSN5 targets NEDD8 23. The 

members of the OTU family display diverse chain preferences and their study unveiled many 

principles of DUB chain linkage specificity 11,20,24. In contrast, systematic studies of USP family 

members showed orders of magnitude differences in catalytic turnover but only modest ubiquitin 

chain preferences 25,26. However, a sub-set of USP enzymes, including USP30 and CYLD show 

marked chain preferences that are encoded in their catalytic domains (Table 1) 27-29. Despite a 

wealth of structural information (reviewed in 11), prediction of linkage or substrate specificity 

remains challenging and needs to be determined biochemically. 

 

Counting and mapping DUBs 

 To understand the impact of individual DUBs on cellular processes, both individual protein 

copy numbers and location are important considerations. Mass spectrometry derived data sets 

can provide global protein copy number estimates. For DUBs, the estimated range covers several 

orders of magnitude from low hundreds (limit of detection) to hundreds of thousands per cell for 

the most abundant enzymes 2. Available data suggest that high copy number DUBs perform 

broad “housekeeping” functions (e.g. proteasomal DUBs) whilst the rarer forms have more 

specialist roles. Several linkage specific DUBs are highly represented including OTUB1 (Lys48), 

OTUD7B (Cezanne; Lys11) and OTULIN (Met1). Some of these (e.g. OTULIN) may globally 

suppress the accumulation of ubiquitin chains bearing these linkages 30. In practical terms, this 

would effectively suppress the background noise, against which a specific or localised signal can 

emerge. 

 Multiple approaches have been used to determine the sub-cellular distribution of DUBs 

(Figure 2). Systematic mapping of GFP-tagged DUBs, using fluorescence microscopy in 

mammalian cells, has allowed the broad classification of DUBs with predominantly cytosolic or 

nuclear localisation 31. A sub-set of enzymes show specific association with a variety of defined 

structures including nucleoli (USP39), microtubules (USP21) and the plasma membrane (USP6). 

Two DUBs, USP19 and USP30 possess trans-membrane domains and show distinct localisations 

to the endoplasmic reticulum (ER) or mitochondria and peroxisomes, respectively 32,33. This 

system-wide approach has been extended to screen for DUBs which translocate following a 

specific cellular perturbation (e.g. DNA damage 34). An orthologous approach is to combine sub-

cellular organelle fractionation with quantitative mass spectrometry, which has the further 

advantage of providing an estimate of the protein copy number associated with each organelle 35. 

Detailed studies of individual DUBs have also revealed locations which were not captured in 

global screens. For example several additional DUBs have recently been added to the 
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complement of centrosomal DUBs (USP21, USP33, USP9X) 36-39. Figure 3 provides a synthesis of 

currently available data. Numerous DUBs are produced as multiple splice variants, which localise 

to different compartments and may turnover at different rates. Interesting examples include, 

USP19 which localises to the Endoplasmic Reticulum (ER) or cytosol depending on the presence 

of a trans-membrane domain 32,40, USP33 which localises to the ER and Golgi 41 and USP35 for 

which one form localises to the ER and to lipid droplets and others to the cytosol 42. A short form 

of USP35 has also been linked to mitochondria, but this variant lacks an intact catalytic domain 43. 

  

Cellular functions of DUBs 

 

 The essential DUBs. 

 The introduction of whole genome based CRISPR/Cas9 screens for viability across large 

numbers of cell lines has generated an overview of those DUBs that are required across multiple 

cell types i.e. represent core fitness genes 44,45. The collated results of major studies are presented 

in Table S1. The essential DUBs are widely expressed in high copy numbers 2. Three pairs of 

proteins stand out, each of which are embedded within ancient multi-molecular complexes 

(Figure 4). Two pseudo-DUBs from different families, USP39 and PRPF8 are components of the 

spliceosome complex involved in pre-mRNA splicing at the nucleolus. PRPF8, a large protein, is 

remarkable in containing no less than 4 pseudoenzyme domains showing homology to restriction 

endonuclease, reverse transcriptase and RNAaseH in addition to an inactive JAMM domain. The 

JAMM family members COPS5 and COPS6, active and inactive respectively (also called an 

MPN+:MPN unit), cooperate within the core of the eight sub-unit COP9 signalosome, to remove 

the ubiquitin like molecule NEDD8 from Cullins and thereby inactivate Cullin-RING E3 ligases 

(CRLs) 23. An essential DUB module comprising a further MPN+:MPN combination, PSMD14 and 

PSMD7 (Rpn11 and Rpn8 in yeast), is involved in substrate processing by the proteasome (see 

next section and Figure 4) 46. 

 USP5 is the most abundant of a set of DUBs (including USP3, USP13, USP16, USP22, 

USP33, USP44, USP45, USP49) that bear zinc finger ubiquitin binding domains (ZnF-UBP), which 

in some (e.g. USP3, USP5, USP16) but not all cases (e.g. USP13, USP22, USP33) has been 

shown to recognise the carboxyl-terminal Gly-Gly motif of unattached ubiquitin 47,48. This confers 

the capacity to specifically recognise free ubiquitin chains, which may be derived from newly 

synthesised linear ubiquitin or from chains that have been removed from substrates en bloc. 

Thus, USP5 is a core fitness protein by virtue of suppressing the accumulation of unattached 

ubiquitin chains and maintaining levels of monoubiquitin, the essential currency of the ubiquitin 

economy. Its activity against free chains has also recently been proposed to promote the 

disassembly of heat induced stress granules 49. USP36 is a  prominent nucleolar DUB and most 

likely contributes to cell viability by governing the stability of RNA polymerase 1 and consequent 
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ribosome biogenesis 50. Some of the other DUBs that are also widely required for cell viability 

(USP7, USP8 collated in Table S1) are mentioned elsewhere in this article, others are less well 

studied, such as the SUMO specific USPL1 21,51. 

 

Proteasomal DUBs and en bloc ubiquitin chain cleavage 

 Ubiquitin was first linked to protein degradation through elucidation of its role as a 

proteasome targeting signal 52. The 26S proteasome consists of a barrel shaped core particle 

(20S) capped at one or both ends by a 19S regulatory particle. The 19S regulatory particle 

provides a binding platform for ubiquitin and co-ordinates entry into the 20S core particle where 

proteins are degraded. It is now clear that multiple types of ubiquitin chains, including branched 

architectures, provide efficient proteasomal targeting signals 53-56. Three catalytically active DUBs 

from distinct families, USP14, UCHL5 and PSMD14, are associated with the lid of the 19S 

regulatory particle and co-ordinate essential proteasomal substrate pre-processing 57.  

