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This paper investigates some generalized Gronwall-Bellman type impulsive integral inequalities containing integration on infinite
intervals. Some new results are obtained, which generalize some existing conclusions. Our result is also applied to study a boundary
value problem of differential equations with impulsive terms.

1. Introduction

It is well known that Gronwall-Bellman type integral inequal-
ities involving functions of one and more than one indepen-
dent variables play important roles in the study of existence,
uniqueness, boundedness, stability, invariant manifolds, and
other qualitative properties of solutions of the theory of
differential and integral equations. A lot of contributions to
its generalization have been archived by many researchers
(see [1–14]). Pachpatte [15] especially studied the following
inequality:

𝑢 (𝑥) ≤ 𝑎 (𝑥) + ∫

∞

𝑥

𝑏 (𝑠) 𝑢 (𝑠) 𝑑𝑠 (1)

containing integration on infinite integral and used it in the
study of terminal value problems for Gronwall-Bellman type
differential equations.Then, Cheung andMa [16] generalized
it into two independent variables with a nonlinear term:

𝑢 (𝑥, 𝑦) ≤ 𝑎 (𝑥, 𝑦) + 𝑐 (𝑥, 𝑦) ∫

∞

𝑥

∫

∞

𝑦

𝑑 (𝑠, 𝑡) 𝜔 (𝑢 (𝑠, 𝑡)) 𝑑𝑠 𝑑𝑡.

(2)

Along the development of the theory of impulsive dif-
ferential systems, more and more attention is paid to gen-
eralizations of Gronwall-Bellman’s results for discontinuous

functions (that is, impulsive integral inequalities) and their
applications (see [17–25]). Among them, one of the important
things is that Samoilenko and Perestyuk [17] considered

𝑢 (𝑥) ≤ 𝑐 + ∫

𝑥

𝑥0

𝑓 (𝑠) 𝑢 (𝑠) 𝑑𝑠 + ∑

𝑥0<𝑥𝑖<𝑥

𝛽
𝑖
𝑢 (𝑥
𝑖
− 0) (3)

about the nonnegative piecewise continuous function 𝑢(𝑥)
where 𝑐, 𝛽

𝑖
are nonnegative constants, 𝑓(𝑥) is a positive

function, and 𝑥
𝑖
are the first kind discontinuity points of

the function 𝑢(𝑥). Then Borysenko [18] investigated integral
inequalities with two independent variables:

𝑢 (𝑥, 𝑦) ≤ 𝑎 (𝑥, 𝑦) + ∫

𝑥

𝑥0

∫

𝑦

𝑦0

𝜏 (𝑠, 𝑡) 𝑢 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡

+ ∑

(𝑥0 ,𝑦0)<(𝑥𝑖 ,𝑦𝑖)<(𝑥,𝑦)

𝛽
𝑖
𝑢 (𝑥
𝑖
− 0, 𝑦
𝑖
− 0) .

(4)

Here𝑢(𝑥, 𝑦) is an unknownnonnegative continuous function
with the exception of the points (𝑥

𝑖
, 𝑦
𝑖
) where there is a finite

jump 𝑢(𝑥
𝑖
− 0, 𝑦

𝑖
− 0) ̸= 𝑢(𝑥

𝑖
+ 0, 𝑦

𝑖
+ 0) for 𝑖 = 1, 2, . . ..
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In 2013, Zheng [25] considered the following delay integral
inequalities containing integration on infinite intervals:

𝑢 (𝑥) ≤ 𝑐 + ∫

∞

𝑥

𝑓
1
(𝑥, 𝑠) 𝑢 (𝜏 (𝑠)) 𝑑𝑠

+ ∫

∞

𝑥

𝑓
2
(𝑥, 𝑠) 𝜔 (𝑢 (𝜏 (𝑠))) 𝑑𝑠

+ ∑

𝑥<𝑥𝑖<∞

𝛽
𝑖
𝑢 (𝑥
𝑖
− 0) ,

(5)

𝑢 (𝑥, 𝑦) ≤ 𝑐 + ∫

∞

𝑥

∫

∞

𝑦

𝑓
1
(𝑠, 𝑡) 𝑢 (𝜎 (𝑠) , 𝜏 (𝑡)) 𝑑𝑠 𝑑𝑡

+ ∫

∞

𝑥

∫

∞

𝑦

𝑓
2
(𝑠, 𝑡) 𝜔 (𝑢 (𝜎 (𝑠) , 𝜏 (𝑡))) 𝑑𝑠 𝑑𝑡

+ ∑

𝑥<𝑥𝑖<∞,𝑦<𝑦𝑖<∞

𝛽
𝑖
𝑢 (𝑥
𝑖
− 0, 𝑦
𝑖
− 0)

(6)

with one general nonlinear term 𝜔(𝑢). They assumed that
𝜔 ∈ ℘ where the class ℘ consists of all nonnegative, non-
decreasing, and continuous functions 𝜔(𝑢) on [0,∞) such
that 𝜔(0) = 0 and 𝜔(𝛼𝑢) ≤ 𝜔(𝛼)𝜔(𝑢) for all 𝛼 > 0 and
𝑢 ≥ 0. Actually, when we study behaviors of solutions of
differential equations with impulsive terms,𝜔may not satisfy
the following condition: 𝜔 ∈ ℘. For example, 𝜔(𝑢) = 𝑒𝑢 does
not belong to the class ℘ for any 𝛼 > 1 and large 𝑢 > 0. Thus,
it is very interesting to avoid such conditions. Our main aim
here, motivated by the work above, is to discuss the following
much more general integral inequality:

𝑢 (𝑥) ≤ 𝑎 (𝑥) +

2

∑

𝑘=1

∫

∞

𝑥

𝑓
𝑘
(𝑥, 𝑠) 𝜔

𝑘
(𝑢 (𝜎
𝑘
(𝑠))) 𝑑𝑠

+ ∑

𝑥<𝑥𝑖<∞

𝛽
𝑖
𝑢
𝑚

(𝑥
𝑖
− 0) , 𝑚 > 0,

(7)

𝑢 (𝑥, 𝑦) ≤ 𝑎 (𝑥, 𝑦)

+

2

∑

𝑘=1

∫

∞

𝑥

∫

∞

𝑦

𝑓
𝑘
(𝑥, 𝑦, 𝑠, 𝑡)

× 𝜔
𝑘
(𝑢 (𝜎
𝑘
(𝑠) , 𝜏
𝑘
(𝑡))) 𝑑𝑠 𝑑𝑡

+ ∑

𝑥<𝑥𝑖<∞,𝑦<𝑦𝑖<∞

𝛽
𝑖
𝑢
𝑚

(𝑥
𝑖
− 0, 𝑦
𝑖
− 0) , 𝑚 > 0

(8)

with two nonlinear terms 𝜔
1
(𝑢) and 𝜔

2
(𝑢) where we do not

restrict 𝜔
1
and 𝜔

2
to the class ℘. Moreover, our main results

are applied to estimate the bounds of solutions of differential
equations with impulsive terms.

2. Main Results

In what follows, R denotes the set of real numbers, R
+
=

[0,∞), and 𝐷
1
𝑧(𝑥, 𝑦) denotes the first-order partial deriva-

tive of 𝑧(𝑥, 𝑦) with respect to 𝑥.

Consider (7) and assume that

(𝐻
1
) 𝑓
𝑘
(𝑥, 𝑠) (𝑘 = 1, 2) is a continuous and nonnegative

function for 𝑥, 𝑠 ∈ R
+
and is bounded in 𝑥 ∈ R

+
for

each fixed 𝑠 ∈ R
+
;

(𝐻
2
) 𝜔
1
(𝑢) and 𝜔

2
(𝑢) are continuous and nonnegative

functions on [0,∞) and positive on (0,∞) such that
𝜔
2
(𝑢)/𝜔

1
(𝑢) is nondecreasing;

(𝐻
3
) 𝑢(𝑥) is a nonnegative and continuous function
defined on R

+
with the first kind of discontinuities at

the points 𝑥
𝑖
where 𝑖 = 1, 2, . . . , 𝑛 and 0 < 𝑥

0
< 𝑥
1
<

𝑥
2
< ⋅ ⋅ ⋅ < 𝑥

𝑛
< 𝑥
𝑛+1
= ∞;

(𝐻
4
) 𝑎(𝑥) is a continuous and bounded function for 𝑥 ∈
R
+
and 𝑎(∞) ̸= 0; 𝛽

𝑖
is a nonnegative constant for any

positive integer 𝑖;

(𝐻
5
) 𝜎
1
(𝑥) and 𝜎

2
(𝑥) are continuous and nonnegative

functions on R
+
such that 𝜎

𝑘
(𝑥) ≥ 𝑥 and 𝜎

𝑘
(𝑥) ≤ 𝑥

𝑖

for 𝑥 ∈ [𝑥
𝑖−1
, 𝑥
𝑖
), 𝑖 = 1, 2, . . . , 𝑛 + 1, and 𝑘 = 1, 2.

Let𝑊
𝑗
(𝑢) = ∫

𝑢

�̃�𝑗

(𝑑𝑧/𝜔
𝑗
(𝑧)) for 𝑢 ≥ �̃�

𝑗
and 𝑗 = 1, 2 where

�̃�
𝑗
is a given positive constant. Clearly,𝑊

𝑗
is strictly increasing

so its inverse𝑊−1
𝑗

is well defined, continuous, and increasing
in its corresponding domain.

Theorem 1. Suppose that (𝐻
1
)–(𝐻
5
) hold and 𝑢(𝑥) satisfies

(7) for a positive constant 𝑚. If one lets 𝑢
𝑖−1
(𝑥) = 𝑢(𝑥) for

𝑥 ∈ [𝑥
𝑖−1
, 𝑥
𝑖
), 𝑖 = 1, 2, . . . , 𝑛 + 1, then the estimate of 𝑢(𝑥)

is recursively given by

𝑢
𝑖−1
(𝑥) ≤ 𝑊

−1

2
[𝑊
2
∘ 𝑊
−1

1
(𝑊
1
(𝑟
𝑖−1
(𝑥))+∫

𝑥𝑖

𝑥

̃
𝑓
1
(𝑥, 𝑠) 𝑑𝑠)

+∫

𝑥𝑖

𝑥

̃
𝑓
2
(𝑥, 𝑠) 𝑑𝑠]

(9)

for 𝑥 ∈ [𝑥
𝑖−1
, 𝑥
𝑖
) and 𝑖 = 1, 2, . . . , 𝑛 + 1, where

𝑟
𝑛
(𝑥) = sup

𝑥≤𝜏<∞

|𝑎 (𝜏)| ,

̃
𝑓
𝑘
(𝑥, 𝑠) = sup

𝑥≤𝜏<∞

𝑓
𝑘
(𝜏, 𝑠) , 𝑘 = 1, 2,

𝑟
𝑖−1
(𝑥) = 𝑟

𝑛
(𝑥)

+

𝑛

∑

𝑗=𝑖

2

∑

𝑘=1

∫

𝑥𝑗+1

𝑥𝑗

𝑓
𝑘
(𝑥, 𝑠) 𝜔

𝑘
(𝑢
𝑗
(𝜎 (𝑠))) 𝑑𝑠

+

𝑛

∑

𝑗=𝑖

𝛽
𝑗
𝑢
𝑚

𝑗
(𝑥
𝑗
− 0) , 𝑖 = 1, 2, . . . , 𝑛,

(10)
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provided that

𝑊
1
(𝑟
𝑖−1
(𝑥)) + ∫

𝑥𝑖

𝑥

̃
𝑓
1
(𝑥, 𝑠) 𝑑𝑠 ≤ ∫

∞

�̃�1

𝑑𝑧

𝜔
1
(𝑧)

,

𝑊
2
∘ 𝑊
−1

1
(𝑊
1
(𝑟
𝑖−1
(𝑥)) + ∫

𝑥𝑖

𝑥

̃
𝑓
1
(𝑥, 𝑠) 𝑑𝑠)

+ ∫

𝑥𝑖

𝑥

̃
𝑓
2
(𝑥, 𝑠) 𝑑𝑠 ≤ ∫

∞

�̃�2

𝑑𝑧

𝜔
2
(𝑧)

.

