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Introduction
Our goal is to realise a robot that can intelligently assist

and perform a heavy, boring and time-consuming task in

place of a human. This useful robot needs to have good

hardware (ie sensors, actuators and a processor) and good

software (ie human-like intelligence information

processing). Until now, very few of these have been realised.

In the robotics field, the achievement of the dynamic and

skilful motion of animals has been discussed in many

research works, but it is still a challenge because of multiple

degrees of freedom (DOF) and nonlinearity. ‘Brachiation’

is an interesting form of long-armed apes’ locomotion using

the arms to swing from branch to branch as shown in Figure

1. This motion is the kind of dynamic and dexterous action

that apes perform as a lifework (Simons 1972). Figures 2

and 3 show a white-handed gibbon and its locomotion,

respectively.

The focus of this paper is on behaviour generation

architecture and its modification algorithm to realise a robot

that can perform brachiation. The issue of the brachiation

robot is closely related to dynamical tasks such as

manipulation and underactuated systems (Paul 1981;

Yamafuji et al 1992; Spong 1995; Arai et al 1998).
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Figure 1 Gibbon locomotion.

Figure 2 The white-handed gibbon (Hylobates lar).

Figure 3 Brachiation of the white-handed gibbon.



Applied Bionics and Biomechanics 2003:1(1)58

Kajima et al

Several kinds of brachiation robot have been developed

to research the brachiation controller. In pioneering research,

the dynamics of locomotion were analysed and locomotion

types proposed using a six-link brachiation robot (Fukuda,

Hosokai et al 1991). Following this research was a two-

link brachiation robot, ‘Brachiator II’, shown in Figure 4.

This robot has one actuator at the elbow connecting two

links, each of which has a gripper. Because the gripper

cannot impose torque on the handhold directly, this is an

underactuated mechanical system. A two-link brachiation

robot was developed, and a heuristic method proposed, to

find feasible motions (Fukuda, Saito et al 1991; Saito et al

1993, 1994). A self-scaling reinforcement learning

algorithm was also proposed to achieve the robustness

against some disturbances (Hasegawa et al 1999). As an

analytical approach, a target dynamics method was proposed

to solve the ‘ladder’, ‘swing up’, ‘rope’ and ‘leap’ problems,

where the task was encoded as the output of the target

dynamical system inspired by the pendulum-like motion of

an ape’s brachiation (Nakanishi et al 1998, 2000; Nakanishi

and Fukuda 2000). In those works, a brachiating robot with

a dynamic multibody has not been explored. Considering

the control of the higher degrees of freedom, the third

brachiation robot, ‘Brachiator III’, was then developed (see

Figure 5). Brachiator III consists of 13 links, 12 degrees of

freedom and 14 motors, including two motors for a gripper

control. The dimension and location of the joints are based

on those of a long-armed ape. Hasegawa et al (2000),

proposed an adaptation method that measures the effects of

each local behaviour on the total behaviour and determines

the activation level of each behaviour controller. The

controller can adjust the amplitude of the behaviour

controller. This method is effective for the online learning

of a real robot, because the number of learning iterations

for this method is less than that of other learning algorithms.

However, it is important to adjust the amplitude and timing

of the behaviour controller for realising more flexible

coordination. Hence, the structure of the hierarchical

behaviour controller was improved by adding timing

parameters as well as amplitude.

In this paper, a new concept of the multi-locomotion

robot inspired by an animal and a developed robot ‘Gorilla

Robot II’, which can select the appropriate locomotion type

according to an environment, are first introduced. Second,

we propose an enhanced control method for dynamic motion

control to achieve brachiation by adjusting the activation

level and timing of the local behaviours. Finally, we show

that the developed robot successfully improves two types

of the brachiation (over-hand and side-hand).

Multi-locomotion robot
Many works on humanoid robots have been reported

recently. Most of them focus on the achievement of a single

type of locomotion, such as biped locomotion (Kajita and

Figure 4 Brachiator II.

Figure 5 Brachiator III.

