Wolfgang Ebeling

The Monodromy Groups of Isolated Singularities of Complete Intersections
For Bettina, Bastian, and Mirja
For the analysis of hypersurface singularities and their deformations the Milnor lattice and the invariants associated with it play an important role. The middle homology group of a Milnor fibre of the singularity is a free abelian group, which is endowed with a bilinear form, the intersection form. This bilinear form is symmetric or skew-symmetric, if the dimension is even or odd respectively. This group with this additional structure is called the Milnor lattice H. The monodromy group Γ of the singularity is a subgroup of the automorphism group of this lattice. It is generated by reflections, respectively symplectic transvections, corresponding to certain elements of the Milnor lattice, the vanishing cycles, which are defined in a geometric way. These form the set $\Delta \subset H$ of vanishing cycles. The monodromy group is already generated by the respective automorphisms corresponding to the elements of certain geometrically distinguished bases of vanishing cycles. The set of Dynkin diagrams (or intersection diagrams) corresponding to such bases yields another invariant. A survey of the relations between these invariants and their importance for the deformation theory of the singularities in the hypersurface case is given by E. Brieskorn in his expository article [Brieskorn3].

By stabilizing we can restrict ourselves to the symmetric case in the hypersurface situation. For the simple hypersurface singularities the monodromy groups and the sets of vanishing cycles are finite, and it is well-known that they coincide with the Weyl groups and root systems respectively corresponding to the classical Dynkin diagrams \(^1\) of type A_n, D_n, E_6, E_7, or E_8. In the general (symmetric) case there arises the question about the nature of these infinite reflection groups and these infinite subsets of the Milnor lattice and about a characterization of these invariants. The work on this question was stimulated by a result of H. Pinkham [Pinkham1] of the year 1977. Pinkham showed that the monodromy groups of the fourteen exceptional unimodal hypersurface singularities are arithmetic. In the sequel we were able to prove that the result of Pinkham is true for large classes of hypersurface singularities.

\(^1\) The notation "Dynkin diagrams" for these graphs was introduced by N. Bourbaki [Bourbaki2], and is commonly used for these graphs since. Usually one also denotes the more general intersection diagrams of arbitrary hypersurface singularities by this name. We shall also use this notation in this monograph. Unfortunately, this notation does not seem to be historically justified. More accurately, these graphs should be attributed to H.S.M. Coxeter. However, Bourbaki calls the closely related graphs associated with Coxeter systems Coxeter graphs. We follow Bourbaki and reserve this notation for these graphs, too (cf. Remark 4.1.4, Example 5.2.4, and Chapter 5.5).
singularities, using a theorem of M. Kneser. On the other hand it was clear from the beginning that this result could not be true for all hypersurface singularities. One can find exceptions among the other unimodal hypersurface singularities, which appear at the beginning of Arnol'd's classification, namely among the hyperbolic singularities forming the $\tau_{p,q,r}$-series.

The Milnor lattices, monodromy groups, and vanishing cycles are more generally defined for isolated singularities of complete intersections. Therefore one can also consider the above question in this larger context. The aim of this monograph is to explore these invariants for this general class of singularities, which embraces the hypersurface singularities. This investigation is centred upon the above question.

In order to be able to study these invariants, we first elaborate suitable procedures to compute these invariants. Here we are guided by the hypersurface case. In this case one uses Dynkin diagrams corresponding to geometric bases of vanishing cycles for the calculation of these invariants. However, the notion of a geometric basis of vanishing cycles cannot be readily transferred to the general case. Though one can also consider the corresponding systems of vanishing cycles in the complete intersection case, they are no longer linearly independent, unless we are in the hypersurface case, and one also has to take the linear relations among these cycles into account. We introduce an appropriate notion of a Dynkin diagram for an isolated complete intersection singularity. We present methods to compute such Dynkin diagrams.

We apply these methods to determine Dynkin diagrams and the invariants derived from these graphs for the singularities at the lowest levels of the hierarchy of isolated complete intersection singularities. Using these results, we are in particular able to classify the isolated complete intersection singularities with a definite, parabolic, or hyperbolic intersection form. This extends the corresponding classification of Arnol'd in the hypersurface case [Arnol'd 1] to the case of complete intersections. Moreover, one discovers many interesting relations in this way.

