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It has been proven that tapering the piezoelectric beam through its length optimizes the power extracted from vibration
based energy harvesting. This phenomenon has been investigated by some researchers using semianalytical, finite element and
experimental methods. In this paper, an exact analytical solution is presented to calculate the power generated from vibration
of exponentially tapered unimorph and bimorph with series and parallel connections. The mass normalized mode shapes of
the exponentially tapered piezoelectric beam with tip mass are implemented to transfer the proposed electromechanical coupled
equations into modal coordinates. The steady states harmonic solution results are verified both numerically and experimentally.
Results show that there exist values for tapering parameter and electric resistance in a way that the output power per mass of the
energy harvester will be maximized. Moreover it is concluded that the electric resistance must be higher than a specified value for
gaining more power by tapering the beam.

1. Introduction

The dream of making sensor network nodes to monitor
mechanical systems’ behavior is being achieved by applying
low power, light weight, and self-sustained wireless sensors,
which are capable of gaining required energy from environ-
ment. Converting light, thermal, and mechanical energies
into electrical energy has been the most common methods
to supply sensors’ power. Electromagnetic, electrostatic, and
piezoelectric transducers are three usual conversionmethods
of mechanical energy into electrical energy [1]. Electromag-
netic convertors have been widely used in order to generate
electricity out of mechanical energy since the early 1930s [2].
During the last decade, implementing piezoelectric materials
in energy harvesting devices has been extensively investi-
gated by researchers, because of their light weight, direct
implementation, and wide range of frequencies applications.
Piezoelectric energy harvester is usually constructed of piezo-
electric layers attached to a substrate, and its fundamental
frequency is adjusted by employing tuning mass, while it is
mounted on a vibrating system.

As the highest performance of the piezoelectric energy
harvesters occurs at their fundamental frequencies, at the
early stage of the development of these devices, an equivalent
single degree of freedom (SDOF) model is employed to
estimate generated power [3, 4]. Later on, Erturk and Inman
[5] improved SDOFmodel by adding separately treated strain
rate and air damping terms and introducing a correction
factor for varying tip mass to beam mass ratio. Although
SDOF model gives a simple expression to study the energy
harvester’s behavior, it lacks several important aspects of
the device such as dynamic mode shapes and accurate
strain distribution. These lacks have been managed through
introducing a correction factor for an improved lumped
parameter model by Wang and Lu [6]. Knowing that SDOF
model is a simple method to assess the harvester at a limited
frequency range around the fundamental frequency of the
beam, Sodano et al. [7] proposed a Rayleigh-Ritz method
to calculate the power harvested from piezoelectric material
including damping effect in higher modes. Erturk and Inman
[8, 9] also employed eigenfunction expansion method using
mass normalized mode shapes of unimorph and bimorph
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beams with tip mass to solve the coupled electromechanical
formulation of energy harvesting devices.

The need for more efficient devices has encouraged
researchers to present electrical and mechanical solutions in
order to increase the power generation of piezoelectric vibra-
tion based energy harvesters. The most common approach
used to increase the performance of energy harvesters is
their geometry modification, which creates uniform strain
distribution through the beam’s length. In this situation the
electric charge is distributed uniformly and average power
is higher than varying charge piezoelectric layer [10]. Baker
et al. [11] observed that a triangular beam can harvest 50%
more energy than the rectangular one, while the local over-
strain occurrence is vanished by uniform strain distribution.
Accepting the effects of uniform strain distribution on the
harvested energy from the beam, researchers have started to
examine the effects of different parameters on the harvester’s
performance either numerically [12–18] or analytically [19–
23]. Although numerical methods are valuable for easy
implementation as well as doing parameters study, such
as geometry [13–17] and tip mass [12, 18], they are time
consuming and do not lead to an exact solution for the
problem. On the other hand, deriving analytical solution
is an intricate or almost impossible task if the governing
differential equation does not belong to those familiar ones
with closed form solution.

Due to the existence of exact solution for eigenmodes
of a uniform beam problem, a closed form expression can
be obtained to present the harvester’s behavior [8, 9]. How-
ever, solving trapezoidal beams dictates taking into account
assumed modes as space dependent variables. Goldschmidt-
boeing and Woias [19] used rectangular beam eigenmodes
to form mass, stiffness, coupling, and capacitance matrices
of a triangular beam which were derived by Rayleigh-Ritz
method. Dietl and Garcia [20] also applied admissible mode
shapes of slender prismatic beam with tip mass to study the
performance of a rectangular, linear taper and reverse taper
energy harvester. Rosa and de Marqui Jr. [21] implemented
Rayleigh-Ritz method and Euler-Bernoulli assumptions to
investigate the behavior of linear and reverse tapered energy
harvesters. The Differential Quadrature Method (DQM) is
another way that was used to extract mode shapes of a
beam with variable width in order to form the reduced order
model of electromechanical equations [23]. In addition to
taperingwith just varyingwidth, the piezoelectric energy har-
vesters can be also modified by changing the beam thickness
[22].

