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ABSTRACT 

The increasing abundance of industries, together with the high human population density has 

prompted the pollution of the hydrosphere with organic and inorganic matter at a very high rate. 

To triumph over the problems caused by water pollution, and to comply with strict 

environmental regulations, researchers have been focusing on the development of new or 

improvement of existing water purification processes. One such process is known as Advanced 

Oxidation Processes (AOPs), and is based on using light quanta in conjunction with a 

photocatalyst (TiO2, ZnO, CdS, etc.) in order to degrade organic pollutants in an aqueous 

medium. An important factor in AOPs is the type of the photocatalyst being used as it controls 

the rate at which dyes are degraded when exposed to light quanta with energy higher or equals to 

its band gap energy. The photocatalytic activity of a photocatalyst is controlled by its properties 

such as surface area, crystallinity and morphology. These properties can be controlled by varying 

reaction parameters such as reaction time, type of precursor, and pH used when it is being 

synthesized. Furthermore, the photocatalytic activity also depends on operational parameters 

under which the photocatalyst is used. The operational parameters include factors such as the 

photocatalyst concentration, concentration of organic compounds in solution, pH at which the 

dye exists in nature, and light intensity. Zinc oxide nanoparticles were synthesized was 

synthesized using microwave assisted heating method. Microwave assisted heating method was 

chosen over conventional colloidal method due to its ability to heat reaction mixtures 

homogeneously and very short reaction times. The synthesis of ZnO nanoparticles using a co-

precipitation method between Zn(CH3COO)•2H2O and NH3/NaOH via microwave assisted 

heating and their photocatalytic activity investigated. The crystalline structure, morphology and 

optical properties of as-synthesized ZnO were characterized by Powder X-ray diffraction 

(PXRD), Transmission Electron Microscopy (TEM) Scanning Electron Microscopy (SEM) and 

Ultra-violet Visible (UV-Vis) and Photoluminescence Spectrophotometer. ZnO was first 

synthesized using cetyltrimethylammonium bromide (CTAB) as capping agent and ammonia 

(NH3) as precipitating agent in order to assess its photocatalytic activity in the degradation of 

Rhodamine B. Rhodamine B was used as a model dye as it is frequently used in industry. Rod 

like ZnO nanoparticles were produced with an average length of 608 nm and a width of 205 nm.  
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The operational parameters to be used during the course of the research were determined by 

performing photocatalyst concentration, dye concentration, light intensity, and pH studies. The 

extent of direct hydrolysis of the Rhodamine B dye under UV light without the photocatalyst was 

first measured to eliminate the possible contribution from the undesired variables to the overall 

efficiency. It was observed that using only light without a photocatalyst or vice versa could not 

degrade the dye, a combination of the two was needed for dye degradation. The ZnO 

photocatalyst was found to efficiently degrade the Rhodamine B dye at photocatalyst 

concentration of 160 ppm, light intensity of 210 W and at pH 8.  

Morphological diversity was achieved by varying reaction parameters such as pH of the 

precursor solution and changing the type of zinc metal salts. Varying the pH changed the growth 

nature of ZnO forming pseudo-spherical nanoparticles at pH 7, bullet-like nanoparticles at pH 10 

and rod-like nanoparticles at high pH of 14. The photocatalytic degradation experiments revealed 

that ZnO nanoparticles with different morphologies degraded Rhodamine B at different rates. 

The pseudo-spherical, bullet-, and rod-like nanoparticles degraded the dye at 150, 180, and 210 

min, respectively. The difference in the rate of degradation was attributed to surface area 

differences and proportion of exposed polar facets (i.e. [0001], [000-1]) on the surface of the 

different morphologies.  

Different sizes of the ZnO nanoparticles were prepared by varying the reaction time length, with 

short reaction time producing smaller particles than the longer reaction time. The photocatalytic 

activity of the nanoparticles was examined for the photocatalytic degradation of Rhodamine B as 

the test dye in aqueous solution under solar irradiation. The size of the nanoparticles was found 

to be highly dependent on the reaction time. Particle size influenced the photocatalytic activity 

with the smaller sized nanoparticles being more efficient in degrading Rhodamine B than the 

larger nanoparticles. The reason for the high catalytic activity was attributed to higher surface 

area. The as-synthesized ZnO photocatalyst showed good photocatalytic stability and can be 

reused four times with only gradual loss of activity. Thus, it is an efficient photocatalytic 

material for degrading contaminated coloured wastewater for reuse in textile industries under 

mild conditions. 
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The syntheses of ZnO nanoparticles using different precursors Zn(NO3)2•6H2O, 

Zn(CH3COO)2•2H2O, ZnCl2, and ZnSO4.H2O, resulted in different structural, optical and 

photocatalytic activity. The difference in the properties of the nanoparticles synthesized in this 

study was attributed to the fact that the counter anions (i.e. NO3
-
, Cl

-
, SO4

2-
, and CH3COO

-
) in 

the zinc metal salts are capable of coordinating to the crystal planes of ZnO differently. The 

different coordinating abilities of the counter anions resulted in dissimilar rates of growth and 

different morphologies. The BET surface area measurements were found to be 13.25, 12.34 

12.02, and 1.24 m
2
g

-1
 for the NO3

-
, CH3COO

-
, Cl

-
, and SO4

2-
 counter anions, respectively. The 

difference in surface area indicated that the binding abilities of the counter anions to the 

decreased in the order NO3
- 
> CH3COO

- 
> SO4

2- 
> Cl

-
, with the NO3

-
 anion binding more strongly 

to the crystal planes (i.e. [0001] and [000-1]) of ZnO and hence hindering rapid growth of the 

nanoparticles. Photocatalytic degradation studies indicated that the nanoparticles with the highest 

surface area were more active than those with lower surface area.   
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CHAPTER 1: Synopsis 

1.1 Brief elucidation of the dissertation 

Outlined in chapter 1 is a brief description of what each chapter in the dissertation entails. It is 

also composed of the problem statement, motivation, aims and objectives of the study.  Chapter 2 

draws attention to the general background on the nature of water pollution from the textile 

industry and the various ways that are used to remediate polluted natural water systems. Focus 

on Advanced Oxidation Processes (AOPs) as a promising method for water remediation is 

elucidated. The synthesis of ZnO nanoparticles as a potential photocatalyst in AOPs is 

demonstrated. The effects of various reaction parameters on the optical and structural properties 

of ZnO are also explained.  

The focal point of the third chapter is the synthesis, characterization and photocatalytic activity 

of ZnO nanoparticles prepared using a simple microwave heating method. In this chapter, the 

ZnO nanoparticles are used to determine the operational parameters (e.g. pH, photocatalyst 

loading, light intensity) to be used in the photocatalytic degradation of Rhodamine B throughout 

the course of the study.  

The fourth chapter outlines the synthesis and characterization of various morphologies of ZnO 

by varying the pH of the precursor solution. The optical and structural properties resulting as a 

result of varying pH are looked into. Furthermore, the effects that the different morphologies 

have on the rate of degradation of Rhodamine B are discussed. 

The fifth chapter looks at how the most efficient ZnO morphology (i.e. pseudo-spherical 

nanoparticles) in degrading Rhodamine B as reported in chapter four, can be modified in order to 

produce a more efficient ZnO photocatalyst. This was done by varying the reaction time used in 

microwave assisted heating. The effect of reaction time on the size, morphology and 

photocatalytic activity of ZnO nanoparticles is discussed.   

The sixth chapter focuses the synthesis of ZnO nanoparticles using various zinc metal salts using 

the method used in chapter five. The effects that varying the zinc metal salts has on the size, 
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morphology and photocatalytic activity of ZnO in the degradation of Rhodamine B are 

discussed.    

The seventh chapter outlines the general conclusions on this dissertation and provides 

recommendations for future work. 

 

1.2 Problem statement 

The water levels in natural systems are currently at a record low due to the low frequency of 

heavy rainfall in the country. Furthermore, the majority of water that is available is heavily 

polluted to such an extent that it cannot be used for farming or drinking [1]. The release of 

coloured dyes by the textile industry is one of the main contributors to water pollution [1-2]. This 

nature of pollution is characterized by coloured water which harms aquatic life and humans that 

utilize it as a basic need [3]. The chemical break down of dyes in solution is the cause of the fatal 

effects associated with coloured waste water [4]. For example, nitro and azo dyes are known to 

be reduced in aquatic sediment bodies producing amines that are carcinogenic. Malachite green 

dye has also been reported to be carcinogenic and genotoxic agents that affect both the 

reproductive and immune system [4]. A wide variety of dyes have been identified as having fatal 

effect, as such, strict environmental protection laws have been set in place which forces 

industries to come up with remediation methods to deal with water pollution [4-5]. One method 

that has been developed is Advanced Oxidation Processes (AOPs) and is based on using sunlight 

in conjunction with a photocatalyst such as ZnO in order to degrade dyes in aqueous solution [6-

8]. This method has shown positive results when used to remove coloured dyes in natural water 

and improving it through the synthesis of highly active photocatalysts is important. 
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1.3 Project motivation 

Metal oxides such as ZnO and TiO2 possess admirable electronic, optical and catalytic properties 

compared to their sulfide counter parts. Their photocatalytic activity can be varied by 

manipulating their size and shape. The ability to produce these types of materials using a simple 

and fast microwave assisted method provides an opportunity to upscale the synthesis for 

application in real life applications. 

 

1.4 Project aims and motivations 

The aim of the project was to synthesize and characterize ZnO nanoparticles and use them in the 

photocatalytic degradation of Rhodamine B dye. The above mentioned aims were fulfilled by 

identifying the following objectives.    

 Synthesis and characterization of different sizes and morphologies of ZnO nanoparticles 

by varying reaction parameters using microwave assisted heating.   

 

 Use the ZnO nanoparticles as photocatalysts in the phocatalytic degradation of the 

Rhodamine B dye.  
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CHAPTER 2: Literature Review 

2.1 General Introduction 

The textile industry’s primary concern is the manufacturing and design of cloth, yarn, clothing 

and their distribution [1]. Over the past decades, it has been established that there is an increased 

demand in the production of coloured clothing by the textile industry, mainly due to the forever 

increasing human population. As a result of this, large amount of coloured wastewater (dyes) are 

generated when each piece of clothing is given its desired colour [2]. The problem arises when 

the coloured wastewater is not managed properly and ends up in rivers, lakes or any other water 

sources around the area of discharge. The inability of mother nature to biodegrade such dyes 

means that they are able to persist in moving water, surviving long distances from the area in 

which they were originally introduced into the environment [3, 4]. Living organisms that are 

essential for a balanced ecosystem in rivers are affected by the coloured water through the 

destabilization of photosynthesis in water. In the presence of dyes in aqueous solution, the ability 

of sunlight to pass through the water is retarded, and this therefore forecloses the growth of 

aquatic life [5-7]. Such water can also be detrimental to human beings who are dependent on 

using the rivers where the dyes are discharged as they are known to be mutagenic and 

carcinogenic to humans [8-10]. This has therefore turned environmental pollution prevention into 

one of the main areas of research because of the fatal effects that coloured wastewater imparts on 

both wild and human life. The limited progress in dealing with this kind of water pollution has 

been due to the inability of the current methods to destroy the dyes entirely, without converting 

them into other forms that could potentially be more toxic [11, 12]. Some of the methods that 

have been previously used to remove dyes from water include air stripping, adsorption, 

Ozonation and precipitation [13]. Air stripping is used mainly in dealing with organic 

compounds that are volatile (Volatile Organic Compounds).The liquid organic compound of 

interest is allowed to come into contact with a gaseous phase such that it is transferred into 

gaseous phase and evaporates into the environment [14]. The removal of volatile organic 

compounds in this way results in deadly volatiles being released into the atmosphere [14]. 
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Adsorption is based on using an adsorbent (e.g. activated carbon) which attracts the dye 

molecules to its surface thus removing the colour from an aqueous medium [15]. Adsorption is 

therefore advantageous in removal the colour but it does not destroy the dyes and hence further 

treatment is required [16]. The Ozonation method for water treatment uses an unstable gas 

known as ozone. Ozone is made up of three oxygen atoms that are highly unstable and capable of 

spontaneously decomposing. Upon decomposition, it dissociates into oxygen and a free radical 

oxygen form. The oxygen radical is very short lived and is highly reactive. It is these highly 

reactive radicals that are vital in the oxidation of dyes in aqueous medium [17]. Some of the 

advantage of using ozone is the fact that it has strong oxidizing power that results in short 

reaction time when it is being used. Treatment processes using ozone does not add chemicals to 

water, making it a moderately environmental friendly method to use. As most industrial methods, 

using ozone comes with the disadvantages of requiring high equipment and operation costs. 

