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Summary

Proteins are the main active elements of life whose chemical activities regulate cellular
activities. A protein is characterized by having a sequence of amino acids and a three
dimensional structure. The three-dimensional structure has only been determined ex-
perimentally for 50000 of the seven million sequences that are known. Determining
the protein structure from its sequence of amino acids is therefore a major problem in
computational structural biology and is referred to as the protein folding problem. The
folding problem is solved using de novo methods or comparative methods depending on
whether the three-dimensional structure of a homologous sequence is known. Whether
or not a protein model can be used for industrial purposes depends on the quality of the
predicted structure. A model can be used to design a drug when the quality is high.

The overall goal of this project is to assess and improve the quality of a predicted
structure. The starting point of this work is a technique called metric training where a
knowledge-based protein potential, for a fixed set of native protein structures and a set
of deformed decoys for each native structure, is designed to have native-decoy energy
gabs that correlates maximally to a native-decoy distance. The main contribution of
this thesis is methods developed for analyzing the performance of metrically trained
knowledge-based potentials and for optimizing their performance while making them
less dependent on the decoy set used to define them. We focus on using the gradient and
the Hessian in the analysis and present a novel smooth solvation potential but otherwise
the studied potential is kept close to standard coarse grained potentials.

We analyze the importance of the choice of metric both when used in metric training
and when used in the evaluation of the performance of the resulting potential and
find a significant improvement by using a metric based on intrinsic geometry. It is
well-known that energy minimization of a potential that is efficient in ordering a fixed
set of decoys need not bring the decoys closer to the native state. The next part of
the work is focused on improving the convergence of decoy structures and we present
a method that significantly improves the results of shorter energy minimizations of a
metrically trained potential and discuss its limitations. In an ideal potential all near-
native decoys will converge toward the native structure being at-least a local minimum
of the potential. To address how far the current functional form of the potential is from
an ideal potential we present two methods for finding the optimal metrically trained
potential that simultaneous has a number of native structures as a local minimum. Our
results generally indicate that a more fine-grained potential is needed to meet desired
model accuracies but even with our coarse-grained model we obtain good results and
there is an unexplored possibility to combine it with comparative modeling.

To allow fast energy minimization in Matlab a new set of more sparse formulas
to calculate the first and second derivatives of a molecular potential is derived and
implemented.
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Resumé (in Danish)

Proteiner er de aktive elementer af liv, hvis kemiske aktiviteter regulerer alle celle ak-
tiviviteter. Et protein er karakteriseret ved at have en aminosyrer sekvens og en tre
dimensional struktur. Den tre dimensionale strukturer er kun blevet bestemt eksperi-
mentelt for 50000 af de syv millioner sekvenser, der er kendt. Bestemmelsen af protein
strukturen fra dets aminosyrer sekvens er derfor en stor udfordring i computationel
strukturel biologi og har fået navnet protein foldningsproblemet. Foldningsproblemet
løses med de novo metoder eller komparative metoder afhængig af om den tre dimen-
sionale struktur af den homologe sekvens er kendt. Om en model kan anvendes f.eks.
til industriel brug afhænger af kvaliteten af den forudsagte struktur. En model kan
anvendes til at designe et medikament, hvis kvaliteten er høj.

Det overordnede mål med dette projekt er at vurdere og forbedre kvaliteten af en
forudsagt struktur. Projektet tager udgangspunkt i en teknik kaldet metrisk træning,
hvor et vidensbaseret protein potential for et sæt af native struktur og et sæt af decoys
for hver nativ struktur designes til at have et nativ-decoy energigab, som har en høj
korrelation til en nativ-decoy afstand. Hovedbidraget fra denne thesis er metoder ud-
viklet til at analysere ydeevnen af metrisk trænede vidensbaserede potentialer og til at
optimere deres ydeevne, samtidig med at de gøres mindre afhængig af det decoy sæt,
som anvendes til at definere dem. Vi fokuserer på anvendelsen af gradient og Hes-
siant i analysen og præsenterer et ny glat solvent potential. Det anvendte potential er
baseret på en backbone model af proteinet, men ligner ellers et standard coarse-grained
potential.

Vi analyserer vigtigheden af valget af metrik, både når den anvendes i den metriske
træning og når den anvendes i evalueringen af ydeevnen af det resulterende potential
og finder en signifikant forbedring ved at anvende en metrik baseret på en intrinsisk
geometri. Det er velkendt, at energiminimering ved anvendelse af et potential, der er
god til at ordne et sæt af decoys, ikke nødvendigvis behøver at forbedre kvaliteten af
en decoy. Den næste del af projektet er fokuseret på at forbedre konvergensen af decoy
strukturerne, og vi præsenterer en metode, der signifikant forbedrer resultaterne af ko-
rte energiminimeringer af et metrisk trænet potential og diskuterer dets begrænsninger.
For et ideelt potential vil alle nær-native decoys konvergerer mod en nativ struktur, der
er et lokalt minimum for potentialet. For at undersøge hvor langt den nuværende funk-
tionelle form af potentialet er fra et ideelt potential præsenterer vi to metoder til at
finde det optimale metrisk trænede potential, som for hver nativ struktur har et lokalt
minimum. Vores resultater peger på, at et fine-grained potential kræves for at opnå
en høj model nøjagtighed, men selv med en coarse-grained model, opnår vi gode re-
sultater. Endvidere er der en mulighed for at kombinerere potentialet med komparativ
modellering.

For at opnå en hurtig energiminimering i Matlab udvikles og implementeres et nyt
sæt af formler til at udregne de første og anden afledede af et molekulært potential.
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Introduction

This work is about protein structure prediction which is the prediction of the three di-
mensional structure of a protein from its amino acid sequence. Proteins fold to a state
called the native configuration[1]. The native configuration is predicted with methods
such as comparative modelling and de novo methods[2]. The first method predicts
structures by finding a homologous amino acid sequence with a known structure in the
protein data bank while the second method predicts the folded structure from the se-
quence alone. Unfortunately, the accuracy of the predicted structures is not always the
best possible. The accuracy of a predicted structure is important as the usefulness of a
protein structure increases with the accuracy[3, 4]. This work is motivated by the de-
velopment of knowledge-based potentials for protein structure prediction. Knowledge-
based potentials are trained with the purpose of improving the quality of near-native
structures. This means either to rank a set of near-native protein structures accord-
ing to how native-like they are (model quality assessment[5]) or to refine the quality
of near-native protein structures (protein structure refinement[6]). Most knowledge-
based potentials are stochastic but in this study a knowledge-based potential is a model
of the energy landscape of proteins that is trained on a set of near-native structures
called decoys. It is usually spanned by basis functions and its free energy parameters
are all determined by solving an optimization program. The definition of a knowledge-
based potential used here should not be confused with a statistical potential that is
based on the frequency of structural motives of protein structures in the protein data
bank which also is referred to as a knowledge-based potential.

The quantification of native-likeness is non-trivial as there are many ways to mea-
sure the similarity of two structures. We refer to these measures of similarity as distance
measures and differ between distance measures based on the extrinsic geometry such
as the Root Mean Square Deviation (RMSD)[7, 8, 9] or the Global Distance Test (GDT-
TS)[10] and the intrinsic geometry such as the fraction of native contacts (Q) or the
energetic difference between the native equilibrium configuration and the perturbed
near-native configuration using a fictive spring model (FlexE[11], MT). Distance mea-
sures based on the extrinsic geometry are the most popular measures. They measure
the distance between two structures after optimal alignment of one structure onto the
other. The standard distance measure used is RMSD. On the other hand, distance mea-
sures based on the intrinsic geometry require no structural alignment but use a fixed
sequence.

This study takes the optimization method introduced in Ref. [12] as a starting point
to design a knowledge-based potential by a least square procedure that minimizes the
squared difference between the native-decoy energy gab and the native-decoy distance.
Its purpose is to form a well-correlated energy landscape about a set of native structures
such that the correlation between a knowledge-based potential and a distance measure
is high. The knowledge-based potential used in Ref. [12] is quite good at ordering
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2 Preface

decoys according to how native-like they are but is unsuitable for improving the quality
of near-native protein structures as it does not sustain the local geometry and contains
terms that are not differentiable. Differentiability of the constructed potential is impor-
tant since we want to use a potential energy minimization method for protein structure
refinement that requires that the gradient and the Hessian of the potential is available.

The aim of this study is to design a smooth knowledge-based potential and use it for
model quality assessment and protein structure refinement. We attempt to approximate
the energy landscape using reduced models of proteins and simplified b-spline expanded
potentials. The developments of this project are the following:

We first perform a large scale test and analysis of metric training of knowledge-based
protein potentials introduced in Ref. [12]. We are interested in finding out the maximal
performance that can be attained with a b-spline expanded C-alpha pair distance based
knowledge-based potential when trained on different distance measures and tested on
a variety of test sets. This knowledge-based potential is smooth and thus has gradient
and Hessian which we want to use for for protein structure refinement. The main
conclusion of this investigation is that it is best to train the knowledge-based potential
on an intrinsic distance measure, namely MT, which thus is our preferred choice in
subsequent work. Having established that a single pairwise potential yields high energy-
distance correlations when trained on MT and thus is very suitable for model quality
assessment we develop a knowledge-based potential for protein structure refinement.
This is much more difficult than assessing the quality of model as the local geometry
has to be preserved during the optimization. Furthermore, it is very difficult to design
a model that consistently improves the quality of a target since we have to ensure that
the direction of our refinement procedure is toward the native configuration and not in
an arbitrary direction.

We model the protein backbone using five atoms (N, C, C-alpha, O and H) per
amino acid in the backbone of the protein. This allows us to model local bonds that
restrict motions to be close to a dihedral angle model and also to model main-chain
hydrogen bonds. We refer to this potential as the local potential. The non-local part of
the potential takes into account the pairwise and solvent interactions. It only depends
on the C-alpha atoms and is smooth as it is expanded in terms of cubic b-spline basis
functions of the distances between pairs of C-alpha atoms. The full knowledge-based
potential developed is thus smooth. The potential may be seen as a smooth version of
the most used simple protein models. In the thesis we present some ideas on how to
extend the potential with terms that for instance take into account the direction of the
side-chains.

The derivatives of the non-local potential are straightforward to derive as they only
depend on the inter-residue distances. The formulas for the derivatives of the local
potential are, however, non-trivial to derive as the local potential depends on the bond
lengths, bond angles and torsion angles also referred to as the internal coordinates. In
this thesis I show that there exist simple rules to calculate the derivatives of internal
coordinates and thus molecular potentials in general when the formulas are expressed
using not one but two orthonormal bases. These formulas are used to calculate the
gradient and Hessian of our knowledge-based potential.

We use the developed smooth knowledge-based potential for protein structure re-
finement using potential energy minimization as our refinement method. We use a
modified Newton method that takes into account directions of negative curvature. We
only observe improvements in quality of a near-native structure in the beginning of an
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optimization. The refinement method that we use thus searches along descent direc-
tions for a limited change in RMSD (say 0.5Å) between the initial and final structure.
Furthermore, we introduce an iterative method that improves the performance of our
smooth knowledge-based potential considerably. We show that the quality of many
near-native structures can be improved using this refinement strategy although the im-
provements admittedly are small.

Finally, a measurement of the gradient and the eigenvalues of the Hessian of our
knowledge-based potential at several native structures leads to the conclusion that our
knowledge-based potential does not stabilize these native structures. This motivates
us to develop two methods to form local minima in the energy landscape. The first is
a semidefinite programming approach that achieves this by explicitly requiring a van-
ishing gradient and a positive semidefinite Hessian simultaneously in a set of native
structures. The second method is based on an iterative strategy. Using these methods
we conclude that the cost of forming local minima in the energy landscape for a large set
of native structures (say larger than 5) is high in the sense that the average correlation
between our knowledge-based potential and the distance measure used in the training
is low. Hence, the potential looses its desired shape at other folds. This concludes the
developments of this project.

The thesis is organized as follows. It is divided into two parts. The first part intro-
duces the background for the thesis as a whole. We begin by describing some of the most
important topics in protein structure prediction in Chapter 1. We introduce the protein
structure and discuss different coarse-grained models of a protein. Coarse-grained mod-
elling is important as the full structure often is too computationally demanding to use
for several applications[13]. The protein folding problem and how to solve it using ei-
ther comparative modelling or de novo methods are then discussed. Finally, we discuss
the problem of assessing and refining the quality of a predicted protein structure which
is one of the major challenges in protein structure prediction today. In Chapter 2 we
present some of the important properties of b-splines and consider different local and
non-local potentials that have been developed during this study. The coupling poten-
tial, the local L-DE potential and the side-chain potential considered here are possible
extensions to our current knowledge-based potential described above. Different opti-
mization strategies to determine the free parameters of a knowledge-based potential
are discussed in Chapter 3. Finally, a modified Newton method is described in Chapter
4.

The second part of this thesis presents four articles that constitute my contribution
to the field. The four articles can be found in the Chapters 5, 6, 7 and 8. The main
contributions are presented in the following Chapters:

• Formulas for the derivatives of internal coordinates are derived in Chapter 5.

• The importance of the choice of distance measure used to train and test a C-alpha
based knowledge-based pairwise potentials is investigated in Chapter 6.

• A knowledge-based with a fixed backbone potential to restrict motions to be close
to those of a dihedral model, a fixed hydrogen-bonding potential and a variable b-
spline expanded carbon alpha potential consisting of a pair potential and a solvent
potential is introduced in Chapter 7.

• An iterative procedure to improve the decoy-convergence of our knowledge-based
potential is examined in Chapter 7.
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• A method based on semidefinite programming to a stabilize native protein struc-
ture is examined in Chapter 8.

• An iterative procedure to stabilize a native protein structure is examined in Chap-
ter 8.



Part I

Background
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Chapter 1

Protein structure prediction

1.1 The protein structure

A protein consists of amino acids and there exist 20 different types of amino acids in
nature: alanine (Ala), asparagine (Asn), aspartic acid (Asp), cysteine (Cys), glutamine
(Gln), glutamine acid (Glu), glycine (Gly), histidine (His), isoleucine (Ile) leucine
(Leu), lysine (Lys), methionine (Met), phenylalanine (Phe), proline (Pro), serine (ser),
theronine (Thr), tryptophan (Trp), tyrosine (Tyr) and valine(Val). An amino acid in
a protein generally contributes with the same atoms to the backbone of the protein
namely a nitrogen atom, two carbon atoms, an oxygen atom and two hydrogen atoms
(the side-chain of proline is cyclic and its C-alpha atom is linked to the nitrogen atom).
The chemical formula for the atoms in the backbone is thus the same for all amino acids.
This is shown in Figure 1.1. The N-terminus is at the start of the backbone and the chain
is ended with the C-terminus as shown in Figure 1.2 and 1.3. The amino acids differ
from each other by the chemical formula for the atoms in the side-chain. The amino
acids are divided into three groups: The non-polar amino acid group (Ala, Gly, Ile, Leu,
Met , Phe, Pro, Trp, Tyr and Val), the charged polar amino acid group (Arg, Asp, Glu,
His and Lys) and the uncharged polar amino acid group (Asn, Cys, Gln, Ser and Thr)
denoted NPo, CPo and UPo. The non-polar amino acids are referred to as hydrophobic
and the polar amino acids are referred to as hydrophilic. The hydrophobic amino acids
are mainly found in the core of a protein whereas the hydrophilic amino acids mainly
are found on the surface.

A protein structure is divided into the primary, secondary, tertiary and quaternary
structure. The primary structure is the sequence of amino acids. In the backbone a
nitrogen atom, a hydrogen atom, a carbon atom and an oxygen atom are found re-

Ci−1 Ni

Hi

Cα
i

Hi

Ri

Ci

Oi

Ni+1

Hi+1Oi−1

Figure 1.1: Showing the backbone of a protein. H is a hydrogen
atom, O is an oxygen atom, N is a nitrogen atom, C is a carbon atom
and R is a side-chain. The subindex i refers to the i-th amino acid.
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Figure 1.2: The N-terminus (the start of a protein)

N Cα
n

H

Rn

C

O

OH

H

Figure 1.3: The C-terminus (the end of a protein)

(a) (b)

Figure 1.4: Showing the structure of ubiquitin (pdb code 1UBQ).
The hydrophobic atoms have been coloured orange and the hy-
drophilic atoms have been coloured gray. To the left: All of the
main-chain and side-chain atoms are shown. To the right: A cartoon
showing the secondary structures of the protein.

peatedly in the protein. They function as hydrogen bond donors and acceptors. The
hydrogen bonds form important regular structures such as helices and sheets which are
structural motives in the protein structure. The structural motives are build up of a
hydrogen bond network where the i-th C = O binds to the j-th N −H in the backbone
of the protein. For ordinary alpha helices j = i + 4. For 310 and π helices j = i + 3
and j = i + 5, respectively. Beta strands are strands of amino acids where each strand
typically is 5 to 10 amino acids long. The individual motives are connected either by
loops or turns. They are found primarily on the surface of the protein and thus consist
mainly of hydrophilic amino acids or mainly hydrophobic in the case the side-chains
of the beta-strands point away from the solvent. The structural motif that the regular
and irregular structures form is referred to as the tertiary structure of the protein. The
tertiary structure of the protein ubiquitin is shown in Figure 1.4. Finally, the quaternary
structure is the combination of protein subunits.
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Ci Ni+1

Cα
i+1

Figure 1.5: The dihedral angles along the backbone of a protein. A
dihedral angle is defined for four consecutive atoms. From left to
right: the φi angle , the ψi angle and the ωi angle.

1.2 Amino acid alphabets

Different types of alphabets for amino acids are used in protein structure prediction.
In this work, reduced amino acid alphabets are important as it can reduce the number
of parameters in a knowledge-based potential. Here, we briefly describe some of the
many different types of amino acid alphabets. In the next section, we will consider a
reduced amino acid alphabet when we discuss the coupling potential and the local L-DE
potential.

The amino acids can be divided into different groups depending on the choice of
complexity and size of the sequence. The most simple grouping is when all amino acids
are equal and, subsequently, a division into hydrophobic and hydrophilic amino acids or
a division into NPo, CPo and UPo. Furthermore, we can divide amino acids into different
types of side chains i.e. whether it is an aliphatic side chain, aliphatic hydroxyl side
chain, secondary amino group, acidic side chains and their amide derivatives, sulfur
containing side chain, basis side chain or aromatic side chain. Furthermore, we can
group the amino acids into the secondary group that the amino acid is part of (alpha-
helix, beta-sheet or coil). There do however exist statistical methods with the purpose
of dividing the amino acids into groups[14]. For a local sequences of N-mer where N is
the number of amino acids that are included in the sequence we ask the question: what
is the loss of information from choosing a reduced amino acid alphabet. As an example
the authors find that a reduction in the amino acid alphabet for a 4-mer from a 20-letter
alphabet to a 6-letter alphabet only results in a halving of information. This should be
compared with the fact that there exist 204 = 160000 different local 4-mer sequences in
the 20-letter alphabet and only 1296 sequences in the 6-letter alphabet.

1.3 Representation and flexibility

For many practical purposes it is not possible to study the all-atom models since the
computational time becomes too large[13]. Different levels of generalizations from a
single bead per atom to an all-atom representation of an amino acid can be considered
depending on application of the protein model. There is a close connection between
how we represent a protein and the flexibility of a protein. In the most simple image
each amino acid is represented by an atom. Here, the tradition is to choose the C-alpha
atom or the C-beta atom (the first carbon atom in the side-chain). This is often sufficient
for building the most simple prototypes. Such models are referred to as coarse-grained
models. The advantage of using a C-alpha only or a C-beta only model of a protein is
obvious. The number of atoms in the model is reduced to the number of amino acids
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Figure 1.6: A Ramachandran plot of an ensemble of native proteins.
Glycine and proline are excluded.
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Figure 1.7: Three examples of amino acids with rotameric an-
gles. The first, second and third rotameric angle have been given
the colors blue, red and green. From left to right: Valine (Val),
Leucine(Leu) and Isoleucine (Ile)

and as a consequence the number of degrees of freedom in the model is small. On
the other side, it is not trivial how the hydrogen bonds should be modelled such that
the secondary structures are included in the model. Furthermore, the majority of the
atoms are completely ignored. A more detailed representation is to use two carbon
atoms and a nitrogen atom in the backbone of the protein. Next, the hydrogen bonds
can be modelled explicitly such that the amino acid is represented by a carbon atom,
a nitrogen atom with an adjacent hydrogen atom and a carbon atom with an adjacent
oxygen atom. Each amino acid in this system is in this way represented by five atoms
(except proline which is represented by four atoms) and if we do not consider the
amino acids at the terminus and proline atoms, then a system with N amino acids has
15N degrees of freedom since there are five atoms with three degrees of freedom for
each amino acid.

Whether we choose a coarse-grained model or an all-atom model then it is mean-
ingful to define quantities such as the bond lengths, bond angles and torsion (dihedral)
angles. A bond angle is the angle between three atoms. Given four successive atoms the
dihedral angle is the angle between the two normal planes spanned by the first three
and the last three atoms as shown in Figure 1.5. These definitions are independent of
the choice of atoms and can of course be defined for the C-alpha atoms[15], for the
backbone atoms or for the side-chain atoms.

When the peptide plane is modelled i.e. when each amino acid is represented by two
carbon atoms and a nitrogen atom, then we refer to the rotation angle about the bond
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Figure 1.8: Showing how the coordinate system {v1,v2,v3} can be
calculated from {u1,u2,u3} by first rotating the coordinate system
about u1 using the torsion angle τijkl, and thereafter rotating the
coordinate system about u3 using the bond angle θijk.

between the nitrogen atom and the C-alpha atom and the C-alpha atom and the carbon
atom as the φ and ψ dihedral angles while the rotation angle about the bond between
the carbon atom and the nitrogen atom is referred to as ω. This is illustrated in Figure
1.5. As the dihedral angle ω is a rotation about the peptide bond it is locked at either
180◦ (trans) or 0 (cis). A 2-dimensional plot of the φ and ψ dihedral angles is referred to
as a Ramachandran plot and is shown in Figure 1.6 where I have excluded glycine and
proline since their conformational flexibility is different from the other amino acids. Due
to steric restrictions there are domains of the Ramachandran plot that are forbidden.
This means that only a small part of the Ramachandran plot is used which clearly is seen
in Figure 1.6. Besides the dihedral angles in the backbone, conformational flexibility
is also present in the side-chains. They are referred to as rotameric structures. Some
examples are shown in Figure 1.7.

It is possible to introduce the bond angles and torsion angles as Euler rotations. Let
{u1,u2,u3} and {v1,v2,v3} be two orthonormal bases. In Figure 1.8 it is shown how
the two orthonormal bases are related. It is seen that the bond angle θijk and the torsion
angle τijkl are given by

θijk = cos−1
(
uT1 v1

)
τijkl = sign

(
uT3 v2

)
cos−1

(
uT3 v3

)
.

(1.1)

This is useful for example to calculate the Cartesian coordinates of the atoms from
the internal molecular coordinates: Let q1 and q2 be the coordinates of a point q relative
to {u1,u2,u3} and {v1,v2,v3}, respectively. We consider the coordinate transformation
between q1 and q2. Given the point q2, we can find a rigid transformation such that

q1 = S12q2 + q12, (1.2)

where q12 is a translation that connects q1 and q2 and S12 is a rotation matrix. It is easy
to see that they only depend on the internal coordinates[16, 17]. Hereby, all the atoms
can be transformed to a basis system with a set of rigid transformations.

Finally, there exist other ways to visualize the conformation of a protein. As an
example the Gaussian distribution function is used on SO(3) and <3 in Ref. [18] to



12 Protein structure prediction

visualize the distribution data for a protein as an alternative to the Ramachandran plot.
Here, they focus on possible positions and orientations between the amino acids which
are proximal in space and distal in sequence; the so-called pose coordinates.

1.4 The protein folding problem

The protein folding problem consists in predicting the three-dimensional structure of
a protein from its amino acid sequence. The two most important explanations of the
protein folding process are based on either 1) that the protein folds hierarchical or
2) that the folding process is driven by the creation of a hydrophobic core. From the
hierarchical perspective the protein first forms local structural motives and after that
folds to its three dimensional fold. Helix and sheet motives therefore appear first in
the folding process. Only then is the hydrophobic core formed which gives rise to the
compact structure that a protein folds to. The fact that local motives can be predicted is
first and foremost due to steric hindrances in the torsional space which are the cause of
local alpha and beta motives that appear with a probability in the torsional space. From
the hierarchical perspective the backbone is the key to understand the folding process.
It differs from the side-chain centric view where the hydrophobicity of the individual
amino acids is the key to understand why a protein folds to a particular structure. It
is however also difficult to imagine a model which does not include hydrophobicity.
The difference is that from the side-chain perspective it is the hydrophobicity and the
compact fold that drive the folding process. See references in Ref. [19] for evidence for
the backbone-centered view and the side-chain centered view.

Levinthal’s paradox is the immediate paradox that it is almost impossible to find a na-
tive structure with a random search in the structural space since the number of degrees
of freedom and thus the folds that the protein can fold to is enormous. The probability
to find the native structure among all structures is close to zero. The issue with this view
is that the configurational space can be biased which is why some configurations have
a much larger probability to appear than other configurations. Considering this fact it
is not paradoxical that the protein folds to a particular structure since this structure has
a large probability. A quantification of this is that the native protein structure is at the
bottom of a funnel and the protein fold thus seeks to the bottom of the funnel during
the folding.

1.5 Energy landscapes

An energy landscape or an energy surface potential (PES) is a function that depends on
a set of coordinates f(x1, x2, . . . , x3n) where x1, x2, . . . , x3n are the atomic or molecular
coordinates of the molecule. PES is a high dimensional function since the number of the
atomic or molecular coordinates in the molecule typically is very large. The assumption
that the form of the energy landscape is funnel shaped goes beyond the definition of an
energy landscape, as one can easily imagine a landscape with several funnels and thus
many possible realisations. The lowest minimum in the energy landscape is referred to
as the global minimum and this configuration is the configuration of the native protein.
An exponentially high number of local minima can exist above this configuration whose
walls can be hindrances during the folding. Among the higher laying states there are
intermediate states where the protein is partially folded. This can be an alpha helix or a
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beta sheet which has been formed or some of the amino acids which begin to form the
hydrophobic core in the structure

The energy landscape of a protein is modelled with a number of different methods
which all differ from each other by their complexity. Many force fields such as AMBER,
CHARMM, ENCAD or GROMACS are based on semiempirical methods where simple
forms of the energy terms are used. These force fields consist of local and non-local
terms. The intermolecular weaker contributions to the total potential are hydrogen
bonds and other non-covalent bonds such as the Van der Waals force. The Lennard-
Jones potential is often used to model the steric repulsions of overlapping electron
clouds as a consequence of the Pauli exclusion principle. The local terms consist of
harmonic potentials and Fourier terms. Some examples are:

EBL = kBL(r − r0)2

EBA = kBA(θ − θ0)2

EDA = kDA(1± cosnτ),

(1.3)

where r, θ0 and τ are the bond length, bond angle and the dihedral angle, r0 and
θ0 are the bond length and bond angle for an experimentally determined equilibrium
position, n is an integer and kBL, kBA and kDA are constants. These terms obviously
depend on which atoms that interact. Higher order terms can be introduced to model
the experimental data to a higher accuracy. Furthermore, the harmonic expressions are
somewhat unsuitable if θ is close to 0 and 2π. Here trigonometric functions are used
instead as these functions are periodic.

1.6 Comparative modelling and de novo methods

The number of known protein sequences is much larger than the number of known
structures. About 50000 structures and 7 million sequences are known and the ratio
between the two numbers is dropping. Consequently, several computational methods
and models have been developed to determine the structure of a protein from its se-
quence to avoid to use experimental methods such as crystallography and NMR mainly
because they are expensive. Instead, the structure is determined in silico from known
experimental data. This field is referred to as structural genomics. A study of New York
Structural Genomics Consortium has shown that 100 sequences can be modelled for
each structure. This high number shows the importance of structural genomics. Two
methods are used to model a structure: 1) Comparative modelling and 2) De novo
structure prediction[2, 3, 4].

Comparative modelling is based on evolution and works if there for a given sequence
is a similar sequence in the sequence space whose structure is known. The similarity
of two sequences is referred to as their sequence homology which is quantified with
programs such as PSI-BLAST. In comparative modelling the structure is build from a
sequence alignment with a template and subsequently the core, loops and chains are
build with methods such as rigid-body assembly, segment matching or modeling by sat-
isfaction of spatial constrains. Finally, statistical knowledge-based methods are used
to evaluate packing, formation of hydrophobic core, residue and atomic solvent acces-
sibility, spatial distribution of charged groups, distribution of atom-atom contacts and
main-chain hydrogen bonding. All in all, there are four steps in comparative modelling:
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finding known structures related to the sequence to be modelled (i.e. templates), align-
ing the sequence to the templates, building a model and assessing the model [20].

A more direct method is to model the physical energy landscape of a protein whose
structure is unknown. The methods are referred to as de novo methods as they only
require the sequence as input but do not require other structures or sequences to be
known. They are also referred to as ab initio methods but since the methods are based
on semiempirical potentials whose force fields and parameter sets are estimations and
different from model to model the name ”de novo” may be more appropriate as it sug-
gests that the methods have been developed to predict new folds. The de novo meth-
ods find the global minimum in the energy landscape using a search algorithm. The
semiempirical score function and the procedure behind the searching algorithm are
thus the crucial elements when developing these methods. An example of a de novo
method is Rosetta[21] where the structure is build from local 3-mers and 9-mers of
known structures. The scoring function consists of a sequence dependent hydrophobic
burial and specific pair interactions such as electrostatics and disulphide bonding and
sequence-independent terms representing hard sphere packing, alpha-helix and beta-
strand packing, and the collection of beta-strands in beta-sheets. The search algorithm
used is simulated annealing.

