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We propose a strictly convex functional in which the regular term consists of the total variation term and an adaptive logarithm
based convex modification term. We prove the existence and uniqueness of the minimizer for the proposed variational problem.
The existence, uniqueness, and long-time behavior of the solution of the associated evolution system is also established. Finally, we
present experimental results to illustrate the effectiveness of the model in noise reduction, and a comparison is made in relation to
the more classical methods of the traditional total variation (TV), the Perona-Malik (PM), and the more recent D-𝛼-PM method.
Additional distinction from the other methods is that the parameters, for manual manipulation, in the proposed algorithm are
reduced to basically only one.

1. Introduction

Noise removal, edge detection, contrast enhancement, in-
painting, and segmentation have been the subject of intense
mathematical image analysis and processing research for
nearly three decades. Several methods have been pursued
over the passage of time. These include wavelet transform
[1, 2], curvelet shrinkage methods [3–6], and variational
partial differential equation (PDE) based methods [7, 8].
These methods generate processes that can easily be divided
into either linear and nonlinear processes or isotropic and
nonisotropic processes [9].

Due its ability to preserve crucial image features, such
as edges, nonlinear anisotropic diffusion is favored over
isotropic diffusion [10]. Much interest, therefore, has focused
on understanding operations andmathematical properties of
the nonlinear anisotropic diffusion and associated variational
formulations [11, 12], formulation of well-posed and stable
equations [8, 11], extending and modifying anisotropic dif-
fusion [11, 13, 14], and studying the relationships that exist
between the various image processing techniques [11, 15, 16].

The objective of any image denoising process should not
focus only on the removal of noise, but it should also ensure
that no spurious details are created on the restored image and

that the edges are preserved or sharpened [7, 17, 18]. It is,
therefore, necessary to develop formulations which are sen-
sitive to the local image structure, especially edges/contours
[19]. Consequently, a number of edge indicators have been
proposed and logically grafted into the partial differential
equation (PDE) based evolution equations [7, 11, 20].

Some of these PDEs originate from variational problems.
For instance, Rudin et al. [8] proposed a minimization
functional, widely referred to as the total variation (TV)
functional, of the form

min
𝑢

{𝐹 (𝑢) = ∫

Ω

|∇𝑢| 𝑑𝑥 + 𝜆∫

Ω

(𝑢 − 𝑓)
2

𝑑𝑥} , (1)

where 𝜆 is the fidelity parameter, 𝑓 = 𝑓(𝑥) denotes the
noise image, and Ω is an open bounded subset of R2. TV
functionals are defined in the space of functions of bounded
variation (BV) and, therefore, do not necessarily require
image functions to be continuous and smooth. This fact
makes them allow jumps or discontinuities, and hence they
are able to preserve edges.

The original TV formulation has certain weaknesses.
Firstly, the formulation is susceptible to backward diffusion
since it is not strictly convex. Secondly, the numerical imple-
mentation cannot be accomplished without additional small
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perturbation quantity, say 𝜖, at the denominator [21–23].
Otherwise a spike/singularity is suddenly generated when
|∇𝑢| = 0 in the homogeneous regions.This perturbation phe-
nomenon is believed to contribute to some loss of accuracy in
the results of the restoration process.Moreover, the additional
parameter unnecessarily increases the number of parameters,
therebymaking it difficult to determinewhich permutation of
parameter values will give optimal result.

Additionally, given that the method is more efficient in
preserving edges of uniform and small curvature, it may
excessively smoothen and possibly destroy small scale fea-
tures having more pronounced curvature edges [24]. TV
regularization approach may also result in a loss of contrast
and geometry of the final output images, even in noise free
observed images [9, 25]. Furthermore, TV regularization has
difficulties recovering texture, and there is also evidence of
enhanced noise when the fidelity parameter is chosen so that
texture is not removed [26]. Lastly, the formulation favors
piecewise constant solutions. This has the material effect
of causing staircases (false edges) on the resultant image,
especially from images severely degraded by noise [25].

However, given the strength of TV based techniques,
especially in edge preservation, various modifications have
been proposed. For instance, Vogel in [22, 27] proposed a
total variation penalty method of the form

min
𝑢

∫

Ω

(𝐴𝑢 − 𝑧)
2

𝑑𝑥 + 𝛼∫

Ω

(√|∇𝑢|
2

+ 𝛽)𝑑𝑥, (2)

where 𝛽 ≥ 0, 𝐴 is a linear operator, and 𝛼 > 0 is the
penalty parameter. The formulation becomes total variation
formulation of theRudin et al. form [8]when𝛽 = 0 and there-
fore largely suffers the same shortcoming of the ordinary TV
formulation. Hence, it has no significant practical advantage
over TV.

Strong and Chan [28] proposed an adaptive total varia-
tion based regularization model of the form

min
𝑢∈BV(Ω)

∫

Ω

𝛼 (𝑥) |∇𝑢| , (3)

where 0 ≤ 𝛼(𝑥) ≤ 1 is a control factor which controls
the speed of diffusion depending on whether the region is
homogeneous or an edge. This model demonstrated fairly
good results. However, since it is also not strictly convex,
it is still susceptible to backward diffusion, which has the
potential of introducing blurs in the restored image.

Chambolle and Lions [29] proposed to minimize a
combination of total variation and the integral of the squared
norm of the gradient and thus have

min
𝑢∈BV(Ω)

1

2𝜀

∫

|∇𝑢|≤𝜀

|∇𝑢|
2

+ ∫

|∇𝑢|≥𝜀

|∇𝑢| −

𝜀

2

, (4)

where 𝜀 is a parameter. In this formulation |∇𝑢| ≥ 𝜀 signals
edges, while |∇𝑢| ≤ 𝜀 signals homogeneous regions. This
model is successful in restoring images where homogeneous
regions are separated by distinct edges but may become
sensitive to the thresholding parameter 𝜀 in the event of
nonuniform image intensities or heavy degradation [24].

A variable exponent adaptive model was proposed by
Chen et al. in [24]. It has the form

min
𝑢∈BV(Ω)

∫

Ω

|𝐷𝑢|
𝑞(𝑥)

+

𝜆

2

(𝑢 − 𝐼)
2

, 𝜆 > 0, (5)

where 1 < 𝛼 ≤ 𝑞(𝑥) ≤ 2, with 𝑞(𝑥) proposed as 𝑞(𝑥) =

1 + 1/(1 + 𝑘|∇𝐺
𝜎
∗ 𝐼(𝑥)|

2

), 𝐺
𝜎
is the Gaussian filter, and

𝑘 > 0, 𝜎 > 0 are fixed parameters. It is observed that the
method exploits the benefits of Gaussian smoothing when
𝑞(𝑥) = 2 and the strength of TV regularization when 𝑞(𝑥) =
1. This method also demonstrates good results and is indeed
a great improvement of the earlier models. However, the
convolution of the image with a Gaussian kernel before the
evolution process diminishes the accuracy of these models.
This is because of the introduction of the scale variance of the
Gaussian; the scale variance is itself an additional parameter
that is subject to manual manipulation [12]. Furthermore, the
diffusion process becomes ill-posed if scale variance is too
small, while image features become smeared if the Gaussian
variance is too large [30]. Therefore, optimal selection of the
scale variance remains a challenge. Parameter permutation
giving optimal result is a challenge due to the number of such
parameters involved.

Further literature surveys attest to the fact that research in
effective regularization functionals which have the ability to
generate diffusion processes that restore images, while simul-
taneously preserving critical images features, the analysis, and
practical implementation of suchmodels, is still an extremely
active concern.

Consequently, in this paper, we propose a new adaptive
total variation (TV) formulation for image denoising, which
is strictly convex. The only parameter 𝐾, which is a thresh-
olding parameter to be tweaked, is such that it depends on the
evolution parameter 𝑡 and is therefore not as grossly limited
as the choice of numerical values. The other parameter 𝜆 is
dynamically obtained and is therefore not manually tuned.
With all this the number of parameters is reduced to basically
only one. Our method approximates TV model, for higher
values of the thresholding parameter𝐾. Experimental results,
presented here, demonstrate the effectiveness of our model
over the classical models of TV, PM, and D-𝛼-PM.

The structure of this paper is as follows. In Section 2, we
present the proposed model (6), its properties, justifications
of the model, and the associated evolution equation. In
Section 3, we give certain preliminary definitions we rely
on from time to time in this paper; we also prove the
existence and uniqueness of the solution to the minimization
problem (6). In Section 4, we discuss the associated evolution
equation to theminimization problem (6). Also, we define the
weak solution to the evolution problem (12)–(14), derive the
estimates for the solution of an approximating problem (32),
prove the existence and uniqueness of the weak solution of
the evolution problem (12)–(14), and discuss the asymptotic
behaviour of the weak solution as 𝑡 → ∞. In Section 5,
we give the numerical schemes and experimental results to
demonstrate the strength and effectiveness of our method.
We have also presented a brief comparative discussion of
our results with the PM, original TV methods, and D-𝛼-PM
methods. A brief summary concludes the paper in Section 6.



Abstract and Applied Analysis 3

2. Proposed Model

In this section, motivated by the methods of [11, 21, 24],
we propose a modified version of total variation denoising
model. The model is based on minimization of a total
variation functional with a logarithm-based strictly convex
modification. First, we present the model and certain impor-
tant properties of it.