As the main result of this monograph we can answer the question about a characterization of the monodromy groups and of the vanishing cycles in the symmetric case completely. We can show that the monodromy groups and vanishing cycles of all even-dimensional isolated complete intersection singularities except the hyperbolic singularities can be described in a purely arithmetic way, i.e. only in terms of the Milnor
lattice. In particular the simple parts of the monodromy groups are arithmetic in these cases. For the hyperbolic singularities one can give another, though non-arithmetic, description of these invariants. These results can also be applied to global monodromy groups. So for example one can prove that the monodromygroup of the universal family of projective complete intersections of a fixed (even) dimension and multidegree is arithmetic. The proof of these results is reduced to algebraic results on reflection groups corresponding to vanishing lattices by means of our calculation of Dynkin diagrams.

We now give a survey of the contents of this work in detail. The monograph is divided into five chapters.

In the first chapter we introduce the invariants of isolated singularities of complete intersections to be considered later. Here we alter the point of view compared to the hypersurface case slightly. In the general case we do not regard merely the Milnor lattice, but a short exact sequence of lattices

\[0 \to H' \to \hat{H} \to H \to 0, \]

including the Milnor lattice \(H \), as the basic invariant. This sequence is defined as follows (cf. Section 1.1). Let \((X,x)\) be an isolated singularity of an \(n \)-dimensional complete intersection, and let \(F = (F_1, \ldots, F_p) : (\mathbb{C}^{n+p},0) \to (\mathbb{C}^p,0) \) be the semi-universal deformation of \((X,x)\). We choose a line \(\ell \) in the base space through the origin which intersects the discriminant of \(F \) at the origin transversally. Without loss of generality we assume that the coordinates of \(\ell \) are chosen in such a way that this line coincides with the last coordinate axis. Then \(F' = (F_1, \ldots, F_{p-1}) : (\mathbb{C}^{n+p},0) \to (\mathbb{C}^{p-1},0) \) defines an isolated singularity \((X',x)\). Let \(X_s \) and \(X'_t \) be the Milnor fibres of \((X,x)\) and \((X',x)\) respectively. Then the above sequence is part of the long exact (reduced) homology sequence of the pair \((X'_t, X_s)\). This means that \(H = H_n(X_S, \mathbb{Z}) \), \(H' = H_{n+1}(X'_t, \mathbb{Z}) \), and \(\hat{H} \) is the relative homology group \(H_{n+1}(X'_t, X_s) \).

On these modules we consider the bilinear forms induced by the intersection form on \(H \).

For each invariant associated with the Milnor lattice \(H \) we can then consider a corresponding relative invariant which is related to the lattice \(\hat{H} \). In this way the vanishing cycles are associated with the thimbles which were already considered by Lefschetz (Section 1.2). These form the set \(\hat{\Lambda} \). To the monodromy group \(\Gamma \) corresponds the relative monodromy group \(\hat{\Gamma} \) (Section 1.3). The natural generalization of the notion of a weakly or strongly distinguished basis of vanishing
cycles in the hypersurface case is considered in Section 1.4: This is a weakly or strongly distinguished basis of \hat{H} consisting of thimbles. So the Dynkin diagrams which are introduced in Section 1.5 are Dynkin diagrams corresponding to weakly or strongly distinguished bases of thimbles of \hat{H}. As in the hypersurface case they are not uniquely determined, and we also study the possible transformations of these diagrams in this section. At the end of Section 1.5 we show the invariance of the introduced objects. A Dynkin diagram corresponding to a strongly distinguished basis of thimbles determines the remaining relative invariants, in particular also a special element of the relative monodromy group $\hat{\mathbb{A}}$, namely the relative monodromy operator \hat{c}. We discuss in Section 1.6 to what extent one can get informations about the module H', and hence about the whole fundamental exact sequence above, from the knowledge of \hat{H} and of the relative monodromy operator \hat{c}.