1.7 Model quality assessment and model refinement

A predicted structure has an accuracy which is determined by how close it is to the
experimental structure. The accuracy is most often measured by either RMSD or GDT-
TS1. The accuracy of the comparative methods is highly dependent on the sequence
similarity (SI) between the found template and a target. A distinguishment is made
between high resolution (SI ≥ 50% , RMSD ≤ 1Å), medium resolution (30% ≤ SI ≤
50% , RMSD ≤ 1.5Å) and low resolution (SI ≤ 30% , 2Å ≤ RMSD ≤ 8Å) structures.
De novo methods predict structures with 4Å ≤ RMSD ≤ 8Å i.e. structures with low
resolution. We remark, that the definition of low, medium and high resolution often

1RMSD is the Euclidean distance between two structures after one of the two sets of atoms {ai} and
{bi} has been optimally transformed by a rigid body transformation G:

RMSD = min
G

√√√√√√
N∑
i=1

‖ai −G(bi)‖2

N
. (1.4)

The rigid body transformation G is a transformation that does not produce changes in the size, shape, or
topology of the protein. Such transformations are compositions of rotations and translations. An issue
with RMSD is that it is highly sensitive to outliers, for example due to the presence of large albeit local
differences between the two structures such as misorientations of tails and loops. The global distance
test (GDT) was developed to decrease this sensitivity[10]. GDT focuses on the regions of the structures
that can be correctly aligned by counting the number of residues that can be superimposed within a
given cutoff distance. GDT-TS (where TS stands for Total Score), combines this information for multiple
cutoffs:

GDT − TS =
n1 + n2 + n4 + n8

4n
, (1.5)

where n1, n2, n4, and n8 are the numbers of aligned residues within 1, 2, 4, and 8 Ångströms, respectively,
and n is the total aligned length. Note that GDT-TS is a quantity between 0 and 1 that represents similarity,
with low values corresponding to bad correspondences, and high values (close to or equal to 1) indicating
that the two models are highly similar.
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depend on the context. The primary causes for the low accuracy are mistakes in side-
chain packing, core distortions or loop modelling. If the error in RMSD is greater than
say 4Å then it is possible that model does not have the correct topology. As RMSD is
not accurate at this distance, GDT − TS < 0.5 (or the TM-score[22]) is used instead to
indicate that two structures have a different topology.

The usefulness of a protein structure depends on how accurate the structure is deter-
mined. Design and screening of drugs, ligand docking and molecular replacement are
possible applications for structures that have a high or medium resolution. Structures
with a low resolution have a more modest usefulness such as protein domain boundary
identification, topology recognition and family/superfamiliy assignment (see Figure 1
in [3] and [4] ). For application in biological research it is thus crucial that the accuracy
of a structure is the best possible.

CASP (Critical assessment of structure prediction) is a biannual experiment where
the participants are asked to make blind predictions of structures. The competitors
either use comparative modelling or de novo methods giving rise to two categories:
the template based modelling category (TBM) and the free modelling category (FM).
The most successful structure prediction methods are currently I-TASSER[23, 24] and
Rosetta[25]. Besides the two categories there are several other categories of which we
will consider the model quality assessment category and the model refinement category.
The two categories aim at improving the quality of template-based or template-free
models so that they can be used for applications such as drug design.

Every second year the performance of the best quality estimation methods are eval-
uated in CASP[5]. The purpose of this category is to test the current state-of-the-art
methods for their ability to give an absolute estimate of the quality of an ensemble of
decoys (near-native configurations). This is useful as an ideal score method would al-
low an estimation of for instance RMSD or GDT-TS without knowledge of the native
structure. Currently, the most successful methods are consensus methods. As opposed
to single model methods these methods use information from the ensemble of structures
to rank the individual models. For all of the methods, the assessors of this experiment
find that a large quality range of the ensemble is crucial to the success of these methods.

The predictors in CASP are also tested for their ability to refine models[6]. The pur-
pose of this category is to develop methods that can draw models closer to the native
structure and thereby improve the accuracy of the models. There have been developed
several methods with the goal of improving the quality of near-native structures. They
are usually divided into two groups. Those that are based on potential energy mini-
mization (PEM) and those that are based on molecular dynamics (MD). One of the best
performing groups that use PEM is KB01 (or KnowMIN) which is based on the ENCAD
potential where non-bonded interactions in the potentials have been replaced with a
smoothing of the statistical all-atom potential, RAPDF[26]. 01 refers to the width of the
bins (0.1Å) that has been used in the underlying statistical potential. This potential is
also referred to as a hybrid potential as the local potential comes from a MD-potential
whereas the global potential is a statistical potential. The newest hybrid potentials sus-
tain the hydrogen bonds and make stereochemical corrections[27, 28]. A study of long
molecular dynamics simulation of 100µs of the CASP 8 and CASP 9 refinement targets
using the CHARMM22 force field has shown that a molecular potential of sufficiently
high accuracy can refine structures with molecular dynamics despite that their results
were limited[29]. In particular, better results were observed when they introduced
harmonic restrains on all of the Cα atoms in the secondary structures. Furthermore,
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even better results were achieved when they in addition to the restrains on the MD-
simulations also introduced an ensemble average[30, 31].

Another refinement strategy is to combine a quality assessment method with a sam-
pling method that generates ensembles of decoys close to the native state [32]. The
procedure is iterative and shifts between a generation of near-native decoys using a
sampling scheme and an estimation of which one of the decoys that is closest to the na-
tive state. When comparing three different sampling techniques: lattice-based coarse-
grained sampling, very short all-atom molecular dynamics simulations in implicit sol-
vent and extrapolation of normal modes, the most effective sampling strategy is to use
normal mode analysis[32]. Furthermore, the convergence of the iterative procedure is
only possible when the size of the random noise in the force fields does not exceed some
level[33]. The work, therefore, suggests that a scoring function has to be highly corre-
lated to RMSD (or a similar measure of distance) when using stochastic optimization
for it to be useful for protein structure refinement.

The released models in the CASP refinement category are usually close to the native-
structure. The predictors are tested for their ability to improve backbone conformation,
side-chain packing and local geometry the most important being the backbone confor-
mation. In CASP 10 the backbone conformation was improved in almost 90% of models
for the best groups although the improvements were only modest. This shows that the
top groups are able to consistently improve the models. The majority of the groups,
however, did not draw the model closer to the native structure and no groups were able
to produce a model that is closer to the native structure than to the starting model. All
in all, the assessors of this experiment find that currently the most successful method is
a molecular dynamics method.

CASP is important for this study as we in the beginning of this project hoped that
our method would be able to compete with the best methods in CASP in the assessment
and the refinement category. Our data, however, suggested that the performance of our
methods was good but that our methods could not compete with the best methods in
CASP. Focus during this study has thus been how we could improve the performance
of our methods. In paper II we investigate which distance measure that is best to
use in a metric training of a pair potential (both as a single-model method and as a
consensus method) and compare the performance to two other methods (RAPDF and
GOAP). In paper III we develop an iterative method to improve the decoy-convergence
of our metrically trained knowledge-based potential. Both studies result in an improved
performance of our knowledge-based potential but the methods have to be improved
further if they are to be successfully used in CASP. One way to do this is to extend
our knowledge-based potential with new terms that take into account for instance the
direction of the side-chains. In the next chapter we present the different knowledge-
based potentials that have been developed in this study.



Chapter 2

B-splines and knowledge-based
potentials

In this chapter some of the models that have been developed in this study are presented.
Many of these models have been used in the articles that the study has given rise to. We
use b-spline functions to span the functional space. This is because they have preferable
mathematical properties such as:

1. B-splines are piecewise polynomials of degree p

2. B-splines are non-negative

3. B-splines are compactly supported

4. B-splines form a partition of unity

B-splines are defined as piecewise polynomials of degree p where p is a positive
number. Cubic b-splines are often used i.e. b-splines of degree 3. The first property then
means that the third derivatives of the basis functions are piecewise constant functions.
Furthermore, the first derivatives of the b-spline basis functions are quadratic functions
and the second derivatives are continuously piecewise linear functions. B-splines are
defined using a knot vector. A knot vector is a sequence of numbers:

t1 ≤ . . . ≤ tp+1 < tp+2 ≤ . . . ≤ tn < tn+1 ≤ . . . ≤ tn+p+1, (2.1)

that each is referred to as a knot. A knot is said to have multiplicity ν if tr−1 < tr = . . . =
tr+ν−1 < tr+ν . Finally, a b-spline is said to be uniform if t1 < t2 < . . . < tn+p < tn+p+1

where ti − ti−1 = constant for all i. B-splines with uniform knots are referred to as
uniform b-splines. The advantage of using this basis is first and foremost that we can
control the knots and thereby where it has its support. It is thus possible to define a
potential within a region where data is found and let it vanish for regions where data
is not observed and thereby avoid to parametrize regions where the parameters are
known to be zero. The definition of the basis functions is:

N0
i =

{
1 if ti ≤ t < ti+1

0 otherwise,
(2.2)

and b-splines of degree higher than 0 are found recursively using the formula:

Nk
i =

t− ti
ti+k − ti

Nk−1
i +

ti+k+1 − t
ti+k+1 − ti+1

Nk−1
i+1 , (2.3)

17
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for 1 ≤ k ≤ p, i = 1, . . . , n + p − k. We use Bi for uniform cubic b-splines. For more
information about b-splines, see Ref. [34].

We use two types of b-splines: curves and surfaces. A curve is defined by

P (t) =
n∑
i=0

αiBi(t), (2.4)

where n is the number of parameters. There are thus n + 4 knots for a uniform cubic
b-spline with n parameters. A surface is defined by

P (s, t) =
n∑
i=0

m∑
j=0

αi,jBi(s)Bj(t). (2.5)

A number of different functional forms can be modelled with b-splines. Due to the
great flexibility of these basis functions, uniform cubic b-splines are the fundamental
basis that we use to span our knowledge based potentials. Finally, we remark that the
derivatives are straight forward to calculate as a knowledge-based potential is linear
in its basis functions. Next, we present some of the knowledge-based potentials that
have been developed during this study. The pair potential is used in paper II, III and
IV and the solvent potential in paper III and IV. The coupling potential, the side-chain
potential and the L-DE potential are potentials that we consider as possible extensions
to improve the performance of our current model presented in paper III. The purpose
of the backbone potential is to sustain the local geometry when refining the structure of
a protein. It is used in paper III and IV.

2.1 The pair potential and the coupling potential

One of the most important potentials is the C-alpha pair potential[35, 36, 37]. The idea
behind the pair potential is to span a potential in terms of different types of interactions.
For each of these a basis is chosen. In the most simple case the basis functions are
contact potentials which are turned on when the distance between two amino acids is
within an interval. Explicitly, the potential is defined as

EPair =
∑
i<j

φ(ri,j), (2.6)

where ri,j is the distance between the i-th and j-th interaction pair and

φ(ri,j) =

{
αaa(i),aa(j) if rmin < ri,j < rmax

0 otherwise,
(2.7)

where aa(i) ∈ {1, . . . , 20} is the amino acid type of the i-th residue and αaa(i),aa(j) are the
parameters. The size of the matrix αaa(i),aa(j) depends on which amino acid alphabet we
choose. This can for example be a 20× 20 matrix using a 20-letter amino acid alphabet
or a 2× 2 matrix using a 2-letter amino acid alphabet (hydrophilic and hydrophobic).

The potential well of a contact potential can be modelled more accurately if we
choose a more realistic potential such as the Lennard-Jones potential:

φ(rij) =
αaa(i),aa(j)

r12i,j
−
βaa(i),aa(j)

r6i,j
. (2.8)
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Finally, we can model the potential between rmin and rmax freely. Any potential can in
principle be expanded in terms of basis functions :

φ(ri,j) =
∑
k

αkfk(ri,j), (2.9)

where {αk} is a parameter set and {fk} a basis set. If we choose a good basis it means
that φ(ri,j) can be spanned using only a few parameters. We choose b-splines as our
basis functions:

EPair =
∑
i<j

∑
p

αaa(i)⊗aa(j)p Bp(ri,j), (2.10)

whereBp(ri,j) is the p-th b-spline basis function being a function of the distance between
the i-th and j-th residues. This pair potential is used in paper II, III and IV.

A possible extension to the pair potential is the coupling potential. The pair potential
is dependent on the distance between the atoms but does not couple these movements.
We therefore ask the question whether the potential can register whether the i-th atom
and the j-th atom is coupled to the j-th atom and the k-th atom. For a pair potential
we assume that this is separable into a sum of two terms however if this is not the case
then the alternative is a tensor product instead:

ECoupling =
∑

i<j,j<k

∑
p,q

αaa(i)⊗aa(j)⊗aa(k)p,q Bp(ri,j)Bq(rj,k). (2.11)

It is not hard to see that the number of parameters is huge if we do not choose a reduced
amino acid alphabet. A good choice will therefore be an amino acid alphabet consisting
of hydrophobic and hydrophilic atoms or an amino acid alphabet based on the type of
secondary structure.

2.2 The solvent potential

The pair potential is not by it self able to stabilize the structure of a protein. This is due
to the hydrophobic effect that is responsible for the compact form of the protein. The
hydrophobic effect is traditionally modelled as the solvent-accessible surface where the
accessibility is proportional to surface area[38]. A method for calculating the solvation
free energy based on the solvent-accessible surface has been introduced in Ref. [39]. As
this solvent potential unfortunately is not differentiable we consider a simple b-spline
model of the number of contacts within an sphere. It seems intuitive that such a model
would correspond to a model based on the solvent-accessible surface since we expect
that the number of contacts is greater for hydrophobic amino acids than for hydrophilic
amino acids.

The solvent potential has the form:

ESolv. =
∑
i

∑
p

αaa(i)p Bp(
∑
j

t(ri,j)),

where the basis functions depend on the number of neighbors,
∑

k t(rj,k) and t has a
value between 0 and 1 in the interval between 0Å and 10Å as shown in Figure 2.1.
To ensure that the solvent potential is differentiable, we require that t is differentiable.
This is fulfilled by defining t as a sum of b-splines basis functions and exploit that they
form a partition of unity (see Figure 2.1). We use the solvent potential in paper III and
IV.
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Figure 2.1: Showing the function t which is a smoothed version of a
contact between two Cα atoms.

2.3 The side chain potential

We consider a side-chain potential as an add-on to an existing C-alpha pair potential.
It is reasonable to conclude that indirectly it is included in the C-alpha pair potential
with 20 different amino acids as the amino acids only differ by their side-chain. The
pair potential is however not directional dependent and the atoms in the side chains are
completely ignored. We want to model this directional dependence of the side-chains
without having to introduce an all-atom model i.e. a pair potential defined for all the
atoms. We did this to reduce the number of parameters in the model. Unfortunately,
we did not have time to implement this model but it may be used to improve the per-
formance of the potential presented in paper III.

Let pi be the coordinates of the i-th C-alpha atom and define vi as the unit vector
from the i-th C-alpha atom to the center of mass of the side-chain. Next, we consider

cosφij =
pj − pi
‖pj − pi‖

· vi

cosφji =
pi − pj
‖pi − pj‖

· vj.
(2.12)

When cosφij = 1 then pj − pi and vi are parallel. This means that the vector from the
i-th C-alpha atom to the j-th C-alpha atom is parallel to the unit vector that indicates
the direction of the i-th side-chain. Let

tij =
1 + cosφij

2
. (2.13)

We remark that if tij = 1 and tji = 1 then the side-chains point towards each other and
away from each other if tij = 0 and tji = 0. Finally, if tij = 1 and tji = 0 or tij = 0 and
tji = 1 then the side-chains point in same direction. The side-chain potential is given by
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the convex combination:

Eij
CH =tjitij

∑
p

αaai⊗aajp Bp(dij) + tji(1− tij)
∑
p

βaaip Bp(dij)

+ (1− tji)tij
∑
p

γaajp Bp(dij) + (1− tji)(1− tij)
∑
p

δpBp(dij),
(2.14)

where dij is the distance between the center of mass of the side-chains. The first term
has 210 combinations, the second and third term 20 combinations and the last term
is side-chain independent. Instead of choosing a convex combination, we alternatively
formulate the potential as a tensor product model:

Eij
CH =

4∑
p=1

4∑
q=1

αaai⊗aajp,q Sp(φij)Sq(φji) +
4∑
p=1

8∑
q=5

βaaip,q Sp(φij)Sq(φji)

8∑
p=5

4∑
q=1

γaajp,q Sp(φij)Sq(φji) +
8∑
p=5

8∑
q=5

δp,qSp(φij)Sq(φji).

(2.15)

As this potential is only dependent on the angles, it should be turned of with for instance
a sigmoidal function when the distance between the side-chains goes beyond a fixed
limit.

2.4 The local L-DE potential

A local 7-mer potential is introduced in Ref. [12]. The purpose of introducing this
potential is to model the configurational space for 7-mers[40, 41] where each 7-mer
is defined on the L-DE plane (see below). L-DE stands for length and distance excess
and is defined for a 7-mer. By measuring the length and distance excess it is possible
to determine whether the 7-mer primarily is part of an alpha-helix, beta-sheet or coil.
This potential is non-vanishing when a 7-mer can be found in the CATH database. A
strategy based on 12 different amino acid alphabets[14] is thus introduced to ensure
that the potential gives a non-vanishing contribution when the 7-mer is not found in
the database. This strategy does not work as well as when the 7-mer is found in the
database. This motivated us to develop a potential that is modelled on the L-DE plane
using b-splines and based on the 3 amino acid alphabet and thus is not dependent on
whether the 7-mer can be found in a database. This potential should be considered as a
possible extension to our current potential presented in paper III that may improve the
performance.

In the following, the L-DE coordinates and the potential based on the L-DE coordi-
nates and spanned by b-splines are described.

The idea is to smooth out the backbone of a C-alpha model of protein and thereafter
measure the length and curvature of the smoothed coordinates. We are then capable
of differing between the secondary structures alpha-helix, beta-sheets and coils since
they have different length and curvature. Consider the coordinate transformation from
x which is 3N dimensional consisting of N C-alpha atoms and y which is 3N − 12
dimensional:

y = Jx, (2.16)
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Figure 2.2: Showing the distribution of L-DE coordinates as a loga-
rithmic surface plot. The majority of the data is located at the top
left and top right corner where the distance excess is low. The dif-
ference between alpha-helices and beta-sheets are thus given by the
length coordinate.

where J is a 3N − 12× 3N matrix given by

J =
1

1 + 2a+ 2b


1 0 0 a 0 0 b 0 0 a 0 0 1 0 0 0 0 . . .
0 1 0 0 a 0 0 b 0 0 a 0 0 1 0 0 0 . . .
0 0 1 0 0 a 0 0 b 0 0 a 0 0 1 0 0 . . .
0 0 0 1 0 0 a 0 0 b 0 0 a 0 0 1 0 . . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

 , (2.17)

and a = 2.1, b = 2.4. The result of this transformation is a smoothed version of the
C-alpha coordinates where a and b have been chosen such that the smoothing of the
coordinates is as large as possible. Now, we define the coordinates

Xi = si−1,i + si,i+1 (2.18)
Yi = si−1,i+1 −Xi, (2.19)

where si,j = yi − yj and si,j = ‖si,j‖ and X and Y such that they are treated equally:

X ′i = βX (Xi − 2.5) , βX =
1

7− 2.5
(2.20)

Y ′i = βY Yi, βY =
1

0.55
. (2.21)

These coordinates are referred to as L-DE coordinates. The distribution of the L-DE
coordinates can be found in Figure 2.2. They are divided into three groups. Those that
have a distance excess close to zero and a small length, those that have a low distance
excess and a long length and the remaining part. The domains correspond to 7-mer
fragments of alpha helices, beta sheets and loop domains in a protein structure.

Next, we consider a potential spanned by the tensor products:

ELocal =
∑
i

∑
p,q

αp,qi Bp(X
′
i)Bq(Y

′
i ). (2.22)
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As for the coupling potential it is preferable to choose a reduced amino acid alphabet
since the number of parameters for tensor product splines is quite large. As an example,
the potential may be based on a reduced 3-alphabet. In the 3-alphabet the amino acids
are divided into the following groups:

1. Asn, Asp, Gly, Pro, Ser and Thr

2. Cys, Ile, Leu, Met, Phe, Trp, Tyr and Val

3. Ala, Arg, Gln, Glu, His and Lys.

This amounts to 37 = 2187 different classes which still are far too many possibilities.
If we use 8 degrees of freedom in both the length and the distance excess direction
then there are 8 × 8 × 37 = 139968 parameters which obviously are too many. Instead
we consider a reduced 3-alphabet where we group each 7-mer into how many of each
amino acid type the 7-mer contains. We use the notation (a, b, c) for a number of type
1, b number of type 2 and c number of type 3 where a + b + c = 7. The distribution
of 7-mers when divided into these classes is shown in Figure 2.3. The data points fall
into subdomains of the L-DE-plane. For many of the groups this motivate us to define
the L-DE potential on subdomains of the L-DE plane thereby reducing the number of
parameters in the model even further.
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Figure 2.3: Showing the distribution of L-DE points for each of
the 36 different groups. The data was obtained for 1174 non-
homologous native structures.
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2.5 The backbone potential

It is important to sustain the local geometry when we fold a protein. There are several
methods to do this. The most simple Cartesian model is typically based on the C-alpha
or C-beta atoms with artificial covalent bonds between the atoms. A refinement of
this model is a dihedral angle model in Cartesian coordinates where the backbone is
sustained by adding harmonic restraints to the bond lengths, bond angles and torsion
angles about the peptide bonds. Such a backbone model is intended to mimic a dihedral
angle model but with use of Cartesian coordinates. It is sufficient to use three atoms in
the backbone of a protein: N, C-alpha, and C.

A geometrical approach to fix the parameters of this potential is to define the bond
length potential, the bond angle potential and the proper and (if necessary) improper
torsion angle potential by:

EBL =
1

NTBL

MBL∑
i=1

Ri

NBL
i∑
k=1

(
rki − 〈ri〉

)2
EBA =

1

NTBA

MBA∑
i=1

Θi

NBA
i∑
k=1

(
θki − 〈θi〉

)2
ETA =

1

NTTA

MTA∑
i=1

Ti

NTA
i∑
k=1

(
τ ki − 〈τi〉

)2
ETAIP =

1

NTTAIP

MTAIP∑
i=1

Ωi

NTAIP
i∑
k=1

(
ωki − 〈ωi〉

)2
,

where Ri, Θi, Ti and Ωi are constants and 〈ri〉, 〈θi〉, 〈τi〉 and 〈ωi〉 are average values for
the respective internal coordinates. The average values and the parameters are deter-
mined from their geometrical variation in a set of native structures and are calculated
from a set of randomly chosen native protein structures. The parameters for the poten-
tial are defined by

Ri ≡
NBL
i∑NBL

i
k=1

(
rki − 〈ri〉

)2
Θi ≡

NBA
i∑NBA

i
k=1

(
θki − 〈θi〉

)2
Ti ≡

NTA
i∑NTA

i
k=1

(
τ ki − 〈τi〉

)2
Ωi ≡

NTAIP
i∑NTAIP

i
k=1

(
ωki − 〈ωi〉

)2 .
Note that the expressions above are 1/σ2 where σ is the standard deviation. When we
insert the expressions for Ri, Θi, Ti and Ωi we get for this distribution that

EBL = EBA = ETA = EIPTA = 1.

Apparently, an ensemble of native or near-native configurations will not have the exact
energy 1 but in practise and particularly for small perturbations of native structures then
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1 will be the typical scale for the energy. This approach essentially results in a dihedral
angle model as the parameters for the harmonic potentials that sustain the backbone
of protein are high since the geometrical variation of the bond lengths, bond angles
and torsion angles about the peptide bonds is small. These parameters may therefore
instead be fixed at arbitrary large values while the φ and ψ angles are kept free. We use
this strategy in paper III and paper IV.



Chapter 3

Optimization strategies

In this chapter we present the background for the optimization method that we use
in this study to determine the parameters of our knowledge-based potential. First, we
consider optimization methods based on linear programming and Z-score optimization
whose purpose is to create a potential that can select the native structure from a set
of structures. Next, we introduce the optimization method that we use in paper II -
IV[12]. This optimization method results in a potential that can discriminate between
the quality of near-native decoys. This is preferable as the native structure often is not
available. Finally, we present two ideas how to sculpt a potential that can fold a protein.

3.1 Linear programming

One of the main challenges has been to design a potential or scoring function that
can discriminate a native structure from a set of decoys (near-native configurations).
This is due to the fact that a scoring function that can discriminate the correct fold
from misfolded structures is useful to find the best template among an ensemble of
known structures namely the template with the lowest energy. Furthermore, we require
that such a potential has the property that the lowest energy is the energy of a native
structure compared to the energy of near-native structures. These properties can be
achieved by setting up a linear optimization program[42, 43, 44, 45, 46, 47]. The
problem is a feasibility problem where we for a linearly parametrized potential require
that a set of decoys has a higher energy than the native structure. We thus for a large
set of native-decoy pairs of structures require that

∆E(decoy,native) = Edecoy − Enative > ε, (3.1)

where ε is a small constant, Enative is the energy of the native structure and Edecoy is the
energy of a decoy matching the native structure. We remark that the inequalities define
a set of cuts (hyperplanes) in the parametric space. The system is solved by finding a
feasible solution that belongs to the feasible polyhedron. For a sufficiently large training
set it can be difficult to find a solution. This is discussed in Ref. [42, 43] where they
investigate whether it is possible to train a pair potential to recognize a set of 75 protein
ensembles and find that the solution is infeasible. There is thus an upper limit on what
can be required of a potential and this is of course dependent on the complexity of the
potential, the number of parameters and which class the proteins belong to. The same
study has been made for a contact potential as well [48]. They find that the existence of

27
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a solution depends on the definition of the contact potentials (the fixing of the cutoff)
and the size of the training set. If the training set included the majority of known
proteins then no solution is found.

3.2 Z-score optimization

The feasibility problem permits decoys to have an arbitrary energy as long as the energy
is higher than the energy of the native structure. There are thus no restrictions on the
energy of the decoys compared to the energy of the native structure. We just require that
it is higher but there is no limitation on how high. To go beyond the feasibility problem,
we allow decoys to have a lower energy than the energy of the native structure but the
funnel about the native structure is modelled at the same time[49, 50, 51, 52, 53, 47].
We thus achieve an energy landscape where the energy gab from the native structure to
a set of decoy also called the stability gab is maximized. This is achieved by minimizing
the Z-score:

Znative =
Enative− < Edecoy >decoy

σdecoy(Edecoy)
. (3.2)

We remark that it is the average energy of a set of decoys that enters into the expression.
This means that high energy structures have a higher weight than structures close to the
native structure. In a training set there are often many protein ensembles. To avoid that
some protein ensembles carry too much weight in the optimization, we thus minimize
the Boltzmann-like weighted average of

Zave =

∑
native Znative exp(−Znative/kBT )∑

native exp(−Znative/kBT )
, (3.3)

where kb is Boltzmann’s constant and T is the temperature. The optimization problem
is solved by a Monte-Carlo procedure. This is a better strategy than just for example
taking the average of all Z-scores since there is a risk that too little weight is given
to many protein ensembles. To obtain more influence from the low energy structures
we instead of the Z-score consider the overlap between two contact matrices φ and φ′

defined by[54]

q(φ, φ′) =

∑
i,j φ(ri,j)φ

′(ri,j)

max(
∑

i,j φ(ri,j),
∑

i,j φ
′(ri,j))

. (3.4)

The desired correlated energy landscape is achieved by maximizing the Boltzmann av-
eraged native overlap:

Q =

∑
decoy q(φdecoy, φnative) exp(−Edecoy/kBT )∑

decoy exp(−Edecoy/kBT )
. (3.5)

Clearly, when q ≈ 1 the native structure and a decoy have a large overlap i.e. their
contact matrices are almost identical. This means that low energy structures have a
higher weight in this program as these give rise to Q ≈ 1. On the other hand, the
problematic decoys are removed that are far from the native structure.
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3.3 Maximization of the correlation between energy and
RMSD

The optimization strategies presented so far aim at discriminating the native structure
from a set of decoys. There is no guarantee that they actually form a funnel-shaped
energy landscape since the knowledge-based potentials are tested for their ability to
identify a native structure among an ensemble of structures. It is clear that the purpose
of these methods is to form a knowledge-based potential where the energy of the native
structure is low compared to a set of misconfigurations such that the native structure
can be discriminated. Furthermore, the methods depend on a different procedure to
generate a set of configurations such as gabless threading which are assigned a score.

It is not clear how the energy landscape of these knowledge-based potentials actu-
ally look. The form of the energy landscape for example its roughness and the size of
the energy barriers is unclear. It is most likely that the potentials create a golf-course
landscape in a random energy landscape. This is not necessarily problematic as they
only aim at discriminating the native structure among an ensemble of structures but it
is difficult to use these potentials for actual folding experiments.

A potential that has been trained exclusively by linear programming or Z-score max-
imization is not optimized to yield a high correlation between energy and the RMSD
between a native structure and a decoy. As a consequence, we expect this potential to
have a golf-course landscape where the potential is particularly good at selecting the na-
tive structure but is not able to discriminate between decoys. The correlation between
the energy of a set of decoys and their RMSD to the native structure may therefore be
low. This is a problem since the native structure often is not available. Instead we are
interested in a score function that is able to discriminate between a set of decoys and
select the decoy with the highest quality.

To improve the ability of the score function to discriminate between decoys we intro-
duce the correlation in the objective function with the Z-score. This is the strategy be-
hind the optimization of the weights (19 in total) of the potential Touchstone II[55, 56]
(or I-TASSER[23, 24] that is an automated prediction server based on Touchstone II).
The purpose of this optimization is both to maximize the correlation between the en-
ergy of the decoys and their RMSD to the native structure and to maximize the energy
gap between the native protein and the ensemble of decoys. They find the solution that
minimizes the function:

G = G1G2G3, (3.6)

where G1, G2 and G3 are defined by:

G1 =
1

1 + 〈corr(RMSDnative,decoy, Edecoy)〉native

G2 =〈〈
(RMSDnative,decoy − ηEdecoy + bnative)

2

RMSDnative,decoy
〉decoy〉native

G3 =
1

1− 〈Enative−<Edecoy>decoy

σdecoy(Edecoy)
〉native

.

(3.7)

The idea behind the first term, G1, is to optimize the correlation between RMSD and
the energy of the ensemble of decoys. The second term, G2, acts to minimize the χ2

between a linear regression and the energy versus RMSD where bnative is the individual
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intercept for a training protein and η is a proportionality constant that is determined
from simulations. In the last term, G3, the energy gab between a native protein and a set
of decoys is optimized using the Z-score. Touchstone II is only trained on decoys with
4Å ≤ RMSD ≤ 10Å. If RMSD < 4Å then RMSD is set to 4Å and when RMSD > 10
then RMSD is set to 10. This means that decoys that have a RMSD below 4Å are treated
as having a RMSD of 4 while decoys that have a RMSD above 10Å are treated as having
a RMSD of 10. The decoy set thus consists of decoys with a low resolution.