2.1. The New Energy Functional. The new strictly convex
energy functional is given as follows:

min
𝑢∈BV(Ω)∩𝐿

2
(Ω)

{𝐼 (𝑢) = ∫

Ω

Φ (|∇𝑢|) 𝑑𝑥 +

𝜆

2

∫

Ω

(𝑢 − 𝑓)
2

𝑑𝑥} ,

(6)

where

Φ (𝑠) = 𝑠 −

1

𝐾

ln (1 + 𝐾𝑠) , (7)

where𝐾 is a positive parameter, and 𝑓 is the noise image.
Calculating directly, we can obtain the following propo-

sition.

Proposition 1. The function Φ(𝑠) satisfies the following prop-
erties:

(i) Φ(0) = 0, Φ

(𝑠) = 𝐾𝑠/(1 + 𝐾𝑠), and therefore Φ(𝑠) is
a strictly nondecreasing function for 𝑠 > 0;

(ii) Φ

(𝑠) = 𝐾/(1 + 𝐾𝑠)
2

> 0, and thereforeΦ(𝑠) is strictly
convex;

(iii) Φ(𝑠) = (𝐾/2)𝑠
2

+ 𝑜(𝑠
2

) as 𝑠 → 0;
(iv) lims→+∞

(Φ(𝑠)/𝑠) = 1, 𝛼|𝑠| ≤ Φ(|𝑠|) < |𝑠|, 0 < 𝛼 < 1,
and therefore Φ(𝑠) is the linear growth.

Compared with the work in [31], the new model satisfies
the linear growth condition, which is much more natural.
And the existence result for the flow associated with the
minimization problem in [31] is only in one and two dimen-
sions because themethods employed there use general results
on maximal monotone operators and evolution operators in
Hilbert spaces.

Remark 2. In this method,Φ satisfies someminimal hypoth-
eses; namely:

(H1) Φ is a strictly convex, nondecreasing function from
R+ to R+, with Φ(0) = 0;

(H2) because in the homogeneous regions weak gradients
should be smoothed, there should be weak penaliza-
tion in these region. Thus as |∇𝑢| = 𝑠 → 0, Φ(𝑠) ≈
𝐾𝑠

2; this signals isotropic diffusion;
(H3) because edges, signaled by regions of strong gradients,

should be protected, regularization near the edgeswill
be penalized strongly. Thus, as |∇𝑢| = 𝑠 → +∞,
𝛼|𝑠| < Φ(|𝑠|) < Λ|𝑠|, 0 < 𝛼 ≤ Λ; this not only
demonstrates the linear growth nature of the model
but also signals the TV edge preservation behaviour
of the model.

In [27], the authors obtained

lim
𝛽→0

𝐽
𝛽
(𝑢) = 𝐽

0
(𝑢) , (8)

where 𝐽
𝛽
(𝑢) = ∫

Ω

√𝛽 + |∇𝑢|
2

𝑑𝑥. Actually, the perturba-
tion 𝛽 is always used to the eliminate singularity of the
term div(𝐷𝑢/|𝐷𝑢|) in the numerical experiments. With the
inclusion or addition of 𝛽, what is then implemented is
not actually the TV formulation, but an approximation of
it. And, so, because of the approximation, the time step in
the discrete scheme becomes limited only to smaller values,
as 𝛽 diminishes [32]. The proposed model beats all these
challenges and therefore has an easier design for numerical
implementation without the need for lifting parameters.
Moreover, it is noticed that, for 𝑠 ∈ R,

lim
𝐾→+∞

Φ (|𝑠|) = |𝑠| , (9)

which is the form of the TV model. This means that any
merits accruing from the TV model could be still obtained
as 𝐾 becomes larger and larger.

Remark 3. (1) Since TV potential (i.e., Φ(𝑠) = 𝑠) is only
convex (i.e., Φ

(𝑠) = 0), it gives a local minimum, but it
cannot guarantee uniqueness of the minimum energy. The
proposed energy potential (i.e.,Φ(𝑠) = 𝑠 − (1/𝐾) ln(1 + 𝐾𝑠)),
however, is strictly convex (i.e., Φ

(𝑠) = 𝐾/(1 + 𝐾𝑠)
2

>

0). And, with additional strict convexity in the fidelity part,
𝐻(𝑧) = (𝑧 − 𝑓)

2, the resultant energy functional is strictly
convex in both |∇𝑢| and 𝑢, thereby giving a global minimum
energy and hence guaranteeing uniqueness of the results.

(2) The proposed method seeks to reduce the number of
parameters subject to manual manipulation. In the imple-
mentation,𝐾 ismade to depend on time, thereby leaving time
(evolution parameter) as the only parameter to be tweaked.

Other modifications of the TV model are only convex in
|∇𝑢| and therefore do not guarantee uniqueness of solutions;
hence uniqueness of results is not easy to assure. Besides, the
evolution system of the models contains 1/|∇𝑢| component,
which runs into a spike when |∇𝑢| = 0, in smooth
regions. This then makes only the implementation of the
approximations of the corresponding formulations possible
(see [13, 20, 24, 27, 29]).

2.2. The Associated Evolution Equation. The Euler-Lagrange
equation for the energy functional (6) is

0 = − div( 𝐾∇𝑢

1 + 𝐾 |∇𝑢|

) + 𝜆 (𝑢 − 𝑓) , 𝑥 ∈ Ω, (10)

with

𝜕𝑢

𝜕 ⃗𝑛

= 0, 𝑥 ∈ 𝜕Ω. (11)

To compute a solution of (10) numerically, it is embedded
into a dynamical scheme, where 𝑡 is used as the evolution
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parameter. Hence, corresponding to the proposed minimiza-
tion model (6), we have the following evolution system:

𝑢
𝑡
= div( 𝐾∇𝑢

1 + 𝐾 |∇𝑢|

) − 𝜆 (𝑢 − 𝑓) , (𝑥, 𝑡) ∈ Ω × (0, 𝑇) ,

(12)

𝑢 (𝑥, 0) = 𝑓 (𝑥) , 𝑥 ∈ Ω, (13)

𝜕𝑢

𝜕 ⃗𝑛

= 0, (𝑥, 𝑡) ∈ 𝜕Ω × [0, 𝑇] . (14)

Note 1. The modified formulation also does not have the
disadvantage of running into a singularity, since the denom-
inator does not become zero. This particular observation
makes it more convenient to design a numerical scheme for
the model.

Furthermore, to see more clearly the action of the diffu-
sion operator (kernel), we decompose the divergence term on
the premise of the local image structures. That is, we break
it into the tangential (𝑇) and normal (𝑁) directions to the
isophote lines. Consequently we have

div( ∇𝑢

1 + 𝐾 |∇𝑢|

) =

1

(1 + 𝐾 |∇𝑢|)
2
𝑢
𝑁𝑁

+

1

1 + 𝐾 |∇𝑢|

𝑢
𝑇𝑇
,

(15)

where

𝑢
𝑁𝑁

=

1

|∇𝑢|
2
(𝑢

2

𝑥
1

𝑢
𝑥
1
𝑥
1

+ 𝑢
2

𝑥
2

𝑢
𝑥
2
𝑥
2

+ 2𝑢
𝑥
1

𝑢
𝑥
2

𝑢
𝑥
1
𝑥
2

) ,

𝑢
𝑇𝑇

=

1

|∇𝑢|
2
(𝑢

2

𝑥
1

𝑢
𝑥
2
𝑥
2

+ 𝑢
2

𝑥
2

𝑢
𝑥
1
𝑥
1

− 2𝑢
𝑥
1

𝑢
𝑥
2

𝑢
𝑥
1
𝑥
2

) .

(16)

The divergence term is visibly a weighted sum of the direc-
tional derivatives, along the normal and tangential directions.
Since we are also seeking to preserve the edges and other
important features of the image, smoothing in the tangential
direction should be encouragedmore than that in the normal
direction, in the regions near the boundaries (edges).Observe
in the above formulation that, as |∇𝑢| increases, the coefficient
of 𝑢

𝑁𝑁
diminishes faster, reducing diffusion in the normal

direction, thus preserving edges. The edges are signalled by
higher values of the magnitude of gradient of 𝑢. However, as
|∇𝑢| decreases, there is relatively uniform diffusion in both
𝑢
𝑁𝑁

and 𝑢
𝑇𝑇

directions, thereby achieving isotropic diffusion
in homogeneous regions. The homogeneous regions are
signaled by diminishing values of the magnitude of gradient
of image 𝑢. The proposed model is, therefore, sensitive to
the local image structure. However, TV based denoising
model and most other modifications do not have that 𝑢

𝑁𝑁

component.This leads to a situation where the homogeneous
parts are processed into piecewise constant regions, whose
boundaries reflect staircases or false edges in the image. This
situation, for instance, affects the results of a modification by
Chen et al. [24] when 𝑝 = 1, and the model becomes the
traditional TV model.

3. The Minimization Problem

In this section, we prove the existence and uniqueness of the
minimization problem (6). But, first, we give the following
preliminary presentations which will guide our reasoning in
the subsequent sections of this paper.

3.1. Preliminaries

Definition 4. Let Ω be an open subset of R𝑛. A function 𝑢 ∈

𝐿
1 has a bounded variation inΩ if

sup {∫
Ω

𝑢 div 𝜑𝑑𝑥 : 𝜑 ∈ 𝐶
1

0
(Ω;R

𝑛

) ,




𝜑




≤ 1} < ∞, (17)

where BV(Ω) denotes the space of such functions. Then BV-
norm is given by

‖∇𝑢‖BV = ∫

Ω

|∇𝑢| + |𝑢|
𝐿
1
(Ω)
. (18)

Definition 5 (see [33]). If 𝑢 ∈ BV(Ω), then

𝐷𝑢 = ∇𝑢 ⋅L
𝑛

+ 𝐷
𝑠

𝑢 (19)

and 𝐷𝑢 is a radon measure, where ∇𝑢 is the density of the
absolutely continuous part of𝐷𝑢with respect to the Lebesgue
measure,L𝑛, and𝐷𝑠

𝑢 is the singular part.