There is also high toxicity issues associated with ozone generation. The biggest fall back of using 

ozone is that it is less soluble in water and hence requires special mixing techniques in order to 

be used efficiently [17, 18]. To summarize, the previously used methods in water purification 

have limitations in efficiently dealing with the coloured waste water from industry. This has 

therefore led to the realization of semiconductor photocatalysis as a promising means to reduce 

the extent of water pollution caused by dyes from the textile industry [19-21]. Photocatalysis has 

allowed for the dyes to be degraded completely without producing harmful by products which 

need to be treated further [21]. 
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2.2 Dyes and Pigments 

Colorants are defined as organic/inorganic compounds that when deposited onto the outermost 

surface of a particular material imparts colour through a process that changes, at least to a certain 

extent, the structure of the material/substrate requiring the colour [22]. The two types of 

colorants produced today are dyes and pigments. Pigments exist in both organic and inorganic 

form while dyes exist only as water-soluble or water insoluble organic compounds [22]. The 

major difference between the two is that colorants require a binder in order for them to form a 

coating on the surface of the substrate. The interaction between the pigments and substrate does 

not alter the crystal structure of the substrate [22]. Dyes on the other hand result to the 

destruction of the crystal structure of the substrate upon interaction. The molecules of the dye 

become irreversibly binded to the material in which they are used [22]. 

Dyes (Figure 2.1) have a very strong affinity to synthetic and natural materials due to their high 

colouring affinity and this makes them very important in the paper, food, photographic and most 

importantly in the textile industry [23]. The ability of a dye to impact colour is dependent on the 

affinity between the substrate and the dye and hence the development of a dye is often done with 

a specific substrate in mind. The main focus of the textile industry is primarily the production 

and colouring of raw fabrics. Depending on the type of interaction between the fabric and the 

dye, it can either be reversible or an irreversible kind of interaction. Hydrogen, covalent and 

ionic bonding is responsible for irreversible interaction while van der Waals forces dominate in 

reversible interactions [24]. The commonly used criterion to classify dyes is based mainly on the 

chemical structure, with characteristics such as trade name, intended use and colour being the 

rarely used criterions in the classification scheme [25].  

The classification of dyes using chemical structure is done by looking at the functional groups 

which are responsible for the colour. These particular functional groups are known as 

chromophores and auxochromes [25]. The absorption of a certain wavelength of light by the 

chromophores results in the colour. The auxochromes on the other hand augment the 

chromophore’s colour and enhance the dye molecule’s ability to dissolve in water [25, 26]. The 

structural variety that exists between dyes allows them to also be classified according to 

composition. This is done by grouping them based on how soluble they are in various solvents. 
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Dyes can be basic, acidic, mordant, reactive, direct, and be metal based dyes [26, 27]. Currently, 

there are more than a hundred thousand dyes available commercially in the market [27]. 

 

 

 

 

 

 

Figure 2.1: Various types of dyes [28]. 

Basic dyes (Figure 2.2(a)) such as malachite green are soluble in water and their coloured cations 

are responsible for the production of colour in an aqueous solution [29]. They mostly exist as 

amino and substituted amino compounds that are soluble in an acidic medium. They are made 

insoluble in the case where they are used under more basic conditions [29]. Their existence as 

cations allows them to attach to the substrate through ionic bonding with anionic groups [29]. 

Acidic dyes (Figure 2.2(b)) are soluble in water and their colour comes from their anions. 

 

Figure 2.2: Crystal structure of Malachite green and Acid Yellow 36. 

They contain one or more sulfonic acid substituents or other acidic group in their structure. The 

use of dyes has increased tremendously over the years and this has resulted to environmental 

issues [29]. When the dyes are being applied to fabrics, they are commonly dissolved in water. 

The water they are dissolved in has to be discarded when the fabric have been coloured. An issue 

arise when the dyes are not disposed of properly and are allowed to enter natural water sources 

(a) (b)

Tartrazine

Fast Green 

FCF

Allura Red AC

Brilliant Blue FCF
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such as rivers and lakes [30]. The chemical composition of dyes is made up of a variety of 

organic substituents that can be toxic. In addition to being toxic, aqueous dye solutions contain 

chemicals that can be teratogenic, carcinogenic and mutagenic to various living organisms [30]. 

Dyes such as malachite green contain amines which can be reduced in sediments resulting to 

carcinogenic amines [30]. There is evidence that malachite green doesn’t only affect the 

reproductive and immune system but it is also a genotoxic agent [31].   

A wide range of dyes (Rhodamine B, Methyl Violet, Basic Green 4 etc.) are used for the sole 

purpose of giving each clothing material its desired colour but pose an issue due to their toxic 

nature in the environment [32]. Rhodamine B was chosen as a model dye not only because of its 

frequent use in industry but also because of its complex chemical structure (Figure 2.3) which 

makes it much harder to biodegrade in the environment [32].   

 

Figure 2.3: The crystal structure of Rhodamine B. 

Rhodamine B is a cationic dye (basic dye) characterized by a positive ion on its molecule. It falls 

under a group of organic compounds known as xanthenes which are characterized by a poly 

aromatic structure and high molecular weight [33]. Human exposure to this dye causes irritation 

of the eyes and when it is inhaled or ingested it can cause damage to the thyroid and the liver. 

Rhodamine B is also known to be mutagenic, carcinogenic and neurotoxic [34]. In light of this, 

considering the negative health effect associated with this dye, it is worthwhile to perform an 

extensive study to remove the red to violet colour associated with the presence of Rhodamine B 

in natural water. 
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2.3 Photocatalysis  

The oil and energy crisis in 1972 and 1979, respectively, resulted to the discovery of 

photocatalysis as the production of hydrogen by splitting water attracted attention. Fujishima and 

Honda [35] conducted a study on a TiO2 electrode semiconductor which was able to produce 

hydrogen when irradiated with light. Due to this discovery, the application of photocatalysis 

received a lot of attention for applications such as photoinduced self-cleaning [36], 

photocatalytic removal of heavy metals [37], photooxidation/photodegradation [38] and 

photocatalytic gas phase oxidation [39]. Earlier studies on photocatalytic reactions were focused 

mostly on semiconductors such as ZnO (3.3 eV) and TiO2 (3.2 eV) that have very wide band gap 

energies [40, 41]. Kinetic and thermodynamic limitations were believed to be the prominent 

drawbacks in photocatalysis. Properties of a semiconductor such as light absorption, migration 

and recombination, charge production determines the effectiveness of a semiconductor in 

photocatalysis. The first step, which is light absorption, determines whether a semiconductor is 

efficient to use for harvesting solar energy. The issue of light absorption is particularly severe 

with ZnO and TiO2 because they are capable of only using 4% of the UV-light from the sun [42, 

43]. With over 4 years of research and development, the degradation of gaseous pollutants or 

organic dyes or CO2 conversion and water splitting for solar fuels have been the main areas of 

research. When the key word “photocata” is searched on the ISI database, approximately 5840 

results come up. This is an indication that the gaps in industry associated with new material 

discovery and theoretical studies are receiving a great deal of attention. There exist a gap 

between practical application and research is still not resolved. The introduction of 

photocatalysis commercially has to be both economically and technically competitive to the 

currently available technologies for example chemical synthesis [44], hydrogen production from 

hydrocarbon reforming [45], CO2 conversion by dry reforming and advanced oxidation processes 

[46]. The severe effects of water pollution have been recognised in the whole world for a long 

time. Heterogeneous semiconductor photocatalysis for partial oxidation of organic dyes has been 

systematically studied but literature lacks in reporting more effective ways of synthesizing 

photocatalysts. In this study we aim to bridge this gap by paving for efficient ways of 

synthesizing semiconductors.   
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2.4 Principles of ZnO in photocatalytic degradation 

In response to the current global issues, heterogeneous semiconductor photocatalysis has been 

extensively studied for application in a wide range of environmental applications. The water 

purification industry is one area in which photocatalysis has become immensely important 

mainly because of the environmental pollution prevention laws put in place in many countries. 

The use of semiconductors in photocatalysis falls under a method known as Advanced Oxidation 

Processes (AOPs) [47]. In the past decades, coloured waste water has been treated with AOPs 

such as Ozonation and Fenton reagents. In a broad sense, AOPs are defined as a series of 

chemical procedures that are put in place in order to remove organic compounds in wastewater 

by using hydroxyl radicals that are very reactive [48]. AOPs employ a process that is known as 

photocatalysis. Photocatalysis is based on using light in conjunction with a photocatalyst (i.e., 

etc.) or an oxidant (i.e. H2O2) in order to increase the rate of chemical reactions by initiating 

chemical transformations with the surrounding matter [48]. A variety of different photocatalysts 

such as ZrO2, ZnO, SnO2, CdS, SrO2, ZnS, and TiO2 have been employed in the photocatalytic 

degradation of dyes [49]. To date, ZnO and TiO2 are reported to be the most efficient 

photocatalysts in dealing with coloured waste water. The cheapness, stability in aqueous 

medium, lack of toxicity and insolubility of TiO2 has earned it its reputation for application in 

industrial applications [50]. The draw back with TiO2 is that in the entire solar UV light, it can 

only utilise 3%. The challenge of using the entire solar energy from the sun by certain 

photocatalyst has forced researchers to focus on developing photocatalysts that can use all the 

UV light from the sun [50]. For example, CdS with band gap energy of 2.41 eV shows low 

photocatalytic activity when used alone due to rapid electron hole recombination [51]. Studies 

have revealed that using a CdS/ZnO composite is capable of efficiently degrading organic dyes 

[51]. ZnO has also been applied in photocatalysis but to a lesser extent than TiO2. The ability of 

ZnO to absorb a wide range of light from the solar spectrum has made it a more promising 

materiel for future applications. 

Photocatalysts may therefore defined as a group of compounds which upon exposure to light 

quanta are capable of causing chemical changes in reaction substrates that they come into contact 

with [52-54]. Various researchers have proposed a plausible mechanism through which 

semiconductor photocatalysts are activated in the presence of sunlight. The proposed mechanism 
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infers that upon illumination with light which has energy which is greater or equals to its band 

gap (i.e. hv > Eg), the photocatalyst undergoes photoexcitation which causes the ground state 

electrons which are located in the valence band (e
-
-VB) to be excited and thus promoted to the 

conduction band (e
-
-VB) as illustrated in Figure 2.4 [55, 56]. Through this process and in the 

case where electron-hole recombination does not occur, a hole is left behind at the catalyst 

surface (eq. (2.1)). 

                                             ZnO + hv → ZnO (e
-
-CB + h

+
 VB)                             eq. (2.1) 

The property of this hole which makes it desirable is its high oxidation potential that allows it to 

be able to directly oxidize dyes converting them into much simpler counter parts through photo 

oxidation reactions (eq. (2.2)). 

                                 ZnO (h
+
-VB) + Dye → Dye

●-
 → Dye Oxidation → CO2 + H2      eq. (2.2) 

In the presence of photo activated ZnO photocatalyst, water can decompose into reactive 

hydroxyl radicals (eq. (2.3)). These hydroxyl radicals are not only formed this way, they are also 

produced when hydroxyl anions come into contact with the highly oxidative holes in zinc oxide 

(eq. (2.4)) [57, 58]. 

                                                   h
+ 

(VB) + H2O → h
+
 + 

•
OH                                   eq. (2.3) 

                                                           h
+
 (VB) + OH

-
 → •OH                                           eq. (2.4) 
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Figure 2.4: A schematic representation of the mechanism of photocatalysis [33]. 

The easily produced hydroxyl radicals generated are known to be non-selective oxidants which 

are very strong (E0 = +3.06 V) and oxidize organic matter and break it into less toxic products 

(carbon dioxide, water and inorganic salts) effortlessly. 

Photo oxidation reactions (eq. 2.5, 2.6, 2.7 and 2.8)) are also part of the well sort after 

degradation process. The photogenerated electrons may come into contact with oxygen at the 

surface of ZnO and react with it to form what is known as superoxide radical anions (eq. (2.5)). 

                                                                   e
- 
+ O2 → O2

• -                                                                             
eq. (2.5) 

The superoxide radical anions are very unstable and very reactive; hence they can be protonated 

to form hydroperoxyl radicals (HOO
-
) and subsequently hydrogen peroxide (H2O2) (eq. 2.6 and 

2.7). The just generated hydrogen peroxide can further react with an electron to form hydroxyl 

anion and hydroxyl radicals (eq. (2.8)) [59-61]. 

                                               O2
• -

 + H
+
 → HOO

-                                                                         
eq. (2.6) 
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                                                             HOO
-
 + H

+
 →H2O2                                                                          eq. (2.7) 

                                                    H2O2 + e
-
 → OH

- 
+ 

•
OH                                       eq. (2.8) 

The large quantities of hydroxyl radicals and hydroxyl anions are the major species which are 

necessary for the high efficiency of the photocatalytic degradation process. It can be noted that 

the availability of surface oxygen act to some extent as an electron capture, which prevents the 

high electron–hole recombination rates that reduces the efficiency of ZnO photocatalysts [62-

64]. The production of carbon dioxide and water is an indication of the environmental 

friendliness of this process. 
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2.5 Quantitative analysis of dyes 

In photocatalytic degradation experiments, Rhodamine B has been often used as a model dye 

when different synthetic photocatalysts are tested for their photocatalytic activity [65, 66]. 

During the test of photocatalytic activity, the progress of the degradation is commonly followed 

by techniques such as UV-Vis absorption spectroscopy, HPLC and mass-spectrophotometer. A 

summary of the type of information that these analytic techniques provide is given below.  

