Title: Pointwise multipliers on Musielak-Orlicz and Musielak-Orlicz-Morrey spaces (Researches on isometries from various viewpoints)

Author(s): Nakai, Eiichi

Citation: 数理解析研究所講究録 = RIMS Kokyuroku (2017), 2035: 80-93

Issue Date: 2017-07

URL: http://hdl.handle.net/2433/236817

Type: Departmental Bulletin Paper

Textversion: publisher

Kyoto University
Pointwise multipliers on Musielak-Orlicz and Musielak-Orlicz-Morrey spaces

Eiichi Nakai
Department of Mathematics
Ibaraki University

1 Introduction

This report is an announcement of [17] and [18].

Let (Ω, μ) be a complete σ-finite measure space. We denote by $L^0(\Omega)$ the set of all measurable functions from Ω to \mathbb{R} or \mathbb{C}. Let E_1 and E_2 be subspaces of $L^0(\Omega)$. We say that a function $g \in L^0(\Omega)$ is a pointwise multiplier from E_1 to E_2, if the pointwise multiplication fg is in E_2 for any $f \in E_1$. We denote by $\text{PWM}(E_1, E_2)$ the set of all pointwise multipliers from E_1 to E_2. We abbreviate $\text{PWM}(E, E)$ to $\text{PWM}(E)$.

For $p \in (0, \infty]$, we denote by $L^p(\Omega)$ the usual Lebesgue spaces. It is well known as Hölder’s inequality that

$$\|fg\|_{L^{p_2}(\Omega)} \leq \|f\|_{L^{p_1}(\Omega)} \|g\|_{L^{p_3}(\Omega)},$$

for $1/p_2 = 1/p_1 + 1/p_3$ with $p_i \in (0, \infty]$, $i = 1, 2, 3$. This shows that

$$\text{PWM}(L^{p_1}(\Omega), L^{p_2}(\Omega)) \supset \text{PWM}(L^{p_3}(\Omega)).$$

Conversely, we can show the reverse inclusion by using the uniform boundedness theorem or the closed graph theorem. That is,

$$\text{PWM}(L^{p_1}(\Omega), L^{p_2}(\Omega)) = L^{p_3}(\Omega).$$

(1.1)

2010 Mathematics Subject Classification. 46E30, 46B42.

Key words and phrases. Musielak-Orlicz space, Morrey-space, variable exponent, pointwise multiplier, pointwise multiplication.

The author was supported by Grant-in-Aid for Scientific Research (B), No. 15H03621, Japan Society for the Promotion of Science.
This equality was extended to Orlicz spaces by [7, 8]. In this report we extend the above equality to Musielak-Orlicz spaces and Musielak-Orlicz-Morrey spaces.

Recall that, for a normed or quasi-normed space $E \subset L^0(\Omega)$, we say that E has the lattice (ideal) property if the following holds:

$$f \in E, \ h \in L^0(\Omega), \ |h(x)| \leq |f(x)| \ a.e. \quad \Rightarrow \quad h \in E, \ \|h\|_E \leq \|f\|_E.$$

It is known that, if E has the lattice property and is complete, then

$$\text{PWM}(E) = L^\infty(\Omega) \quad \text{and} \quad \|g\|_{op} = \|g\|_{L^\infty(\Omega)},$$

where $\|g\|_{op}$ is the operator norm of $g \in \text{PWM}(E)$. In this report we consider pointwise multipliers from a Musielak-Orlicz-Morrey space to another Musielak-Orlicz-Morrey space.

For the introduction, first we show the proof of (1.1). To do this we first show the following lemma.

Lemma 1.1.

$$g \in L^{p_3}(\Omega) \quad \Rightarrow \quad \|g\|_{op} = \|g\|_{L^{p_3}(\Omega)}. \quad (1.2)$$