According to this literature survey the approximated
mode shapes have been employed to solve the nonuni-
form cross section piezoelectric energy harvesters’ governing
equations. In this paper, exact normalized mode shapes of
exponential beam with tip mass [24] are utilized to convert
the governing electromechanical equations into modal space
to calculate the power generated from piezoelectric energy
harvesters. The strain rate and air damping terms are also
considered to define the damping effect more accurately.
After verifying the proposed formulations numerically and
experimentally, parametric study is performed on beam’s

length, tapering parameter, and electric resistance to inves-
tigate their effects on the energy harvesting device’s per-
formance. In this study, we have considered unimorph and
bimorph with series connection as well as bimorph with
parallel connection for all the cases.

2. Analytical Solution

2.1. Electromechanical Formulation. Piezoelectric energy har-
vester, as shown in Figure 1, is composed of a beam embed-
ded by piezoelectric layers and is excited at its base. It is
assumed that the piezoelectric layer is perfectly bonded to the
substrate layer, while the integrated beam’s width is varying
exponentially through the length by 𝑏(𝑥) = 𝑏

0
𝑒
−𝑐𝑥, where 𝑐

is tapering parameter. A proof mass is also attached on the
tapered beam’s tip to regulate the fundamental frequency.

Because of the low thickness of the beam, the Euler-
Bernoulli assumptions are employed to develop the displace-
ment field. The governing Equation of Motion (EoM) of a
beam embedded by piezoelectric layer using Euler-Bernoulli
assumptions is given as [8]
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in which 𝐶
𝑠
and 𝐶

𝑎
are equivalent strain rate and viscous air

damping coefficients, respectively. 𝑤 is the beam transverse
deflection and 𝑤

𝑏
is the base excitation displacement along 𝑧

direction, while 𝑚(𝑥) and 𝑀
𝑡
are mass per unit length and

tip point mass, respectively. Area moment of inertia of the
beam’s cross section changes exponentially; that is, 𝐼(𝑥) =

𝐼
0
𝑒
−𝑐𝑥, in which 𝐼

0
is the moment of inertia of the beam at

𝑥 = 0. The internal moment of the beam𝑀(𝑥, 𝑡) is calculated
by integrating the stress moment through the thickness as
follows:

𝑀(𝑥, 𝑡) = −∫
𝑡
𝑠

𝜎
𝑠
𝑏 (𝑥) 𝑧 𝑑𝑧 − ∫

𝑡
𝑝

𝜎
𝑝
𝑏 (𝑥) 𝑧 𝑑𝑧. (2)

In (2) 𝜎
𝑠
and 𝜎

𝑝
are defined as the normal stress in 𝑥

direction at substrate and piezoelectric layers, respectively.
Using the constitutive equation of isotropic and piezoelectric
material, the normal stresses are formulated as

𝜎
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𝑠
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(𝑥, 𝑡)

𝜎
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31
𝐸
3
(𝑡)) ,

(3)

where 𝐸
𝑠
and 𝐸

𝑝
are the modulus of elasticity of substrate

and piezoelectric materials, respectively. Mechanical strain
𝜀
1
(𝑥, 𝑡) = −𝑧(𝜕

2
𝑤(𝑥, 𝑡)/𝜕𝑥

2
) is calculated by applying the

Euler-Bernoulli assumption. Piezoelectric electromechanical
coupling is mathematically modeled by 𝑑

31
, and 𝐸

3
(𝑡) =



Shock and Vibration 3

Tip mass

b0

x y

z

hp
hp

hs

b0 × e−cx

L

Figure 1: Piezoelectric energy harvester.

−V(𝑡)/ℎ
𝑝
is the electric field through the 𝑧 direction, where

V(𝑡) is the generated piezoelectric voltage. Substituting (3)
into (2) gives the internal bending moment as

𝑀(𝑥, 𝑡) = 𝐸𝐼 (𝑥)
𝜕
2
𝑤 (𝑥, 𝑡)

𝜕𝑥2
+ 𝜗 (𝑥) V (𝑡) , (4)

where𝐸𝐼(𝑥) is the flexural rigidity of the composite beam and
is calculated as

𝐸𝐼 (𝑥) = 𝑏 (𝑥) [𝐸
𝑠

ℎ
3

𝑠

12
+ 2

𝐸
𝑝

3
((

ℎ
𝑠

2
+ ℎ
𝑝
)

3

−
ℎ
3

𝑠

8
)] (5)

for a two-layered piezoelectric beam, and
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3
] (6)

for one-layered piezoelectric energy harvester. Geometrical
parameters of (5) and (6) are shown in Figure 2.