Brachiation

Quadruped LocomotionBiped Locomotion

Figure 6 Concept of the multi-locomotion robot.
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Tani 1996; Huang et al 1999; Kuffner et al 2001; Kanehira

et al 2002). However, anthropoids, including humans, do

various types of locomotion in daily life. In the same way,

a multi-locomotion robot that can perform several types of

locomotion is highly desirable for adaptive functioning in

various situations. Figure 6 shows the concept of the multi-

locomotion robot, which can choose the appropriate

locomotion according to the situation. For example, it can

brachiate across a river, biped walk in narrow space and

quadruped walk in rough terrain. Such a robot is challenging

and attractive.

‘Gorilla Robot II’ was developed as the most advanced

multi-locomotion robot. It was designed to perform

brachiation, biped locomotion and quadruped locomotion

(‘knuckle walking’ using two arms and two feet). Figures 7

and 8 show an overview of Gorilla Robot II and its structure,

respectively. Figure 9 shows the control system. This robot

is about 1 m high, weighs 20 kg, and consists of 19 links

and 20 AC motors. The real-time operating system VxWorks

(Wind River Systems Inc, Alameda, CA, USA) runs on a

Pentium® III PC for processing sensory data and generating

behaviours. Each arm has a torque sensor to recognise

whether or not the robot catches a target branch during

brachiation. Also, each leg has a torque sensor to measure

the ground reaction force during biped and quadruped

locomotion.

Motion learning
The focus of this research is on behaviour generation

architecture and its adaptation algorithm to obtain dexterous

animal-like motion. The model-based approach is such that

the target dynamics can be one of the feasible approaches

for design of the motion controller, but there are two major

problems. The first is a modelling problem of the robot’s

dynamics: it is difficult to acquire a precise dynamical model

of the multibody robot; as a result, much time is spent

modelling and adjusting its parameters. The second is a

design problem of the target dynamics: the target motion

design of some representative parts in a multibody robot

becomes complex, because the motion is constrained by a

robot mechanism and its kinematics. Conversely, there have

been some learning approaches introduced for motion

control such as evolutionary algorithms, reinforcement

learning algorithms and backpropagation methods for neural

networks. These approaches can generate a robot controller

from an evaluation index of the robot motion through an

iterative searching process, but they have two limitations:

learning time and controller size. They take many iteration

processes for controller design and apply only to simple

robot dynamics with a few DOF. Therefore, an online

learning algorithm was proposed for the hierarchical

behaviour controller, so that a multibody robot can adjust

dynamically dexterous motion to the desired motion based

only on some evaluation indices. The hierarchical behaviour

controller with two layers is designed based on the

behaviour-based approach. A control output for the

dexterous motion is generated on the upper layer

Figure 7 Gorilla Robot II.

joint20

joint19

joint18

joint17

joint16

joint15

joint14

joint13

joint12

joint11

joint10

joint9

joint8

joint7 joint6

joint5

joint4

joint3

joint2

joint1

Figure 8 Structure of Gorilla Robot II.

Figure 9 Control system of Gorilla Robot II.
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coordinating some simple behaviours on the lower layer.

The structure is explained in the next subsection.

Structure of hierarchical behaviour
controller
We discuss brachiation as an objective task of Gorilla Robot

II. The hierarchical behaviour controller is designed based

on a behaviour-based approach, since the robot has multiple

degrees of freedom and the objective task is complex. In

the designing process, the brachiation behaviour is firstly

divided into two actions: (1) ‘preliminary swing’, which

stores sufficient energy prior to locomotion; and (2)

‘locomotion’, which is movement towards the next branch.

These actions are composed of several local behaviours.

‘Preliminary swing’ consists of two behaviour controllers:

‘leg swing’ and ‘body rotation 1’. ‘Leg swing’ is the up and

down swinging motion of the legs. This behaviour controller

drives all of the joints in both legs. ‘Body rotation 1’ is the

rotational motion of the body to take suitable posture for

the swing action, especially in the control of the direction

of movement, controlling the yaw axis joints of both arms.

Additionally, ‘locomotion’ consists of four behaviour

controllers: ‘leg stretch’, ‘body rotation 2’, ‘body lift’ and

‘arm reaching’. ‘Leg stretch’ is the motion of extending both

legs. This behaviour controller, like ‘leg swing’, drives the

leg joints. ‘Body rotation 2’ is the rotational motion of the

body controlling the yaw axis joint of the supporting arm.