Proof. Let $g \in L^{p_3}(\Omega)$. Then, by Hölder's inequality, g is a bounded operator from $L^{p_1}(\Omega)$ to $L^{p_2}(\Omega)$ and

$$\|g\|_{op} \leq \|g\|_{L^{p_3}(\Omega)}. \quad (1.2)$$

Let $f = |g|^{p_3/p_1}$. Then $f \in L^{p_1}(\Omega)$ and $\|f\|_{L^{p_1}(\Omega)} = \|g\|_{L^{p_3}(\Omega)}^{p_3/p_1}$. Moreover, $fg \in L^{p_2}(\Omega)$, $\|fg\|_{L^{p_2}(\Omega)} = \|g\|_{L^{p_2}(\Omega)}^{p_3/p_2}$ and

$$\|f\|_{L^{p_1}(\Omega)} \|g\|_{L^{p_3}(\Omega)} = \|fg\|_{L^{p_2}(\Omega)},$$

since

$$\frac{p_3}{p_1} + 1 = p_3 \left(\frac{1}{p_1} + \frac{1}{p_3} \right) = \frac{p_3}{p_2}. \quad (1.2)$$

This shows that (1.2). \hfill \Box

To prove (1.1) we need to show

$$\text{PWM}(L^{p_1}(\Omega), L^{p_2}(\Omega)) \subset L^{p_3}(\Omega). \quad (1.3)$$
Proof of (1.3). Let $g \in \text{PWM}(L^{p_1}(\Omega), L^{p_2}(\Omega))$. Take a sequence of finitely simple functions $g_j \geq 0$ such that $g_j \nearrow |g|$ a.e. Then, for any $f \in L^{p_1}(\Omega)$, we have

$$\|fg_j\|_{L^{p_2}(\Omega)} \leq \|fg\|_{L^{p_2}(\Omega)}.$$

By the uniform boundedness theorem and Lemma 1.1 we have

$$\sup_j \|g_j\|_{\text{op}} < \infty \quad \text{and} \quad \sup_j \|g_j\|_{L^{p_3}(\Omega)} < \infty.$$

Therefore, $g \in L^{p_3}(\Omega)$. \hfill \square

Another proof of (1.3). Let $g \in \text{PWM}(L^{p_1}(\Omega), L^{p_2}(\Omega))$. Then g is a closed operator from $L^{p_1}(\Omega)$ to $L^{p_2}(\Omega)$. Actually, if

$$f_j \to f \text{ in } L^{p_1}(\Omega) \quad \text{and} \quad f_jg \to h \text{ in } L^{p_2}(\Omega),$$

then we can take its subsequence $f_{j(k)}$ such that

$$f_{j(k)} \to f \text{ a.e.} \quad \text{and} \quad f_{j(k)}g \to h \text{ a.e.}$$

This shows that $h = fg$ a.e. That is, g is a closed operator.

By the closed graph theorem g is a bounded operator. Take a sequence of finitely simple functions $g_j \geq 0$ such that $g_j \nearrow |g|$ a.e. Then $g_j \in \text{PWM}(L^{p_1}(\Omega), L^{p_2}(\Omega)) \cap L^{p_3}(\Omega)$ and then, by Lemma 1.1 we have

$$\|g_j\|_{L^{p_3}(\Omega)} = \|g_j\|_{\text{op}} \leq \|g\|_{\text{op}},$$

for all j. Therefore, $g \in L^{p_3}(\Omega)$. \hfill \square

2 Orlicz and Musielak-Orlicz spaces

Let Φ be the set of all functions $\Phi : [0, \infty] \to [0, \infty]$ such that

$$\lim_{t \to +0} \Phi(t) = \Phi(0) = 0 \quad \text{and} \quad \lim_{t \to \infty} \Phi(t) = \Phi(\infty) = \infty.$$

Let

$$a(\Phi) = \sup\{t \geq 0 : \Phi(t) = 0\}, \quad b(\Phi) = \inf\{t \geq 0 : \Phi(t) = \infty\}.$$
Definition 2.1. A function $\Phi \in \bar{\Phi}$ is called a Young function (or sometimes also called an Orlicz function) if Φ is nondecreasing on $[0, \infty)$ and convex on $[0, b(\Phi))$, and
\[
\lim_{t \to b(\Phi) - 0} \Phi(t) = \Phi(b(\Phi)) \quad (\leq \infty).
\]
Any Young function is neither identically zero nor identically infinity on $(0, \infty)$. We denote by Φ_Y the set of all Young functions.

