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The fracturing fluid-gas spontaneous displacement during the fracturing process is important to investigate the shale gas production
and formation damage. Temperature and slippage are the major mechanisms underlying fluid transport in the micro-/nanomatrix
in shale, as reported in the previous studies. We built a fracturing fluid-gas spontaneous displacement model for the porous
media with micro-/nanopores, considering two major mechanisms. Then, our spontaneous displacement model was verified by
the experimental result of the typical shale samples and fracturing fluids. Finally, the influences of temperature, slip length, and
pore size distribution on the spontaneous imbibition process were discussed. Slippage and temperature significantly influenced
the imbibition process. Lower viscosity, higher temperature, and longer slip length increased the imbibition speed. Ignoring the
temperature change and slippage will lead to significant underestimation of the imbibition process.

1. Introduction

During hydraulic fracturing process in the unconventional
gas formation, a relatively large volume of fracturing fluid
is pumped into formation, which can greatly stimulate the
gas production [1, 2]. In this process, water will be imbibed
into matrix in the fractured reservoir by many influences,
including capillary pressure [3–5], chemical osmotic pressure
[6], pore network [7–9], and claymineral [10], which is called
spontaneous imbibition. Also, leakage, lost circulation, and
induced fracture in drilling process will lead to fracturing
fluid being pumped into formation [11–13], which will also
cause imbibition process and may change the stress field
near wellbore [14] and drilling state [15, 16].The spontaneous
imbibition is the dominantmechanism of the water transport
into the formation because of the high capillary pressure
by nanopores [17–19]. Recently studies have shown that
the spontaneous imbibition of fracturing fluid can be a
driving force to enhance the gas recovery for shale gas

reservoir [20, 21]. Thus, analysis of the spontaneous imbibi-
tion of shale and the potential effect on gas recovery needs
urgent attention.

Shale has an ultralow permeability and porosity with
abundant nanopores. Liquid flow mechanism in shale is
much more complex than conventional formations. Slip
flow is a major mechanism of liquid transport in nanotube
[22, 23]. More studies have shown that the slip flow is
significantly different from the no-slip boundary condition
in the nanotubes [24, 25]. In addition, these studies reported
that conventional flow equations, such as Darcy’s law, may
not be valid for shale systems because of the difference in the
controlling physics of liquid flow.

Fracturing fluid commonly includes hydrochloric acid,
friction reducers, guar gum, and biocides. Viscosity varies
with temperature significantly [26]. Reservoir temperature
is also one of the key controlling factors in spontaneous
imbibition. The influence of temperature on gas production
is usually ignored because the temperature change is not
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severe. However, for spontaneous imbibition in the hydraulic
fracturing process, the temperature of fracturing liquid is
quite different from formation. Thus, ignoring the variation
in temperature will lead to inaccurate results and errors.

2. Mathematical Model

2.1. Spontaneous Imbibition considering Slip Effect in a Single
Capillary. Spontaneous imbibition occurs in the capillaries
of shale as the wetting fluid imbibed in capillaries is driven
by capillary force automatically. Liquid slip in nanoscale
capillaries is especially not negligible because the slip length is
the same scale with the diameter. In this section, considering
liquid slip effect, we established a spontaneous imbibition
model. To focus on the effect of liquid slip, we have made
some simplifications as follows: (1) the cross section of tube
is circular; (2) liquid is the wetting phase, while gas is
the nonwetting phase; (3) liquid is the Newton liquid with
laminar flow, and inertial forces have been ignored; (4) the
driving force of spontaneous imbibition is the capillary force;(5) slip occurs at tube wall; and (6) gravity is ignored. On
the basis of the Hagen–Poiseuille equation, the fluid flux
considering the liquid slip can be calculated as follows:

𝑄 = 𝜋Δ𝑝32𝜇𝐿𝑓 [12 (𝜆 + 2𝐿 𝑠)2 𝜆2 − 14𝜆4] , (1)

where𝑄 is the fluid flux in tube, Δ𝑝 is the pressure difference
on fluid, 𝜇 is the dynamic viscosity, 𝐿𝑓 refers to the length of
fluid path line, 𝜆 is the tube’s equivalent diameter, and 𝐿 𝑠 is
the slip length. 𝐿 𝑠 can be expressed in a dimensionless form,𝐿 𝑠𝐷 = 𝐿 𝑠/𝜆.