 

2.5.1 UV-Vis absorption spectroscopy 

UV-Vis absorption spectroscopy is routinely used in photocatalysis because dyes are composed 

of a high degree of conjugation (i.e. alternating double and single bonds). The presence of π and 

n- electrons in their structure means that they can absorb light in both the visible and UV region 

of the solar spectrum [65, 66]. Upon absorption of either visible or UV light, the π and n- 

electrons can be excited to higher anti-bonding molecular orbitals [67, 68]. The excitation of the 

electrons is subsequently followed by the loss of energy as the electrons move from higher 

energy levels to lower energy levels. The relaxation of the electrons is detected in the UV-Vis 

absorption spectrum and it appears as a peak in a plot of absorbance against wavelength [69, 70]. 

The absorption peak of Rhodamine B occurs in the visible region (553 nm) of the solar spectrum 

(Figure 2.5).  
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Figure 2.5: Typical UV-Vis absorption spectra of Rhodamine B. 

It is this peak located at 553 nm that is used to monitor the progress of the degradation of the 

Rhodamine B dye using the Beer-Lambert’s Law (eq. 2.9) [71].  

                                                                    A = log10(
I0

If
) = εcL                                           eq. (2.9) 

Where: A – Absorbance of dye solution, I0 – Incident light intensity, If – Transmitted intensity, L 

– Cuvette path length and ε – Extinction coefficient. Beer-Lambert’s Law therefore allows for 

the estimation of the concentration of the Rhodamine B dye solution that is measured at certain 

time intervals (Figure 2.6) using ZnO.  
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Figure 2.6: Time dependent changes of UV-Vis absorption spectrum of Rhodamine B 

during the degradation of the dye. 

The decrease in the absorbance (i.e. concentration) of the absorption peak located at 553 nm for 

Rhodamine B is interpreted as indicating that the concentration of the dye is being reduced 

through time. 

 

2.5.2 Mass spectrometry 

The most common issue in the previously used method (e.g. Precipitation, Ozonation, etc.) for 

water purification was the inability to fully destruct dyes into less harmful counterparts [71]. 

Photocatalytic degradation is able to degrade the dyes into CO2, H2O and inorganic salts [71]. 

This has opened a new area of research that focuses on quantifying the intermediates and final 

products produced during the degradation as a means of coming up with a degradation 
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mechanism. Using mass spectrometry has allowed for such studies to be a success. Mass 

spectrometry’s application in photocatalysis is based on its ability to measure molecular masses 

of organic compounds present in a sample [72, 73]. It measures the molecular masses by ionizing 

the compounds upon exposure to electrons such that the ions are sorted out by their mass-to-

charge ratio. When they have reached the detector, the results come out in a form of an ion signal 

to mass-to-charge ratio [74]. Tayade et al. [75] proposed a degradation mechanism based on 

results obtained from LC-MS analysis that was done on aliquots that were collected at different 

time intervals during the course of the photocatalytic degradation of Rhodamine B. The proposed 

mechanism of Rhodamine B is illustrated in Figure 2.7 [75]. 
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Figure 2.7: Photocatalytic degradation mechanism of Rhodamine B [48]. 
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They reported that the degradation first occurs by the N-de-ethylation of Rhodamine B. The N-

de-ethylation mechanism was proposed due to the presence of N-deethylated intermediates as 

detected by HPLC. The intermediates detected were N,N-diethyl-N
’
-ethylrhodamine (DER), 

N,N-diethylrhodamine (DR), N-ethylrhodamine (ER), and rhodamine (R) [76]. The products of 

the N-de-ethylation are oxidized to butane-1,3-diol, propane-1,2,3-triol, 2-hydroxypropanoic 

acid and adipic acid. The acids produced by the oxidation are then mineralized to H2O, CO2, 

NH4
+
 and NO3

- 
[76, 77].  

 

2.5.3 High Pressure Liquid Chromatography 

Liquid chromatography involves the injection of a certain amount of solution into a tube that is 

filled with a stationery phase made up of a very porous material. Once the solution is injected, 

the individual components in the solution travel inside the tube by the liquid which is moved by 

the force of gravity [78, 79]. The components in the solution interact differently with the 

stationery phase via chemical and physical interactions and hence will be separated inside the 

column. As a result of the different interactions with the stationery phase, the components will 

exit the column at different times and can be analysed by an external detector [78, 79]. The 

detector can be a spectrophotometer that measures the colour’s intensity or by a device capable 

of determining the quantity of each component in the solution. The parameter used in HPLC to 

identify compounds in the solution is called retention time and is characteristic of each 

compound. Using this technique, the progress of degradation can be followed through time [78, 

79]. An output from HPLC is called a liquid chromatogram, and it gives the time at which a 

component, shown as a peak, is eluted from the column [78, 79]. In a study done by AlHamedi 

et.al [80], on the degradation of Rhodamine B in the presence UV/H2O2. In their study, 50 mL of 

the dye solution being degraded was withdrawn at 30 min intervals. The organic component was 

extracted using dichloromethane. Upon analysis using HPLC, it was observed that the actual 

breakdown of the Rhodamine B resulted in low molecular weight aliphatic alcohols and acids 

[80].   
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2.6 The effect of operational parameters on the photocatalytic degradation efficiency 

To get a better understanding of the behaviour of a photocatalyst used in photocatalytic 

degradation of dyes, it is important to know how it behaves under different environmental 

conditions. This understanding allows for optimum conditions to be implemented during its 

application allowing for maximum efficiency from the photocatalyst. In dye degradation studies, 

the important parameters that affect the efficiency of a photocatalyst include catalyst loading, 

dye concentration, solution pH and light intensity [81]. The effect that these operational 

parameters are outlined in the following subsections.   

 

2.6.1 Catalyst loading 

The determination of the optimum amount of catalyst that must be used during a reaction is 

important because it prevents catalyst wastage when it is used with the notion that more catalyst 

results to high reaction rate. A variety of research groups have proven that the highest amount of 

catalyst used cannot always be correlated with high photocatalytic degradation rates [82, 83]. 

Daneshvar et al. [84] studied the effect of catalyst loading on the rate of degradation of acid red 

14 (AR14). They reported a steady increase in the rate of degradation for up to 160 ppm ZnO 

concentration, after which the rate decreased for concentrations above 160 ppm [84]. Kansal et 

al. [85] reported a study where the catalyst concentration was varied from 0.25 to 2.0 g/L for dye 

solutions of 25 mg/L at a natural pH (6.4 for Methyl Orange (MO) and 5.97 for Rhodamine 6G 

(R6G)). The optimum dose for R6G was found to be 0.5 g/L, while that of MO was 1 g/L. The 

authors reported that the degradation rate did not increase linearly with increasing catalyst dose 

[85]. Daneshvar et al. [84] and Kansal et al. [85] attributed the mild decrease in degradation 

efficiency at very high catalyst concentration to be due to increased turbidity of the dye-catalyst 

suspension which hinders the amount of photo excitation needed in dye degradation. It has also 

been suggested that at high catalyst concentration there might be an increase in the amount 

particle-particle interaction causing agglomeration and hence a reduced portion of active sites 

will be exposed [86].  
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2.6.2 Dye concentration 

A strong dependence between the dye concentration and the rate of degradation has been 

previously established [87, 88]. Studying this relationship is important because it allows the 

determination of the rate of the reaction (i.e. rate constant) using kinetics models [89]. In the 

majority of the studies reported in literature, an inversely proportional relationship exists 

between the concentration of the dye and the rate of dye degradation [89]. It is reported that the 

decrease in the rate of the reaction as the concentration of the dye is increased is due to the 

insufficient amount of hydroxyl radicals generated to degrade the large number of dye molecules 

available at high concentration of the dye. The decrease in the degradation rate is also said to be 

due to increased opacity in the dye solution which prevented light from reaching the surface of 

the photocatalyst [90]. Kansal et. al. [91] reported on the effect of dye concentration on the 

degradation of Reactive Black 5 (RB5) and Reactive Orange 4 (RO4). The concentration was 

varied from 10 to 100 mg/L and it was noted that in the case of RB5, for dye solutions of 10 and 

25 mg/L, 100% decolourization occurred within 5 and 7 min, respectively, and in the case of 50 

mg/L, almost complete degradation was observed in 30 min, and it gets further decreased on 

increasing the concentration of dye. Similar trend was observed in the case of RO4, where 

complete decolourization of 25 mg/L dye under optimized conditions [91]. The possible 

explanation for this behaviour was that as the initial concentration of the dye increased, the path 

length of the photons entering the solution decreased and in low concentration the reverse effect 

was observed, thereby increasing the number of photon absorption by the catalyst in lower 

concentrations [91]. The same effect was observed by Neppolian et al. [92] during the 

photocatalytic degradation of three commercial textile dyes: Reactive Yellow, Reactive Red, and 

Reactive Blue [92]. 

 

2.6.3 Solution pH 

Coloured wastewater that is released into the environment exists at different pH conditions. The 

pH of the solution is important because it affects the surface charge of the photocatalyst which in 

turn affect the rate of degradation of the dye [93]. This effect of pH on degradation efficiency has 
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been explained by various researchers. They have based their explanation on the point of zero 

charge (Pzc) together with the high rate of dissolution of ZnO at certain pH of the dye solution. 

The point of zero charge of ZnO is ± 8.6 and hence its surface is positively charged below pH 

8.6, and negatively charged above pH 8.6 (eq. 10 and 12). 

                                             Zn─OH + H
+
 → ZnOH2

+ 
(pH < Pzc)                              eq. (2.10) 

                                     Zn─OH + OH
- 
→ Zn─O

-
+ H2O (pH > Pzc)                          eq. (2.11) 

The changes in the pH of the dye solution not only change the surface charge of the ZnO 

photocatalyst, it also changes the charge of the dye molecules. Since the degradation process 

requires that there be interaction between the dye molecules and photocatalyst, electrostatic 

interactions are bound to play a role in determining the efficiency at which a dye is degraded 

[94-96]. In the case of Rhodamine B, a cationic (basic) dye, its molecules at high pH are 

susceptible to adsorption to the negatively charged photocatalyst surface which results to an 

increased rate of dye degradation. Reduced degradation efficiency is expected at low pH due to 

the force of repulsion that exists between the positive photocatalyst surface and the cationic dye 

molecules. At high pH values, there is also an increased amount of OH
-
 ions in solution. The OH

-
 

ions can be easily converted into the hydroxyl radicals responsible for the degradation of the dye 

molecules which results to high degradation rates [97-99]. Due to the diverse roles of pH, 

Kazeminezhad and Sadollahkhani [100] studied the effect of pH on the degradation rate of 

Rhodamine B and Methyl Blue at three pH values (4, 8, and 11). The authors reported that the 

optimum pH for Rhodamine B and Methyl Blue was 4 and 11, respectively. The difference in the 

adsorption ability of the different dyes at different pH values indicate the influence that the pH 

have on the properties of both the ZnO photocatalyst and the dye molecules [100].   

 

2.6.4 Light intensity 

The effect of light intensity on the photocatalytic degradation of dyes is important in the 

utilization of ideal experimental conditions. The intensity of light that is used influence the rate 

at which photo excitation occurs on the photocatalyst surface [101]. It is important to consider 

the fact that the sunlight intensity varies depending on weather conditions. Hence, if this process 
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was applied in the environment using direct sunlight, it would be important to know the UV dose 

that is required for effective photo activation of the photocatalyst. Salin et al. [102] used light 

intensities of 6 W and 12 W using a UV lamp with 254 nm wavelength. The results obtained 

clearly indicated that increasing the intensity of the lamp resulted in improved rates of 

degradation. The authors attributed the increased degradation rate to the fact that high light 

intensity allowed for generation of many electrons and holes to the covalent band of ZnO. 

Chakrabarti and Dutta [103] performed the light intensity study using Methylene Blue and Eosin 

Y and reported the same trend observed by Salin et al. [102].  
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2.7 Basic properties of ZnO 

The interest on studies based on ZnO arises from the well sort after properties it displays in a 

wide range of applications such as in transistors, photo-detectors and light emitting diodes [104]. 

Apart from the basic vital properties such as a wide band gap (3.37 eV) corresponding to UV 

light of 387 nm, high exciton binding energy (60 meV) and its high sensitivity to light, ZnO 

comes with added advantages of being readily available, non-toxic in nature, stable in a wide 

range of environmental conditions and being very cheap to produce [105, 106]. As a wide band 

gap semiconductor, it is capable of absorbing UV light of the solar spectrum [107]. The ability to 

absorb light from the solar spectrum becomes important when it is used in photovoltaics by using 

the freely, environmentally friendly energy from the sun. Room temperature exciton emission 

that is observed in ZnO is made possible by its high exciton binding energy which is an 

important property when considering using a semiconductor material as a photocatalyst 

[108].ZnO occurs in three different crystal structures namely; rocksalt, wurtzite and zinc blende. 