 For protein degradation to occur, a substrate must be unfolded to thread into the catalytic 

chamber of the 20S particle. Attached ubiquitin provides a barrier to translocation and must be 

removed. The JAMM family member, PSMD14, sits directly on top of this entry portal that is 

comprised of a hexameric ring of AAA-ATPases  58,59. Purified proteasomes lacking this DUB 

activity are deficient in protein degradation. A current model maintains that for substrates 

committed to entering the catalytic chamber, attached ubiquitin chains are mechanically drawn to 

the entry port by concerted ATPase activity of 19S associated AAA-ATPase proteins and thereby 

encounter the catalytic site of PSMD14, followed by hydrolysis of the isopeptide bond at the 

substrate lysine 46,60-62. Although PSMD14 itself neither binds nor hydrolyses ATP, its DUB activity 

is indirectly ATP-dependent by virtue of this coupling 63,64. 

 PSMD14 forms a dimer with the MPN family member pseudo-DUB, PSMD7. Isolated 

PSMD14/PSMD7 heterodimers show little ubiquitin linkage specificity in vitro 60. However once 

incorporated into the regulatory particle, steric inhibition by components of the entry portal 

precludes di-ubiquitin spanning the catalytic centre. This ensures that ubiquitin chains are 

removed en bloc as only the isopeptide bond between the substrate lysine and the C-terminus of 

the first ubiquitin can be hydrolysed 64. The active site organisation of PSMD14 is similar to the 

endosomal DUBs AMSH and AMSH-LP (see also below). However, these proteins have stringent 

specificity for Lys63 ubiquitin chains, conferred by an insertion loop in the catalytic domain (Ins-2 

loop) that enables binding to the proximal ubiquitin 65. The equivalent loop in PSMD14/Rpn11 

serves to anchor the protein within the proteasome 46,60. 

 When ubiquitylated proteins first bind to the proteasome they are not yet committed to 

degradation. That step is believed to require presentation of a constitutively or transiently 

unfolded region to the ATPase machinery 57. In distinction to PSMD14, USP14 and UCHL5  (also 

known as UCH37) are not integral components of the proteasome. They bind to lid components 
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PSMD11 (Rpn6 in yeast) and RPN13 respectively, which leads to their activation 66-69. Neither DUB 

represents an essential gene, with UCHL5 completely lacking in S. cerevisiae. Rather than 

coupling to degradation, the combined activities of USP14 and UCHL5 may offer a reprieve from 

degradation by releasing proteins from the proteasome before the AAA-ATPase motor has 

engaged. 

 USP14 may also play a positive role in protein degradation by pre-processesing certain 

proteasome substrates in an interesting way, which has been elucidated using Cyclin B as a 

model. The APC/Cyclosome (APC/C) ubiquitylates Cyclin B with multiple chain types spread 

across the disordered N-terminus of the protein, to provide an efficient proteasomal degradation 

signal 68,70. Deubiquitylation of Cyclin B by proteasome associated USP14 is rapid and ATP-

independent. Reducing the number of ubiquitylation sites on Cyclin B revealed that USP14 shows 

a marked specificity for a substrate with multiple chains attached, irrespective of tested chain 

linkage types. When faced with Cyclin B bearing multiple tetraubiquitin chains, two surprising 

results were found. The cleavage reaction yields intact tetraubiquitin chains i.e. cleavage occurs 

en bloc, as discussed above for PSMD14. Secondly, the reaction yields a substrate with a single 

residual tetraubiquitin chain attached 68. Therefore, in the case of a multi-ubiquitylated substrate 

USP14 and PSMD14 appear to function in series. USP14 strips off supernumerary ubiquitin 

chains in order to relieve the burden on PSMD14, which must compete effectively with protein 

unfolding activities. 

 Substrates of UCH family proteins are restricted according to leaving group size by a 

flexible active site cross-over loop (ACL), characteristic of this family 71. When Ub-AMC, a 

fluorescent substrate presenting a small leaving group, is provided, UCHL5 is the most active 

proteasomal DUB 72,73. However, it shows poor activity towards ubiquitin-protein conjugates and 

homotypic ubiquitin chains of any linkage type 54,68. 19S Regulatory particle associated UCHL5 

can trim chains from the distal end irrespective of linkage type, but the slow time scale brings into 

question the physiological relevance of these findings 74. It has been proposed that specific 

substrates may be sufficiently flexible to loop through the ACL 69. If so, this would again result in 

en bloc ubiquitin chain removal. 

        The identity of physiologically relevant substrates of UCHL5 and other UCH enzymes 

remains an open question. Interestingly, UCHL5 moonlights as part of the chromatin remodeling 

complex INO80 that functions in transcription and DNA repair (see also below for discussion of 

DUBs in DNA repair) 34,75. In fact, CRISPR/Cas9 cell viability screens across multiple cell lines 

reveal that sensitivity of particular cell lines to loss of UCHL5, correlates with the loss of other 

components of this complex 76. Structural studies have uncovered a role for UCHL5 interaction 

with DEUBAD domains in the regulation of its catalytic activity and that of a related family 

member, BAP1 67,69,77,78. In the case of UCHL5, its respective interactions with the DEUBAD 

domains in RPN13 and the INO80 sub-unit NFRKB, have opposite effects 77. RPN13 DEUBAD 
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activates UCHL5 whilst the NFRKB DEUBAD domain blocks ubiquitin binding and thereby acts as 

a DUB inhibitor 67,69. 

 

Nuclear DUBs act on multiple chain types to regulate chromatin and DNA repair. 

  In a fluorescence screen of 66 GFP-tagged DUBs, 12 were found to be exclusively nuclear 

and a further 16 exclusively cytoplasmic in asynchronous HeLa cells 31. Thus, a large fraction of 

DUBs experience the nuclear environment, where they can influence genome surveillance and 

repair pathways, epigenetics/chromatin organisation and transcription.  

 In HEK293 cells it is estimated that around 60% of conjugated ubiquitin is in the form of 

monoubiquitin, about half of which is associated with the histone enriched fraction 8. About 5-

15% of histone H2A is mono-ubiquitylated, principally at Lys119, making H2A the most abundant 

ubiquitylated protein in the cell. Ubiquitin is therefore a major post-translational component of the 

histone landscape, that influences chromatin structure and function, together with methylation 

and acetylation. Early pulse-chase studies showed that this modification on H2A has an average 

half-life of ~90 minutes in HeLa cells, inferring histone directed DUB activity 79. As described 

below, at least 6 DUBs have now been linked to histone deubiquitylation  (Figure 5).  

 MYSM1 is the only mammalian DUB that has clear chromatin binding domains, 

incorporating both SWIRM (Swi3p, Rsc8p and Moira) and SANT (SWI-SNF, ADAN-CoR, 

TFIIIB)/Myb domains. Accordingly, it is one of several DUBs linked with histone deubiquitylation 

alongside BAP1, USP3, USP16 and USP22 80-83. The three USPs possess a ZnF-UBP domain, N-

terminal to their catalytic domain. In USP3 and USP16, this domain recognises the free C-

terminus of ubiquitin (see above) and can act as a free ubiquitin sensor in the nucleus, but it may 

also recognise as yet unidentified chromatin components or associated factors 48. For example 

histone H4 has a C-terminal diGly motif in common with ubiquitin.  

