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This paper focuses on theoretical analysis of second-order consensus in multiagent system. As an extension of the general linear
protocol, a nonlinear protocol is designed for multiagent system with undirected communication topology. The nonlinear protocol
is also applied to achieve reference velocity consensus. Through choosing the appropriate Lyapunov functions and using LaSalle’s
invariance principle, some consensus conditions are derived. Simulation examples are provided to demonstrate the effectiveness of

the proposed results.

1. Introduction

Recently, consensus problems have been investigated exten-
sively in the content of distributed coordinated control of
dynamic agents, partly owning to the potential broad appli-
cation in various areas. A basic and fundamental question in
consensus is how to design the effective protocols (or algo-
rithms) such that each agent can achieve a common target.
Most of the consensus literatures mainly considered general
linear protocols for multiagent systems. However, the relation
between agents is usually not linear. In some situations, the
states of multiagent systems cannot be observed directly, and
some nonlinear functions about the states can be observed.
Therefore, it is necessary to design nonlinear protocols for
multiagent systems.

Nonlinear functions are always used to describe the
coupling relations of nodes in complex networks [1-6].
On the other hand, some scholars have paid attentions to
nonlinear protocols for multiagent systems recently. Bauso
et al. [7] designed the distributed nonlinear protocols and
proposed a game theoretical approach to solve consensus
problems. Xiao et al. [8] presented a new nonlinear protocol
for state consensus of multiagent system which provides
faster convergence rate than the typical linear protocol [9].
Liu et al. [10] discussed the consensus problem under two

nonlinear protocols with directed topology. Hui and Haddad
[11] developed a thermodynamic framework for address-
ing consensus for nonlinear multiagent dynamical systems.
Shang [12] proposed some sufficient criteria guaranteeing
multiagent systems to reach a consensus in finite time under
nonlinear protocols. Li and Guan [13] investigated nonlinear
consensus protocols for dynamic directed networks of multi-
agent systems based on the central manifold reduction tech-
nique. Shi and Hong [14] considered a group of continuous-
time agents with nonlinear agent dynamics and concluded
that the agents can flock to a convex target set. Sepulchre [15]
introduced consensus problems whose underlying state space
is notalinear space but a nonlinear space. Yu et al. [16] studied
the consensus problem for cooperative agents with nonlinear
dynamics in a directed network. Zhou and Wang [17] derived
some sufficient conditions for (global/exponential) semista-
bility for general discrete-time nonlinear protocols.
However, it is worthwhile to note that the above-
mentioned nonlinear protocols [7-13, 17] are all proposed
for the first-order multiagent systems. As we all know, first-
order consensus problems are mainly relative to commu-
nication topologies, but, for second-order consensus, both
the interaction graph and the coupling strength affect the
convergence result. Therefore, the consensus of second-order
multiagent systems is more challenging and interesting and



attracts researchers’ broad attention. For example, Yu et
al. [18] considered a second-order consensus problem for
multiagent systems with nonlinear dynamics. Furthermore,
Song et al. [19] studied the second-order leader-following
consensus problem of nonlinear multiagent systems. Ren [20]
proposed and analyzed a consensus algorithm for double-
integrator dynamics with a bounded control input under an
undirected interaction graph. Though [20] extended some
existing results in consensus algorithms to account for actua-
tor saturation, saturation function which is assumed to be the
hyperbolic tangent function is concrete and simple. So far as
we know, there is no result about designing some nonlinear
protocols for second-order multiagent systems. For this
purpose, this paper mainly designs a nonlinear protocol for
second-order dynamics with an undirected communication
topology as an extension of the linear protocol. Then, the
consensus protocol for second-order multiagent system with
a group reference velocity available to each individuality is
proposed.

The rest of this paper is organized as follows. Section 2
provides some preliminary graph theory, the proposed non-
linear protocol, and two useful lemmas. In Section 3, consen-
sus problem and reference velocity consensus of a second-
order multiagent system with an undirected communication
topology are analyzed, respectively. Some numerical exam-
ples are given to show the effectiveness and advantage of
the theoretical results in Section 4. Finally, a conclusion is
provided in Section 5.