The MPP potential for metric protein potential is a metric trained potential that was
developed with the purpose of discriminating decoys of high and medium resolution
[12]. With metric training is meant that the energy gab and RMSD are taken to be the
same:

Edecoy − Enative = αnativeRMSDnative, (3.8)

where α is positive proportionality constant. When this equality is satisfied it is clear
that the correlation between the energy gab of a set of decoys and their RMSD to the
native structure is 1. Furthermore the native structure with the lowest energy clearly has
a positive energy gab to the set of of decoys since RMSD is non-negative. This follows
from the equality. The optimization problem is formulated as a quadratic problem since
we want to avoid a feasibility problem. We thus minimize the sum of squared errors:

F =
∑
native

∑
decoy

(Edecoy − Enative − αnativeRMSDnative,decoy)
2 , (3.9)

subject to 0.25 ≤ αnative ≤ 4 and
∑

native αnative = Nnative where Nnative is the number of
native structures in the training. We remark that F and G2 are alike and both formu-
lations aim at maximizing the correlation between energy and RMSD. The advantage
of using F instead of G is that the proportionality constant is determined in the opti-
mization. Furthermore, it may be difficult to find a solution to G when the potential
has many parameters. Touchstone II has 19 parameters whereas MPP has 1312 param-
eters in total that have to be determined. The advantage of using equation (3.9) is
that the terms are additive and the calculation of the individual terms is thus trivially
parallelizable. Overall, it means that it is possible to train a knowledge-based potential
with many parameters on a large training set.

The objective function defined by equation (3.9) forms the basis of this work and
we use it in Paper II - IV. It is a constrained least square problem which is not difficult
to show: We first consider the unconstrained quadratic problem

minimize
X

f(X), (3.10)

where X is a parameter set and the objective function f(X) is a quadratic form

f(X) = XTBX + XTc + d. (3.11)

For simplicity we will assume that B is positive definite. The most simple way to ensure
this is to use regularization (see below). The matrix B thus has a Cholesky decomposi-
tion, B = ATA, and f can be written as

f(X) = (AX − b)T (AX − b) + constant, (3.12)

such that c = −2ATb. The last term is not important and the original problem is thus
equivalent to an ordinary least square problem

minimize
X

‖AX − b‖22. (3.13)
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We remark that we have that b = 0 when the quadratic function is given by equation
(3.9) since αnative is a parameter in the optimization.

One of the advantages of using quadratic programming is that it is not difficult
to find a solution that satisfies certain properties. This is done using regularisation
techniques. The most simple use of regularization is Tikhonov regularization which
consists in adding the matrix δ‖X‖22 to the objective function where δ > 0 is a constant.
This ensures that the parameters are kept small and that B is positive definite. The idea
can also be used to ensure that wild fluctuations are avoided. This is done by adding
µXTCX to the objective function where C is a block diagonal matrix and each of the
block matrices are found by calculating the discontinuities of the third derivatives of
the b-spline pair potentials in the knots. Hereby, we use that the third derivatives of the
cubic b-spline basis functions are piecewise constant functions.

3.4 Funnel sculpting

A method that combines energy optimization with a stochastic search algorithm is de-
veloped in Ref. [57]. The purpose of this method is to design a potential that can fold
proteins with a stochastic search algorithm. Hereby, an energy landscape is designed
where the height of energy barriers has been taken into account. The method which
is iterative works in the following way: First, an optimization is started which sets all
parameters to zero. Then the algorithm shifts between a parameter optimization of the
potential and a stochastic search algorithm from a random configuration. The search
algorithm will get stucked if the energy barriers are too high. These decoys (10 in total)
are added to the training set at each iteration and the parameter optimization ensures
that potential is smoothed out at the places where the search algorithm got stucked.
The algorithm continues until the search algorithm reaches within 4Å in RMSD from
the native structure. This method is characterised in that the potential is designed such
that a search algorithm can fold a protein while small hilltops are kept.

In paper III an iterative method is developed that is inspired by the method above
to improve the quality of near-native structures. The idea behind this method is to
sculpt the energy landscape in the neighborhood of a set of native structures such that
a deterministic search algorithm from a near-native structure converges towards the
native structure. The method shifts between a potential energy minimization routine
and a parameter optimization using equation (3.9) where the energy of the generated
decoys from the minimization routine is raised such that the decoy convergence in
the next run is improved. The minimization method is described in detail in the next
chapter.





Chapter 4

Potential energy minimization

In this chapter we consider an energy minimization method based on descent directions
and directions of negative curvature. Energy minimization methods are used for many
different purposes e.g. to find a local minimum and to investigate the normal modes
at this optimum. In this study we use it as our refinement algorithm to improve the
quality of near-native structures (paper III). The method is also used to improve the
convergence of decoy structures (paper III) and to establish a local minimum in the
energy landscape (paper IV). It should be said that we decided to use the trust-region
large-scale method in Matlab to solve the unconstrained optimization problem instead
of the optimization technique presented here as it appeared to be more stable. The prin-
ciple, however, of the two optimization methods is the same, namely, to use directions
of negative curvature of the Hessian to solve the optimization problem.

The unconstrained problem that we are interested in solving can be written as

minimize
x

f(x), (4.1)

where f is a potential function and x the Cartesian coordinates that f is dependent
on. A function is said to be convex if and only if its Hessian is positive semidefinite i.e.
for all x, ∇2f(x) � 0. A molecular or knowledge-based potential that consists of local
and non-local terms is not convex. This means that the Hessian of f is indefinite in the
non-convex regions.

When using the traditional Newton’s method, it is assumed the domain of potential
is strictly convex such that the Hessian always is positive definite. The second order
approximation f̂ of f at xk in the direction of vk is:

f̂(xk + vk) = f(xk) +∇f(xk)
Tvk +

1

2
vTk∇2f(xk)vk. (4.2)

The vector vk is referred to as Newton’s step when it is a solution to the equation:

∇2f(xk)vk = −∇f(xk), (4.3)

where we assume that ∇2f(xk) is positive definite.
We remark that the Hessian of a molecular or knowledge-based potential always is

singular as the potential is translational invariant. The equation above thus has to be
transformed using an affine transformation, Axk+b where A is a matrix and b a vector,
such that ∇2f(xk) = AT∇2g(Axk + b)A and ∇f(xk) = AT∇g(Axk + b)

Newton’s method is probably not the best method to use here as it requires that
the Hessian is positive definite. This can be achieved using an approximate positive
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definite Hessian but the method does not ensure that the objective function is decreased
at each step. A method that ensures descent directions (a direction vk that satisfies
∇f(xk)

Tvk < 0 such that f(xk + vk) < f(xk) ) and guarantees convergence is the
modified Newton’s method described in Ref. [58, 59]. The idea behind the method
is to find two directions: A direction along positive curvature where the Hessian of
the potential is approximated by a positive definite matrix and the direction found by
calculating Newton’s step for the approximate positive definite Hessian and a direction
along negative curvature. Specifically, ∇2f(xk) is LDLT factorized:

∇2f(xk) = PLBLTP T , (4.4)

where P is a permutation matrix, L is a lower triangular matrix and B is a block
diagonal matrix. The decomposition of B, B = QTDQ, is used to build the matrix
B̂ = QTD̂Q where the eigenvalues of D̂ are given by

λ̂i = max

{
|λi|, εmn max

1≤j≤n
|λi|, εm

}
. (4.5)

The direction along positive curvature is then found by solving the equation

PLB̂LTP Tsk = −∇f(xk). (4.6)

The direction dk along negative curvature i.e. dTk∇2f(xk)dk < 0 is found by solving the
equation

LTP Tdk = ±z, (4.7)

where z is the eigenvector corresponding to the smallest eigenvalue of B and the sign
is given by the inequality ∇f(xk)

Tdk ≤ 0. Finally, the step is calculated as sk + βdk
when the Hessian is indefinite. The constant β ≥ 0 is found by solving the equality
(sk + βdk)

T ∇2f(xk) (sk + βdk) = dTk∇2f(xk)dk
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Chapter 5

Using operators to expand the block
matrices forming the Hessian of a
molecular potential

M. Carlsen, Using operators to expand the block matrices forming the Hessian of a
molecular potential , Journal of Computational Chemistry, vol. 35, pp. 1149-1158, 2014.

Abstract. We derive compact expressions of the second-order derivatives of bond
length, bond angle and proper and improper torsion angle potentials, in terms of opera-
tors represented in two orthonormal bases. Hereby simple rules to generate the Hessian
of an internal coordinate or a molecular potential can be formulated. The algorithms
we provide can be implemented efficiently in high-level programming languages us-
ing vectorization. Finally, the method leads to compact expressions for a second-order
expansion of an internal coordinate or a molecular potential.

Keywords: second-order derivatives, Hessian, internal coordinates, operators, molecu-
lar potentials
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5.1 Introduction

The first- and second-order derivatives of a molecular potential are used for geome-
try optimization[60], normal mode analysis[61] and molecular dynamics[29, 62]. For
each of these applications, it is important that they can be calculated analytically. A
molecular potential depends solely on functions of internal coordinates consisting of
bond lengths, bond angles and torsion angles. The straight-forward approach to calcu-
late the derivatives of an internal coordinate with respect to the Cartesian coordinates
is to write it as a function of Cartesian coordinates and use the chain rule. The expres-
sions have been known for decades, and they are long and cumbersome; in particular
for the second derivatives of proper and improper torsion angles. The calculation can
be performed using a program for symbolic or automatic differentiation[63] but the
method is unsatisfactory when there exist a set of simple rules to perform the same
calculation. By representing a molecule in internal coordinates and using fundamen-
tal concepts from linear algebra, simple rules to calculate the first- and second-order
derivatives of an internal coordinate can be formulated. To first order, they are not dif-
ficult to derive[64]. The purpose of this work is to find the corresponding simple rules
to calculate the derivative of an internal coordinate to second order.

The choice of coordinate system to calculate the derivatives is important. As a molec-
ular potential only depends on the internal coordinates, an obvious choice is to differ-
entiate with respect to the internal coordinates. However, the internal coordinates most
often used in normal mode analysis[61, 65, 66, 67] and geometry optimization[68]
are curvilinear and redundant, and notoriously difficult to work with. In geometry
optimization for example, the consequence of using redundant coordinates is that the
Newton step has to be modified and that a conversion between internal and Cartesian
coordinates to estimate the new Cartesian coordinates is necessary[69]. One of the
advantages of calculating the derivatives of an internal coordinate in Cartesian coordi-
nates is that the Cartesian coordinates are non-redundant. Hence, build-in optimization
routines can be directly applied in geometry optimization.

Many methods exist to calculate the derivatives of an internal coordinate in Carte-
sian coordinates[64, 70, 71, 72, 73, 74]. The Wilson B-matrix[64] is a Jacobian matrix
defined as the first derivatives of the internal coordinates with respect to the Cartesian
coordinates. The Wilson B-matrix is required to calculate the gradient with respect to
the Cartesian coordinates which is used in geometry optimization. Furthermore, its
pseudo-inverse is important, for example to optimize molecular structures using inter-
nal coordinates instead of Cartesian coordinates[75, 63].

The first derivatives of an internal coordinate with respect to the Cartesian coordi-
nates can be simplified if they are expressed in two orthonormal bases. Two orthonor-
mal bases are connected by a transformation matrix which only depends on the bond
angles and the torsion angles. In this approach, the bond angles and torsion angles
act as Euler angles. It is well known that the B-matrix has a compact expression when
using two orthonormal bases[64]. The configuration of a molecule can be generated
from its internal coordinates using either Euler angles[76, 16] or geometric (Clifford)
algebra[17]. The calculation of the first derivatives has therefore also been made using
geometric algebra to avoid the Gimbal lock problem[77]. A method to calculate the
second derivatives of an internal coordinate using a single orthonormal basis can be
found in[78].

In this work, we express the block matrices that form the Hessian of an internal
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u1

u2

u3

v1

v2

v3

θijk

θijkθijk

τijkl

τijkl

Figure 5.1: Showing how the coordinate system {v1,v2,v3} can be
calculated from {u1,u2,u3} by first rotating the coordinate system
about u1 using the torsion angle τijkl, and thereafter rotating the
coordinate system about u3 using the bond angle θijk.

coordinate using two orthonormal bases. We show that each of the block matrices that
form the Hessian can be expanded in terms of operators. This leads to simple rules for
calculating the derivatives of an internal coordinate. It is useful to know how the Hes-
sian is generated effectively. We therefore provide algorithms to calculate the Hessian
of a function of an internal coordinate. Furthermore, we show how to implement the
Hessian of a molecular potential in high-level programming languages based on vector-
ization. Finally, we use the results to derive a compact expression for the second-order
expansion of a function of an internal coordinate.

5.2 Method of Calculation

5.2.1 Internal coordinates, Euler angles and orthonormal bases

We define xi, xj, xk and xl as the coordinates of the atoms i, j, k and l, respectively.
For the bond length between the atoms i and j we use the notation

rij = ‖xi − xj‖, (5.1)

and similarly for rjk, rkl and rjl. We define the unit vectors u1, v1 and w1 as the column
matrices

u1 =
1

rij

x
(1)
i − x

(1)
j

x
(2)
i − x

(2)
j

x
(3)
i − x

(3)
j

 , v1 =
1

rjk

x
(1)
k − x

(1)
j

x
(2)
k − x

(2)
j

x
(3)
k − x

(3)
j

 and w1 =
1

rkl

x
(1)
l − x

(1)
k

x
(2)
l − x

(2)
k

x
(3)
l − x

(3)
k


( or w1 =

1

rjl

x
(1)
l − x

(1)
j

x
(2)
l − x

(2)
j

x
(3)
l − x

(3)
j

).

(5.2)
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Consider the two orthonormal bases {u1,u2,u3} and {v1,v2,v3} as shown in Figure 1.
The bond angle θijk and the torsion angle τijkl are given by

θijk = cos−1
(
uT1 v1

)
τijkl = sign

(
uT3 v2

)
cos−1

(
uT3 v3

)
.

(5.3)

We remark that a torsion angle is signed. The unit vector u2, orthogonal to u1, but in
the plane spanned by u1 and v1 is given by the equation

u2 = (v1 − cos θijku1) / sin θijk. (5.4)

The transformation matrix mapping the coordinate system {u1,u2,u3} to {v1,v2,v3} is
a product of two Euler rotations. A rotation about u1

Rx(τijkl) =

1 0 0
0 cos τijkl − sin τijkl
0 sin τijkl cos τijkl

 , (5.5)

followed by a rotation about u3

Rz(θijk) =

cos θijk − sin θijk 0
sin θijk cos θijk 0

0 0 1

 . (5.6)

The product of the two rotation matrices is

S(θijk, τijkl) =

cos θijk − sin θijk cos τijkl sin θijk sin τijkl
sin θijk cos θijk cos τijkl − cos θijk sin τijkl

0 sin τijkl cos τijkl

 . (5.7)

Given {u1,u2,u3}, we can find {v1,v2,v3} using two rotations:

vi = S(θijk, τijkl)ui = Rz(θijk)Rx(τijkl)ui. (5.8)

Similarly, when we consider the bases {v1,v2,v3} and {w1,w2,w3}, the unit vector v2

can be written as
v2 = (w1 − cos θjklv1) / sin θjkl, (5.9)

where
θjkl = cos−1

(
vT1 w1

)
. (5.10)

Thus, three Euler rotations are required to calculate {w1,w2,w3} given {u1,u2,u3}:

wi = T (θijk, τijkl, θjkl)ui = S(θijk, τijkl)Rz(θjkl)ui = Rz(θijk)Rx(τijkl)Rz(θjkl)ui,
(5.11)

where all of the matrices are fixed-axis rotations in the basis {u1,u2,u3}.
Finally, we note that a torsion angle is referred to as an improper torsion angle,

when w1 is defined using the indices j and l instead of k and l in equation (5.2).
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5.2.2 Motivation

To calculate the first and second derivatives of θijk and τijkl, we derive the derivatives
of

F = uTmvn, (5.12)

In Cartesian coordinates, the first derivative of a function f with respect to atom α has
the matrix representation

[∇αf ] =
∂f

∂xα
=

∂x(1)α f∂
x
(2)
α
f

∂
x
(3)
α
f

 , (5.13)

and the derivative of ∂f
∂xα

with respect to atom β has the matrix representation

[
∇2
α,βf

]
=

∂2f

∂xα∂xβ
=


∂
x
(1)
α
∂
x
(1)
β
f ∂

x
(1)
α
∂
x
(2)
β
f ∂

x
(1)
α
∂
x
(3)
β
f

∂
x
(2)
α
∂
x
(1)
β
f ∂

x
(2)
α
∂
x
(2)
β
f ∂

x
(2)
α
∂
x
(3)
β
f

∂
x
(3)
α
∂
x
(1)
β
f ∂

x
(3)
α
∂
x
(2)
β
f ∂

x
(3)
α
∂
x
(3)
β
f

 . (5.14)

The first derivative of F with respect to atom α is given by

[∇αF ] =

(
∂um
∂xα

)T
vn +

(
∂vn
∂xα

)T
um. (5.15)

We remark that [∇αF ] is a column matrix. Thus, the last product is
(
∂vn
∂xα

)T
um and not

uTm

(
∂vn
∂xα

)
.

We can express [∇αF ] in the orthonormal bases {u1,u2,u3} and {v1,v2,v3}:

[∇αF ] =
3∑
p=1

(apup + bpvp) . (5.16)

A derivation of the constants ap and bp for [∇αrij], [∇αθijk] and [∇ατijkl] may be found in
[64] or below. We could let ap or bp vanish but the most compact expressions are found
when we use two bases rather than one.

The second derivative of F with respect to atom α and atom β is

[
∇2
α,βF

]
=

3∑
p=1

(
∂up
∂xα

ap + bp
∂vp
∂xα

+ up

(
∂ap
∂xβ

)T
+ vp

(
∂bp
∂xβ

)T)
. (5.17)

The derivatives of ap and up have a simple matrix representation in the basis {u1,u2,u3}
and the derivatives of bp and vp have a simple matrix representation in the basis {v1,v2,v3}.
Thus, we can find a compact expression for

[
∇2
α,βF

]
using the tensor product expansion[79]:

[
∇2
α,βF

]
=

3∑
p=1

3∑
q=1

(
apqupu

T
q + bpqvpv

T
q

)
. (5.18)

The purpose of this work is to find apq and bpq for
[
∇2
α,βrij

]
,
[
∇2
α,βθijk

]
and

[
∇2
α,βτijkl

]
.

Before we derive these results, we introduce a set of operators and derive the derivatives
of the basis vectors. We do this in the following two sections.
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5.2.3 Operators and their matrix representations

A tensor product expansion is an operator. It has a matrix representation which is
defined by how it acts on basis vectors. An operator can be written as:

P =
3∑
i=1

3∑
j=1

ui
(
uTi Puj

)
uTj . (5.19)

The matrix representation of PX defined by

PX = u1u
T
2 + u2u

T
1 , (5.20)

is therefore

PX =

0 1 0
1 0 0
0 0 0

 , (5.21)

since its non-vanishing elements are

uT1PXu2 = 1

uT2PXu1 = 1.
(5.22)

Using the orthonormal basis {u1,u2,u3} the operators used here are:

P1 =

1 0 0
0 0 0
0 0 0

 , P2 =

0 0 0
0 1 0
0 0 0

 , P3 =

0 0 0
0 0 0
0 0 1


P⊥1 =

0 0 0
0 1 0
0 0 1

 , P⊥2 =

1 0 0
0 0 0
0 0 1

 , P⊥3 =

1 0 0
0 1 0
0 0 0


PX1 =

0 0 0
0 0 1
0 1 0

 , PX2 =

0 0 1
0 0 0
1 0 0

 ,PX3 =

0 1 0
1 0 0
0 0 0


P+1 =

0 0 0
0 0 1
0 0 0

 , P+2 =

0 0 1
0 0 0
0 0 0

 , P+3 =

0 1 0
0 0 0
0 0 0


P−1 =

0 0 0
0 0 0
0 1 0

 , P−2 =

0 0 0
0 0 0
1 0 0

 , P−3 =

0 0 0
1 0 0
0 0 0

 .

(5.23)

The operators Q1, Q2, Q3 and so forth in the orthonormal basis {v1,v2,v3} are defined
in the same manner. Finally, we define PQi ≡ uiv

T
i and QPi ≡ viu

T
i for i = 1, 2, 3.

For the special case of τijkl = 0 where S(θijk, 0) = Rz(θijk) and

v2 = − sin θijku1 + cos θijku2, (5.24)

the following abbreviations are used

P⊥ = P⊥3 , PX = PX3 , P+ = P+3 , P− = P−3 , (5.25)
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and similarly for Q⊥, QX , Q+ and Q−.
An operator is defined by how it acts on basis vectors. It therefore depends on

our choice of basis. If two operators P in {u1,u2,u3} and Q in {v1,v2,v3} represent
the same transformation such as P1 and Q1 then they are related by the similarity
transformation

Q = S(θijk, τijkl)PS(θijk, τijkl)
T , (5.26)

for example

Q1 = S(θijk, τijkl)

1 0 0
0 0 0
0 0 0

S(θijk, τijkl)
T = v1v

T
1 . (5.27)

5.2.4 The derivatives of a basis vector

We have to derive the derivatives of the basis vectors in the orthonormal bases {u1,u2,u3}
and {v1,v2,v3} to find the derivatives of an inner product of two basis vectors and
thereby the derivatives of θijk and τijkl. Here we find the derivatives with respect to i, k
and l. Because internal coordinates are translational invariant, we do not have to derive
the derivatives with respect to j.

The derivatives of u1 with respect to i, k and l are calculated componentwise using
equation (5.1). First, we derive the first-order derivative of r with respect to i. It is
given by

[∇irij] =


x
(1)
i −x

(1)
j

rij
x
(2)
i −x

(2)
j

rij
x
(3)
i −x

(3)
j

rij

 , (5.28)

so [∇irij] = u1 and it follows that [∇2
i,irij] = ∂u1

∂xi
.

The second-order derivative of rij is

[
∇2
i,irij

]
=



1
rij
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j
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.

(5.29)
Because P⊥ = I − u1u

T
1 where I is the identity matrix, we have that the derivatives of

u1 are given by
∂u1

∂xi
=

1

rij
P⊥

∂u1

∂xk
= 0

∂u1

∂xl
= 0.

(5.30)
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The derivatives of v1 are likewise
∂v1

∂xi
= 0

∂v1

∂xk
=

1

rij
Q⊥

∂v1

∂xl
= 0.

(5.31)

Thus we see that the derivatives of u1 and v1 are given by the operators P⊥ and Q⊥,
respectively. The derivatives of u2, u3 as well as v2 and v3 can also be expanded in
terms of operators. These are found using the two equations above, the chain rule and
the first derivatives of cos θijk which can be calculated as a product of an operator and
a basis vector

[∇i cos θijk] =

(
∂u1

∂xi

)T
v1 =

1

rij
P⊥v1 =

sin θijk
rij

u2

[∇k cos θijk] =

(
∂v1

∂xk

)T
u1 =

1

rjk
Q⊥u1 = −sin θijk

rjk
v2,

(5.32)

where v2 is defined by equation (5.24).
The derivatives of u2 with respect to i, k and l are:

∂u2

∂xi
= − 1

rij

{
P+3 +

cos θijk
sin θijk

P3

}
∂u2

∂xk
=

1

rjk

1

sin θijk
P3

∂u2

∂xl
= 0.

(5.33)

As an example of how the calculations are made we derive the derivative of u2 defined
by

u2 =
1

sin θijk
{v1 − cos θijku1} , (5.34)

with respect to i. It is

∂u2

∂xi
=

1

sin θijk

{
−u2 [∇i sin θijk]

T − u1 [∇i cos θijk]
T − cos θijk

∂u1

∂xi

}
=

1

sin θijk

{
cos θijk
sin θijk

u2 [∇i cos θijk]
T − u1 [∇i cos θijk]

T − cos θijk
rij

P⊥

}
=

1

rij

1

sin θijk

{
cos θijku2u

T
2 − sin θijku1u

T
2 − cos θijkP⊥

}
= − 1

rij

{
P+3 +

cos θijk
sin θijk

P3

}
.

(5.35)

The derivatives of u3 = u1 × u2 with respect to the atomic coordinates i, k and l are

∂u3

∂xi
=

1

rij

{
−P+2 +

cos θijk
sin θijk

P+1

}
∂u3

∂xk
= − 1

rjk

1

sin θijk
P+1

∂u3

∂xl
= 0.

(5.36)
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For proper torsion angles where

v2 =
1

sin θjkl
{w1 − cos θjklv1} , (5.37)

equivalent results may be found by differentiating v2 and v3. These are

∂v2

∂xi
= 0

∂v2

∂xk
= − 1

rjk

{
Q+3 +

cos θjkl
sin θjkl

Q3

}
− 1

rkl

1

sin θjkl
Q3

∂v2

∂xl
=

1

rkl

1

sin θjkl
Q3

∂v3

∂xi
= 0

∂v3

∂xk
=

1

rjk

{
−Q+2 +

cos θjkl
sin θjkl

Q+1

}
+

1

rkl

1

sin θjkl
Q+1

∂v3

∂xl
= − 1

rkl

1

sin θjkl
Q+1 .

(5.38)

Similarly, we find that the derivatives of v2 and v3 for improper angles are given by

∂v2

∂xi
= 0

∂v2

∂xk
= − 1

rjk

{
Q+3 +

cos θjkl
sin θjkl

Q3

}
∂v2

∂xl
=

1

rjl

1

sin θjkl
Q3

∂v3

∂xi
= 0

∂v3

∂xk
=

1

rjk

{
−Q+2 +

cos θjkl
sin θjkl

Q+1

}
∂v3

∂xl
= − 1

rjl

1

sin θjkl
Q+1 .

(5.39)

5.3 The derivatives of an internal coordinate

The Hessian of an internal coordinate is derived by expanding its block matrices in terms
of operators using two orthonormal bases, {u1,u2,u3} and {v1,v2,v3}. The derivatives
of both the proper and improper torsion angles are derived. The gradient of internal
coordinates is derived as well for the sake of completeness, since it is required to cal-
culate the Hessian of a function, f , dependent on a bond length, a bond angle or a
torsion angle. We do not have to derive all the non-vanishing elements of the gradient
and Hessian of f . This is due to the translational invariance of the internal coordinates,
which means that

[∇αf ] = −
∑
β 6=α

[∇βf ] , (5.40)
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and [
∇2
α,αf

]
= −

∑
α 6=β

[
∇2
α,βf

]
. (5.41)

Furthermore, the Hessian is symmetric:[
∇2
α,βf

]
=
[
∇2
β,αf

]T
. (5.42)

We therefore only have to calculate the gradient with respect to the atomic coordinates
i for rij; i and k for θijk as well as i, k and l for τijkl. Similarly, to calculate the Hessian,
one block matrix is required for rij [

∇2
i,if(rij)

]
, (5.43)

three block matrices for θijk[
∇2
i,if(θijk)

]
,
[
∇2
k,kf(θijk)

]
,
[
∇2
i,kf(θijk)

]
, (5.44)

and six block matrices are required for τijkl[
∇2
i,if(τijkl)

]
,
[
∇2
k,kf(τijkl)

]
,
[
∇2
l,lf(τijkl)

]
,
[
∇2
i,kf(τijkl)

]
,
[
∇2
k,lf(τijkl)

]
,
[
∇2
i,lf(τijkl)

]
.

(5.45)
Finally, the chain rule for the second-order derivative of a real-valued function of an
internal coordinate is[

∇2
α,βf(rij)

]
=

∂f

∂rij

[
∇2
α,βrij

]
+
∂2f

∂r2ij
[∇αrij] [∇βrij]

T

[
∇2
α,βf(θijk)

]
=

∂f

∂θijk

[
∇2
α,βθijk

]
+

∂2f

∂θ2ijk
[∇αθijk] [∇βθijk]

T

[
∇2
α,βf(τijkl)

]
=

∂f

∂τijkl

[
∇2
α,βτijkl

]
+

∂2f

∂τ 2ijkl
[∇ατijkl] [∇βτijkl]

T .

(5.46)

5.3.1 The derivatives of a bond length

The derivatives of rij are calculated using equation (5.2). The first derivative is given
by

[∇irij] = u1. (5.47)

The second derivative of rij and the tensor product of the gradient vector above can be
written as [

∇2
i,irij

]
=

1

rij
P⊥

[∇irij] [∇irij]
T = P1,

(5.48)

hence the Hessian of a function f(rij) can be calculated using the algorithm:
1. Calculate rij and u1 using the equations (5.1) and (5.2).
2. Calculate P1 and P⊥.
3. Calculate ∂f

∂rij
and ∂2f

∂r2ij
.

4. Calculate the block matrix
[
∇2
i,if(rij)

]
using the equations (5.46) and (5.48).

5. Calculate the remaining block matrices using the equations (5.41) and (5.42).
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5.3.2 The derivatives of a bond angle

Next, the first-order derivatives of θijk are given by

[∇iθijk] = − 1

rij
u2

[∇kθijk] =
1

rjk
v2.

(5.49)

This result follows immediately by use of equation (5.32) and the chain rule.
The building blocks that form the Hessian of θijk and functions of these are given by

[
∇2
i,iθijk

]
=

1

r2ij

1

sin θijk
(cos θijkP3 + sin θijkPX)

[
∇2
k,kθijk

]
=

1

r2jk

1

sin θijk
(cos θijkP3 − sin θijkQX)

[
∇2
i,kθijk

]
= − 1

rijrjk

1

sin θijk
P3

[∇iθijk][∇iθijk]
T =

1

r2ij
P2

[∇kθijk][∇kθijk]
T =

1

r2jk
Q2

[∇iθijk][∇kθijk]
T = − 1

rijrjk
PQ2.

(5.50)

As an example, we derive [∇i,iθijk]. It is found by calculating the derivative of [∇iθijk]
with respect to the i-th atom using equation (5.49)

[
∇2
i,iθijk

]
=

1

r2ij
u2u

T
1 −

1

rij

∂u2

∂xi
. (5.51)

The derivatives of the basis vectors were derived above, and by inserting the expression
for ∂u2

∂xi
we get the result

[
∇2
i,iθijk

]
=

1

r2ij
P− +

1

r2ij

{
P+ +

cos θijk
sin θijk

P3

}
=

1

r2ij

1

sin θijk
(cos θijkP3 + sin θijkPX) .

(5.52)

The algorithm to calculate the Hessian of f(θijk) is:
1. Calculate rij, rjk, cos θijk, u1, u2, u3, v1 and v2 using the equations (5.1) - (5.4)

and (5.24).
2. Calculate P2, PX , P3, Q2, QX , and PQ2.
3. Calculate ∂f

∂θijk
and ∂2f

∂θ2ijk
.

4. Calculate the block matrices
[
∇2
i,if(θijk)

]
,
[
∇2
k,kf(θijk)

]
and

[
∇2
i,kf(θijk)

]
using the

equations (5.46) and (5.50).
5. Calculate the remaining block matrices using the equations (5.41) and (5.42).
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5.3.3 The derivatives of a torsion angle

First, we consider the proper torsion angles. The vectors that form the gradient of τijkl
are given by:

[∇iτijkl] =
1

rij

1

sin θijk
u3

[∇kτijkl] = − 1

rjk

{
cos θijk
sin θijk

u3 +
cos θjkl
sin θjkl

v3

}
− 1

rkl

1

sin θjkl
v3

[∇lτijkl] =
1

rkl

1

sin θjkl
v3.