(11)

Proof. From the assumptions, we know that 𝑟
𝑛
(𝑥) and

̃
𝑓
𝑘
(𝑥, 𝑠) (𝑘 = 1, 2) are well defined. Moreover, 𝑟

𝑛
(𝑥) is non-

negative and nonincreasing in 𝑥 and ̃𝑓
𝑘
(𝑥, 𝑠) is nonnegative

and nonincreasing in 𝑥 and satisfies 𝑎(𝑥) ≤ 𝑟
𝑛
(𝑥), 𝑓

𝑘
(𝑥, 𝑠) ≤

̃
𝑓
𝑘
(𝑥, 𝑠).

Case 1. If 𝑥 ∈ [𝑥
𝑛
,∞) (in fact, 𝑥

𝑛+1
= ∞), from the definition

of 𝜎
𝑘
, we have 𝜎

𝑘
(𝑥) ∈ [𝑥

𝑛
,∞) (𝑘 = 1, 2). According to (7)

and (10) we get

𝑢 (𝑥) ≤ 𝑟
𝑛
(𝑥) +

2

∑

𝑘=1

∫

∞

𝑥

̃
𝑓
𝑘
(𝑥, 𝑠) 𝜔

𝑘
(𝑢 (𝜎
𝑘
(𝑠))) 𝑑𝑠. (12)

Take any fixed 𝑇 ∈ [𝑥
𝑛
,∞), and we investigate the following

inequality:

𝑢 (𝑥) ≤ 𝑟
𝑛
(𝑇) +

2

∑

𝑘=1

∫

∞

𝑥

̃
𝑓
𝑘
(𝑇, 𝑠) 𝜔

𝑘
(𝑢 (𝜎
𝑘
(𝑠))) 𝑑𝑠 (13)

for 𝑥 ∈ [𝑇,∞). Let

𝑧 (𝑥) =

2

∑

𝑘=1

∫

∞

𝑥

̃
𝑓
𝑘
(𝑇, 𝑠) 𝜔

𝑘
(𝑢 (𝜎
𝑘
(𝑠))) 𝑑𝑠 (14)

and let 𝑧(∞) = 0. Hence, 𝑢(𝑥) ≤ 𝑟
𝑛
(𝑇) + 𝑧(𝑥). Clearly, 𝑧(𝑥)

is a nonnegative, nonincreasing, and differentiable function
for 𝑥 ∈ [𝑇,∞). The assumption 𝑎(∞) ̸= 0 yields that 𝑟

𝑛
(𝑇) +

𝑧(𝑥) > 0. Thus
𝑧


(𝑥)

𝜔
1
(𝑟
𝑛
(𝑇) + 𝑧 (𝑥))

=

−
̃
𝑓
1
(𝑇, 𝑥) 𝜔

1
(𝑢 (𝜎
1
(𝑥))) −

̃
𝑓
2
(𝑇, 𝑥) 𝜔

2
(𝑢 (𝜎
2
(𝑥)))

𝜔
1
(𝑟
𝑛
(𝑇) + 𝑧 (𝑥))

≥ (−
̃
𝑓
1
(𝑇, 𝑥) 𝜔

1
(𝑟
𝑛
(𝑇) + 𝑧 (𝜎

1
(𝑥)))

−
̃
𝑓
2
(𝑇, 𝑥) 𝜔

2
(𝑟
𝑛
(𝑇) + 𝑧 (𝜎

2
(𝑥))))

× (𝜔
1
(𝑟
𝑛
(𝑇) + 𝑧 (𝑥)))

−1

≥ −

̃
𝑓
1
(𝑇, 𝑥) 𝜔

1
(𝑟
𝑛
(𝑇) + 𝑧 (𝑥))

𝜔
1
(𝑟
𝑛
(𝑇) + 𝑧 (𝑥))

−

̃
𝑓
2
(𝑇, 𝑥) 𝜔

2
(𝑟
𝑛
(𝑇) + 𝑧 (𝑥))

𝜔
1
(𝑟
𝑛
(𝑇) + 𝑧 (𝑥))

≥ −
̃
𝑓
1
(𝑇, 𝑥) −

̃
𝑓
2
(𝑇, 𝑥) 𝜔

2
(𝑟
𝑛
(𝑇) + 𝑧 (𝑥))

𝜔
1
(𝑟
𝑛
(𝑇) + 𝑧 (𝑥))

.

(15)

Integrating both sides of the above inequality from 𝑥 to∞,
we obtain

𝑊
1
(𝑟
𝑛
(𝑇)) − 𝑊

1
(𝑟
𝑛
(𝑇) + 𝑧 (𝑥))

≥ −∫

∞

𝑥

̃
𝑓
1
(𝑇, 𝑠) 𝑑𝑠

− ∫

∞

𝑥

̃
𝑓
2
(𝑇, 𝑠) 𝜙 (𝑟

𝑛
(𝑇) + 𝑧 (𝑠)) 𝑑𝑠

(16)

for 𝑥 ∈ [𝑇,∞), where 𝜙(𝑥) = 𝜔
2
(𝑥)/𝜔

1
(𝑥), so

𝑊
1
(𝑟
𝑛
(𝑇) + 𝑧 (𝑥)) ≤ 𝑊

1
(𝑟
𝑛
(𝑇)) + ∫

∞

𝑥

̃
𝑓
1
(𝑇, 𝑠) 𝑑𝑠

+ ∫

∞

𝑥

̃
𝑓
2
(𝑇, 𝑠) 𝜙 (𝑟

𝑛
(𝑇) + 𝑧 (𝑠)) 𝑑𝑠

(17)

or, equivalently,

𝜉 (𝑥) ≤ 𝑊
1
(𝑟
𝑛
(𝑇)) + ∫

∞

𝑥

̃
𝑓
1
(𝑇, 𝑠) 𝑑𝑠

+ ∫

∞

𝑥

̃
𝑓
2
(𝑇, 𝑠) 𝜙 (𝑊

−1

1
(𝜉 (𝑠))) 𝑑𝑠 ≜ 𝑧

1
(𝑥) ,

(18)

where

𝜉 (𝑥) = 𝑊
1
(𝑟
𝑛
(𝑇) + 𝑧 (𝑥)) . (19)

It is easy to check that 𝜉(𝑥) ≤ 𝑧
1
(𝑥), 𝑧
1
(∞) = 𝑊

1
(𝑟
𝑛
(𝑇)) and

𝑧
1
(𝑥) is differentiable, positive, and nonincreasing on [𝑇,∞).

Since 𝜙(𝑊−1
1
(𝑢)) is nondecreasing, from the assumption

(𝐻
2
), we have

𝑧


1
(𝑥)

𝜙 (𝑊
−1

1
(𝑧
1
(𝑥)))

= −

̃
𝑓
1
(𝑇, 𝑥)

𝜙 (𝑊
−1

1
(𝑧
1
(𝑥)))

−

̃
𝑓
2
(𝑇, 𝑥) 𝜙 (𝑊

−1

1
(𝜉 (𝑥)))

𝜙 (𝑊
−1

1
(𝑧
1
(𝑥)))

≥ −

̃
𝑓
1
(𝑇, 𝑥)

𝜙 [𝑊
−1

1
(𝑊
1
(𝑟
𝑛
(𝑇)) + ∫

∞

𝑥

̃
𝑓
1
(𝑇, 𝑠) 𝑑𝑠)]

−
̃
𝑓
2
(𝑇, 𝑥) .

(20)

Note that

∫

∞

𝑥

𝑧


1
(𝑠)

𝜙 (𝑊
−1

1
(𝑧
1
(𝑠)))

𝑑𝑠

= ∫

∞

𝑥

𝜔
1
(𝑊
−1

1
(𝑧
1
(𝑠))) 𝑧



1
(𝑠)

𝜔
2
(𝑊
−1

1
(𝑧
1
(𝑠)))

𝑑𝑠

= 𝑊
2
∘ 𝑊
−1

1
(𝑧
1
(∞)) −𝑊

2
∘ 𝑊
−1

1
(𝑧
1
(𝑥))

= 𝑊
2
(𝑟
𝑛
(𝑇)) − 𝑊

2
∘ 𝑊
−1

1
(𝑧
1
(𝑥)) .

(21)
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Integrating both sides of (20) from 𝑥 to∞, we obtain

𝑊
2
(𝑟
𝑛
(𝑇)) − 𝑊

2
∘ 𝑊
−1

1
(𝑧
1
(𝑥))

= ∫

∞

𝑥

𝑧


1
(𝑠)

𝜙 (𝑊
−1

1
(𝑧
1
(𝑠)))

𝑑𝑠

≥ −∫

∞

𝑥

̃
𝑓
1
(𝑇, 𝑠)

𝜙 [𝑊
−1

1
(𝑊
1
(𝑟
𝑛
(𝑇)) + ∫

∞

𝑠

̃
𝑓
1
(𝑇, 𝜏) 𝑑𝜏)]

𝑑𝑠

− ∫

∞

𝑥

̃
𝑓
2
(𝑇, 𝑠) 𝑑𝑠

≥ −𝑊
2
∘ 𝑊
−1

1
(𝑊
1
(𝑟
𝑛
(𝑇)) + ∫

∞

𝑥

̃
𝑓
1
(𝑇, 𝑠) 𝑑𝑠)

+𝑊
2
(𝑟
𝑛
(𝑇)) − ∫

∞

𝑥

̃
𝑓
2
(𝑇, 𝑠) 𝑑𝑠.

(22)

Thus,

𝑊
2
∘ 𝑊
−1

1
(𝑧
1
(𝑥))

≤ 𝑊
2
∘ 𝑊
−1

1
(𝑊
1
(𝑟
𝑛
(𝑇)) + ∫

∞

𝑥

̃
𝑓
1
(𝑇, 𝑠) 𝑑𝑠)

+ ∫

∞

𝑥

̃
𝑓
2
(𝑇, 𝑠) 𝑑𝑠.

