
Interactive Rendering Framework for
Distance Function Representations

Csaba Bálint, Gábor Valasek

Eötvös Loránd University
csabix.balint@gmail.com

valasek@inf.elte.hu

Submitted March 5, 2018 — Accepted September 13, 2018

Abstract

Sphere tracing, introduced by Hart in [5], is an efficient method to find ray-
surface intersections, provided the surface is represented by a signed distance
function (SDF) or a lower estimate of it.

This paper presents an interactive rendering framework for visualising ex-
act and estimate SDF representations. We demonstrate the performance of
the system by visualising 3D fractals and its modularity by rendering alge-
braic and meta surfaces. In addition, we discuss SDF estimation of algebraic
surfaces.

Keywords: Computer Graphics, Signed Distance Functions, Real-time Ren-
dering

MSC: 65D18, 68U05

1. Introduction

Rendering surfaces represented by signed distance functions (SDF) has not been
in the spotlight of computer graphics research. Even though fractals have been a
focus of much interest on on-line forums, literature on rendering a more general
representation of surfaces, namely direct visualisation of SDFs, is scarce; the latest
advancement in the field is the contribution of Keinert et. al. in [6] (2014).

A general SDF rendering engine has a far greater flexibility than incremental
image synthesis based systems; even ray-tracers of practice are limited to a fixed set
of surface approximations. In an SDF based rendering engine, CSG1-models, 3D

Annales Mathematicae et Informaticae
48 (2018) pp. 5–13
http://ami.uni-eszterhazy.hu

5

fractals, algebraic surfaces, and meta-surfaces can all be rendered directly without
any pre-processing. This means that the surfaces appear in a considerably higher
quality than any pre-processed polygon approximation.

However, the main disadvantage of using SDFs is the lower rendering speed
compared to incremental image synthesis based rendering engines. Additionally,
traditional ray-tracers and game engines both use the same set of primitives (usually
polygons) which does not include SDFs. This paper focuses on the representation
and rendering of SDFs, with emphasis on the case of algebraic surfaces.

Previous work The algorithm for rendering SDFs known as sphere-tracing was
first investigated by Hart in [5] (1994). It is an iterative ray-tracing algorithm,
illustrated in Figure 1. This algorithm has been commonly used for the past two
decades for rendering SDFs, most notably fractals [3, 4, 7, 9].

Figure 1: Illustration of the sphere-tracing algorithm in 2D.
At every point (red dot) along the ray, the distance to the surface is estimated, in this case, to
the union of a half-plane and a circle. This distance defines a sphere (green circles) in which there
are no intersections between the ray and the surface. Thus, sphere-tracing travels this distance

along the ray to get the next estimate of the intersection point.

Following a short overview of singed distance functions, we introduce an al-
gorithm for algebraic surface visualization. Approximating the surface normal is
common problem, for witch a novel method is presented in Section 5.

2. Signed Distance Functions

In this section, definitions and notations are introduced for future reference. Defi-
nition 2.2 is from Hart’s original work in [5].

Definition 2.1 (Distance to set). Let (X, d) be a metric space, x ∈ X, and A ⊂ X.
Then let d(x,A) := infa∈A d(x, a) (where inf ∅ := +∞).

Definition 2.2 ((Signed) Distance Function). The f : Rn → R function is an
exact (singed) distance function, or (S)DF, if for any ppp ∈ Rn:

1CSG, Constructive Solid Geometry: A tree-like representation of the scene using primitive
objects as leaves, set operations as nodes, and transformations as edges. [2]

6 Cs. Bálint, G. Valasek

f(ppp) = d
(
ppp, f−1(0)

)
(

or f(ppp) =

{
d(ppp, bound(D)) if ppp ∈ D
−d(ppp, bound(D)) if ppp 6∈ D

)
. (2.1)

Where bound(D) = D \ int(D) denotes the boundary of a set.