Imbibition velocity can be determined as follows:

V𝑓 = 4𝑄𝜋𝜆2 = 𝑑𝐿𝑓𝑑𝑡 . (2)

The real capillary in shale is tortuous. Tortuous fractal
dimension is introduced to express the tortuous capillaries,
according to Yu and Cheng [27] and Cai et al. [28].

𝐿𝑓 = 𝜆1−𝐷𝑇𝐿𝐷𝑇0 ,
V𝑓 = 𝑑𝐿𝑓𝑑𝑡 = 𝐷𝑇𝜆1−𝐷𝑇𝐿𝐷𝑇−10 V0, (3)

where 𝐿0 is the distance between meniscus and liquid intake
and𝐷𝑇 refers to the fractal dimension of a tortuous capillary.

If (1)–(3) are rearranged, we have the following equation:

V0 = 𝑑𝐿0𝑑𝑡 = [(𝜆 + 2𝐿 𝑠)2 /2 − 𝜆2/4]8𝜇𝐷𝑇𝜆2−2𝐷𝑇𝐿2𝐷𝑇−10 Δ𝑝. (4)

The driving pressure of spontaneous imbibition is the
capillary force. Thus, we have the following equation:

Δ𝑝 = 𝑝out − 𝑝in = 𝑝𝑐 = 4𝜎 cos 𝜃𝜆 , (5)

where 𝜃 is the contact angle between liquid and tube wall and𝜎 is the interfacial tension. During the imbibition process,

the imbibition length is increasing with the movement of
meniscus. For the tortuous tube, using the initial condition𝐿0|𝑡=0 = 0, the relationship between imbibition length and
time can be derived as follows:𝐿0
= {{{

[(𝜆 + 2𝐿 𝑠)2 /2 − 𝜆2/4]4𝜇𝜆2−2𝐷𝑇 (4𝜎 cos 𝜃𝜆 )}}}
1/2𝐷𝑇 𝑡1/2𝐷𝑇 . (6)

2.2. Pore Size Distribution. Pore size distribution is also
important. According to the statistical data by Diamond
and Dolch [29] and Hwang and Powers [30], the pore size
distribution of the porous media can be simulated by lognor-
mal distribution function.This function is a good way to rep-
resent the pore size distribution of the porous media. Thus,
the pore space is the generalized lognormal distribution, as
follows [29]:

𝑓 (𝑟) = 1√2𝜋 ln𝜎0 exp[[[−(
ln (𝜆󸀠/𝜆󸀠)√2 ln𝜎0 )

2]]] , (7)

where 𝜆󸀠 = (𝜆 − 𝜆min)(𝜆max − 𝜆min)/(𝜆max − 𝜆), 𝜆 is the equi-
valent diameter of pores, 𝜎0 and 𝜆󸀠 are the distribution
parameters characterizing the distribution properties of𝜆󸀠,𝜆󸀠
is the mean or expectation of the distribution, and sigma 𝜎0
is the standard deviation. 𝑓(𝜆) is the percent volume of voids
in diameter 𝜆. The cumulative distribution function can be
expressed as follows:

𝐹 (𝑟) = 1√2𝜋 ln𝜎0
⋅ ∫𝜆max/2

𝜆/2
exp[[[−(

ln (𝜆󸀠 (𝑥) /2) − ln ((𝜆󸀠) /2)√2 ln𝜎0 )
2]]]