In (6) ℎ
𝑎
, ℎ
𝑏
, and ℎ

𝑐
are defined as
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(7)

where ℎ
𝑠𝑎
is calculated as follows:

ℎ
𝑠𝑎
=
ℎ
2

𝑝
+ 2ℎ
𝑝
ℎ
𝑠
+ (𝐸
𝑠
/𝐸
𝑝
) ℎ
2

𝑠

2 (ℎ
𝑝
+ (𝐸
𝑠
/𝐸
𝑝
) ℎ
𝑠
)

. (8)

Also 𝜗(𝑥) in (4) is an electromechanical coupling term
of the bending moment, in which one-layered piezoelectric
beam is calculated as

𝜗 (𝑥) = −𝑏 (𝑥)
𝐸
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𝑑
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Figure 2: Piezoelectric beam cross section: (a) one-layered piezo-
electric beam and (b) two-layered piezoelectric beam.

and for two-layered piezoelectric beam, its value depends on
the types of electrical connection and is derived as follows:

𝜗
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2

] ,

(10)

where subscripts “𝑠” and “𝑝” indicate series or parallel
connections, respectively. These two types of electrical con-
nections are indicated in Figure 3.

Substituting (4) into (1) and considering the location of
the piezoelectric layer along the 𝑥 direction using Heaviside
function He(𝑥) gives the governing EoM in terms of 𝑤(𝑥, 𝑡)
and V(𝑡) as
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(11)

One more necessary equation to determine unknowns
𝑤(𝑥, 𝑡) and V(𝑡) is derived out of the second constitutive
equation of piezoelectric material; that is,

𝐷
3
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𝜎
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where 𝐷
3
is the electric displacement and 𝜀𝑇

33
is the permit-

tivity at constant stress. Rewriting (12) in terms of𝑤(𝑥, 𝑡) and
V(𝑡) gives
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Figure 3: Parallel and series electrical connections.

where 𝜀𝑠
33

is the permittivity at constant strain. The electric
charge generated at piezoelectric layer is calculated by apply-
ing the electric displacement as follows:

𝑞 (𝑡)

= ∫
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(14)

where 𝑛 is the unit normal vector to the piezoelectric plane.
The voltage of the piezoelectric layer is calculated after
multiplying electric resistance 𝑅 by electric current, which is
the first derivative of electric charge with respect to time as

V (𝑡) = 𝑅𝑖 (𝑡) = 𝑅
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) .

(15)

Equation (15) gives the voltage for a one-layered piezo-
electric energy harvester, while the general form of the
governing equation is given as

𝛼
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where

for one-layered piezoelectric beam 𝛼 = 𝛽 = 1

for two-layered piezoelectric beam, parallel connection

𝛼 =
1

2
; 𝛽 = 1

for two-layered piezoelectric beam, series connection

𝛼 = 1; 𝛽 =
1

2
.

(17)

Equations (11) and (16) are two coupled governing differ-
ential equations of a variable width piezoelectric beam, which
can be solved by implementing eigenfunction expansion
method as

𝑤 (𝑥, 𝑡) =

∞

∑

𝑠=1

𝜑
𝑠
(𝑥) 𝜂
𝑠
(𝑡) (18)

in which 𝜑
𝑠
(𝑥) aremass normalizedmode shapes of the beam

and 𝜂
𝑠
(𝑡) are the modal coordinate.

2.2. Free Vibration of the Piezoelectric Exponentially Tapered
Beam. As it was noted, in order to solve the coupled elec-
tromechanical equations, extracting the normalized eigen-
functions of the exponentially tapered beam is needed. The
eigenfunctions are calculated by solving free vibration of
the beam with clamped-free boundary conditions. The free
vibration differential equation of a variable cross section
beam by Euler-Bernoulli assumption is given as [24]

𝜕
2
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2
(𝐸𝐼 (𝑥)

𝜕
2
𝑤 (𝑥, 𝑡)

𝜕𝑥
2

) + 𝑚 (𝑥)
𝜕
2
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𝜕𝑡
2

= 0. (19)

For exponentially tapered beams, flexural rigidity and
mass per unit length of the beam are exponentially varied
along the 𝑥 direction and are formulated as follows:

𝐸𝐼 (𝑥) = 𝐸𝐼
0
𝑒
−𝑐𝑥
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𝑚 (𝑥) = 𝑚
0
𝑒
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,

(20)

where 𝐸𝐼
0
and 𝑚

0
are the flexural rigidity and mass per

unit length of the beam at 𝑥 = 0. Using the method of
separation of variables, that is, considering (𝑥, 𝑡) = 𝜓(𝑥)𝑇(𝑡),
the differential equation (19) is separated into spatial and
temporal equations as follows:

𝑑
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where solution of the spatial differential equation leads to the
eigenfunctions as follows:
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in which 𝜅2 = 𝜔
2
𝑚
0
/𝐸𝐼
0
and 𝜉, 𝜆, and 𝛾 are given as

𝜉 =
√4𝜅 + 𝑐

2

2
,

𝜆 =
√4𝜅 − 𝑐

2

2
,

𝛾 =
√𝑐2 − 4𝜅

2
.