We define three subsets $\mathcal{Y}^{(i)} (i=1,2,3)$ of Young functions as
\[
\mathcal{Y}^{(1)} = \{ \Phi \in \Phi_Y : b(\Phi) = \infty \},
\mathcal{Y}^{(2)} = \{ \Phi \in \Phi_Y : b(\Phi) < \infty, \Phi(b(\Phi)) = \infty \},
\mathcal{Y}^{(3)} = \{ \Phi \in \Phi_Y : b(\Phi) < \infty, \Phi(b(\Phi)) < \infty \}.
\]
See Figure 1.

Definition 2.2 (Orlicz space). For a function $\Phi \in \Phi_Y$, let
\[
L^\Phi(\Omega) = \left\{ f \in L^0(\Omega) : \int_{\Omega} \Phi(k|f(x)|) \, d\mu(x) < \infty \text{ for some } k > 0 \right\},
\]
\[
\|f\|_{L^\Phi(\Omega)} = \inf \left\{ \lambda > 0 : \int_{\Omega} \Phi \left(\frac{|f(x)|}{\lambda} \right) \, d\mu(x) \leq 1 \right\}.
\]
For example
\[
\Phi(t) = t^p \quad (\in \mathcal{Y}^{(1)}) \quad \Rightarrow \quad L^\Phi(\Omega) = L^p(\Omega),
\]
\[
\begin{cases}
0 & (0 \leq t \leq 1) \\
\infty & (t > 1)
\end{cases} \quad (\in \mathcal{Y}^{(3)}) \quad \Rightarrow \quad L^\Phi(\Omega) = L^\infty(\Omega).
\]
To show
\[
\text{PWM}(L^{\Phi_1}(\Omega), L^{\Phi_2}(\Omega)) = L^{\Phi_3}(\Omega),
\]
we need generalized Hölder's inequality
\[
\|fg\|_{L^{\Phi_2}(\Omega)} \leq C\|f\|_{L^{\Phi_1}(\Omega)}\|g\|_{L^{\Phi_3}(\Omega)}
\]
and
\[
\|g\|_{\text{op}} \sim \|g\|_{L^{\Phi_3}(\Omega)} \quad \text{for } g \in L^{\Phi_3}(\Omega). \quad (2.1)
\]
Figure 1: Three types of Young functions
If we prove
\[
\int_{\Omega} \Phi_3 \left(\frac{|g(x)|}{\|g\|_{L^\Phi_{3}(\Omega)}} \right) \, d\mu(x) = 1 \quad \text{for all } g \in L^\Phi_{3}(\Omega) \text{ with } g \not\equiv 0,
\]
then we get (2.1). However, this holds if and only if $\Phi_3 \in \Delta_2$, which is strong restriction. So we prove it for all finitely simple functions $g \not\equiv 0$. To do this we need $\Phi_3 \in \mathcal{Y}^{(1)} \cup \mathcal{Y}^{(2)}$.

Definition 2.3. Let Φ_Y^v be the set of all $\Phi : \Omega \times [0, \infty] \to [0, \infty]$ such that $\Phi(x, \cdot)$ is a Young function for every $x \in \Omega$, and that $\Phi(\cdot, t)$ is measurable on Ω for every $t \in [0, \infty]$. Assume also that, for any subset $A \subset \Omega$ with finite measure, there exists $t \in (0, \infty)$ such that $\Phi(\cdot, t)\chi_A$ is integrable.

Definition 2.4.

(i) Let Φ_{GY} be the set of all $\Phi \in \bar{\Phi}$ such that $\Phi((\cdot)^{1/\ell})$ is in Φ_Y for some $\ell \in (0, 1]$.

(ii) Let Φ_{GY}^v be the set of all $\Phi : \Omega \times [0, \infty] \to [0, \infty]$ such that $\Phi(\cdot, (\cdot)^{1/\ell})$ is in Φ_Y^v for some $\ell \in (0, 1]$.