‘Body lift’ is a lift-up motion of the supporting arm,

controlling shoulder and elbow joints of the supporting arm.

‘Arm reaching’ is the swinging motion of the free arm to

get at the target branch and grasp it.

The behaviour controllers are feedforward controllers,

which output the desired trajectories expressed by the cubic

spline function to the feedback controllers. The feedback

controller is a proportional-derivative (PD) controller and

makes a corresponding actuator follow the desired trajectory.

The video tracking system measures representative points

to evaluate the performance of the robot. The evaluator then

adjusts the desired trajectories according to a learning

algorithm. The hierarchical behaviour controller for Gorilla

Robot II is shown in Figure 10.

Desired trajectory adjustment
Firstly, we design the trajectory ( )m

ky t and timing parameter
m
kt as a primitive input of the behaviour coordinator m based

on a target motion. The behaviour coordinator m outputs

the coefficients m
kr  and m

kt  to the behaviour controller k. In

the lower layer, the behaviour controller k outputs the desired

trajectory ( )m
iyd t modified by the coefficients m

kr and m
kt to

the actuator i. The desired trajectory ( )m
iyd t for the actuator

i included in the behaviour controller k is rescaled by two

coefficients m
kr and m

kt from the behaviour coordinator m as

follows:

( ) ( ) ( )( )m m m m
i k k kyd t r y t b t= − (1)

( )
( ) ( )1 1

1

m m m m
st k st km m

k k m m
st st

t t t t
y t y t

t t

+ +

+

+ +
= (2)

Figure 10 Hierarchical behaviour controller for Gorilla Robot II.
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where ( )m
ky t is the primitive trajectory from the behaviour

coordinator m to the behaviour controller k, ( )m
ky t is the

trajectory modified by the timing m
kt , ( )m

kb t is the base line

connecting an initial point with an end point of ( )m
ky t , and

m
stt is the primitive timing parameter of the behaviour

coordinator m that represents when it gets the motion started.

These modifications are shown in Figure 11. If multiple

behaviour coordinators indicate coefficients to one

behaviour controller, multiplication of these values becomes

a new one as follows:

k i
i I

r r
∈

= ∏ (4)

where I is a group that indicates coefficients to the behaviour

controller k. Finally, the feedback controller on the bottom

layer of the hierarchical behaviour controller makes the

corresponding actuator follow the desired trajectory.

Learning algorithm for behaviour
coordinator
Utilisation of the hierarchical behaviour controller makes

the controller designing process easier and more

comprehensive. However, in this approach there is a critical

issue of how to adjust the behaviour coordinator in case the

objective behaviour or robot parameters are changed. The

Newton-Raphson method is used to adjust the behaviour

coordinator for these issues. This method measures the

effects of the local behaviour controllers on the global

behaviour, and changes the coefficients for them by trials.

The global behaviour could be adjustable to some extent

only by adjusting the activation coefficients. The relation

between the change of the activation coefficient and the

resultant behaviour is strongly nonlinear. However, we

assume that the relations could be expressed as the

multiplication of the degree of contributions and activation

coefficients only in limited neighbourhood of the current

state. Therefore, the performance vector p at step s, which

has elements as indices of the evaluation for the total

behaviour, is written by:

p(s) = W(s) · r(s) (5)

where W is a gradient matrix, and r is an activation vector.

The error vector e from the desired performance p* and

the current performance vector p are written by:

e(s) = p* – p(s)

= W(s) · r*(s) – W(s) · r(s)

= W(s) · (r*(s) – r(s)) (6)

This calculated activation coefficient r* is not the desired

one, because a linearised equation is adopted for the

nonlinear system. Therefore, the target activation vectors

are searched iteratively by using the Newton-Raphson

method. The procedure is as follows:

Step 1: Evaluate total behaviour performance p(s) by means

of tuning with the activation vector r(s).

Step 2: Explore the performance p′(s), p′′(s) and pn–1(s)

around neighbourhood areas, r′(s), r′′(s) and rn–1(s).

These r(s) are linearly independent.

Step 3: Update gradient matrix W(s) using equation (9),

and calculate new activation coefficients using equation

(10) and equation (11).