(23)

In order to find the coefficients from 𝐶
1
to 𝐶
4
, following

boundary conditions of a clamped-free beam with a tip mass
are employed:
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(24)

where 𝐼
𝑡
is the rotatory inertia of the tip mass. Nontrivial

solution of this system of equations is available when the
determinant of coefficient matrix equals zero. Solving the
characteristic equation derived from the determinant gives
the eigenvalues of the system and as a result the mode shapes
of the system are specified. Mass normalized mode shapes of
the beam are calculated using the following formulations [9]:

𝜙
𝑖
(𝑥) =

𝜓
𝑖
(𝑥)

√∫
𝐿

0
𝜓
𝑖 (𝑥)𝑚 (𝑥) 𝜓𝑖 (𝑥) 𝑑𝑥 + 𝜓𝑖 (𝐿)𝑀𝑡𝜓𝑖 (𝐿) + [(𝑑𝜓

𝑖
(𝑥) /𝑑𝑥) 𝐼𝑡 (𝑑𝜓𝑖 (𝑥) /𝑑𝑥)]

󵄨󵄨󵄨󵄨𝑥=𝐿

. (25)

The orthogonality condition of the mass normalized
modes shapes is given as follows [25]:

∫

𝐿

0

𝜙
𝑟
(𝑥)𝑚 (𝑥) 𝜙

𝑠
(𝑥) 𝑑𝑥 + 𝜙

𝑟
(𝐿)𝑀

𝑡
𝜙
𝑠
(𝐿)

+ [
𝑑𝜙
𝑟
(𝑥)

𝑑𝑥
𝐼
𝑡

𝑑𝜙
𝑠
(𝑥)

𝑑𝑥
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝐿

= 𝛿
𝑟𝑠
,

∫

𝐿

0

𝑑
2
𝜙
𝑟
(𝑥)

𝑑𝑥
2

𝐸𝐼 (𝑥)
𝑑
2
𝜙
𝑠
(𝑥)

𝑑𝑥
2

= 𝜔
2

𝑟
𝛿
𝑟𝑠

(26)

which can be used to transfer EoM to modal space.

2.3. Harmonic Base Excitation Solution. The mass normal-
ized mode shapes of (25) are applied in eigenfunction
expansion series of (18). Substituting (18) into coupled elec-
tromechanical equation (11) gives
∞

∑

𝑠=1

𝑑
2

𝑑𝑥
2
[𝐸𝐼 (𝑥)

𝑑
2
𝜙
𝑠 (𝑥)

𝑑𝑥
2

] 𝜂
𝑠
(𝑡)

+

∞

∑

𝑠=1

{
𝑑
2

𝑑𝑥
2
[𝐶
𝑠
𝐼 (𝑥)

𝑑
2
𝜙
𝑠
(𝑥)

𝑑𝑥
2

] + 𝐶
𝑎
}
𝑑𝜂
𝑠
(𝑡)

𝑑𝑡

+ 𝑚 (𝑥)

∞

∑

𝑠=1

𝜙
𝑠
(𝑥)

𝑑
2
𝜂
𝑠 (𝑡)

𝑑𝑡2

+
𝑑
2

𝑑𝑥
2
[𝜗 (𝑥) [He (𝑥) −He (𝑥 − 𝐿)]] V (𝑡)

= − [𝑚 (𝑥) +𝑀𝑡𝛿 (𝑥 − 𝐿)]
𝜕
2
𝑤
𝑏 (𝑥, 𝑡)

𝜕𝑡
2

.

(27)

Integrating (27) over the length of the beam after multi-
plying it by 𝜑

𝑟
(𝑥) gives the EoM in modal space as follows:

̈𝜂
𝑟
(𝑡) + 2𝜁

𝑟
𝜔
𝑟
̇𝜂
𝑟
(𝑡) + 𝜔

2

𝑟
𝜂
𝑟
(𝑡) + 𝜒

𝑟
V (𝑡) = 𝑓

𝑟
(𝑡) (28)

in which 𝜔
𝑟
and 𝜁
𝑟
are natural frequency and damping ratio

of the 𝑟th mode and 𝜒
𝑟
and 𝑓

𝑟
(𝑡) are given as

𝜒
𝑟
= ∫

𝐿

0

𝜙
𝑟
(𝑥) 𝜗
󸀠󸀠
(𝑥) 𝑑𝑥 +

𝑑 (𝜙
𝑟
(𝑥) 𝜗 (𝑥))

𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=0

−
𝑑 (𝜙
𝑟 (𝑥) 𝜗 (𝑥))

𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝐿

+ 2 (𝜙
𝑟 (0) 𝜗

󸀠
(0) − 𝜙𝑟 (𝐿) 𝜗

󸀠
(𝐿)) ,

𝑓
𝑟
(𝑡) = − [∫

𝐿

0

𝜙
𝑟
(𝑥)𝑚 (𝑥) 𝑑𝑥 +𝑀

𝑡
𝜙
𝑟
(𝐿)]

𝑑
2
𝑔 (𝑡)

𝑑𝑡
2

.