For example, let $\Phi(x, t) = t^{p(x)}$.

\[
p_- \geq 1 \quad \Rightarrow \quad \Phi \in \Phi_Y^v, \quad \quad p_- > 0 \quad \Rightarrow \quad \Phi \in \Phi_{GY}^v.
\]

For $\Phi, \Psi \in \bar{\Phi}$, we write $\Phi \approx \Psi$ if there exists a positive constant C such that
\[
\Phi(C^{-1}t) \leq \Psi(t) \leq \Phi(Ct) \quad \text{for all } t \in (0, \infty).
\]

For $\Phi, \Psi : \Omega \times [0, \infty] \to [0, \infty]$, we also write $\Phi \approx \Psi$ if there exists a positive constant C such that
\[
\Phi(x, C^{-1}t) \leq \Psi(x, t) \leq \Phi(x, Ct) \quad \text{for all } (x, t) \in \Omega \times (0, \infty).
\]

Lemma 2.1. Let $\Phi \in \Phi_{GY}^v$. For a subset $A \subset \Omega$ with $0 < \mu(A) < \infty$, let $\Phi^A(t) = \int_A \Phi(x, t) \, d\mu(x)$. Then $\Phi^A \in \Phi_{GY}$.
Remark 2.1. (i) $\forall \Phi \in \mathcal{Y}^{(3)} \exists \Psi \in \mathcal{Y}^{(2)}$ s.t. $\Phi \approx \Psi$.
(ii) $\exists \Phi \in \Phi_{Y}^{v}$ with $\Phi(x, \cdot) \in \mathcal{Y}^{(1)}$ for each x, but $\Phi^{A} \in \mathcal{Y}^{(3)}$. Actually, let $\Omega = (0,1) \subset \mathbb{R}$ with the Lebesgue measure and take Young functions $\Phi(x, \cdot) \in \mathcal{Y}^{(1)}$ for all $x \in \Omega$ such that $\Phi(x, 1) = 1$ and $\Phi(x, 1 + x) = 2/x$. Then $\Phi_{\Omega} \in \mathcal{Y}^{(3)}$.

Definition 2.5. Let $\bar{\Phi}_{Y}, \bar{\Phi}_{Y}^{v}, \bar{\Phi}_{GY}$ and $\bar{\Phi}_{GY}^{v}$ be the sets of all $\Phi \in \bar{\Phi}$ such that $\Phi \approx \Psi$ for some Ψ in $\Phi_{Y}, \Phi_{Y}^{v}, \Phi_{GY}$ and Φ_{GY}^{v}, respectively.

Definition 2.6. For a function $\Phi \in \bar{\Phi}_{GY}^{v}$, let

$$L^{\Phi}(\Omega) = \left\{ f \in L^{0}(\Omega) : \int_{\Omega} \Phi(x, k|f(x)|) d\mu(x) < \infty \text{ for some } k > 0 \right\},$$

$$\|f\|_{L^{\Phi}} = \inf \left\{ \lambda > 0 : \int_{\Omega} \Phi(x, \frac{|f(x)|}{\lambda}) d\mu(x) \leq 1 \right\}.$$

If $\Phi \approx \Psi$, then $L^{\Phi}(\Omega) = L^{\Psi}(\Omega)$ with equivalent quasi-norms.

Example 2.1. Let $p = p(\cdot)$ be a variable exponent, that is, it is a measurable function defined on Ω valued in $(0, \infty]$, and let $\Phi(x, t) = t^{p(x)}$. In this case we denote $L^{\Phi}(\Omega)$ by $L^{p(\cdot)}(\Omega)$.

Example 2.2. Let w be a weight function, that is, it is a measurable function defined on Ω valued in $(0, \infty)$ a.e., and $\int_{A} w(x) d\mu(x) < \infty$ for any $A \subset \Omega$ with finite measure. Let p be a variable exponent, and let

$$\Phi(x, t) = t^{p(x)}w(x).$$

In this case we denote $L^{\Phi}(\Omega)$ by $L_{w}^{p(\cdot)}(\Omega)$.

Example 2.3. Let p be a variable exponent, and let

$$\Phi(x, t) = \begin{cases} 1/\exp(1/t^{p(x)}), & t \in [0, 1], \\ \exp(t^{p(x)}), & t \in (1, \infty]. \end{cases}$$

In this case we denote $L^{\Phi}(\Omega)$ by $\exp(L^{p(\cdot)})(\Omega)$.