( ) ( ) ( ) ( ) ( )( )1, , ,…, nR s s s s s−′ ′′= r r r r (7)

( ) ( ) ( ) ( ) ( )( )1, , , , nP s s s s s−′= ′′ …p p p p (8)

( ) ( ) ( )1s s s−= ⋅W P R (9)

( ) ( ) ( )1s s s−∆ = ⋅Wr e (10)

( ) ( ) ( )1s s s+ = + ∆r r r (11)

Step 4: Evaluate performance vector p(s + 1) at next step s

with new activation vector r (s). If the behaviour is

insufficient, go back to Step 2.

Experiments
In this section, the learning algorithm explained above is

applied to the control problem of three-dimensional

brachiation using Gorilla Robot II.

Generally, apes do ‘slow brachiation’, moving at almost

the same speed as a human walks. However, when excited

or frightened, apes can plunge through the forest canopy at

astonishing speeds, sometimes covering 30 feet (~ 9.5 m)
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Figure 11 Adaptation of desired trajectory.
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or more in a single jump without a break in ‘stride’ (‘fast

brachiation’, ricocheting) (Eimerl and DeVore 1966). In this

section, we adapt the proposed learning algorithm to two

types of slow brachiation: over-hand brachiation and side-

hand brachiation. Figure 12 shows the coordinate system.

Motion measurement using real-time
tracking system
A vision sensor is very useful to measure a dynamical

motion without constant constraints, because the constrained

points are switched in accordance with the body posture.

During brachiation, it is almost impossible to measure the

body position, eg the tip of the free arm or the centre of

gravity of the robot, because the slip angle at the catching

grip is not directly measurable using a potentiometer or

rotary encoder. We therefore use the real-time tracking

system Quick MAG System IV, which measures the three-

dimensional locations of the eight points at 60 Hz sampling

frequency, using two CCD cameras and coloured markers.

The seven measuring positions shown in Figure 13 are

chosen to approximately calculate the centre of gravity of

the robot based on the following assumptions: (1) elbow of

the grasping arm is kept straight; (2) both legs are controlled

synchronously; and (3) two joints on the shoulder are

adjoining and attached at almost the same position.

Experiment setting
The adaptation algorithm was applied to adjust loco-

motion, which indicates six activation coefficients

( )2 2 2 2 2 2
3 4 5 6 3 4, , , , ,r r r r t t to the corresponding four local behav-

iour controllers: leg stretch, body rotation 2, body lift and

arm reaching. To apply the adaptation algorithm to these six

activation coefficients, six performance indices were chosen

to represent performance of the total behaviour as follows:

Target bar
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Marker

Figure 13 Measuring points.
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Target bar

Ladder

Figure 12  Coordinate system.

Figure 14 Elements of the performance vector p(s).
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Figure 15 Transitions of evaluation values (over-hand brachiation).
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Figure 16 Stroboscopic photography of over-hand brachiation.

• minimum distance d
hand

 in the yz plane;

• minimum distance x
hand

 in the x-axis between a free hand

and a target point;

• minimum distance g
cog

 between centre of gravity and a

target branch;

• tilt angle θ
body

 from vertical direction at a grasping

moment;

• rotating angle θ
shld

 from moving direction at the grasping

moment;

• deviated position of the neck x
neck

 in the x direction from

a target point.

In this case, the performance vector p(s) and the activation

coefficients r(s) at step s are therefore expressed by:

( ) ( ) ( ) ( ) ( ) ( )( hand hand cog body shld, , , , ,s d s x s g s s s= θ θp

( ))T

neckx s (12)

( ) ( )2 2 2 2 2 2
3 4 5 6 3 4, , , , ,s r r r r t t=r (13)

To sustain linear independence, small perturbations α were

added to the activation coefficients r′(s), r′′(s) and rn–1(s) as

follows:

( ) ( )2 2 2 2 2 2
3 4 5 6 3 4, , , , ,s r r r r t t′ = + αr (14)

( ) ( )2 2 2 2 2 2
3 4 5 6 3 4, , , , ,s r r r r t t′′ = + αr (15)

( ) ( )2 2 2 2 2 2
3 4 5 6 3 4, , , , ,s r r r r t t′′′ = + αr (16)

( ) ( )2 2 2 2 2 2
3 4 5 6 3 4, , , , ,s r r r r t t′′′′ = + αr (17)

( ) ( )2 2 2 2 2 2
3 4 5 6 3 4, , , , ,s r r r r t t′′′′′ = + αr (18)

For elements of the performance vector, see Figure 14.