(5.53)

Equivalent to the calculation of the gradient of θijk above, we may derive the expressions
using

[∇i cos τijkl] =

(
∂u3

∂xi

)T
v3

[∇k cos τijkl] =

(
∂u3

∂xk

)T
v3 +

(
∂v3

∂xk

)T
u3

[∇l cos τijkl] =

(
∂v3

∂xl

)T
u3.

(5.54)

The three formulas are obtained by evaluating the products of the operators and the
basis vectors. The second derivatives of the proper torsion angles are calculated using
the analytical expressions for [∇iτijkl], [∇kτijkl] and [∇lτijkl]. The derivative of [∇lτijkl]
with respect to the l-th atom, for example, is given by

[
∇2
l,lτijkl

]
= − 1

r2kl

1

sin θjkl
v3w

T
1 −

1

rkl

1

sin2 θjkl
v3 [∇l sin θjkl]

T +
1

rkl

1

sin θjkl

∂v3

∂xl
. (5.55)

We can also write this as

[
∇2
l,lτijkl

]
=

1

r2kl

1

sin2 θjkl

{
− sin θjkl cos θjklv3v

T
1 − sin2 θjklv3v

T
2

}
+

1

rkl

1

sin2 θjkl

{
cos θjkl
rkl

(
sin θjklv3v

T
1 − cos θjklv3v

T
2

)}
− 1

r2kl

1

sin2 θjkl
v2v

T
3 .

(5.56)

Now, two terms cancel and two terms can be simplified using the Pythagorean identity.
It follows that [

∇2
l,lτijkl

]
= − 1

r2kl

1

sin2 θjkl

{
v2v

T
3 + v3v

T
2

}
= − 1

r2kl

1

sin2 θjkl
QX1 .

(5.57)
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The other block matrices may be calculated in an equivalent manner. The individual
block matrices are given by

[
∇2
i,iτijkl

]
=

1

r2ij

1

sin2 θijk
{cos θijkPX1 − sin θijkPX2}[

∇2
k,kτijkl

]
=

1

r2jk

{
cos θijk
sin2 θijk

PX1 + cos θijkP−1 − sin θijkP−2 −Q−1

}
− 1

sin2 θjkl

(
1

rkl
+

1

rjk
cos θjkl

)2

QX1 +
1

sin θjkl

(
1

rjkrkl
+

1

r2jk
cos θjkl

)
QX2[

∇2
l,lτijkl

]
= − 1

r2kl

1

sin2 θjkl
QX1[

∇2
i,kτijkl

]
=

1

rijrjk

1

sin2 θijk

{
−PX1 + cos θijk sin θijkP−2 + sin2 θijkP−1

}
[
∇2
k,lτijkl

]
=

1

sin2 θjkl

(
1

r2kl
+

1

rjkrkl
cos θjkl

)
QX1 −

1

rjkrkl

1

sin θjkl
Q−2[

∇2
i,lτijkl

]
= 0.

(5.58)
We note that the block matrices

[
∇2
i,iτijkl

]
,
[
∇2
k,kτijkl

]
and

[
∇2
l,lτijkl

]
are symmetric. The

tensor products of the vectors that form the gradient of proper torsion angles are nec-
essary to calculate the Hessian of functions of torsion angles. These tensor products of
the gradient vectors are

[∇iτijkl] [∇iτijkl]
T =

1

r2ij

1

sin2 θijk
P3

[∇kτijkl] [∇kτijkl]
T =

1

r2jk

cos2 θijk
sin2 θijk

P3 +

(
1

rkl

1

sin θjkl
+

1

rjk

cos θjkl
sin θjkl

)2

Q3

+
cos θijk

sin θijk sin θjkl

(
1

rjkrkl
+

1

r2jk
cos θjkl

)
{PQ3 + QP3}

[∇lτijkl] [∇lτijkl]
T =

1

r2kl

1

sin2 θjkl
Q3

[∇iτijkl] [∇kτijkl]
T = − 1

rijrjk

cos θijk
sin2 θijk

P3 −
1

rijrjk

cos θjkl
sin θijk sin θjkl

PQ3 −
1

rijrkl

1

sin θijk sin θjkl
PQ3

[∇kτijkl] [∇lτijkl]
T = − 1

sin2 θjkl

(
1

r2kl
+

1

rjkrkl
cos θjkl

)
Q3 −

1

rjkrkl

cos θijk
sin θijk sin θjkl

PQ3

[∇iτijkl] [∇lτijkl]
T =

1

rijrkl

1

sin θijk sin θjkl
PQ3.

(5.59)

The derivation of the derivatives of improper torsion angles is similar to the deriva-
tion of the derivatives of proper torsion angles. The difference is that w1 now depends
on j and l instead of k and l (cf. equation (5.2)). This leads to different expressions for
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the derivatives of τijkl. The first derivatives of τijkl are

[∇iτijkl] =
1

rij

1

sin θijk
u3

[∇kτijkl] = − 1

rjk

{
cos θijk
sin θijk

u3 +
cos θjkl
sin θjkl

v3

}
[∇lτijkl] =

1

rjl

1

sin θjkl
v3,

(5.60)

while the second derivatives are[
∇2
i,iτijkl

]
=

1

r2ij

1

sin2 θijk
{cos θijkPX1 − sin θijkPX2}[

∇2
k,kτijkl

]
=

1

r2jk

{
cos θijk
sin2 θijk

PX1 + cos θijkP−1 − sin θijkP−2 −Q−1 −
cos2 θjkl
sin2 θjkl

QX1 +
cos θjkl
sin θjkl

QX2

}
[
∇2
l,lτijkl

]
= − 1

r2jl

1

sin2 θjkl
QX1[

∇2
i,kτijkl

]
=

1

rijrjk

1

sin2 θijk

{
−PX1 + sin2 θijkP−1 + cos θijk sin θijkP−2

}
[
∇2
k,lτijkl

]
=

1

rjkrjl

1

sin2 θjkl
{cos θjklQX1 − sin θjklQ−2}[

∇2
i,lτijkl

]
= 0.

(5.61)
The tensor products of the gradient vectors can easily be derived. They are

[∇iτijkl] [∇iτijkl]
T =

1

r2ij

1

sin2 θijk
P3

[∇kτijkl] [∇kτijkl]
T =

1

r2jk

{
cos2 θijk
sin2 θijk

P3 +
cos2 θjkl
sin2 θjkl

Q3 +
cos θijk
sin θijk

cos θjkl
sin θjkl

{PQ3 + QP3}
}

[∇lτijkl] [∇lτijkl]
T =

1

r2jl

1

sin2 θjkl
Q3

[∇iτijkl] [∇kτijkl]
T = − 1

rijrjk

1

sin2 θijk

{
cos θijkP3 + sin θijk

cos θjkl
sin θjkl

PQ3

}
[∇kτijkl] [∇lτijkl]

T = − 1

rjkrjl

1

sin2 θjkl

{
cos θjklQ3 + sin θjkl

cos θijk
sin θijk

PQ3

}
[∇iτijkl] [∇lτijkl]

T =
1

rijrjl

1

sin θijk sin θjkl
PQ3.

(5.62)
The algorithm to generate the Hessian of f(τijkl) proceeds as follows:

1. Calculate rij, rjk, rkl (or rjl for improper torsion angles), cos θijk, sin θijk, cos θjkl,
sin θjkl, u1, u2, u3, v1, v2 and v3 using the equations (5.1) - (5.4) and (5.9) -
(5.10).

2. Calculate P−1, P−2 , PX1, PX2, P3, Q−1, Q−2, QX1, QX2, Q3, PQ3 and QP3.
3. Calculate ∂f

∂τijkl
and ∂2f

∂τ2ijkl
.

4. Calculate the block matrices
[
∇2
i,if(τijkl)

]
,
[
∇2
k,kf(τijkl)

]
,
[
∇2
l,lf(τijkl)

]
,
[
∇2
i,kf(τijkl)

]
,[

∇2
k,lf(τijkl)

]
and

[
∇2
i,lf(τijkl)

]
using the equations (5.46) and (5.58) - (5.59) for

proper torsion angles or (5.61) - (5.62) for improper torsion angles.
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5. Calculate the remaining block matrices using the equations (5.41) and (5.42).

Finally, we remark that the formulas for the derivatives of τijkl do not explicitly depend
on τijkl. They only have singularities when the bond lengths and bond angles vanish and
thus no singularities at τijkl = 0 unless ∂f

∂τijkl
or ∂2f

∂τ2ijkl
are singular. Under the assumption

that the function is well-defined, we can therefore generate the gradient and Hessian of
an arbitrary functional form dependent on τijkl .

5.4 Applications

5.4.1 The Hessian of a molecular potential

The results in the preceding section constitute the necessary building blocks to generate
the Hessian of a molecular potential only dependent on rij, θijk and τijkl. This is used for
example in geometry optimization and molecular dynamics. An example of a molecular
potential is the ENCAD potential[80]:

ENCAD =
∑ 1

2
Krij

(
rij − rij0

)2
+
∑ 1

2
Kθijk

(
θijk − θijk0

)2
+
∑ 1

2
Kτijkl

[
1− cos(nτijkl + τ ijkl0 )

]
+
∑

εrij
[
(rij0 /rij)

12 − 2(rij0 /rij)
6
]

+
∑

(qiqj/rij).

(5.63)
It consists of a sum of harmonic potentials about equilibrium bond lengths and bond
angles, Fourier terms about equilibrium proper torsion angles where n expresses the
periodicity of the rotational barrier, and Van der Waals and electrostatics terms which
only depend on non-local interatomic distances.

In high-level programming languages such as Matlab or Octave, the efficiency of
the procedure generating the Hessian of a molecular potential is significantly decreased
when using loops. One of the advantages of the algorithms presented here is that
vectorization techniques can be used. This is done by calculating the unit vectors and
tensor products by vectorizing loops, indexing and the use of fast built-in functions such
as accumarray. We thereby achieve high efficiency and accuracy in these programming
languages.

5.4.2 Second-order expansions

The formulas for the derivatives of internal coordinates are used to find formulas for a
second order expansion of a function of internal coordinates. The method is to write
the second order expansion in its matrix form and to express the variables in the bases
{u1,u2,u3} and {v1,v2,v3}. This leads to compact expressions since each of the opera-
tors have a simple matrix representation in one of these bases.

For a molecule with coordinates x, the second order expansion of the composite
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function f(g(x)) of the real-valued functions f and g in the direction of ∆x is given by

f(g(x + ∆x)) ≈ f(g(x)) +
∂f

∂g

∑
α

∆xTα [∇αg] +
1

2

∂f

∂g

∑
α,β

∆xTα
[
∇2
α,βg

]
∆xβ

+
1

2

∂2f

∂g2

∑
α,β

∆xTα [∇αg] [∇βg]T ∆xβ

= f(g) +
∂f

∂g
h1,g +

1

2

∂f

∂g
h2,g +

1

2

∂2f

∂g2
h21,g,

(5.64)

where h1,g =
∑

α ∆xTα [∇αg] and h2,g =
∑

α,β ∆xTα
[
∇2
α,βg

]
∆xβ. We consider the second

order expansion of a function dependent on one or several internal coordinates. For
f(rij, θijk), for example, it is given by

f(rij(x + ∆x), θijk(x + ∆x)) ≈f(rij , θijk) +
∂f

∂rij
h1,rij +

∂f

∂θijk
h1,θijk +

1

2

∂f

∂rij
h2,rij +

1

2

∂f

∂θijk
h2,θijk

+
1

2

∂2f

∂r2ij
h21,rij +

1

2

∂2f

∂θ2ijk
h21,θijk +

∂2f

∂rijθijk
h1,rijh1,θijk

(5.65)
Hence, it is sufficient only to calculate the terms h1rij , h1,θijk , h1,τijkl, h2,rij , h2,θijk and
h2,τijkl. In matrix form, these are:

h1,rij
= a

T
u1, h1,θijk

=
[
aT cT

] − 1
rij

u2

1
rjk

v2

 , h1,τijkl =
[
aT bT cT dT

]


1
rij

1
sin θijk

u3

− 1
rjk

cos θijk
sin θijk

u3

− 1
rjk

cos θjkl
sin θjkl

v3

1
rkl

1
sin θjkl

v3



h2,rij
= a

T
[

1
rij

P⊥
]
a, h2,θijk

=
[
aT bT

] 
1
r2
ij

{
cos θijk
sin θijk

P3 + PX

}
− 1
rijrjk

1
sin θijk

P3

− 1
rijrjk

1
sin θijk

P3
1
r2
jk

cos θijk
sin θijk

P3

 [ab
]
+ c

T
[
− 1
r2
jk

QX
]
c

h2,τijkl
=
[
aT bT

] 
1
r2
ij

1
sin2 θijk

{
cos θijkPX1

− sin θijkPX2

}
1

rijrjk

1
sin2 θijk

{
−PX1

+ sin2 θijkP−1
+ cos θijk sin θijkP−2

}
1

rijrjk

1
sin2 θijk

{
−PX1

+ sin2 θijkP+1
+ cos θijk sin θijkP+2

}
1
r2
jk

1
sin2 θijk

{
cos θijkPX1

+ cos θijk sin2 θijkP−1
− sin3 θijkP−2

}
 [ab

]

+
[
cT dT

] 
1
r2
jk

1
sin2 θjkl

{
− sin2 θjklQ−1

− cos2 θjklQX1
+ cos θjkl sin θjklQX2

}
1

rjkrkl

1
sin2 θjkl

{
cos θjklQX1

− sin θjklQ−2

}
1

rjkrkl

1
sin2 θjkl

{
cos θjklQX1

− sin θjklQ+2

}
− 1
r2
kl

1
sin2 θjkl

QX1

 [cd
]
,

(5.66)

where we have used the notation

a = ∆xi −∆xj

b = ∆xk −∆xj

c = b

d =

{
∆xl −∆xk for proper torsion angles
∆xl −∆xj for improper torsion angles

.

(5.67)

We remark that for improper torsion angles we use rjl instead of rkl. The analytical
formulas are found by choosing a basis for a, b, c and d. Since P has a simple matrix
representation in {u1,u2,u3} and Q in {v1,v2,v3}, a good choice is:

a = a1u1 + a2u2 + a3u3

b = b1u1 + b2u2 + b3u3

c = c1v1 + c2v2 + c3v3

d = d1v1 + d2v2 + d3v3.

(5.68)
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When we use these expressions in equation (5.66) and evaluate the operations, the final
result is obtained

h1,rij = a1, h1,θijk =
c2
rjk
− a2
rij
, h1,τijkl =

1

rij sin θijk
a3 −

cos θijk
rjk sin θijk

b3 −
cos θjkl

rjk sin θjkl
c3 +

1

rkl sin θjkl
d3

h2,rij =
1

rij

(
a22 + a23

)
, h2,θijk = −2

(
c1c2
r2jk
− a1a2

r2ij

)
+

cos θijk
sin θijk

(
a23
r2ij

+
b23
r2jk

)
− 2

a3b3
rijrjk sin θijk

h2,τijkl =
2

r2ij sin2 θijk
(cos θijka2a3 − sin θijka1a3)

+
2

rijrjk sin2 θijk

{
−a2b3 − cos2 θa3b2 + cos θijk sin θijka3b1

}
+

2

r2jk sin2 θijk

{
1

2
cos θijk

(
2 + sin2 θijk

)
b2b3 −

1

2
sin3 θijkb1b3

}
+

2

r2jk sin2 θjkl

{
−1

2

(
1 + cos2 θjkl

)
c2c3 + cos θjkl sin θjklc1c3

}
+

2

rjkrkl sin
2 θjkl

{cos θjkl (c2d3 + c3d2)− sin θjklc3d1} −
2

r2kl sin
2 θjkl

d2d3.

(5.69)
We see that only rij, rjk, rkl (or rjl), θijk and θjkl as well the components of a and b in

the basis {u1,u2,u3} and c and d in the basis {v1,v2,v3} enter into these formulas.

5.5 Conclusion

We have formulated simple rules to calculate the second-order derivatives of a function
of an internal coordinate. The method is based on expanding the block matrices that
form the Hessian in terms of operators represented in two orthonormal bases.

We derived algorithms to generate the Hessian of a function of an internal coordi-
nate. For a torsion-angle-dependent function, a calculation of three bond lengths, two
bond angles and two orthonormal bases is required and it is numerically stable if the
function is well-defined. The algorithms can be implemented with high efficiency in
high-level programming languages based on vectorization. An efficient calculation of
the Hessian opens the possibility of utilizing large-scale Hessian based optimization rou-
tines in geometry optimization that use directions of negative curvature and ensure that
the optimized structure has a positive semidefinite Hessian[58, 59]. Furthermore, the
curvature of the energy landscape and transition states may be studied more efficiently
during a geometry optimization or a molecular dynamics simulation.

Finally, we used the formulas to derive a second-order expansion of an internal
coordinate. These have very compact expressions, which for example can be used in line
search routines or to calculate the expansion of an internal coordinate to second order.
In future work, the usability of this method in geometry optimization and dynamics will
be investigated.
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Chapter 6

On the importance of the distance
measures used to train and test
knowledge-based potentials for
proteins

M. Carlsen, P. Koehl, P. Røgen, On the importance of the distance measures used to
train and test knowledge-based potentials for proteins , PLOS ONE, vol. 9, pp. e109335,
2014.

Abstract. Knowledge-based potentials are energy functions derived from the analysis
of databases of protein structures and sequences. They can be divided into two classes.
Potentials from the first class are based on a direct conversion of the distributions of
some geometric properties observed in native protein structures into energy values,
while potentials from the second class are trained to mimic quantitatively the geometric
differences between incorrectly folded models and native structures. In this paper, we
focus on the relationship between energy and geometry when training the second class
of knowledge-based potentials. We assume that the difference in energy between a
decoy structure and the corresponding native structure is linearly related to the distance
between the two structures. We trained two distance-based knowledge-based potentials
accordingly, one based on all inter-residue distances (PPD), while the other had the set
of all distances filtered to reflect consistency in an ensemble of decoys (PPE). We tested
four types of metric to characterize the distance between the decoy and the native
structure, two based on extrinsic geometry (RMSD and GTD-TS*), and two based on
intrinsic geometry (Q* and MT). The corresponding eight potentials were tested on a
large collection of decoy sets. We found that it is usually better to train a potential using
an intrinsic distance measure. We also found that PPE outperforms PPD, emphasizing
the benefits of capturing consistent information in an ensemble. The relevance of these
results for the design of knowledge-based potentials is discussed.
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6.1 Introduction

Proteins are the essential macromolecules inside cells that perform nearly all cellular
functions. Just like macroscopic tools, their shapes is a key feature for defining their
functions. Structural biologists have embarked upon the challenge of finding the struc-
tures of all proteins, in hopes of unraveling this relationship between geometry and bio-
logical activity and learn in the process how cells function. Determining experimentally
the structure of a protein at the atomic level however is not yet an easy task: this can be
indirectly deduced from the fact that we currently know millions of protein sequences
but less than hundred thousand protein structures. Predicting the structure of a protein
from first principles is not much easier: direct applications of the ideas that have been
used for modeling small molecules have not yet been successful on these much larger
molecules. Recent reports on the advancements of ab initio techniques clearly show
that the protein structure prediction community is making progress, but that the quality
of the models they generate do not meet yet the stringent accuracy requirements to
become useful to the biologists [4]. Interestingly, the series of Critical Assessment of
protein Structure Prediction (CASP) meetings have highlighted that while the methods
for generating models of protein structures have improved significantly[81], identify-
ing the native-like conformations among the large collections of model structures (also
called decoys) remains a significant challenge[82, 83]. In this paper we focus on this
problem.

Anfinsen’s thermodynamics hypothesis states that the native structure of a protein
is determined only by its amino acid sequence [1]. Structural and computational biolo-
gists translate this postulate into the statement, that under physiological conditions, the
native state of a protein is a unique, stable minimum of the free energy. The key to solv-
ing the protein structure prediction problem amounts therefore to finding an accurate
representation of this free energy function and several methods have been proposed
to construct reasonable approximations of it. The two most common approaches rely
on semiempirical and statistical potentials, respectively. Semiempirical methods are de-
rived from knowledge of the basic physical principles whereas statistical potentials are
based on the nonrandom statistics of known protein structures [84]. Statistical energy
functions are either residue based or atom based and the most recent statistical poten-
tials include pairwise interactions, orientations of side-chains[85], secondary structural
preferences, solvent-exposure, and other geometric properties of proteins [86]. We note
that there have been attempts to combine physics-based and statistics-based potentials
to improve protein structure refinement [26, 87, 27, 88, 28].

Current protein structure prediction methods require potentials that ideally should
assign “scores” to a protein structure model such that the higher the score, the less
native-like the model is, where native-like is measured in terms of a distance d from
the model to the native structure. If this condition is satisfied then the potential is
expected to detect near native conformations even when the native conformation is not
present; in addition, such an ideal potential could then be used for model refinement.
In mathematical terms this can be expressed as the score function f satisfying

f (seqi, ri + dr) = f (seqi, ri) + d (ri, ri + dr) , (6.1)

for any sequence seqi and all deformations dr of its native structure ri.
Several methods have been developed to optimize potentials towards this goal[89,

90, 91, 92]. The choice of the distance measure d is critical to the success of these

56



methods. The standard distance measure when comparing protein structural models is
RMSD, i.e. the root mean square distance between the two models after optimal trans-
lation and rotation. RMSD however has been replaced in recent CASP experiments by
the global distance test (GDT-TS[10]) due to its undesirable sensitivity towards local
changes in a protein structure; GDT-TS has become one of the most commonly used
distance measures in protein structure prediction. A less commonly used distance mea-
sure is the fraction of known native contacts, Q. Q quantifies the changes in the number
of “contacts” found in the native structure compared to the model structure that is
evaluated, where a contact corresponds to two residues being within a given threshold
distance from each other. All the distance measures mentioned above identify geo-
metric differences between two structural models but do not attempt to assess if these
differences could be assigned to fluctuations due to the dynamics of the protein. Such
differences would be less of a concern if they were related to geometric differences that
can be explained by dynamics. As an attempt to identify the role of dynamics, Perez et
al. recently introduced FlexE, a method based on a simple elastic network model that
uses the deformation energy as a measure of the similarity between two structures [11].
As such, FlexE is expected to distinguish biologically relevant conformational changes
from random changes.

In this work, we investigate the importance of the distance function d when optimiz-
ing an energy function f towards satisfying equation 6.1. We train two new Cα-based
pairwise potentials, PPD and PPE, to mimic the distance between the model structure
considered and its corresponding native structure, using four different definitions of the
distance measure, namely RMSD, GDT-TS, Q, and MT, where MT is an anharmonic ver-
sion of FlexE. These energy functions are trained and tested on sets extracted from the
high resolution decoy dataset Titan-HRD[47], as well as on well known decoy datasets
from DecoysRUs [93] and Rosetta [94]. We have also analyzed the performance of our
potentials on the server generated Stage 1 and Stage 2 decoy sets from CASP 10 [95].

The paper is organized as follows. The next section introduces the different distance
measures and describes our procedures for training and testing the potentials PPD and
PPE. The following section shows the results on different decoy sets as well as a compar-
ison between PPD, PPE, two statistical knowledge-based potentials and a semi-empirical
physical potential. We conclude with a discussion of the importance of the choice of the
distance measure and describe potential future work.

6.2 Materials and Methods

6.2.1 Geometrical distances between two structural models of the
same protein

Let us consider two structural models A and B of the same protein P with N amino
acids. We represent the two models as discrete sets of N points, A = (a1, a2, . . . , aN)
and B = (b1, b2, . . . , bN) where the points ai and bi correspond to the positions of the
Cα atoms i in the two structures. We assume that the correspondence table between A
and B is known and set such that ai corresponds to bi for all i ∈ [1, N ]. We measure the
distance between the two models either based on the Euclidean distance between the
two sets of points (RMSD and GDT-TS), on differences between contact maps within
each set (Q), or on an elastic network (MT).
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RMSD, i.e. root mean square deviation, is the Euclidean distance between the cor-
responding points ai and bi after one of the two sets of points (usually set B) has been
optimally transformed by a rigid body transformation G:

RMSD = min
G

√√√√√√
N∑
i=1

‖ai −G(bi)‖2

N
. (6.2)

The rigid body transformation G is a transformation that does not produce changes in
the size, shape, or topology of the protein. Such transformations are compositions of
rotations and translations. Many closed-form solutions to the problem of finding the
optimal G have been derived [7, 8, 9]. We note that RMSD as defined above is a metric
[96].

RMSD is a distance measure based on the L2 norm; as such, it is highly sensitive
to outliers, for example due to the presence of large albeit local differences between
the two structures. The global distance test (GDT) was developed to decrease this
sensitivity [10]. GDT focuses on the regions of the structures that can be correctly
aligned by counting the number of residues that can be superimposed within a given
cutoff distance. GDT-TS (where TS stands for Total Score), combines this information
for multiple cutoffs:

GDT − TS =
n1 + n2 + n4 + n8

4n
, (6.3)

where n1, n2, n4, and n8 are the numbers of aligned residues within 1, 2, 4, and 8
Ångströms, respectively, and n is the total aligned length. Note that GDT-TS is a quan-
tity between 0 and 1 that represents similarity, with low values corresponding to bad
correspondences, and high values (close to or equal to 1) indicating that the two mod-
els are highly similar. We have converted this similarity measure into a distance by
considering GDT-TS* = 1-GDT-TS.

RMSD and GDT-TS* are computed after the two model structures have been opti-
mally superposed. An alternative approach is to consider the intrinsic geometry of the
two structures, as captured for example by a distance matrix that contains all Cα− Cα
distances internal to one structure. Q and MT are two examples of distance measures
that use this alternate approach.

The fraction of native contacts, Q, is a distance measure that quantifies the changes
of a contact map between two models for the same structure. A contact map is usually
defined as

Si,j =

{
1 if residues i and j are in contact
0 otherwise ,

where two residues are in contact if they are within a given distance threshold. In this
paper, we set this threshold to 9 Å. Q is then defined by

Q =
sc

sc+ lc
,

where sc is the number of shared contacts and lc is the number of lost contacts. Just like
GDT-TS, Q is a measure of similarity. We convert it into a distance measure by defining
Q*=1-Q.
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Q* quantifies changes in the contact map of a structure with no consideration of
what could have been the reasons for these changes. FlexE is a new measure of simi-
larity between protein structures that was introduced as an attempt to distinguish those
changes that are biologically relevant [11]. It is based on the concept of elastic network
that assigns virtual isotropic springs between pairs of residues. Elastic network mod-
els are used in normal mode analysis[97, 98] for example to reconstruct proteins[99],
to generate decoy sets[100], or to investigate thermal fluctuations about the native or
equilibrium structure[101, 102]. In the formalism introduced by Perez et al[11], the
distance measure FlexE between two structures N and D is assimilated to the energetic
cost of deforming one of the structures into the other:

FlexE(N,D) =
1

Nres

Nres∑
i,j=1

SNi,jkij
(
rNij − rDij

)2
, (6.4)

where Nres is the number of residues in N and D, SNi,j is a contact map for structure N ,
rNij and rDij are the distances between the Cα atoms of residues i and j in structures N
and D, respectively, and kij is a force constant associated to the link between i and j. In
our implementation of FlexE, we set all force constants to 1. We modify the quadratic
term in equation 6.4 with a term congruent to the potential introduced by Toda [103]
to study chains of particles interacting with non-linear forces.

The corresponding variant of FlexE, which we name MT, is defined as:

MT (N,D) =
1

Nres

Nres∑
i,j=1

SNi,j
b2

(
e−(r

D
ij−rNij )b +

(
rDij − rNij

)
b− 1

)
, (6.5)

where b is a parameter which we set to 0.5. We note that MT is equal to FlexE for
small perturbations of the distances between residues; for large perturbations however,
it penalizes compression more than extension. Finally the use of the fixed native contact
map for all native-decoy comparisons ensures that both FlexE(N,D) and MT(N,D) are
well-defined.

6.2.2 Two new parametric potentials

A smooth, pairwise potential, PPD. We design a smooth knowledge based residue
pair potential as done in [12]. For each of the 210 pairs of amino acids types we
assume a potential that is determined by the corresponding Cα-Cα distance. We model
the interaction as a uniform cubic b-spline with compact support within 1 Å to 12 Å and
8 degrees of freedom, see e.g. [104]. With this model an interaction tends smoothly to
zero energy at distances greater than 12 Å and is modeled freely within 4 Å -9 Å. The
pair potential has 8×210 = 1680 parameters in total. The corresponding potential, PPD,
is defined as

PPD =
∑
i<j

∑
p

Caa(i)aa(j)
p Bp(ri,j) , (6.6)

where aa(i) ∈ {1, . . . , 20} is the amino acid type of the i-th residue and Bp(ri,j) is
the p-th b-spline basis function evaluated on the distance between the i-th and j-th
residues. C

aa(i)aa(j)
p are the model parameters determined by the optimization proce-

dure described below.
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A consensus potential, PPE. We introduce a novel smooth ensemble based pair po-
tential (PPE) that forms an artificial funnel relative to a pre-calculated contact map:

PPE =
∑
i<j

Si,j
∑
p

Caa(i)aa(j)
p Bp(ri,j) , (6.7)

where Si,j is an consensus contact map. The method to calculate the consensus contact
map is described below. It is based on a similar consensus method that constructs the
reference contact map from an ensemble of decoys[105].

A consensus contact map. We introduce an iterative method to compute a consensus
contact map of an ensemble of decoys. The first step is to construct a contact map from
the most common contacts in the ensemble. Let Mi,j be the fraction of contacts in the
ensemble for the i, j-th residue pair. The contact map is then calculated as

Si,j =

{
1 if Mi,j > µ

0 otherwise
(6.8)

where µ is a cut-off fixed at 0.25. At each step, we select the 25% closest decoys to
this contact map, where ”closest” refers to the Hamming-distance to the contact map.
This leads to a reduced ensemble from which a new contact map is computed, and the
procedure is iterated. The algorithm usually converges in a few steps.