Definition 2.3 (Distance Function Estimate). The f : Rn → R function is a
(signed) distance function estimation if and only if there exists a q : Rn → [1,K)
bounded (K ∈ R) function, such that f · q is a (singed) distance function.

Remark 2.4. Besides the SDF being an upper bound to the estimate, Definition 2.3
provides a lower bound for the estimate, so sphere-tracing algorithms still converge.

The following theorem by Hart [5] describes how SDFs representing objects
can be combined to create more complex geometries using CSG-like constructions.
Figure 2a shows an application of the polynomial soft-min/max versions of set
operations to various geometries.

Theorem 2.5 (Set operations). Let f, g ∈ Rn → R be (S)DF. Then
(i) {f ≡ 0}∪{g ≡ 0} ={min(f, g) ≡ 0}, (ii) {f ≡ 0}∩{g ≡ 0} ={max(f, g) ≡ 0},
(iii) {f ≡ 0} \ {g ≡ 0} = {max(f,−g) ≡ 0}. Additionally, the min(f, g) and
max(f, g) are (singed) distance function estimates.

(a) Soft-min/max using 3 tori, 3 cylinders, 2
spheres, 1 cube, and 1 plane

(b) Meta-surface of 2 spheres, 1 cube, 1 torus,
and 1 plane

Figure 2: Demonstration of the CSG model capabilities using our rendering engine

Moreover, by using different blending functions between primitive geometries
one can achieve the look of different phenomena, like water [8]. Figure 2b shows
meta surfaces rendered in our system.

3. Algebraic surface estimation

Let us now consider the problem of estimating SDFs to algebraic surfaces of the

form f(x, y, z) =

ni∑

i=0

nj∑

j=0

nk∑

k=0

aijkx
iyjzk (aijk ∈ R). To construct an SDF from this,

we have to use the following theorem [5]

Interactive Rendering Framework for Distance Function Representations 7

Theorem 3.1. If f ∈Rn→R is a (S)DF, it is Lipschitz continuous, and Lip f = 1.

Therefore, for any Lipschitz continuous f function f
Lip f is a signed distance

function estimate. Although algebraic surfaces are not Lipschitz continuous over
R3, they become Lipschitz over any finite bounded subset of space. In this case,
if the distance from a given point to the surface is r, the estimation would be
f(ppp)/Lip f |

Sr(ppp)
= f(ppp)/LipSr(ppp) f , where Sr(ppp) is the sphere with centre ppp and

radius r > 0. This provides the following fixpoint-iteration

F (r,ppp) =
f(ppp)

LipSr(ppp) f
= r. (3.1)

Iterating F on its first argument, r, results in an estimation of the distance function.
Usually, we have to calculate the distance in a certain direction, for example

along a ray. Let sss(t) := ppp+ t · vvv. We must calculate the Lipschitz constant of the
following on a given Sr(ppp) set.

f (sss(t)) =

ni∑

i=0

nj∑

j=0

nk∑

k=0

aijk (px + tvx)
i
(py + tvy)

j
(pz + tvz)

k (3.2)

The substitution method for calculating Lip[−r,r] f ◦sss of (3.2) is treating this
expression as a f ◦ sss ∈ R[t, px, py, pz, vx, vy, vz] seven variable polynomial. Mul-
tiplying out, then ordering the terms, we get N ≤ ni + nj + nk + 1 number of
monomials in t. Let Pn(ppp,vvv) · tn denote the nth monomial.

Therefore, Lip
t∈[−r,r]

(Pn(ppp,vvv) · tn) ≤ n · rn−1|Pn(ppp,vvv)| is the estimate of the Lips-

chitz constant of the nth monomial2, where r is from (3.1), and the sum of these
is the upper-estimate of the Lipschitz constant of f .

The problem with this approach is that in practice, we have to be able to
make symbolic calculations within the engine and generate GPU code based on the
algebraic surface given.