In Chapter 2 we describe our methods for the computation of Dynkin diagrams corresponding to strongly distinguished bases of thimbles. We derive a generalization of a procedure of Gabrielov in the hypersurface case [Gabrielov3] (Section 2.2). Our calculations are essentially based on this method. This procedure allows us to reduce the calculation of Dynkin diagrams to the calculation of Dynkin diagrams for simpler singularities. Here the polar curve of the singularity plays an important rôle. The necessary definitions and facts about polar curves and polar invariants in the case of complete intersections are collected in Section 2.1. The simplest singularities of complete intersections which are not hypersurfaces are the isolated singularities of intersections of two quadrics. For such a singularity H. Hamm has given a basis of the Milnor lattice H [Hamm]. In Section 2.3 we show that the basis of H consists of vanishing cycles and that these cycles bound the thimbles of a strongly distinguished basis of \hat{H}. We compute the Dynkin diagram corresponding to this basis and analyze the invariants of this special singularity by means of suitable transformations of this Dynkin diagram. It turns out that there exists a close relation to K. Saito's theory of extended affine root systems [Saito1], which we discuss in Section 2.4. Finally Section 2.5 deals with another method to compute Dynkin diagrams. This is a generalization of a method of F. Lazzeri in the hypersurface case to determine the intersection matrix using the relations of the fundamental group of the complement of the discriminant. We explain this method by means of an example which is essential for the later applications, but where the application of the procedure of Section 2.2 already leads to considerable difficulties.
In Chapter 3 we apply the method of Chapter 2.2 to calculate Dynkin diagrams for some special singularities. Here we only consider singularities which are given by map-germs \(f : (\mathbb{C}^{n+2}, 0) \to (\mathbb{C}^2, 0) \) with \(df(0) = 0 \) and with regular 2-jet. This means in particular that \(H' \) has rank 1 in this case. In Section 1.1 we consider the classification of these singularities of any dimension, and we introduce the classes of singularities which will be considered later. Part of them will play a role in Chapter 4. These classes are characterized by the Segre symbol of the 2-jet. At the beginning of the classification one finds after the intersections of two quadrics the \(n \)-dimensional singularities \(T_{2,q,2,s}^n \) (Segre symbols \(\{1, \ldots, 1, 2\} \) and \(\{1, \ldots, 1, (1,1)\} \)). In Section 3.2 we explain in detail how one can compute Dynkin diagrams for these singularities using the method of Chapter 2.2. It turns out that these singularities are hyperbolic in the even-dimensional case. Section 3.3 is devoted to two other classes of \(n \)-dimensional singularities, namely the singularities of the \(J^{(n-1)} \) and \(K^{(n-1)} \) series (Segre symbols \(\{1, \ldots, 1, 3\} \) and \(\{1, \ldots, 1, (1,2)\} \) respectively). Here the calculation of Dynkin diagrams follows the pattern of Section 3.2. The remaining sections of Chapter 3 are not needed for Chapter 4. In Section 3.4 we focus our attention on the case of curves and consider in particular Dynkin diagrams for the simple space curve singularities. The surface case is considered more fully in Sections 3.5 and 3.6. Section 3.6 deals in particular with the triangle singularities and the extension of Arnol'd's strange duality observed in [Ebeling-Wall]. For the space curve and surface singularities of Sections 3.4 and 3.6 we obtain Dynkin diagrams which are closely related to the Dynkin diagrams of Gabrielov for the unimodal hypersurface singularities. We study the Coxeter elements of these graphs and show how our results fit together with new results of K. Saito about Coxeter elements of a certain class of graphs. Section 3.6 provides supplementary information on the extension of the strange duality exceeding and completing the paper [Ebeling-Wall] in certain aspects. Finally we mention a particular result of our calculations: One finds topologically non-equivalent singularities, for example already among the triangle singularities, whose monodromy operators are conjugate over \(\mathbb{Q} \) (Corollary 3.6.4).

The main results of this work are described in Chapter 4. These results are stated in Section 4.1. We first classify the isolated complete intersection singularities with a definite, parabolic or hyperbolic intersection form (Theorem 4.1.1). Then we give a description of the monodromy groups, of the relative monodromy groups, and of the sets of vanishing cycles and thimbles for almost all isolated singularities.
of even-dimensional complete intersections (Theorems 4.1.2 and 4.1.3).
The only exceptions for which these characterizations are not true belong to the hyperbolic singularities. In Remark 4.1.4 we show that in this case one can find a description of these invariants in the framework of Kac-Moody-Lie algebras. For the hypersurface case and partially for the case of two-dimensional complete intersections in \(\mathbb{C}^4 \) these results are already published in [Ebeling5] and generalize earlier results in [Pinkham1], [Ebeling1],[Ebeling2], and [Ebeling3]. At the end of Section 4.1 we quote the most important results corresponding to these results in the odd-dimensional case. Here we refer to [Janssen1] for details. The proof of our central results consists in a reduction to algebraic theorems, which are proven in Chapter 5. For this reduction, which is described in Section 4.2, we need the results of the first three chapters. In Section 4.3 we discuss applications to global monodromy groups and Lefschetz pencils. In this way we return to the context in which the vanishing cycles and thimbles were originally introduced by S. Lefschetz.