6.2.3 Optimizing the potentials

We design an energy landscape using a sculpting procedure. We assume that we possess
a set of natives structures {Ni} and that a set {Di,j} of decoy structures is known for
each of these native structures. Let ∆Ei,j be the energy difference between the i-th
native structure, Ni, and its j-th decoy, Di,j, and let d(Ni, Di,j) be the corresponding
distance between Ni and Di,j. Our method for optimizing a statistical potential [12]
attempts to establish a funnel-shaped energy function by calculating the parameters
that minimizes the sum of squared errors between ∆Ei,j and αNid(Ni, Di,j) where αNi
is a constant of proportionality. The problem can be stated as a quadratic programming
(QP) problem with affine constraints,

minimize
X,α1...αM

∑
i,j

‖∆Ei,j(X)− αNid(Ni, Di,j)‖2 + β‖X‖2

subject to 0.25 ≤ αNi ≤ 4, for i = 1 . . .M∑
i

αNi = M ,

(6.9)

where β is a fixed parameter used for regularization. The variables in this QP prob-
lem are X, i.e. the vector of coefficients Ci,j introduced above, and the constants
of proportionality αN1 . . . αNM , where M is the number of proteins in the training set.
The last term β‖X‖2 is a regularization term that adds a penalty onto the modulus of
X. The preprocessing is trivially parallelizable since each of the terms, ‖∆Ei,j(X) −
αid(Ni, Di,j)‖2, can be calculated individually. As a consequence, the QP requires little
memory and is fast to compute. We use the optimization package cplex to solve it.
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6.2.4 Training and test sets

It is a nontrivial task to construct a “good” set of decoy structures. Any such decoy set
relies on a sampling of the conformational space accessible to the protein structure of
interest. The specific techniques used to generate such sampling are prone to biases
[106], leading to poor sampling of the corresponding free energy surfaces. These ap-
proximate energy surfaces may not adopt a funnel like geometry in the neighborhood of
the native structure and may contain many artificial potential energy barriers. To avoid
the risk of learning from a specific bias introduced by one sampling technique, we have
considered a variety of test sets to train and measure the performances of our energy
functions. Of particular interest to us are near-native test sets since we design energy
functions to mimic the neighborhoods of native structures.

We have chosen part of the Titan High Resolution Decoy set[47] as our training set.
The list of proteins included in this set was originally proposed by Zhou and Skolnik
[92]; it was selected on the basis that it is composed of a representative set of nonho-
mologous single domain proteins with maximum pairwise sequence similarity reported
to be 35% . The models included in the decoy sets were generated using the torsion
angle dynamics program DYANA[107] subject to distance constraints that are set to
preserve the hydrophobic core of a protein. It is assumed that the hydrophobic core
includes all residues within a β strand as well as all hydrophobic residues within an α-
helix. The set includes 1400 proteins in total (compared to 1489 proteins in the original
set of Zhou and Skolnik [92]). We eliminated all short proteins with a large radius of
gyration as these proteins are overfitted by the optimization and are usually separate
stretched secondary structures. We divided the remaining proteins into a training set of
1155 proteins with an average of 994 decoys per native structure (Titan-HRD*) and a
test set of 142 proteins with an average of 854 decoys per native structure (Titan-HRD).
The average GDT-TS distances between native and decoys over the training and test sets
are 0.75 and 0.76 with a mean absolute deviation of 0.1, respectively. Note that we will
use the mean absolute deviation (the l1-norm) instead of the standard deviation (the
l2-norm) as it puts less weight on outliers.

Apart from the Titan-HRD set we use 10 freely available decoy sets that were gen-
erated using different procedures. These include 6 sets taken from DecoysRUs[93]
(4 state reduced[108], hg structal[93], fisa[109], fisa casp3[109], lmds[110] and lat-
tice ssfit[111, 112]). We also included two older versions of the Rosetta decoy sets
(Rosetta-All[113] , Rosetta-Tsai[94]), the newest version Rosetta-Baker available at
http://depts.washington.edu/bakerpg/decoys/ and the I-Tasser Set II[114].

The different CASP meetings have highlighted successes and failures in generating
model structures that resemble the native structures of proteins. A repository of all
models that have been proposed as answers to the prediction challenges that were part
of these meetings is available on the CASP web page (http://predictioncenter.org).
This repository provides a wealth of information on protein structure modeling, as well
as useful test cases to assess the quality of new potential energy functions. We have
therefore considered five CASP sets each containing models predicted by a variety of
methods from the different CASP meetings (302 ensembles in total). We also gener-
ated CASP-HRD, a high resolution decoy subset of CASP 5 - 9, which includes models
that have a TM score [115] larger than 0.5 and a RMSD less than 4 Å to the native
structures. This cutoff was chosen based on the observation made by Xu and Zhang,
which states that two decoys belong to the same fold when their TM-score to a native
structure is higher than 0.5[22]. CASP-HRD is constructed to have nearly the same
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average distance measure value as Titan-HRD but we find smaller variations of the dis-
tance measures for CASP-HRD. In that sense, it does include variations with different
structural characteristics compared to Titan-HRD as it is generated by many different
methods, while Titan-HRD is more homogeneous.

The total number of ensembles excluding Titan-HRD, Titan-HRD*, and CASP-HRD is
546 with an average GDT-TS between its decoys and their corresponding native struc-
tures of 0.47 with a average mean absolute deviation of 0.16. We refer to this set as
“Test Set All” (TSA).

Finally, we include decoys from the latest CASP experiment, CASP10. A critical com-
ponent of the CASP experiment is the assessment of the predictions that are submitted
as putative models for the target proteins considered. This assessment is performed
by the CASP assessors but also by the CASP community, with considerable enthusiasm,
as observed in CASP10 [95]. The procedure for assessing the predictions in CASP10
differed from that of previous CASPs. The main difference was the introduction of two
stages, labeled Stage 1 and Stage 2. For the former, twenty of the supposedly best pre-
dictions for each CASP target were released for assessment. Subsequently, hundred and
fifty decoys were released for each target, defining Stage 2. Stage 1 ensembles are de-
signed to survey single model assessment methods, while stage 2 allows for the survey
of methods that rely on ensembles for the assessment of models. We have considered
93 targets from CASP10 for which both Stage 1 and Stage 2 test sets are available from
the CASP web site (http://www.predictioncenter.org/casp10/). Compared to the other
decoy sets described above, these sets contain longer protein chains. The models they
include are usually as distant from their native counterparts as observed for the datasets
from the previous CASP meetings. These sets however are more compact, i.e. with less
diversity in distances, especially for the Stage 2 sets that resemble the CASP-HRD sets
in that respect.

In table 6.1, we report the mean characteristics of these decoy sets (size, diversity,
. . .) as well as information about their availability.

Preprocessing the decoy sets. To guarantee that the decoys included in a set are con-
sistent in length with their corresponding native structure, we performed the following
two-step preprocessing. First, we removed all residues in the decoys with missing back-
bone atoms (Cα, N, C, and O). Second, we extracted the sequences from the decoy
structure files and aligned these sequences with the native sequence of the protein of
interest (where the native sequence is derived from the ATOM record in the corre-
sponding PDB file). If these alignments include trailing unmatched residues either in
the decoys or in the native structure, these residues are removed until all sequences
are identical. We found that this procedure was necessary for some of the decoy sets
described above.

6.2.5 Assessing the quality of decoy selection: R-score

Given a distance measure and an energy function, an ensemble of decoy protein confor-
mations contains a “best” distance model, i.e. the conformation that is closest geomet-
rically to the native structure, as well as a “best” energy model, i.e. the model whose
energy is the lowest. Ideally, these two “best” models should be the same; in practice
however, they are different due to shortcomings of the potential energy function. To
quantify this difference we introduce the R-score as follows. Let D be the ensemble
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Table 6.1: Properties of the different protein decoy sets used in this study

Decoy set Nprot h Nres h Ndecoys h RMSD MT GDT-TS Q
Titan-HRD a 142 127 (35) 854 (119) 2.4 (0.5) 2.7 (1) 0.76 (0.1) 0.85 (0.04)
Titan-HRD* a 1155 111 (35) 994 (138) 2.6 (0.6) 2.7 (1) 0.75 (0.1) 0.85 (0.04)
TASSER Set II b 55 80 (17) 438 (98) 6.3 (1.5) 9.3 (3.2) 0.54 (0.05) 0.77 (0.03)
hg Structal c 28 150 (7) 29 (0) 4.1 (1.2) 4.4 (1.5) 0.71 (0.07) 0.85 (0.04)
4-state c 7 64 (4.9) 664 (15) 5.2 (1.4)) 8.3 (2.9) 0.53 (0.11) 0.75 (0.05)
fisa c 4 60 (10) 500 (0.4) 7.5 (1.8) 8.6 (1.7) 0.47 (0.06) 0.75 (0.06)
fisa CASP3 c 5 88 (15) 1437 (390) 12 (1.6) 21 (4.1) 0.3 (0.03) 0.67 (0.02)
lmds c 10 53 (10) 433 (79) 7.7 (1.1) 12 (2.6) 0.46 (0.04) 0.72 (0.03)
lattice ssfit c 8 71 (10) 1997 (1.5) 9.9 (1.0) 17 (2.4) 0.3 (0.03) 0.64 (0.02)
Rosetta-All d 41 82 (25)) 999 (0.5) 12 (1.4) 29 (5.6) 0.27 (0.03) 0.61 (0.02)
Rosetta-Tsai d 29 63 (9.4) 1862 (43) 7.4 (2.1) 11 (3.9) 0.46 (0.08) 0.73 (0.04)
Rosetta-Baker d 57 88 (20) 100 (0) 8.5 (1.4) 15 (3.3) 0.45 (0.05) 0.76 (0.03)
CASP5 e 41 202 (78) 117 (41) 13 (3.7) 29 (14) 0.38 (0.12) 0.68 (0.08)
CASP6 e 39 172 (71) 216 (34) 13 (4.9) 27 (16) 0.39 (0.12) 0.70 (0.08)
CASP7 e 64 183 (80) 349 (40) 10 (3.4) 17 (10) 0.47 (0.11) 0.75 (0.07)
CASP8 e 77 187 (81) 334 (67) 8.8 (3.1) 13 (8.6) 0.54 (0.11) 0.79 (0.06)
CASP9 e 81 180 (81) 402 (95) 11 (4.9) 19 (14) 0.49 (0.12) 0.77 (0.07)
CASP-HRD e 109 188 (79) 192 (72) 2.8 (0.4) 2.2 (0.6) 0.76 (0.03) 0.89 (0.02)
CASP10-stage1 f 93 232 (102) 18 (1.9) 13 (4.3) 20 (9.4) 0.46 (0.08) 0.76 (0.05)
CASP10-stage2 f 93 232 (102) 132 (7.6) 11 (3.7) 17 (8.2) 0.55 (0.03) 0.80 (0.03)
TSA TM > 0.5 g 242 179 (77) 291 (119) 6.3 (2.67) 9.4 (5.5) 0.63 (0.09) 0.82 (0.05)
TSA TM < 0.5 g 303 110 (48) 602 (436) 12 (3.9) 23 (12) 0.34 (0.1) 0.68 (0.07)

a Training set (Titan HRD) and test set (Titan HRD*) from the Titan High resolution decoy set[47],
available at http://titan.princeton.edu/2010-10-11/Decoys/.

b Tasser Set II is a structurally non-redundant set of protein structures and decoys derived with the
program TASSER. It is available at http://zhanglab.ccmb.med.umich.edu/decoys/.

c Decoy sets from the Decoys ’R’ us repository http://dd.compbio.washington.edu.
d Different decoy Rosetta-based decoy sets (see text for details), available at
http://depts.washington.edu/bakerpg/decoys/.

e Collection of models from the successive CASP5 to CASP9 experiments, available from the CASP web
site http://predictioncenter.org. CASP-HRD is a high resolution subset of the union of the five sets
CASP5 to CASP9, which includes models that have a TM-score larger than 0.5 and a RMSD less than 4
Å to the native structures.

f The Stage 1 and Stage 2 decoy sets used in the CASP10 quality assessment category, available from the
CASP web site http://predictioncenter.org. For details on how these sets are prepared, see [95].

g All high and low resolution targets (TSA TM-score > 0.5)/(TSA TM-score < 0.5) are listed in the files
S TSAh and S TSAl respectively found in the supporting information.

h Nprot is the number of different proteins in the dataset, Nres is the average number of residues com-
puted over all proteins in a dataset, and Ndecoys is the average number of decoys per proteins, averaged
over the dataset. RMSD, MT, GDT-TS, and Q are the distance measures between the decoys and the
corresponding native structures, averaged over all decoys and all proteins. We provide both the average
values and the average mean absolute deviations (in parenthesis).
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of decoys and let Xi be one of its elements. The corresponding native structure is N .
We define the mapping Sd from D to R as Sd(Xi) = d(Xi, N), i.e. the distance be-
tween the decoy X and N , where d can be any of the four distance measures defined
above. We name XE the decoy with the lowest energy, i.e. E(XE) ≤ E(X) ∀X ∈ D.
In parallel, we name Xd the decoy closest to N with respect of the distance d, i.e.
Sd(Xd) ≤ Sd(X) ∀X ∈ D. The R score for d and E is defined as:

R(d,E) ≡

{
Sd(XE)−〈Sd〉
Sd(Xd)−〈Sd〉

if |Sd(XE)− 〈Sd〉| ≤ |Sd(Xd)− 〈Sd〉|
−1 otherwise

, (6.10)

where 〈Sd〉 is the average value for Sd over the decoy setD. R(d,E) is designed to assess
how well E mimics S in finding the best decoy. It takes values between -1 and 1 where 1
indicates that the energy has picked the best decoy. We fix the lower limit at -1 to avoid
having outliers being assigned very low negative values. Note, that if an ensemble does
not contain outliers then 0 is the random expectation. If we furthermore assume that the
distances Sd(X) are uniformly distributed then (1−R(d,E))/2 is the fraction of decoys
with a distance to the native structure better than Sd(XE). The R score can also be seen
as the ratio between the Z-score of the best energy model, (Sd(XE)− 〈Sd〉)/σ(Sd), and
the Z-score of the best distance model, (SdXd−〈Sd〉)/σ(Sd), where σ(Sd) is the standard
deviation for Sd over the decoy set D.

6.2.6 Assessing how well the energy functions mimic a funnel in
the neighborhood of the native structure

To measure how far the energy E is from the desired linear funnel shape given by
Equation 6.1 relative to the distance measure d we report the Pearson’s correlation
coefficient Corr(d,E) between the energy values E(Xi) and distance measures Sd(Xi)
over all decoys Xi in the decoy set:

Corr(d,E) =
1

N − 1

N∑
i=1

Sd(Xi)− 〈Sd〉
σ(Sd)

E(Xi)− 〈E〉
σ(E)

, (6.11)

where 〈.〉 and σ(.) stand for the mean and standard deviation over the decoy set con-
sidered.

6.2.7 Comparing two distance measures d1 and d2

In the two previous subsections, we have defined a R-score R(d,E) and a correlation
coefficient Corr(d,E) to measure how well an energy function E mimics a distance
measure d. Both quantities can be used as is to compare two distance measures d1 and
d2. Indeed, d2 can be assimilated to a pseudo energy function, akin to the definition
of FlexE given in equation 6.4. The R-score and correlation coefficient between d1 and
d2 are then simply R(d1, d2) and Corr(d1, d2), respectively. Corr(d1, d2) measures the
dependence between d1 and d2 over a decoy set, while R(d1, d2) checks the “quality”
of the best decoy identified by d2, as measured by d1. Note that this R-score between
distance measures may not be symmetric.
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6.3 Results and Discussion

6.3.1 The diversity of the distance measures

There is no unique way to compare three dimensional shapes. When comparing protein
structures, two main classes of distance measures have been proposed, those based on a
Euclidean distance between the positions of the atoms of the two proteins (after proper
translation and rotation of one of them), and those based on the intrinsic geometry
of the structures. We have considered two examples in each class, namely RMSD and
GDT-TS* for the former, and MT and Q* for the latter. A full description of these four
distance metrics is given in Material and Methods. As these measures capture changes
of different geometric properties of the protein structures, there is no reason to believe
that they are equivalent. To test the degrees to which these distances differ, we have
compared them on three different sets of decoys, namely Titan-HRD, CASP-HRD, and
TSA, using two different report scores, Corr and R, where Corr is the Pearson’s corre-
lation coefficient that measures how well d1 mimics d2 over a large range of distance
values while R measures how (metrically) wrong the best candidate of one distance
measure (i.e. the decoy with the smallest distance to its corresponding native struc-
ture) is when measured by another distance (see Materials and Methods for details).
Results for Corr and R are given in tables 6.2 and 6.3, respectively.

The correlations between the distance measures are high on the Titan-HRD set of
decoys, with values above 0.87 for the correlation coefficients. The corresponding R-
scores are above 0.76. If we assume uniform distributions of the native-decoy distances
over a decoy set, the best decoy by one distance measure on average is ranked within
the top 5% and within the top 12% by another distance measure for R scores of 0.9 and
0.76, respectively. These high scores are expected, as the Titan-HRD decoys are high
resolution, usually very close to their native structure counterparts (see Table 1). It is
interesting however that the R score between RMSD and Q* is relatively low (0.76),
even on this high resolution data set. This low value indicates that a “good” decoy
defined by Q* may explore a range of RMSD values. In contrast, a decoy that is close
to the native structure with respect to RMSD usually has a high percentage of native
contacts, as highlighted by the R score between Q* and RMSD of 0.87. In fact, we
observe that the best RMSD decoy is generally scored better by the three other distance
measures.

While CASP-HRD also contains high resolution decoys that are close to their cor-
responding native structures (with RMSD < 4 Å and TM scores above 0.5), the four
distance measures we tested are less dependent on this dataset than on Titan-HRD,
both globally as scored by correlation coefficients and locally (i.e. in picking a “best”
decoy), as highlighted by the R scores. We see two possible reasons for these differences
between the two groups of decoy sets. First, the decoys in Titan-HRD are homogeneous,
as they all contain the same hydrophobic cores as the native structures. In contrast, the
CASP decoys were derived with many different methods, leading to heterogeneity in
their geometry. Second, we cannot exclude an effect of sample size, as on average the
sets included in Titan-HRD contain four times more decoys and larger average mean
absolute deviation of distance measures than the sets included in CASP-HRD (see Table
1).

TSA, which stands for “Test Sets All” is a large heterogeneous collection of decoy
sets that were generated by many different techniques (see Materials and methods for
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Table 6.2: Correlations between the four distance measures

Distance d2
Test set Distance d1 RMSD MT GDT-TS* Q*
Titan-HRD RMSD 1a 0.92 (0.06) 0.92 (0.04) 0.87 (0.08)

MT 0.92 (0.06) 1 0.92 (0.03) 0.94 (0.03)
GDT-TS* 0.92 (0.04) 0.92 (0.03) 1 0.95 (0.03)
Q* 0.87 (0.08) 0.94 (0.03) 0.95 (0.03) 1

CASP-HRD RMSD 1 0.74 (0.16) 0.73 (0.14) 0.6 (0.19)
MT 0.74 (0.16) 1 0.72 (0.13) 0.83 (0.07)
GDT-TS* 0.73 (0.14) 0.72 (0.13) 1 0.74 (0.13)
Q* 0.6 (0.19) 0.83 (0.07) 0.74 (0.13) 1

CASP10-stage1 RMSD 1 0.83 (0.16) 0.71 (0.24) 0.68 (0.24)
MT 0.83 (0.16) 1 0.73 (0.2) 0.82 (0.14)
GDT-TS* 0.71 (0.24) 0.73 (0.2) 1 0.86 (0.12)
Q* 0.68 (0.24) 0.82 (0.14) 0.86 (0.12) 1

CASP10-stage2 RMSD 1 0.78 (0.16) 0.51 (0.22) 0.49 (0.19)
MT 0.78 (0.16) 1 0.52 (0.2) 0.69 (0.14)
GDT-TS* 0.51 (0.22) 0.52 (0.2) 1 0.64 (0.17)
Q* 0.49 (0.19) 0.69 (0.14) 0.64 (0.17) 1

TSA RMSD 1 0.92 (0.06) 0.8 (0.15) 0.82 (0.11)
MT 0.92 (0.06) 1 0.78 (0.14) 0.85(0.08)

TM-score > 0.5 GDT-TS* 0.8 (0.15) 0.78 (0.14) 1 0.89 (0.12)
Q* 0.82 (0.11) 0.85 (0.08) 0.89 (0.12) 1

TSA RMSD 1 0.8 (0.12) 0.59 (0.24) 0.56 (0.18)
MT 0.8 (0.12) 1 0.54 (0.2) 0.68(0.14)

TM-score < 0.5 GDT-TS* 0.59 (0.24) 0.54 (0.2) 1 0.67 (0.22)
Q* 0.56 (0.18) 0.68 (0.14) 0.67 (0.22) 1

a Pearson’s correlation coefficient Corr(d1, d2) between the two distance measures d1
and d2. We provide both the average value and the mean absolute deviation (in
parenthesis) over the data set considered.

details). Some of these decoy sets are high-resolution, i.e. contains mostly native-like
structures, while others are more diverse, containing decoys that are very different from
their corresponding native structures, both in terms of secondary structure content and
three-dimensional organization. To assess the importance of this diversity, we selected
within the TSA group of decoy sets two subgroups, those for which the decoys have
average TM score larger than 0.5, and those with average TM score smaller than 0.5.
This 0.5 cutoff was again chosen based on the observation made by Xu and Zhang that
two decoys belong to the same fold when their TM-scores to a native structure is higher
than 0.5[22]. Table 1 shows that TSA TM-score > 0.5 generally contain longer chains
with fewer decoys when compared to the TSA TM-score < 0.5 set. The two sets are
fully listed in the files S TSAh and S TSAl found in the supporting information. Tables
6.2 and 6.3 show that the distance measures behave on the high-resolution subgroup
(TM > 0.5) as on the Titan-HRD test set, i.e. with high correlations and high R scores,
meaning that they are very similar to each other. On the low-resolution subgroup (TM
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Table 6.3: Comparing the best models picked by different distance measures

Distance d2
Test set Distance d1 RMSD MT GDT-TS* Q*
Titan-HRD RMSD 1a 0.88 (0.12) 0.91 (0.09) 0.76 (0.17)

MT 0.94 (0.06) 1 0.92 (0.08) 0.91 (0.07)
GDT-TS* 0.96 (0.04) 0.94 (0.07) 1 0.91 (0.08)
Q* 0.87 (0.09) 0.92 (0.07) 0.89 (0.09) 1

CASP-HRD RMSD 1 0.71 (0.26) 0.79 (0.22) 0.49 (0.38)
MT 0.76 (0.22) 1 0.76 (0.22) 0.76 (0.23)
GDT-TS* 0.8 (0.22) 0.68 (0.27) 1 0.48 (0.39)
Q* 0.57 (0.33) 0.81 (0.16) 0.66 (0.24) 1

CASP10-stage1 RMSD 1 0.81 (0.24) 0.75 (0.31) 0.79 (0.23)
MT 0.9 (0.13) 1 0.85 (0.19) 0.94 (0.09)
GDT-TS* 0.79 (0.24) 0.78 (0.24) 1 0.82 (0.2)
Q* 0.78 (0.22) 0.88 (0.14) 0.8 (0.23) 1

CASP10-stage2 RMSD 1 0.76 (0.22) 0.71 (0.3) 0.63 (0.29)
MT 0.83 (0.18) 1 0.73 (0.24) 0.83 (0.19)
GDT-TS* 0.73 (0.26) 0.65 (0.24) 1 0.59 (0.29)
Q* 0.62 (0.29) 0.82 (0.18) 0.62 (0.23) 1

TSA RMSD 1 0.9 (0.11) 0.84 (0.19) 0.81 (0.18)
MT 0.94 (0.07) 1 0.88 (0.14) 0.92 (0.09)

TM-score > 0.5 GDT-TS* 0.85 (0.16) 0.79 (0.21) 1 0.73 (0.24)
Q* 0.79 (0.18) 0.89 (0.11) 0.81 (0.16) 1

TSA RMSD 1 0.83 (0.19) 0.73 (0.27) 0.71 (0.27)
MT 0.87 (0.14) 1 0.74 (0.27) 0.88 (0.14)

TM-score < 0.5 GDT-TS* 0.74 (0.27) 0.7 (0.27) 1 0.67 (0.27)
Q* 0.68 (0.27) 0.85 (0.16) 0.68 (0.27) 1

a R-score R(d1, d2) between the two distance measures d1 and d2. We provide both
the average value and the mean absolute deviation (in parenthesis) over the data
set considered.

<0.5) however, the distance measures are poorly correlated with each other, with most
correlation coefficients in the range 0.5 to 0.7. Both results confirm that when two
structures are very close to each other, different distance measures quantify their differ-
ences in a similar manner. When the two structures however are very different, different
distance measures will focus on different geometric differences, leading to differences
in their behaviors. We observe however one exception in Table 6.2, in that RMSD and
MT clearly remains correlated (0.80) even for the diverse subgroup of TSA with TM <
0.5. The reason for this exception is unclear.

The CASP 10 Stage 1 and Stage 2 test sets usually include longer proteins than the
other sets considered here, with decoys that are far from their native counterparts. In
the Stage 1 sets there are very few decoys per target (by construction, see Methods
above) and relatively large average mean deviations of the distance measures. For the
Stage 2 test sets there are more decoys per target; these decoys however are usually very
similar to each other, leading to very low mean absolute deviations for the GDT-TS* and
Q* distance measures, and consequently to low correlations and R scores between the
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Figure 6.1: Showing nine different types of residue pair interactions
for our single model method PPD (continuous lines) and our con-
sensus method PPE (dotted lines) when trained on RMSD (blue),
MT(red), GDT-TS(green) and Q(black).

measures. As an example, the correlation between RMSD and GDT-TS* for the Stage 2
decoy sets is only 0.51 and their non symmetric R scores are R(RMSD,GDT-TS*)=0.71
and R(GDT-TS*,RMSD)=0.73, respectively. These low values are good indicators of
significant differences between their ranking of the decoys included in CASP10 Stage 2
test sets.
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Figure 6.2: Energy-distance correlations as a function of the
quality of the decoy set. For each decoy set in Titan-HRD, CASP-
HRD, and TSA (a total of 797 sets), we plot the correlation Corr(E,
d1) as a function of the mean value of d1 over the decoy set, where E
is either the PPD energy (red, plus sign +) or the PPE energy (black,
cross sign x) trained on the set Titan-HRD with the distance measure
d1, and d1 is one of the fourth distance measures considered, namely
RMSD (panel A), MT (panel B), GDT-TS* (panel C), and Q* (panel
D). The corresponding running means computed over 20 equidis-
tant intervals for PPD (red, solid line) and PPE (black, dashed line)
are shown. Clearly, the quality of the correlation energy-distance
decreases as the diversity of the decoy set increases.
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Figure 6.3: R scores versus Energy-distance correlations. For each
decoy set in Titan-HRD, CASP-HRD, and TSA, we plot the R score
R(d1, E) as a function of the correlation coefficient Corr(d1, E),
where E is either the PPD energy (red, plus sign +) or the PPE
energy (black, cross sign x) trained on the set Titan-HRD with the
distance measure d1, and d1 is one of the fourth distance measures
considered, namely RMSD (panel A), MT (panel B), GDT-TS* (panel
C), and Q* (panel D). The corresponding running means computed
over 20 equidistant intervals for PPD (red, solid line) and PPE (black,
dashed line) are shown. Note that R(d1, E) compares the best decoy
picked based on the energy value E with the decoy closest to the na-
tive structure according to the distance measure d1. There is a clear
correlation between these two values for all four distance measures.
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6.3.2 Training knowledge-based potentials with different distance
measures.

We have derived two new smooth knowledge-based residue pair potentials, PPD and
PPE. Both potentials are based on distances between the Cα atoms of the protein struc-
ture of interest. For each of the 210 types of amino acid pairs, the two potentials are
written as a weighted sum of smooth spline functions, whose weights are optimized
so that the total energy of a protein model resembles the distance between the model
and a reference structure (usually taken to be the native structure), as described by
equation 6.1. The two potentials differ however on which pairs of residues are taken
into account. While PPD includes all pairs of residues from the protein structure P
considered, PPE only include those pairs whose inter Cα distance is consistently below
a cutoff value in an ensemble of protein models similar to P . The idea behind PPE,
derived from Eickholt et al. [105], is that the various models in the ensemble contain
complementary information which can be pooled together to build a contact map of
consistent residue-residue contacts that are more likely to be informative. Our interest
here is to assess the influence of the distance measure used to train the two potentials.
We have trained PPD and PPE on the Titan-HRD* training set with the four distance
measures introduced above separately, and tested the corresponding four versions of
the potentials against the Titan-HRD, CASP-HRD, and TSA test sets in their abilities to
mimic any of the four distance measures. All parameters describing the amino acid pair
spline potentials are listed in the file SupportingMaterialData. The encoding used and
the spline basis used is described in the file SupportingMaterialReadme. Both files are
in the supporting information.

Figure 6.1 shows some examples of the b-spline expanded pair potentials. As ex-
pected, the pair potentials are repulsive for short inter-residue distances and have a
first minimum between 4 Å and 6 Å and this preferred distance relatively independent
of the training metric. For longer pair distances it is seen that most PPD pair potentials
have a local minimum around 10Å whereas the PPE pair potentials tend to have a local
maximum at this distance. One plausible explanation is that as PPE does not identify
new contacts for these large distances; it may then set higher energy values for remote
decoys. The exact placement of the minimum as well as the depth of the potential dif-
fers for the different pair potentials. While these differences may seem small, they add
up when we sum over all the interactions.

We computed both the correlations between energy and the distance measure, and
the R scores that compare the best decoys picked based on energy with the decoys
closest to their corresponding native structures. Results are given in Table 6.4 for the
correlation coefficients, Table 6.5 for the R scores, and in Figures 6.2 and 6.3 for a com-
parison of these scores. We draw from these tables and figures the four main conclusions
described below.

First, we find that both potentials PPD and PPE perform very well on the Titan-
HRD test set, for all distance measures used for training and testing the potential. The
corresponding mean correlation coefficients (averaged over all decoys sets in Titan-
HRD) are usually above 0.8, indicating that the energy functions order the decoys in the
same manner as the distance measures. In parallel, the R scores are also high, with most
values well above 0.65, indicating that the decoys with the lowest energies are usually
among the decoys that are close to the corresponding native structures. We should note
however that PPD and PPE were trained on Titan-HRD*. While Titan-HRD and Titan-
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HRD* are different (see Methods), they both contain decoys that were generated with
the same principles, with the significant constraint that they maintain the hydrophobic
cores of the corresponding native structures. The exceptional performance of PPD and
PPE may therefore not be surprising in light of this comment. Indeed, as we test these
potentials on different decoy sets with more diverse populations of decoys, we observe
a decrease in performance that follows the increase in diversity (in the order Titan-HRD
- TSA (TM > 0.5) - CASP-HRD - TSA (TM < 0.5). This decrease in performance is
illustrated in Figure 6.2.

Second, the ensemble potential PPE performs better than the single structure poten-
tial PPD, again for all the distance measures used to train and test the potentials. The
differences between the two potentials are large for the high resolution decoys sets in
Titan-HRD and TSA (TM > 0.5), but become statistically insignificant for very diverse
decoy sets such as those in TSA (TM < 0.5). We believe that these differences illustrate
the power of generating consensus information from an ensemble. In PPE, we only con-
sider those contacts there are consistently below a given distance cutoff in the whole
decoy set to which the protein of interest belongs. This initial filtering is clearly an
advantage for Titan-HRD, as it will select the contacts in the hydrophobic cores which
are native, and will ignore the contacts that fluctuate significantly due to the sampling
procedure used to generate the decoys. It remains an advantage for high quality decoy
but becomes less pertinent for highly diverse decoys.