 USP22 is a component of the Spt-Ada-Gcn5-acetyltranserase (SAGA) complex 

responsible for deubiquitylation of H2B-Ub (see below). In this case its ZnF-UBP domain does not 

recognise free ubiquitin, but is instead used to make interactions with other SAGA complex 

components that are required for its activation 48,84. The UCH family member and tumour 

suppressor, BAP1, is commonly mutated in certain cancer types 85. For deubiquitylation of Ub-

H2A, it requires activation by interaction with ASXL, recalling the activation of UCHL5 by RPN13 

described above 77,78,86. BAP1 and ASXL proteins together form the Polycomb repressive 

deubiquitinase (PR-DUB) complex that sits on Polycomb group target genes and maintains 

silencing of a particular sub-set of genes 83. The complex is specific for mono-deubiquitylation at 

Lys119 and cannot remove DNA damage-dependent ubiquitylation of H2A at Lys13 or 15 (see 

below)78. 

 The study of DUBs in DNA damage repair pathways has been particularly intensive 87. 

The first shRNA screen across the DUB family identified USP1 as the DUB that removes 
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monoubiquitin from Fanconi anaemia group D2 protein (FANCD2), a key protein involved in the 

Fanconi Anaemia DNA cross-link repair pathway 88. USP1 similarly deubiquitylates the DNA 

processivity factor PCNA, in order to curb the error prone translesion synthesis repair pathway 89. 

Global proteomics studies have revealed thousands of ubiquitylation events as part of the DNA 

damage response to UV and ionising radiation, coupled to an enigmatic bulk increase in Lys6 and 

Lys33 chains 90. Accordingly, a multi-parametric screen of DNA damage signatures, alongside 

numerous other studies has associated many DUBs with this response 34 (Figure 5).  

 Ionising radiation induced DNA double strand breaks (DSBs) lead to recruitment of an 

RNF20/RNF40 E3 ligase heterodimer at the site of damage, resulting in monoubiquitylation of 

H2B at Lys120. This is believed to initiate chromatin opening, which then allows access for repair 

factors 91-93. Subsequent deubiquitylation at this site has been attributed to USP22, acting within 

the SAGA complex 91. Its activity is required for  optimal phosphorylation of Histone H2AX 

(denoted γ-H2AX) 94. Lys63-linked chains are both abundant at DNA damage sites and required 

for double strand break repair 95. The E3 ligase RNF8 is recruited to phosphorylated γ-H2AX, 

where it can generate Lys63 chains on linker histone H1 or on the RNF168 interacting protein, 

L3MBTL2 (lethal(3) malignant brain tumour like protein 2) 96,97. Lys63 chains at repair sites serve to 

recruit a second E3, RNF168, which promotes mono-ubiquitylation of H2A at Lys13/15 and 

further Lys63 polyubiquitylation 98. Following DNA damage, the normally short-lived RNF168 is 

itself stabilised through the activity of USP34, which is recruited to damage sites 99. The Lys13/15 

monoubiquitylation signal on H2A partially determines the recruitment of 53BP1, a critical step in 

initiation of the non-homologous end joining DSB repair (NHEJ) pathway 100. USP51 has been 

shown to specifically reverse this signal and thereby regulate DNA damage repair 101. Lys63-linked 

chains also mediate recruitment of the BRCA1-A complex (see below). RNF8 further co-operates 

with UBE2S to generate Lys11 chains on H2A. This promotes transcriptional silencing associated 

with DNA repair, and is antagonised by the Lys11 specific DUB, Cezanne 102. Although it is 

nominally a Lys48 specific DUB, the highly abundant OTUB1 limits Lys63 chains in the DSB repair 

pathway by binding to and inhibiting transfer from the ubiquitin-charged E2 enzyme Ubc13 103-105. 

 The JAMM family member, BRCC36, functions within the BRCA1-A complex consisting of 

RAP80, BRCC45, MERIT40 and ABRAXAS1 (FAM175A), to which BRCA1 is associated in a 

phosphorylation-dependent manner. ABRAXAS1 contains a MPN like domain that is not itself 

catalytically active. The MPN+:MPN related heterodimer of BRCC36 and ABRAXAS1 is likely to 

constitute the minimal active enzymatic unit, recalling other such couples already described 

above (see also Figure 4) 12. BRCA1-A is recruited to sites of DSB sites by RAP80 binding to 

Lys63-linked chains. Chain selectivity of this complex is stringent towards Lys63 and hence 

provides exquisite feedback control to limit the RNF8 ubiquitin signal. BRCC36, BRCC45, Merit40 

proteins also form a cytosolic complex with an ABRAXAS1 paralogue, ABRAXAS2/KIAA0157 and 
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adaptor protein SHMT2, collectively known as the BRISC complex (BRCC36 isopeptide complex), 

which has been linked to stabilisation of type 1 interferon receptor 106.  

 BRCA1 itself, promotes DNA end resection to produce the ssDNA necessary for homology 

directed repair (HDR). Its N-terminus associates with BARD1 to generate an active E3 ligase that 

ubiquitylates H2A at Lys 125/127/129 and promotes resectioning, which can be reversed by 

USP48 107-109. It also interacts with PALB2 to recruit additional repair factors, BRCA2 and RAD51, 

to DSB sites. Of note, HDR is only active in cells in the S and G2 phases of the cell cycle, due to 

the requirement for the homologous DNA template. Accordingly, in G1 cells, repair factor 

recruitment is suppressed by ubiquitylation of PALB2 that can be counteracted by USP11 in a 

cell-cycle dependent manner 110.  

 The recently discovered ZUP1 DUB, which exhibits Lys63 specificity, interacts with the 

replication protein A (RPA) complex, which plays a critical role in the HDR and replication stress 

pathways by demarcating single strand DNA regions that are generated 15-18. Available data have 

not been able to functionally link ZUP1 to DSB repair pathways. However, ZUP1 depletion in cells 

with elevated ssDNA resulting from replication stress (e.g. hydroxyurea treatment) leads to 

enhanced micronuclei generation indicative of chromosome instability 15,18. 

 

DUBs  and innate immune receptor signalling (linear and Lys63 chains). 

 Many receptor initiated signaling cascades are now known to utilise the ubiquitin code. 

This concept was first established from studies of innate immunity and the central NFκB 

signaling pathway, which invoked the requirement or Lys63 linked chains 111. This pathway has 

continued to provide fresh insight, including clearly defined roles for chain-specific DUB activities. 

It is now appreciated that innate immune signaling mediated by pattern recognition (e.g.TLR4, 

NOD2) or cytokine receptors (e.g. TNFR and IL-1R) involves the assembly/disassembly of both 

Met1, and Lys63 chains on components of the receptor signaling complexes (Figure 6). 