Lemma 6 (see [34]). Let 𝜙 : R → R+ be convex, even,
nondecreasing onR+ with linear growth at infinity. Also letΦ∞

be the recession function of Φ defined by

Φ
∞

(𝜔) = lim
𝑠→∞

Φ (𝑠𝜔)

𝑠

. (20)

Then for 𝑢 ∈ 𝐵𝑉(Ω) and setting Φ(𝜃) = Φ(|𝜃|) we have

∫

Ω

Φ (𝐷𝑢) = ∫

Ω

Φ (|∇𝑢|) 𝑑𝑥 + Φ
∞

(1) ∫

Ω

𝐷
𝑠

𝑢. (21)

This implies that 𝑢 → ∫
Ω

Φ(𝐷𝑢) is lower semicontinuous for
the 𝐵𝑉(Ω) weak∗ topology.

3.2. Existence and Uniqueness of Solution to the Minimization
Problem. The linear growth condition makes it natural to
consider a solution in the space

𝑈 = {𝑢 ∈ 𝐿
2

(Ω) ; ∇𝑢 ∈ 𝐿
1

(Ω)
2

} . (22)

However, this space is not reflexive. But sequences bounded
in𝑈 are also bounded in BV(Ω) and are therefore compact for
BV weak∗ topology. Moreover, due to the fact that 𝐿1-space
is separable, weak∗ topology allows us to obtain compactness
results even if the space is not reflexive [34–37]. Hence,
by denoting BV(Ω) weak∗ topology simply as BV(Ω), we
therefore seek the solution to the minimization problem (6)
in the space BV(Ω) ∩ 𝐿2(Ω).

Theorem 7. The minimization problem 𝐼(𝑢) (refer to (6)) has
a unique solution 𝑢 ∈ 𝐵𝑉(Ω) ∩ 𝐿2(Ω).
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Proof . From the linear growth property ofΦ(𝑠) we have

𝛼 |𝑠| ≤ Φ (|𝑠|) < |𝑠| , for 0 < 𝛼 < 1, (23)

which implies that

lim
𝑠→+∞

Φ (𝑠) = +∞. (24)

Thus 𝐼(𝑢) is coercive. Therefore, let 𝑢
𝑛
be a minimizing

sequence in BV(Ω) ∩ 𝐿2(Ω). Then

𝐼 (𝑢
𝑛
) ≤ 𝑀, (25)

where𝑀 denotes a generic constant that may differ from line
to line. It clearly follows from above that

∫

Ω

Φ(




∇𝑢

𝑛





) 𝑑𝑥 ≤ 𝐼 (𝑢

𝑛
) ≤ 𝑀, ∫

Ω





𝑢
𝑛






2

𝑑𝑥 ≤ 𝑀. (26)

This implies that {𝑢
𝑛
} is bounded in BV(Ω) ∩ 𝐿

2

(Ω). Hence
there exists a subsequence {𝑢

𝑛
𝑘

} of {𝑢
𝑛
} and a function 𝑢 ∈

BV(Ω) ∩ 𝐿2(Ω) such that

𝑢
𝑛
𝑘

→ 𝑢, strongly in 𝐿
1

(Ω) ,

𝑢
𝑛
𝑘

⇀ 𝑢, weakly in 𝐿
2

(Ω) .

(27)

And, by Lemma 6 and the weak lower semicontinuity of the
𝐿
2-norm, we have that

𝐼 (𝑢) ≤ lim inf
𝑘→∞

𝐼 (𝑢
𝑛
𝑘

) = min
BV(Ω)∩𝐿

2
(Ω)

𝐼 (V) . (28)

Hence, there exists a solution of the minimization problem.
Uniqueness of the solution follows from the strict convexity
of the functional.

4. Existence and Uniqueness for
the Evolution Equation

In this section, we define a weak solution for the evolution
equations (12)–(14). That is, if (6) has a minimum point 𝑢,
then it should formally satisfy the Euler-Lagrange equation
(12), subject to the boundary conditions (13)-(14). We define
a weak solution that we are seeking for the equation system
(12)–(14). We then propose an approximating problem and
derive certain a priori estimates to the approximating prob-
lem. These will aid the process of proving the existence and
uniqueness of the weak solution. Finally, we show the large
time behavior (asymptotic stability) of the weak solution.

4.1. Definition of Weak Solution. Let V ∈ 𝐿2(0, 𝑇;𝐻1

(Ω)), 𝑓 ∈

BV(Ω), V > 0, and 𝜕V/𝜕 ⃗𝑛 = 0, where Ω
𝑇
= Ω × [0, 𝑇] and

𝑢 is a solution to (12)–(14). Multiplying (12) by (V − 𝑢) and
integrating overΩ, we have

∫

Ω

𝜕
𝑡
𝑢 (V − 𝑢) 𝑑𝑥 + ∫

Ω

𝐾∇𝑢

1 + 𝐾 |∇𝑢|

(∇V − ∇𝑢) 𝑑𝑥

= −𝜆∫

Ω

(𝑢 − 𝑓) (V − 𝑢) 𝑑𝑥.
(29)

Then applying the convexity condition of Φ, that is, Φ(𝑥) −
Φ(𝑦) ≥ Φ



(𝑦)(𝑥 − 𝑦), on both the second term on the left
side and on the right side of the above equation gives

∫

Ω

𝜕
𝑡
𝑢 (V − 𝑢) 𝑑𝑥 + ∫

Ω

Φ (|∇𝑢|) 𝑑𝑥 +

𝜆

2

∫

Ω

(V − 𝑓)2𝑑𝑥

≥ ∫

Ω

Φ (|∇𝑢|) +

𝜆

2

∫

Ω

(𝑢 − 𝑓)
2

𝑑𝑥.

(30)

Integrating (30) with respect to 𝑡 we get

∫

𝑡

0

∫

Ω

𝜕
𝑡
𝑢 (V − 𝑢) 𝑑𝑥 𝑑𝑡 + ∫

𝑡

0

𝐼 (V) 𝑑𝑡 ≥ ∫

𝑡

0

𝐼 (𝑢) 𝑑𝑡. (31)

Now, since V ∈ 𝐿
2

(0, 𝑇;𝐻
1

(Ω)), we may choose V = 𝑢 + 𝜉𝜙,
where 𝜙 ∈ 𝐶

∞

0
(Ω). We observe that the left-hand side of (31)

has aminimum at 𝜉 = 0.This shows that 𝑢 is a solution of (12)
in the distributional sense.The facts raised abovemotivate the
following definition for a weak solution to (12)–(14).

Definition 8. A function 𝑢 ∈ 𝐿
2

(0, 𝑇;BV(Ω) ∩ 𝐿2) is called a
weak solution of (12)–(14) if 𝜕

𝑡
𝑢 ∈ 𝐿

2

(Ω
𝑇
), 𝑢(𝑥, 0) = 𝑓(𝑥), on

Ω and 𝑢 satisfies (31) for every V ∈ 𝐿2((0, 𝑇);BV(Ω)∩𝐿2) and
𝑡 ∈ [0, 𝑇].

4.2. Approximating Energy Functional. Let Ω be an open
bounded subset of R𝑛 and let 𝑓 ∈ BV(Ω) ∩ 𝐿∞. Then let us
consider the following approximating energy functional for
1 < 𝑝 ≤ 2:

𝐼
𝑝
(𝑢) = ∫

Ω

Φ
𝑝
(∇𝑢) 𝑑𝑥 +

𝜆

2

∫

Ω

(𝑢 − 𝑓)
2

𝑑𝑥, (32)

where

Φ
𝑝
(𝑠) =

1

𝑝

(|𝑠|
𝑝

−

1

𝐾

ln (1 + 𝐾|𝑠|𝑝)) , (33)

with the following properties:

(1) Φ

𝑝
(𝑠) = 𝐾|𝑠|

2𝑝−2

𝑠/(1+𝐾|𝑠|
𝑝

) andΦ

𝑝
(𝑠) ≥ 0 ∀𝑠 ∈ R𝑛;

(2) Φ

𝑝
(𝑠) = 𝐾|𝑠|

2𝑝−2

[(2𝑝 − 1) + 𝐾(𝑝 −

1)|𝑠|
𝑝

]/[1 + 𝐾|𝑠|
𝑝

]

2

> 0. Hence Φ(𝑠) is strictly
convex in 𝑠.

Remark 9. Since 𝑓 ∈ BV(Ω) we can have a sequence 𝑓
𝜅
∈

𝑊
1,𝑝

(Ω) with

𝑓
𝜅
→ 𝑓 as 𝜅 → 0 in 𝐿

2

(Ω) ,

∫

Ω





∇𝑓

𝜅





→ ∫

Ω





∇𝑓




.