(23)

We have by (11)

𝑢 (𝑥) ≤ 𝑧 (𝑥) + 𝑟
𝑛
(𝑇)

≤ 𝑊
−1

1
(𝜉 (𝑥)) ≤ 𝑊

−1

1
(𝑧
1
(𝑥))

≤ 𝑊
−1

2
[𝑊
2
∘ 𝑊
−1

1
(𝑊
1
(𝑟
𝑛
(𝑇)) + ∫

∞

𝑥

̃
𝑓
1
(𝑇, 𝑠) 𝑑𝑠)

+∫

∞

𝑥

̃
𝑓
2
(𝑇, 𝑠) 𝑑𝑠] .

(24)

Since the inequality above is true for any 𝑥 ∈ [𝑇,∞), we
obtain

𝑢 (𝑇) ≤ 𝑊
−1

2
[𝑊
2
∘ 𝑊
−1

1
(𝑊
1
(𝑟
𝑛
(𝑇)) + ∫

∞

𝑇

̃
𝑓
1
(𝑇, 𝑠) 𝑑𝑠)

+∫

∞

𝑇

̃
𝑓
2
(𝑇, 𝑠) 𝑑𝑠] .

(25)

Replacing 𝑇 by 𝑥 and∞ by 𝑥
𝑛+1

yields

𝑢 (𝑥) ≤ 𝑊
−1

2
[𝑊
2
∘ 𝑊
−1

1
(𝑊
1
(𝑟
𝑛
(𝑥)) + ∫

𝑥𝑛+1

𝑥

̃
𝑓
1
(𝑥, 𝑠) 𝑑𝑠)

+∫

𝑥𝑛+1

𝑥

̃
𝑓
2
(𝑥, 𝑠) 𝑑𝑠] .

(26)

This means that (9) is true for 𝑥 ∈ [𝑥
𝑛
,∞) if we replace 𝑢(𝑥)

with 𝑢
𝑛
(𝑥).

Case 2. If 𝑥 ∈ [𝑥
𝑛−1
, 𝑥
𝑛
), (7) becomes

𝑢 (𝑥) ≤ 𝑟
𝑛
(𝑥)

+

2

∑

𝑘=1

∫

𝑥𝑛+1

𝑥𝑛

𝑓
𝑘
(𝑥, 𝑠) 𝜔

𝑘
(𝑢
𝑛
(𝜎
𝑘
(𝑠))) 𝑑𝑠

+ 𝛽
𝑛
𝑢
𝑚

𝑛
(𝑥
𝑛
− 0)

+

2

∑

𝑘=1

∫

𝑥𝑛

𝑥

𝑓
𝑘
(𝑥, 𝑠) 𝜔

𝑘
(𝑢 (𝜎
𝑘
(𝑠))) 𝑑𝑠

≤ 𝑟
𝑛−1
(𝑥) +

2

∑

𝑘=1

∫

𝑥𝑛

𝑥

𝑓
𝑘
(𝑥, 𝑠) 𝜔

𝑘
(𝑢 (𝜎
𝑘
(𝑠))) 𝑑𝑠,

(27)

where the definition of 𝑟
𝑛−1
(𝑥) is given in (10), which is similar

to (12). Then, we obtain

𝑢 (𝑥) ≤ 𝑊
−1

2
[𝑊
2
∘ 𝑊
−1

1
(𝑊
1
(𝑟
𝑛−1
(𝑥)) + ∫

𝑥𝑛

𝑥

̃
𝑓
1
(𝑥, 𝑠) 𝑑𝑠)

+∫

𝑥𝑛

𝑥

̃
𝑓
2
(𝑥, 𝑠) 𝑑𝑠] .

(28)

This implies that (9) is true for 𝑥 ∈ [𝑥
𝑛−1
, 𝑥
𝑛
) if we replace

𝑢(𝑥) by 𝑢
𝑛−1
(𝑥).

Case 3. If (7) is true for 𝑥 ∈ [𝑥
𝑖
, 𝑥
𝑖+1
), that is,

𝑢
𝑖
(𝑥) ≤ 𝑊

−1

2
[𝑊
2
∘ 𝑊
−1

1
(𝑊
1
(𝑟
𝑖
(𝑥)) + ∫

𝑥𝑖+1

𝑥

̃
𝑓
1
(𝑥, 𝑠) 𝑑𝑠)

+∫

𝑥𝑖+1

𝑥

̃
𝑓
2
(𝑥, 𝑠) 𝑑𝑠] ,

(29)

then, for 𝑥 ∈ [𝑥
𝑖−1
, 𝑥
𝑖
), (7) becomes

𝑢 (𝑥) ≤ 𝑟
𝑛
(𝑥)

+

𝑛

∑

𝑗=𝑖

2

∑

𝑘=1

∫

𝑥𝑗+1

𝑥𝑗

𝑓
𝑘
(𝑥, 𝑠) 𝜔

𝑘
(𝑢
𝑗
(𝜎
𝑘
(𝑠))) 𝑑𝑠

+

𝑛

∑

𝑗=𝑖

𝛽
𝑗
𝑢
𝑚

𝑗
(𝑥
𝑗
− 0)

+

2

∑

𝑘=1

∫

𝑥𝑖

𝑥

𝑓
𝑘
(𝑥, 𝑠) 𝜔

𝑘
(𝑢 (𝜎
𝑘
(𝑠))) 𝑑𝑠

≤ 𝑟
𝑖−1
(𝑥) +

2

∑

𝑘=1

∫

𝑥𝑖

𝑥

𝑓
𝑘
(𝑥, 𝑠) 𝜔

𝑘
(𝑢 (𝜎
𝑘
(𝑠))) 𝑑𝑠,

(30)

where we use the fact that the estimate of 𝑢(𝑥) is already
known for 𝑥 ∈ [𝑥

𝑗
, 𝑥
𝑗+1
), 𝑗 = 𝑖, 𝑖 + 1, . . . , 𝑛. By assumption
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(29), again (30) is the same as (27) if we replace 𝑟
𝑛−1
(𝑥) by

𝑟
𝑖−1
(𝑥) and 𝑥

𝑛
by 𝑥
𝑖
. Thus, by (28), we have

𝑢 (𝑥) ≤ 𝑊
−1

2
[𝑊
2
∘ 𝑊
−1

1
(𝑊
1
(𝑟
𝑖−1
(𝑥)) + ∫

𝑥𝑖

𝑥

̃
𝑓
1
(𝑥, 𝑠) 𝑑𝑠)

+∫

𝑥𝑖

𝑥

̃
𝑓
2
(𝑥, 𝑠) 𝑑𝑠] .

(31)

This completes the proof of Theorem 1 by mathematical
induction.

Remark 2. Zheng [25] investigated (5) which is the special
case of (7). His results are under the assumptions that 𝑎(𝑥) =
𝑐, 𝑓
1
(𝑥, 𝑠), 𝑓

2
(𝑥, 𝑠) are decreasing in 𝑠 for every fixed 𝑠 and

𝜔 ∈ ℘. In our result, these assumptions are avoided.

Consider the inequality

𝜑 (𝑢 (𝑥)) ≤ 𝑎 (𝑥) +

2

∑

𝑘=1

∫

∞

𝑥

𝑓
𝑘
(𝑥, 𝑠) 𝜔

𝑘
(𝑢 (𝜎
𝑘
(𝑠))) 𝑑𝑠

+ ∑

𝑥<𝑥𝑖<∞

𝛽
𝑖
𝜓 (𝑢 (𝑥

𝑖
− 0)) ,

(32)

which looks much more complicated than (7).

Corollary 3. In addition to the assumptions (𝐻
1
)–(𝐻
5
),

suppose that 𝜓(𝑢) is positive on (0,∞), 𝜑(𝑢) is positive and
strictly increasing on (0,∞), and 𝑢(𝑥) satisfies (32). If one lets
𝑢
𝑖−1
(𝑥) = 𝑢(𝑥) for 𝑥 ∈ [𝑥

𝑖−1
, 𝑥
𝑖
), 𝑖 = 1, 2, . . . , 𝑛 + 1, then the

estimate of 𝑢(𝑥) is recursively given by

𝑢
𝑖−1
(𝑥) ≤ 𝜑

−1

{𝑊
−1

2
[𝑊
2
∘ 𝑊
−1

1

× (𝑊
1
(𝑟
𝑖−1
(𝑥)) + ∫

𝑥𝑖

𝑥

̃
𝑓
1
(𝑥, 𝑠) 𝑑𝑠)

+∫

𝑥𝑖

𝑥

̃
𝑓
2
(𝑥, 𝑠) 𝑑𝑠]} ,

(33)

where 𝑊
𝑗
(𝑢) = ∫

𝑢

�̃�𝑗

(𝑑𝑧/𝜔
𝑗
(𝜑
−1

(𝑧))), 𝑟
𝑛
(𝑥), and ̃𝑓

𝑘
(𝑥, 𝑠) are

given in Theorem 1 and 𝑟
𝑖−1
(𝑥) is defined as follows:

𝑟
𝑖−1
(𝑥) = 𝑟

𝑛
(𝑥) +

𝑛

∑

𝑗=𝑖

2

∑

𝑘=1

∫

𝑥𝑗+1

𝑥𝑗

𝑓
𝑘
(𝑥, 𝑠) 𝜔

𝑘
(𝑢
𝑗
(𝜎
𝑘
(𝑠))) 𝑑𝑠

+

𝑛

∑

𝑗=𝑖

𝛽
𝑗
𝜓 (𝑢
𝑗
(𝑥
𝑗
− 0)) , 𝑖 = 1, 2, . . . , 𝑛,

(34)

provided that

𝑊
1
(𝑟
𝑖−1
(𝑥)) + ∫

𝑥𝑖

𝑥

̃
𝑓
1
(𝑥, 𝑠) 𝑑𝑠 ≤ ∫

∞

�̃�1

𝑑𝑧

𝜔
1
(𝑧)

,

𝑊
2
∘ 𝑊
−1

1
(𝑊
1
(𝑟
𝑖−1
(𝑥)) + ∫

𝑥𝑖

𝑥

̃
𝑓
1
(𝑥, 𝑠) 𝑑𝑠)

+ ∫

𝑥𝑖

𝑥

̃
𝑓
2
(𝑥, 𝑠) 𝑑𝑠 ≤ ∫

∞

�̃�2

𝑑𝑧

𝜔
2
(𝑧)

.

(35)

Proof. Let 𝜑(𝑢(𝑥)) = ℎ(𝑥). Since the function 𝜑 is strictly
increasing on [0,∞), its inverse 𝜑−1 is well defined. And (32)
becomes

ℎ (𝑥) ≤ 𝑎 (𝑥) +

2

∑

𝑘=1

∫

∞

𝑥

𝑓
𝑘
(𝑥, 𝑠) 𝜔

𝑘
(𝜑
−1

(ℎ (𝜎
𝑘
(𝑠)))) 𝑑𝑠

+ ∑

𝑥<𝑥𝑖<∞

𝛽
𝑖
𝜓 (𝜑
−1

(ℎ (𝑥
𝑖
− 0))) .