  The activated pattern recognition receptors and cytokine receptors recruit adaptor proteins 

including Receptor Interacting Protein Kinases (RIPK1 or RIPK2), Myeloid Differentiation Primary 

Response 88 (MyD88) or Interleukin 1 Receptor Associated Kinases (IRAKs). Their modification 

with Lys63 Ub chains serves as a recruitment platform for the TAB1/TAK1 kinase complex, an 

initiator of multiple kinase cascades 112. Ubiquitylation of receptor adaptors also promotes 

recruitment of the Met1 specific E3-ligase LUBAC 113,114. This results in assembly of Met1 ubiquitin 

chains on the adaptors directly, or on existing Lys63 chains leading to branched or hybrid chains 

113,115-117. These Met1 chains mediate downstream signaling by interaction with the inhibitor of 

nuclear factor kappa-B kinase (IKK) sub-unit NEMO 118. Co-localisation of TAK1 and IKK leads to 

IKK activation. This then activates a cascade leading to ubiquitylation and degradation of inhibitor 

(IκB) proteins, which allows NF‐κB to enter the nucleus and turn on target genes involved in 

immune and inflammatory responses 112. 
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 OTULIN, a stringent Met1 linkage specific DUB, binds to the PUB domain of the LUBAC 

component HOIP 117,119-122. CYLD, belonging to the USP family and specific for Lys63 and Met1 

ubiquitin chains 123,124, can also indirectly bind to the same domain on HOIP through an adaptor 

protein, SPATA2 125-128. Both DUBs can restrict NFκB signaling, but only OTULIN controls the 

accumulation of linear ubiquitin on LUBAC components and thereby maintains their protein 

stability 30,117,119,129-135. In addition, depletion of OTULIN, but not CYLD, leads to a dramatic increase 

of steady-state Met1 chain levels in cells 30,120,134,136 suggesting that OTULIN is essential for 

globally restricting Met1 chain accumulation, and implying a more specialised role for CYLD. 

 The binding of OTULIN and CYLD to LUBAC is mutually exclusive 125,133, suggesting that 

they regulate distinct aspects of signalling. Indeed, OTULIN is not stably associated with the 

NOD2 or TNFR1 complexes 133, although its recruitment to TNFR1 has been observed by mass 

spectrometry 128. In contrast, SPATA2-CYLD is stably recruited to both NOD2 and TNFR1 via 

HOIP 133. There is evidence that OTULIN limits Met1 chain accumulation on receptor-associated 

adaptors associated with TNFR1 and NOD2 receptors; absence of OTULIN leads to enhanced 

ubiquitylation of adaptors without changing the overall banding pattern of ubiquitylated forms as 

judged by Western blotting 117,119,134. In contrast, depletion of CYLD leads to the accumulation of 

higher molecular weight forms 134, consistent with CYLD being the major regulator of the length of 

Met1 and Lys63 chains at these receptor complexes 133. 

 OTULIN and CYLD are directly linked with human pathologies. CYLD truncations cause 

cylindromatosis characterised by the formation of benign tumours on the skin of the head and 

neck 137. Mutations in OTULIN that ablate or severely reduce activity, cause OTULIN-Related 

Autoinflammatory Syndrome (ORAS), also known as Otulipenia, which is  characterised by 

neonatal onset fevers, skin rashes, diarrhoea, arthritis, and general failure to thrive 30,138. Elements 

of both conditions have been recapitulated in mouse models. CYLD deficiency leads to 

disturbances in lymphocyte development, proliferation, and responsiveness, leading to mild 

inflammation and susceptibility to carcinogen-induced tumour formation 139-144. In contrast, mice 

expressing two different point mutant alleles of OTULIN, that encode a catalytically compromised 

protein, display embryonic lethality around E12.5-E14, which is thought to be caused by defective 

Wnt signaling 120. Conditional or cell type-specific OTULIN deletion causes severe, systemic 

inflammatory phenotypes associated with increased signalling and cytokine release from 

macrophages 30. A further knock-in mouse model expressing a catalytically inactive form of 

OTULIN (C129A) 145, dies during embryogenesis (E10.5), due to aberrant cell death. The 

phenotype resembles both germ line mutation of OTULIN and loss of LUBAC components, 

confirming LUBAC deubiquitylation as a significant physiological function of OTULIN. 

Furthermore, it suggests that cell death may contribute to systemic inflammation in mice and 

humans with OTULIN defects 30,120,138,145-147. The C129A knock-in mutation converts OTULIN into a 

high affinity ubiquitin binding domain, which binds and protects Met1-linked chains 117,119,148. In 
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ORAS/Otulipenia, decreased stability of mutant OTULIN leads to reduced protein levels. These 

two settings may respectively block and enable, compensatory CYLD recruitment to LUBAC, 

which could account for the different severity of phenotypes. 

 The OTU family DUB, A20 (TNFAIP3), is induced by NFκB following activation of pattern 

recognition and cytokine receptors 149,150. It possesses distinct binding domains for both Lys63- 

and Met1 chains 151, yet strongly favours cleavage of Lys48 linkages in vitro. However, in cells it 

can become phosphorylated, which further stimulates Lys48 activity and unleashes otherwise 

latent Lys63 directed activity 20,124,152,153. In distinction to CYLD, it is equally active towards 

branched Lys48-Lys63 chains, which have also been linked to the NFκB pathway 154. Mouse 

models expressing a catalytic site mutation of  Cys103 to Ala 153,155,156, do not fully replicate the 

phenotype of A20 loss 157. Consistent with this observation, is the finding that A20 is unable to 

cleave Met1-linked ubiquitin chains 20,26, yet regulates Met1 signalling. Recruitment of A20 to 

immune receptor signaling complexes suppresses NF-κB signaling in a catalytically independent 

manner. The primary effect of A20 is to proposed to reflect binding and sequestration of linear 

ubiquitin chains via its ZnF7 domain 133.  

 OTUD4 is nominally a Lys48 chain-linkage specific DUB that interacts with the Toll Like 

receptor interacting protein MyD88. However in cellular extracts OTUD4 shows selectivity for 

Lys63 linkages. Accordingly, OTUD4 opposes Lys63-linked ubiquitin modification of MyD88 and 

also limits NFκB signaling. Notably, selectivity for Lys63 is conferred by OTUD4 phosphorylation 

158. Such DUB “linkage switching” by post-translational modification is an interesting new 

concept, that might be more widely adopted. 