(29)

In order to change the partial differential equation (16)
into ordinary differential equation with respect to time, (18)
is also substituted into (16) as follows:

V (𝑡) + 𝑅
𝛽

𝛼
[
𝜀
𝑠

33

ℎ
𝑝

∫

𝐿

0

𝑏 (𝑥) 𝑑𝑥]
𝑑V (𝑡)
𝑑𝑡

= −

∞

∑

𝑟=1

𝑅𝑑
31
𝐸
𝑝
ℎ
𝑝𝑐

𝛼
∫

𝐿

0

𝑏 (𝑥)
𝑑
2
𝜙
𝑟
(𝑥)

𝑑𝑥
2

𝑑𝑥 ̇𝜂
𝑟
(𝑡) .

(30)

Simplifying (30) gives the second coupled ordinary dif-
ferential equation of piezoelectric energy harvester as

V̇ (𝑡) +
1

𝜏
𝑐

V (𝑡) =
∞

∑

𝑟=1

𝜑
𝑟
̇𝜂
𝑟 (𝑡) (31)
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in which

𝜏
𝑐
= 𝑅

𝛽

𝛼
[
𝜀
𝑠

33

ℎ
𝑝

∫

𝐿

0

𝑏 (𝑥) 𝑑𝑥] ,

𝜑
𝑟
= −

𝑑
31
𝐸
𝑝
ℎ
𝑝𝑐
ℎ
𝑝

𝛽𝜀𝑠
33

∫
𝐿

0
𝑏 (𝑥) 𝜙

󸀠󸀠

𝑟
(𝑥) 𝑑𝑥

∫
𝐿

0
𝑏 (𝑥) 𝑑𝑥

.

(32)

Here to find the harmonic solution of the exponentially
tapered piezoelectric energy harvester, it is assumed that the
base is moving harmonically in 𝑧 direction, whichmeans that

𝑔 (𝑡) = 𝑌
0
𝑒
𝑗𝜔𝑡
. (33)

Due to the harmonic excitation of the beam, the unknown
terms V(𝑡) and 𝜂

𝑟
(𝑡) are also expected to be harmonic as

follows:

V (𝑡) = 𝑉
0
𝑒
𝑗𝜔𝑡
,

𝜂
𝑟
(𝑡) = 𝐻

𝑟
𝑒
𝑗𝜔𝑡
.

(34)

The voltage amplitude𝑉
0
is calculated by substituting (33)

and (34) into (28) and (31) as

𝑉
0

=
𝑗𝜔∑
∞

𝑟=1
(𝜑
𝑟
𝐹
𝑟
/ (𝜔
2

𝑟
− 𝜔
2
+ 2𝑗𝜁
𝑟
𝜔
𝑟
𝜔))

((1 + 𝑗𝜔𝜏
𝑐
) /𝜏
𝑐
) + 𝑗𝜔∑

∞

𝑟=1
(𝜑
𝑟
𝜒
𝑟
/ (𝜔2
𝑟
− 𝜔2 + 2𝑗𝜁

𝑟
𝜔
𝑟
𝜔))

,

(35)

where

𝐹
𝑟
= 𝑌
0
𝜔
2
[∫

𝐿

0

𝜙
𝑟
(𝑥)𝑚 (𝑥) 𝑑𝑥 +𝑀

𝑡
𝜙
𝑟
(𝐿)] (36)

and the temporal term amplitude𝐻
𝑟
is given as

𝐻
𝑟
=

𝐹
𝑟
− 𝜒
𝑟
𝑉
0

𝜔2
𝑟
− 𝜔2 + 2𝑗𝜁

𝑟
𝜔
𝑟
𝜔
. (37)

3. Results and Discussion

Using the analytical formulation of the exponentially tapered
piezoelectric energy harvester discussed in this paper, some
sample problems are solved to show the performance of the
solution. Regarding lack of results on exponentially tapered
piezoelectric beam in the literature, to verify the analytical
solution a constant cross section piezoelectric beam is firstly
considered and the results are compared with those from
experimental and numerical methods as well as with those
available in the literature for this case.

3.1. Experimental Verification of the Solution. As discussed
previously, in this part a constant cross section beam (with
𝑐 = 0) is tested using the experimental set up of Figure 4.
Experimental test is conducted on a cantilever unimorph
piezoelectric beam with a PZT4 patch of length 𝐿 = 60mm,
width 𝑏

0
= 10mm, and thickness ℎ

𝑝
= 0.6mm which

is bonded to a steel beam with the same dimension but
thickness ℎ

𝑠
= 0.7mm (Table 1). A tip of 18 grams of

Table 1: PZT and steel material properties.

Material Property Value

PZT 4

𝐶
11
(GPa) 139

𝐶
12
(GPa) 77.84

𝐶
13
(GPa) 74.28

𝐶
33
(GPa) 114.41

𝐶
44
(GPa) 25.64

𝐶
55
(GPa) 30.58

𝑒
31
(Cm−2) −5.2028

𝑒
33
(Cm−2) 15.0804

𝑒
15
(Cm−2) 12.7179

𝜀
0
(Fm−1) 8.854 × 10−12

𝜀
11
/𝜀
0

1475
𝜀
22
/𝜀
0

1475
𝜀
33
/𝜀
0

1300
𝜌 (Kg/m3) 7960

Steel
𝐸 (GPa) 200

𝜐 0.3
𝜌 (Kg/m3) 7800

mass which contains 9-gram steel mass together with 9-
gram accelerometer is attached to the free end of the beam
as shown in Figure 4(a). This accelerometer measures the
beam’s response during experiment.The finite elementmodel
is created to be the same as the experimentalmodel, while two
steel cubes of 10 × 10 × 11.2mm3 play the role of tip masses.