(36)

Let �̃�
𝑘
= 𝜔
𝑘
∘ 𝜑
−1 and �̃� = 𝜓 ∘ 𝜑−1; (36) becomes

ℎ (𝑥) ≤ 𝑎 (𝑥) +

2

∑

𝑘=1

∫

∞

𝑥

𝑓
𝑘
(𝑥, 𝑠) �̃�

𝑘
(ℎ (𝜎
𝑘
(𝑠))) 𝑑𝑠

+ ∑

𝑥<𝑥𝑖<∞

𝛽
𝑖
�̃� (ℎ (𝑥

𝑖
− 0)) .

(37)

It is easy to see that �̃�(𝑢) > 0, �̃�
1
(𝑢) and �̃�

2
(𝑢) are continu-

ous and nonnegative functions on [0,∞), and �̃�
2
(𝑢)/�̃�

1
(𝑢)

is nondecreasing on (0,∞). Even though �̃�(𝑢) is much
more general, using the same way in Theorem 1, for 𝑥 ∈

[𝑥
𝑖−1
, 𝑥
𝑖
), 𝑖 = 1, 2, . . . , 𝑛 + 1, we can obtain the estimate of

𝑢(𝑥):

𝑢
𝑖−1
(𝑥)

≤ 𝜑
−1

{𝑊
−1

2
[𝑊
2
∘ 𝑊
−1

1
(𝑊
1
(𝑟
𝑖−1
(𝑥)) + ∫

𝑥𝑖

𝑥

̃
𝑓
1
(𝑥, 𝑠) 𝑑𝑠)

+∫

𝑥𝑖

𝑥

̃
𝑓
2
(𝑥, 𝑠) 𝑑𝑠]} .

(38)

This completes the proof of Corollary 3.

If 𝜑(𝑢) = 𝑢𝜆 where 𝜆 > 0 is a constant, we can study the
inequality

𝑢
𝜆

(𝑥) ≤ 𝑎 (𝑥) +

2

∑

𝑘=1

∫

∞

𝑥

𝑓
𝑘
(𝑥, 𝑠) 𝜔

𝑘
(𝑢 (𝜎
𝑘
(𝑠))) 𝑑𝑠

+ ∑

𝑥<𝑥𝑖<∞

𝛽
𝑖
𝜓 (𝑢 (𝑥

𝑖
− 0)) .

(39)

According to Corollary 3, we have the following result.

Corollary 4. In addition to the assumptions (𝐻
1
)–(𝐻
5
),

suppose that 𝜓(𝑢) is positive on (0,∞) and 𝑢(𝑥) satisfies (39).
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If one lets 𝑢
𝑖−1
(𝑥) = 𝑢(𝑥) for 𝑥 ∈ [𝑥

𝑖−1
, 𝑥
𝑖
), 𝑖 = 1, 2, . . . , 𝑛 + 1,

then the estimate of 𝑢(𝑥) is recursively given by

𝑢
𝑖−1
(𝑥) ≤ {𝑊

−1

2
[𝑊
2
∘ 𝑊
−1

1
(𝑊
1
(𝑟
𝑖−1
(𝑥)) + ∫

𝑥𝑖

𝑥

̃
𝑓
1
(𝑥, 𝑠) 𝑑𝑠)

+ ∫

𝑥𝑖

𝑥

̃
𝑓
2
(𝑥, 𝑠) 𝑑𝑠]}

1/𝜆

,

(40)

where𝑊
𝑗
(𝑢) = ∫

𝑢

�̃�𝑗

(𝑑𝑧/𝜔(𝑧
1/𝜆

)), 𝑟
𝑛
(𝑥), 𝑟
𝑖−1
(𝑥), and ̃𝑓

𝑘
(𝑥, 𝑠) are

given in Corollary 3.

Let

Ω = ∪
𝑖,𝑗≥1
Ω
𝑖𝑗
,

Ω
𝑖𝑗
= {(𝑥, 𝑦) : 𝑥

𝑖−1
≤ 𝑥 < 𝑥

𝑖
, 𝑦
𝑗−1
≤ 𝑦 < 𝑦

𝑗
} ,

(41)

for 𝑖, 𝑗 = 1, 2, . . . , 𝑛 + 1, 0 < 𝑥
0
< 𝑥
1
< 𝑥
2
< ⋅ ⋅ ⋅ < 𝑥

𝑛
< 𝑥
𝑛+1
=

∞, and 0 < 𝑦
0
< 𝑦
1
< 𝑦
2
< ⋅ ⋅ ⋅ < 𝑦

𝑛
< 𝑦
𝑛+1
= ∞.

Consider (8) and assume that

(𝐶
1
) 𝑓
𝑘
(𝑥, 𝑦, 𝑠, 𝑡) (𝑘 = 1, 2) is continuous and nonnegative

on Ω × Ω and bounded in (𝑥, 𝑦) ∈ Ω for each fixed
(𝑠, 𝑡) ∈ Ω and satisfies 𝑓

𝑘
(𝑥, 𝑦, 𝑠, 𝑡) = 0 (𝑘 = 1, 2) if

(𝑠, 𝑡) ∈ Ω
𝑖𝑗
, 𝑖 ̸= 𝑗 for arbitrary 𝑖, 𝑗 = 1, 2, . . . , 𝑛 + 1;

(𝐶
2
) 𝜔
1
(𝑢) and 𝜔

2
(𝑢) are continuous and nonnegative

functions on [0,∞) and are positive on (0,∞) such
that 𝜔

2
(𝑢)/𝜔

1
(𝑢) is nondecreasing;

(𝐶
3
) 𝑢(𝑥, 𝑦) is nonnegative and continuous on Ω with the
exception of the points (𝑥

𝑖
, 𝑦
𝑖
) where there is a finite

jump: 𝑢(𝑥
𝑖
−0, 𝑦
𝑖
−0) ̸= 𝑢(𝑥

𝑖
+0, 𝑦
𝑖
+0), 𝑖 = 1, 2, . . . , 𝑛;

(𝐶
4
) 𝑎(𝑥, 𝑦) is continuous and bounded for (𝑥, 𝑦) ∈ Ω
and 𝑎(∞,∞) ̸= 0; 𝛽

𝑖
is a nonnegative constant for any

positive integer 𝑖;
(𝐶
5
) 𝜎
𝑘
(𝑥) and 𝜏

𝑘
(𝑦) (𝑘 = 1, 2) are continuous and

nonnegative such that 𝜎
𝑘
(𝑥) ≥ 𝑥 and 𝜎

𝑘
(𝑥) ≤ 𝑥

𝑖
for

𝑥 ∈ [𝑥
𝑖−1
, 𝑥
𝑖
), 𝑖 = 1, 2, . . . , 𝑛 + 1, and 𝜏

𝑘
(𝑦) ≥ 𝑦 and

𝜏
𝑘
(𝑦) ≤ 𝑦

𝑖
for 𝑦 ∈ [𝑦

𝑖−1
, 𝑦
𝑖
), 𝑖 = 1, 2, . . . , 𝑛 + 1.

Theorem 5. Suppose that (𝐶
1
)–(𝐶
5
) hold and 𝑢(𝑥, 𝑦) satisfies

(8) for a positive constant 𝑚. If one lets 𝑢
𝑖
(𝑥, 𝑦) = 𝑢(𝑥, 𝑦) for

(𝑥, 𝑦) ∈ Ω
𝑖𝑖
, 𝑖 = 1, 2, . . . , 𝑛, then the estimate of 𝑢(𝑥, 𝑦) is

recursively given by

𝑢
𝑖−1
(𝑥, 𝑦)

≤ 𝑊
−1

2
[𝑊
2
∘ 𝑊
−1

1

× (𝑊
1
(𝑟
𝑖−1
(𝑥, 𝑦)) + ∫

𝑥𝑖

𝑥

∫

𝑦𝑖

𝑦

̃
𝑓
1
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡)

+∫

𝑥𝑖

𝑥

∫

𝑦𝑖

𝑦

̃
𝑓
2
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡] ,

(42)

for (𝑥, 𝑦) ∈ Ω
𝑖𝑖
, 𝑖 = 1, 2, . . . , 𝑛 + 1, where

𝑟
𝑛
(𝑥, 𝑦) = sup

𝑥≤𝜉<∞

sup
𝑦≤𝜂<∞





𝑎 (𝜉, 𝜂)





,

̃
𝑓
𝑘
(𝑥, 𝑦, 𝑠, 𝑡) = sup

𝑥≤𝜉<∞

sup
𝑦≤𝜂<∞

𝑓
𝑘
(𝜉, 𝜂, 𝑠, 𝑡) ,

𝑟
𝑖−1
(𝑥, 𝑦)

= 𝑟
𝑛
(𝑥, 𝑦)

+

𝑛

∑

𝑗=𝑖

2

∑

𝑘=1

∫

𝑥𝑗+1

𝑥𝑗

∫

𝑦𝑗+1

𝑦𝑗

𝑓
𝑘
(𝑥, 𝑦, 𝑠, 𝑡) 𝜔

𝑘
(𝑢
𝑗
(𝑠, 𝑡)) 𝑑𝑠 𝑑𝑡

+

𝑛

∑

𝑗=𝑖

𝛽
𝑗
𝑢
𝑚

𝑗
(𝑥
𝑗
− 0, 𝑦
𝑗
− 0) , 𝑖 = 1, 2, . . . , 𝑛,

(43)

provided that

𝑊
1
(𝑟
𝑖−1
(𝑥, 𝑦)) + ∫

𝑥𝑖

𝑥

∫

𝑦𝑖

𝑦

̃
𝑓
1
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡 ≤ ∫

∞

�̃�1

𝑑𝑧

𝜔
1
(𝑧)

,

𝑊
2
∘ 𝑊
−1

1
[𝑊
1
(𝑟
𝑖−1
(𝑥, 𝑦)) + ∫

𝑥𝑖

𝑥

∫

𝑦𝑖

𝑦

̃
𝑓
1
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡]

+ ∫

𝑥𝑖

𝑥

∫

𝑦𝑖

𝑦

̃
𝑓
2
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡 ≤ ∫

∞

�̃�2

𝑑𝑧

𝜔
2
(𝑧)

.

(44)

Proof. Obviously, for any (𝑥, 𝑦) ∈ Ω, 𝑟
𝑛
(𝑥, 𝑦) is positive and

nonincreasing with respect to 𝑥 and 𝑦; ̃𝑓
𝑘
(𝑥, 𝑦, 𝑠, 𝑡) (𝑘 = 1, 2)

is nonnegative and nonincreasing with respect to 𝑥 and 𝑦
for each fixed 𝑠 and 𝑡. They satisfy 𝑎(𝑥, 𝑦) ≤ 𝑟

𝑛
(𝑥, 𝑦) and

𝑓
𝑘
(𝑥, 𝑦, 𝑠, 𝑡) ≤

̃
𝑓
𝑘
(𝑥, 𝑦, 𝑠, 𝑡).