Next we recall the generalized inverse of Young function Φ in the sense of O'Neil [20, Definition 1.2]. For a Young function Φ and $u \in [0, \infty]$, let

$$\Phi^{-1}(u) = \inf\{t \geq 0 : \Phi(t) > u\}, \quad (2.2)$$
where \(\inf \emptyset = \infty \). For \(\Phi \in \tilde{\Phi}_{GY}^{v} \), we define also its generalized inverse with respect to \(t \) by (2.2) for each \(x \) and denote it by \(\Phi^{-1} \). That is,

\[
\Phi^{-1}(x, u) = \inf\{t \geq 0 : \Phi(x, t) > u\}, \quad (x, u) \in \Omega \times [0, \infty].
\]

(2.3)

Theorem 2.2. Let \(\Phi_i \in \tilde{\Phi}_{GY}^{v}, i = 1, 2, 3. \) Assume that there exists a constant \(C > 0 \) such that

\[
\frac{1}{C} \Phi^{-1}_2(x, t) \leq \Phi^{-1}_1(x, t) \Phi^{-1}_3(x, t) \leq C \Phi^{-1}_2(x, t)
\]

for \((x, t) \in \Omega \times (0, \infty) \). (2.4)

Assume also that there exists \(\Psi_3 \in \Phi_{GY}^{v} \) such that

\[
\Phi_3 \approx \Psi_3 \quad \text{and} \quad \Psi_3^A((\cdot)^{1/\ell}) \in \mathcal{Y}^{(1)} \cup \mathcal{Y}^{(2)},
\]

(2.5)

for some \(\ell \in (0, 1] \) and for any \(A \subset \Omega \) with \(0 < \mu(A) < \infty \), where \(\Psi_3^A(t) = \int_A \Psi_3(x, t) d\mu(x) \). Then

\[
\text{PWM}(L^{\Phi_1}(\Omega), L^{\Phi_2}(\Omega)) = L^{\Phi_3}(\Omega),
\]

\[
\|g\|_{\text{op}} \sim \|g\|_{L^{\Phi_3}(\Omega)}.
\]

Let \(p_i \) be variable exponents, \(w_i \) be weight functions, \(i = 1, 2, 3 \), and

\[
\Omega_\infty = \{x \in \Omega : p_3(x) = \infty\}.
\]

Assume that \(\inf_{x \in \Omega} p_i(x) > 0, i = 1, 2, 3, \) and

\[
\sup_{x \in \Omega \setminus \Omega_\infty} p_3(x) < \infty.
\]

Example 2.4. Let

\[
\frac{1}{p_1(x)} + \frac{1}{p_3(x)} = \frac{1}{p_2(x)}.
\]

Then

\[
\text{PWM}(L^{p_1(\cdot)}(\Omega), L^{p_2(\cdot)}(\Omega)) = L^{p_3(\cdot)}(\Omega),
\]

\[
\text{PWM}(\exp(L^{p_1(\cdot)})(\Omega), \exp(L^{p_2(\cdot)})(\Omega)) = \exp(L^{p_3(\cdot)})(\Omega).
\]

Example 2.5. Let

\[
\frac{1}{p_1(x)} + \frac{1}{p_3(x)} = \frac{1}{p_2(x)}, \quad w_1(x)^{1/p_1(x)} w_3(x)^{1/p_3(x)} = w_2(x)^{1/p_2(x)}.
\]

Then

\[
\text{PWM}(L^{p_1(\cdot)}_{w_1}(\Omega), L^{p_2(\cdot)}_{w_2}(\Omega)) = L^{p_3(\cdot)}_{w_3}(\Omega).
\]
3. Musielak-Orlicz-Morrey spaces

Let \mathbb{R}^n be the n-dimensional Euclidean space and μ the Lebesgue measure. For a function $\phi : \mathbb{R}^n \times (0, \infty) \to (0, \infty)$ and a ball $B = B(x, r)$, we write $\phi(B) = \phi(x, r)$.

Definition 3.1 (Musielak-Orlicz-Morrey space). For $\Phi \in \Phi_{GY}^v$, $\phi : \mathbb{R}^n \times (0, \infty) \to (0, \infty)$ and a ball B, let

\[
\|f\|_{\Phi, \phi, B} = \inf \left\{ \lambda > 0 : \frac{1}{\phi(B) \mu(B)} \int_B \Phi \left(x, \frac{|f(x)|}{\lambda} \right) d\mu(x) \leq 1 \right\},
\]

and let

\[
L^{(\Phi, \phi)}(\mathbb{R}^n) = \{ f \in L^0(\mathbb{R}^n) : \|f\|_{L(\Phi, \phi)(\mathbb{R}^n)} < \infty \},
\]

\[
\|f\|_{L(\Phi, \phi)(\mathbb{R}^n)} = \sup_B \|f\|_{\Phi, \phi, B},
\]

where the supremum is taken over all balls B.