Rock salt (NaCl) is a metastable form which is stable only at very high pressure (~ 10 GPa). The 

zinc blende crystal structure exists only when ZnO can be grown through epitaxial in a substrate 

that is composed of a lattice structure which is cubic. Wurtzite is the most common and stable 

phase of ZnO. As a direct band gap semiconductor with vast amount of ionic bonding, ZnO 

crystallizes in the hexagonal wurtzite structure under ambient conditions, with a lattice that 

belongs to the P63mc space group [109]. The hexagonal lattice (Figure 2.8) is composed of a zinc 

atom which is located in between four oxygen atoms, and vice versa, with lattice constants of a = 

3.2495 Å, c = 5.2069 Å and a density of 5.605 g.cm
-3

 [110].This results in interconnected 

sublattices of Zn
2+

 and O
2-

 forming tetrahedral coordinated planes arranged along hexagonal axis 

(c-axis) [110, 111]. As a result of the tetrahedral coordination, ZnO possesses polar symmetry 

along the hexagonal axis. Properties such as spontaneous polarizability and piezoelectricity are 

due to the polarity that exists in ZnO crystals. The wurzite ZnO structure has two common basal 

polar termination facets, polar O terminated [000-1] and Zn terminated [0001]facets which are 

oriented along the c-axis, together with two non-polar [112Ō] oriented along the a-axis and the 

[10-10] facets which are made up of the same number of O and Zn atoms. The chemical and 

physical properties of the polar and non-polar facets in ZnO vary, with the polar facets being 

characterized by high surface energies as opposed to their non-polar counterpart [110, 111].  
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Figure 2.8: The wurtzite structure of zinc oxide [110]. 

The presence of polar surfaces is very important, particularly in photocatalysis. From surface 

energy measurements it has been determined that the polar surfaces of ZnO are positively 

charged [111, 112]. This is important from a photocatalysis viewpoint because it influences the 

interaction of the hydroxyl anions in solution during photocatalysis. It has been reported that 

when the proportion of the polar surface exposed in ZnO is maximized, the hydroxyl anions in 

aqueous solution during dye degradation experiments are easily attracted to the opposite charge 

that exists on the photocatalyst surface [113]. This strong interaction allows for the formation of 

more hydroxyl radicals which are the principal oxidizing species required for the speedy 

degradation of the dyes [113, 114]. A variety of researchers has since then conducted a series of 

experiments to synthesize morphologies that possess the [0001] and the [000-1] polar surfaces 

[115, 116]. 
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2.8 Synthesis of ZnO nanocrystals 

The drive for human kind to come up with new ways of solving problems, and design synthesis 

methods that have the potential to produce high yields at relatively low cost, under 

environmentally friendly conditions, has gave rise to a lot of advancement in the field of 

nanotechnology. Nano-sized materials have been synthesized by a variety of methods which 

produce products with different physical (i.e. shape and size) and optical (i.e. band gap energy) 

properties. This section introduces some of the methods that are commonly used to synthesize 

ZnO nanoparticles.  

 

2.8.1 Sol-gel Method 

Typically, synthesis using the sol-gel method (Figure 2.9) involves dissolving a zinc metal salt 

(e.g. Zn(CH3COO)2•2H2O) precursor in an organic solvent (ethanol) or water. The mixture is 

subsequently titrated with a basic solution (e.g. NaOH/KOH) which acts as a precipitating agent 

allowing for the formation of a sol-gel.  

 

Figure 2.9: Typical flow diagram for sol-gel synthesis method. 

The resulting solid-liquid diphasic system is then separated through centrifugation which allows 

for collection and drying (i.e. calcination) of the solid component of the mixture yielding the 

desired nanoparticles [117, 118]. Alwan et al. [119] dissolved 12.6 g of Zn(CH3COO)2•2H2O in 
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400 mL double distilled water with continuous stirring. The resulting solution was heated to 50 

°C, 600 mL of ethanol and 6 mL of H2O2 (% 47) was subsequently added, resulting to a clear 

solution. The clear solution was incubated for 24 h and dried and 80 °C in an oven. After 

washing several times with distilled water, the complete conversion of ZnO was achieved 

through drying of the nanoparticles in a hot air oven.   

 

2.8.2 Hydrothermal Method 

The synthesis of ZnO using the hydrothermal method is based on heating a mixture of substrates 

gradually to a certain temperature (100–300 °C) in a steel pressure vessel (Figure 2.10) for 

several hours/days at high pressure [120].  

 

 

 

 

 

 

 

Figure 2.10: Schematic diagram of the hydrothermal synthesis method. 

The heating under high pressure is followed by cooling which allows for crystal nucleation and 

subsequent crystal growth [120]. Such methods allows for growth of highly crystalline and pure 

single crystals that are not possible with other synthetic routes. Anesh et al. [121] prepared stock 

solutions (0.1 M) of Zn(CH3COO)2•2H2O in 50 mL solution of methanol under stirring. To these 

stock solutions, varying concentrations of NaOH (0.2–0.5 M) prepared in methanol were added 

under continuous stirring to adjust the pH to between 8 and 11. The solutions were transferred 

into Teflon lined sealed stainless-steel autoclaves and heated under self-generated pressure at 
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temperatures in the range of 100–200 °C for 12 h. After the reaction was complete, they were 

allowed to cool naturally to room temperature, after which they were washed with methanol, 

filtered and dried at 60 °C in an oven. The results obtained indicated that there was a significant 

dependency between the nanoparticles morphologies and temperature. The size of the ZnO 

nanoparticles increased as the temperature for hydrothermal synthesis was increased. Baruwati et 

al. [122] used the hydrothermal method in which 2 g of Zn(NO3)2•4H2O was dissolved in 200 

mL of double distilled water. Ammonium hydroxide solution (25%) was used to adjust the pH to 

7.5 under stirring and the mixture was continuously stirred for 1 h at room temperature. The 

mixture was then transferred into a Teflon lined stainless steel autoclave and heated for time 

periods in the range of 6–24 h at 120 °C. After the reaction, the autoclave was allowed to cool 

naturally to room temperature and the products washed multiple times using double distilled 

water. The resulting white powders were filtered and dried at 80 °C overnight.   

 

2.8.3 Microwave heating method 

Molecules having a permanent dipole moment or those possessing ionic conduction can be 

heated with energy in the form of electromagnetic waves [123]. When such molecules are 

exposed to an oscillating magnetic field, they will try and align with the field causing them to 

rotate. The constant agitation at molecular level as the polarity of the magnetic field is varied 

creates friction which heats up the molecules in a reaction mixture [123, 124]. This method has 

since received a lot of attention because it is capable of decomposing metal precursors rapidly 

resulting to shorter reaction times. Unlike conventional heating, in which a lot of energy is lost 

while heating the vessel containing the reaction medium, microwaves heat the precursor 

solutions directly (Figure 2.11) resulting to reduced energy consumption and very pure products 

[125].  
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Figure 2.11: A diagram showing the different interaction of the heat source with the 

reaction medium during (a) conventional and (b) microwave heating. 

Some of the known advantages of using microwave heating method over conventional synthesis 

are (1) high reaction rates, (2) ability to easily control reaction conditions, (3) different absorbing 

properties of reagents allow for good reaction selectivity, (4) high product yields, and (5) simple 

handling and easy optimization of reaction parameters [126]. Barreto et al. [126] employed 

microwave synthesis in which a zinc metal salt (Zn(CH3COO)2•2H2O, Zn(NO3)2•4H2O or 

ZnCl2) was dissolved in 32 mL of deionized water or sodium di-2-ethylhexyl-sulfosuccinate. The 

resulting mixture was titrated with base (KOH, NaOH, or NH4OH) for 2 min under continuous 

stirring (10 min) at room temperature. The colloidal solution was transferred into Teflon 

autoclaves and microwaved in a temperature controlled mode in a microwave accelerated system 

(Mars-X) operated at different powers (300, 600, and 1200 W) for a certain period of time (5, 10, 

or 20 min). The results indicated that changing the base used influenced the morphology of the 

nanoparticles and that longer reaction time was required in order to form well defined structures 

with homogeneous morphology and particle size [126].  
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2.9 Synthesis parameter affecting the properties of ZnO nanocrystals 

The optical and structural properties of ZnO nanoparticles are highly controlled by the conditions 

under which they are synthesized. A lot of effort has been invested into understanding the way in 

which reaction parameters influence the resulting properties during synthesis [127, 128]. The 

commonly studied parameters during synthesis such as reaction time, type of precursor, pH of 

precursor are briefly described below. The ability to synthesize ZnO nanoparticles possessing 

excellent optical and structural properties is very important for industrial applications. Hence, 

getting a better understanding of how each parameter can be manipulated to get the desired result 

is imperative.  

 

2.9.1 Reaction time 

The period of time in which a reaction is run has been reported to be of great importance in 

determining the final size of the nanoparticles. Generally, synthesis of smaller sized particles is 

favoured by shorter reaction times. Longer reaction time provides enough life span for the 

formation of larger particles which tend to form much larger aggregates (Figure 2.12) [129].  
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Figure 2.12: Growth of nanoparticles in an aqueous solution with time. 

The relationship between particle size and time can be explained using the Ostwald ripening 

mechanism. According to the Ostwald ripening mechanism, during a reaction, different sized 

particles exist in the reaction medium. The smaller sized particles, being highly unstable, tend to 

aggregates to form bigger particles. As a result of this, running a reaction time provides enough 

time for larger particles to form [130, 131]. Dutta [132] reported the synthesis of ZnO using a 

sol-gel method at 8, 10 and 12 h which resulted in the nanoparticles of different sizes. The 

nanoparticles synthesized at 8, 10 and 12 h were found to be 15.2, 17.8 and 26.52 nm, 

respectively. Barreto et al. [126] varied the microwave power (300, 600 and 1200 W) during 

synthesis which resulted in different reaction times. The size of the nanoparticles was found to be 

smaller when 1200 W was used as a result of the reaction running for a short period of time as 

opposed to when lower microwave power was used.  
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2.9.2 Type of precursor 

ZnO nanoparticles can be synthesized using a variety of zinc metal salts such as 

Zn(CH3COO)2•2H2O, Zn(NO3)2•6H2O, ZnCl2 and ZnSO4.H2O. The difference in these zinc 

metal salts is the type of counter anion (NO3
-
, CH3COO

-
, Cl

-
, and SO4

2-
) in the precursor. The 

counter anion variation has allowed a variety of researchers to systematically study the effect it 

has on the optical and structural properties [132]. The growth of ZnO nanocrystals is sensitive to 

the type of precursor used because different counter anions have different abilities to coordinate 

with the different crystal planes of ZnO in a reaction medium [133, 134]. As a result of the 

different adsorption behaviours of the counter anions, different sizes and morphologies can be 

synthesized under the same experimental conditions, with only the precursor being varied. Ozel 

et al. [135] conducted a study on the effect of the type of precursor on ZnO formation and the 

development of the morphology during hydrothermal synthesis. They found that the morphology 

was strongly dependent on the type of precursor used during synthesis. Results indicated that 

when ZnCl2 was used, ZnO took on an ellipsoidal rod like form with taped ends while when 

Zn(NO3)2•6H2O was used, branched rod like particles were produced. In literature, the different 

morphologies observed are explained based on the nature of attachment of the Zn(OH)4
2-

monomers on the ZnO nuclei during growth. The different crystallographic planes in ZnO 

possess different growth kinetics, this means that the rate at which the Zn(OH)4
2-

monomerdeposit to the different crystallographic planes is different [136, 137].   
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2.9.3 pH of the solution 

Solution growth synthesis method of ZnO is based on using a zinc metal salt as a precursor and a 

precipitating agent (i.e. basic solution). A mixture of the zinc metal salt and a precipitating agent 

result in the formation of a precipitate that is further converted into ZnO through heat treatment 

at appropriate temperature [138]. The base in such reactions also acts as a reagent that is used to 

adjust the pH of the solution to the desired value. The amount of base added to the precursor 

solution has the potential of changing the resultant shape and size of the nanoparticles during 

synthesis. The effects of pH on the properties of ZnO emerge as a result of the fact that the 

amount of pH determines the concentration of the Zn(OH)4
2- 

available for formation of ZnO 

nanocrystals [139]. At high pH conditions, large aggregates of the precipitate are generated (i.e. 

high Zn(OH)4
2-

 concentration), and due to their proximity to one another, contact between them 

allows for faster growth. Lower pH allows for formation of much smaller nanoparticles due to 

the limited amount of the monomers in solution [139, 140]. Pung et al. [141] synthesized rod-

like, rice-like and disk-like ZnO nanoparticles using sol-gel method. The different morphologies 

were achieved by varying the concentration of ammonia during synthesis which resulted in 

different morphologies with different photocatalytic activity.   
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2.10 Physical properties influencing the activity of a ZnO photocatalyst 

A variety of photocatalysts, although active in degrading organic dyes, face a variety of 

drawbacks which causes them to become less active when used. Such drawbacks are associated 

with how the photocatalysts are prepared as it controls the resulting properties. These properties 

such as the surface area, exciton life span, and morphology play an important role on how a 

photocatalyst behaves upon application in a real life situation. Through varying certain reaction 

parameters such as reaction time, doping, and changing pH during synthesis, these properties can 

be tuned in order to get the best efficiency from a photocatalyst [142].   

 

2.10.1 Surface area 

Apart from the conditions of the reaction under which a photocatalyst is used, its photocatalytic 

activity is also controlled by properties such as its morphology, surface area and crystallinity 

[143].The surface area of a photocatalyst is by far the most influential factor which has been 

extensively studied in the field of photocatalysis. It is used to quantify the amount of 

exposed/available active sites on the surface of photocatalysts which are available for catalytic 

reactions to take place in them [144]. This property of a photocatalyst has been important to 

study due to the fact that for dyes to be degraded, the molecules of the dye need to come into 

contact with the surface of the photocatalyst in order to be adsorbed. It is only when the dye 

molecules have come into contact with the photocatalyst that the oxidizing/reducing species 

(OH• and h
+
) generated on the photocatalyst surface can react with them allowing for the 

degradation process to commence [145, 146]. As a result of this, surface area is a vital property 

which controls the efficiency of a photocatalyst. The higher the surface area, the higher is its 

efficiency in the degradation of dyes [146]. The surface area, being such an important factor in 

the efficiency of a photocatalyst, has had various methods being employed in order to improve it. 