2. Notation and Preliminaries

2.1. Graph Theory. In this paper, the communication topol-
ogy among »n multiagents is assumed to be an undirected
graph & = (7,&, ), where 7" = {v,,...,v,} is the set
of nodes, & <€ 7 x 7 is the set of edges, and &/ =
[a;;] € € R™" represents the weighted adjacency matrix with
nonnegative adjacency elements a;;. The node or multiagent
indexes belong to a finite index set .# = {1,2,...,n}. An
edge e; = (v,v;) € & in weighted undlrected graph g
denotes that nod j can receive information from i each
other. The adjacency elements associated with the edges of
an undirected graph are positive a;; > 0ife; € &, a;
otherwise, and have the property that a;; = aj,, for alf i+ ],
since e;; implies e;;. A path on & from node i, to j; is a
sequence of undirected edges in the form of (i, i), k =
1,...,I— 1. An undirected graph is called connected if there
exists a path from any node i to any other node j.

2.2. Nonlinear Protocols for Second-Order Dynamics. Con-
sider a second-order multiagent system with the following
dynamics:

% @) =v; (),
() =), i€, €]
where x;(t) € R is the position state, v;(t) € R is the
velocity state, and u;(t) € R is the control input (or protocol).
Given the dynamical system (1), it is said that protocol u;(t)
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asymptotically solves the consensus problem, if the states of
agents satisfy

lim |x (8) - x; )
)

=0, lim_ |v,. (t)-v; (t)] =0, Vi#j,

for any x;(0) and v;(0).
The linear protocol [21, 22] is proposed as follows:

w () ==Y a; [a(x;,(0) - x; )+ B(v, () -v; )], (3)
j=1

where a;; is the (i, j) entry of the weighted adjacency matrix

o € R™", and parameters a, f3 are the coupling strengths.

It is clear that protocol (3) is based on a linear function
of difference between each agent and other ones. Linear
protocol (3) is simple and easy to use. However, sometimes
in order to improve convergence rate or model a bounded
control input, the linear protocol is often needed to be
extended. Furthermore, in some cases, the state feedback
x;(t) - xj(t) may be unobservable; instead, we can observe a
nonlinear function ¢(x;(t) — x (1)) of x;(t) — x (). Naturally,
a nonlinear protocol for second-order system (1) is designed
as follows:

u; (t) =

X ICICAOREAG)
=

+y (v, () — v (v; ®)),

(4)

where a;; is the (4, j) entry of the weighted adjacency matrix
of and ¢(-) and y(-) are two continuous functions.

In order to ensure existence, uniqueness of solution, and
the operative property of nonlinear functions ¢(-) and y(-),
the following sets are defined.

Definition 1. Define two function sets ® = {¢(x) | ¢(x) is an
odd function, ¢(x)x > 0, ¢(x) = 0 if and only if x = 0}, and
¥ = {y(x) | y(x) is a continuous function and increasing
about x, y(x) = y(y) ifand only if x = y}.

At the end of this section, two useful lemmas about ¢(:)
and y(-) are introduced.

Lemma 2. Letting a = [a, a, - a,)’ € R, b =
b, b, --- b]" € R", and C = [c;] € R™, if matrix C
is symmetrical, that is, ¢; = c;;, and odd function ¢(x) € @,
then it is derived that

(5)
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Proof. Consider that

a;)¢ (b - b))
35 S l-b)

11]1

5 St
- %i i‘%’j“i*b (6:-5)

i=1 j=1

§§<>

M=

cyad (b - b)),

s

Il

—_
.

Il

i 1

where the facts that ¢;; = ¢;; and ¢(-) is an odd function that is,
(p(bj -b)=-¢b - bj), are used to obtain the equalities. [J

Using the same proof and the fact that y(b;) — y(b) =
—(w(b) - w(bj)), the following lemma is obvious.