Third, the performances of the two potentials PPD and PPE depend on the choice
of the distance used in the training step. For example, the correlations between PPE
and any of the four distance measures increase on average by 0.09 when it is trained
on MT instead of RMSD (Table 6.4). Similar differences are observed for the R scores
between PPE and the four distance measures (Table 6.5). More generally, it is best to
train the potentials on a distance measure that is directly based on intrinsic inter-residue
distances, such as MT that follows the elastic network of the protein of interest, or Q*
that counts the number of contacts that fall below a given distance cutoff, than on a
distance measure based on extrinsic Euclidean distances, such as RMSD. Interestingly,
we find that GDT-TS* behaves more like the intrinsic distance measures MT and Q*
than RMSD, even though it is also based on extrinsic distances. The reason for this
discrepancy is unclear.

Finally, we observe that the ability of an energy function to pick a “good” decoy (i.e.
with native-like characteristics) is contingent to how well this energy function correlates
with a distance measure between decoys and native structure. This is illustrated in
Figure 6.2. This observation validates the approach of sculpting (training) a potential
to mimic a distance measure.
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Table 6.4: Energy-distance correlations

PPD PPE RAPDF a GOAPb AMBER c

Training distance d1 d Training distance d1 d

Decoy set Test Distance d2 d RMSD MT GDT-TS* Q* RMSD MT GDT-TS* Q*
Titan-HRD RMSD 0.77 (0.05) e 0.82 (0.04) 0.81 (0.05) 0.79 (0.04) 0.81 (0.05) 0.88 (0.03) 0.85 (0.03) 0.82 (0.04) 0.5 (0.14) 0.64(0.11) 0.01 (0.02)

MT 0.82 (0.04) 0.89 (0.03) 0.87 (0.03) 0.87 (0.03) 0.86 (0.04) 0.95 (0.01) 0.92 (0.02) 0.89 (0.02) 0.47 (0.16) 0.63(0.11) 0.01 (0.02)
GDT-TS* 0.83 (0.06) 0.91 (0.02) 0.91 (0.02) 0.9 (0.03) 0.86 (0.04) 0.93 (0.02) 0.95 (0.01) 0.92 (0.02) 0.43 (0.18) 0.63(0.12) 0.001 (0.02)
Q* 0.82 (0.05) 0.92 (0.2) 0.92 (0.02) 0.93 (0.02) 0.87 (0.03) 0.95 (0.01) 0.97 (0.01) 0.95 (0.01) 0.37 (0.22) 0.57(0.13) 0.002 (0.02)

CASP-HRD RMSD 0.32 (0.16) 0.31 (0.16) 0.31 (0.16) 0.26 (0.16) 0.42 (0.16) 0.51 (0.17) 0.51 (0.18) 0.45 (0.17) 0.31(0.15) 0.3 (0.15) 0.01 (0)
MT 0.45 (0.11) 0.49 (0.11) 0.49 (0.12) 0.43 (0.12) 0.55 (0.13) 0.69 (0.11) 0.68 (0.13) 0.61 (0.13) 0.37 (0.14) 0.41(0.13) 0.02 (0)
GDT-TS* 0.38 (0.14) 0.39 (0.13) 0.39 (0.13) 0.33 (0.14) 0.51 (0.15) 0.6 (0.14) 0.65 (0.14) 0.58 (0.17) 0.39 (0.14) 0.43(0.11) 0.02 (0)
Q* 0.46 (0.12) 0.6(0.11) 0.64 (0.1) 0.57 (0.1) 0.54 (0.12) 0.69 (0.12) 0.75 (0.12) 0.71 (0.1) 0.32 (0.15) 0.42(0.12) 0.02 (0)

CASP10-stage1 RMSD 0.44 (0.22) 0.53 (0.18) 0.53 (0.18) 0.48 (0.2) 0.5 (0.22) 0.54 (0.22) 0.52 (0.21) 0.5 (0.21) 0.18(0.24) 0.32 (0.26) -0.03 (0)
MT 0.47 (0.19) 0.61(0.17) 0.62 (0.17) 0.55 (0.18) 0.56 (0.16) 0.63 (0.13) 0.61 (0.13) 0.57 (0.13) 0.13 (0.22 0.34(0.24) -0.06 (0)
GDT-TS* 0.4 (0.21) 0.49 (0.23) 0.51 (0.2) 0.43 (0.21) 0.57 (0.21) 0.63 (0.16) 0.63 (0.16) 0.59 (0.2) 0.22 (0.28) 0.4(0.2) -0.05 (0)
Q* 0.51 (0.22) 0.63(0.16) 0.63 (0.16) 0.56 (0.18) 0.68 (0.12) 0.75 (0.06) 0.75 (0.07) 0.72 (0.1) 0.24 (0.3) 0.41(0.2) -0.05 (0)

CASP10-stage2 RMSD 0.33 (0.18) 0.34 (0.2) 0.34 (0.2) 0.31 (0.2) 0.31 (0.18) 0.37 (0.19) 0.34 (0.16) 0.3 (0.21) 0.15(0.13) 0.2 (0.14) -0.005 (0)
MT 0.42 (0.16) 0.49 (0.16) 0.49 (0.15) 0.45 (0.14) 0.4 (0.16) 0.5 (0.19) 0.48 (0.15) 0.42 (0.16) 0.19 (0.14) 0.29(0.14) 0.003 (0)
GDT-TS* 0.31 (0.15) 0.29 (0.14) 0.29 (0.13) 0.25 (0.14) 0.37 (0.16) 0.42 (0.19) 0.44 (0.18) 0.38 (0.18) 0.29 (0.14) 0.37(0.17) 0.007 (0)
Q* 0.45 (0.22) 0.56(0.14) 0.58 (0.12) 0.52 (0.15) 0.51 (0.18) 0.62 (0.17) 0.66 (0.14) 0.62 (0.15) 0.28(0.13) 0.41(0.13) -0.006 (0)

TSA RMSD 0.62 (0.12) 0.62 (0.13) 0.63 (0.13) 0.59 (0.14) 0.74 (0.09) 0.8 (0.07) 0.78 (0.08) 0.73 (0.09) 0.5 (0.14) 0.58(0.13) 0.02 (0.01)
MT 0.65 (0.11) 0.69 (0.1) 0.7 (0.1) 0.65 (0.12) 0.75 (0.08) 0.83 (0.06) 0.8 (0.06) 0.74 (0.07) 0.5 (0.16) 0.58(0.12) 0.03 (0.01)

TM-score > 0.5 GDT-TS* 0.6 (0.15) 0.59 (0.14) 0.6 (0.13) 0.54 (0.16) 0.78 (0.06) 0.85 (0.04) 0.84 (0.04) 0.79 (0.06) 0.61 (0.11) 0.7(0.1) 0.03 (0.01)
Q* 0.69 (0.11) 0.71 (0.09) 0.72 (0.1) 0.68 (0.1) 0.87 (0.04) 0.94 (0.02) 0.93 (0.02) 0.9 (0.03) 0.57 (0.13) 0.67(0.11) 0.03 (0.01)

TSA RMSD 0.3 (0.16) 0.34 (0.18) 0.34 (0.18) 0.32 (0.18) 0.29 (0.23) 0.36 (0.27) 0.34 (0.27) 0.29 (0.23) 0.16 (0.13) 0.25(0.15) 0 (0.01)
MT 0.38 (0.14) 0.47 (0.15) 0.47 (0.15) 0.45 (0.17) 0.34 (0.23) 0.45 (0.24) 0.41 (0.23) 0.35 (0.22) 0.19 (0.14) 0.29(0.13) -0.003(0.01)

TM-score < 0.5 GDT-TS* 0.27 (0.19) 0.27 (0.2) 0.28 (0.19) 0.24 (0.18) 0.36 (0.29) 0.44 (0.33) 0.42 (0.32) 0.36 (0.29) 0.26 (0.16) 0.33(0.19) 0.004 (0.02)
Q* 0.41 (0.17) 0.47 (0.16) 0.46 (0.17) 0.45 (0.15) 0.53 (0.19) 0.63 (0.18) 0.61 (0.18) 0.57 (0.19) 0.23 (0.17) 0.3(0.19) -0.004 (0.02)

a All-atom statistical distance-based potential [116].
b All-atom orientation-dependent statistical potential [85].
c The semi-empirical physical potential AMBER99SB-ILDN[117].
d PPD and PPE have been trained on the distance measure d1 and tested against the distance measure d2.
e Average value, and mean absolute deviation (in parenthesis) over the data set.
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Table 6.5: Energy-distance Rvalues

PPD PPE RAPDF a GOAP b AMBER c

Training distance d1 d Training distance d1 d

Decoy set Test Distance d2 d RMSD MT GDT-TS* Q* RMSD MT GDT-TS* Q*
Titan-HRD RMSD 0.57 (0.17) 0.52 (0.17) 0.51 (0.19) 0.48 (0.2) 0.61 (0.14) 0.63 (0.17) 0.62 (0.14) 0.61 (0.15) 0.43 (0.18) 0.56 (0.15) 0.26 (0.47)

MT 0.73 (0.1) 0.71 (0.11) 0.69 (0.13) 0.69 (0.15) 0.76 (0.11) 0.8 (0.11) 0.79 (0.12) 0.8 (0.1) 0.5 (0.18) 0.6(0.17) 0.23 (0.53)
GDT-TS* 0.78 (0.08) 0.74 (0.09) 0.74 (0.08) 0.73 (0.09) 0.82 (0.07) 0.86 (0.06) 0.86 (0.07) 0.86 (0.07) 0.52 (0.22) 0.67(0.12) 0.18 (0.58)
Q* 0.73 (0.11) 0.76 (0.12) 0.73 (0.1) 0.77 (0.1) 0.77 (0.09) 0.84 (0.09) 0.85 (0.09) 0.86 (0.08) 0.37 (0.19) 0.53(0.17) 0.16 (0.51)

CASP-HRD RMSD 0.19 (0.31) 0.00 (0.42) -0.04 (0.48) 0.03 (0.4) 0.27 (0.3) 0.33 (0.31) 0.34 (0.27) 0.3 (0.31) 0.14 (0.37) 0.22(0.37) -0.11 (0.34)
MT 0.31 (0.26) 0.24 (0.3) 0.14 (0.31) 0.16 (0.36) 0.38 (0.24) 0.43 (0.22) 0.43 (0.21) 0.38 (0.25) 0.24 (0.4) 0.46(0.32) -0.09 (0.47)
GDT-TS* 0.14 (0.3) -0.09 (0.4) -0.08 (0.42) -0.06 (0.43) 0.28 (0.23) 0.31 (0.25) 0.32 (0.24) 0.28 (0.24) 0.12 (0.44) 0.34(0.33) -0.22 (0.38)
Q* 0.27 (0.25) 0.35 (0.33) 0.34 (0.32) 0.33 (0.31) 0.28 (0.2) 0.39 (0.24) 0.4 (0.25) 0.41 (0.26) 0.13 (0.4) 0.43(0.26) -0.17(0.42)

CASP10-stage1 RMSD 0.55 (0.23) 0.53 (0.3) 0.57(0.26) 0.48 (0.39) 0.5 (0.29) 0.52 (0.26) 0.53 (0.26) 0.51 (0.27) 0.32 (0.34) 0.44(0.26) 0.13 (0.6)
MT 0.69(0.1) 0.7(0.12) 0.72(0.12) 0.64(0.14) 0.58(0.15) 0.62(0.12) 0.63(0.13) 0.6(0.15) 0.37(0.28) 0.52(0.2) 0.16(0.6)
GDT-TS* 0.52(0.32) 0.47(0.39) 0.52(0.37) 0.42(0.43) 0.43(0.4) 0.46(0.37) 0.51(0.33) 0.46(0.36) 0.27(0.44) 0.53(0.22) 0.15(0.37)
Q* 0.6(0.24) 0.64(0.15) 0.67(0.14) 0.57(0.19) 0.57(0.22) 0.6(0.18) 0.63(0.17) 0.61(0.18) 0.32(0.38) 0.47(0.31) 0.19(0.5)

CASP10-stage2 RMSD 0.38(0.29) 0.23(0.36) 0.29(0.3) 0.26(0.35) 0.36(0.31) 0.35(0.32) 0.32(0.32) 0.35(0.34) 0.29(0.28) 0.39(0.29) 0.11(0.42)
MT 0.55(0.23) 0.46(0.31) 0.5(0.29) 0.49(0.33) 0.45(0.32) 0.47(0.32) 0.47(0.32) 0.48(0.3) 0.44(0.32) 0.52(0.24) 0.17(0.45)
GDT-TS* 0.23(0.35) 0.11(0.33) 0.14(0.36) 0.14(0.34) 0.25(0.32) 0.23(0.28) 0.29(0.32) 0.25(0.32) 0.23(0.3) 0.39(0.3) 0.01(0.27)
Q* 0.45(0.32) 0.46(0.31) 0.51(0.29) 0.48(0.3) 0.44(0.3) 0.47(0.24) 0.51(0.27) 0.53(0.27) 0.33(0.28) 0.41(0.27) 0.13(0.43)

TSA RMSD 0.47 (0.24) 0.22 (0.41) 0.21 (0.41) 0.22 (0.41) 0.69 (0.14) 0.69(0.13) 0.69 (0.13) 0.68 (0.14) 0.44 (0.25) 0.59(0.19) 0.24 (0.38)
MT 0.62 (0.14) 0.4 (0.24) 0.39 (0.27) 0.41 (0.24) 0.8 (0.08) 0.81 (0.07) 0.82 (0.08) 0.8 (0.08) 0.54 (0.18) 0.74(0.1) 0.32 (0.33)

TM-score > 0.5 GDT-TS* 0.29 (0.28) 0.09 (0.43) 0.08 (0.47) 0.09 (0.45) 0.58 (0.16) 0.6 (0.16) 0.61 (0.16) 0.57 (0.18) 0.37 (0.31) 0.56(0.41) 0.09 (0.26)
Q* 0.49 (0.19) 0.32 (0.3) 0.3 (0.33) 0.33 (0.28) 0.68 (0.14) 0.72 (0.14) 0.74 (0.13) 0.74 (0.13) 0.38 (0.29) 0.59(0.43) 0.14 (0.2)

TSA RMSD 0.16 (0.35) 0.19 (0.3) 0.19 (0.34) 0.16 (0.32) 0.26 (0.35) 0.33 (0.37) 0.32 (0.36) 0.29 (0.35) 0.19 (0.35) 0.27(0.4) 0.04 (0.41)
MT 0.27 (0.34) 0.38 (0.3) 0.39 (0.33) 0.37 (0.29) 0.36 (0.33) 0.44 (0.31) 0.42 (0.32) 0.41 (0.31) 0.28 (0.34) 0.4(0.33) 0.04 (0.46)

TM-score < 0.5 GDT-TS* 0.07 (0.3) 0.07 (0.28) 0.1 (0.3) 0.06 (0.29) 0.26 (0.3) 0.32 (0.3) 0.32 (0.3) 0.29 (0.3) 0.19 (0.3) 0.28(0.36) 0.05 (0.3)
Q* 0.18 (0.35) 0.28 (0.34) 0.29 (0.35) 0.3 (0.31) 0.42 (0.27) 0.5 (0.27) 0.49 (0.29) 0.49 (0.27) 0.19 (0.29) 0.31(0.32) 0.01 (0.31)

a All-atom statistical distance-based potential [116].
b All-atom orientation-dependent statistical potential [85].
c The semi-empirical physical potential AMBER99SB-ILDN[117].
c PPD and PPE have been trained on the distance measure d1 and tested against the distance measure d2.
d Average value, and mean absolute deviation (in parenthesis) over the data set.
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6.3.3 Comparison with other energy functions

We have compared the two energy functions PPD and PPE with two well established
all-atom statistical potentials RAPDF[116] and GOAP[85] and with a semi-empirical
physical potential, AMBER99SB-ILDN [117], for all decoy sets in Titan-HRD, CASP-
HRD, and TSA. Results for correlations between energy and distance measures and for
R scores are given in Tables 6.4 and 6.5, respectively.

As intuitively expected, the performances of AMBER99SB-ILDN are very poor. This
is most likely an artifact due to the presence of a few steric clashes in the decoys, and
not a reflection of the quality of this potential. While it would be possible to improve
this performance by applying an initial energy minimization on all decoys, this result by
itself highlights that such a physical potential cannot be used directly to order a set of
decoys, unless some pre-processing is applied.

RAPDF is a knowledge-based statistical potential that is based on a direct conversion
of the distributions of inter-atomic distances observed in native protein structures into
energy values that are then used to assess how native-like a model is [116]. It is not
based on any information from existing decoy sets, and it is not trained to mimic some
differences between decoys and native structures. It is therefore not surprising that it
does not perform as well as PPD and PPE, especially on the Titan-HRD as both PPD and
PPE were trained on decoys resembling those included in this data set.

GOAP is an all-atom orientation-dependent knowledge-based statistical potential
that includes a distance-based term and an angle-dependent contribution [85]. The
distance-based term is an all-atom statistical potential that is based on the reference
state that was introduced with the DFIRE potential [118]. The angle dependent com-
ponent of GOAP is based on the geometric orientation of local planes. GOAP is found to
perform significantly better than RAPDF on all datasets tested in this study. This is not a
surprise, as GOAP includes much more information than RAPDF due to its angle term.
We find however that GOAP performs only marginally better than PPD and worse than
PPE. This illustrates the benefit of training a potential on a decoy set. PPD and PPE are
only Ca based potentials; they have been trained however to mimic distances between
non-native models and native structures of proteins.

The performances of RAPDF and GOAP depend on the distance measure used for
testing. We observe that they are particularly good when the statistical potentials are
tested on GDT-TS*, reflecting the differences between these distance measures (see
Table 6.2 and 6.3).

6.3.4 Performance in the CASP 10 quality assessment category

As part of the CASP experiment, state-of-the-art methods for protein structure assess-
ment are judged on their ability to evaluate the quality of the predictions submitted as
models for the targets considered in that specific experiment: this is the quality assess-
ment category (QA). In 2012 as part of CASP10, 37 groups participated [95]. They
were asked to evaluate the quality of sets of predictions (decoys) in two rounds desig-
nated as Stage 1 (20 decoys with a large variation in quality as measured by GDT-TS)
and Stage 2 (150 decoys with homogeneous quality as measured by GDT-TS). The main
reason for providing a small number of decoys in Stage 1 was to allow for judging as-
sessment methods that rely on a single model independently from methods that rely on
an ensemble of decoys (consensus methods), that would be tested extensively with the

75



Stage 2 decoy sets. The three main conclusions drawn from these experiments were
[95]: 1) The performances of the single model methods are usually worse than the the
performances of consensus methods, 2) The Stage 2 sets are usually more difficult to
rank than the Stage 1 sets, and 3) No methods were able to consistently pick the best
decoy in an ensemble. The results for the participating groups can be seen in Figure
6.2 (average correlation) and Figure 6.3 (ability to pick the best decoy) in [95]. We
note that the single model method GOAP used in this study differs from the quasi-single
model method GOAPQA used in CASP10QA. For the latter, the TM-score [115] to the
top 5 ranked models is used as a measure of model quality.

The CASP 10 datasets have average native-decoy RMSDs of 11-13Å. These differ-
ences are significantly larger than the 2.4Å RMSD found in our training sets (see Table
6.1). Our analyses of the performances of PPD (single model) and PPE (ensemble of de-
coys) on the other datasets considered in this study have shown that for decoys that are
far from their native counterparts, the two methods perform similarly, and in fact poorly
(see top left panel of Figure 6.2 and Table Table 6.4). We observe the same behavior
when PPD and PPE are applied on the CASP10 datasets (Tables 6.4 and 6.5). Similarly
we expect and indeed find that the ensemble method PPE is ineffective in ranking the
decoys of the CASP10 datasets when its performance is measured against the MT dis-
tance measure, and shows some prospects when its performance is measured against
the GDT-TS* and Q* distance measures. The energy-GDT-TS correlations of 0.51(0.63)
and 0.29(0.44) for PPD( resp. PPE) on Stage 1 and Stage 2 respectively are amongst
the lowest reported for single model(resp. ensemble) methods in CASP10QA [95]. The
low energy-distance correlations reported usually leads to a bad pick for the best decoy,
see Figure 6.3. It is therefore surprising that the average ∆GDT-TS* of 0.07 between
the GDT-TS*-closest decoy and the lowest energy decoy picked by PPE on the CASP10
Stage 2 data sets places PPE in the middle of the CASP10 participating methods (see
[95] Figure 2(A)).

The results for PPD, PPE, AMBER99SB-ILDN, RAPDF and GOAP on CASP 10 stages
1 and 2 are given in Tables 4 - 6 where PPD and PPE were trained and tested on
the same distance measure. Clearly, GOAP has a better performance than PPD when
GDT-TS* is chosen as a measure of distance. It is however noteworthy that PPD per-
forms better than GOAP when measured by RMSD and MT instead. It is encouraging
that the distance dependent C-alpha potential, PPD, as a single model method has a
performance that is comparable to the state-of-the-art orientation-dependent all-atom
potential, GOAP. We find that PPD is good at selecting a decoy that is close to the native
structure (Table 6).

6.4 Concluding Remarks

The recent literature on generating knowledge-based potentials for protein structure
modeling makes no secrets of their limitations and problems. Knowledge-based poten-
tials are energy functions derived primarily from databases of protein structures and
sequences. They can be divided into two classes. Potentials from the first class are
based on a direct conversion of the distributions of some geometric properties observed
in native protein structures into energy values, while potentials from the second class
are trained to mimic quantitatively the geometric differences between incorrectly folded
models (also called decoys) and native structures. Both potentials are designed to as-
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sess how native-like a model structure is. There is no consensus however on which
geometric property should be considered, on how to convert a statistical distribution
into an energy for the first class, and on how energy and geometry should be related in
the second class.

In this paper, we focused on the relationship between energy and geometry when
training knowledge-based potentials from the second class. We assumed that the differ-
ence between the energy of a decoy and the energy of its corresponding native structure
must be linearly related to the distance between the decoy and the native structure. We
trained two distance-based Cα potentials accordingly, one based on all inter-residue
distances (PPD), while the other had the set of all these distances filtered to reflect
consistency in an ensemble of decoys (PPE). Compared to other methods that follow
the same approach however, we did not assume that the distance between a decoy and
the native structure is the traditional RMSD. Instead, we tested four different distance
measures, two based on extrinsic geometry (RMSD and GTD-TS*), and two based on
intrinsic geometry (Q* and MT). We found that it is usually better to train the potentials
using the latter type of distances.

We have found that both PPD and PPE perform extremely well on the high reso-
lution decoy set Titan-HRD, with correlation coefficients between energy and distance
usually well above 0.8. PPE always performs better than PPD on this set, emphasizing
the benefits of capturing consistent information in an ensemble. While we trust the
general trends highlighted by these results, we tone down the importance of In exten-
sive testing on available decoy sets and models from the Critical Assessment of protheir
exceptional character as they may only reflect the specificity of the Titan-HRD data set.
tein Structure Prediction (CASP) experiments we find that PPD yields better energy-
distance correlations than one of the state of the art single model potentials, GOAP
[85]. We note however that the sophisticated distance-based and orientation-based
statistical potential GOAP is better at picking the best decoys and has a better though
comparable performance for fixed energy-distance correlation. It should be noted that
PPD and PPE are Cα-based, while GOAP is an all-atom potential. We believe that this
demonstrates that a very efficient training of a simple distance-based pair potential can
generate a very effective measure for assessing protein structure models.

There is still room for improvement in training knowledge-based potentials. We
limited our study to pairwise potentials; we will test different geometric properties of
protein structures in future studies. We plan to include the potentials described here
into a structure minimization package, to assess their performances in improving non-
native protein structure models.

6.5 Acknowledgments

The authors want to thank the anonymous reviewers for constructive criticism and care-
ful reading of the first version of this manuscript.

77



Table 6.6: Assessing the best decoys selected by energy functions on different decoy datasets

Best PPD PPE RAPDF a AMBER b GOAP c

Titan-HRD RMSD 1.1(0.21)d 1.7(0.29) 1.6(0.27) 1.9(0.4) 2.1(0.55) 1.7(0.3)
MT 0.75(0.22) 1.4(0.38) 1.2(0.38) 1.8(0.62) 2.3(0.89) 1.6(0.54)
GDT-TS 0.94(0.02) 0.89(0.03) 0.92(0.03) 0.85(0.05) 0.8(0.09) 0.88(0.03)
Q 0.94(0.01) 0.92(0.02) 0.93(0.02) 0.88(0.03) 0.86(0.04) 0.89(0.03)

4-state RMSD 1.1(0.1) 3.8(0.44) 2.2(0.21) 2.1(0.22) 3.6(1.5) 1.6(0.24)
MT 0.9(0.33) 5.8(2.1) 1.2(0.31) 2.6(0.52) 6.2(3.4) 1.5(0.38)
GDT-TS 0.91(0.03) 0.55(0.06) 0.86(0.08) 0.8(0.04) 0.67(0.1) 0.86(0.04)
Q 0.94(0.02) 0.75(0.03) 0.92(0.02) 0.87(0.04) 0.79(0.1) 0.9(0.02)

fisa RMSD 3.7(0.76) 5.7(0.78) 6.5(1.4) 4.4(0.72) 8.5(1.5) 4.5(0.45)
MT 3.8(1.5) 7.9(3.7) 5.5(2) 5.4(2.5) 10(4.2) 4.9(1.9)
GDT-TS 0.65(0.07) 0.51(0.14) 0.54(0.08) 0.6(0.06) 0.46(0.08) 0.59(0.06)
Q 0.82(0.02) 0.79(0.03) 0.78(0.03) 0.78(0.02) 0.73(0.02) 0.79(0.03)

fisa CASP3 RMSD 6(2) 12(1.6) 12(2.4) 12(4) 12(1) 11(1.6)
MT 8.7(4.2) 21(7.3) 17(8.2) 23(4.5) 19(2.5) 18(7.7)
GDT-TS 0.47(0.12) 0.32(0.01) 0.34(0.02) 0.32(0.02) 0.29(0.01) 0.33(0.04)
Q 0.76(0.06) 0.72(0.04) 0.72(0.04) 0.68(0.04) 0.67(0.07) 0.69(0.06)

hg Structal RMSD 1.9(0.5) 2.6(1) 2.5(0.56) 2.2(0.5) 3.3(0.71) 2.4(0.6)
MT 1.8(0.3) 2.5(0.61) 3(0.28) 2.4(0.35) 3.7(0.8) 2.7(0.28)
GDT-TS 0.86(0.06) 0.82(0.14) 0.85(0.07) 0.84(0.07) 0.77(0.08) 0.84(0.08)
Q 0.93(0.03) 0.92(0.03) 0.92(0.03) 0.92(0.04) 0.89(0.03) 0.92(0.04)

lmds RMSD 5.7(0.33) 9.9(0.72) 9.8(0.89) 9.8(0.92) 10(0.61) 10(0.65)
MT 8(0.78) 14(3.7) 17(5.5) 16(2.5) 19(1.6) 19(4.5)
GDT-TS 0.45(0.04) 0.29(0.04) 0.32(0.05) 0.31(0.05) 0.28(0.03) 0.3(0.03)
Q 0.74(0.02) 0.67(0.05) 0.67(0.04) 0.65(0.04) 0.63(0.03) 0.63(0.05)

lattice ssfit RMSD 3.8(0.46) 7.6(1.3) 7.4(1.6) 7.7(1.9) 8(2.6) 8.5(1.2)
MT 5.2(2.2) 9.8(4.5) 10(5.1) 11(4.8) 12(6.4) 12(5)
GDT-TS 0.62(0.06) 0.45(0.07) 0.48(0.07) 0.49(0.12) 0.45(0.07) 0.44(0.04)
Q 0.8(0.06) 0.74(0.07) 0.75(0.04) 0.74(0.05) 0.72(0.07) 0.72(0.06)

CASP5 RMSD 6.7(2.9) 13(6.2) 11(6) 10(5.2) 11(6.1) 10(5.2)
MT 8.5(4.2) 20(11) 18(7.7) 20(12) 22(11) 20(9.9)
GDT-TS 0.58(0.19) 0.36(0.17) 0.48(0.24) 0.44(0.19) 0.46(0.21) 0.5(0.23)
Q 0.82(0.09) 0.72(0.13) 0.77(0.09) 0.7(0.1)2 0.72(0.13) 0.75(0.1)

CASP6 RMSD 4.8(1.5) 10(5.1) 11(4.5) 9.7(5.1) 12(5.9) 8(3.1)
MT 5.4(1.9) 23(11) 18(4.3) 19(5.7) 24(15) 12(4)
GDT-TS 0.64(0.14) 0.33(0.14) 0.52(0.18) 0.49(0.27) 0.38(0.17) 0.54(0.17)
Q 0.85(0.06) 0.7(0.07) 0.79(0.08) 0.75(0.11) 0.68(0.11) 0.79(0.09)

CASP7 RMSD 4.5(1.8) 8.8(4.9) 7.1(3.1) 7.9(3.9) 11(5.1) 7.8(3.4)
MT 3.8(1.6) 9.5(3.8) 6.6(2.8) 10(4.3) 18(9.1) 8.3(3.5)
GDT-TS 0.66(0.13) 0.49(0.21) 0.56(0.14) 0.56(0.17) 0.43(0.21) 0.58(0.13)
Q 0.88(0.04) 0.81(0.08) 0.85(0.06) 0.81(0.06) 0.74(0.08) 0.82(0.06)

CASP8 RMSD 4.1(1.3) 7.4(2.7) 6.4(1.8) 9.8(5.5) 9.7(5.2) 7.5(3.1)
MT 3.2(1.3) 10(4.1) 6.1(2.2) 14(6.4) 15(8) 8.7(2.7)
GDT-TS 0.7(0.1) 0.53(0.17) 0.63(0.13) 0.51(0.22) 0.47(0.19) 0.61(0.16)
Q 0.89(0.04) 0.81(0.07) 0.85(0.06) 0.79(0.09) 0.75(0.1) 0.83(0.07)

CASP9 RMSD 4.8(1.4) 9.7(4.9) 7.5(2.6) 9.4(4.7) 9.8(4.9) 8.2(3.3)
MT 3.7(1.3) 14(7.8) 7.3(2.6) 12(3.9) 13(5.2) 8.5(2.6)
GDT-TS 0.68(0.1) 0.4(0.15) 0.6(0.12) 0.52(0.19) 0.51(0.21) 0.57(0.15)
Q 0.88(0.04) 0.75(0.12) 0.85(0.04) 0.8(0.09) 0.79(0.09) 0.83(0.07)

TASSER Set II RMSD 3.2(1) 5.6(1.9) 5.2(1.4) 5.2(1.6) 6.4(2.1) 5.4(1.9)
MT 3.7(1.2) 7.1(2.3) 6.6(2.5) 6.7(2.2) 11(5.4) 6.8(2.2)
GDT-TS 0.69(0.09) 0.57(0.12) 0.59(0.12) 0.59(0.1) 0.52(0.13) 0.59(0.12)
Q 0.85(0.05) 0.81(0.06) 0.82(0.06) 0.8(0.05) 0.75(0.08) 0.79(0.05)

Rosetta-All RMSD 6.4(1.3) 11(2.1) 11(2.2) 12(3.2) 16(4.7) 11(2.6)
MT 12(4.7) 22(8.9) 26(7.2) 25(9.9) 47(14) 24(7.5)
GDT-TS 0.41(0.06) 0.29(0.04) 0.29(0.04) 0.28(0.04) 0.25(0.04) 0.28(0.04)
Q 0.72(0.06) 0.64(0.07) 0.64(0.07) 0.62(0.07) 0.59(0.07) 0.62(0.07)

Rosetta-Baker RMSD 4.7(2.2) 7.5(3.4) 8.4(4.3) 7.6(4.1) 8.2(2.7) 6.9(3.6)
MT 6.9(3) 13(7.5) 15(9.2) 13(7.8) 13(6.8) 11(5.4)
GDT-TS 0.6(0.21) 0.47(0.15) 0.46(0.13) 0.48(0.15) 0.46(0.13) 0.5(0.18)
Q 0.84(0.08) 0.77(0.1) 0.77(0.11) 0.77(0.01) 0.76(0.07) 0.79(0.09)

Rosetta-Tsai RMSD 2.8(0.8) 6.9(2.8) 5(1.4) 7.3(1.8) 5.7(2) 6.2(2.1)
MT 3(1.1) 9.3(4.9) 5.5(2.2) 10(5.8) 8.3(3) 7.1(2.3)
GDT-TS 0.72(0.08) 0.47(0.08) 0.59(0.09) 0.45(0.06) 0.54(0.09) 0.52(0.12)
Q 0.86(0.05) 0.77(0.08) 0.81(0.08) 0.74(0.07) 0.77(0.07) 0.77(0.06)

CASP-HRD RMSD 2(0.56) 2.6(0.73) 2.6(0.71) 2.6(0.76) 2.8(0.7) 2.6(0.74)
MT 1.1(0.5) 2(0.8) 1.7(0.61) 2(0.83) 2.3(0.11) 1.7(0.79)
GDT-TS 0.83(0.07) 0.75(0.06) 0.78(0.07) 0.77(0.07) 0.75(0.06) 0.78(0.07)
Q 0.93(0.03) 0.9(0.03) 0.91(0.03) 0.89(0.04) 0.88(0.04) 0.91(0.03)

CASP10-stage1 e RMSD 4.7(1.2) 6.6(2.3) 7.1(2.4) 8.2(3.2) 12(4.7) 7.3(2.4)
MT 4(2) 6.6(2) 8(1.6) 10(3.5) 20(3.4) 7.9(2.2)
GDT-TS 0.71(0.1) 0.62(0.13) 0.63(0.15) 0.57(0.16) 0.55(0.19) 0.63(0.14)
Q 0.88(0.04) 0.84(0.04) 0.85(0.04) 0.82(0.06) 0.8(0.06) 0.84(0.06)

CASP10-stage2 e RMSD 4(1.1) 5.9(1.7) 5.9(1.6) 6.7(1.9) 9(2.2) 6.2(1.6)
MT 3.1(1) 5.4(1.6) 5.8(1.6) 6.6(1.8) 14(1.9) 5.4(1.5)
GDT-TS 0.73(0.09) 0.64(0.14) 0.66(0.11) 0.65(0.12) 0.65(0.11) 0.67(0.11)
Q 0.89(0.04) 0.86(0.03) 0.87(0.04) 0.86(0.05) 0.85(0.04) 0.86(0.04)

a All-atom statistical distance-based potential [116].
b The semi-empirical physical potential AMBER99SB-ILDN[117].
c All-atom orientation-dependent statistical potential [85].
d Average value, and mean absolute deviation (in parenthesis) over the data set.
e Only ensembles who contains a decoy with a GDT − TS > 0.4 are included. Compare with Figure 2 in

[95]
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Chapter 7

Protein structure refinement by
optimization

M. Carlsen, P. Røgen, Protein structure refinement by optimization, Proteins: Structure,
Function and Bioinformatics, accepted, 2015.