Reducing the length in which a reaction is run has seen the size of nanoparticles being reduced 

into the nano-meter region. Flores et al. [147] conducted a study on the effect of pH on the 

optical, structural and photocatalytic properties of ZnO. The nanoparticles synthesized at various 

pH values were found to have surface areas of 3.83, 6.43, 9.31, and 18.88 m
2
.g

−1
. Photocatalytic 
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degradation studies of Methylene Blue showed an improved rate of degradation when the ZnO 

nanoparticles with surface area of 18.88 m
2
.g

−1 
were used. Similar results of high degradation 

rates at high surface area have also been reported by Cheng et al. [148], Wang et al. [149].  

 

2.10.2 Non-metal anionic impurities 

Completely mindful of the various properties of ZnO that has made it to be known as one of the 

best photocatalysts; its activity is limited due to its short exciton life time and its wide band gap 

(3.2 eV) which both allows for vast amount of electron-hole recombination to take place during 

photocatalysis [150]. The high rate of electron-hole recombination can be reduced by introducing 

an impurity in a form of a non-metal such as sulphur, carbon and nitrogen in the substitutional 

sites in the crystal lattice of ZnO [151]. Due to the close proximity of these non-metals to oxygen 

in the periodic table, substitution occurs without the change in the crystal structure of ZnO. The 

introduction of these types of dopants results to narrowing of the band gap, allowing 

photoexcitation at lower energy radiation [152, 153]. This method of improving the 

photocatalytic activity of a photocatalyst has also been reported for another wide band gap 

photocatalyst such as TiO2 [154]. An attempt has also been made to improve the photocatalytic 

activity by introducing transition metals such as manganese, vanadium and cobalt in the crystal 

structure of ZnO. Transition metal dopants results to increase of carrier recombination centres 

and thermal instability and hence more focus are now mainly based on non-metal dopants [155]. 

Qiu et al. [156] prepared pure and nitrogen doped ZnO tetrapods for application in the 

degradation of Bisphenol A. The nitrogen doped ZnO were found to be more effective in 

degrading Bisphenol A than the pure ZnO. The authors postulated that this is caused by the 

ability of the nitrogen to reduce the bang gap of ZnO and thus enhancing its light absorbing 

ability in the visible region of the solar spectrum.   
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2.9.3 Morphology 

The proposed mechanism on how dyes are degraded is explained in section 2.3. In this 

mechanism it is clearly stated that in order for the dye molecules to be degraded, they need to 

first come into contact with the surface of the photocatalyst. This means that the nature of the 

surface, which is known as the morphology, will control how the dye molecules interact with it. 

ZnO morphology can be changed by varying reaction parameters such as the pH of the precursor, 

type of precursor, and the synthesis method. The important factor that separates different 

morphologies from one another is the proportion of polar (i.e. [0001] and [000-1]) and non-polar 

(i.e. [1000], [0010] facets exposed on the surface of the nanoparticles as shown in Figure 2.12 

[157]. Figure 2.13 shows two different morphologies where by the rod-like morphology has a 

smaller proportion of the polar [0001] and [000-1] facets on its surface then the hexagonal 

morphology.  

 

Figure 2.13: Illustration of the different types of crystal facets exposed in ZnO 

nanoparticles with respect to its morphological form. 

 

The higher the amount of polar facets on the surface of certain morphologies (e.g. hexagonal and 

rodlike) has been reported to enhance the photocatalytic activity of ZnO. The enhanced 

photocatalytic activity result from the fact that polar facets have high surface energy, making 
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them positively charged. These facets are capable of attracting the hydroxyl anions in solution 

and transform them into hydroxyl radicals. As outline in section 2.3, it is the generated hydroxyl 

radicals that are responsible for degrading the dyes during photocatalysis [158]. Zhang et al. 

[159] compared hexagonal and spherical ZnO quantum dots in the degradation of Methylene 

Blue. The result indicated that in addition to high surface area, the special hexagonal morphology 

composed highly of Zn-terminated [0001] and O-terminated [000-1] polar facets was more 

efficient as a result of these facets ability to promote greater production of H2O2 and OH
●
.  

 

 

2.11 Atom-mediated nucleation and growth mechanism of metallic nanoparticles in 

solution 

The ability to control the method used to synthesize metallic nanoparticles is important because 

it allows for the optimization of the optical and structural properties of these crystalline materials 

for different applications in industry. Metallic nanoparticles are continually attracting a lot of 

attention from researchers in an attempt to improve their performance in a wide range of 

functional applications such as gas sensors, photovoltaics and photocatalysis [160, 161]. The 

current challenge that researchers are facing is that in order for new technological applications to 

be established, metallic nanoparticles need to be constructed in such a way that they are in the 

nanoscale region and have a controlled morphology and chemical composition. The chemical 

synthesis of metallic nanoparticles in solution is the most widely used method to synthesize 

materials whose properties can be controlled [162, 163]. Chemical synthesis has allowed a vast 

amount of studies to be conducted with the sole purpose of producing metallic nanoparticles of 

high quality at high yields which permits studies of the effect of morphology (i.e. shape and size) 

on the resulting properties to be a reality [164]. 
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2.11.1 Nucleation and growth 

Nucleation is defined as the first step that takes place in the formation of nanocrystals. It 

involves the coming together of precursor components (i.e. ions, atoms, and molecules) in such a 

way that they form a crystalline solid called a nucleus. The nuclei act as a site where more ions, 

atoms or molecules can deposit to aid the growth of the initial nuclei into a nanocrystal [165]. 

After nucleation takes place, there are two routes that can be followed for the growth of the 

metallic nanocrystal seeds. One pathway is the non-classical model that involves the formation 

of larger nanocrystal by the addition of small nanoparticles to one another. The other pathway is 

the classical model in which the atoms are added to the initially formed nanocrystal seeds [165].   

 

2.11.2 Classical atom-mediated nucleation and growth 

The classical atom-mediated nucleation and growth theory has been used for the past decades to 

understand how the morphology of metallic nanoparticles is controlled in chemical solution 

synthesis. The theory is based on the idea that for nucleation and growth to take place, the 

building blocks known as atoms must be present [166, 167]. The LaMer curve is used to describe 

the nucleation and growth processes which can be understood by looking at the evolution of the 

atomic concentration overtime. According to the LaMer curve, the nucleation and growth 

processes can be separated into three stages: atom production (stage I), nucleation from atoms 

aggregation (stage II), and nanocrystal growth from atoms addition (stage III), as shown in 

Figure 2.14 [168]. 
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Figure 2.14: LaMer curve describing the metal nanocrystals formation stages in a reaction 

medium [168]. 

The initial stage involves the production of metallic ions through the thermal decomposition or 

reduction of organometallic compounds using reducing reagents. At the point where the 

concentration of the atoms surpass that at the point of supersaturation, the second stage initiates 

where the atoms begin to form small clusters of nuclei resulting in the formation of aggregates 

through homogeneous nucleation. As the atomic concentration slowly decreases, it goes below 

the minimum supersaturation level (Cmain
nu ) and nucleation stops to occur. In the third stage, the 

continuous addition of metallic atoms results to the increase in the size of the initially formed 

nuclei. The growth of the cluster above a certain critical size at this stage allows the clusters to 

be organized and locked into a well-defined structure due to the high activation energy available 

for structural fluctuation. The birth of the initial seed is achieved when the critical point is 

reached and the seed is allowed to grow further as the metal atoms are added to it until the 

nanocrystals solubility concentration (Cs) is decreased. The simplicity of the LaMer curve has 

motivated other various theories to be established and are discussed in the preceding sections. 
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These theories look at the nucleation and growth of nanocrystals in ways that are not fully 

described by the different stages explained by the LaMer curve [168-173].  

 

2.11.3 Beyond the LaMer curve 

The new theories for explaining nucleation and growth of nanocrystals has come about because 

of the discovery new plausible mechanisms on how metallic nanocrystals form. The newly 

proposed mechanisms for controlling the morphology of the nanocrystal are a small variation of 

the classical nucleation and growth theories [174]. The theories look at the behaviour of atoms as 

they change during nucleation and growth in response to different kinetic and thermodynamic 

parameters [175]. For example, the nuclei’s intrinsic structure, which can be varied by changing 

the thermodynamic and kinetic parameters such as supersaturation concentration of the atoms, 

has very high control on the morphology of the nanocrystals. Other parameters such as the 

surface energy of the nanocrystals, the route of diffusion of atoms adjacent to the interface of the 

reaction, and the energy barrier encountered by atoms when they diffuse on the surface of the 

crystal, all play a significant role in the growth process of metallic nanocrystals [176-179]. 

Through in-Situ observations, it has been shown that single-, poly- and mesocrystalline 

nanoparticles can be formed by the aggregation of small nanoclusters that are capable of 

changing shape during growth. Thus new models that take into consideration of both cluster and 

nanoparticles as monomers for nanocrystals have been established [180]. 

To make a distinction, in this review nucleation and growth of metallic nanocrystals as described 

by the LaMer curve is defined as the “classical” model. The “non-classical” model defines the 

nucleation and growth that looks at nanoparticles and clusters as basic building blocks for 

metallic nanocrystals.  
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2.11.4 Non-classical nucleation and growth 

2.11.4.1 Oriented Attachment (OA) 

For the non-classical atom-mediated growth, the reduction of the overall energy to its lowest 

which takes place when two particles coalesce can be achieved by the alignment of the high 

energy facets of the two particles. Alternatively, the two particles can rotate such that they 

undergo alignment along the same crystallographic direction resulting to the minimization of the 

energy at the interface of the two particles. This mechanism is called Oriented Attachment and it 

describes how particles next to one another can self-organize spontaneously in such a way that 

allows them to share the same crystallographic direction, and subsequently followed by the 

particles joining at the point of contact [180-182]. The OA mechanism was first proposed by 

Penn and Banfield [183] in the study of the hydrothermal synthesis of anatase TiO2 looking at its 

mechanism of formation.  Using in Situ-TEM, the OA mechanism, based on Pt nanocrystals, has 

been proposed to occur as follows [184].  
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Figure 2.15: OA mechanism observed during growth of Pt nanocrystals [184]. 

The proposed mechanism stipulates that initially, the two adjacent nanocrystals move closer to 

one another. Through time, the distance between the Pt nanocrystals decreases from 0.75 to 0.25 

nm. As they get closer, the nanocrystals start to rotate violently to a point where they form a well 

aligned dimer (Figure 15 (a-d)). The alignment is seen through the orientation of the d200 crystal 

planes. Unlike other semiconductor nanocrystals, such as CdSe/PbSe and GeTe, whose 

alignment occurs due to the presence of a permanent dipole moment, the nanocrystals from noble 

metals do not have permanent dipole moments to promote their alignment. Hence, the OA 

process is assumed to be as a result of a chemical bonding force [184].    
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2.11.4.2 Intraparticle Ripening (IR)  

Attachment of two particles along a preferred crystallographic direction is not the only process 

known in particle-mediated growth, there is also transfer of atoms between particles that are 

attached.  After particles undergo the OA process, the fusion of atoms located at the surface 

interface of the particles can result in the formation of a single crystal. The high energy atoms in 

certain locations of the particles rearrange in order to lower the systems total energy. This 

process is known as Intraparticle Ripening (IR) and was first introduced by Peng et al., [184] to 

describe the movement of atoms along the surface of the particles resulting to a change in 

morphology through time [184, 185]. Alivisatos et al., [186] has previously reported the 

attachment of Pt particles. When big and small particles come into contact, the atoms on the 

small particles move through the interface into the larger particles. Through time, the large 

particles get bigger and the small particle decrease in size and eventually disappear.  In the case 

where the particles are of the same size, the diffusion of atoms from both particles towards each 

other result in the formation of a whole nanocrystal whose interface, where the particles are 

attached, is marked by a twin plane [186, 187].  

Experimental and theoretical simulations of the formation of the twin plane revealed that the 

coalescence does not involve melting of the two particles, the dominant mass transport 

mechanism is considered to be surface diffusion. The IR mechanism was first observed by 

Uematsu et al. [188], where the morphology of the Au particles with a dumb-bell shape was 

transformed into spherical particles.   

 

2.11.4.3 Overgrowth  

In the atom-mediated growth mechanism, the attachment of the initially formed particles results 

to the formation of mesoparticles. The metallic ions and atoms that are left behind in the solution 

will aid overgrowth by attaching to the already formed mesoparticles. The LaMer curve (Figure 

2.6) postulates that the nucleation and growth of the primary particles occurs in stage I and II 

when the concentration of the atoms is higher than  Cmain
nu . The concentration of the atoms 

decreases below Cmain
nu , but not lower than the Cs, after which the primary particles aggregate to 
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form mesoparticles (stage III). Therefore, growth of the mesoparticles can continue through the 

atom-mediated route to the point where the concentration of the atoms goes below Cs (stage IV) 

[190].    

 

2.11.4.4 Ostwald Ripening (OR) and Digestive Ripening (DR) mechanism  

The description of the OR mechanism was first made public in 1900 by Ostwald, [191]. 