A 440NTiraTV51144 shaker is thenused to excite the test
structure. During the test execution another accelerometer is
also installed on the support to measure the applying accel-
eration. The output of the piezoelectric layer is connected
to a NI USB4431 data acquisition system through a 100Ω
electric resistance. Figure 4(b) shows the schematic of the
experimental setup.

As the modal parameters of the complex beam are
required to do further analysis, an Operational Modal Anal-
ysis (OMA) is initially performed while the piezoelectric
electrodes are short circuit. After this initial experiment the
first natural frequency and the associated damping ratio are
measured as 47.6Hz and 4.9%, respectively. These modeling
parameters are gathered in Table 2 for future citation. Then
a sine sweep excitation from 10 to 100Hz for duration of 20
seconds is applied on the piezoelectric energy harvester with
100Ω electric resistance to examine the output voltage in the
specified frequency range. Cancelling the noises is performed
by averaging the results between 10 times repetition of the
experiment.

Figure 5 depicts the voltage per the base acceleration
versus frequency of the piezoelectric beam. This figure also
compares the experimental results with the results from the
finite element method of ANSYS, the presented analytical
solution, and those from relations reported by Erturk and
Inman [8, 9]. It reveals that the results from the present
analytical solution are comparable with those from the
experiments and the relations reported in [8, 9]. Analytically,
in this situation 𝑏(𝑥) equals 𝑏

0
, which means (10), (11), and



Shock and Vibration 7

Tip accelerometer

Base
accelerometer

Piezoelectric 
beam

Tip 
mass

PC

AmplifierData 
acquisition 

system

Shaker

Electric resistance

(a)

Piezoelectric
SubstrateSupport

Shaker

Power amplifier
Ch
0

Ch
1

Ch
2

Ch
3

Ch
out 0

DAQ

Tip mass

El
ec

tr
ic

 re
sis

ta
nc

e

Accelerometer

Accelerometer

(b)

Figure 4: (a) Experiment equipment setup and (b) schematic of the experimental setup.
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Frequency (Hz)
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Figure 5: Output voltage/input acceleration versus frequency.

Table 2: Energy harvesters modelling parameters.

Parameter Value
𝐿 (mm) 60
𝑏
0
(mm) 10

ℎ
𝑠
(mm) 0.7

ℎ
𝑝
(mm) 0.6

𝑀
𝑡
(gr) 9

𝑧 0.049
𝑅
𝑙

100

(16) converge to those for unimorph energy harvester in [8],
while the terms of tipmass are added from [9].The simplified
forms of (10), (11), and (16) for the case 𝑐 = 0 are derived as
follows:

𝜗 (𝑥) = 𝜗 = −
𝑏
0
𝐸
𝑝
𝑑
31

2ℎ
𝑝

(ℎ
2

𝑐
− ℎ
2

𝑏
) ,

𝐸𝐼
0

𝜕
4
𝑤 (𝑥, 𝑡)

𝜕𝑥
4

+ 𝐶
𝑠
𝐼
0

𝜕
5
𝑤 (𝑥, 𝑡)

𝜕𝑥
4
𝜕𝑡

+ 𝐶
𝑎

𝜕𝑤 (𝑥, 𝑡)

𝜕𝑡

+ 𝑚
0

𝜕
2
𝑤 (𝑥, 𝑡)

𝜕𝑡
2

+ 𝜗V (𝑡) [
𝑑𝛿 (𝑥)

𝑑𝑥
−
𝑑𝛿 (𝑥 − 𝐿)

𝑑𝑥
]

= − [𝑚
0
+𝑀
𝑡
𝛿 (𝑥 − 𝐿)]

𝜕
2
𝑤
𝑏
(𝑥, 𝑡)

𝜕𝑡
2

,

V (𝑡)
𝑅

+
𝜀
𝑠

33
𝑏
0
𝐿

ℎ
𝑝

𝑑V (𝑡)
𝑑𝑡

= −∫

𝐿

0

𝑏
0
𝑑
31
𝐸
𝑝
ℎ
𝑝𝑐

𝜕
3
𝑤 (𝑥, 𝑡)

𝜕𝑥
2
𝜕𝑡

𝑑𝑥.

(38)

In accordance with Figure 5, it can be also concluded that
the results of present work are in a good agreement with
those from finite element solution of commercial software
for analyzing piezoelectric beams, while the present study has
lower computational effort and complexity.