Case 1. If (𝑥, 𝑦) ∈ Ω
𝑛+1,𝑛+1

= {(𝑥, 𝑦) : 𝑥
𝑛
≤ 𝑥 < 𝑥

𝑛+1
, 𝑦
𝑛
≤

𝑦 < 𝑦
𝑛+1
}, we have from (8)

𝑢 (𝑥, 𝑦) ≤ 𝑟
𝑛
(𝑥, 𝑦)

+

2

∑

𝑘=1

∫

∞

𝑥

∫

∞

𝑦

̃
𝑓
𝑘
(𝑥, 𝑦, 𝑠, 𝑡) 𝜔

𝑘

× (𝑢 (𝜎
𝑘
(𝑠) , 𝜏
𝑘
(𝑡))) 𝑑𝑠 𝑑𝑡.

(45)

Take any fixed 𝑥 ∈ [𝑥
𝑛
,∞), 𝑦 ∈ [𝑦

𝑛
,∞), and for arbitrary

𝑥 ∈ [𝑥,∞), 𝑦 ∈ [𝑦,∞), we get

𝑢 (𝑥, 𝑦) ≤ 𝑟
𝑛
(𝑥, 𝑦)

+

2

∑

𝑘=1

∫

∞

𝑥

∫

∞

𝑦

̃
𝑓
𝑘
(𝑥, 𝑦, 𝑠, 𝑡) 𝜔

𝑘

× (𝑢 (𝜎
𝑘
(𝑠) , 𝜏
𝑘
(𝑡))) 𝑑𝑠 𝑑𝑡.

(46)
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Let
𝑧 (𝑥, 𝑦) = 𝑟

𝑛
(𝑥, 𝑦)

+

2

∑

𝑘=1

∫

∞

𝑥

∫

∞

𝑦

̃
𝑓
𝑘
(𝑥, 𝑦, 𝑠, 𝑡) 𝜔

𝑘

× (𝑢 (𝜎
𝑘
(𝑠) , 𝜏
𝑘
(𝑡))) 𝑑𝑠 𝑑𝑡

(47)

and let 𝑧(∞, 𝑦) = 𝑟
𝑛
(𝑥, 𝑦). Hence, 𝑢(𝑥, 𝑦) ≤ 𝑧(𝑥, 𝑦). Clearly,

𝑧(𝑥, 𝑦) is a nonnegative, nonincreasing, and differentiable
function for 𝑥 ∈ [𝑥,∞) and 𝑦 ∈ [𝑦,∞). Since 𝑎(∞,∞) ̸= 0
and 𝜔

1
(𝑧(𝑥, 𝑦)) > 0, we have

𝐷
1
𝑧 (𝑥, 𝑦)

𝜔
1
(𝑧 (𝑥, 𝑦))

= −

∫

∞

𝑦

̃
𝑓
1
(𝑥, 𝑦, 𝑥, 𝑡) 𝜔

1
(𝑢 (𝜎
1
(𝑥) , 𝜏
1
(𝑡))) 𝑑𝑡

𝜔
1
(𝑧 (𝑥, 𝑦))

−

∫

∞

𝑦

̃
𝑓
2
(𝑥, 𝑦, 𝑥, 𝑡) 𝜔

2
(𝑢 (𝜎
2
(𝑥) , 𝜏
2
(𝑡))) 𝑑𝑡

𝜔
1
(𝑧 (𝑥, 𝑦))

≥ −

∫

∞

𝑦

̃
𝑓
1
(𝑥, 𝑦, 𝑥, 𝑡) 𝜔

1
(𝑧 (𝜎
1
(𝑥) , 𝜏
1
(𝑡))) 𝑑𝑡

𝜔
1
(𝑧 (𝑥, 𝑦))

−

∫

∞

𝑦

̃
𝑓
2
(𝑥, 𝑦, 𝑥, 𝑡) 𝜔

2
(𝑧 (𝜎
2
(𝑥) , 𝜏
2
(𝑡))) 𝑑𝑡

𝜔
1
(𝑧 (𝑥, 𝑦))

≥ −

∫

∞

𝑦

̃
𝑓
1
(𝑥, 𝑦, 𝑥, 𝑡) 𝜔

1
(𝑧 (𝑥, 𝑡)) 𝑑𝑡

𝜔
1
(𝑧 (𝑥, 𝑦))

−

∫

∞

𝑦

̃
𝑓
2
(𝑥, 𝑦, 𝑥, 𝑡) 𝜔

2
(𝑧 (𝑥, 𝑡)) 𝑑𝑡

𝜔
1
(𝑧 (𝑥, 𝑦))

≥ −∫

∞

𝑦

̃
𝑓
1
(𝑥, 𝑦, 𝑥, 𝑡) 𝑑𝑡

− ∫

∞

𝑦

̃
𝑓
2
(𝑥, 𝑦, 𝑥, 𝑡)

𝜔
2
(𝑧 (𝑥, 𝑡))

𝜔
1
(𝑧 (𝑥, 𝑡))

𝑑𝑡.

(48)

Integrating both sides of the above inequality from 𝑥 to∞,
we obtain

𝑊
1
(𝑧 (∞, 𝑦)) − 𝑊

1
(𝑧 (𝑥, 𝑦))

≥ −∫

∞

𝑥

∫

∞

𝑦

̃
𝑓
1
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡

− ∫

∞

𝑥

∫

∞

𝑦

̃
𝑓
2
(𝑥, 𝑦, 𝑠, 𝑡)

𝜔
2
(𝑧 (𝑠, 𝑡))

𝜔
1
(𝑧 (𝑠, 𝑡))

𝑑𝑠 𝑑𝑡.

(49)

Thus,
𝑊
1
(𝑧 (𝑥, 𝑦)) ≤ 𝑊

1
(𝑟
𝑛
(𝑥, 𝑦))

+ ∫

∞

𝑥

∫

∞

𝑦

̃
𝑓
1
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡

+ ∫

∞

𝑥

∫

∞

𝑦

̃
𝑓
2
(𝑥, 𝑦, 𝑠, 𝑡) 𝜙 (𝑧 (𝑠, 𝑡)) 𝑑𝑠 𝑑𝑡

(50)

for 𝑥 ≤ 𝑥 < ∞ and 𝑦 ≤ 𝑦 < ∞, where 𝜙(𝑢) = 𝜔
2
(𝑢)/𝜔

1
(𝑢),

or equivalently

𝜉 (𝑥, 𝑦) ≤ 𝑊
1
(𝑟
𝑛
(𝑥, 𝑦))

+ ∫

∞

𝑥

∫

∞

𝑦

̃
𝑓
1
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡

+ ∫

∞

𝑥

∫

∞

𝑦

̃
𝑓
2
(𝑥, 𝑦, 𝑠, 𝑡) 𝜙 (𝑊

−1

1
(𝜉 (𝑠, 𝑡))) 𝑑𝑠 𝑑𝑡

≜ 𝑧
1
(𝑥, 𝑦) ,

(51)

where

𝜉 (𝑥, 𝑦) = 𝑊
1
(𝑧 (𝑥, 𝑦)) . (52)

It is easy to check that 𝜉(𝑥, 𝑦) ≤ 𝑧
1
(𝑥, 𝑦), 𝑧

1
(∞, 𝑦) =

𝑊
1
(𝑟
𝑛
(𝑥, 𝑦)), and 𝑧

1
(𝑥, 𝑦) is differentiable, positive, and

nonincreasing on [𝑥,∞) and [𝑦,∞). Since 𝜙(𝑊−1
1
(𝑢)) is

nondecreasing, from assumption (𝐶
2
), we have

𝐷
1
𝑧
1
(𝑥, 𝑦)

𝜙 (𝑊
−1

1
(𝑧
1
(𝑥, 𝑦)))

= −

∫

∞

𝑦

̃
𝑓
1
(𝑥, 𝑦, 𝑥, 𝑡) 𝑑𝑡

𝜙 (𝑊
−1

1
(𝑧
1
(𝑥, 𝑦)))

−

∫

∞

𝑦

̃
𝑓
2
(𝑥, 𝑦, 𝑥, 𝑡) 𝜙 (𝑊

−1

1
(𝜉 (𝑥, 𝑡))) 𝑑𝑡

𝜙 (𝑊
−1

1
(𝑧
1
(𝑥, 𝑦)))

≥ −

∫

∞

𝑦

̃
𝑓
1
(𝑥, 𝑦, 𝑥, 𝑡) 𝑑𝑡

𝜙 [𝑊
−1

1
(𝑊
1
(𝑟
𝑛
(𝑥, 𝑦)) + ∫

∞

𝑥

∫

∞

𝑦

̃
𝑓
1
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡)]

−

∫

∞

𝑦

̃
𝑓
2
(𝑥, 𝑦, 𝑥, 𝑡) 𝜙 (𝑊

−1

1
(𝑧
1
(𝑥, 𝑡))) 𝑑𝑡

𝜙 (𝑊
−1

1
(𝑧
1
(𝑥, 𝑦)))

≥ −

∫

∞

𝑦

̃
𝑓
1
(𝑥, 𝑦, 𝑥, 𝑡) 𝑑𝑡

𝜙 [𝑊
−1

1
(𝑊
1
(𝑟
𝑛
(𝑥, 𝑦)) + ∫

∞

𝑥

∫

∞

𝑦

̃
𝑓
1
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡)]

− ∫

∞

𝑦

̃
𝑓
2
(𝑥, 𝑦, 𝑥, 𝑡) 𝑑𝑡.

(53)

Note that

∫

∞

𝑥

𝐷
1
𝑧
1
(𝑠, 𝑦)

𝜙 (𝑊
−1

1
(𝑧
1
(𝑠, 𝑦)))

𝑑𝑠

= ∫

∞

𝑥

𝐷
1
𝑧
1
(𝑠, 𝑦) 𝜔

1
(𝑊
−1

1
(𝑧
1
(𝑠, 𝑦)))

𝜔
2
(𝑊
−1

1
(𝑧
1
(𝑠, 𝑦)))

𝑑𝑠

= ∫

𝑊
−1

1
(𝑧1(∞,𝑦))

𝑊
−1

1
(𝑧1(𝑥,𝑦))

𝑑𝑢

𝜔
2
(𝑢)
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= 𝑊
2
∘ 𝑊
−1

1
(𝑧
1
(∞, 𝑦)) − 𝑊

2
∘ 𝑊
−1

1
(𝑧
1
(𝑥, 𝑦))

= 𝑊
2
∘ 𝑊
−1

1
(𝑊
1
(𝑟
𝑛
(𝑥, 𝑦))) − 𝑊

2
∘ 𝑊
−1

1
(𝑧
1
(𝑥, 𝑦))

= 𝑊
2
(𝑟
𝑛
(𝑥, 𝑦)) − 𝑊

2
∘ 𝑊
−1

1
(𝑧
1
(𝑥, 𝑦)) .