According to this mechanism, growth is initiated when the solubility of the nanoparticles 

undergo a drastic change. The change in solubility is highly dependent on the size of the 

nanoparticles. Larger particles are allowed to grow further as a result of the small particles 

solubility and surface energy being so high to such an extent that they re-dissolve and provide 

monomers for the larger particles. Researchers have come up with mathematical theories in 

describing the OR mechanism for reactions conducted in a closed system [192]. Contrary to the 

OR mechanism, DR mechanism describes nanoparticles growth to occur as a result of larger 

particles dissolving and depositing on the small particles allowing them to grow. High surface 

energy of the larger particles is believed to be the reason for the decrease in size of the larger 

particles [193].    
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CHAPTER 3: The Effects of operational parameters on the 

photocatalytic degradation of Rhodamine B 

3.1 Introduction 

Processes that are designed for application at a larger scale require that optimum conditions be 

evaluated in order to get the most efficient conditions for operation. For example, the 

optimization of the operating conditions in large scale application of ZnO-based photocatalytic 

processes is of vital importance. Intrinsic properties of ZnO such as surface area, band gap 

energy, crystallinity and morphology are controlled during synthesis and can be improved by 

varying certain reaction parameters (e.g. reaction time, synthesis method, capping agent, type of 

precursor etc.) [1-4]. These properties form a major part of the internal parameters that influence 

the photocatalytic activity of ZnO nanoparticles. The extrinsic properties of ZnO such as 

nanoparticles concentration/loading, dye solution pH, dye concentration and light intensity are 

also important in photocatalysis. These properties must be individually studied during the use of 

the nanoparticles at hand to get a better understanding of its photocatalytic degradation 

efficiency [5]. In the photocatalytic degradation of dyes in aqueous solution, the properties of the 

ZnO nanoparticles are affected by the conditions under which it is used [6]. It is therefore vital to 

review some of the effects of operational parameters on the photocatalytic degradation process 

[7-10]. 

 

Khezrianjoo et al., [11] reported on the effect of operational parameters on the degradation of 

Acid Yellow using ZnO nanoparticles. The study indicated that the rate of degradation was 

highly dependent on properties such as pH, dye concentration, ZnO nanoparticles loading and 

ethanol concentration. They reported that Acid Yellow was degraded quickly at pH 8, with the 

ZnO nanoparticles loading of 1 g/L for a 50 mg/L dye solution. Dyes exist in neutral, basic or 

acidic form based on the type of charge it possesses on its structure when it is in an aqueous 

solution [12]. The charge on the dye molecules is important because it determines how the dye 

molecules interact with the surface of the ZnO nanoparticles at different pH values. For example, 

the surface charge of ZnO changes depending on the pH conditions that it is exposed to in an 
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aqueous solution relative to its point of zero charge (pH 8.6) [13]. Below pH of 8.6, its surface is 

positively charged, and above pH 8.6 it is negatively charged. This therefore means that it will 

interact differently with the dyes of different charges, with efficient interaction occurring in the 

case where the dye and the surface of the ZnO are different [14, 15]. Easy interaction between 

the dye molecules and the surface of the ZnO nanoparticles results to high degradation rate.  

 

ZnO nanoparticles loading used during phocatalytic degradation of methylene blue proved to be 

an important parameter in a study done by Balcha et al. [16]. They observed that increasing the 

concentration of the ZnO nanoparticles improved the degradation rate for up to 1 g/L, after 

which the degradation rate remained constant for up to 1.5 g/L. The observed trend was said to 

be due to the increased availability of active sites when the ZnO concentration was increased 

which improved the degradation rate. Above 1.5 g/L, the degradation rate remained constant 

because the excess amount of the ZnO nanoparticles caused high turbidity in the solution that 

prevented the light from travelling easily in the solution and hence retarded the rate of 

degradation.  

 

The concentration at which dyes exists in the environment vary depending on the input from 

industry. Sakthivel et al. [17] conducted a study where they varied the concentration of Acid 

Brown 14 from 2x10
–4

 to 6x10
–4 

mol/L and the results revealed that the initial dye concentration 

influences the rate of degradation of the dye. The results were easy to understand since 

increasing the dye concentration result in more dye molecules being available and hence there 

aren’t enough hydroxyl radicals to degrade the vast amount of the dye molecules, hence the rate 

tends to decrease at high concentrations of the dye. In this study, the synthesis of ZnO using 

microwave heating method is reported. The effect of operational parameters such as dye 

concentration, ZnO nanoparticles loading, pH of dye solution and the reusability study of the 

ZnO nanoparticles is studied.  
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3.2 Synthesis Procedure 

3.2.1 Chemicals and materials  

Zinc nitrate hexahydrate, Zn(NO3)2•6H2O, ≥ 98 %, and Cetyltrimethylammonium bromide 

(CTAB) were obtained from Sigma Aldrich. Ammonia, 25 %, was obtained from Associated 

Chemical Enterprise (ACS). Rhodamine B was obtained from MAY and BAKER LTD. A 

Universal 320R sonicator (t/min = 10, RPM = 7000) was obtained from Hettich Lab Technology 

and a Microwave Reaction System, (Multiwave 3000 SOLV) was obtained from Anton Paar. All 

chemicals were used as received without any further purification. 

 

3.2.2 Synthesis of ZnO nanoparticles 

Typically, 1.5324 g of zinc nitrate hexahydrate was dissolved in 37.5 mL CTAB solution (0.1 M) 

in a 100 mL beaker and stirred for 5 min. Once the zinc nitrate hexahydrate was dissolved, the 

pH of the solution was adjusted to pH 7 using 25 % of ammonia (NH3) as modified from [18]. 

The resulting white aqueous solution was then vigorously stirred with the help of a magnetic 

stirrer for 20 min. The white aqueous precipitate was transferred into 2 vessels and 

hydrothermally microwaved at 600 W for 15 min. After completion of the reaction, it was 

allowed to naturally cool to room temperature and the white powdered samples were collected by 

centrifugation. The powdered samples were washed thoroughly with deionized water and ethanol 

to remove impurities possibly remaining in the final products. Finally, the samples were dried at 

80 
º
C for 12 h in an oven under air. 

 

3.2.3 Characterization 

Prior to characterization, the ZnO nanoparticles were dissolved in ethanol and sonicated for ten 

min using a Digital ultrasonic cleaner (Model: PS – 20A). The optical properties were 

determined by Photoluminescence (PL) spectroscopy using a Varian Cary Eclipse EL04103870 
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fluorescence spectrophotometer and UV-Vis spectroscopy using a Varian Cary Eclipse (Cary 50) 

UV-Vis absorption spectrophotometer. For visualization of the sizes and morphology of the 

nanoparticles, Transmission Electron Microscopy (TEM) was used and recorded using a FEI 

Technai T12 TEM microscope operated at an acceleration voltage of 120 kV. TEM samples 

were prepared by drop-casting the ethanol diluted samples on a 300 mesh copper grids. 

Structural properties were analysed by Powder X-ray Diffraction using a Bruker MeasSrv (D2-

205530)/D2-205530 diffractometer equipped with a secondary graphite monochromated CoKα 

radiation (λ 1.79026 nm) at 30 kV/30 mA. Measurements were taken using a glancing angle of 

incidence detector at an angle of 2°, for 2θ values between 10-90° in steps of 0.026° with a step 

time of 37 s and at a temperature of 25 ºC. The light source (solar simulator) used for 

photocatalysis was an ORIEL SOL 2A, Newport, model – 69907 with input power: 190-264 

VAC, 50/60 Hz, 202 A (serial number – 1723). The pH was measured using a Starter 3100 pH 

Bench 

 

3.2.4 Photocatalytic degradation of Rhodamine B 

The dye degradation experiments were conducted by preparing 500 mL stock solution of 

Rhodamine B with the desired concentration (e.g. 20 ppm). 100 mL of the stock solution was 

poured into a 200 mL cut beaker and mixed with a known mass (i.e. 0.16 g) of the ZnO 

nanoparticles. The dye-nanoparticles mixture was sonicated for 30 min in the dark in order to 

ensure that the ZnO nanoparticles were well dispersed in the solution. At the end of sonication, 

the mixture was subsequently stirred for 60 min using a magnetic stirrer and a stirrer bar in order 

to allow for equilibration between the dye molecules and the nanoparticles. Before the mixture 

was exposed to solar radiation, an aliquot (~ 4 mL) was withdrawn and its absorbance measured, 

and that aliquot was labelled as ‘time zero’, which meant before exposure to light. The progress 

of degradation was monitored using the following equation (eq. 3.1): 

𝐶𝑡

𝐶0
 × 100 %                         eq. (3.1) 

Where Ct refers to the concentration of the dye after a certain time of irradiation and C0 refers to 

the concentration of the dye before irradiation. The light was then switched on and constantly 
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irradiated on the mixture that was continuously stirred. Aliquots (~ 4 mL) were then 

subsequently withdrawn and filtered using a syringe filter (0.2 µL) at 30 min intervals for a 

period of 5 h, and their absorbance determined. The progress of the degradation was monitored 

by the change in the absorbance of the excitation peak (553 nm) of Rhodamine B using UV-Vis 

absorption spectroscopy. The pH of the dye solution was measured using a Starter 3100 pH 

Bench. The distance between the dye solution and solar simulator was 12 cm. Table 3.1 shows 

how the operational parameters were varied during the study. The pH of the dye solution was 

kept at 6.97 and the volume was 100 mL.  

Table 3.1: Range in which the operational parameters were during degradation of 

Rhodamine B. 

Parameters varied 
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3.2.5 Determination of the point of zero charge of ZnO nanoparticles 

The point of zero charge (pzc) is defined as the point where the surface charge of the adsorbent 

material is zero in the aqueous media. This is an important parameter in photocatalytic 

degradation as it determines the degree of interaction between the dye molecules and the 

photocatalyst. To full ascertain the behaviour of ZnO nanoparticles at various pH, its point of 

zero charge was determined using the pH drift method [19] as follows: 

A 0.01 M aqueous solution of NaCl was prepared in a 200 mL volumetric flask. To 15 mL of the 

solution, nitrogen gas was allowed to bubble in it and pH measured when its value was stable. 

The pH was then adjusted to pH 2 using HCl/NaOH. The initial pH was noted after which 10 mg 

of ZnO nanoparticles were added to the 15 mL solution of NaCl. The mixture was kept under 

stirring for 48 hr at room temperature. The same process was repeated for pH 4, 6, 8, 10 and 12. 

After 24 hr of stirring, the solution was filtered and the final pH measured for each set [19].  

A plot of the final pH(y axis) vs Initial pH (x axis) gave a straight line as shown in Figure 3.1 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Plot for determination of the point of zero charge of as-synthesized ZnO. 

2 4 6 8 10 12

2

4

6

8

10

12

 

 

F
in

a
l 
p

H

Initial pH

 Final pH

 Initial pH

pHpzc = 8.2  



66 
 

3.3 Results and Discussion 

3.3.1 Structural properties of ZnO 

A typical PXRD diffractogram of ZnO nanoparticles is shown in Figure 3.2. The peaks in the 

diffraction pattern were indexed perfectly to the hexagonal wurzite ZnO phase reported in the 

JCPDS (Card No. 01-079-2205) with the lattice constants of a = 3.2501 Å and c = 5.2071 Å and 

space group P63mc. The high intensity and narrow width of the peaks in the diffractogram are an 

indication of the high crystallinity of the synthesized ZnO nanoparticles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: PXRD pattern of the ZnO nanoparticles prepared by microwave heating 

method. 

All the peaks correlate perfectly to the reference and any peaks that could possibly be attributed 

to any impurities were not detected and this served as an indication of the high purity of the 

synthesized ZnO nanoparticles. The diffractogram displays a characteristic anisotropic growth, 

with the most intense (101) plane being the preferred growth direction.  
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Figure 3.3 shows the surface morphology of ZnO nanoparticles synthesized at 600 W microwave 

powers for a period of 15 min. It is observed that ZnO nanoparticles adopted a rod-like 

morphology which is characterized by irregular ends. 

 

 

 

 

 

 

 

 

Figure 3.3: TEM micrograph of the ZnO synthesized via microwave assisted heating 

method. 

The rods are composed of varying sizes in which the average length was found to be 608 nm 

with an average width of 205 nm. The anisotropic growth which was observed in the PXRD 

diffractogram by the high intensity of the (101) peak is supported by the length to width ratio of 

the rods which is greater than one (608/205 = 2.97). The growth mechanism of the ZnO rods was 

proposed as follows: 

When Zn(NO3)2•6H2O was dissolved in water, it dissociates into its constituent ions (eq. 3.2). 

The NO3
- 
anions were hydrolysed producing OH

-
 ions (eq. 3.3). Upon addition of the ammonium 

solution, NH3was also hydrolysed to form OH
-
 and NH4

+
 ions (eq. 3.4).  

                                                     Zn(NO3)2•6H2O → 2NO3
-
 + Zn

2+                                                
eq. (3.2) 

                                                       NO3
-
 + H2O → HNO3 + OH

-                                                           
eq. (3.3) 

                                                        NH3 + H2O ↔ OH
-
 + NH4

+                                                               
eq. (3.4) 
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The OH
- 
and Zn

2+
 ions reacted to form either Zn(OH4)

2-
 or Zn(OH)2, which were the monomers 

for ZnO (eq. 3.5). 