3.2. Case Studies. Figure 6 plots geometry of the beam with
different tapering parameter values (i.e., 𝑐 = 0, 5, 10, 15, and
20). Although, increasing tapering parameter may lead to
higher voltage to weight ratio [13], it also causes increasing
fundamental frequency of the beam. In view of taking full
advantage of beam to harvest energy, according to Figure 5,
a designer needs to keep the first natural frequency of the
beam close to the exciting frequency. For this purpose the
designer can either use a thinner substrate layer or mount
a tip mass. Some case studies are performed in this section
to show the abilities of the presented analytical solution as
a design tool to investigate the output voltage per unit mass
of the energy harvester device. All geometrical parameters of
the case studies are similar to those listed in Table 2, unless
mentioned.

3.2.1. Numerical Verification of the Solution. Before going
into the parameter study to refine the confidence, the results
from the presented analytical solution are also verified for the
beams with various tapering parameter as well as different
types of electrical connections using finite element method.
In this example, the electrical resistance is taken to be
1000Ω, and the damping ratio is assumed to be 1 percent.
Moreover, no tip mass is attached to the beam. For this
verification procedure, the output voltage generated out of the
piezoelectric beam at its fundamental frequency is tabulated
in Table 3 for different tapering parameter and electrical
connections. According to this table themaximumdifference
of these two methods is 3.6%, which means that the current
formulation well predicts the tapered piezoelectric energy
harvester’s behavior. Also it can be noted that increasing
tapering parameter may reduce the generated voltage per
exciting acceleration, but at the same time it makes the
structure lighter. Hence, if the total mass is an important
design parameter, comparing the voltage per unit mass
parameter for energy harvesters will be a real parameter
during case studies. According to this statement we consider
this parameter during our later studies.

3.2.2. Tapering Parameter Effects on Output Voltage

(a) Tuning the Natural Frequency Using Substrate Thickness.
As we mentioned earlier, in order to take full advantage of
beam to harvest energy, one needs to keep the first natural
frequency of the beam close to the exciting frequency while
tapering parameter is improved. In this section, tuning this
natural frequency is done by changing substrate thickness for
different length to width ratio. All parameters of the beam
are the same as those in Section 3.2.1 for case 𝑐 = 0. Figures
7–9 depict the voltage density (𝑉/𝑚

𝑇0
𝑔) different tapering

parameter taken at fundamental frequency for unimorph and
bimorphwith series and parallel connections. In these figures
𝑚
𝑇0

is defined as the total mass of the energy harvester.
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C = 20 C = 15 C = 10 C = 5 C = 0

Figure 6: Geometry of the beam with different tapering parameter values.

Table 3: Comparison of analytic and FEM results.

𝐶 0 5 10 15 20
Unimorph

Analytic (V/g) 0.5711 0.499 0.438 0.3842 0.3377
FEM (V/g) 0.592561 0.516427 0.451596 0.395634 0.347023
Difference (%) 3.621737 3.374533 3.010656 2.890045 2.686565

Bimorph series
Analytic (V/g) 0.6252 0.5479 0.4802 0.4214 0.3704
FEM (V/g) 0.64757 0.563801 0.490386 0.430593 0.377891
Difference (%) 3.454453 2.820321 2.077139 2.134963 1.982318

Bimorph parallel
Analytic (V/g) 1.156 1.011 0.8847 0.7751 0.6805
FEM (V/g) 1.18912 1.03459 0.901908 0.788796 0.691405
Difference (%) 2.785253 2.28013 1.907955 1.736317 1.577223
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Figure 7: Tapering and length effects on unimorph modified
thickness.

Evaluating the results shows that tapering the beam with
exponential distribution leads to extracting higher voltage
density from the energy harvester. Moreover, tapering the
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Figure 8: Tapering and length effects on bimorph with series
connection, modified thickness.

beam makes a uniform strain distribution over the piezo-
electric layer that causes more voltage generation [13]. For all
cases, with increasing the beam’s length to base width ratio,
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Figure 9: Tapering and length effects on bimorph with parallel
connection, modified thickness.
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Figure 10: Tapering and length effects on unimorph, with tip mass.

the tapering parameter with the highest voltage density is
decreased. It is also observed that increasing the beam’s length
causes increasing the voltage density, because of contributing
more piezoelectric bulk during power generation.

(b) Tuning the Natural Frequency Using Tip Mass. Another
way to adjust the first natural frequency of a beam with
different tapering parameter is to add a tipmass.The results of
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Figure 11: Tapering and length effects on bimorph with series
connection, with tip mass.
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Figure 12: Tapering and length effects on bimorph with parallel
connection, with tip mass.

the current models are plotted in Figures 10–12 for unimorph
and bimorph with series and parallel connections.