⋅ (𝜆max − 𝜆min)(𝜆max − 𝑥) (𝑥 − 𝜆min)𝑑𝑥,
(8)

where 𝐹(𝜆) is the percent volume of voids in the diameters
larger than 𝜆. According to Diamond and Dolch [29], as𝜎0 decreases, pores are more concentrated on the mean or
expectation of the distribution 𝜆󸀠; in addition, the peak of the
curve is higher. For the capillary bundle model used in this
work, the imbibition volume 𝑉 can be expressed as follows:

𝑉 = 𝜆max∑
𝜆=𝜆min

𝑓 (𝜆)𝐴𝑟𝐿𝑓 (𝜆) , (9)

where 𝐴𝑟 is the area of cross section.
2.3. Temperature Influences. Viscosity of the fracturing fluid
varies with temperature. Normally, viscosity decreases with
the increase in the temperature. For simplicity, many empir-
ical or semiempirical equations (correlations) are proposed
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Table 1: Basic property of the samples.

Sample Mass
(g)

Diameter
(mm)

Length
(mm)

Porosity
(%)

Dry sample
permeability
(10−6 𝜇m2)

S1 16.13 25 15 3.49 3.1
S2 15.93 25 15 3.37 2.2
S3 16.34 25 15 4.22 1.9

to describe the temperature dependence of the fluid viscosity
[31–33]. According to the observations on the experimental
data, ln 𝜇 is a linear function of the reciprocal absolute
temperature 1/𝑇 in the low temperature range. For the
typical fracturing fluid, the relationship between viscosity and
temperature follows the Arrhenius equation [31–33]:

𝜇 = 𝐴 𝑠 exp 𝐸𝑎𝑅𝑇, (10)

where 𝐸𝑎 is the activation energy (Arrhenius energy) of the
viscous flow, 𝑇 is the temperature of liquid, and 𝜇 is the
apparent viscosity, as is the preexponential factor, and 𝑅 is
the universal gas constant. The constants can be derived by
experiment. Equation (10) can be rewritten as follows:

ln 𝜇 = 𝐴 + 𝐵𝑇, (11)

where 𝐴 = ln𝐴 𝑠 and 𝐵 = 𝑇∗ = 𝐸𝑎/𝑅 are the Arrhenius
activation temperature [33]. Taking (3), (6), (7), and (10)
into (9), the spontaneous imbibition model considering the
reservoir temperature and slippage effect can be derived.

3. Experiment and Validation

We used three samples from the Longmaxi Marine Shale
Formation of Lower Silurian in Sichuan Basin to validate our
imbibition model. The basic properties of the samples are
shown in Table 1. Sample permeabilities are tested by pulse-
decay method on an ultralow permeability measurement
instrument. Related introductions have been attached in
Appendix. Permeability results are listed in Table 1.

In addition, the core imbibition characteristics are tested
in the spontaneous imbibition experiment. This experiment
can record the relationship between imbibition volume and
imbibition time. We used cocurrent imbibition this time,
which can eliminate the influence of mineral dissolution
from samples to the imbibed water. The experiments were
performed at room pressure (0.1MPa) and temperature
(298K). Detailed introductions are listed in Appendix.

Mercury intrusion experiment was conducted tomeasure
the pore size distribution. Because mercury intrusion has
irreversible negative effect on samples, the mercury intrusion
should be arranged after permeability tests and imbibition
tests. The schematic diagram of mercury intrusion exper-
iment and detailed procedure of experiment are listed in
Appendix.

During the mercury intrusion experiment, as pressure
increases, liquid mercury is first injected in the largest pores
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Figure 1: The simulating process for cumulative distributions (S1,
S2, and S3).

and was gradually submerged to smaller pores. After the cal-
culation of themercury injection curve, the results of the pore
size distribution for S1, S2, and S3 are shown in Figure 1. In our
model, by adjusting the parameters in (8), the pore size distri-
bution for each core sample can be rebuilt when the simulated
cumulative distributions follow the experiment curves. Sim-
ulated cumulative distributions are also shown in Figure 1.