 

Endosomal DUBs 

 Activated receptor tyrosine kinases, such as EGF Receptor (EGFR), become ubiquitylated 

and undergo endocytosis. Upon reaching early/sorting endosomes, ubiquitylation is used to direct 

receptors towards the lysosomal pathway, using the ESCRT (EndoSomal Complex Required for 

Transport) machinery 159. Mass spectrometry analysis has shown that EGFR is ubiquitylated at 

multiple sites, with Lys63 being both the predominant chain linkage type and required for efficient 

sorting 160,161. The ESCRT-0 complex, comprising HRS/HGS and STAM, provides the first point of 

engagement of ubiquitylated receptors with the ESCRT machinery 159. The non-selective DUB, 

USP8, and the stringent Lys63 selective metalloprotease AMSH (STAMBP), compete for binding 

to STAM, recalling the competition between CYLD and OTULIN for LUBAC binding described 

above. Each DUB also binds a palette of ESCRT-III components via their respective N-terminal 

MIT domains 162. Recent findings suggest that USP8 controls the ubiquitylation state of the 

ESCRT-III component CHMP1B and may promote its assembly into a membrane associated 

ESCRT-III polymer 163. EGF stimulates CHMP1B ubiquitylation and also promotes USP8 
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recruitment to endosomes 163,164. Perhaps the  deubiquitylation of CHMP1B represents a check-

point governing the temporal and spatial assembly of the ESCRT-III polymer which promotes 

budding of EGFR laden vesicles into the lumen of the endosome/multivesicular body. A further 

key function of USP8 catalytic activity is to deubiquitylate and stabilise ESCRT-0, which is 

otherwise degraded by the proteasome 164. The robustness of this finding is supported by data 

from CRISPR/Cas9 cell viability screens which show a correlation in sensitivities between loss of 

either USP8 or the ESCRT-0 component HRS 76. 

 The Lys63 directed activity of AMSH is unable to compensate for USP8. However, AMSH 

can influence receptor fate; for example, it promotes the recycling of activated EGFR 165. It 

remains an open question whether the stringency of AMSH, or its close relative AMSHLP 

(STAMBPL), for Lys63-linked chains may reflect undiscovered roles in specific cell signaling 

pathways. Intriguingly, loss of function mutations of AMSH, either in the MIT or catalytic domain, 

lead to Microcephaly Capillary Malformation Syndrome (MIC-CAP) 166,167. Activating mutations in 

USP8 lead to Cushing’s disease that is characterised by pituitary corticotroph adenomas 168,169. 

The interplay between endosomal DUBs associated with the endo-lysosomal degradation 

pathway parallels aspects of proteasomal DUBs discussed above. Endosomal and proteasomal 

DUB activities can both reprieve proteins, but are also required to recycle ubiquitin following 

commitment towards the respective degradation pathways 170. 

 

Lys6 chains, phospho-ubiquitin and the role of DUBs in mitophagy 

     The selective autophagy of organelles or protein aggregates can be mediated by distributed 

ubiquitin chains which generate the avidity for low affinity adaptor molecules that link the 

autophagic cargo to the autophagic membrane 171. This provides an opening for DUBs to regulate 

autophagy, the third major pathway of protein degradation, in addition to the lysosomal and 

proteasomal pathways 172. The selective clearance of damaged mitochondria (mitophagy) has 

elicited much interest, particularly since the process can be driven by two Parkinsons disease 

linked genes PINK1(PARK6) and Parkin (PARK2) 173. 

 The E3 ligase Parkin preferentially, but by no means exclusively, generates Lys6-linked 

chains upon its activation at damaged mitochondria 173-175. Inhibitory auto-ubiquitylation of Parkin 

with predominantly Lys6 chains is proposed to be contained by the non-specific USP8, which 

enables Parkin recruitment to mitochondria 176. USP30 localisation is confined to mitochondria 

and peroxisomes courtesy of a trans-membrane domain and adjacent polybasic residues 33,177. It 

too, shows selectivity for Lys6 ubiquitin linkages and is suggested to restrict Parkin ubiquitylation 

of some proteins (notably TOMM20) and thereby limit mitophagy 28,29,175,178-180. Parkin activity is 

controlled by PINK1, that phophorylates ubiquitin at Ser65 the UBL domain of Parkin itself at an 

equivalent position 181-183. Parkin is recruited to mitochondria by this phospho-ubiquitin and 

creates more PINK1 substrate by further ubiquitylating mitochondrial proteins in a feed-forward 
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loop. This represents the physiological context where the role of ubiquitin phosphorylation is best 

understood, although other phosphorylation sites on ubiquitin have also been identified 184.  

 How does phosphorylation of ubiquitin influence DUB activity and selectivity?  Chains 

assembled from Ser65 phosphoubiquitin provided poor substrates for a panel of 12 DUBs, with 

few exceptions 180. In a separate study 20 isomeric dimers of phosphoubiquitin, with 

phosphorylation at Ser20, Ser57 or Ser65 were profiled against 31 DUBs, most of which were less 

able to cleave the phosphoubiquitin dimers than their unphosphorylated counterparts 185. This 

finding is particularly pronounced for Ser65 phosphorylation of ubiquitin and is accounted for by 

structural considerations 180,185. In the case of USP30, Ser65 phosphorylation impairs activity 

against Lys6 and other chain types 28,180. Structural and biochemical analysis of Lys6-linked 

ubiquitin dimer processing reveals that phosphorylation of the distal ubiquitin but not the proximal 

ubiquitin is incompatible with USP30 engagement. In fact, in a tetra-ubiquitin molecule a single 

phosphorylation of the distal ubiquitin is sufficient to hinder hydrolysis to a similar extent as the 

fully phosphorylated form. Thus, at mitochondria, PINK1-dependent phospho-capping of Lys6-

ubiquitin chains will generate a DUB-resistant mitophagy signal, preserving recruitment sites for 

Parkin and adaptor proteins that link the mitochondria to autophagosomal membranes. For this 

reason, recent models have proposed a role for USP30 upstream of PINK1, by limiting initial 

PINK1-substrate availability and setting the threshold for PINK1 dependent mitophagy 28,33,186. 

 

DUB control  of Lys11 chains and the cell cycle 

 Multiple DUBs have been linked to different stages of the cell cycle, but it is during mitosis 

that linkage selectivity appears to be most critical 187. The onset of anaphase is governed by 

activation of the E3 ubiquitin ligase complex, APC/C, which promotes the degradation of CyclinB 

and Securin. Thereafter, it targets multiple substrates until it again becomes inactive at the end of 

G1. In metazoa, APC/C teams up with UBE2C to build short chains linked by Lys11, Lys48 or 

Lys63 molecules onto substrates and then with UBE2S to extend and branch existing chains with 

Lys11 linkages 188-191. UBE2S branching activity has been shown to be required for efficient 

proteasomal degradation of various substrates 53,192. The OTU family member Cezanne is the most 

prominent Lys11 specific DUB and accumulates during mitosis 20,24,193,194. It has been shown to 

control the degradation kinetics of some (e.g Cyclin B and Securin) but not all APC/C substrates 

during mitotic progression 194. Moreover, depletion of Cezanne leads to accumulation of 

micronuclei during mitosis which can be reversed by co-depletion of UBE2S. Interestingly, 

Cezanne is amplified in >30% of breast tumours and is situated within an amplicon that lacks a 

verified oncogene 195. 