If $\phi(B) = 1/\mu(B)$, then $L^{(\Phi, \phi)}(\mathbb{R}^n) = L^\Phi(\mathbb{R}^n)$.

For functions $\theta, \kappa : \mathbb{R}^n \times (0, \infty) \to (0, \infty)$, we write $\theta \sim \kappa$ if there exists a positive constant C such that

\[
\frac{1}{C} \leq \frac{\theta(x, r)}{\kappa(x, r)} \leq C \quad \text{for all } (x, r) \in \mathbb{R}^n \times (0, \infty).
\]

If $\Phi \approx \Psi$ and $\phi \sim \psi$, then $L^{(\Phi, \phi)}(\mathbb{R}^n) = L^{(\Psi, \psi)}(\mathbb{R}^n)$ with equivalent quasi-norms.

Definition 3.2. A function $\theta : \mathbb{R}^n \times (0, \infty) \to (0, \infty)$ is almost increasing (almost decreasing) with respect to the order by ball inclusion if there exists a positive constant C such that

\[
\theta(B_1) \leq C \theta(B_2) \quad (\theta(B_1) \geq C \theta(B_2))
\]

for all balls B_1 and B_2 with $B_1 \subset B_2$.

Definition 3.3. Let \mathcal{G}^v be the set of all $\phi : \mathbb{R}^n \times (0, \infty) \to (0, \infty)$ such that ϕ is almost decreasing with respect to the order by ball inclusion and $\phi(B) \mu(B)$ is almost increasing with respect to the order by ball inclusion.
Theorem 3.1. Let $\Phi_i \in \Phi_{GY}^v$ and $\phi_i \in G^v$, $i = 1, 2, 3$. Assume that there exists a positive constant C such that

$$C^{-1}\Phi_2^{-1}(x, t\phi_2(x, r)) \leq \Phi_1^{-1}(x, t\phi_1(x, r))\Phi_3^{-1}(x, t\phi_3(x, r))$$

$$\leq C\Phi_2^{-1}(x, t\phi_2(x, r)), \quad \text{for all } x \in \mathbb{R}^n \text{ and } r, t \in (0, \infty),$$

and that ϕ_3/ϕ_1 is almost increasing with respect to the order by ball inclusion. Assume also one of the following:

(i) Φ_3 satisfies the Δ_2 condition, that is, $\Phi_3(x, 2t) \leq \exists C_{\Phi_3}\Phi_3(x, t)$.

(ii) $\lim_{r \rightarrow \infty} \inf_{x \in \mathbb{R}^n} \phi_3(x, r) \mu(B(x, r)) = \infty$, $\phi_3(x, r)$ is continuous with respect to x and r, and, for all balls B,

(a) $\exists \Psi_B \in \mathcal{Y}^{(1)}$ s.t. $\sup_{x \in B} \Phi_3(x, t) \leq \Psi_B(t)$ for all t, and,

(b) $\lim_{r \rightarrow +0} \inf_{x \in B} \phi_3(x, r) = \infty$.

Then

$$\text{PWM}(L^{(\Phi_1, \phi_1)}(\mathbb{R}^n), L^{(\Phi_2, \phi_2)}(\mathbb{R}^n)) = L^{(\Phi_3, \phi_3)}(\mathbb{R}^n),$$

$$\|g\|_{\text{op}} \sim \|g\|_{L^{(\Phi_3, \phi_3)}(\mathbb{R}^n)}.$$

Corollary 3.2. Let $p_i(\cdot)$ be variable exponents with $0 < (p_i)_- \leq (p_i)_+ \leq \infty$, w_i be weights and $\phi_i \in G^v$, $i = 1, 2, 3$. Assume that