(34)

And as a consequence of Theorem 2.9 in [20] we have

∫

Ω





∇𝑓

𝜅





≤ 𝐶. (35)

From property (iii) ofΦ(𝑠) it is easy to see that

Φ(∇𝑓) ≤




∇𝑓




. (36)
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This implies that

Φ(∇𝑓
𝜅
) ≤





∇𝑓

𝜅





≤ 𝐶. (37)

Hence

∫

Ω

Φ(∇𝑓
𝜅
) → ∫

Ω

Φ(∇𝑓) , as 𝜅 → 0. (38)

On the strength of (32) and Remark 9 let us consider the
approximate evolution problem

𝜕
𝑡
𝑢
𝜅,𝑝

= div (Φ

𝑝
(∇𝑢

𝜅,𝑝
)) − 𝜆 (𝑢

𝜅,𝑝
− 𝑓

𝜅
) , in Ω × [0, 𝑇] ,

(39)

𝜕𝑢
𝜅,𝑝

𝜕 ⃗𝑛

= 0; on 𝜕Ω × [0, 𝑇] , (40)

𝑢
𝜅,𝑝

(𝑥, 0) = 𝑓
𝜅
, 𝑥 ∈ Ω. (41)

Let the following𝐿∞ bound also hold for the solution of (39)–
(41).Then, the following lemma indicates the boundedness of
the solution𝑢

𝜅,𝑝
of the above approximate evolution problem.

Lemma 10. Suppose 𝑓
𝜅
∈ 𝐿

∞

(Ω) ∩ 𝐵𝑉(Ω) and that 𝑢
𝜅,𝑝

is a
solution to the problem (39)–(41); then

inf 𝑓
𝜅
≤ 𝑢

𝜅,𝑝
≤ sup𝑓

𝜅
. (42)

Proof. By a method similar to that of Zhou in [33], let 𝑀 =

sup𝑓
𝜅
and define (𝑢

𝜅,𝑝
−𝑀)

+
such that

(𝑢
𝜅,𝑝

−𝑀)
+

:= {

(𝑢
𝜅,𝑝

−𝑀) , if 𝑢
𝜅,𝑝

−𝑀 ≥ 0,

0, otherwise;
(43)

then multiplying (39) and integrating overΩ yields

∫

Ω

𝜕
𝑡
𝑢
𝜅,𝑝
(𝑢

𝜅,𝑝
−𝑀)

+

𝑑𝑥 + ∫

Ω

Φ


𝑝
(∇𝑢

𝜅,𝑝
) ⋅ ∇𝑢

𝜅,𝑝
𝑑𝑥

+ 𝜆∫

Ω

(𝑢
𝜅,𝑝

− 𝑓
𝜅
) (𝑢

𝜅,𝑝
−𝑀)

+

𝑑𝑥 = 0.

(44)

Observe that the last two integrals in the above equation are
nonnegative, based on the definition of (𝑢

𝜅,𝑝
−𝑀)

+

and the
fact thatΦ

𝑝
(𝑠) ⋅ 𝑠 ≥ 0. Therefore, we have

1

2

∫

Ω

𝑑

𝑑𝑡

(𝑢
𝜅,𝑝

−𝑀)

2

+

𝑑𝑥 ≤ 0, (45)

which indicates that 𝐽(𝑡) = (1/2) ∫
Ω

(𝑢
𝜅,𝑝

−𝑀)
2

+

𝑑𝑥 is a
decreasing function in 𝑡. Since 𝐽(0) = 0 we have that

𝐽 (𝑡) = 0, ∀𝑡 ∈ [0, 𝑇] . (46)

Hence 𝑢
𝜅,𝑝

≤ 𝑀 = sup𝑓
𝜅
. Conversely, multiplying (39)

by (𝑢
𝜅,𝑝

− 𝑚)
−

, where 𝑚 = inf 𝑓
𝜅
, and employing a similar

argument, we obtain that 𝑢
𝜅,𝑝

≥ −𝑚, ∀𝑡 ∈ [0, 𝑇]. Therefore,
inf 𝑓

𝜅
≤ 𝑢

𝜅,𝑝
≤ sup𝑓

𝜅
, ∀𝑡 ∈ [0, 𝑇].

Another estimate (bound) is obtained via the following
lemma.

Lemma 11. The approximate evolution problem (39)–(41) has
a unique solution 𝑢

𝜅,𝑝
∈ 𝐿

∞

(0, 𝑇;BV(Ω)) with 𝜕
𝑡
𝑢
𝜅,𝑝

∈

𝐿
2

(0, 𝑇; 𝐿
2

(Ω)) such that

∫

𝑡

0

∫

Ω

𝜕
𝑡
𝑢
𝜅,𝑝

(V − 𝑢
𝜅,𝑝
) 𝑑𝑥 𝑑𝑡 + ∫

𝑡

0

𝐼
𝑝
(V) 𝑑𝑡 ≥ ∫

𝑡

0

𝐼
𝑝
(𝑢

𝜅,𝑝
) 𝑑𝑡,

(47)

for any 𝑡 ∈ [0, 𝑇] and V ∈ 𝐿
2

(0, 𝑇;𝑊
1,𝑝

(Ω)) with 𝜕V/𝜕 ⃗𝑛 = 0.
Moreover

∫

∞

0

∫

Ω






𝜕
𝑡
𝑢
𝜅,𝑝







2

𝑑𝑥 𝑑𝑡

+ sup
𝑡∈[0,𝑇]

{∫

Ω

Φ
𝑝
(∇𝑢

𝜅,𝑝
) 𝑑𝑥 +

𝜆

2

∫

Ω

(𝑢
𝜅,𝑝

− 𝑓
𝜅
)

2

𝑑𝑥}

≤ 𝐼
𝑝
(∇𝑓

𝜅
) .

(48)

Proof. Since Φ(∇𝑢) is a lower semicontinuous and strictly
convex function, then, by definitions provided in [34, 38, 39],
− div(Φ

(∇𝑢)), which is a subdifferential of ∫
Ω

Φ(∇𝑢)𝑑𝑥, is
maximal monotone. The approximate problem (39)–(41) has
a unique solution such that 𝑢

𝜅,𝑝
∈ 𝐿

∞

(0, 𝑇;𝑊
1,𝑝

(Ω)). Now,
to show that 𝑢

𝜅,𝑝
is the weak solution to the approximating

problem (39)–(41), as governed by (47), we multiply (39) by
V−𝑢

𝜅,𝑝
for V ∈ 𝐿2(0, 𝑇;𝑊1,𝑝

(Ω))with 𝜕V/𝜕 ⃗𝑛 = 0 and integrate
overΩ and 𝑡 ∈ [0, 𝑇]. Thus

∫

𝑡

0

∫

Ω

𝜕
𝑡
𝑢
𝜅,𝑝

(V − 𝑢
𝜅,𝑝
) 𝑑𝑥 𝑑𝑡

= ∫

𝑡

0

∫

Ω

(div (Φ

𝑝
(∇𝑢

𝜅,𝑝
)) (V − 𝑢

𝜅,𝑝
)) 𝑑𝑥 𝑑𝑡

− 𝜆∫

𝑡

0

∫

Ω

((𝑢
𝜅,𝑝

− 𝑓
𝜅
) (V − 𝑢

𝜅,𝑝
)) 𝑑𝑥 𝑑𝑡,

∫

𝑡

0

∫

Ω

𝜕
𝑡
𝑢
𝜅,𝑝

(V − 𝑢
𝜅,𝑝
) 𝑑𝑥 𝑑𝑡

+ ∫

𝑡

0

∫

Ω

Φ


𝑝
(∇𝑢

𝜅,𝑝
) (∇V − ∇𝑢

𝜅,𝑝
) 𝑑𝑥 𝑑𝑡

= −𝜆∫

𝑡

0

∫

Ω

(𝑢
𝜅,𝑝

− 𝑓
𝜅
) (V − 𝑢

𝜅,𝑝
) 𝑑𝑥 𝑑𝑡.

(49)

Applying convexity condition on both sides of the above
equation we obtain

∫

𝑡

0

∫

Ω

𝜕
𝑡
𝑢
𝜅,𝑝

(V − 𝑢
𝜅,𝑝
) 𝑑𝑥 𝑑𝑡 + ∫

𝑡

0

∫

Ω

Φ
𝑝
(∇V) 𝑑𝑥 𝑑𝑡

−

𝜆

2

∫

𝑡

0

∫

Ω

(V − 𝑓
𝜅
)
2

𝑑𝑥 𝑑𝑡

≥ ∫

𝑡

0

∫

Ω

Φ
𝑝
(∇𝑢

𝜅,𝑝
) 𝑑𝑥 𝑑𝑡 +

𝜆

2

∫

𝑡

0

∫

Ω

(𝑢
𝜅,𝑝

− 𝑓
𝑘
)

2

𝑑𝑥 𝑑𝑡,

(50)

which implies (47).
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Then, multiplying (39) by �̇�
𝜅,𝑝

and integrating overΩ and
𝑡 ∈ [0, 𝑇] we obtain

∫

𝑡

0

∫

Ω

(𝜕
𝑡
𝑢
𝜅,𝑝
)

2

𝑑𝑥 𝑑𝑡 = ∫

𝑡

0

∫

Ω

div (Φ

𝑝
(∇𝑢

𝜅,𝑝
)) �̇�

𝜅,𝑝
𝑑𝑥 𝑑𝑡

− 𝜆∫

𝑡

0

∫

Ω

(𝑢
𝜅,𝑝

− 𝑓
𝜅
) �̇�

𝜅,𝑝
𝑑𝑥 𝑑𝑡,

(51)

which yields

∫

𝑡

0

∫

Ω

(𝜕
𝑡
𝑢
𝜅,𝑝
)

2

𝑑𝑥 𝑑𝑡 + ∫

𝑡

0

𝜕
𝑡
(∫

Ω

Φ
𝑝
(∇𝑢

𝜅,𝑝
) 𝑑𝑥) 𝑑𝑡

+

𝜆

2

∫

𝑡

0

𝜕
𝑡
(∫

Ω

(𝑢
𝜅,𝑝

− 𝑓
𝜅
) 𝑑𝑥)

2

𝑑𝑡 = 0.