4. Taylor-series method

Our method is based on the fact that a Taylor expansion of a polynomial is itself.
To calculate Pn(ppp,vvv) first we note that Pn = 1

n! (f ◦ s)(n)(0). Now, let us find an
efficient way to compute the nth derivative of f ◦ sss. Let

gijk(t) := (px + tvx)
i
(py + tvy)

j
(pz + tvz)

k
(t ∈ [−r, r]) , (4.1)

so Pn =

ni∑

i=0

nj∑

j=0

nk∑

k=0

aijk
g
(n)
ijk (0)

n!
. Let hijk(t) :=

ivx
px + tvx

+
jvy

py + tvy
+

kvz
pz + tvz

.

Note that g′ijk = gijk · hijk, so g(n+1)
ijk =

n∑

m=0

(
n

m

)
g
(m)
ijk h

(n−m)
ijk , where

2On estimating Lipschitz constants: [1]

8 Cs. Bálint, G. Valasek

h
(n)
ijk(t) = (−1)n · n!

[
i

(
px
vx

+ t

)−n−1

+ j

(
py
vy

+ t

)−n−1

+ k

(
pz
vz

+ t

)−n−1
]
. (4.2)

Thus, h(n)ijk , g
(n)
ijk , and Pn can all be computed, and so is the following approxima-

tion:
Lip
[−r,r]

(f ◦ sss) = Lip
t∈[−r,r]

(
ni+nj+nk∑

n=0

Pn · tn
)
≤

N∑

n=1

n · rn−1|Pn| . (4.3)

Finally, repeating the (3.1) iteration gives us the distance estimate.

Algorithm 1: Calculating Pn
In : ppp,vvv and f in sparce-form:

f(x, y, z) =
∑L
l=0 Al · x

Il yJl zKl

where A ∈ RL ; I, J,K ∈ NL
Out : P ∈ RN is for Pn coefficients.
Temp : G,H ∈ RN for gijk and hijk.
P := (f(ppp), 0, 0, ..., 0);
for l = 0 .. L−1 do

G :=

(
p
Il
x · p

Jl
y · p

Kl
z , 0, 0, ..., 0

)
;

for n = 1 .. N−1 do
Hn−1 :=−(−1)n(n−1)! ·(

Il
vnx
pnx

+ Jl

vny
pny

+Kl
vnz
pnz

)
;

for m = 0 .. n − 1 do
Gn := Gn+

(
n−1
m

)
·GmHn−m−1;

Pn := Pn + 1
n!
Al · Gn;

Algorithm 2: Fix-point iter-
ation

In : The ray ppp,vvv ∈ R3, and P ∈ RN
coefficient vector from Algorithm
1 is given. For better convergence,
a λ ∈ (0, 1] relaxation constant,
and r0 > 0 starting radius, eg.
from linear approximation, is also
given.

Out : r > 0 distance that can be
travelled along the
sss(t) = ppp + t · vvv (t > 0) ray.

Temp : The Lipschitz constants will be
calculated in Lip > 0 variable.

r := r0;
for i = 0 .. iters do

Lip := 0;
for n = 1 .. N do

Lip := Lip + n · rn−1 |Pn|;

r := r · (1 − λ) +
f(ppp)

Lip
· λ;

Figure 3: Novel algorithms for algebraic surface visualization.
First, using equations (4.1)–(4.3), the Pn coefficients of the Taylor expansion of f ◦ sss are calculated.
Second, the fix-point iteration in (3.1) is used to find the right step size for the sphere-tracing algorithm.

Implementing this approach is easier as it does not require symbolic expres-
sions and complex code generation, see the algorithms on Figure 3. Figure 4 sum-
marises our results. The algorithm can be stopped at any derivative thus achieving
quadratic complexity in the number of derivatives and linear in the number of
terms.