Abstract. Knowledge-based protein potentials are simplified potentials designed to
improve the quality of protein models which is important as more accurate models
are more useful for biological and pharmaceutical studies. Consequently, knowledge-
based potentials often are designed to be efficient in ordering a given set of deformed
structures denoted decoys according to how close they are to the relevant native protein
structure, but this does not necessarily imply that energy minimization of this potential
will bring the decoys closer to the native structure. In this study, we introduce an
iterative strategy to improve the convergence of decoy structures. It works by adding
energy optimized decoys to the pool of decoys used to construct the next and improved
knowledge-based potential. We demonstrate that this strategy results in significantly
improved decoy convergence on Titan high resolution decoys and refinement targets
from Critical Assessment of protein Structure Prediction competitions. Our potential
is formulated in Cartesian coordinates and has a fixed backbone potential to restricts
motions to be close to those of a dihedral model, a fixed hydrogen-bonding potential
and a variable coarse grained carbon alpha potential consisting of a pair potential and
a novel solvent potential that are b-spline based as we use explicit gradient and Hessian
for efficient energy optimization.

Keywords: Protein structure refinement, knowledge-based potentials, iterative meth-
ods, optimization, funnel sculpting
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7.1 Introduction

The three dimensional structure of proteins is predicted with methods such as com-
parative modelling, if structural information of similar proteins is known and de novo
methods if not[2]. The predicted structures do not always achieve sufficiently high ac-
curacy for them to be used for applications such as drug design, drug screening, ligand
docking or molecular replacement[4]. With the purpose of improving the accuracy of
protein structures, every second year several groups participate in the model refine-
ment category in the Critical Assessment of protein Structure Prediction (CASP)[6].
The number of participating research groups has increased remarkedly from CASP 7 to
CASP 10 and, as a consequence, a number of new methods has been developed. Despite
a growing interest, the improvements in the refinement targets have been small and the
methods have not shown the consistency necessary for them to be used in practise[6]. A
consistent method to improve the accuracy of protein structures is, therefore, desirable
and this work is a step in that direction.

Two different strategies have been developed to refine targets: potential energy min-
imization (PEM)[26, 27, 28] and molecular dynamics (MD)[29, 30, 31]. Potential en-
ergy minimization is a deterministic technique originally used in chemistry to remove
high energies in a molecule. The method, however, is meaningful to use as a refine-
ment method when the energy landscape of a potential function is funnel-shaped - at
least in a neighborhood of the region where the structure is refined. The minimization
algorithm then tumbles down towards the lowest possible state. On the other hand,
molecular dynamics whether deterministic or stochastic is a method that can overcome
the obstacles in the landscape due to the kinetic energy of the molecule. It, however, is
computationally more demanding than PEM.

The main problem in protein structure refinement is that the structure tends to move
the model away from the native structure[26]. The reason for this misbehavior may be
errors in the PEM-potentials or MD-potentials. The MD-potentials are capable of folding
fast-folding proteins[119] but the energy landscape for these proteins is particularly
simple and a more complex energy landscape with valleys, hills and several transition
states and local minima is expected for the CASP refinement targets. Nonetheless, a
MD-based method was the best of all methods to refine CASP 10 refinement targets
which is remarkable as it is the first time a MD-based method wins this category[6].

The starting point of this work is metric training[12] of a knowledge-based potential
where all parameters defining the potential are given by optimizing the linear relation
between decoy-native energy difference and decoy-native distance. In Ref. [120] it is
investigated which notion of distance that is most efficient for metric training of pair po-
tentials. Here we use an anharmonic elastic network model and found it very efficient
for this propose yielding average energy-distance correlations of 0.89 for near native
decoys. However, even if the constructed potential is efficient in ordering a given set of
decoys, there is no guaranty that energy minimization brings the decoys closer to the
native structure. Often a low energy structure close to, and seemingly in an arbitrary
direction from, the initial decoy is found. In this work, we therefore follow an iterative
strategy for improving the decoys convergence toward native structures during energy
minimization. Given a metrically trained potential we minimize a set of decoys and
add the resulting structures back into the pool of decoys. The new decoys will have
lower energy compared to their distance to the native structure than the old decoys. In
a renewed metric training it is thus favorable to raise the energies in the new decoys
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relatively to the old decoys. Hereby, the worst escape directions of the previous poten-
tial have been assigned a relatively higher energy and energy minimization in the next
potential will follow a different and hopefully better path. The idea is similar to the
strategy used in Ref. [121, 57], but here we focus on near native structural refinement
and the metric training allows us to work on many (here 924 non-homologous) pro-
teins and all their decoys simultaneously. Another example of optimizing a potential by
alternating between using it for energy minimization and re-optimizing the potential is
[122, 123]. Here one fixed sequence is first threaded against a library of structures and
the best hits are then relaxed by stochastic energy minimization in the potential. The
hereby generated structures are used to optimize the potential through optimizing the
z-score as function of the relative strengths of otherwise fixed energy terms. References
to optimization of a potential based on a fixed set of structures are given in [12]. Cor-
responding to de novo modeling we perform a test on decoy sets of non-homologous
proteins and of non-homologous CASP refinement targets. We also perform an exper-
iment to see how convergent refinement can become when the potential is specialised
for one protein.

Our potential is formulated in Cartesian coordinates and consists of standard terms
being a fixed backbone potential that restricts motions to be close to those of a dihedral
model, a fixed hydrogen-bonding potential and a variable coarse grained carbon alpha
part consisting of a pair potential and a novel solvent potential. The variable part of the
potential is b-spline based as we use explicit gradient and Hessian for efficient energy
optimization.

7.2 Methods

7.2.1 A backbone model of a protein

We use a backbone model of a protein where each amino acid contains the atoms N , H,
Cα, C and O (except for proline which only has four backbone atoms). This is sufficient
to sustain the backbone structure and the hydrogen bonds in the protein. The backbone
is sustained by restricting the motions mainly to the phi/psi torsion angles by adding
harmonic restraints to the bond lengths, bond angles and rotation about the peptide
bonds. A hydrogen bond is found in a given native structure using the DSSP definition
and sustained by adding harmonic restraints to the bond length H −O. We refer to the
sum of the backbone potential and the hydrogen potential as the local potential EL. The
equilibrium bond lengths, bond angles, torsion angles and hydrogen bonds are always
taken from the initial structure and the spring constants for EL are fixed at 1.

The global potential which we designate as EG only depends on the Cα atoms and
consists of a pair potential EPair and two solvent potentials ES5 and ES9. For each of
the 210 amino acid pairs the pair potential is defined as a cubic uniform b-spline of the
distance between the Cα atoms. The pair potential tends smoothly to zero at distance
9Å and is parametrized using the 8 basis functions shown on Fig. 7.1.

Solvent effects are often quantified using the solvent accessible surface area [38, 39]
but current models also include a volume based term[124]. Solvation effects were
modeled as an example based on calculations of solvent-accessible surface area and
solvent-excluded volumes for the residues of a protein represented as a union of balls
of radius 5Å centered at each Cα atom[12]. Here we make a smooth alternative
that reuse the b-spline functions calculated for the pair potential. It is based on the
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Figure 7.1: The spline basis B1, . . . , B8 for the pair potential and the
partition of unity Count5 and Count9 used for the solvent potential.

observation that the accessible surface area and solvent-excluded volume both correlate
to the number of neighbors. For the 2590 cases where an amino acid occurs only
ones in a native structure used in the Titan-HRD, see Data sets, we find the accessible
surface area and solvent-excluded volume calculated in Ref. [12] highly correlated
(0.97) and the smooth counting of the number of neighbors, non9, defined below has
a clear correlation of -0.87 and -0.89 to the two quantities. We also include a smooth
counting of the number of near neighbors non5 as it is relatively independent of non9.

The smooth partition of unity Count5 (pair) =
∑

k Bk (dpair) is one for dpair ≤ 4 and
tends smoothly to zero for dpair = 5.8 (See Fig. 7.1). For a given residue p we define
its number of neighbours at distance 5 as non5p =

∑
q 6=p Count5 (pairp,q) and finally its

associated potential as

ES5p =
8∑

m=1

amB̃m (non5p) ,

where the am’s depend on the amino acid type and B̃m is a uniform cubic b-spline be-
tween -0.5 and 5. ES9 is defined similairly but here non9p is defined using Count9 (pair) =∑

k Bk (dpair) which is one for dpair ≤ 7 and tends smoothly to zero for dpair = 9 (See
Fig. 7.1) and B̃m is a uniform b-spline between -3.25 and 27. The solvent potential thus
has 320 parameters. The global potential, EG, thus has 2000 parameters in total to be
determined.

7.2.2 Metrics

The decoy-native energy gab for the pair potential and the two solvent potentials are
estimated with three measures. Let subindex i refer to the i-th native structure and
indices i, j refer to the j-th decoy of the i-th native structure. A pair of amino acids
in the native structure are said to be in contact if their distance di ≤ 8. Denoting the
distance between the amino acid pair in decoy j by di,j, the energy gab for the pair
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potential EPair is estimated with the anharmonic potential[103] defined by

NTi,j =
1

Nc

∑
di≤8Å

(
e−(di,j−di)/2 + (di,j − di)/2− 1

)
, (7.1)

where the sum is taken over all contacts and Nc denotes the number of contacts. NT
has the same Hessian as the usual elastic network potential

∑
di≤8Å

(di,j − di)2 but has

the desired property to grow linearly for large values of di,j − di.
The energy gab for ES5 is estimated in the following way: Equivalent to the defi-

nition above we define the total number of neighbors for a given residue p within an
sphere of radius 5Å as non5p. The metric is then defined as

Q5i,j =
∑

p

(non5i,p− non5i,j,p)
2 (7.2)

where the sum is taken over all amino acids. We define Q9i,j in the same manner but
using non9 which is closely related to accessible surface area. Q9i,j therefore models
changes in solvation interaction. Our final metric is a combination of NTi,j, measur-
ing changes to native amino acid pair contacts and Q5i,j and Q9i,j measuring collective
changes to native amino acid neighborhoods including solvation. The chosen combina-
tion NTi,j + αiQ9i,j + βiQ5i,j gives equal numerical influence to the three measures by
fixing the constants αi and βi by a linear fit, NTi,j ≈ αi ·Q9i,j and NTi,j ≈ βi ·Q9i,j.

7.2.3 Parameter optimization

The parameters for the local potential are fixed at arbitrary high values whereas the
parameters for the global potential are determined in the parameter optimization. The
parameter optimization introduced in [12] ideally wants the decoy-native energy gap
to equal the decoy-native distance. As this is not possible it instead minimizes the sum
of squared errors between the native-decoy energy gab and a metric NTi,j + αiQ9i,j +
βiQ5i,j:

f(X) =
∑
i,j

‖EGi,j(X)− EGi(X)−NTi,j − αi ·Q9i,j − βi ·Q5i,j‖2 + γ · ‖X‖2, (7.3)

where X is a vector with 2000 variables and the last term is added since we are looking
for a Tikhonov regularized solution which ensures that the quadratic matrix has full
rank. We fix γ at 10−2.

In Ref. [12] where the energy gab was estimated by the root-mean-square deviation
(RMSD) the funnel around each native structure was allowed to have its own slope. By
the normalization of the energy gab introduced here this is not necessary reducing the
number of parameters quite substantially by the number of native structures.

7.2.4 Structural optimization

The algorithm which we use for PEM is a modified Newton method whose descent direc-
tions combines the gradient and directions of negative curvature of the Hessian[58, 59].
The non-convex Hessian based method searches for a local minimum that satisfies the
first and second order optimality conditions. This means that the gradient is vanishing
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Table 7.1

Training set x y z w x× y × z × w l[Å]
Single 1 10 20 1 200 1

Titan-HRD 100 10 20 10 200000 0.5

and the Hessian is positive semidefinite of the potential when evaluated at the opti-
mum. We used the method described in [125] to calculate the gradient and Hessian
of the local and global potential. One of the advantages of using this method is that
vectorization techniques can be used in the implementation. Vectorization is a tech-
nique in Matlab where vector and matrix operations are used instead of loops. One of
the advantages of using the expressions derived in this work is that the block matrices
are expanded in terms of operators which are outer products and thus vectorizable.
The function accumarray is used to build the gradient and Hessian which has a sparse
matrix as output option. This function takes six arguments as input of which the first
three and the last here are relevant (see Matlab documentation for details). In the first
two arguments the index and the matching values are given as inputs ( a vector with
1 or 2 columns for the gradient and Hessian respectively which specifies where in the
matrix the values are going to be placed). In the third argument, the size of the ma-
trix is specified and in the last argument we may specify whether the output matrix is
sparse or dense. In this way, it is fast to place the block matrices at their right posi-
tion in the Hessian. The principle is the same whether we implement the derivatives of
bond lengths, bond angles or torsion angles. Overall, the gradient and the Hessian of a
molecular potential can be calculated without having to use a single loop. This leads to
fast evaluation times in high-level languages. The implementation was done in Matlab
(The Mathworks, Inc., Natick, MA).

7.2.5 Improving decoy-convergence

Our iterative method to improve decoy-convergence shifts between a parameter opti-
mization of the potential and a structural optimization of decoys. In the first round, we
sculpt the surface using the optimization procedure described above and an initial train-
ing set (see Data sets below). Next, we minimize a set of x random decoy ensembles
containing y random decoys until the minimization has moved l Angstrom away from
the initial decoys. From the minimization runs we select z new decoys which have been
chosen as uniformly as possible. The x× y × z new decoys in total are finally added to
the training set with a weight factor w. At subsequent rounds, x× y× z new decoys are
produced at each round. The basic idea behind the iterative procedure is to raise the
energy of the decoys that have moved away from the native structure. The parameters
of the initial training sets can be found in Table 1.

7.2.6 Data sets

The training set used is Titan-HRD. Titan-HRD is generated using the torsion angle dy-
namics program DYANA41 subject to distance constraints to preserve the hydrophobic
core of a protein[47, 107]. It is assumed that the hydrophobic core includes all residues
within a β strand as well as all hydrophobic residues within an α-helix. The decoys
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Figure 7.2: The size of the relative change ‖Xi −Xi+1‖2/‖Xi‖2 be-
tween the i-th and i + 1-th parameter sets are shown for each itera-
tion in the first experiment.

are generated by adding constrains to the distance between the hydrophobic and hy-
drophilic amino acid and relaxing these thus controlling the nearness of the decoys.

We use two different sets from the Titan-HRD set. The first set consists exclusively of
one native structure (CATH code 1-10-10-10) and 1066 near-native decoys. We divide
this set into a training set of 966 decoys and a independent test set of 100 decoys. The
second set includes 1066 non-homologous native structures in total and on average 946
near-native decoys pr. native structure. From this set we use 924 native-decoy ensem-
bles as a training set and 142 native protein and decoy ensembles as an independent test
set. Note that as the Titan-HRD native structures are non-homologous this is also the
case for the training and test set. Finally, we test our potentials on a collection of 37 re-
finement targets picked from the CASP 7 to 10 refinement experiments. The Titan-HRD
predates the CASP targets and no significant sequence similarity is present between the
two sets. We denote these test set by TSingle, TTitan-HRD and TCASP, respectively.

7.3 Results

A consistent force field is a force field that improves the resolution of decoys and most
importantly does no harm to it. The purpose of this work is to show that the iterative
procedure that we have developed generates a force field that is more consistent than
the raw force field. We perform two experiments in total.

The first experiment is meant to give an upper bound on the obtainable performance
of structural refinement through energy optimization and we thus only sculpt the en-
ergy landscape in a region about one native structure. We first train the raw potential
and the decoy-convergence improved potential on a single native-decoy ensemble and
test the potential on a set of decoys that have been generated in the same manner as
the training set. Fig. 7.2 shows the convergence of the parameters for this experiment.
Apparently, the convergence is slow and the fluctuations of the norm large. We decided
to stop the algorithm after 1000 iterations. The result of this experiment is shown in
Fig. 7.3. We see that the force field based on the iterative method outmatch the raw
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Figure 7.3: Data for the first experiment on the TSingle test set. Left:
Showing the RMSD improvements (defined as the the initial minus
the final RMSD to the native structure) as a function of initial RMSD.
Right: Showing the TM∗ improvements (defined as the the initial
minus the final TM∗ to the native structure) as a function of ini-
tial TM∗. The results were obtained by energy minimization when
allowing up to 1Å RMSD derivation from the initial decoy for the
raw potential (blue) and the decoy-convergence improved potential
(red). The two solid lines are means with a bin width of 0.5.

force field and achieves considerable improvements in RMSD and TM∗1. The decoy-
convergence improved force field is very consistent since the quality of almost all of the
decoys has been improved. This is by no means the case for the raw force field where
about 1/4 of the decoys have larger RMSD to the native structure after the structural
optimization. Fig. 7.4a shows the RMSD alignment of the native, decoy and energy
refined decoy and Fig. 7.4b carbon alpha displacements for each residue in this align-
ment. The main conformational differences in the decoy are found in the loop regions
but the most consistent improvements obtained by the energy minimization are related
to the arrangement of the four helices and the loop residues close to the helices. Next,
we consider a more difficult experimental setup. We train and test the potentials on
a large set of non-homologous protein ensembles. This experiment is more difficult
than the first experiment as we require that the knowledge-based potential is capable
of sculpting the energy landscape around a large set of proteins all non-homologous to
the training proteins. We stopped the iterative decoy-convergence improvement proce-
dure after 500 iterations in total involving 500.000 PEMs of length 0.5 Angstrom. It is
expected that the parameters of the potential are only slowly converging as only half
of the original decoys have been subject to PEM as illustrated in Fig. 7.5. The initial
potential is quite efficient in ordering the decoys as the average correlation between the
potential and the native-decoy training distance NTi,j + αi ·Q9i,j + βi ·Q5i,j on the test
set TTitan-HRD is 0.78 and compatible with the corresponding number of 0.79 reported in
both [12, 47]. Even though our iterative process adds new decoys to the training, this
high energy-distance correlation is not disturbed on the original decoys. In fact we find
the average energy-distance correlation to improve to 0.87 after the iterative process,

1TM∗ is defined as 1-TM where TM is introduced in Ref. [115]. The TM-score has the advantage when
compared to RMSD that the score is less affected by chain length and outliers.
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(a) Native model of 1eijA (magenta) shown
together with the RMSD aligned initial model
(blue; 2.4 Angstrom to native structure) and
refined model (green; 2 Angstrom to native
structure).
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(b) For each residue the carbon alpha dis-
placement between the native model and the
initial model (blue) and the final model (red)
respectively. The residues in secondary struc-
tures have been coloured magenta.
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Figure 7.5: The size of the relative change ‖Xi −Xi+1‖2/‖Xi‖2 be-
tween the i-th and i + 1-th parameter sets are shown for each itera-
tion in the second experiment.

which is close to the 0.89 reported in [120] when training and testing a pair potential
on the elastic network energy NT. All these high correlations are reported on the Titan
High Resolution Decoys and are expected to decrease if calculated on decoys with lower
resolution[120]. The results for the second experiment are illustrated in Fig. 7.6. We
observe that the RMSD improvements and TM∗ improvements of the initial decoys have
a significant dependence on the initial RMSD and TM∗ and the convergence of PEM is
almost uniformly improved by the iterative procedure. In fact, all targets with RMSD
greater than 2 Angstrom and TM∗ greater than 0.1 are most likely to be improved.
Hence both potentials are more consistent the greater the initial RMSD or TM∗ is. We
also note a consistency of the performance seen on the Titan HRD as the results are
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Figure 7.6: Data for the second experiment on the TTitan-HRD test
set. Showing the RMSD improvements (left) and TM∗ improvements
(right) obtained by energy minimization when allowing up to 0.5Å
RMSD deviation from the initial decoy for the raw potential (blue)
and the decoy-convergence improved potential (red) as a function
of initial RMSD (left) and initial TM∗ (right). The two solid lines are
means with a bin width of 0.5.

almost the same if we perform the test on the Titan-HRD training set (data not shown)
instead of the non-homologous test set.

We also tested the two potentials from the second experiment on 37 CASP refine-
ment targets. We did this to test the raw potential and the decoy-convergence improved
potential on a difficult and realistic test set. The set is difficult as it has been gen-
erated by many different prediction methods that our potentials have no knowledge
about. Also each model is chosen as the best model provided by a number of prediction
servers[6] and they are thereby better than the current prediction performance of the
field. The results shown in Table 2 are however encouraging for the targets that have
a large RMSD or TM∗. The previous test showed that both the raw potential and the
decoy-convergence improved potential are more consistent the greater the initial RMSD
or TM∗ of a decoy is. We find the same tendency for the CASP refinement targets. Over-
all we improve 50% of the targets which is an acceptable result compared to the 31%
reported in CASP10 [6].

For the first and second experiment that we have performed we set a limit at 1
Angstrom and 0.5 Angstrom, respectively, as the maximal displacement of a decoy. The
setting of this limit is of course a subjective choice. We therefore found it to be an
interesting investigation whether the experiments would have turned out differently if
we had set a different limit. The results for the experiments with a different limit can
be found in the supporting material. Here, Fig. S1a(S1b) and S1c(S1d) correspond to
Fig. 7.3 for a limit at 0.5 Angstrom and 4 Angstrom for RMSD (the TM-score) and Fig.
S2a (S2b) and Table S1 correspond to Fig. 7.6 and Table 2 for a limit at 1 Angstrom
for RMSD (the TM-score). The result of the first experiment confirms our choice of 1
Angstrom as a reasonable limit. It would have been a very conservative choice had we
chosen a limit at 0.5 Angstrom instead. On the contrary, when we let the rutine run until
it reaches 4 Angstrom or until it converges (often it is seen that the rutine converges
before 4 Angstrom) we find that there is are much greater probability of doing harm to
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the structure. The choice of 1 Angstrom is thus a compromise between avoiding doing
harm to the structure and having displacements of a reasonable size. The limit of 1
Angstrom for the second experiment is however questionable. The method becomes
much more consistent if we reduce this limit to 0.5 which thus was our prefered choice.

Overall, for all of the experiments we performed, we find that that decoy-convergence
improved potential outmatches the raw potential in both experiments. This result is
very satisfactory in that we have shown that the iterative method works in different
experimental setups.

7.4 Conclusions

We introduce a smooth knowledge based protein potential with explicit gradient and
Hessian that both are needed for computationally efficient energy minimization and
run energy minimizations that each is terminated after 0.5Å RMSD deformation from
the initial structure. Our iterative strategy to improve decoy-convergence of the po-
tential works consistently for all native-model distances represented. Models at least
3Å RMSD from the native structure are generally brought closer to their native struc-
ture by energy minimization, whereas near native models generally are degraded by
energy minimization. The library of decoy structures for both test and training is of
non-homologous proteins. Hence, our experimental setup corresponds to de novo pro-
tein modeling which typically provides models in the range 4 − 8Å form the native
structure where our method seems applicable. We get a peak in the direction of com-
parative modelling by optimizing structural refinement around a single native structure
(as e.g. done in [122, 123, 126]). In this case we get decoy convergence for all decoys
independent of initial native-decoy RMSD.

We next allow the energy minimization to deform models up to 1Å RMSD from the
initial structure and find energy minimization seemingly capable of performing larger
structural changes as a local minimum almost never is found after 1Å deformation. For
1Å deformations the iterative strategy also consistently improves the performance of
energy minimization in the potential; but even the improved potential generally de-
grades the decoys. Hence, even if an energy minimization at first improves the model it
generally degrades it when allowing larger conformational changes. This effect appears
less pronounced on the CASP refinement targets where targets improved by 0.5Å RMSD
energy minimizations generally also are improved by 1.0Å RMSD energy minimizations.
We expect the structural drift of longer energy minimizations and the convergence limit
of 3Å RMSD for shorter energy minimizations both mainly to be caused by the func-
tional form and coarse graining of the energy function. I.e., we expect that the refine-
ment limit may only be pushed significantly closer to the native structure by expanding
the functional form of the potential or by narrowing the range of its application; e.g., to
that of homology modeling where a larger number of sequence similar, and thus likely
also structurally similar, structures are known. Both directions are subject for further
investigations.

Our results on the CASP refinement targets with respect to RMSD were neither worse
nor better than most of the groups participating in the CASP 10 refinement category. As
reported in Ref. [6] on the evaluation of the CASP 10 refinement targets the majority
of the groups fail to improve the quality of targets. As such it is not surprising that our
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methods also fail to improve several of the models. Our main result is therefore the
significant increase in decoy convergence we observe after using the iterative method.