(52)

From the above equation together with (41) we obtain

∫

𝑡

0

∫

Ω

(𝜕
𝑡
𝑢
𝜅,𝑝
)

2

𝑑𝑥 𝑑𝑡 + ∫

Ω

Φ
𝑝
(∇𝑢

𝜅,𝑝
)







𝑡

0

𝑑𝑥

+

𝜆

2

∫

Ω

(𝑢
𝜅,𝑝

− 𝑓
𝜅
)

2





𝑡

0

𝑑𝑥 = 0,

(53)

which by (40) and (41) produces (48).

4.3. Existence and Uniqueness of the Solution of the Evolution
Problem. Next, using the a priori estimates obtained above,
through the approximate problem, we proceed to prove the
existence and uniqueness of the solution of the evolution
problem (12)–(14).

Theorem 12. Let 𝑓 ∈ 𝐵𝑉(Ω) ∩ 𝐿
∞

(Ω). Then there exists a
unique weak solution 𝑢 ∈ 𝐿

∞

(0,∞; 𝐵𝑉(Ω) ∩ 𝐿
∞

(Ω)), 𝜕
𝑡
𝑢 ∈

𝐿
2

(𝑄
∞
), and 𝑢(𝑥, 0) = 𝑓 such that

∫

∞

0

∫

Ω





𝜕
𝑡
𝑢





2

𝑑𝑥 𝑑𝑡 + sup
𝑡∈[0,∞)

{𝐼 (𝑢)} ≤ 𝐼 (𝑓) , (54)

where 𝑡 ∈ [0,∞), 𝑄
∞
:= Ω × [0,∞).

Proof. From Lemmas 10 and 11 we see that






𝜕
𝑡
𝑢
𝜅,𝑝





𝐿
2
(𝑄
∞
)

+






𝑢
𝜅,𝑝





𝐿
∞
(𝑄
∞
)

+






𝑢
𝜅,𝑝





𝐿
∞
(0,∞;𝑊

1,𝑝
(Ω)∩𝐿

∞
(Ω))

≤ 𝑀,

(55)

where𝑀 is some constant that may vary from line to line. Let
{𝑢

𝜅,𝑝
} by Lemma 10 be a bounded sequence of solutions of the

problem (39)–(41). Then there exists a subsequence denoted

by {𝑢
𝜅,𝑝
𝑖

} of {𝑢
𝜅,𝑝
} and a function 𝑢

𝜅
∈ 𝐿

∞

(Ω), with �̇�
𝜅
∈

𝐿
2

(Ω; [0, 𝑇]), such that, as 𝑝
𝑖
→ 1,

𝑢
𝜅,𝑝
𝑖

→ 𝑢
𝜅

strongly in 𝐿
1

(Ω) for each 𝑡 ∈ [0,∞) , (56)

𝜕
𝑡
𝑢
𝜅,𝑝
𝑖

⇀ 𝜕
𝑡
𝑢
𝜅

weakly in 𝐿
2

(𝑄
∞
) , (57)

𝑢
𝜅,𝑝
𝑖

∗

⇀ 𝑢
𝜅

weak∗ in 𝐿
∞

(𝑄
∞
) , (58)

𝑢
𝜅,𝑝
𝑖

→ 𝑢
𝜅

in 𝐿
2

(Ω) uniformly in 𝑡, (59)

lim
𝑡→0
+

∫

Ω






𝑢
𝜅,𝑝
𝑖

(𝑥, 𝑡) − 𝑓
𝜅
(𝑥)







2

𝑑𝑥 = 0. (60)

Indeed, from (55), there is a sequence {𝑢
𝜅,𝑝
𝑖

} and a func-
tion 𝑢

𝜅
∈ 𝐿

∞

(𝑄
∞
) with �̇�

𝜅
∈ 𝐿

2

(𝑄
∞
) such that (57) and (58)

hold. Observe also that for any 𝜙 ∈ 𝐿2(Ω), as 𝑖 → ∞,

∫

Ω

(𝑢
𝜅,𝑝
𝑖
(𝑥, 𝑡) − 𝑓

𝜅
(𝑥)) 𝜙 (𝑥) 𝑑𝑥

= ∫

𝑡

0

𝜕
𝑠
(∫

Ω

𝑢
𝜅,𝑝
𝑖
(𝑥, 𝑠) 𝜙 (𝑥) 𝑑𝑥) 𝑑𝑠

→ ∫

𝑡

0

𝜕
𝑠
(∫

Ω

𝑢
𝜅
(𝑥, 𝑠) 𝜙 (𝑥) 𝑑𝑥) 𝑑𝑠

= ∫

Ω

(𝑢
𝜅
(𝑥, 𝑡) − 𝑓

𝜅
(𝑥)) 𝜙 (𝑥) 𝑑𝑥,

(61)

which indicates that for each 𝑡
𝑢
𝜅,𝑝
𝑖

⇀ 𝑢
𝜅

in 𝐿
2

(Ω) . (62)
By Lemmas 10 and 11, for each 𝑡 ∈ [0,∞), {𝑢

𝜅,𝑝
𝑖

(𝑥, 𝑡)} is a
bounded sequence in𝑊1,1

(Ω). Combining that fact with (62)
we obtain that for each 𝑡 as 𝑝

𝑖
→ 1

𝑢
𝜅,𝑝
𝑖

→ 𝑢
𝜅

in 𝐿
1

(Ω) . (63)
Moreover, (60) follows from the fact that





𝑢
𝜅,𝑝
𝑖

(⋅, 𝑡) − 𝑢
𝜅,𝑝
𝑖

(⋅, 𝑡


)







2

𝐿
2
(Ω)

≤






𝑡 − 𝑡







∫

𝑡

0

∫

Ω

(𝜕
𝑡
𝑢
𝜅,𝑝
𝑖

)

2

𝑑𝑥 𝑑𝑡.

(64)

From (64) 𝑡 → 𝑢
𝜅,𝑝
𝑖

(⋅, 𝑡) ∈ 𝐿
2

(Ω) is equicontinuous, and from
(55) and (58) we have that

𝑢
𝜅,𝑝
𝑖

→ 𝑢
𝜅

in 𝐿
2

(Ω) . (65)
It then follows by standard argument thatwe canhave𝑢

𝜅,𝑝
𝑖

→

𝑢
𝜅
in 𝐿

2

(Ω) uniformly in 𝑡, giving us (59). From Lemma 10
and (58) we obtain that 𝑢

𝜅
∈ 𝐿

∞

(0,∞,BV(Ω)∩𝐿∞(Ω))with
�̇�
𝜅
∈ 𝐿

2

(𝑄
∞
).

Next we show that, for all V ∈ 𝐿2(0, 𝑇,𝑊1,𝑝

(Ω) ∩ 𝐿
2

(Ω)),
V > 0 and 𝜕V/𝜕 ⃗𝑛 = 0 and for each 𝑡 ∈ [0,∞)

∫

𝑡

0

∫

Ω

𝜕
𝑡
𝑢
𝜅
(V − 𝑢

𝜅
) 𝑑𝑥 𝑑𝑡 + ∫

𝑡

0

∫

Ω

Φ (∇V) 𝑑𝑥 𝑑𝑡

−

𝜆

2

∫

𝑡

0

∫

Ω

(V − 𝑓
𝜅
)
2

𝑑𝑥 𝑑𝑡

≥ ∫

𝑡

0

∫

Ω

Φ(∇𝑢
𝜅
) 𝑑𝑥 𝑑𝑡 −

𝜆

2

∫

𝑡

0

∫

Ω

(𝑢
𝜅
− 𝑓

𝑘
)
2

𝑑𝑥 𝑑𝑡.

(66)
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To show this end, from Lemma 11, we obtain

∫

Ω

𝜕
𝑡
𝑢
𝜅,𝑝
𝑖

(V − 𝑢
𝜅,𝑝
𝑖

) 𝑑𝑥 + ∫

Ω

Φ
𝑝
𝑖
(∇V) 𝑑𝑥

+

𝜆

2

∫

Ω

(V − 𝑓
𝜅
)
2

𝑑𝑥

≥ ∫

Ω

Φ
𝑝
𝑖

(∇𝑢
𝜅,𝑝
𝑖

) 𝑑𝑥 +

𝜆

2

∫

Ω

(𝑢
𝜅,𝑝
𝑖

− 𝑓
𝜅
)

2

𝑑𝑥.

(67)

From (56) and (58) we deduce that there exists a subsequence
{𝑢

𝜅,𝑝
𝑖

} such that

𝑢
𝜅,𝑝
𝑖

→ 𝑢
𝜅

strongly in 𝐿
2

(Ω; [0, 𝑇]) . (68)

Using (57), (59), and (68) andwe let𝑝
𝑖
→ 1; in (67)we obtain

∫

Ω

𝜕
𝑡
𝑢
𝜅
(V − 𝑢

𝜅
) 𝑑𝑥 + ∫

Ω

Φ
𝑝
𝑖
(∇V) 𝑑𝑥 +

𝜆

2

∫

Ω

(V − 𝑓)2𝑑𝑥

≥ lim inf
𝑖→∞

∫

Ω

Φ
𝑝
𝑖

(∇𝑢
𝜅,𝑝
𝑖

) 𝑑𝑥 +

𝜆

2

∫

Ω

(𝑢
𝜅
− 𝑓

𝜅
)
2

𝑑𝑥.