Lemma 3. Lettinga = [a, a, -~ a,)’ € R, b =
by b, -+ B)" € R", and C = [g;] € R™, if matrix C
is symmetrical, function y(x) € Y, then it follows that

a;) (v (&) - v (b))
(7)

Y ey (v (6) - v (b))

3. Consensus Analysis

In this section, the consensus and reference velocity consen-
sus of second-order multiagent system (1) with the designed
nonlinear protocol will be analyzed.

3.1. Consensus with Nonlinear Protocol. Second-order multi-
agent system (1) with protocol (4) is written as

x; (1) =v; (1),
(1) ==Y a; [ (x:8) — x; ) (8)
j:l

+(y (i) -y (v;®))]

Theorem 4. For nonlinear protocol (4), suppose that functions
¢() € ©and y(-) € Y. If information topology graph & is
undirected and connected, then it is held that x;(t) — x ;(0),
v(t) — vj(t), ast — oo; that is to say, multiagent system (8)
achieves consensus asymptotically.

Proof. Choose the following Lyapunov function:
x;()— X;
V(t) = ZZ%J ¢ (s)ds + ZV ®). (9
i=1 j=1

The time derivative of the Lyapunov function (9) along any
trajectory of (8) is

V()
1 n n

= 32 Y (40 %) 9 (5,0 -, ©)

i=1 j=1

_ ivi (t) (ia,.j [ (x; () - x; (1))
+(v(r®)-v(v;®))] )

Z zauvi (t) ¢ (xi (t) - xj (t))

i=1 j=1

agv; (1) [¢ (x: (1) = x; ()

Il
—

M=
,M=

i 1

J

+(y (v, ) -y (v;®))]

(v ®)),

(10)

n n

= _%Z Z“ij (vi () —v; (t)) (V’ (v;®) -y

i=1 j=1

where the second equality and the last equality are
derived from Lemmas 2 and 3, respectively. Since
v;(1) = v;O) (v (1) — y(v;(t))) = 0 and the information
topology graph & is connected, it is derived that

(3,0) =0
(11)

that is to say, V() < 0. Letting V() = 0, it is easily seen
that v;(¢) = v;(t) and v;(¢t) = i/j(t). Therefore, it follows
that ¥(f) € Span(1l x ¢), where ¢ is a constant and v(t) =

n n

‘%Z Y (v =v; ) (v (v @)~y

i=1 j=1

[vi () vy(t) --- vn(t)]T. Furthermore, from v;(t) = vj(t), it
is obtained that
v, (1) ==Y a; (¢ (x: (1) - x; (1)), (12)
=1

(1x0) 7 (1) =¢) Y ay(#(x () -x;®)). (1)

i=1 j=1

Since information topology graph is undirected, that is, a;; =
aji> and ¢(x;(t) — x-(t)) = —gb(xj(t) — x;(t)), it is held that

M=
.M=

a;¢ (x; () - x; (1)) =0, (14)

I
—

i 1

J



which implies that (1 x ¢)Yi(t) = 0. Thus, it means that
¥(t) is orthogonal to 1 x ¢. From the above discussion, it
is concluded that #(f) = 0 which in turn implies that
- Z;l:l aijgb(xi(t) - xj(t)) = 0 from (12). Furthermore, it is
obtained that — YL, x;(t) Y., a;;¢(x;(t) — x;(t)) = 0 which
implies that

ln n

=52 28 (O =%, 0)¢ (% 0 -x;(0) =0, (13)
i=1 j=1

from Lemma 2. For ¢(x)x > 0 and information topology

graph is connected, from (15), it is derived that

a; (% (1) = x; () ¢ (x, (1) - x; () =0, Vi#j. (16)

Asaresult, it follows that x;(t) = xj(t), foralli# j. By LaSalle’s
invariance principle, it is concluded that x;(f) — xj(t),
v(t) — vj(t),foralli#:j, ast — 00.Theproofisended. [J

When nonlinear protocol (4) is simplified as follows:
w0 =y (v ®) = Yap(x0)-x;0),  (17)
=

and the Lyapunov function (9) is chosen, the following
conclusion is easily obtained.