(54)

Integrating both sides of (53) from 𝑥 to∞, we obtain

𝑊
2
(𝑟
𝑛
(𝑥, 𝑦)) − 𝑊

2
∘ 𝑊
−1

1
(𝑧
1
(𝑥, 𝑦))

= ∫

∞

𝑥

𝐷
1
𝑧
1
(𝑠, 𝑦)

𝜙 (𝑊
−1

1
(𝑧
1
(𝑠, 𝑦)))

𝑑𝑠

≥ −∫

∞

𝑥

∫

∞

𝑦

̃
𝑓
1
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑡

𝜙[𝑊
−1

1
(𝑊
1
(𝑟
𝑛
(𝑥, 𝑦))+∫

∞

𝑠

∫

∞

𝑦

̃
𝑓
1
(𝑥, 𝑦, 𝜏, 𝑡) 𝑑𝜏 𝑑𝑡)]

𝑑𝑠

−∫

∞

𝑥

∫

∞

𝑦

̃
𝑓
2
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡

≥ −𝑊
2
∘ 𝑊
−1

1
[𝑊
1
(𝑟
𝑛
(𝑥, 𝑦)) + ∫

∞

𝑥

∫

∞

𝑦

̃
𝑓
1
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡]

+𝑊
2
(𝑟
𝑛
(𝑥, 𝑦)) − ∫

∞

𝑥

∫

∞

𝑦

̃
𝑓
2
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡.

(55)

Thus,

𝑊
2
∘ 𝑊
−1

1
(𝑧
1
(𝑥, 𝑦))

≤ 𝑊
2
∘ 𝑊
−1

1
[𝑊
1
(𝑟
𝑛
(𝑥, 𝑦)) + ∫

∞

𝑥

∫

∞

𝑦

̃
𝑓
1
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡]

+ ∫

∞

𝑥

∫

∞

𝑦

̃
𝑓
2
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡.

(56)

Hence,

𝑢 (𝑥, 𝑦) ≤ 𝑧 (𝑥, 𝑦) ≤ 𝑊
−1

1
(𝜉 (𝑥, 𝑦)) ≤ 𝑊

−1

1
(𝑧
1
(𝑥, 𝑦))

≤ 𝑊
−1

2
[𝑊
2
∘ 𝑊
−1

1

× (𝑊
1
(𝑟
𝑛
(𝑥, 𝑦))+∫

∞

𝑥

∫

∞

𝑦

̃
𝑓
1
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡)

+∫

∞

𝑥

∫

∞

𝑦

̃
𝑓
2
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡] .

(57)

Since the above inequality is true for any 𝑥 ∈ [𝑥,∞), 𝑦 ∈
[𝑦,∞), we obtain

𝑢 (𝑥, 𝑦) ≤ 𝑊
−1

2
[𝑊
2
∘ 𝑊
−1

1

× (𝑊
1
(𝑟
𝑛
(𝑥, 𝑦))+∫

∞

𝑥

∫

∞

𝑦

̃
𝑓
1
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡)

+∫

∞

𝑥

∫

∞

𝑦

̃
𝑓
2
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡] .

(58)

Replacing 𝑥, 𝑦, and∞ by 𝑥, 𝑦, and 𝑥
𝑛+1

, respectively, yields

𝑢 (𝑥, 𝑦)

≤ 𝑊
−1

2
[𝑊
2
∘ 𝑊
−1

1

× (𝑊
1
(𝑟
𝑛
(𝑥, 𝑦)) + ∫

𝑥𝑛+1

𝑥

∫

𝑦𝑛+1

𝑦

̃
𝑓
1
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡)

+∫

𝑥𝑛+1

𝑥

∫

𝑦𝑛+1

𝑦

̃
𝑓
2
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡] .

(59)

This means that (42) is true for (𝑥, 𝑦) ∈ Ω
𝑛+1,𝑛+1

and 𝑖 = 𝑛 if
we replace 𝑢(𝑥, 𝑦) with 𝑢

𝑛
(𝑥, 𝑦).

Case 2. If (𝑥, 𝑦) ∈ Ω
𝑛,𝑛
= {(𝑥, 𝑦) : 𝑥

𝑛−1
≤ 𝑥 < 𝑥

𝑛
, 𝑦
𝑛−1
≤ 𝑦 <

𝑦
𝑛
}, (8) becomes

𝑢 (𝑥, 𝑦) ≤ 𝑟
𝑛
(𝑥, 𝑦)

+

2

∑

𝑘=1

∫

𝑥𝑛+1

𝑥𝑛

∫

𝑦𝑛+1

𝑦𝑛

𝑓
𝑘
(𝑥, 𝑦, 𝑠, 𝑡) 𝜔

𝑘

× (𝑢
𝑛
(𝜎
𝑘
(𝑠) , 𝜏
𝑘
(𝑡))) 𝑑𝑠 𝑑𝑡

+ 𝛽
𝑛
𝑢
𝑚

𝑛
(𝑥
𝑛
− 0, 𝑦
𝑛
− 0)

+

2

∑

𝑘=1

∫

𝑥𝑛

𝑥

∫

𝑦𝑛

𝑦

𝑓
𝑘
(𝑥, 𝑦, 𝑠, 𝑡) 𝜔

𝑘

× (𝑢 (𝜎
𝑘
(𝑠) , 𝜏
𝑘
(𝑡))) 𝑑𝑠 𝑑𝑡

≤ 𝑟
𝑛−1
(𝑥, 𝑦)

+

2

∑

𝑘=1

∫

𝑥𝑛

𝑥

∫

𝑦𝑛

𝑦

𝑓
𝑘
(𝑥, 𝑦, 𝑠, 𝑡) 𝜔

𝑘

× (𝑢 (𝜎
𝑘
(𝑠) , 𝜏
𝑘
(𝑡))) 𝑑𝑠 𝑑𝑡,

(60)

where the definition of 𝑟
𝑛−1
(𝑥, 𝑦) is given in (43).Note that the

estimate of 𝑢
𝑛
(𝑥, 𝑦) is known. Clearly, (60) is the same as (45)
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if we replace 𝑟
𝑛
(𝑥, 𝑦) and (∞,∞) by 𝑟

𝑛−1
(𝑥, 𝑦) and (𝑥

𝑛
, 𝑦
𝑛
).

Thus, by (59), we have

𝑢 (𝑥, 𝑦)

≤ 𝑊
−1

2
[𝑊
2
∘ 𝑊
−1

1

× (𝑊
1
(𝑟
𝑛−1
(𝑥, 𝑦)) + ∫

𝑥𝑛

𝑥

∫

𝑦𝑛

𝑦

̃
𝑓
1
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡)

+∫

𝑥𝑛

𝑥

∫

𝑦𝑛

𝑦

̃
𝑓
2
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡] .

(61)

This implies that (42) is true for (𝑥, 𝑦) ∈ Ω
𝑛,𝑛

and 𝑖 = 𝑛 − 1 if
we replace 𝑢(𝑥, 𝑦) by 𝑢

𝑛−1
(𝑥, 𝑦).

Case 3. Assume that (42) is true for (𝑥, 𝑦) ∈ Ω
𝑖+1,𝑖+1

=

{(𝑥, 𝑦) : 𝑥
𝑖
≤ 𝑥 < 𝑥

𝑖+1
, 𝑦
𝑖
≤ 𝑦 < 𝑦

𝑖+1
}. Then for (𝑥, 𝑦) ∈

Ω
𝑖,𝑖
= {(𝑥, 𝑦) : 𝑥

𝑖−1
≤ 𝑥 < 𝑥

𝑖
, 𝑦
𝑖−1
≤ 𝑦 < 𝑦

𝑖
}, (8) becomes

𝑢 (𝑥, 𝑦) ≤ 𝑟
𝑛
(𝑥, 𝑦)

+

𝑛

∑

𝑗=𝑖

2

∑

𝑘=1

∫

𝑥𝑖+1

𝑥𝑖

∫

𝑦𝑖+1

𝑦𝑖

𝑓
𝑘
(𝑥, 𝑦, 𝑠, 𝑡) 𝜔

𝑘

× (𝑢
𝑗
(𝜎
𝑘
(𝑠) , 𝜏
𝑘
(𝑡))) 𝑑𝑠 𝑑𝑡

+

𝑛

∑

𝑗=𝑖

𝛽
𝑗
𝑢
𝑚

𝑗
(𝑥
𝑗
− 0, 𝑦
𝑗
− 0)

+

2

∑

𝑘=1

∫

𝑥𝑖

𝑥

∫

𝑦𝑖

𝑦

𝑓
𝑘
(𝑥, 𝑦, 𝑠, 𝑡) 𝜔

𝑘

× (𝑢 (𝜎
𝑘
(𝑠) , 𝜏
𝑘
(𝑡))) 𝑑𝑠 𝑑𝑡

≤ 𝑟
𝑖−1
(𝑥, 𝑦)

+

2

∑

𝑘=1

∫

𝑥𝑖

𝑥

∫

𝑦𝑖

𝑦

𝑓
𝑘
(𝑥, 𝑦, 𝑠, 𝑡) 𝜔

𝑘

× (𝑢 (𝜎
𝑘
(𝑠) , 𝜏
𝑘
(𝑡))) 𝑑𝑠 𝑑𝑡,

(62)

where we use the fact that the estimate of 𝑢(𝑥, 𝑦) is already
known for (𝑥, 𝑦) ∈ Ω

𝑗𝑗
, 𝑗 = 𝑖, . . . , 𝑛. Again, (62) is the same

as (60) if we replace 𝑟
𝑛−1
(𝑥, 𝑦) and (𝑥

𝑛
, 𝑦
𝑛
) by 𝑟
𝑖−1
(𝑥, 𝑦) and

(𝑥
𝑖
, 𝑦
𝑖
). Thus, by (61), we have

𝑢 (𝑥, 𝑦)

≤ 𝑊
−1

2
[𝑊
2
∘ 𝑊
−1

1

× (𝑊
1
(𝑟
𝑖−1
(𝑥, 𝑦)) + ∫

𝑥𝑖

𝑥

∫

𝑦𝑖

𝑦

̃
𝑓
1
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡)

+∫

𝑥𝑖

𝑥

∫

𝑦𝑖

𝑦

̃
𝑓
2
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡] .

(63)

This yields that (42) is true for (𝑥, 𝑦) ∈ Ω
𝑖,𝑖
if we replace

𝑢(𝑥, 𝑦) by 𝑢
𝑖−1
(𝑥, 𝑦). By mathematical induction, we know

that (42) holds for (𝑥, 𝑦) ∈ Ω
𝑖,𝑖
for any nonnegative integer

𝑖. This completes the proof of Theorem 5.