(69)

But we define from the lower semicontinuity theorem that

∫

Ω

Φ(∇𝑢
𝜅
) 𝑑𝑥 ≤ lim inf

𝑖→∞

∫

Ω

Φ
𝑝
𝑖

(∇𝑢
𝜅,𝑝
𝑖

) 𝑑𝑥. (70)

Using (70) in (69) and integrating over 𝑠 ∈ [0, 𝑇] we obtain

∫

𝑠

0

∫

Ω

𝜕
𝑡
𝑢
𝜅
(V − 𝑢

𝜅
) 𝑑𝑥 𝑑𝑡 + ∫

𝑠

0

∫

Ω

Φ (∇V) 𝑑𝑥 𝑑𝑡

+

𝜆

2

∫

𝑠

0

∫

Ω

(V − 𝑓
𝜅
)
2

𝑑𝑥 𝑑𝑡

≥ ∫

𝑠

0

∫

Ω

Φ
𝜅
(∇𝑢

𝜅
) 𝑑𝑥 𝑑𝑡 +

𝜆

2

∫

𝑠

0

∫

Ω

(𝑢
𝜅
− 𝑓

𝜅
)
2

𝑑𝑥 𝑑𝑡,

(71)

which confirms (66).
Now, to complete the proof of the existence of solution to

(12)–(14), it remains to pass to the limit as 𝜅 → 0 in (71).
Replacing 𝑝 by 𝑝

𝑖
in (48), letting 𝑖 → ∞ (𝑝

𝑖
→ 1), and

using (57)–(59) and (70) we obtain

∫

∞

0

∫

Ω





𝜕
𝑡
𝑢
𝜅






2

𝑑𝑥 𝑑𝑡

+ sup
𝑡∈[0,∞)

{∫

Ω

Φ(∇𝑢
𝜅
) 𝑑𝑥 +

𝜆

2

∫

Ω

(𝑢
𝜅
− 𝑓

𝜅
)
2

𝑑𝑥}

≤ ∫

Ω

Φ(∇𝑓
𝜅
) 𝑑𝑥.

(72)

From Lemma 10 and also from the above inequality we see
that 𝑢

𝜅
is uniformly bounded in 𝐿∞(0,∞,BV(Ω) ∩ 𝐿

∞

(Ω))

and 𝜕
𝑡
𝑢
𝜅
is uniformly bounded in 𝐿2(𝑄

∞
).Thismeanswe can

extract a subsequence {𝑢
𝜅
𝑖

} of {𝑢
𝜅
} such that as 𝑖 → ∞ (𝜅

𝑖
→

0) we have

𝜕
𝑡
𝑢
𝜅
𝑖

⇀ 𝜕
𝑡
𝑢 weakly in 𝐿

2

(𝑄
∞
) ,

𝑢
𝜅
𝑖

∗

⇀ 𝑢 weak∗ in 𝐿
∞

(Ω
∞
) ,

𝑢
𝜅
𝑖

→ 𝑢 strongly in 𝐿
1

(Ω, [0, 𝑇]) , for each 𝑡 ∈ [0,∞) ,

𝑢
𝜅,𝑝
𝑖

→ 𝑢
𝜅

in 𝐿
2

(Ω) uniformly in 𝑡,

lim
𝑡→0
+

∫

Ω






𝑢
𝜅,𝑝
𝑖

(𝑥, 𝑡) − 𝑓
𝜅
(𝑥)







2

𝑑𝑥 = 0.

(73)

Now, replacing 𝜅 with 𝜅
𝑖
in (71), letting 𝑖 → ∞ (𝜅

𝑖
→ 0),

and applying the lower semicontinuity in (70) we obtain

∫

𝑠

0

∫

Ω

𝜕
𝑡
𝑢 (V − 𝑢) 𝑑𝑥 𝑑𝑡 + ∫

Ω

𝐼 (V) 𝑑𝑡 ≥ ∫

Ω

𝐼 (𝑢) 𝑑𝑡, (74)

for all V ∈ 𝐿2(0, 𝑇,𝑊1,𝑝

(Ω)∩𝐿
2

(Ω)), V > 0 and 𝜕V/𝜕 ⃗𝑛 = 0 and
for each 𝑡 ∈ [0,∞). Hence 𝑢 is a weak solution to (12)–(14).
Replacing 𝜅 by 𝜅

𝑖
in (72), letting 𝑖 → ∞(𝜅

𝑖
→ 0), and using

(57)–(59) and (70) we obtain (54).

Uniqueness of the Weak Solution. With reference to the def-
inition of solution inequality as given in (31), let 𝑢

1
and 𝑢

2

be two weak solutions to the problem (12) to (14) such that
𝑢
1
(𝑥, 0) = 𝑢

2
(𝑥, 0) = 𝑓. Then we have, for two solutions, two

inequalities:

∫

𝑠

0

∫

Ω

𝜕
𝑡
𝑢
1
(𝑢

2
− 𝑢

1
) 𝑑𝑥 𝑑𝑡+ ∫

𝑠

0

𝐼 (𝑢
2
) 𝑑𝑡 ≥ ∫

𝑠

0

𝐼 (𝑢
1
) 𝑑𝑡,

∫

𝑠

0

∫

Ω

𝜕
𝑡
𝑢
2
(𝑢

1
− 𝑢

2
) 𝑑𝑥 𝑑𝑡+ ∫

𝑠

0

𝐼 (𝑢
1
) 𝑑𝑡 ≥ ∫

𝑠

0

𝐼 (𝑢
2
) 𝑑𝑡.

(75)

Now, adding the two inequalities (75) we obtain a more com-
pact inequality given by

∫

𝑠

0

∫

Ω

(𝜕
𝑡
𝑢
2
− 𝜕

𝑡
𝑢
1
) (𝑢

1
− 𝑢

2
) 𝑑𝑥 𝑑𝑡 ≥ 0. (76)

This implies that

∫

𝑠

0

𝑑

𝑑𝑡

∫

Ω

(𝑢
1
− 𝑢

2
)
2

𝑑𝑥 𝑑𝑡 ≤ 0, (77)

which implies ‖𝑢
1
−𝑢

2
‖ = 0 for a.e. (𝑥, 𝑡) ∈ 𝑄

∞
.This confirms

the uniqueness of the weak solution.

4.4. Large Time Behavior. Finally, we will assess the asymp-
totic limit of the weak solution 𝑢(⋅, 𝑡) as 𝑡 → ∞. The essence
of this part is to demonstrate that over time the solution of
the evolution problem (12)–(14) ultimately converges to the
unique minimizer of the functional (6).

Theorem 13. As 𝑡 → ∞ the weak solution 𝑢 of the evolution
equation (12)–(14) converges weakly in 𝐿2(Ω) to a minimizer 𝑢
of the functional 𝐼(𝑢) in (6).
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Proof. Let V ∈ BV(Ω) ∩ 𝐿∞(Ω) into (31) to obtain

−

1

2

∫

Ω

(V (𝑥) − 𝑢)2






𝑠

0

𝑑𝑥 + ∫

𝑠

0

𝐼 (V (𝑥)) 𝑑𝑡 ≥ ∫

𝑠

0

𝐼 (𝑢) 𝑑𝑡. (78)

The equation above simplifies to

∫

Ω

(𝑢 (𝑥, 𝑠) − 𝑓) V (𝑥) 𝑑𝑥

−

1

2

∫

Ω

(𝑢
2

(𝑥, 𝑠) − 𝑓
2

) 𝑑𝑥 + 𝑠𝐼 (V (𝑥))

≥ ∫

𝑠

0

𝐼 (𝑢) 𝑑𝑡.

(79)

By taking 𝑢(𝑥, 𝑠) = (1/𝑠) ∫

𝑠

0

𝑢(𝑥, 𝑡)𝑑𝑡, and have for each 𝑠,
𝑢(𝑥, 𝑠) ∈ BV(Ω)∩𝐿∞(Ω). Given that 𝑢 is uniformly bounded
in BV(Ω), we conclude that there exists sequence 𝑢(𝑥, 𝑠

𝑛
)

and its subsequence is still denoted by {𝑢(𝑥, 𝑠
𝑛
)} such that

𝑢(𝑥, 𝑠
𝑛
) → 𝑢(𝑥, 𝑠) in 𝐿1(Ω) and 𝑢(𝑥, 𝑠

𝑛
) ⇀ 𝑢(𝑥, 𝑠) weak∗ in

BV(Ω), as 𝑠
𝑛
→ ∞, respectively. Hence dividing inequality

(79) by 𝑠 and taking the limit as 𝑠
𝑛
→ ∞ we obtain

𝐼 (V) ≥ 𝐼 (𝑢) . (80)

This demonstrates that indeed 𝑢 is a weak solution to (12)–
(14) and also the unique minimizer of problem (6).

5. Numerical Experiments

In this section, we present the performance of our method
in denoising images involving a Gaussian white noise. We
have then compared our results with the ones obtained by the
classical methods of PMmethod [7], TVmethod [8], and the
more recent D-𝛼-PM method [11].

5.1. Numerical Scheme. In the following two subsections, two
numerical discrete schemes, the PM scheme (PMS) and the
additive operator splitting (AOS) scheme, have been pro-
posed.