Over-hand brachiation
Six local behaviours for preliminary swing and locomotion

were initially designed. The behaviour coordinator for

preliminary swing is intuitively designed based on the

parametric excitation. The learning algorithm was applied
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Side-hand brachiation
To achieve side-hand brachiation, two local behaviours,

body rotation 2 and arm reaching, were redesigned. The

learning algorithm was then applied to obtain the behaviour

coordinator for locomotion as well as over-hand brachiation.

Through four trials, the minimum distance x
hand

 and θ
body

 is

especially decreasing. At the fourth step, the robot grasped

the target branch. The target motion is generated in four

steps by the same learning algorithm. Transitions of each

element in error vector e and a trajectory of the free hand

are shown in Figures 18 and 19, respectively. Figure 20

shows the achieved side-hand brachiation. It takes a little

longer, 1.53 s, for this locomotion.

Continuous locomotion
Now we consider achievement of continuous locomotion

without suspending. Continuous locomotion generally

consists of a periodic repetition of one cycle motion,

although there is a difference between the start state of

preliminary swing and secondary swing with regard to

brachiation: with the former, the legs are just under the body;

but with the latter, the legs are in front of the body, because

they are swung up during the first locomotion. Taking this

difference into consideration, it was decided that the latter

half of preliminary swing be used as secondary swing. A

controller was made that can periodically repeat side-hand

brachiation. Gorilla Robot II could achieve dynamic

continuous locomotion moving twice without suspending.

Figure 21 shows the continuous locomotion achieved.

Figure 17 Trajectory of free hand during over-hand brachiation.
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Figure 19 Trajectory of free hand during side-hand brachiation.
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to obtain the behaviour coordinator for locomotion. As an

initial setting, the behaviour coordinator outputs one as an

activation level to each local behaviour. In this experiment,

α = 0.05. In each step, the robot makes six trials with

different activation coefficients. Through the learning

process, each performance error goes to zero as shown in

Figure 15, which shows transitions of each element in error

vector e. Over-hand brachiation is achieved at the second

step. In each step the robot makes six trials with different

activation coefficients for local search. Figure 16 shows the

achieved over-hand brachiation, and Figure 17 shows a

trajectory of the free hand. The locomotion time from one

branch to another is 1.20 s.

Figure 18 Transitions of evaluation values (side-hand brachiation).
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(a) t=0.0[sec] (b) t=0.7[sec] (c) t=1.4[sec]

(d) t=2.1[sec] (e) t=2.9[sec] (f) t=3.6[sec]

Figure 20 Stroboscopic photography of side-hand brachiation.

(a) t=0.0[sec] (b) t=0.8[sec] (c) t=1.7[sec]

(d) t=2.9[sec] (e) t=3.6[sec] (f) t=4.5[sec]

(g) t=6.8[sec] (h) t=7.2[sec] (i) t=7.5[sec]

Figure 21 Stroboscopic photography of continuous locomotion.
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Conclusions
An unsupervised learning algorithm such as reinforcement

learning has generally poor ability to find optimal solutions;

therefore, task decomposition or hierarchical structure are

required to obtain a controller for a robot with multiple

degrees of freedom. In this paper a solution for a robot to

achieve such dexterous behaviour was explained.

The concept of a multi-locomotion robot that can select

appropriate locomotion types was proposed, and Gorilla

Robot II was developed as a prototype. We focused on

brachiation in several locomotion types. We showed the

algorithm for generation of dexterous behaviour, which

includes the architecture for behaviour coordination and

adjustment. The learning algorithm was improved so that

the timing of each behaviour as well as their activation levels

could be properly adjusted. The learning algorithm was

applied to achieve two types of brachiation, over-hand and

side-hand, by Gorilla Robot II. Finally, a controller was

made that can periodically repeat side-hand brachiation;

Gorilla Robot II was able to achieve continuous locomotion

moving twice without suspending.
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