Figure 4: Comparison of SDF estimations with capped amount of steps along a ray.
The algebraic surface fK1,K2

(x, y, z) = (x2 + y2 + z2)(K1x
2 +K2y

2)− 2z(x2 + y2) = 0 has a singular
line that makes it hard to visualize from this angle. The Taylor method converges closer to the surface
in less steps in about the same time as the traditional linear and quadratic SDF approximations. The

light-blue means it only takes one step, and in the red region it takes 70.

Interactive Rendering Framework for Distance Function Representations 9

5. Normal estimation

The surface normal at ppp ∈ {f ≡ 0} is defined as the unit vector normnormnorm(ppp) = ∇f(ppp)
‖∇f(ppp)‖2 ,

for any surface defined by the differentiable implicit function f ∈ R3 → R.
In this section, we focus on calculating the normal numerically. The one-sided

(forward or backward) difference method gives an error of O (ε) for the derivative.
A more accurate method is the symmetric difference:

∇f(x, y, z) = 1

2ε
·

f(x+ ε, y, z)− f(x− ε, y, z)
f(x, y + ε, z)− f(x, y − ε, z)
f(x, y, z + ε)− f(x, y, z − ε)

+O

(
ε2
)
. (5.1)

The idea of our approach is to take the following vectors (or stencil)

vvv1 := [+1, 0, 0]>, vvv3 := [0,+1, 0]>, vvv5 := [0, 0,+1]>,

vvv2 := [−1, 0, 0]>, vvv4 := [0,−1, 0]>, vvv6 := [0, 0,−1]> ,
then (5.1) is equivalent to ∇f(ppp) = 1

2ε

∑6
i=1 f(ppp+ ε · vvvi) · vvvi, thus we define

normnormnorm(ppp) =
1

Z

6∑

i=1

f(ppp+ ε · vvvi) · vvvi . (5.2)

where Z ∈ R is the normalising constant. This means that the samples of the
function are taken at the vertices of an octahedron.

(a) Error in relation to ε. Line breaks when the angle between
the analytic and the numeric estimation is zero.

mean median
one-sided 119 562
tetrah. 113 843
octah. 1.0 1.0
cube 0.6 0.7
icosah. 0.5 0.1
dodecah. 0.5 0.1

std max
one-sided 382 306
tetrah. 265 313
octah. 1.0 1.0
cube 0.5 0.6
icosah. 0.4 0.3
dodecah. 0.4 0.3

(b) Relative error to symmet-
ric difference for ε = 0.01

Figure 5: Error of normal estimators measured in cosine distance3.
Our tetrahedron kernel performs slightly better than the one-sided approach and results in a marginally
lower mean error with lower variance. Cube, icosahedron and dodecahedron kernels also slightly out-

performed the symmetric difference, but they also take considerably more samples.

According to our measurements, an optimal stencil vector set would consist of
equal length vectors that fill the space evenly, so the best kernels in these cases

3cosine_distance(a, b) = 1− cosine_similarity(a, b) = 1− cos(θ) = 1− a·b
‖a‖2·‖b‖2

10 Cs. Bálint, G. Valasek

consisted of vertices of platonic solids. Taking every second vertex of a cube gives
us the fastest kernel, the tetrahedron:
vvv1 := [+1,+1,+1]>, vvv2 := [+1,−1,−1]>, vvv3 := [−1,+1,−1]>, vvv4 := [−1,−1,+1]> .

This is as fast as the first-order divided difference, but it gave empirically better
results as shown on Figure 5. Other platonic solids were also investigated.

Potentially, even higher accuracy can be achieved by sampling surface of the unit
sphere with a sequence of low discrepancy, like a Halton sequence. However, this
is usually not needed, because the length of the SDF estimate’s gradient is usually
close to one. Moreover, the normal is needed for calculating lighting effects, and
small errors are not visible.

The implementation supports multiple normal calculation algorithms. The
tetrahedron kernel proved to be faster than the first-order divided difference one.
Symmetric or octahedron kernels introduced barely visible differences in quality
along hard edges.