5.1.1. PM Scheme. Here, we have proposed a numerical
scheme similar to the original PMmethod, whereby (12)–(14)
are discretized as follows:

𝐶
𝑛

𝑁𝑖,𝑗
=

𝐾

1 + 𝐾






∇
𝑁
𝑢
𝑖,𝑗







, 𝐶
𝑛

𝑆𝑖,𝑗
=

𝐾

1 + 𝐾






∇
𝑆
𝑢
𝑖,𝑗







,

𝐶
𝑛

𝐸𝑖,𝑗
=

𝐾

1 + 𝐾






∇
𝐸
𝑢
𝑖,𝑗







, 𝐶
𝑛

𝑊𝑖,𝑗
=

𝐾

1 + 𝐾






∇
𝑊
𝑢
𝑖,𝑗







,

div𝑛
𝑖,𝑗
= [𝐶

𝑛

𝑁𝑖,𝑗
∇
𝑁
𝑢
𝑖,𝑗
+ 𝐶

𝑛

𝑆𝑖,𝑗
∇
𝑆
𝑢
𝑖,𝑗
+ 𝐶

𝑛

𝐸𝑖,𝑗
∇
𝐸
𝑢
𝑖,𝑗

+ 𝐶
𝑛

𝑊𝑖,𝑗
∇
𝑊
𝑢
𝑖,𝑗
] ,

(81)

and 𝜆 is dynamically determined according to the following
discretization scheme:

𝜆
𝑛

=

1

𝜎
2
|Ω|

∑

𝑖,𝑗

div𝑛
𝑖,𝑗
(𝑢

𝑖,𝑗
− 𝑓

𝑖,𝑗
) ,

where |Ω| = 𝑀𝑁 is the size of image.

(82)

Hence from (81) and (82) we have

𝑢
𝑛+1

𝑖,𝑗
= 𝑢

𝑛

𝑖,𝑗
+ 𝜏div𝑛

𝑖,𝑗
− 𝜆

𝑛

𝜏 (𝑢
𝑖,𝑗
− 𝑓

𝑖,𝑗
) ,

𝑢
0

𝑖,𝑗
= 𝑓

𝑖,𝑗
, 𝑢

𝑛

𝑖,0
= 𝑢

𝑛

𝑖,1
, 𝑢

𝑛

0,𝑗
= 𝑢

𝑛

1,𝑗
,

𝑢
𝑛

𝑀,𝑗
= 𝑢

𝑛

𝑀−1,𝑗
, 𝑢

𝑛

𝑖,𝑁
= 𝑢

𝑛

𝑖,𝑁−1
,

(83)

where

∇
𝑁
𝑢
𝑖,𝑗
= 𝑢

𝑖−1,𝑗
− 𝑢

𝑖,𝑗
, ∇

𝑆
𝑢
𝑖,𝑗
= 𝑢

𝑖+1,𝑗
− 𝑢

𝑖,𝑗
,

∇
𝐸
𝑢
𝑖,𝑗
= 𝑢

𝑖,𝑗+1
− 𝑢

𝑖,𝑗
, ∇

𝑊
𝑢
𝑖,𝑗
= 𝑢

𝑖,𝑗−1
− 𝑢

𝑖,𝑗
,

(84)

for 𝑖 = 0, 1, 2, . . . , 𝑁 and 𝑗 = 0, 1, 2, . . . ,𝑀.

5.1.2. AOS Scheme. In this part, using a AOS scheme, the
problem (12)–(14) has been discretized as follows:

𝜆
0

= 0,

𝑢
𝑛+1

=

1

𝑚

𝑚

∑

𝑙=1

[𝐼 − 𝑚𝜏𝐴
𝑙
(𝑢

𝑘

)]

−1

[𝑢
𝑛

+ 𝜆𝜏 (𝑓 − 𝑢
𝑛

)] ,

div𝑛 =
(𝑢

𝑛+1

− 𝑢
𝑛

)

𝜏

,

𝜆
𝑛

=

1

𝜎
2
𝑀𝑁

(𝑢 − 𝑓) div𝑛,

𝑢
0

𝑖,𝑗
= 𝑓

𝑖,𝑗
= 𝑓 (𝑖ℎ, 𝑗ℎ) , 𝑢

𝑛

𝑖,0
= 𝑢

𝑛

𝑖,1
,

𝑢
𝑛

0,𝑗
= 𝑢

𝑛

1,𝑗
, 𝑢

𝑛

𝐼,𝑖
= 𝑢

𝑛

𝐼−1,𝑖
, 𝑢

𝑛

𝑖,𝐽
= 𝑢

𝑛

𝑖,𝐽−1
,

(85)

where 𝐴
𝑙
(𝑢

𝑛

) = [𝑎
𝑖,𝑗
(𝑢

𝑛

)],

𝑎
𝑖,𝑗
(𝑢

𝑛

) :=

{
{
{
{
{
{

{
{
{
{
{
{

{

𝐶
𝑛

𝑖
+ 𝐶

𝑛

𝑗

2ℎ
2

, [𝑗 ∈ N (𝑖)] ,

− ∑

𝑁∈N(𝑖)

𝐶
𝑛

𝑖
+ 𝐶

𝑛

𝑁

2ℎ
2

, (𝑗 = 𝑖) ,

0, (else) ,

𝐶
𝑛

𝑖
:=

𝐾

1 + 𝐾






∇𝑢

𝑛

𝑖,𝑗







,

(86)

where






∇𝑢

𝑛

𝑖,𝑗






=

1

2

∑

𝑝,𝑞∈N(𝑖)






𝑢
𝑛

𝑝
− 𝑢

𝑛

𝑞







2ℎ

, (87)

whereN(𝑖) is the set of the two neighbors of pixel 𝑖 (boundary
pixels have only one neighbor).

It is observed that AOS schemes with large time steps
still reveal average grey value invariance, stability based on
extremum principle, Lyapunov functionals, and convergence
to a constant steady state [10]. The AOS scheme is less
than twice the typical effort needed for the PM scheme, a
rather low price for gaining absolute stability [10]. It is worth
noting that if we use div(∇𝑢/√𝜀 + |∇𝑢|2) to approximate
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Table 1: Numerical results for synthetic image (300 × 300).

Algorithm Parameters Number of steps CPU time (sec) PSNR MAE PSNRE SSIM
𝜎 𝐾 𝜏

PM 30 12 0.25 232 12.73 34.23 2.84 25.26 0.9829
TV 30 n/a 0.2 203 17.86 32.79 3.76 15.76 0.9748
D-𝛼-PM 30 1 0.25 42 2.40 37.30 3.38 24.76 0.9838
PMS 30 n/a 0.20 262 12.01 35.75 2.15 25.60 0.9870
AOS 30 n/a 3.00 17 2.51 33.30 2.92 25.40 0.9839

Table 2: Numerical results for Lena image (300 × 300).

Algorithm Parameters Number of steps CPU time (sec) PSNR MAE PSNRE SSIM
𝜎 𝐾 𝜏

PM 30 12 0.25 60 2.43 27.10 7.75 21.70 0.7234
TV 30 n/a 0.2 149 13.87 27.46 7.49 22.63 0.7960
D-𝛼-PM 30 4 2 13 0.90 28.17 7.35 24.78 0.7880
PMS 30 n/a 0.2 122 5.80 27.73 7.45 26.60 0.8060
AOS 30 n/a 2.0 7 1.24 28.06 7.27 27.80 0.8509

div(∇𝑢/|∇𝑢|) (TV kernel), in numerical scheme, the AOS
scheme may be unstable because of the small number 𝜀.
Our approximation, however, effectively avoids instabilities
arising from such a scenario, as there is no need for lifting
the denominator, since it cannot not be equal to zero. This
has been an additional motivation for considering AOS for
our numerical experiments.The possibility of occurrence of a
zero denominator in the evolution problem is a phenomenon
thatmakes the numerical implementation of TVproblematic.

5.2. Comparison with Other Methods. The experiments in
this work were performed on a Compaq610 computer, having
Intel Core 2 Duo CPU T5870 each 2.00GHz, physical RAM
of 4.00GB, and Professional Windows 8 64-bit Operating
System, on MATLAB R2013b. The image restoration per-
formance was measured in terms of the peak-signal-to-
noise ratio (PSNR), mean absolute deviation/error (MAE),
structural similarity index measure (SSIM), the measure of
similarity of edges (PSNRE), and visual effects. The iteration
stopping mechanism was based on the maximal PSNR or the
lowestMAE.The PSNR andMAE values were obtained using
the formula by Durand et al. [40] and are given by

PSNR = 10log
10
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(88)

Also, taking the edge map EM(𝑢) from the evolution equa-
tion, we have

EM (𝑢) =

𝐾

(1 + 𝐾 |∇𝑢|)

. (89)

And corresponding edge similarity measure is given, accord-
ing to the formulation by Guo et al. [11], by

PSNRE = PSNR (EM (𝑢) ,EM (𝑢
0
)) 𝑑𝐵. (90)

The SSIM measures have been obtained according to the
formula by Wang et al. [41] given by

SSIM (𝑢, 𝑢
0
) = 𝐿 (𝑢, 𝑢

0
) ⋅ 𝐶 (𝑢, 𝑢

0
) ⋅ 𝑅 (𝑢, 𝑢

0
) , (91)

where 𝑢
0
denotes the noise-free image, 𝑢 is the denoised

image,𝑀×𝑁 is the dimension of image, and |max 𝑢
0
−min 𝑢

0
|

yields the gray scale range of the original image. In addition,
𝐿(𝑢, 𝑢

0
) = (2𝜇

𝑢
𝜇
𝑢
0

+ 𝑘
1
)/(𝜇

2

𝑢
+ 𝜇

2

𝑢
0

+ 𝑘
1
) compares the two

images’ mean luminances 𝜇
𝑢
and 𝜇

𝑢
0
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), measures the closeness of contrast of the two

images 𝑢 and 𝑢
0
. Contrast is determined in terms of standard

deviation, 𝜎. Contrast comparison measure 𝐶(𝑢, 𝑢
0
) = 1

maximally if and only if 𝜎
𝑢
= 𝜎

𝑢
0

, that is, when the images
have equal contrast.