$$1/p_1(x) + 1/p_3(x) = 1/p_2(x),$$

that there exists a positive constant C such that

$$C^{-1}(\phi_2(x, r)/w_2(x))^{1/p_2(x)}$$

$$\leq (\phi_1(x, r)/w_1(x))^{1/p_1(x)}(\phi_3(x, r)/w_3(x))^{1/p_3(x)}$$

$$\leq C(\phi_2(x, r)/w_2(x))^{1/p_2(x)},$$

for all $x \in \mathbb{R}^n$ and $r \in (0, \infty)$,

and that ϕ_3/ϕ_1 is almost increasing with respect to the order by ball inclusion. If $(p_3)_+ < \infty$, then

$$\text{PWM}(L_{w_1}^{(p_1, \phi_1)}(\mathbb{R}^n), L_{w_2}^{(p_2, \phi_2)}(\mathbb{R}^n)) = L_{w_3}^{(p_3, \phi_3)}(\mathbb{R}^n),$$

$$\|g\|_{\text{op}} \sim \|g\|_{L_{w_3}^{(p_3, \phi_3)}(\mathbb{R}^n)}.$$
Corollary 3.3. Let $p_i(\cdot)$ and $\lambda_i(\cdot)$ be variable exponents with $0 < (p_i)_- \leq (p_i)_+ \leq \infty$ and $-n \leq (\lambda_i)_- \leq (\lambda_i)_+ < 0$, w_i be weights, $i = 1, 2, 3$. Let λ^* be a constant with $-n \leq \lambda^* < 0$, and let

$$\phi_i(x, r) = \begin{cases} r^{\lambda_i(x)}, & r \leq 1/e, \\ r^{\lambda^*}, & r > 1/e. \end{cases}$$

Assume that $(p_3)_+ < \infty$, that $\lambda_i(\cdot), i = 1, 2, 3$, are log-Hölder continuous, and that

$$\frac{1}{p_1(x)} + \frac{1}{p_2(x)} = \frac{1}{p_3(x)}, \quad \frac{\lambda_1(x)}{p_1(x)} + \frac{\lambda_3(x)}{p_3(x)} = \frac{\lambda_2(x)}{p_2(x)},$$

$$w_1(x)^{1/p_1(x)}w_3(x)^{1/p_3(x)} = w_2(x)^{1/p_2(x)},$$

$$\lambda_3(x) \geq \lambda_1(x), \quad \text{for all } x \in \mathbb{R}^n.$$

Then

$$\text{PWM}(L_{w_1}^{(p_1, \phi_1)}(\mathbb{R}^n), L_{w_2}^{(p_2, \phi_2)}(\mathbb{R}^n)) = L_{w_3}^{(p_3, \phi_3)}(\mathbb{R}^n),$$

$$\|g\|_{\text{op}} \sim \|g\|_{L_{w_3}^{(p_3, \phi_3)}(\mathbb{R}^n)}.$$

Corollary 3.4. Let $p_i(\cdot)$ be variable exponents with $0 < (p_i)_- \leq (p_i)_+ \leq \infty$, and let

$$\Phi_i(x, t) = \begin{cases} 1/\exp(1/t^{p_i(x)}), & t \in [0, 1], \\ \exp(t^{p_i(x)}), & t \in (1, \infty], \end{cases}$$

$i = 1, 2, 3.$

Let λ be a constant with $-1 < \lambda < 0$, and let $\phi(B) = \mu(B)^{\lambda}$. Assume that $(p_3)_+ < \infty$ and that $1/p_1(x) + 1/p_3(x) = 1/p_2(x)$. Then

$$\text{PWM}(L^{(\Phi_1, \phi)}(\mathbb{R}^n), L^{(\Phi_2, \phi)}(\mathbb{R}^n)) = L^{(\Phi_3, \phi)}(\mathbb{R}^n),$$

$$\|g\|_{\text{op}} \sim \|g\|_{L^{(\Phi_3, \phi)}(\mathbb{R}^n)}.$$

The results in this section can be extended to Musielak-Orlicz-Morrey spaces defined on spaces of homogeneous type or metric measure spaces with non-doubling measure.
References

ISBN: 978-3-540-12706-2 (Print) 978-3-540-38692-6 (Online)

Eiichi Nakai
Department of Mathematics
Ibaraki University
Mito, Ibaraki 310-8512, Japan
E-mail address: eiichi.nakai.math@vc.ibaraki.ac.jp