Finally, the iterative procedure to improve decoy-convergence can be used for any
potential designed by, or partially by, its performance on decoys. The linear parame-
ter dependence of the potential used here is not strictly necessary, but it gives a com-
putationally efficient shaping of the potential when combined with the least squares
formulation of metric training. Similarly, the procedure does not require deterministic
energy minimization which may be exchanged with, e.g., a stochastic method[57, 126].
It is thus our hope that other research groups will use a similar strategy to improve the
decoy-convergence of their knowledge-based potentials.
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Target RMSDi TM∗i ∆RMSD1 ∆TM∗1 ∆RMSD2 ∆TM∗2
TR432 1.65 0.08 -0.08 -0.01 -0.15 -0.02
TR453 1.40 0.11 -0.08 -0.02 -0.22 -0.02
TR454 3.24 0.20 0.02 -0.00 0.03 -0.00
TR461 1.63 0.07 -0.07 -0.01 -0.07 -0.01
TR464 2.94 0.27 -0.07 -0.01 -0.03 0.00
TR469 2.18 0.26 -0.07 -0.02 -0.35 -0.06
TR476 6.77 0.57 0.06 0.00 0.24 0.01
TR488 2.11 0.12 -0.04 -0.01 -0.08 -0.02
TR517 4.65 0.23 -0.04 -0.01 0.00 -0.01
TR530 1.99 0.15 -0.07 -0.02 -0.04 -0.02
TR557 4.07 0.26 -0.03 -0.00 0.03 0.00
TR567 3.44 0.16 -0.00 -0.01 0.09 -0.00
TR568 6.15 0.44 -0.03 -0.01 -0.07 -0.02
TR574 3.58 0.35 -0.07 -0.01 0.05 -0.00
TR592 1.26 0.08 -0.02 -0.01 -0.04 -0.01
TR594 1.82 0.10 -0.05 -0.01 -0.05 -0.01
TR606 4.85 0.27 -0.03 -0.01 0.01 0.00
TR622 7.47 0.28 0.03 -0.00 0.16 0.00
TR624 5.19 0.49 -0.04 -0.00 0.06 -0.00
TR644 2.71 0.14 -0.01 -0.01 -0.04 -0.01
TR661 2.74 0.11 -0.02 -0.01 0.03 -0.00
TR662 1.92 0.19 -0.09 -0.02 -0.16 -0.02
TR663 3.37 0.23 0.01 -0.00 0.10 0.00
TR671 7.72 0.49 0.02 -0.00 0.06 -0.00
TR674 3.44 0.13 0.03 -0.01 0.08 -0.00
TR679 3.95 0.18 -0.02 -0.01 -0.01 -0.00
TR696 3.52 0.27 -0.04 -0.01 0.04 -0.01
TR698 4.65 0.30 0.06 -0.00 0.07 -0.00
TR705 4.71 0.33 -0.07 -0.01 -0.02 -0.00
TR708 4.63 0.10 -0.00 -0.01 0.03 -0.00
TR710 2.44 0.13 -0.06 -0.01 -0.05 -0.01
TR712 1.99 0.06 -0.07 -0.01 -0.08 -0.01
TR722 4.42 0.42 0.06 0.00 0.13 0.01
TR723 2.23 0.12 -0.07 -0.01 -0.16 -0.02
TR724 5.95 0.36 0.09 -0.00 0.05 -0.00
TR738 1.40 0.04 -0.04 -0.00 -0.08 -0.01
TR747 11.95 0.28 0.04 -0.01 0.09 -0.01
TR752 1.50 0.07 -0.05 -0.01 -0.04 -0.01

Table 7.2: Data for the second experiment on the TCASP test set
where the convergence limit L is set at 0.5Å. RMSDi and TM∗i
refers to the initial target RMSD and 1−TM-score value before
minimization. ∆ RMSD1 and ∆ TM∗1 are the improvements in
RMSD and TM-score for the raw potential and ∆ RMSD2 and ∆
TM∗2 are the improvements in RMSD and TM-score for the decoy-
convergence improved potential.
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Chapter 8

Designing smooth knowledge-based
potentials with local minima in native
structures

M. Carlsen, P. Røgen, Designing smooth knowledge-based potentials with local minima
in native structures, in submission, 2015.

Abstract. One obstacle to protein structure prediction is that knowledge-based poten-
tials generally do not find the native structure of a protein to be the lowest energy state.
We therefore present two methods to design a smooth potential with local minima in
a set of native structures. The first method is a tractable relaxation of the usual stabil-
ity conditions requiring almost vanishing gradient and an almost positive semidefinite
Hessian in the desired minima while optimizing a least squares fit to a linear relation
between decoy-native energy difference and decoy-native distance on a larger set of
protein folds. The second method is based on an iterative strategy where a knowledge
based potential first is defined by the same least squares fit. Next, structural optimiza-
tion of an unstable native structure yields structures with lower energy than the native
structure and these are added to the existing decoy library and the next improved po-
tential is constructed. We demonstrate that both methods are capable of sculpting a
knowledge-based potential with local minima close to a smaller number of native struc-
tures and demonstrate that this is very restrictive for the coarse grained knowledge-
based potential. The methods developed here can be used for any smooth potential
that is linear in its parameters.

Keywords: Knowledge-based potentials, local minima, optimization, semidefinite pro-
gramming, funnel sculpting.
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8.1 Introduction

The energy landscape of a protein is difficult to predict due to its complexity[127].
While several views on the shape of the energy landscape have emerged, a general
agreement dating back to Anfinsen’s experiments is that the native protein is a stable
global minimum in the energy landscape[128]. Hence, if a potential should be able to
be used for protein folding simulations and stability analysis, then the potential must
have a minimum when evaluated at, or at least near, a native protein structure. The
purpose of this study is to introduce an optimization technique allowing you to enforce
local minima in the energy landscape for a set of native protein structures.

It is well-known that the molecular potentials have many local minima due to the
roughness of the energy landscape[129] and several searching strategies have been de-
veloped to find the true global minimum[130]. Even though these potentials have been
used with great success to study protein folding, they are not sufficiently accurate to
separate native from non-native structures. Different methods have therefore been de-
veloped to design knowledge based potentials which are able to recognize the native
(or near native) structure in an ensemble of generated structures. Here, the parameters
of the score function are estimated using a linear program[131, 50, 43, 45, 132, 133].
The linear program is primarily a feasibility problem where a score function is con-
structed from a set of linear inequalities[44]. The size of the energy gab between a
native structure and a set of decoys is, however, not optimized. A non-linear z-score
minimization problem is solved instead to maximize the energy gab[52, 134, 135]. An
excellent review of these methods can be found in ref. [136].

The potentials most often used for optimization are non-smooth discriminators.
A Chebyshev expanded and thus smooth potential has been developed for Z-score
minimization[121] and for protein folding[57] where they use an iterative method
based on the idea that the energy landscape is funnel-shaped[137, 138, 139, 140].
The iterative method cycles between a stochastic search algorithm and a parameter es-
timation with the end goal of obtaining a potential with maximal funnel smoothness
and the property that the search algorithm converges to a native structure. Since the
search algorithm is a stochastic Monte-Carlo algorithm, the method they suggest could
also have been used for non-smooth potentials where the gradients are not available.

Recently, a quadratic optimization procedure has been suggested that optimizes a
knowledge-based potential to have a high correlation to RMSD[12]. While this method
was developed with the purpose of training a knowledge-based potential, it can be seen
as a method to model the energy gab given that RMSD is sufficiently small. Further-
more, it can be applied to any measure of distance such as The Global Distance Test
GDT-TS, the number of native contacts, a spring model such as FlexE[11] or MT[120]
or the Scaled-Gauss Metric[141]. The importance of the choice of distance measure in
the training of a b-spline expanded pair potential has been investigated in ref. [120].

Here, we introduce a novel method to design a potential that has local minima for
a set of native structures. The conditions for a local minimum are a vanishing gradient
and a positive semidefinite Hessian. These conditions are also referred to as the first
and second order optimality conditions since they are the two convergence criteria for
a Hessian-based minimization algorithm. Thus, we require the following conditions to
be satisfied:

∇E(X)|native = 0

∇2E(X)|native � 0,
(8.1)
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where E is a potential, X is vector containing our 2000 model parameters and the
symbol � indicates that the matrix is positive semidefinite. This leads to a semidefinite
problem due to equation (8.1) (the Hessian cannot be positive definite as the energy
of a protein is independent of translation and rotation). We use a relaxation of the
original problem where the norm of gradient and the size of the negative eigenvalues
of the energy potential are kept small. This relaxation allow us to decouple the coarse
and fine grained parts of the potential and reduces the size of the optimization problem
significantly. Further away from the native structures the potential is sculpted using
same method as in ref. [12, 120]. Finally, we introduce a fast iterative method to
approximately stabilize a set of native structures. Starting with a potential sculpted as
in ref. [12, 120] we perform energy minimization of the native structure. If the native
structure is not stable this leads to a structure with lover energy. We then add this
structure to the pool of decoy-structures and re-sculpt the potential. In the re-sculpting
it is favorable to raise the potential in the new decoy and the worst escape direction
from the native structure in the previous potential is now changed.

8.2 Methods

8.2.1 The local and global potential

We use the knowledge-based potential described in Ref. [142]. The knowledge-based
potential consists of three parts: a backbone potential, a hydrogen potential and a
global potential. The backbone model consists of harmonic terms for the main atoms
in the backbone (N , H, Cα, C and O). We thus only allow small variations of the bond
lengths, bond angles and the dihedral angles about the peptide bonds which means
that our model restricts motions to be close to those of a dihedral angle model. The
hydrogen potential is harmonic potential defined on the O −H bonds, the bond angles
N − H − O and H − O − C and the torsion angle N − H − O − C for each hydrogen
bond. We refer to the sum of the backbone potential and the hydrogen potential as the
local potential EL. Our coarse grained non-bonded global potential, EG, consists of a
pair potential and a solvent potential and is defined on the Cα atoms and expanded in
terms of b-spline basis functions.

8.2.2 Formulation of the optimization problem

Our aim is to estimate the energy gab for the global potential EG(X) with the parame-
ters X given that the criteria in equation (8.1) are satisfied. We use the metrics NT , Q9
and Q5i,j described in Ref. [142]. Let the subindex i refer to the i-th native structure
and indices i, j refer to the j-th decoy of the i-th native structure. The objective function
is a quadratic function given by

f(X) =
∑
i,j

‖EGi,j(X)− EGi(X)−NTi,j − αi ·Q9i,j − βi ·Q5i,j‖2 + γ · ‖X‖2, (8.2)

where the last term is added since we are looking for a Tikhonov regularized solution
which ensures that the quadratic matrix has full rank. We fix γ at 10−2 and fix the
constants αi and βi by a linear fit, NTi,j ≈ αi · Q9i,j and NTi,j ≈ βi · Q9i,j for each i.
This means that for each decoy ensemble all of the metrics have the same energy scale.
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Furthermore, we require that the first parameter for the pair potential in each b-spline
expansion for the pair potential is non-negative. The first criterion is not difficult to
introduce as it leads to an ordinary least square with linear constraints. We require
that the Hessian in the i-th native structure is positive semidefinite to ensure that our
potential satisfies the second criterion:

∇2Ei = ∇2ELi +∇2EGi(X) � 0, (8.3)

where ∇2EGi and ∇2ELi are the Hessian of the global and the local potential for the
i-th native structure. The non-linear semidefinite optimization problem is thus

minimize
X

f(X)

subject to ∇EGi(X) = 0, i = 1 . . . N

∇2ELi +∇2EGi(X) � 0, i = 1 . . . N,

(8.4)

where N is the number of native structures. The formulas for the gradient and Hessian
of an internal coordinate, and thus of ELi, can be found in Ref. [125]. It is preferable
to use a relaxation of the problem where the gradient and the negative eigenvalues are
kept small. This leads to the relaxed SDP :

minimize
X

f(X)

subject to ‖∇EGi(X)‖ ≤ ε, i = 1 . . . N

∇2ELi +∇2EGi(X) � −εI, i = 1 . . . N

(8.5)

where ε is set to 10−5. We use the optimization package SDPARA [143] which solves a
linear semidefinite problem (see below) utilizing parallel computing. The gradient and
Hessian of the local and global potential have been calculated using the algorithms and
formulas in [125]. We introduce two reformulations of the problem to a form that has
better convergence properties and where we can use parallel computing.

8.2.3 Reformulation - 1

The program SDPARA which uses parallel computing requires the objective function to
be linear. Hence, we have to reformulate the optimization problem to an equivalent
semidefinite problem with a linear objective function. Usually, it is not preferable to
reformulate a quadratic problem to a semidefinite problem as it takes longer time to
solve the equivalent semidefinite problem (if it can be solved) even though the solution
is the same[144]. Here, however, we solve the optimization problem for a large number
of proteins and thus a large number of linear matrix inequalities. We expected that to
solve such a large problem it would pay off to reformulate the problem to an equivalent
semidefinite problem where parallel computing is used.

In the following, we sketch how a quadratic problem can be reformulated to a
semidefinite problem. We consider the unconstrained quadratic problem

minimize
X

f(X), (8.6)

where X is a variable and the objective function f(X) is a quadratic form

f(X) = XTBX + XTc + d. (8.7)
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The matrix B has a Cholesky decomposition, B = ATA, since B is positive definite and
f can thus be written as

f(X) = (AX − b)T (AX − b) + constant, (8.8)

such that c = −2ATb. The last term is not important and the original problem is thus
equivalent to an ordinary least square problem

minimize
X

‖AX − b‖22. (8.9)

This problem is equivalent to:

minimize
X,t

t

subject to ‖AX − b‖22 ≤ t.
(8.10)

It can be shown that (see for instance Ref. [145])

t− ‖AX − b‖22 ≥ 0 iff.
(

I AX − b
(AX − b)T t

)
� 0. (8.11)

The problem above is therefore equivalent to the semidefinite problem[144].

minimize
X,t

t

subject to
(

I AX − b
(AX − b)T t

)
� 0,

(8.12)

with the variables X and the new variable t.

8.2.4 Reformulation - 2

The linear matrix inequalities in equation (8.5) can be reformulated to an equivalent
form which reduces the number of elements in each matrix by a factor of 5 × 5. The
price we pay is that the matrices become more dense. Here, we will only consider amino
acids with 5 backbone atoms which means that we exclude proline which only has 4
backbone atoms. Each of our linear matrix inequalities have the partitioned matrix form

∇2ELi +∇2EGi(X) + εI =

(
HLi,1 + εI HLi,2

HT
Li,2

HLi,3 +HGi(X) + εI

)
� 0, (8.13)

where HLi,1 depends on the N , H, C and O atoms, HLi,2 on the N , H, Cα, C and O
atoms, and HLi,3 and HGi on the Cα atoms in the backbone of a protein. Since HLi,1 is
positive definite, it can be shown that

∇2ELi +∇2EGi(X) + εI � 0 iff. HGi(X) +HLi,3 + εI −HT
Li,2

(
HLi,1 + εI

)−1
HLi,2 � 0.

(8.14)
The matrix HGi(X) + HLi,3 + εI − HT

Li,2

(
HLi,1 + εI

)−1
HLi,2 is referred to as Schur’s

complement. The optimization problem can thus be formulated as

minimize
X

f(X)

subject to ‖∇EGi(X)‖∞ ≤ ε, i = 1 . . . N

HGi(X) +HLi,3 + εI −HT
Li,2

(
HLi,1 + εI

)−1
HLi,2 � 0, i = 1 . . . N.

(8.15)
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The size of the matrices in the linear matrix inequalities are reduced by a factor of 5× 5
since each of the HGi(X) matrices is a 3n × 3n matrix involving only Cα atoms where
n is number of amino acids in the protein. Using the first reformulation above, the final
relaxed SDP form is:

minimize
X,t

t

subject to
(

I AX − b
(AX − b)T t

)
� 0.

‖∇EGi(X)‖∞ ≤ ε, i = 1 . . . N

HGi(X) +HLi,3 + εI −HT
Li,2

(
HLi,1 + εI

)−1
HLi,2 � 0, i = 1 . . . N,

(8.16)

with the variables X and t.

8.2.5 An iterative method to generate a better data set

The training set we use, see Data sets, consists mainly of decoys with an RMSD value
between 2 and 3 Angstrom. Since the training set lacks decoys within a distance of 2
Angstrom, it is not surprising that it does not lead to a potential which when evaluated
at a native structure has positive semidefinite Hessian and a vanishing gradient. We,
therefore, asked the question whether it is possible to obtain a potential with the desired
local properties if we use a fined-tuned training set instead.

With the purpose of investigating this, we introduce an iterative method to gener-
ate a new training set which consists of near-native decoys with a RMSD less than 1
Angstrom. The new training set is generated in the following way: First we determine
the parameters to the global potential with a least square optimization using the origi-
nal training set. Next, we start a minimization algorithm from a native structure until
it is at a RMSD distance of about 1Å or the difference in function value is less than
10−6. From this trace of decoys we pick a set of 20 decoys. We are interested in having
a distribution of decoys with RMSD distance between 0 to 1 Angstrom so the decoys
have been chosen as uniformly as possible. The decoys are added to the training set
and we thereby obtain a new training set with decoys having RMSD values less than
1Å. The new decoys are then added to the decoys with a weight factor of 100. When
reoptimizing the potential its favorable to raise the energy of the new decoys if possible
and hereby hopefully close the worst possible direction of the previous potential. The
algorithm is continued iteratively. The minimization algorithm used to energy mini-
mize protein structures in this study is a Hessian-based algorithm that uses directions
of negative curvature [58, 59].

Finally, we remark, that the spring constants for the hydrogen potential are so low
that it for the iterative method is possible to stretch a hydrogen bond during a minimiza-
tion such that the bond angles take values close to π. There may therefore be a risk of
dividing by zero. We decided to turn off the bond angle and torsion angle potentials for
the hydrogen potential to ensure numerical stability of the minimization routine which
thereby is a O-H distance potential only.

8.2.6 Data sets

We use a training set taken from the Titan-High Resolution Decoys which for 1400 non-
homologous proteins are generated by the torsion angle dynamics program DYANA41
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Table 8.1: The orthogonal bun-
dle alpha-helix proteins used in
this study.

Name CATH3.5 Size
1eijA 1-10-8-140 72

1awcA 1-10-10-10 110
1ahdP 1-10-10-60 68
1aa7A* 1-10-10-180 158
1ji8A* 1-10-10-370 111
1dp3A 1-10-10-450 55
1a7wA 1-10-20-10 68
1hryA 1-10-30-10 73
1afhA 1-10-110-10 93
1b1uA 1-10-120-10 117
1cmaA 1-10-140-10 104
1cooA 1-10-150-20 81
1b0xA 1-10-150-50 72
1d8bA 1-10-150-80 81
1ecwA 1-10-150-90 114
1bnoA 1-10-150-110 87
1fiqA* 1-10-150-120 164
1agrE* 1-10-167-10 128
1ccdA 1-10-210-10 77
1bo9A 1-10-220-10 73

where the hydrophobic core in a protein are subject to constraints[47, 107]. Here we
use a non-homologous subset of 20 decoy ensembles that either belong to the orthogo-
nal bundle alpha-helix class or in the case of the *-marked chains the orthogonal bundle
constitute only one subdomain of the chain. Their pdb-code can be found in Table 8.1.

8.3 Results

An important property of a protein potential is that the native structure is a global
minimum. We propose two methods to generate a potential with local minima for a set
of native structures: 1) A method based on semidefinite programming where the local
minima explicitly is included in the formulation of the optimization problem, where we
use a tractable relaxation of the original problem. We, hereby, permit that the potential
when evaluated at a native structure has a saddle point with small negative eigenvalues.
The purpose of this method is thus to keep the norm of the gradient and the negative
eigenvalues of the Hessian of the potential small for a set of native structures. This
leads to the relaxed semidefinite optimization problem given by equation (8.16). 2)
An iterative method where optimizing the energy surface as measured in a large set of
models of a set of proteins is alternated with generation of additional models through
structural optimization of the native models in the constructed energy surface.
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Figure 8.1: We have solved the optimization problem in equation
(8.16) with N = 0, 1, 3, 5, 7, 10 and 15 conditions. For each of these,
we have plotted the norm of the gradient (a), the lowest eigenvalue
(b), the average negative eigenvalue (c) and the number of negative
eigenvalues (d). There is a decrease by four orders of magnitude for
the proteins that locally have been optimized with the SDP-method.

8.3.1 Using the semidefinite programming method

We consider a set of 20 alpha-helix proteins to investigate how effective the method is.
We solve the optimization problem while enforcing the relaxed minimality conditions
(equation 8.16) for the first N = 0, 1, 3, 5, 7, 10 and 15 proteins in the set. For each
training the negative eigenvalues of the Hessian and the norm of the gradient for all
20 proteins are illustrated in Fig. 8.1a and 8.1b. It is seen that the size of the gradient
and the lowest negative eigenvalue of the energy potential are roughly 10−4 and −10−5

for the optimized native structures corresponding to a decrease with the factor of 104.
The number and average of the negative eigenvalues are shown in Fig. 8.1c and 8.1d.
They both have a notable decrease, as expected. The method thus leads to a potential
whose Hessian when evaluated in one of the N native structures with active constraints
has small and few negative eigenvalues. We used Pearson’s correlation coefficient
to compare the optimal parameter sets found for N = 0, 1, 3, 5, 7, 10 and 15. These
can be found in Table 8.2. The correlation to the N = 0 parameter set decreases
significantly as more proteins are added to the problem. The constrains on the solution
space which increase with N thus lead to significant changes in the solutions to the
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Table 8.2: Correlation between parameters.

M 0 1 3 5 7 10 15
0 1 0.77 0.52 0.33 0.30 0.29 0.28
1 0.77 1 0.59 0.32 0.27 0.30 0.30
3 0.52 0.59 1 0.63 0.56 0.52 0.55
5 0.33 0.32 0.63 1 0.97 0.82 0.59
7 0.30 0.27 0.56 0.97 1 0.82 0.55

10 0.29 0.30 0.52 0.82 0.82 1 0.72
15 0.28 0.30 0.55 0.59 0.55 0.72 1
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Figure 8.2: Showing the correlation between different components
of the energy and a metric. All values are averaged over 20 different
protein ensembles. The full potential has the highest correlation to
all of the metrics except C5. Clearly, there is a drop in correlation
when we add more constrains to the problem.

optimization problem. To investigate this further, we analyzed the average correlation
of the 20 protein ensembles used in the training of the potentials between four metrics
and the produced individual components of the potential as shown in Fig. 8.2. For
the full potential we find that the correlation decreases as N increases, as we would
expect since the solution space is reduced when we add more constrains to the problem.
The pair potential and the solvent potential ES9 have the highest correlation to the
metric. Removing any of the two potentials leads to a significantly lower performance
for small N . For N = 7 the pair potential dominates. For N greater than 10 the average
correlation is about the same for the two potentials. Apparently, the solvent potential
ES5 does not contribute as much as the pair potential and the solvent potential ES5
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Figure 8.3: (a) The global energy of a set of decoys obtained by a
structural optimization from a native structure as function of their
distance from the native structure. (b) After re-optimizing the po-
tential energy function the energy of these new decoys is raised and
correlate and scale well with the decoy-native distance.

to the performance for any N . The difference is small when comparing different the
metrics NTi,j + αi ·Q5i,j + βi ·Q9i,j, NTi,j and Q9i,j (data not shown).

8.3.2 Using the iterative method

The principle behind the iterative method is to generate a new and improved training
set where the energy of a set of near-native decoys which have a lower energy than
the energy of the native structure is raised. This is shown in Fig. 8.3a and 8.3b. The
algorithm shifts between a searching algorithm and a parameter optimization. At each
step we select a set of 20 near-native decoys within a RMSD distance of 1Å from a
structural optimization started at a native structure. These decoys are then added to
the existing training set and we require in the following parameter optimization that
their energy is in concordance with the targets i.e. NT , Q5 and Q9. The decoys have
a lower energy than the native structure since we picked them from a minimization
routine, see Fig. 8.3a. As a consequence, the energy is adjusted in the following energy
optimization, see Fig. 8.3b. The algorithm continues until the change in the parameter
values is sufficiently small. Fig. 8.4 shows the L2-norm between each parameter set
for 200 iterations for a single protein. We see that the change in the parameter values
after roughly 50 steps are small and insignificant. We note that this number decreases
with the weight factor that we use in the parameter optimization and increase with
the number of proteins considered in the iterative method. We have calculated the
norm of the energy gradient as well as the lowest eigenvalues, the average eigenvalues
and the number of negative eigenvalues of the Hessian for a single protein as shown
in Fig. 8.5. We see that there is a small change in the values after roughly 50 steps
in concordance with the fact that the parameters have a small variation after about
50 steps. Furthermore, the gradient and the lowest negative eigenvalue decreases by
roughly 2 orders of magnitude. The iterative method may just as well be used for
more than one protein such that a set of 20 near-native decoys for each of the N =
0, 1, 3, 5, 7, 10 or 15 proteins are added to the trainings set. We have calculated the
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Figure 8.4: For each iteration, we have plotted the relative change
‖Xi−Xi+1‖2
‖Xi‖2 between the i-th parameter set Xi and the i+1-th param-

eter set Xi+1.

norm of the gradient as well as the lowest eigenvalues, the average eigenvalues and
the number of negative eigenvalues of the Hessian for each of these after 200 iterations
in Fig. 8.6. Clearly, 200 iterations is more than enough for one protein. However, we
decided to use 200 iterations as it was sufficient for convergence for all N considered
here. In agreement with the results for a single protein shown in Fig. 8.4, the norm of
the gradient and the magnitude of the lowest negative eigenvalue drops two orders of
magnitude. In Fig. 8.7 we have plotted the average correlation between the metric and
the individual components of the potential. The figures are almost identical to when we
used the semidefinite programming method shown in Fig. 8.2 and the conclusions are
therefore the same as for the semidefinite method.

8.4 Discussion

We have presented two methods to design smooth knowledge-based protein potentials
with simultaneous local minima in each of a smaller set of native protein structures
while still shaping the potential in a larger number of different protein folds. At present
the main reason for doing this is to provide a tool that can investigate if a given func-
tional form of protein potentials can stabilize a set of native structures and quantify how
restrictive it is for a family of potentials.

We model our protein potential in Cartesian coordinates but use a bonded potential
for hydrogen bonds and for the main atoms in the backbone where it allows only small
variations of the bond lengths, bond angles and the dihedral angles about the peptide
bonds and thus restrict motions to be close to those of a dihedral angle model. Our
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Figure 8.5: For the iterative method the norm of the gradient (a),
the lowest negative eigenvalue (b), the average negative eigenvalue
(c) and the number of negative eigenvalues (d)are shown as func-
tion of the number of iterations. The decrease in the values is most
significant for the first 50 iterations.

coarse grained model is similar to the most used carbon alpha distance based pair and
solvent potentials, but as we need explicit Hessian’s, our model is two times continuous
differentiable and is b-spline expanded with 2000 parameters.

Whereas the functional form of our potential is kept similar to basic knowledge
based protein potentials the choice of its parameters are not. All parameters of the
pair and solvent potential are given by so-called metric training where basically the
correlation between decoy-native energy differences and decoy-native distances is opti-
mized simultaneously for a larger set of native structures and decoys of these. Hence,
restricted to a given set of native and decoy structures metric training picks the best
performing potential with the given functional form.

The direct approach to enforce a local minimum in a given native structure is to
require vanishing gradient and positive semidefinite Hessian. We present a relaxation
of this demand that allow us to decouple the coarse grained pair and solvation potential
from the local bonded potential reducing the size of the optimization problem with a
factor of 5 × 5. In the relaxed formulation we enforce a gradient with small norm
and a Hessian with numerically small negative eigenvalues in each native structure
which perhaps may be justified by the final resolution of the native structure. We use
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Figure 8.6: We have plotted four figures for N = 0, 1, 3, 5, 7, 10 and
15 proteins after 200 iterations: the norm of the gradient (a), the
lowest eigenvalue (b), the average negative eigenvalue (c) and the
number of negative eigenvalues (d). We observe a decrease of two
orders of magnitude for the proteins that have been optimized with
the iterative method.

this relaxed formulation as constraints to the metric training of the potential which
unconstraint typically gives linear correlations between decoy-native energy differences
and decoy-native distances of 0.89 for near native decoys.

The method works in the sense that we manage to decrease the norm of the gradient
and the absolute value of the negative eigenvalue of the Hessian with a factor of 104.
While we are pleased with this performance, it may not be optimal performance since
we had to lower the accuracy of the optimal solution to ensure convergence of the solver.
A better performance may be achieved when the SDP solvers become more stable and
accurate.

The second method starts with a potential metrically trained on a set of native and
decoy structures. Each native structure is energy minimized using this potential and the
resulting structures are added to the set of decoys and the potential is re-trained. When
repeating this procedure the potential parameters seems to converge and norm of the
native gradient and the absolute value of the negative eigenvalue of the native Hessian
decrease with at factor of 102 which is quite efficient when taking in to consideration
that the method has no direct control of gradients and Hessians. Hence, the iterative
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Figure 8.7: Showing the correlation between different components
of the energy and a metric where we have used the iterative method.
The results are almost identical to those obtained using the semidef-
inite method as shown in Fig. 8.2.

strategy works relatively efficient and has the benefit of being computationally simpler
than the semidefinite method.

Having established two methods to approximately stabilize a set of native struc-
tures we investigate the important question, whether it is possible to sustain the high
correlation between decoy-native energy difference and distance while we require the
constrains to be satisfied. Both our methodologies suggest that this is possible for only
for a few native proteins since the average energy-distance correlation decreases from
0.93 to 0.92 to 0.87 to 0.51 when 0 (zero), 1, 3 and 5 native structures are stabilized
respectively. This indicates that it is very restrictive to stabilize non homologous native
structures for a potential with the given functional form, and points in the direction of
redoing the experiment for a more detailed model e.g. with a coarse grained potential
that is not spherical symmetric. Another interesting application is to investigate how
many sequence homological structures that can be stabilized with the same potential.
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Conclusions and future work

In this thesis, we have investigated the problem of assessing and refining the quality
of predicted protein structures using knowledge-based potentials. The main purpose of
this thesis is to develop techniques to improve the decoy convergence of our knowledge-
based potential. We succeeded in doing this for shorter energy minimizations in a met-
rically trained potential using an iterative strategy that resulted in a potential that is
less dependent on the initial training set. We found an improvement in performance
by using a metric based on intrinsic geometry and analyzed two methods for finding
the optimal metrically trained potential that simultaneous has a number of native struc-
tures as a local minimum. We also derived new formulas to calculate the first- and
second-order derivatives of a molecular potential that can be implemented with high
efficiency in high-level programming languages based on vectorization. All in all, we
have developed several methodologies that significantly improve the performance of
our knowledge-based potential. While we are pleased with the performance of our
current knowledge-based potential, our results suggest that it has to be modified for it
to be more competitive with state-of-the-art quality assessment and quality refinement
methods.

The performance may be improved by expanding the functional form of our current
knowledge-based potential. The potential is dependent on five atoms for each amino
acid in the backbone of the protein. We have thus ignored the atoms in the side chains.
The spherical symmetry of our current potential may have to be broken using a side-
chain dependent potential that is defined on the center of mass of the side-chain and
resembles a half-sphere model. Other possible extensions are a local L-DE potential or
a coupling potential. The two side-chain potentials, the local L-DE potential and the
coupling potential have been presented in this thesis.

Throughout this work, our knowledge-based potential has been trained on the Titan-
HRD training set. It consists of non-homologous proteins and is generated using torsion
angle dynamics by adding constrains to the distance between the hydrophobic and hy-
drophilic amino acids. Using the same generating procedure we may form a training
set of homologous proteins thus focusing on improving the quality of structures pre-
dicted by comparative modelling. Although this narrows the range of applications to
homological models it most likely will improve the performance.

The applications of the methodologies developed during this study reach beyond
the uses demonstrated here. Our potential is expanded in terms of cubic b-spline basis
functions but the methods apply to any linear expansion of a knowledge-based potential
such as a Chebyshev expansion. In principle also a nonlinear expansion although this
complicates the optimization procedure as it then cannot be written as a least square.
We used a modified Newton method as our potential energy minimization procedure
that allowed us to fold near-native proteins relatively fast and to improve the decoy-
convergence and stability of our knowledge-based potential. This method which relies
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on the first and second derivatives of the potential may be replaced with any energy
minimization method such as the L-BFGS method or a stochastic method.

Finally, it is our hope that the different parts of our knowledge-based potential may
serve as components in a molecular potential. That would make them more accessible
to the protein structure prediction community.
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