𝑅(𝑢, 𝑢
0
) = (𝜎
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0

+ 𝑘
3
)/(𝜎

𝑢
𝜎
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3
), where 𝜎

𝑢𝑢
0

is covari-
ance between 𝑢 and 𝑢

0
, is a structure comparison measure

which determines the correlation between the images 𝑢 and
𝑢
0
. It attains maximal value of 1 if structurally the two images

coincide, but its value is equal to zero when there is absolutely
no structural coincidence. The quantities 𝑘

1
, 𝑘

2
, and 𝑘

3
are

small positive constants that avert the possibility of having
zero denominators.

The results of our method were compared to PMmethod
[7], TV method [8], and the D-𝛼-PM method [11]. Tables 1
and 2, respectively, give a summary of the results from the
experiments, using synthetic image in Figure 1 and Lena
image in Figure 3.The parameters considered here are thresh-
olding parameter 𝐾, variance 𝛿, the time step parameter 𝜏,
and the convolution parameter 𝜎

1
applied in the D-𝛼-PM

method. The fidelity parameter 𝜆 was dynamically obtained
according to (82) or under the AOS scheme in Section 5.1.2,
while the rest of the parameters were chosen to guarantee
stability and attainment of optimal results.

For nontexture images as displayed in Figure 1 and the
results of our method using PMS scheme, as shown in
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(a) Original image (b) Noisy image (c) Proposed model I (PMS)

(d) Proposed model I (AOS) (e) PM model (f) TV model

(g) D-𝛼-PM model

Figure 1: Synthetic image (300 × 300). (a) Original image. (b) Noisy image corrupted by Gaussian noise for 𝜎 = 30. (c) Our algorithm by
PMS; 𝜏 = 0.2 (262 steps). (d) Our algorithm by AOS scheme; 𝜏 = 3 (17 steps). (e) PMmethod;𝐾 = 5 and 𝜏 = 0.25 (232 steps). (f) TVmethod;
𝜏 = 0.2 (203 steps). (g) D-𝛼-PM method; 𝜎

1
= 0.5, 𝜎 = 30, 𝜏 = 0.25, and 𝐾 = 1 (42 steps).

the fourth row of Table 1, demonstrate better performance
than those PM and TV as indicated by the higher PSNR,
PSNRE, and SSIM values and lower MAE. And, in spite
of higher iterative steps, the corresponding CPU time is
lower compared to TV and the traditional Perona-Malik
(PM) model. And although D-𝛼-PM model shows better
results than PSNR and MAE results, it can be observed that
in terms of edge feature recovery measure (PSNRE) and
general structural coincidence measure (SSIM) our method
performs better. Moreover, implementing our model by the
OAS scheme revealed faster execution in terms of both the

CPU time and iteration steps (see Table 1). The MAE has
lower and even better PSNR results than TV (see Table 1).
Looking at visual results of our method using PM scheme
(PMS) and AOS, respectively, in Figures 1(c) and 1(d), there
is manifestly better visual appeal for our method compared
to the PM method (see Figure 3(e)) which shows some
speckles, TVmethod (see Figure 1(f)) which exhibits staircase
effects and slight loss in contrast, and the D-𝛼-method (see
Figure 3(g)) which shows slightly deformed edges.

However, for real image such as the given Lena image in
Figure 3, the results as shown in Table 2 indicate that our
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(e) D-𝛼-PM model

Figure 2: Synthetic image (300×300). Similarity graphs between the original image and results of our method (AOS and PMS), PMmethod,
TV method, and D-𝛼-PM method, respectively.
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(a) Original image (b) Noisy image (c) Proposed model I (PMS)

(d) Proposed model I (AOS) (e) PM model (f) TV model

(g) D-𝛼-PM model

Figure 3: Lena image (300 × 300). (a) Original image. (b) Noisy image corrupted by Gaussian noise for 𝜎 = 30. (c) Our algorithm by PMS;
𝜏 = 0.2 (122 steps). (d) Our algorithm by AOS scheme; 𝜏 = 2 (7 steps). (e) PM method; 𝐾 = 12 and 𝜏 = 0.25 (60 steps). (f) TV method;
𝜏 = 0.2 (149 steps). (g) D-𝛼-PM method; 𝜎

1
= 0.5, 𝜎 = 30, 𝜏 = 2, and 𝐾 = 4 (13 steps).

method by AOS scheme gives superior results as shown by
the extremely lower iteration steps (7 steps), very short CPU
processing time (1.24 sec), better PSNR (28.06), and even
lower MAE (7.27) compared to those of the TV method and
PM method. Note that our model implemented using AOS
performs better than the samemodel implemented using PM
scheme (PMS) for real images. And, in spite of the slightly
superior PSNR and MAE values by the D-𝛼-PM method,
our method not only gives better edge preservation as evi-
denced by the higher PSNRE, but also gives closer structural
coincidence than the other three models. Further, the visual

appeal of our method, whether using PMS (Figure 3(c)) or
AOS scheme (Figure 3(d)), excels those of the traditional
Perona-Malik (PM) (see Figure 3(e)) method which shows
speckles and a bit of blur, TVmethod (see Figure 3(f)) which
introduces staircasing effects on the denoised image, and
even the D-𝛼-PMmethod, which shows blockiness and some
slight speckle effects.

In addition, from the similarity curves given in Figures 2
and 4, it can be observed in the light of the marked areas,
for instance, that this model performs better than its com-
parisons, both for the synthetic image and real image. Note
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(d) TV model
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(e) D-𝛼-PM model

Figure 4: Lena image (300× 300). Similarity graphs between the original image and results of our method (AOS and PMS), PMmethod, TV
method, and D-𝛼-PM method, respectively.
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also that, even though in performance metrics, especially in
terms of PSNR and MAE, the D-𝛼-PM method seems to
perform better, the similarity curves attest that our method
generates restored images that more closely match the origi-
nal image than the results obtained by the D-𝛼-PM method
(see Figures 2(e) and 4(e)).

6. Conclusion

In this paper, we have proposed a modified total variation
model based on the strictly convex modification for image
denoising. The main idea was to offer a better image restora-
tionmodel that is strictly convex and is, therefore, not subject
to backward diffusion which has the potential of introducing
blurs and to limit the number of parameters available for
manualmanipulation.This, probably, explains why, in spite of
the fact that ourmodel tends toTVas𝐾 tends to+∞, its prac-
tical implementation enjoys better image visual sharpness.
This visual sharpness is comparably visible in the results by
PM method, but it is still marred behind the oversmoothing
and speckle effects in PM images. In fact, the reason why the
D-𝛼-PM method tends to give images that have some blur
and deformed edges is attributable to the backward diffusion
that it introduces in the course of diffusion. Indeed, it is diffi-
cult to assure convergence to a solution of minimum energy
given the backward-forward motion of the diffusion process
induced by the D-𝛼-PM algorithm. At the practical level, the
increased number of parameters in the D-𝛼-PM algorithm
tends to make it difficult to arrive at a definite permutation of
parameter values that would give an optimal result.

For the proposed method, we have demonstrated the
existence and uniqueness of the solution of the model.
Moreover, numerical implementation of our model also does
not suffer potential inaccuracies typical of the TV method,
since we do not need to add any small perturbation constant
in TV method. Our thresholding parameter 𝐾 depends
on the evolution parameter 𝑡 and therefore does not have
to be constrained to smaller values as in the case of PM
model. The resultant evolution equation has been discretized
and implemented using PM scheme and AOS scheme to
demonstrate the performance of our algorithm. From the
given experimental results, the PSNR values, MAE values,
Iterative steps, the CPU processing time, PSNRE, SSIM, and
visual appeal of our denoised images all testify that our
method is actually a good balance of the PM, TV, and D-𝛼-
PM methods and hence a better image restoration model.

However, in real life application, we observe that the suc-
cess of any denoising algorithm depends on the type of image
being considered, the type of noise, the application intended
for the results of the restoration, the extent of degradation,
and indeed the implementation platform. And although we
have only considered additive Gaussian white noise, different
kinds of noise (whether Poisson, speckle, salt, or paper,
among others) will require different formulations for the
fidelity part and may even demand the application of more
than just one formulation for effectiveness. The choice of
platform and scheme of implementation must also be appro-
priately made for efficient performance of the formulation.

With respect to the use of the restoration results, there
are situations where the noise removal, generally, may be
counterproductive. This usually occurs when the oscillations
due to the noise are of comparable scale to those of the
features being targeted for preservation. A case like this may
require a combination of formulations [42, 43].

For images that are heavily degraded, it might be nec-
essary to do a preconvolution, to blur the noise effects, and
then to use an effective formulation such as this one to
recover semantically important features such as the edges and
contours of the image.
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[9] T. F. Chan and S. Esedoḡlu, “Aspects of total variation regu-
larized 𝐿

1 function approximation,” SIAM Journal on Applied
Mathematics, vol. 65, no. 5, pp. 1817–1837, 2005.

[10] J. Weickert, B. M. Ter Haar Romeny, and M. A. Viergever,
“Efficient and reliable schemes for nonlinear diffusion filtering,”
IEEE Transactions on Image Processing, vol. 7, no. 3, pp. 398–410,
1998.

[11] Z. Guo, J. Sun, D. Zhang, and B. Wu, “Adaptive Perona-Malik
model based on the variable exponent for image denoising,”
IEEE Transactions on Image Processing, vol. 21, no. 3, pp. 958–
967, 2012.
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