To derive the rheological parameters, we used an elec-
tronic rheometer (NDJ-5K) to test the viscosity-temperature
curve. The schematic of instrument is shown in Appendix.
The ingredients are shown in Table 2. Their viscosity-
temperature relationship data are rearranged in ln 𝜇 ∼ 1/𝑇
form to calculate the parameters in the Arrhenius equation.
The linear relationship is evident, and the parameters 𝐴 and𝐵 can easily be derived in Figure 2. The results from linear
fitting (see (10) and (11)) are shown in Table 2. Fluid viscosity𝜇 reflects the ability of resistance of fluid to gradual deforma-
tion by shear stress or tensile stress. Based on the theory of
Arrhenius equation,𝐸𝑎 is the activation energy, which reflects
the intrinsic property for a liquid. 𝐸𝑎 not only indicates the
resistant of flow but also indicates the sensibility of tempera-
ture for a liquid. We can derive that L2 has higher activation
energy, whichmeans the averagemolecule chain of L2 is rigid
or polar. During imbibition process, L2 may not easy to be
imbibed in samples. The imbibition result from Figure 4 will
give further explanation. Also, according to Haj-Kacem et al.
[33], 𝐴 𝑠 can be closely related to the viscosity of the pure
system in vapor state at the same studied pressure [34–37].
From the results of experiment, 𝐴𝑠1 and 𝐴𝑠2 can be derived,
so 𝐴𝑠1 and 𝐴𝑠2 are approximately the viscosity of L1 and L2
systems at vapor state under theworking pressure, if any some
molecules pass in vapor state and mix with the gas fluid.

To examine the validation of this model, we draw the
spontaneous imbibition curves from the experimental and
simulated results for the 3 samples under the same coordi-
nates (Figure 3). The environment parameters in the model
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Table 2: Ingredients of the fracturing fluid we used:𝐴 is intercept in equation (11); 𝐵 is Arrhenius activation temperature in equation (11);𝐴 𝑠
can be closely related to the viscosity of the pure system in vapor state at the same studied pressure; 𝐸𝑠 is the activation energy.

Fracturing fluid Ingredients 𝐴 𝐵 𝐴 𝑠 (mPa⋅s) 𝐸𝑠 (kl⋅mol−1)
L1 Slick water 100% 0.68 890 1.98 7.40
L2 Slick water 90% + guar gum 10% −0.31 1553 0.73 12.91
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Figure 2: Experimental data for the relationship between viscosity
and temperature for L1 and L2.
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Figure 3:Model verification process for the spontaneous imbibition
experimental results and simulated results.

were set the same as those in the experiments. Slick water
was used as the imbibition fluid. Under the same working
conditions, the result shows that our model coordinates well
with the experimental data. Thus, the imbibition function
considering slippage was verified.Moreover, the length of our
samples is small, and influence of gravity on ourmodel can be
neglected. Thus, our model does not include a gravity item.
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Figure 4: Relationship between imbibition volume and imbibition
time at different temperatures for two kinds of fracturing fluids.

4. Results and Discussion

4.1. Temperature. On the basis of the derived spontaneous
imbibition model, the effects of temperature, slip length, and
pore size distribution have significant influence on the imbi-
bition process. When temperature variation is considered,
the rheological parameters of the fracturing fluid vary with
the temperature. The imbibition curves for the porous media
with the same pore size distribution have been calculated at
3 different temperatures, namely, 20, 50, and 80∘C (or 293K,
323K, and 353K), with the nondimensional slip length at 0.1
for two kinds of fracturing fluids (L1 and L2). Figure 4 shows
the imbibition curve variation at different temperatures.With
the same initial condition, the imbibition volume is 0 at𝑡 = 0. As temperature increases, the imbibition volume
also increases. Under the same temperature, fracturing fluid
L2 has higher viscosity than L1; however, its imbibition
volume is lower. On the other hand, for the same fracturing
fluid, the imbibition volume increases with the increase in
temperature. This phenomenon is caused by the following:
in environments with lower temperature, fracturing fluid
viscosity is higher, making fracturing fluid harder to be
imbibed. L2 contains guar gum; thus, its viscosity is higher
than that of L1 at the same temperature, which also makes
the fracturing fluid harder to be imbibed.