Corollary 5. Ifthe information topology graph & is undirected
and connected, nonlinear functions ¢(-) € ® and vy € ¥,
then the multiagent system (1) with protocol (17) can achieve
consensus, namely, x;(t) — xj(t), vi(t) — vj(t) - 0,
asymptotically ast — oo.

In practice, since the position of each agent is easily
measured relatively, nonlinear function ¢(x) in protocol (4) can
be assumed to be ¢p(x) = x. Therefore, letting ¢(x;(t) —xj(t)) =
x;(t) — x]-(t), protocol (4) is reduced to

w (1) ==Y ay (% () = x; O +y (v (O) =y (v; 1))
j=1
] (18)

Applying protocol (18) to system (1), the following corollary is
derived from Theorem 4 directly.

Corollary 6. For nonlinear protocol (18), suppose the function
y(:) € Y. Ifthe information topology graph & is undirected and
connected, multiagent system (1) with protocol (18) achieves
consensus asymptotically, namely, x;(t) — x;(t), vi(t) —
vi(t), ast — oo.

Remark 7. The second-order multiagent system with lin-
ear protocol can be written as compact matrix form, and
the consensus conditions can be derived by analysing the
eigenvalues of the compact matrix [22]. When the second-
order multiagent system achieves consensus, the positions
and velocities will, respectively, converge to a constant value
which is relative to the initial position and velocity and the
left eigenvector of the Laplacian matrix (see [21, 22]).
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However, the nonlinear protocol is different from the
linear protocol. The second-order multiagent system with
nonlinear protocol cannot be written as a compact matrix
form. So, the proof of consensus is different from the method
used in the linear protocol and is more difficult. When
the consensus of the second-order multiagent system with
nonlinear protocol is reached, the value which the positions
and velocities converge to cannot be decided. The value is
relative to the nonlinear function, the communication graph,
and the initial position and velocity.

3.2. Consensus with Group Reference Velocity. In practice,
given a reference velocity v*(¢), the positions and velocities
of the agents in multiagent system (1) are often required to
achieve consensus and converge to v*(t); that is, x;(t) —
xj(t), vi(t) — vj(t) —  v*(#), for all i#j. Hence,
the following nonlinear protocol is designed with a group
reference velocity v*(t) as

w () =" ) = (w(n®) -y ®))

- Zaij (‘/’ (xi (t) - x; (t)) (19)

j=1

+y (v () -y (v;)).

Given a group reference velocity v*(t), second-order
multiagent system (1) with protocol (19) is expressed as

% () = v (1),

V() =v @) —(w(v®) -y (" ©))
" 20
- Yay (9 (50— x,0) 20

j=1

(v ®)-v(v;®))).

Theorem 8. For nonlinear protocol (19), consider functions
¢() € ©® and y(-) € Y. When information topology graph &
is undirected and connected, multiagent system (20) achieves
consensus; that is, x;(t) — xj(t), vi(t) — vj(t) — v*(t), as
t — oo.

Proof. Letting 7,(t) = v,(¢) — v* (¢), X;(¢) = x;(t) - Jot v*(s)ds,
system (20) is rewritten as

X ) =7,
Vi) = (y(v; (1) -y (v @©))
z (21
- Zaij (4’ (371‘ (1) - Xx; (f))

Jj=1

~(v ) -v(v0))).