 

DUBs as analytical tools 
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 A suite of DUBs with defined chain linkage specificities provides a useful analytical tool to 

analyse ubiquitin chain architectures by parallel electrophoretic analysis of enzyme treated 

samples. In the first instance, one can use a promiscuous DUB, e.g. USP2, to show that a protein 

is indeed ubiquitylated 196. Further analysis of banding patterns, following treatment with selective 

DUBs, allows the estimation of linkage types associated with a particular protein substrate. By 

analogy with restriction digests used in molecular biology, this has been termed ubiquitin chain 

restriction (UbiCRest) analysis 197. UbiCRest analysis enables first insights into the architecture of 

heterotypic ubiquitin chains. One elegant example combined USP2 (non-specific), OTULIN (Met1-

Ub specific) and AMSHLP (Lys63 specific) to dissect the ubiquitin chain linkages associated with 

innate immune signaling components and led to the discovery of the presence of heterotypic 

chains consisting of Met1 chains built upon a Lys63 linked scaffold 116. 

  

DUBs as therapeutic targets 

   Linkage of DUBs to the stability of specific client proteins has offered a means to extend 

the druggable proteome (Table S2)198. In a nutshell, for any protein turned over in a ubiquitin 

dependent fashion, inhibition of it’s cognate DUB may lead to protein destabilisation. High value 

oncology targets linked to DUBs include MYC (USP28, USP36, USP37), NMYC (USP7), 

MDM2/p53 (USP7) and MCL-1 (USP13,USP9X) 199-203. Many small molecule DUB inhibitors have 

been reported in the literature, but until recently few of these have been specific 26. 

 The response to DNA damage is controlled by the tumour suppressor gene and 

transcription factor p53, which can promote either apoptosis or cellular senescence. The short 

half-life of p53, typically around 10 minutes, enables rapid adjustment in protein levels through 

changes to turnover kinetics. The most prominent E3-ligase associated with p53 is MDM2, whose 

own stability is governed by autoubiquitylation. Under basal conditions, USP7 binds to MDM2 

and rescues it from degradation, indirectly reducing p53 levels 204. In the last year, several 

publications have reported highly specific USP7 inhibitors that all elevate p53 levels 205-208. 

Although, USP7 inhibitors retard tumour growth in a mouse xenograft model, available evidence 

suggests that this is independent of p53 status 207,209. MDM2 is just one of many physiological 

substrates linked to USP7, which include other proteins linked to tumour growth such as PTEN, 

FOXP3 and Claspin 210-212. One inhibitor developed by Genentech from fragment screening binds 

12Å from the catalytic centre and impedes binding of the distal ubiquitin of the favoured Lys48-

linked substrates 205. The three other studies converge on small molecules with a shared core 

structure, making identical key contact sites, as revealed by high resolution crystal structures 206-

208. Interestingly, these critical contact residues are conserved in other USP family members. The 

exquisite specificity of these compounds arises from a unique USP7 configuration in its ubiquitin-

unbound form 213. In this apo-form, the catalytic triad essential for hydrolysis is misaligned and a 

cleft between structural domains is rendered compatible for compound binding about 5Å from the 
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catalytic cysteine. These studies have generated tool compounds for acute manipulation of USP7 

activity that may inform clinical positioning of candidate drug molecules.  

 Inhibition of the 19S proteasome regulatory particle DUB, PSMD14 suppresses 

proteasome activity. The development of specific PSMD14 inhibitors is at an early stage, but a 

proof of principle has been established 214. Successor compounds may offer therapeutic 

alternatives to the established inhibitors of active sites in the 20S core particle, such as 

Bortezimib, which are used to treat multiple myeloma. In contrast inhibition of another 19S 

regulatory particle DUB, USP14, enhances the degradation rate of certain proteins linked to 

neurodegeneration, such as the Alzheimer’s Disease linked Tau and Prion proteins 215-217. The 

USP14 inhibitor (IU1) occupies a similar cleft in the structure to several of the USP7 inhibitors, 

albeit with a different orientation 206-208,218.  All these compounds block access of the ubiquitin C-

terminus to the catalytic centre. Inspection of the patent literature suggests that similar 

breakthroughs have been made for further DUBs of therapeutic interest 198. The emerging picture 

suggests that the conformational plasticity of the USP catalytic domain frequently offers 

opportunities for selective inhibition. 

 

Conclusions 

 At least a third of active DUBs have now been assigned some level of specificity with 

regard to their action on ubiquitin chains or ubiquitin like modifiers. Alongside this, information on 

copy numbers and localisation, has begun to provide a composite outline of their collective 

impact on the cellular distribution of ubiquitin. We now appreciate that complex cellular processes 

such as DNA repair and innate immune signaling rely on co-ordination between different ubiquitin 

chain linkage types, that is facilitated by DUBs with cognate specificities (e.g. Met1, Lys48, 

Lys63). However, our understanding of the biology associated with some chain linkage types 

remains very limited and further levels of complexity (post-translational modification of ubiquitin, 

branched chains) are presenting new frontiers. Knowledge of specificity and discovery of new 

DUB activities have led to their adoption as analytical tools. Association of individual DUBs to key 

pathways in oncology, immunity and neurodegeneration are driving drug discovery programmes 

that have rendered the first generation of highly specific inhibitors. 
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cleavage type DUB Refs 

Lys63 AMSH, AMHLP, BRCC36, OTUD1, ZUP1, 
CYLD, pOTUD4 

65,124,219,220, 20, 
15-18, 13, 27,124, 
158 

Lys48 OTUB1, OTUD4, A20, MINDY 20,13 

Lys29/33 TRABID 221 

Lys11 Cezanne 24,193 

Lys6 USP30 28, 29,175 

Linear OTULIN, CYLD 119,120 

non-specific most USPs (e.g. USP2, USP21) 25 

en-bloc PSMD14, USP14, UCHL5? 64,68,69 

free chains USP5, USP3, USP16 47,222, 223 

histones 
(monoUb) 

MYSM1, USP3, USP16, USP22, BAP1 81,80,82,78 

NEDD8 COPS5 23 

SUMO USPL1 21 

ISG15 USP18 22 
 
  
Table 1: Summary of known ubiquitin chain linkage or other modification preferences of DUBs 
reported in the literature. The table indicates DUBs for which biochemical evidence indicates a 
significant degree of selectivity between chain architectures for the isolated enzyme or embedded 
within multi-protein complexes. Note that this does not imply absolute stringency in all cases. 
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Figure Legends 

 

Figure 1 - Major Roles of DUBs 

DUBs have key roles in maintaining protein homeostasis and signaling in cells by; (a) removing 

non-degradative ubiquitin (Ub) signals which may regulate protein function directly or contribute 

to the assembly of multi-protein signalling complexes; (b) rescuing proteins from either 

proteasomal or lysosomal degradation, (c) maintaining ubiquitin levels by recycling ubiquitin from 

proteins that are committed to degradation (d) and (e) post-processing following en bloc ubiquitin 

chain removal to maintain free ubiquitin levels, (f) generation of newly synthesised ubiquitin by 

releasing monomeric ubiquitin from multimeric precursor proteins encoded by four genes. UBB 

and UBC encode multiple copies of ubiquitin that are transcribed and translated as linear fusion 

proteins with a C-terminal extension of one or two amino-acids (shown in pink). UBA52 and 

UBA80 yield ubiquitin fused to the amino terminus of two ribosomal subunits, 40S ribosomal 

protein L40 (L) and 60S ribosomal protein S27a (S). Thus DUBs are also indirectly involved in 

ribosome biogenesis.  