4.2. Slip Length. Considering the scale of micro-/nanopores
and silts, the slip effect has a significant influence on the
spontaneous imbibition process. The relationship curves of
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Figure 5: Relationship between imbibition volume and imbibition
time at different slip lengths.

the imbibition volume and imbibition time under different
dimensionless slip length are shown in Figure 5. In this figure,
when the temperature is certain, the imbibition volume
is gradually increased with increasing dimensionless slip
length. Slip effect is much evident in micro-/nanopores in
shale. When the dimensionless slip length reaches 0.4, which
is about half of the diameter, the imbibition volume increases
up to about 30% at the same time compared with the no-slip
boundary. Also, as dimensionless slip length increases, the
influence on spontaneous imbibition will decrease. Because
as dimensionless slip length increases from 0 to 0.2, imbi-
bition volume at 𝑡 = 105 increases from 0.009 to 0.012 (with
increment 0.003). While dimensionless slip length increases
from 0.2 to 0.4, the increment is 0.0015 (from 0.012 to 0.0135).

Slip length mainly exists in the nanoscale pores and
silts [22]. In the imbibition analysis for shale, imbibed pore
spaces are mainly in the nanoscale, which has the same scale
with slip length. Thus, slip length can easily reach 0.4 or
higher. Ignorance of the slip effect will lead to significant
underestimation of the imbibition speed and volume. When
analyzing the spontaneous imbibition process, overlooking
slippage will considerably underestimate the imbibition flux,
which is special compared with sandstones.

4.3. Pore Size Distribution. Pore size also has significant
effects on the imbibition characteristics. The distribution
effect can be derived by adjusting the pore size distribution
parameters in the spontaneous imbibition model. A total
of 3 different kinds of distributions have been discussed, as
shown in Figure 6(a). Cases 1 and 2 share the same range of
diameter with different peaks, so the mean or expectation of
the distributions 𝜆󸀠 is the same, while the standard deviation𝜎0 for Case 1 is smaller than that for Case 2. By comparing
Cases 1 and 2, the influence of the concentration for pore
size on spontaneous imbibition can be analyzed. On the other
hand, Cases 2 and 3 share the same peak height with different
average diameters, but different average diameter. To analyze

the influence of porosity on spontaneous imbibition, the
standard deviations 𝜎0 for Cases 2 and 3 are the same, while
the mean or expectation of the distributions 𝜆󸀠 is different.
By comparing Cases 2 and 3, we can derive the influence of
average pore size on spontaneous imbibition. The simulated
imbibition curves are shown in Figure 6(b). Comparing
Cases 2 and 3, for the cases with smaller average pores, the
imbibition speed is smaller too. From (1), we can derive that
flowing flux is proportional to diameter’s biquadrate. Smaller
pores will gainmuchmore flowing resistance.Meanwhile, for
sample with higher peak frequency, the imbibition speed is
higher, which means pore space with more concentrate pore
size distribution will gain higher imbibition volume.

5. Conclusions

(1)Temperature has influence on the fluid viscosity.Thus, the
spontaneous imbibition process can be influenced by tem-
perature. When the slip length is kept stable, the imbibition
volume increases with the rise in the temperature at the same
imbibition time. Meanwhile, when the temperature is kept
unchanged, the imbibition volume increases with the rise in
the slip length at the same imbibition time. Additionally, the
imbibition rate decreases as imbibition time increases.(2) Pore size also has significant effects on the imbibition
process. With the same peak height of pore size distribution,
the imbibition volume decreases with the decline in the
average pores at the same imbibition time. On the other hand,
with the same average pore diameter, higher peak of pore size
distribution than that of the others will gain larger imbibition
volume at the same imbibition time.(3) Temperature and slippage are not negligible in the
study of the fracturing fluid-gas spontaneous displacement in
shale. Ignoring these two parameters will lead to significant
underestimation on the imbibition speed and volume.