Choose the following Lyapunov function:

V=3 Yay

i=1 j=1 0

,(6)-%;(t)

¢ (s)ds + %Z’vf t). (22
i=1
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Taking the derivative of the Lyapunov function (22) with
respect to t along the trajectory of (21) yields

V(t)
1 n n

= EZ Zaij (Vi () -

i=1 j=1

—Zv (t)<

7,(0)) ¢ (%0 -% 1)
(v, ) -y (" ®))

+Ya; (¢ (% (1) - % 1)
j=1

+(y (v ®) -y (v;®)) ) :

(23)
From Lemma 2, it is obtained that
V() = %; ;a,j (7 &) -7, (1) ¢ (% (1) - %; (1))
- %zl glaij (70 -7,0) ¢ (% 0 - 5,0)
- ivi ®) (y (v @) -y (v 1))
- %Zn; éaﬁ (70 -7 ) (24)

x (v (5 ) -y (v ®))

i (v () =v" ) (y (v ®) =y (" ©))

i=1

1” n

_ EZ Zaij (v, -v;®)

Since function y/(-) € ¥ and the information topology graph
g is undirected and connected, there exist the following facts
that

S (0= ) (p (4 )~y (" (1)) <0,

i=1

li’l n

=52 2y (v -

i=1 j=1

v; () (v (v ) -y (v;®)) <0

(25)

F1GURE 1: Communication topology graph.

Combing (25), it follows that V(t) < 0. When V() = 0, it is
clear that v;(t) = vj(t), v,(t) = v"(t). Then, it is derived that

n

X ICACEEAGIENS (26)
j=1
_le (t) Za,qu (%) -%;(1) =0 (27)

Note that (27) implies that

uM:

g ST O-%F0)¢(F0O-%;1)=0, (28

from Lemma 2. Due to the connected information graph &,
it is derived from (28) that

(%0 -%;1)¢ (% ®) -

As a result, it is concluded that X;(t) = x;(t) which is
equivalent to x;(t) = x j(t). Making use of LaSalle’s invariance
principle, it is concluded that x;(t) — xj(t), v(t) —
vj(t) — v*(t),ast — 00. The proof is completed. O

% (1) =0. (29)

4. Numerical Examples

In this section, a number of simulations are given to illustrate
the effectiveness of the results proposed in the paper.

Example 9. Consider the communication topology graph &
as described in Figure 1. Graph & has eight nodes, and the
edges denote the information interchange between agents.
For simplicity, it is assumed that graph & has 0-1 weights. To
simulate numerical examples, choose

X2 if x > 1,

Vx o ifo<x<1,
—-v-x if —1<x<0,

—x? if x < -1,

¢(x) = (30)

and y(x) = x° in the nonlinear protocol (4), and it is clear
that ¢ € @ and y € V. Therefore, the nonlinear protocol (4)
can be achieved asymptotically for multiagent system (1) from
Theorem 4. Figure 2 shows that the velocity and position
trajectories of second-order multiagent system (8) converge
to consensus, respectively. In addition, Figure 3 describes that
both the velocity and position trajectories of second-order
multiagent system (1) with protocol (18) achieve consensus.
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FIGURE 3: State trajectories of multiagent system (1) with protocol
(18).

Choose a reference velocity v*(t) = sin(3 = t) + cos(t),
and using protocol (19), multiagent system (1) can achieve
consensus asymptotically. Figure 4 describes the trajectories
of velocity and position of multiagent system (1) with protocol
(19), respectively. It is seen that the trajectories of velocity
follow the reference velocity v* (¢) successfully.

5. Conclusions

This paper provided consensus analysis for the second-order
multiagent system with nonlinear protocol. As an extension
of linear protocols, a nonlinear protocol was designed to
achieve consensus. In addition, the protocol was also used
to achieve reference velocity consensus for second-order
multiagent system. The analysis mainly relied on some tools
from algebraic graph and control theory. Through using the

Mathematical Problems in Engineering

10
=
= R
g o
[
_5 I
0 5 10 15
Time (s)
10
2
ks
2
2
_5 L
710 1 1
0 5 10 15

Time (s)

FIGURE 4: State trajectories of multiagent system (20).

Lyapunov theory and LaSalle’s invariance principle, sufficient
conditions for consensus are derived. Simulation examples
show that when the nonlinear function satisfies the assump-
tion, the second-order multiagent can achieve consensus and
reference velocity consensus.
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