Remark 6. (1) If 𝑎(𝑥, 𝑦) is nonincreasing in each variable
𝑥, 𝑦 ∈ R

+
and we take 𝑓

1
(𝑥, 𝑦, 𝑠, 𝑡) = 𝑏(𝑥, 𝑦)𝑐(𝑠, 𝑡),

𝑓
2
(𝑥, 𝑦, 𝑠, 𝑡) = 0, 𝜎

𝑘
(𝑥) = 𝑥, 𝜏

𝑘
(𝑦) = 𝑦, and 𝑢(𝑥, 𝑦) being

continuous on R2
+
, then (8) reduces to (2) and Theorem 1

becomesTheorem 2.2 in [16].
(2) Zheng [25] investigated (6) which is the special case

of (8). His results are under the assumptions that 𝑎(𝑥, 𝑦) =
𝑐, 𝑓
𝑘
(𝑥, 𝑦, 𝑠, 𝑡) = 𝑓

𝑘
(𝑠, 𝑡), and 𝜔 ∈ ℘. In our results, these

assumptions are avoided.
Consider the inequality

𝜑 (𝑢 (𝑥, 𝑦)) ≤ 𝑎 (𝑥, 𝑦)

+

2

∑

𝑘=1

∫

∞

𝑥

∫

∞

𝑦

𝑓
𝑘
(𝑥, 𝑦, 𝑠, 𝑡) 𝜔

𝑘

× (𝑢 (𝜎
𝑘
(𝑠) , 𝜏
𝑘
(𝑡))) 𝑑𝑠 𝑑𝑡

+ ∑

𝑥<𝑥𝑖<∞,𝑦<𝑦𝑖<∞

𝛽
𝑖
𝜓 (𝑢 (𝑥

𝑖
− 0, 𝑦
𝑖
− 0)) ,

(64)

which looks much more complicated than (8).

Corollary 7. In addition to the assumptions (𝐶
1
)–(𝐶
5
), sup-

pose that𝜓(𝑢) is positive on (0,∞), 𝜑(𝑢) is positive and strictly
increasing on (0,∞), and 𝑢(𝑥, 𝑦) satisfies (64) for a positive
constant 𝑚. If one lets 𝑢

𝑖
(𝑥, 𝑦) = 𝑢(𝑥, 𝑦) for (𝑥, 𝑦) ∈ Ω

𝑖𝑖
, then

the estimate of 𝑢(𝑥, 𝑦) is recursively given by

𝑢
𝑖−1
(𝑥, 𝑦) ≤ 𝜑

−1

{𝑊
−1

2
[𝑊
2
∘ 𝑊
−1

1

× (𝑊
1
(𝑟
𝑖−1
(𝑥, 𝑦))

+∫

𝑥𝑖

𝑥

∫

𝑦𝑖

𝑦

̃
𝑓
1
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡)

+∫

𝑥𝑖

𝑥

∫

𝑦𝑖

𝑦

̃
𝑓
2
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡]} ,

(65)

where𝑊
𝑗
(𝑢) = ∫

𝑢

�̃�𝑗

(𝑑𝑧/𝜔
𝑗
(𝜑
−1

(𝑧))), 𝑟
𝑛
(𝑥, 𝑦), and ̃𝑓

𝑘
(𝑥, 𝑦, 𝑠, 𝑡)

are given in Theorem 5; 𝑟
𝑖−1
(𝑥, 𝑦) is defined as follows:

𝑟
𝑖−1
(𝑥, 𝑦) = 𝑟

𝑛
(𝑥, 𝑦)

+

𝑛

∑

𝑗=𝑖

2

∑

𝑘=1

∫

𝑥𝑗+1

𝑥𝑗

∫

𝑦𝑗+1

𝑦𝑗

𝑓
𝑘
(𝑥, 𝑦, 𝑠, 𝑡) 𝜔

𝑘

× (𝑢
𝑗
(𝑠, 𝑡)) 𝑑𝑠 𝑑𝑡

+

𝑛

∑

𝑗=𝑖

𝛽
𝑗
𝜓 (𝑢
𝑗
(𝑥
𝑗
− 0, 𝑦
𝑗
− 0)) , 𝑖 = 1, 2, . . . , 𝑛,

(66)
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provided that

𝑊
1
(𝑟
𝑖−1
(𝑥, 𝑦)) + ∫

𝑥𝑖

𝑥

∫

𝑦𝑖

𝑦

̃
𝑓
1
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡 ≤ ∫

∞

�̃�1

𝑑𝑧

𝜔
1
(𝑧)

,

𝑊
2
∘ 𝑊
−1

1
[𝑊
1
(𝑟
𝑖−1
(𝑥, 𝑦)) + ∫

𝑥𝑖

𝑥

∫

𝑦𝑖

𝑦

̃
𝑓
1
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡]

+ ∫

𝑥𝑖

𝑥

∫

𝑦𝑖

𝑦

̃
𝑓
2
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡 ≤ ∫

∞

�̃�2

𝑑𝑧

𝜔
2
(𝑧)

.

(67)

The proof is similar to Corollary 3.
If 𝜑(𝑢) = 𝑢𝜆, where 𝜆 > 0 is a constant, we can study the

inequality

𝑢
𝜆

(𝑥, 𝑦) ≤ 𝑎 (𝑥, 𝑦)

+

2

∑

𝑘=1

∫

∞

𝑥

∫

∞

𝑦

𝑓
𝑘
(𝑥, 𝑦, 𝑠, 𝑡)

× 𝜔
𝑘
(𝑢 (𝜎
𝑘
(𝑠) , 𝜏
𝑘
(𝑡))) 𝑑𝑠 𝑑𝑡

+ ∑

𝑥<𝑥𝑖<∞,𝑦<𝑦𝑖<∞

𝛽
𝑖
𝜓 (𝑢 (𝑥

𝑖
− 0, 𝑦
𝑖
− 0)) .

(68)

According to Corollary 7, we have the following result.

Corollary 8. In addition to the assumptions (𝐶
1
)–(𝐶
5
), sup-

pose that 𝜓(𝑢) is positive on (0,∞) and 𝑢(𝑥, 𝑦) satisfies (68)
for a positive constant 𝑚. If one lets 𝑢

𝑖
(𝑥, 𝑦) = 𝑢(𝑥, 𝑦) for

(𝑥, 𝑦) ∈ Ω
𝑖𝑖
, then the estimate of 𝑢(𝑥, 𝑦) is recursively given

by

𝑢
𝑖−1
(𝑥, 𝑦) ≤ {𝑊

−1

2
[𝑊
2
∘ 𝑊
−1

1

× (𝑊
1
(𝑟
𝑖−1
(𝑥, 𝑦))

+∫

𝑥𝑖

𝑥

∫

𝑦𝑖

𝑦

̃
𝑓
1
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡)

+∫

𝑥𝑖

𝑥

∫

𝑦𝑖

𝑦

̃
𝑓
2
(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡]}

1/𝜆

,

(69)

where 𝑊
𝑗
(𝑢) = ∫

𝑢

�̃�𝑗

(𝑑𝑧/𝜔(𝑧
1/𝜆

)), 𝑟
𝑛
(𝑥, 𝑦), 𝑟

𝑖−1
(𝑥, 𝑦), and

̃
𝑓
𝑘
(𝑥, 𝑦, 𝑠, 𝑡) are given in Corollary 7.

3. Applications

Example 9. Consider the following impulsive differential
equation:

𝑑𝑔

𝑑𝑥

= 𝐹 (𝑥, 𝑔) , 𝑥 ̸= 𝑥
𝑖
, (70)

Δ𝑔|
𝑥=𝑥𝑖

= 𝐼
𝑖
(𝑥) , 𝑔 (∞) = 𝜃 ̸= 0, (71)

where 𝑔 : R → R, 𝐹 : R2 → R, 𝐼
𝑖
: R → R and 𝑖 = 1,

2, . . . , 𝑛, 0 < 𝑥
0
< 𝑥
1
< 𝑥
2
< ⋅ ⋅ ⋅ < 𝑥

𝑛
< 𝑥
𝑛+1
= ∞. Here, 𝜃 is

a constant.
Assume that

(𝐴
1
) |𝐹(𝑥, 𝑔)| ≤ ℎ

1
(𝑥)𝑒
|𝑔|

+ ℎ
2
(𝑥)𝑒
2|𝑔| where ℎ

1
and ℎ

2
are

nonnegative, bounded, and continuous on R+;
(𝐴
2
) |𝐼
𝑖
(𝑔)| ≤ 𝛽

𝑖
|𝑔|
𝑚 where 𝛽

𝑖
and 𝑚 are nonnegative

constants.

Theorem 10. Suppose that (𝐴
1
) and (𝐴

2
) hold. If one lets

𝑔
𝑖−1
(𝑥) = 𝑔(𝑥) for 𝑥 ∈ [𝑥

𝑖−1
, 𝑥
𝑖
), 𝑖 = 1, 2, . . . , 𝑛 + 1, then

the solution of (70) has an estimate for 𝑥 ∈ [𝑥
𝑖−1
, 𝑥
𝑖
):





𝑔
𝑖−1
(𝑥)





≤ −

1

2

ln[(𝑒−𝑟𝑖−1(𝑥) − ∫
𝑥𝑖

𝑥

ℎ
1
(𝑠) 𝑑𝑠)

2

− 2∫

𝑥𝑖

𝑥

ℎ
2
(𝑠) 𝑑𝑠] ,

(72)

where 𝑟
𝑛
(𝑥) = |𝜃| and

𝑟
𝑖−1
(𝑥) = 𝑟

𝑛
(𝑥)

+

𝑛

∑

𝑗=𝑖

∫

𝑥𝑗+1

𝑥𝑗

ℎ
1
(𝑠) 𝑒
|𝑔𝑗(𝑠)|

𝑑𝑠

+

𝑛

∑

𝑗=𝑖

∫

𝑥𝑗+1

𝑥𝑗

ℎ
2
(𝑠) 𝑒
2|𝑔𝑗(𝑠)|

𝑑𝑠

+

𝑛

∑

𝑗=𝑖

𝛽
𝑗






𝑔
𝑗
(𝑥
𝑗
− 0)







𝑚

, 𝑖 = 1, 2, . . . , 𝑛,

(𝑒
−𝑟𝑖−1(𝑥)

− 2∫

𝑥𝑖

𝑥

ℎ
1
(𝑠) 𝑑𝑠)

2

− 2∫

𝑥𝑖

𝑥

ℎ
2
(𝑠) 𝑑𝑠 > 0.

(73)

Proof. Integrating (70) from 𝑥 to ∞ and using the initial
conditions (71), we get

𝑔 (𝑥) = 𝜃 − ∫

∞

𝑥

𝐹 (𝑠, 𝑔) 𝑑𝑠 − ∑

𝑥<𝑥𝑖<∞

𝐼
𝑖
(𝑔 (𝑥
𝑖
− 0)) , (74)

which implies that




𝑔 (𝑥)





≤ |𝜃|

+ ∫

∞

𝑥

ℎ
1
(𝑠) 𝑒
|𝑔(𝑠)|

𝑑𝑠 + ∫

∞

𝑥

ℎ
2
(𝑠) 𝑒
2|𝑔(𝑠)|

𝑑𝑠

+ ∑

𝑥<𝑥𝑖<∞

𝛽
𝑖





𝑔 (𝑥
𝑖
− 0)





𝑚

.