                                                         Zn
2+ 

+ OH
-
 → Zn(OH4)

2-
 ↔ Zn(OH)2                                     eq. (3.5) 

The NH4
+
 will also react with Zn

2+
 to form a tetraaminezinc ion complex [Zn(NH3)4]

2+
 (eq. 3.6). 

                                                             NH4
+ 

+ Zn
2+ 

→ [Zn(NH3)4]
2+                                          

eq. (3.6) 

Upon exposure to microwave irradiation, the Zn(OH)2 and Zn(OH4)
2-

, being the monomers, 

undergo dehydration as the temperature of the reaction mixture increased resulting to the 

formation of ZnO nuclei [18]. Similarly, the [Zn(NH3)4]
2+

 monomers reacted with the OH
-
ions in 

solution (eq. 3.7), which subsequently became converted to ZnO [20, 21].  

                                                    [Zn(NH3)4]
2+

 + 2OH
-
 → ZnO + 4NH3 + H2O                eq. (3.7) 

In hydrothermal synthesis, the specific surface energy of the different crystal facets determines 

the resulting crystal shape based on how the surfactant molecules interact with the initially 

formed crystallites. In this study, the formation of the 1D rod-like nanostructures is indicative of 

the growth that is favoured along the [101] direction of ZnO. Rod-like nanoparticles form due to 

the adsorption of the monomers to the high energy polar surfaces (i.e. ± [0001]) characteristic of 

the wurtzite structure of ZnO. Under neutral conditions (pH = 7), ZnO also has non polar 

surfaces that are negatively charged. To control the growth of ZnO, the CTAB capping agent 

was used to modify the morphology and size of the nanoparticles [22]. It was proposed that when 

the CTAB was dissolved in an aqueous medium, it dissociated into CTA
+
 and Br

-
 ions. The 

CTA
+
 cations become attracted to the non polar surfaces of ZnO preventing the precursor 

monomers from binding in this growth direction and hence hindering lateral growth. The 

hindrance of growth along the non-polar facets allowed for growth to be fast along the polar 

facets. (i.e. c-axis) of ZnO forming rod-like nanoparticles. The preferred growth along one 

particular direction is known as anisotropic growth [23].       
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3.3.2 Optical properties of ZnO 

The UV-Vis absorption spectrum of the as-synthesized ZnO nanoparticles is shown in Figure 

3.4(a). The spectrum displays a strong absorption peak at ~ 372 nm (3.33 eV) which was 

characteristic of pure hexagonal ZnO phase [23-25]. The absorption peak at 372 nm was slightly 

blue shifted from that of the exciton state in the bulk which occurs at wavelength of ~ 387 nm 

(3.20 eV) [26-29]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: The (a) UV-Vis absorption and (b) PL spectra of ZnO nanoparticles 

synthesized using microwave heating method. 

The presence of this absorption peak alone in the spectrum supports the high purity of the 

synthesized nanoparticles as observed in PXRD results. The absorption band edge of the ZnO 

was determined using the following equation (eq. 3.8): 

E =  
hc

λ
                          eq. (3.8) 
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Where;  

E = band gap energy (eV), h = Planck’s constant (m
2 

kg/s), c = speed of light (m/s) and λ = 

wavelength (nm) corresponding to the absorption edge [30]. The calculated band gap energy 

based on eq. 3.8 was found to be 3.14eV.The tailing of the UV-Vis spectrum is indicative of the 

poly dispersed nature of the ZnO nanoparticles as observed in TEM (Figure 3.1(a)).   

Figure 3.3(b) shows the corresponding room temperature PL spectrum of the ZnO nanoparticles 

synthesized via microwave heating method. The PL spectra of the nanoparticles display a strong 

UV emission peak cantered at 395 nm. The UV emission peak has been attributed to the near 

band edge characteristic of ZnO. The occurrence of the broad PL peak that is not Gaussian (i.e. 

symmetrical) is attributed to the poly dispersity of the nanoparticles as seen in TEM [31].     
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3.4 Photocatalytic degradation study 

3.4.1 Preliminary studies 

To test for the photocatalytic activity of the ZnO nanoparticles, the dye degradation experiments 

were conducted in order to determine the operational parameters to be used during the course of 

the research. The ZnO photocatalyst loading used was 160 ppm, with the dye concentration of 20 

ppm. Figure 3.5(a) and Figure 3.5(b) shows typical spectral changes in the UV-Vis absorption 

peak and the physical colour change, respectively, that was observed during the course of the 

degradation of Rhodamine B. It can be observed that as the dye solution was exposed to light, 

the concentration of the dye started to decrease which was indicated by the decrease in the 

absorbance of the dye absorption peak located at 553 nm (Figure 3.4(a)).  

 

Figure 3.5: UV-Vis spectra changes of (a) Rhodamine B as a function of light irradiation 

and (b) physical colour change monitored for 210 min. 

The decrease in absorbance together with the colour change indicated that the synthesized ZnO 

nanoparticles were photo active and could be used for photocatalytic degradation studies. The 

degradation process seemed to be free of any UV-Visible active intermediates. This conclusion is 

based on the idea that throughout the degradation process, the only absorption peak that was 

observed was the one that was attributed to Rhodamine B. One would expect that since this 
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degradation process is based on oxidation, the functional groups which are most susceptible to 

oxidation would be degraded first and the intermediates generated through time would be picked 

up in the absorption spectra. It was observed that the absorption peak of the dye when it became 

colourless (210 min) was in the same region as the blank which was ran using deionized water. 

The zero absorption of what used to be the dye, together with the drastic change in colour from 

pink to completely colourless can be used as supportive evidence that the dye completely 

degraded [32]. Figure 3.6 depicts the percentage of the dye which was degraded at 30 min 

intervals. In the first 90 min of dye degradation, the dye was being degraded at a fast rate with 

approximately 67 % degradation achieved in the first 90 min. The degradation efficiency slowed 

down after 90 min, with the 33 % remaining requiring 120 min to completely degrade.  

 

Figure 3.6: The percentage of Rhodamine B dye degraded in 30 min intervals. 

It is well understood that the dye has to diffuse from the bulk solution into the surface of the ZnO 

nanoparticles in order to be degraded [33, 34]. Hence, we concluded that when the dye 

concentration was high, a large proportion of the dye molecules were in close proximity to the 
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active sites and thus were able to quickly reach the ZnO surface and be oxidized, hence a large 

proportion of the dye is degraded in the early stages of the degradation process [35]. As the dye 

concentration decreased through time of exposure to light, the dye molecules took a significant 

amount of time to reach the surface of the ZnO nanoparticles, even with less competition for 

active site, this result in decreased degradation efficiency with time. Another factor that can be 

considered in attempting to give a plausible explanation for the retardation of the degradation 

efficiency is the behaviour of ZnO when it is exposed to light in aqueous solution [36]. 

Photocorrosion of ZnO has been extensively studied and it is known to be one of the major draw 

backs of ZnO in photocatalysis [37, 38]. This process involves the chemical reaction of the 

photogenerated electrons with certain atoms which make up the crystal lattice of ZnO (eq. 3.9 

and 3.10) [39, 40] 

                                                              ZnO + hv → e
-
CB + h

+
VB                                                            eq. (3.9) 

                                                            ZnO + 2h
+

VB → Zn
2+

 + O
*                                                         

eq. (3.10) 

The photodecomposition of ZnO into its constituent ions causes a decrease in the amount of the 

photo active material present in the solution with time and hence explains the decrease in the 

degradation efficiency after a certain amount of irradiation.      
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3.4.2 Effect of ZnO nanoparticles loading 

To determine the effect of the concentration of ZnO nanoparticles on the degradation efficiency, 

a variety of photocatalytic degradation experiments were conducted to determine the amount of 

ZnO that is capable of degrading Rhodamine B at a fast rate. This study was done by varying the 

concentration of ZnO used in each case while keeping parameters such as the concentration of 

Rhodamine B, light power, aliquot withdrawal interval and pH constant. Aliquots were 

withdrawn at 30 min interval. The concentration of the Rhodamine B dye used was 20 ppm at pH 

6.95 (natural water) and ZnO concentration in the range 60–200 ppm and light power of 180 W. 

Figure 3.7 displays control\blank experiment which was conducted by exposing the dye solution 

to light without the addition of the ZnO nanoparticles. This was done in order to determine the 

effect of light only on the concentration of Rhodamine B. This was done due to the fact that 

some dyes can be degraded by exposure to light only through a process known as photolysis [41-

43].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: UV-Vis absorption spectra changes of Rhodamine B under UV irradiation in 

the absence of ZnO nanoparticles. 
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The spectrum of the Rhodamine B dye remained fairly constant throughout the irradiation time 

and there was negligible change in the absorbance of the spectrum. This indicated that the 

concentration of the dye was not affected by UV-light only and hence no photocatalytic 

degradation was occurring during the experiment. Results from experiments which were 

conducted during the course of the ZnO nanoparticles loading study indicated that light in 

conjunction with the ZnO nanoparticles were required in order to achieve dye degradation. In the 

results displayed in Figure 3.8, an increase in degradation efficiency with increasing ZnO 

nanoparticles dose was observed for up to 160 ppm ZnO concentration, after which a steady 

decrease in degradation efficiency occurred. 

 

Figure 3.8: Percentage degradation of Rhodamine B as a function of ZnO concentration 

done over a period of 5 h. 

The increase in the degradation efficiency can be explained in terms of the number of active sites 

available for degradation on the ZnO nanoparticles surface [44, 45]. An increase in the 

concentration of the ZnO nanoparticles meant more active sites were available to allow for rapid 
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become a limiting factor resulting to decreased degradation efficiency. The decrease in the 

degradation efficiency above 160 ppm can be attributed to the fact that as the concentration of 

the ZnO nanoparticles in the dye solution increased, the turbidity and scattering effect of the 

solution also increased and hence light could not easily travel through the solution to activate the 

ZnO nanoparticles [47, 48]. This decrease may also be due to the increase in the amount of 

particle – particle interaction (aggregation) in the solution which means a limited number of 

oxidizing species are readily available for the degradation of the dye molecules [49, 50]. This 

trend was also reported by N. Daneshvar et al. [51] in their study of the degradation of acid red 

(AR14) where the maximum degradation was observed at 160 ppm ZnO concentration [51]. 

The kinetic study of the photocatalytic degradation of Rhodamine B using green synthesized 

ZnO was investigated with the Langmuir–Hinshelwood kinetic model, which also covers the 

adsorption properties of the substrate on the photocatalyst surface [52]. The equation is 

represented as follows: 

𝑅𝑎𝑡𝑒 =  
𝑑𝐶

𝑑𝑡
=  𝑘

𝐾𝐶

1+𝐾𝐶
                       eq. 3.10   

Where C is the concentration of Rhodamine B at the irradiation time, k the reaction rate constant, 

and K is the degradation coefficient of the reactant. Where k′ is the apparent rate constant. A plot 

of ln (C0/C) versus time results in a straight line; its slope is the pseudo first- order degradation 

rate constant (Kapp) [52, 53]. The experimental data obtained in the kinetic study of Rhodamine B 

degradation at different ZnO photocatalyst concentrations were fitted with the Langmuir–

Hinshelwood kinetic model. The results obtained are illustrated in Figure 3.9. 
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Figure 3.9: Kinetic study of the degradation of Rhodamine B (20 ppm) at different ZnO 

photocatalyst loading (80 – 200 ppm).  
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Table 3.2:  Rate constants for photocatalytic degradation of Rhodamine B 

 

No 

 

Initial 

concentration 

ZnO 

concentration 

Kapp R
2 

1 20 80 0.007 0.997 

2 20 120 0.004 0.989 

3 20 160 0.003 0.899 

4 20 200 0.0001 0.928 

 

 

The plots of the concentration data give a straight line, showing that the photocatalytic 

degradation of Rhodamine B can be described by the pseudo-first-order kinetic model [54]. The 

correlation coefficient constant for the fitted line and the rate constants are graphically obtained 

and their values for 4 selected concentrations are represented in table 3.2. A decrease in the rate 

constant was observed when the concentration of the Rhodamine B dye. This decrease in the rate 

constant was supportive evidence that the presence of a large amount of dye molecules results to 

slower rates of degradation.    
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3.4.3 Effect of dye concentration 

To study the effect of the initial concentration of the Rhodamine B has on the rate of its 

degradation; a study was conducted by varying the initial concentration in the range 5–25 ppm 

while factors such as catalyst loading (50.5 ppm), pH 6.97 and light intensity (180 W) were kept 

constant. Figure 3.10 shows the percentage degradation against irradiation time plot obtained 

during the dye concentration study.   

 

Figure 3.10: Effect of initial concentration of Rhodamine B on degradation efficiency 

The decrease in the degradation efficiency as the dye concentration was increased is apparent. 

This observation was due to the fact when the concentration of the dye was low, it became easy 
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concentration was increased to 20 ppm, the degradation efficiency decreased to 93 % and a 

further decrease (73 %) was observed for 25 ppm dye concentration. An increased opacity of the 

dye solution at very high dye concentration retards light from efficiently interacting with the 

ZnO nanoparticles and this also contributes to the reduced degradation efficiency of the 

nanoparticles [59]. The kinetics of the degradation of Rhodamine B with an initial concentration 

of 20 ppm under optimized experimental conditions is shown in Figure 3.11. 