6. Implementation

Figure 6: Mandelbulb fractal displayed with our rendering engine.
Maximum quality was reached after 156.2ms render time. Shadows were at maximum quality

after 436.2ms. GPU utilisation was 97-99%. GPU: NVidia 640M (480 GFLOPS).

The rendering engine supports operating in a progressive mode, which means
when the camera is not moving, the image quality continues to increase. Therefore,
the engine is optimised for static scenes. The C++ and OpenGL implementation is
highly efficient achieving near 100% GPU utilisation and provides several features.

Firstly, swapping algorithms between passes was a free operation due to the
OpenGL subroutines running on the GPU. This and the algorithms inter-compa-

Interactive Rendering Framework for Distance Function Representations 11

tibility can be used for a short statistical training to determine the best schedule
of algorithms for a given scene.

Secondly, a CSG model creator was also implemented. The user can either write
the program computing the SDF directly or build the CSG tree from primitives
and other program codes both using a built-in graphical interface.

Finally, the shader programs, including subroutines, were generated on-the-
fly, thus the code for the scene geometry is embedded into the code running on
the GPU. This greatly reduced both the distance function evaluation times and
memory consumption.

7. Summary

This paper presented a direct signed distance function visualisation framework and
its application to rendering algebraic surfaces.

We proposed a local signed distance function estimation method to such sur-
faces and investigated the precision of various surface normal estimation heuristics.
We benchmarked the performance of the system by rendering complex scenes in-
corporating CSG elements, meta-surfaces, and the Mandelbulb fractal.

The framework proved to be highly efficient. In addition, it is highly modular,
and outperformed current fractal-viewers [3, 4, 7, 9] in both quality and speed.

References

[1] Kenneth Eriksson, Donald Estep, and Claes Johnson. Applied Mathemat-
ics: Body and Soul. Number 978-3-540-00890-3. Springer-Verlag Berlin Heidelberg, 1
edition, 2004. Volume 1: Derivatives and Geometry in IR3.

[2] Gerald Farin. Curves and Surfaces for Computer Aided Geometric Design (3rd Ed.):
A Practical Guide. Academic Press Professional, Inc., San Diego, CA, USA, 1993.

[3] Paul Geisler, Daniel White, Paul Nylander, Tom Lowe, David Makin,
Buddhi, Joy Leys, Knighty, and Jan Kadlec. Online fractal viewer: FractalLab.
http://hirnsohle.de/test/fractalLab/, 2010.

[4] Matthew Haggett. Mandelbulb 3D (MB3D) fractal rendering software. http://
mandelbulb.com/2014/mandelbulb-3d-mb3d-fractal-rendering-software/, 2014.

[5] John C. Hart. Sphere tracing: A geometric method for the antialiased ray tracing
of implicit surfaces. The Visual Computer, 12:527–545, 1994.

[6] Benjamin Keinert, Henry Schäfer, Johann Korndörfer, Urs Ganse, and
Marc Stamminger. Enhanced Sphere Tracing. In Andrea Giachetti, editor, Smart
Tools and Apps for Graphics - Eurographics Italian Chapter Conference. The Euro-
graphics Association, 2014.

[7] Krzysztof Marczak. Mandelbuilder - 3D fractal explorer.
http://www.mandelbulber.com/, 2010.

[8] László Szécsi and Dávid Illés. Real-time metaball ray casting with fragment lists.
In Carlos Andújar and Enrico Puppo, editors, Eurographics (Short Papers), pages
93–96. Eurographics Association, 2012.

12 Cs. Bálint, G. Valasek

[9] Íñigo Quílez. Mandelbulb.
http://www.iquilezles.org/www/articles/mandelbulb/mandelbulb.htm,
2009. (Mandelbulb in real time).

Interactive Rendering Framework for Distance Function Representations 13