(75)

Let

𝑢 (𝑥) =




𝑔 (𝑥)





, 𝑎 (𝑥) = |𝜃| , 𝜎

1
(𝑥) = 𝜎

2
(𝑥) = 𝑥,

𝑓
1
(𝑥, 𝑠) = ℎ

1
(𝑠) , 𝑓

2
(𝑥, 𝑠) = ℎ

2
(𝑠) , 𝜔

1
(𝑢) = 𝑒

𝑢

,

𝜔
2
(𝑢) = 𝑒

2𝑢

.

(76)
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Thus, (75) is the same as (7). It is easy to obtain that for any
positive constants �̃�

1
and �̃�

2

𝑟
𝑛
(𝑥) = |𝜃| ,

̃
𝑓
1
(𝑥, 𝑠) = ℎ

1
(𝑠) ,

̃
𝑓
2
(𝑥, 𝑠) = ℎ

2
(𝑠) ,

𝑊
1
(𝑢) = ∫

𝑢

�̃�1

𝑑𝑧

𝜔
1
(𝑧)

= ∫

𝑢

�̃�1

𝑒
−𝑧

𝑑𝑧 = 𝑒
−�̃�1
− 𝑒
−𝑢

,

𝑊
−1

1
(𝑢) = − ln (𝑒−�̃�1 − 𝑢) ,

𝑊
2
(𝑢) = ∫

𝑢

�̃�2

𝑑𝑧

𝜔
2
(𝑧)

= ∫

𝑢

�̃�2

𝑒
−2𝑧

𝑑𝑧 =

1

2

(𝑒
−2�̃�2

− 𝑒
−2𝑢

) ,

𝑊
−1

2
(𝑢) = −

1

2

ln (𝑒−2�̃�2 − 2𝑢) ,

𝑟
𝑖−1
(𝑥) = 𝑟

𝑛
(𝑥) +

𝑛

∑

𝑗=𝑖

∫

𝑥𝑗+1

𝑥𝑗

ℎ
1
(𝑠) 𝑒
|𝑔𝑗(𝑠)|

𝑑𝑠

+

𝑛

∑

𝑗=𝑖

∫

𝑥𝑗+1

𝑥𝑗

ℎ
2
(𝑠) 𝑒
2|𝑔𝑗(𝑠)|

𝑑𝑠

+

𝑛

∑

𝑗=𝑖

𝛽
𝑗






𝑔
𝑗
(𝑥
𝑗
− 0)







𝑚

.

(77)

Therefore, for any nonnegative 𝑖 and 𝑥 ∈ [𝑥
𝑖−1
, 𝑥
𝑖
)





𝑔
𝑖−1
(𝑥)





≤ −

1

2

ln[(𝑒−𝑟𝑖−1(𝑥) − ∫
𝑥𝑖

𝑥

ℎ
1
(𝑠) 𝑑𝑠)

2

− 2∫

𝑥𝑖

𝑥

ℎ
2
(𝑠) 𝑑𝑠] ,

(78)

provided that

(𝑒
−𝑟𝑖−1(𝑥)

− 2∫

𝑥𝑖

𝑥

ℎ
1
(𝑠) 𝑑𝑠)

2

− 2∫

𝑥𝑖

𝑥

ℎ
2
(𝑠) 𝑑𝑠 > 0. (79)

Example 11. Consider the following partial differential equa-
tion with an impulsive term:

𝜕
2V (𝑥, 𝑦)
𝜕𝑥𝜕𝑦

= 𝐻 (𝑥, 𝑦, V (𝑥, 𝑦)) ,

(𝑥, 𝑦) ∈ Ω
𝑖𝑖
, 𝑥 ̸= 𝑥

𝑖
, 𝑦 ̸= 𝑦

𝑖
,

ΔV|
𝑥=𝑥𝑖 ,𝑦=𝑦𝑖

= 𝐼
𝑖
(V) ,

V (𝑥,∞) = 𝜙
1
(𝑥) , V (∞, 𝑦) = 𝜙

2
(𝑦) ,

𝜙
1
(∞) = 𝜙

2
(∞) ̸= 0,

(80)

where V : R2 → R, 𝐻 : R3 → R, 𝐼
𝑖
: R → R, and 𝑖 =

1, 2, . . . , 𝑛 + 1.
Assume that
(𝐵
1
) |𝐻(𝑥, 𝑦, V(𝑥, 𝑦))| ≤ ℎ

1
(𝑥, 𝑦)𝑒

|V(𝑥,𝑦)|
+ ℎ
2
(𝑥, 𝑦)𝑒

2|V(𝑥,𝑦)|

where ℎ
1
, ℎ
2
are nonnegative, bounded, and contin-

uous on Ω, ℎ
1
(𝑥, 𝑦) = 0, ℎ

2
(𝑥, 𝑦) = 0 for (𝑥, 𝑦) ∈

Ω
𝑖𝑗
, 𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, 2, . . . , 𝑛 + 1;

(𝐵
2
) |𝐼
𝑖
(V)| ≤ 𝛽

𝑖
|V|𝑚 where 𝛽

𝑖
and 𝑚 are nonnegative

constants.

Theorem 12. Suppose that (𝐵
1
) and (𝐵

2
) hold. If one lets

V
𝑖
(𝑥, 𝑦) = V(𝑥, 𝑦) for (𝑥, 𝑦) ∈ Ω

𝑖𝑖
, then the solution of system

(80) has an estimate for (𝑥, 𝑦) ∈ Ω
𝑖𝑖
:





V
𝑖
(𝑥, 𝑦)





≤ −

1

2

ln[(𝑒−𝑟𝑖−1(𝑥,𝑦) − ∫
𝑥𝑖

𝑥

∫

𝑦𝑖

𝑦

ℎ
1
(𝑠, 𝑡) 𝑑𝑠 𝑑𝑡)

2

−2∫

𝑥𝑖

𝑥

∫

𝑦𝑖

𝑦

ℎ
2
(𝑠, 𝑡) 𝑑𝑠 𝑑𝑡] ,

(81)

where

𝑟
𝑛
(𝑥, 𝑦) = sup

𝑥≤𝜉<∞

sup
𝑦≤𝜂<∞





𝜙
1
(𝜉) + 𝜙

2
(𝜂) − 𝜙

1
(∞)





> 0,

𝑟
𝑖−1
(𝑥, 𝑦) = 𝑟

𝑛
(𝑥, 𝑦)

+

𝑛

∑

𝑗=𝑖

∫

𝑥𝑗+1

𝑥𝑗

∫

𝑦𝑗+1

𝑦𝑗

ℎ
1
(𝑠, 𝑡) 𝑒

|V𝑗(𝑠,𝑡)|
𝑑𝑠 𝑑𝑡

+

𝑛

∑

𝑗=𝑖

∫

𝑥𝑗+1

𝑥𝑗

∫

𝑦𝑗+1

𝑦𝑗

ℎ
2
(𝑠, 𝑡) 𝑒

2|V𝑗(𝑠,𝑡)|
𝑑𝑠 𝑑𝑡

+

𝑛

∑

𝑗=𝑖

𝛽
𝑗






V
𝑗
(𝑥
𝑗
− 0, 𝑦
𝑗
− 0)







𝑚

,

(𝑒
−𝑟𝑖−1(𝑥,𝑦)

− ∫

𝑥𝑖

𝑥

∫

𝑦𝑖

𝑦

ℎ
1
(𝑠, 𝑡) 𝑑𝑠 𝑑𝑡)

2

− 2∫

𝑥𝑖

𝑥

∫

𝑦𝑖

𝑦

ℎ
2
(𝑠, 𝑡) 𝑑𝑠 𝑑𝑡 > 0.

(82)

Proof. The solution of (80) with an initial value is given by

V (𝑥, 𝑦) = V (𝑥,∞) + V (∞, 𝑦) − V (∞,∞)

+ ∫

∞

𝑥

∫

∞

𝑦

𝐻(𝑠, 𝑡, V (𝑠, 𝑡)) 𝑑𝑠 𝑑𝑡

+ ∑

𝑥<𝑥𝑖<∞,𝑦<𝑦𝑖<∞

𝐼
𝑖
(V (𝑥
𝑖
− 0, 𝑦
𝑖
− 0))

= 𝜙
1
(𝑥) + 𝜙

2
(𝑦) − 𝜙

1
(∞)

+ ∫

∞

𝑥

∫

∞

𝑦

𝐻(𝑠, 𝑡, V (𝑠, 𝑡)) 𝑑𝑠 𝑑𝑡

+ ∑

𝑥<𝑥𝑖<∞,𝑦<𝑦𝑖<∞

𝐼
𝑖
(V (𝑥
𝑖
− 0, 𝑦
𝑖
− 0)) ,

(83)
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which implies that





V (𝑥, 𝑦)


≤




𝜙
1
(𝑥) + 𝜙

2
(𝑦) − 𝜙

1
(∞)






+ ∫

∞

𝑥

∫

∞

𝑦

ℎ
1
(𝑠, 𝑡) 𝑒

|V(𝑠,𝑡)|
𝑑𝑠 𝑑𝑡

+ ∫

∞

𝑥

∫

∞

𝑦

ℎ
2
(𝑠, 𝑡) 𝑒

2|V(𝑠,𝑡)|
𝑑𝑠 𝑑𝑡

+ ∑

𝑥<𝑥𝑖<∞,𝑦<𝑦𝑖<∞

𝛽
𝑖





V (𝑥
𝑖
− 0, 𝑦
𝑖
− 0)





𝑚

.

(84)

Similar to Theorem 10, we can obtain, for (𝑥, 𝑦) ∈ Ω
𝑖𝑖
,





V
𝑖
(𝑥, 𝑦)





≤ −

1

2

ln[(𝑒−𝑟𝑖−1(𝑥,𝑦) − ∫
𝑥𝑖

𝑥

∫

𝑦𝑖

𝑦

ℎ
1
(𝑠, 𝑡) 𝑑𝑠 𝑑𝑡)

2

−2∫

𝑥𝑖

𝑥

∫

𝑦𝑖

𝑦

ℎ
2
(𝑠, 𝑡) 𝑑𝑠 𝑑𝑡] .

(85)

Remark 13. From Examples 9 and 11, we know that 𝜔
1
(𝑢) =

𝑒
𝑢. Clearly, 𝜔

1
(2𝑢) = 𝑒

2𝑢

≤ 𝜔
1
(2)𝜔
1
(𝑢) = 𝑒

2

𝑒
𝑢 does not hold

for large 𝑢 > 0. Thus, 𝜔
1
(𝑢) = 𝑒

𝑢 does not belong to class ℘ in
[25].Hence, the results in [25] can not be applied to inequality
(75).
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