 

Figure 2 - Phylogenetic conservation of DUBs across model organisms 

DUBs are arranged according to a bootstrapped neighbour joining phylogenetic analysis of their 

catalytic domains with the most reliable nodes (supported by bootstrap values of >50%) 

indicated by a black dot ( see 10 for further detail). The following newer members were curated 

and added manually: OTULIN, FAM105A, the MINDY family, ZUP1, ALG13. A single 

representative member of the expanded USP17 family is shown (USP17L2). DUBs annotated with 

* are predicted to be inactive based on sequence or structural considerations. Note that zebrafish 

MINDY4B is predicted to be active (personal communication, Kay Hofmann). Blue bars indicate 

human sequences, purple, green and yellow bars indicate the presence of a clearly identifiable 

orthologue in zebrafish (D. rerio), fly (D. melanogaster) or in either one of two commonly used 

yeast species (S.pombe and S.cerevisiae) respectively. In the latter case some orthologues 

cannot be directly assigned to one or the other paralogue (e.g. MINDY1/2). DUBs that have a 

discernible orthologue in yeast, are indicated in red. Note these include all the essential DUBs 

shown in Figure 4. 

 

 

Figure 3 -Sub-cellular localisation of DUBs in mammalian cells. 

DUBs which are predominantly localised to the nucleus or with clearly identifiable sub-cellular 

structures are shown. Data are derived from a systematic sub-cellular localisation screen in HeLa 

cells 31 combined with individual studies collated here to supplement this overview. pm, plasma 

membrane; mvb, multivesicular body; ee, early endosome; er, endoplasmic reticulum; go, Golgi; 
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mt, microtubules; mito, mitochondria; sg, stress granules; ld, lipid droplets; ce, centrosome; nu, 

nucleus; n, nucleolus; po, peroxisomes. 

 

Figure 4 - Essential DUBs 

Seven DUB family members show a consistently high dependency score across multiple genome 

wide CRISPR and RNAi screens, comprising data from more than 400 cell lines, meaning that 

they are required for cell viability in nearly all cell types (Table S1). (a) USP39 and JAMM family 

member PRPF8 are both catalytically inactive (Pseudo-DUBs) and cooperate in pre-mRNA 

splicing. USP39 is a component of U4/U6-U5 tri-snRNP, which is a key building block of the 

spliceosome and requires PRPF8 for its assembly.  (b) The two JAMM family members PSMD14 

(active) and PSMD7 (inactive) form a functional unit within the lid of the 19S proteasome 

regulatory particle that removes ubiquitin from proteins committed to degradation. (c) COPS5 and 

COPS6 make up another DUB-pseudoDUB pair belonging to the JAMM family, that forms the 

enzymatic core of the eight subunit multiprotein complex COP9-signalosome (CSN), which 

catalyses the removal of the Ubiquitin-like protein NEDD8 from the Cullin component of  Cullin-

Ring E3 ligases (CRL). Modification of the Cullin scaffold subunit with NEDD8 (N; known as 

neddylation) on a conserved lysine is required for CRL activation. It results in a reorientation of 

RING Box 1 (Rbx1) that facilitates ubiquitin transfer from a RING-bound E2 (not shown) onto a 

substrate recruited to the substrate receptor (R) that is linked via an adaptor (A) to the Cullin. R, 

substrate receptor; A, adaptor; Rbx, Ring box protein that recruits the E2. (d) The ZnF UBP 

domain of USP5 (also called Isopeptidase T) specifically recognises a glycine at the unconjugated 

carboxy-terminal of ubiquitin and specialises in the generation of free ubiquitin by disassembly of 

unanchored ubiquitin chains. 

 

Figure 5 - DUBs implicated in the double strand break (DSB) DNA damage response (DDR) 

(a) USP22 is a DUB component of the SAGA complex, a multi-enzyme transcription co-activator 

complex, that functions in DDR to limit H2B(Lys120) by RNF20/40 E3-ligase. This ubiquitin 

modification is proposed to promote chromatin relaxation, required for the recruitment of the 

repair machinery. 

(b) DSBs activates ATM kinase (not shown) which phosphorylates both H2AX and the DDR 

scaffold protein Mediator of DNA damage checkpoint protein 1 (MDC) leading to recruitment of 

the E3, RNF8 which together with the E2 UBC13 generates Lys63-linked ubiquitin chains on 

either L3MBTL2 or Histone H1. These Lys63-linked chains (depicted in purple) can be removed by 

BRCC36 (also known as BRCC3), which forms a functional unit with the catalytically inactive 

MPN-like ABRAXAS1 protein within the BRCA1-A complex that is recruited via the RAP80 

subunit. Their formation can also be suppressed by OTUB1 inhibition of UBC13 that is 

independent of catalytic activity. Lys63-linked chains recruit a second E3 ligase, RNF168, which 



  31 

 

in conjunction with UBCH5 mono-ubiquitylates H2A on Lys13 and Lys15. This modification that is 

opposed by USP51, recruits p53BP1 and is required for DNA repair via non-homologous end 

joining (NHEJ). 

(c) Cezanne disassembles Lys11-linked ubiquitin chains that are generated by RNF8 in 

conjunction with the E2 UBE2S on damaged chromatin (including H2A) and regulate 

transcriptional silencing. 

(d) USP48 opposes the BRCA1/BARD1 ubiquitin E3 ligase that ubiquitylates H2A at Lys 

125/127/129 and promotes DNA end resectioning that is necessary for homology directed repair 

(HDR). 