In Chapter 5 we have collected the algebraic results on which the proof of the theorems in Chapter 4 is based. Here we consider subgroups \(\Gamma_\Delta \) of the group of units of an integral symmetric lattice \(L \) which are generated by reflections corresponding to the vectors of a subset \(\Delta \subset L \). Here the pair \((L,\Delta) \) has to satisfy the following conditions:

(i) \(\Delta \) consists only of minimal vectors of square length \(2\varepsilon \), \(\varepsilon \in \{+1,-1\} \) fixed, (ii) \(\Delta \) generates \(L \), (iii) \(\Delta \) is a \(\Gamma_\Delta \)-orbit, (iv) unless \(\text{rk} \ L = 1 \), there exist \(\delta_1,\delta_2 \in \Delta \) with \(\langle \delta_1,\delta_2 \rangle = 1 \). Such a pair is called a vanishing lattice, following a terminology of W.A.M. Janssen and E. Looijenga (Section 5.2). Typical examples of such vanishing lattices are the pairs \((H,\Delta) \) and \((\hat{H},\hat{\Delta}) \). We show that a vanishing lattice which contains a certain small vanishing sublattice of Witt index 2 (and which is called complete in this case) is already the maximum possible vanishing lattice (Sections 5.3 and 5.4). This means that the subset \(\Delta \) is maximum, hence contains all minimal vectors \(v \) of square length \(2\varepsilon \) with \(\langle v,L \rangle = \mathbb{Z} \), and \(\Gamma_\Delta \) contains all reflections corresponding to minimal vectors of square length \(2\varepsilon \). It then follows from a theorem of M. Kneser [Kneser1] that the elements of \(\Gamma_\Delta \) are characterized by the properties that they have spinor norm 1 and act trivially on the quotient \(L^\# / j(L) \) of the dual lattice \(L^\# \) by the image of the lattice \(L \). In Section 5.5 we show that these statements also hold true for some vanishing lattices defined by Coxeter systems, whereas in general these statements are not true for such vanishing lattices. Up to some supplements, Chapter 5 is largely identical with §§ 1 - 3 and part of § 5 of the paper [Ebeling5].
This monograph is a translation of the author's "Habilitations­schrift" (Bonn 1986) with some minor modifications and corrections. A summary of the main results of the first four chapters is contained in the author's preprint "Vanishing lattices and monodromy groups of isolated complete intersection singularities" (to appear in Invent. math.).

This work was supported by a research grant of the Deutsche Forschungsgemeinschaft. I wish to express my thanks to this institution for this support. This grant also enabled me to visit the University of North Carolina at Chapel Hill/U.S.A. for two months in spring 1986 and to participate in the Special Year in Singularities and Algebraic Geometry. Part of this work was done during this period. I am especially grateful to the organizers of the Special Year, J. Damon and J. Wahl, for the hospitality and the pleasant working atmosphere.

I wish to thank all those who have contributed to this work by valuable suggestions and fruitful discussions, especially Lê Dũng Tráng, E. Looijenga, G. Pfister, K. Saito, J. Wahl, and above all C.T.C. Wall. I owe especial thanks to my teacher E. Brieskorn for his interest and his support and encouragement concerning this work. He has decisively influenced my way of thinking and viewing the problems.

The final preparation of the manuscript was supported by the "Max-Planck-Institut für Mathematik" in Bonn. I am especially grateful to Karin Deutler from this institute for preparing a beautiful camera-ready typescript.

Bonn, March 1987

Wolfgang Ebeling
TABLE OF CONTENTS

1. INVARIANTS OF COMPLETE INTERSECTIONS

1.1. The fundamental exact sequence
1.2. Vanishing cycles and thimbles
1.3. Monodromy groups and vanishing lattices
1.4. Geometric bases
1.5. Dynkin diagrams
1.6. Relative monodromy

2. COMPUTATION OF DYNKIN DIAGRAMS

2.1. Polar curves
2.2. A generalization of a method of Gabrielov
2.3. Dynkin diagrams of an intersection of two quadrics
2.4. Extended affine root systems
2.5. A generalization of a method of Lazzeri

3. DYNKIN DIAGRAMS FOR SOME SPECIAL SINGULARITIES

3.1. On the classification of isolated singularities of complete intersections
3.2. The singularities $T_{s,q,2,s}$
3.3. The $J^{(n-1)}$- and $K^{(n-1)}$-series
3.4. Simple space curves
3.5. Surfaces of complete intersection
3.6. Strange duality

4. MILNOR LATTICES AND MONODROMY GROUPS

4.1. A description of the monodromy groups and vanishing lattices
4.2. Reduction to algebraic results
4.3. Global monodromy groups and Lefschetz pencils
5. MONODROMY GROUPS OF SYMMETRIC VANISHING LATTICES 131

5.1. Units of lattices 131
5.2. Symmetric vanishing lattices 133
5.3. Complete vanishing lattices 135
5.4. Special subsets 138
5.5. Hyperbolic Coxeter systems 142

BIBLIOGRAPHY 145

SUBJECT INDEX 150