According to these figures, the energy harvesting device
with tip mass and varying tapering parameter behaves in a
way similar to that of the beam without tip mass and varying
thickness (i.e., Section 3.2.2 (a)). It means that by adding a
tip mass designer would be also able to improve the voltage
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density value for a beam. In this approach a mass is added
to the system which makes the device weightier, and on the
other hand tapering decreases beam’s mass.Therefore, in this
method the total mass of the system decreases in a lower
rate in comparison with the previous method. Referring to
(35) it can be noted that, for higher tapering parameters
which are associated with weightier tip mass, the output
voltage value improves. Compromising these effects may be
the reason for achieving the maximum voltage density at
the lower 𝑐 in comparison with the previous method. In
addition, comparing both tuningmethods reveals that adding
the tip mass decreases the value of voltage density of the
beams with the same value of tapering parameter. Therefore,
if the designed beam is strong enough to tolerate the stresses
during its estimated life time, it is more appropriate to
thin the substrate layer in order to tune its fundamental
frequency otherwise adding the tip mass will be carried out,
alternatively.

3.2.3. Tapering Parameter and Electric Resistance Effects on
Output Power. Electric resistance is a critical parameter for
extracting the maximum power density (𝑃/𝑚𝑔2) from the
device [8]. In this section the same beam with 𝐿 = 80mm
is considered and the substrate layer’s thickness is changed
to obtain a constant natural frequency for different 𝑐 values.
The power density versus electric resistance is depicted in
Figures 13–15 for unimorph and bimorph with series and
parallel connections. From these figures it is observed that
there exists an optimum value of electric resistance which
results in maximum power density for an energy harvesting
device. This optimum value depends on tapering parameter.
Increasing tapering parameter value leads to an increase in
the optimum electric resistance. In addition, when electric
resistance is smaller than a specified value, tapering would
decrease the power density of the device, which is not desired.
But for higher electric resistances, tapering parameter plays
a key role for gaining maximum power with minimum
weight. This value of the electric resistance and the amount
of improvement in power density by tapering depends on the
type of electric connection. In this example, for the highest
value of the electric resistance, that is, 1MΩ, exponential
tapering will grow the power per mass of the device about
29 percent for unimorph and 14 and 52 percent for bimorph
with series and parallel connections, respectively.

3.3. Exponentially Tapered versus Trapezoidal Energy Har-
vesters. Figure 16 depicts the considered geometries for
exponentially and linearly tapered energy harvesters with the
parameters in Table 4 which are the same as those employed
by Rosa and de Marqui Jr. [21]. In presence of 1 KΩ and
1MΩ electric resistances, both problems are solved and the
results are compared with those reported by Rosa and de
Marqui Jr. [21] in Figure 17. From this figure one can observe
that because of its lower piezoelectric volume the voltage
generated from exponentially tapered beam is lower than
those from linearly tapered beam. However, the linearly
tapered beam may produce lower voltage density. Therefore,
a trade-off between voltage, weight, electric resistance, and
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Figure 13: Tapering and electric resistance effects on unimorph.
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Figure 14: Tapering and electric resistance effects on bimorph with
series connection.

ease of construction should be always carried out to lead to a
better harvester.

4. Conclusions

In this paper, an analytical solution for exponentially tapered
energy harvesting device has been presented. The proposed
formulations can calculate the output voltage of unimorph
and bimorph with series and bimorph with parallel connec-
tions, while the tip mass is also considered. Comparing the
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Figure 15: Tapering and electric resistance effects on bimorph with
parallel connection.

Exponentially 
tapered

Linearly
tapered

Figure 16: Exponentially (𝑐 = 28.92) and linearly tapered energy
harvesters with the same base and tip (𝑏

𝑇
) widths.

results of the given analytical solution with experimental and
numerical method results proves the analytical formulation
validity to calculate the generated voltage. After verifying
the formulations, parametric study is performed on tapering
parameter, beam’s length, and electric resistance.While taper-
ing the beam, its first natural frequency increases, therefore
two approaches, that is, using a thinner substrate layer or
mounting a tip mass, have been implemented to adjust its
natural frequency. In both methods, tapering leads to a
maximumvalue for the voltage density for different lengths of
the beam. It has been also noted that electric resistance is an
effective parameter on the output power of the piezoelectric
beam. Our study has shown that the efficacy of tapering

175 180 185 190 195

101

100

V
/g

𝜔 (Hz)

Exponentially tapered R = 1KΩ
Linearly tapered [21] R = 1KΩ
Exponentially tapered R = 1MΩ

Linearly tapered [21] R = MΩ

Figure 17: Comparison of 𝑉/𝑔 values between exponentially and
linearly tapered energy harvesters.

Table 4: Energy harvesters modelling parameters.

Parameter Value
𝐿 (mm) 50.8
𝑏
0
(mm) 31.5

𝑏
𝑇
(mm) 7.25

ℎ
𝑠
(mm) 0.14

ℎ
𝑝
(mm) 0.26

𝑀
𝑡
(gr) 0.0164

𝑧 0.0073

depends on the electric resistance, where in lower values of
electric resistance than a specified one the tapering reduces
the electric power density. Consequently, not only does the
electric power generated in energy harvesting device depend
on tapering, but also it is dependent on all parameters such
as beam’s length, thickness, tip mass, and electric resistance.
Therefore, it is feasible to improve the power density of the
piezoelectric beam by tapering it exponentially provided that
all parameters are considered in designing procedure.
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