 

 

Figure 6 - Chain specific DUBs orchestrate innate immune signalling 

Activation of innate immune signalling receptors (ie pattern recognition (e.g.TLR4, NOD2) or 

cytokine receptors (e.g. TNFR and IL-1R)) involves the assembly/disassembly of both Met1 

(linear), and Lys63-linked chains on components of the primary receptor signaling complexes. The 

linear ubiquitin specific LUBAC E3 ligase complex (HOIP, HOIL-1 and Sharpin), is responsible for 

the assembly of Met1-linked chains (blue) on adapters, or on existing Lys63-linked chains (purple) 

generating branched or hybrid Lys63-Met1chains. It also undergoes auto-ubiquitylation. Met1 

chains mediate downstream signaling by interaction with the inhibitor of nuclear factor kappa-B 

kinase (IKK) sub-unit NEMO and subsequent activation of IKK via phosphorylation by TAK1, 

which is recruited via Lys63-linked chains Two DUBs engage LUBAC via the same PUB domain 

of HOIP: OTULIN, a stringent Met1-specific OTU DUB binds to LUBAC directly, whereas the USP, 

CYLD binds via an adapter SPATA2 and is able to disassemble both Lys63 and Met1-linked 

chains. OTUD4 is an intrinsically Lys48-specific DUB which is converted into a Lys63-specific 

DUB to remove such chains from MyD88, an adapter (component) of the signalling complex (not 

shown). Likewise, A20, another member of the OTU family of DUBs acquires Lys63-linked 

ubiquitin chain processing activity upon phosphorylation. In addition, A20 encodes a series of 

zinc fingers (ZnFs) that bind and sequester Met1- or Lys63-linked ubiqutin chains. 
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Supplemental Table 1: Core fitness DUBs 
DUBs that show the most consistent core-dependency across  several high quality genome wide 
CRISPR screen analysis datasets 1-5 and a combined analysis of multiple comprehensive RNAi 
screens (DEMETR2) 6. Numbers of cell lines included in each analysis are indicated in 
brackets.Table indicates the percentage of cells that show dependency based on a threshold score 
shown in italics in the column header. A high degree of dependency (>80% cell lines) is shown in 
red. For the Hart et al. dataset, we chose the recommended strict Bayes Factor threshold score of 
≥ 6. A CERES score of -1 for Broad Avana (2018Q2) 2,4 and Broad GeCKO 1 datasets is 
comparable to the median of all pan-essential genes. The DEMETER2 dependency score used by 
McFarland et al., reflects shRNA depletion values taking off-target seed effects into account, where 
a score of -1 is indicative of essentiality, based on negative and positive control gene sets used for 
scaling 6. The CS score used in the acute myeloid leukemia-cell focused screen (Wang et al., 5), is 
defined as “the average log2-fold change in abundance of all sgRNAs targeting a given gene 
between initial and final cell populations” 5. Genes shown in bold are contained within the Core 
essential gene dataset (CEG2) as defined in 3. See also Figure 4.  
 
 

 

Hart  
et al.     
(17)         

BF ≥ 6 

Broad 
Avana  
(436)    

CERES 
<-1 

Broad 
Avana  
(436)  

CERES <-
0.5 

Broad 
GeCKO 

(33)       
CERES 

<-1 

Broad 
GeCKO   

(33)       
CERES <-

0.5 

Wang  
et al.  
(14)       

CERES      
<-1 

Wang  
et al.  
(14)        

CS <-0.5 

McFarland 
RNAi  (713) 
DEMETER

2 
<-0.5 

PSMD14 94 99 100 100 100 100 100 81 
COPS6 94 91 100 55 100 36 100 95 
PRPF8 88 99 100 100 100 100 100 98 
USP39 88 0 44 15 100 86 100 100 
USP5 82 61 99 3 94 100 100 54 
COPS5 82 76 100 0 15 7 93 91 
USPL1 82 15 96 91 100 0 50 59 
EIF3H 71 13 93 3 85 0 36 68 
PSMD7 65 100 100 100 100 14 100 99 
USP36 65 58 100 0 58 0 79 1 
BAP1 59 1 56 3 82 0 93 5 
USP7 53 9 61 36 94 0 79 24 
USP37 53 0 53 0 61 0 86 1 
USP8 47 6 87 0 15 0 79 21 
EIF3F 47 7 94 0 76 0 36 95 

         

High >80%         

Low 50-80%         

No <50%         
 



 

 

References 
 
1 Aguirre, A. J. et al. Genomic Copy Number Dictates a Gene-Independent Cell Response to 

CRISPR/Cas9 Targeting. Cancer Discov 6, 914-929, doi:10.1158/2159-8290.CD-16-0154 
(2016). 

2 Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target 
effects of CRISPR-Cas9. Nat Biotechnol 34, 184-191, doi:10.1038/nbt.3437 (2016). 

3 Hart, T. et al. Evaluation and Design of Genome-Wide CRISPR/SpCas9 Knockout Screens. 
G3 (Bethesda) 7, 2719-2727, doi:10.1534/g3.117.041277 (2017). 

4 Meyers, R. M. et al. Computational correction of copy number effect improves specificity of 
CRISPR-Cas9 essentiality screens in cancer cells. Nat Genet 49, 1779-1784, 
doi:10.1038/ng.3984 (2017). 

5 Wang, T. et al. Gene Essentiality Profiling Reveals Gene Networks and Synthetic Lethal 
Interactions with Oncogenic Ras. Cell 168, 890-903 e815, doi:10.1016/j.cell.2017.01.013 
(2017). 

6 McFarland, J. M. et al. Improved estimation of cancer dependencies from large-scale RNAi 
screens using model-based normalization and data integration. bioRxiv, 305656 (2018). 



 

 

DUBs mutated in disease 

 Disease setting Disease association Genetic alterations References 

BAP1 Cancer Renal cell carcinoma, 
Uveal Melanoma, 
Mesothelioma 

Loss of function 1-3 

CYLD Cancer,  
Innate immune signalling 

Cylindromatosis Loss of function 4 

OTULIN Innate Immune signalling 
Inflammation 

ORAS Loss of function 5, 6 

USP8 Adenomas, Cancer Cushing’s Disease Gain of function 7 

USP48 Adenomas, Cancer Cushing’s Disease Gain of function 8 

STAMBP 
(AMSH) 

Developmental disease Microcephaly-capillary 
malformation 

Loss of function 9 

     

 Indirect extension of druggable proteome through DUB targeting 

 Disease setting Disease application Indirect targets  

USP1 Cancer inhibitor sensitises cells 
to cisplatin 

FANCD2, 
PCNA 

10 

USP7 Cancer neuroblastoma, 
immunotherapy 

Regulates MDM2/p53, 
NMYC, FOXP3 levels 

11, 12 

USP9X Cancer - Reported to stabilise the 
anti-apoptotic protein 
MCL1, 
regulates centrosome 
duplication 

13, 14 

USP13   Reported to stabilise the 
anti-apoptotic protein 
MCL1 and determine 
sensitivity to BH3 mimetics 

15 

USP28 Cancer MYC driven tumours FBW7 clients 
(MYC, Jun etc) 

16-18 

PSMD14 Cancer  Alternative to established 
proteasome inhibitors 

Positive regulator of  
proteasome activity 

19 

USP14 Neurodegeneration Alzheimers Disease Limits proteasomal 
degradation 

20-23 

USP30 Neurodegeneration Parkinson’s disease Suppresses Mitophagy 24-27 

USP19 Muscle atrophy  Promotes atrophy through 
enhancement of 
glucocortoid signaling 

28 



 

 

 
 
 
Supplemental Table 2: Selected DUBs mutated in human disease and/or presenting attractive 
therapeutic targets. 
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