Appendix

We have used a series of experiments in this work. Detailed
structures and procedures are listed in this Appendix.

The procedures of permeability test are as follows: (a) all
samples are dried at temperature 338K for 12 h before the
experiment until the mass remained unchanged. (b) Sample
permeability are tested by pulse-decaymethod on an ultralow
permeability measurement instrument (Figure 7). The dried
cores are placed in core chamber with confining pressure
5MPa. The environment is set at 298K and pore pressure
is 2MPa. Helium is used for sample tests. (c) Repeating the
preceding steps 3 times, average permeability for each sample
was derived.

In spontaneous imbibition experiment, the sample con-
tacts the liquid at surface. The schematic is presented in
Figure 8. The imbibed water volume was measured on line
by a balance (METTLER LE204E) connected to a computer,
with accuracy of 0.0001 g. The method to obtain the imbibed
water volume is shown in Figure 8. The procedures of
imbibition test are as follows.

(a) Keep the experimental environment stable at 0.1MPa
and 298K.Thefluctuation of temperature is controlledwithin
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Figure 6: Relationship between imbibition volume and imbibition time in different pore size distribution: (a) different kinds of distributions
for three cases; (b) simulated imbibition curves for three cases.

Figure 7: The photo of the pulse-decay permeability instrument.

Data collectorBalance

Core

Fracturing 
fluid

Figure 8: Schematic of spontaneous imbibition experiment (cocur-
rent imbibition).

±5%. Place a calibration sample on imbibition experiment
and note the evaporation rate for liquid. The calibration
sample is a glass cylinder, with diameter 25mm. (b) All
samples are dried at temperature 338K for 12 h before the
experiment until the mass remained unchanged. Note the
mass of dried samples. (c) Place the samples on imbibition
experiment. When the sample contacts liquid at surface,
start to record timer and data collector. (d) Correct sample’s
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Figure 9: Schematic of the mercury intrusion experiment.

imbibition curve by calibration sample’s data to eliminate the
influence of liquid evaporation.

In mercury intrusion experiment, we can derive the
pore size distribution of samples. The schematic diagram of
mercury intrusion experiment is shown in Figure 9. Because
mercury intrusion has irreversible negative effect on samples,
the mercury intrusion should be arranged after permeability
tests and imbibition tests. The procedure of experiment is as
follows.

(a) All samples are dried at temperature 338K for 12 h
before the experiment until the mass remained unchanged.

(b) Place the samples in core chamber, close value 2 and
vent value 1, open value 1, vacuum value, and start vacuum
pump for 20 minutes.

(c) Open values 3 and 4, close vent value 2, and retreat
measuring pump to absorb mercury. Then close value 4 and
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Figure 10: Schematic of viscosity instrument in this experiment.

open vent value 2 to displace air in pump. By repeating the
above steps, the pump and line are filled with mercury.

(d) Keeping the environment temperature at 298K, clos-
ing value 3 and value 1 and vent value 2, and opening
values 2 and 4, the volume of injected mercury in sample
increases with the increase of pumping pressure. The rela-
tionship between volume of injected mercury and pressure
is recorded.

(e) When mercury cannot be injected in core sample,
the retreating curve can be recorded by retreating measuring
pump and recording the relationship between volume of
injected mercury and pressure.

The schematic of viscosity instrument is shown in Fig-
ure 10.Themeasuring range for the rheometer is 1∼200mPa⋅s,
with ±5% accuracy. The two typical fracturing fluid were
prepared. This experiment can test the viscosity-temperature
curve of liquid.
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