 

Figure 3.11: Plot of ln(C0/Ct) against irradiation time obtained during the photocatalytic 

degradation of Rhodamine B. 

The plot of ln(C0/Ct) versus time gave a semi-logarithmic straight line. The straight line indicated 

that the photocatalytic degradation of Rhodamine B followed a pseudo first order kinetic model 

with a correlation constant of R
2
 = 0.9725. The rate constant was determined using (eq. 3.11). 

                                                                     ln(C0/Ct) = kt                                                 eq. (3.11) 

Where C0 represents the initial dye concentration, Ct represents the dye concentration after a 

certain amount of time of exposure to UV radiation, k is the reaction rate constant and t is the 
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time in which the reaction was run [60]. The calculated rate constant was found to be k = 1.4 x 

10
-5 

s
-1

. The rate constant, k, gives a direct measure of the relative reaction rate [61]. A very 

small value for the rate constant equates to a very slow reaction in general. Equally, a large value 

for the rate constant means a large value for the rate and that the reaction is rapid [61]. In this 

study, it can be noted that the obtained value of the rate constant is relatively small, indicating a 

low rate of degradation of the dye.  
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3.4.4 Effect of pH 

Textile industrial waste water exists in the environment at different pH and hence it is important 

to conduct a study which will determine the effect of the pH of waste water has on the rate of 

degradation of dyes. To do this, a study was conducted at pH values in the range 2–12. Figure 

3.12 shows the results obtained when the photocatalytic degradation of Rhodamine B was 

conducted at different pH values of the dye/ZnO mixture. 

 

Figure 3.12: A graph showing the effect of pH on the photocatalytic degradation efficiency 

of ZnO nanoparticles. 

It can be seen that ZnO nanoparticles are capable of degrading Rhodamine B in the entire pH 

range under which the study was conducted, but the extent of degradation differs significantly as 

the solution pH changes from acidic to neutral and finally to basic conditions. During the study, 

it was determined that ZnO nanoparticles were more efficient at degrading the dye under neutral 

and basic conditions and a significant decrease in the degradation efficiency was observed under 
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with the overall degradation reaching 10 % after 180 min. At neutral pH 7, 28 % of the dye was 

degraded after 30 min after which 100 % degradation was observed after 180 min. Under basic 

conditions such as pH 12, 18 %degradation was observed after 30 min, with only 93 % 

degradation observed after 180 min.  

The decrease in the efficiency under acidic conditions can be explained based on the effect of pH 

on the surface charge properties of the ZnO and the dye. At lower pH values, the molecules of 

the dye become protonated and the surface of the ZnO nanoparticles also become positively 

charged [62]. The positive charges on the surface will thus repel the dye molecules and thus 

prevent the required interaction between the dye and ZnO nanoparticles. This will therefore 

cause a decrease in the amount of dye molecules which reach the active ZnO nanoparticles active 

sites and cause a decrease in the rate of degradation [63]. Also, this decrease can be explained in 

terms of the solubility of ZnO at different pH values. Under acidic condition, ZnO reacts directly 

with hydrogen ions and hence undergoes a phase change through a process which is known as 

chemical dissolution as shown below (eq. 3.12) [64].  

                                                           ZnO + H
+ → Zn

2+
 + H2O                                         eq. (3.12) 

When this process takes place, the metal oxide required for the photogeneration of electrons and 

holes exist in small quantities in solution, and hence reduced degradation was observed because 

not enough hydroxyl radicals were being produced. At pH 4, 14 % degradation was observed and 

a further decrease to 9 % degradation occurred when the pH was dropped to 2, this observation 

gives an idea of the extent of the repulsion force and chemical dissolution at very acidic 

conditions. As the pH of the solution was increased to pH 8, maximum degradation was 

observed as indicated by the 100 % degradation efficiency at this pH. This increase in 

degradation efficiency can be also be explained by focusing on the surface properties of the ZnO 

at different pH values. The point of zero charge (pzc) of ZnO is ± 8.6 [65], which means that the 

surface of ZnO is positively charged at pH values which are less than 8.6, and negatively charged 

at pH values greater than pH 8.6 [66]. It can then be concluded that at pH values which are close 

to the point of zero charge, the ZnO nanoparticles surface were not sufficiently charged to such 

an extent that it could repel dye molecules; this resulted in efficient dye-ZnO interactions at pH 8 

which resulted in fast degradation as compared to other pH values.      
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A slight decrease in the degradation efficiency was observed at very basic conditions, starting 

from pH 8 up to pH 12. This trend observed was attributed to the fact that at higher pH values 

there is a high concentration of hydroxyl ions which are occupying the ZnO nanoparticles   

surface and they repel the negatively charged dye molecule resulting to a slight decrease in 

degradation when the pH is raised further away from pH 8 [67]. It is important to note that the 

decrease in degradation efficiency was not as high as in acidic conditions. This observation can 

be explained in terms of the dominant hydroxyl radical species in the oxidation process. At 

higher pH there is a high concentration of hydroxyl ions which are adsorbed onto the surface of 

the ZnO nanoparticles and it is these hydroxyl ions which are required for hydroxyl radical 

generation which is the principal oxidizing species in photocatalytic degradation [68]. Hence, 

this increased hydroxyl ion concentration overcomes the setback which results from the 

repulsion force that exists between the ZnO nanoparticles and dye molecules. This increase in 

the generation of hydroxyl radicals also provides an explanation as to why dye degradation is 

higher at basic condition than in acidic conditions. This study has shed light into the ideal pH 

range in which ZnO can be used to obtain maximum (100 %) degradation efficiency.  
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3.4.5 Effect of light intensity 

The effect of light intensity (Figure 3.13) on the degradation efficiency of Rhodamine B was 

done by varying the light intensity (54, 105 and 210 W) irradiated on the dye solution while 

keeping all other parameters (dye concentration, pH, ZnO nanoparticles loading) constant.  

 

 

 

 

 

 

 

 

 

 

Figure 3.13: A study showing the % degradation of Rhodamine B at different light 

intensities. 
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reduced amount of hydroxyl radicals that are produced in the solution which lowers the rate of 

degradation [70]. 

3.4.6 Reusability of ZnO 

The ability to recycle and reuse a catalyst in any industrial process is of importance from an 

economical point of view. It therefore became vital to determine if the ZnO nanoparticles can be 

regenerated with efficient activity. To do this, the first catalytic degradation experiment (1
st 

cycle) was conducted with freshly synthesized ZnO nanoparticles. After the 1
st
 cycle was 

complete, the ZnO nanoparticles was recovered from the dye solution by centrifugation, after 

which it was washed thoroughly with deionized water until the pink colour it acquired from the 

dye was completely removed. The recovered ZnO nanoparticles were further washed with 

ethanol several times and dried in an oven at 80 °C for 12 h. The same recovering, washing and 

drying procedure was followed for the experiments conducted using the reused ZnO 

nanoparticles labelled 2
nd

, 3
rd

 and 4
th 

cycles. Figure 3.14 shows a bar graph depicting the 

percentage degradation efficiency that was achieved by the fresh and reused ZnO nanoparticles 

for up to four cycles. 
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Figure 3.14: Reusability study of the ZnO nanoparticles for up to 4 cycles. 

The degradation efficiency of the freshly prepared ZnO nanoparticles reached 100 % degradation 

after 5 h after which the degradation efficiency decreased to 95 %, 84 % and 76 % for the 2
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, 3
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and 4
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was firstly used. One important factor which was noted was that when the degradation process 

was run for more than 5 h, the photocatalytic degradation was able to get to 100 % degradation 
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, 3
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th

 cycles. This decreased degradation efficiency of the recycled ZnO 

nanoparticles was attributed to a process known as catalyst poisoning [71, 72]. This occurs when 

certain unwanted materials which are products of the degradation of the dye bind strongly on the 

ZnO nanoparticles surface and hence affect the accessibility of the active sites resulting to 

reduced degradation efficiency [73, 74]. The unused ZnO displays prominent irregular ends 

(Figure 3.15), these irregular ends seems to become smothered as the ZnO nanoparticles were 

being reused. The proposed hypothesis for this change in morphology is the dissolution of the 

ZnO nanoparticles in aqueous solution [75]. Another plausible explanation to the decreased 
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activity of the nanoparticles was due to the increased agglomeration with multiple uses as shown 

Figure 3.15. 

 

Figure 3.15: The morphological changes of ZnO nanoparticles after (a) 1
st
, (b) 2

nd
, (c) 3

rd
, 

and (d) 4
th 

cycles of reusing the nanoparticles. 

The difference in the degree of agglomeration between the ZnO after use for the different cycles 

is apparent. The coalescence might be because of particle-particle interaction of molecules 

during photocatalysis, which then allow the ZnO nanoparticles to agglomerate. The increased 

(d)(c)

(b)

(a)



89 
 

agglomeration results to a reduced surface area of the reused ZnO as opposed to the one which 

was used in the 1
st
 cycle [76]. Even though the activity of the recycled ZnO nanoparticles 

decreased, it did not influence the electronic properties of the ZnO nanoparticles as depicted in 

Figure 3.16. 

 

Figure 3.16: The (a) UV-Vis absorption and (b) PL spectra of the ZnO nanoparticles used 

for up to 4 cycles. 

The PL and UV-Vis spectra of ZnO nanoparticles used in different cycles remained fairly 

unchanged which indicated that the structure of the ZnO nanoparticles was not compromised 

during the degradation of Rhodamine B. This is in line with the idea that the decreased catalytic 

activity was caused by the reduced proportion of catalytic active sites resulting from 

agglomeration and deactivation of some active sites by dye residues. 
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3.5 Conclusions 

Microwave heating method was utilized in the synthesis of rod-like shaped ZnO nanoparticles as 

authenticated by PXRD, PL, UV-Vis and TEM analysis. The photocatalytic degradation 

experiments demonstrated that the as-synthesized ZnO was photocatalytically active and could 

be used to degrade Rhodamine B dye in the presence of sunlight. A variety of operational 

parameters (ZnO nanoparticles loading, dye concentration, pH and light intensity) were found to 

have a significant influence on the rate of degradation of Rhodamine B. An increased amount of 

the ZnO nanoparticles increased the rate of degradation until optimum point, after which it 

started to decrease. Increasing the concentration of the dye and lowering the intensity of the light 

source resulted in decreased degradation efficiency. The ZnO nanoparticles were more efficient 

in degrading the dye in neutral and basic conditions, with a significant decrease in efficiency 

observed in the acidic region. The optimum conditions for the degradation of Rhodamine B were 

achieved when the dye solution had a pH of 8, concentration of the ZnO = 160 ppm and light 

intensity of 210 W. The degradation of Rhodamine B was found to have a first order rate 

constant of k =1.4 x 10
-5 

s
-1

.  
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Chapter 4: Microwave synthesis of various morphologies of ZnO 

and their photocatalytic activity. 

4.1 Introduction 

Over the past few decades, there has been an ongoing focus in nanotechnology on 

the tailoring of hierarchal ZnO nanostructures such as nanobelts,  nanoflowers, 

nanoribbons and nanorods [1-4]. Recently, the nanomaterials community has 

focused more on investigating the possibility of improving the optical and structural 

performance of different ZnO nanostructures through manipulation of chemical 

reaction pathways. The pathways followed by a reaction during growth control the 

resulting surface morphology and size of the nanocrystals [5 -7]. Surface 

morphology is of interest, particularly in applications such as photocatalytic 

degradation of dyes, because the degradation mechanism is based on the interaction 

between the dye molecules and the surface of the ZnO nanoparticles [8 -10]. The 

growth of ZnO nanoparticles can be manipulated by varying reaction conditions 

such as the concentration of the precursor, type of precursor, synthesis method, 

reaction temperature, and pH value of the precursor solution [11-14]. The pH value 

of the precursor solution is one parameter that has been manipulated previously in 

colloidal synthesis and resulted in various morphological forms of ZnO [15 -19]. 

The question therefore arise as to how does the pH affect the nature in which 

nanocrystals grow. To answer this question, consider the  sol-gel synthesis method, 

which is used to synthesize ZnO by using zinc metal salts ( e.g. 

Zn(CH3COO)2•2H2O, Zn(NO3)2•6H2O). Typically, a metal salt is dissolved in water 

according to the following reaction:  

             M(L)2•xH2O + H2O → M
2+

 + 2L
- 

+ H2                                eq. (4.1) 

Where M is a transition metal (e.g. Zn, Ti, Co), L is a counter anion (e.g. Cl
-
, NO3

-
, 

CH3COO
-
) and x is the stoichiometry of the hydrate. Once the metal salt has been 
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dissolved, a base such as NaOH is added to the solution and results in hydrolysis as 

follows: 

                                               M
2+

 + Na
+
OH

-
 → M(OH)2                                    eq. (4.2) 

As more OH
-
 ions are introduced to the solution by addition of NaOH (i.e. increased 

pH value), the following equilibrium reaction takes place:  

                                              M(OH)2+ 2OH
-
 ↔ M(OH)4

2-
                        eq. (4.3) 

It is the M(OH)2 and M(OH)4
2-

 that undergo condensation when exposed to heat to 

form ZnO. 

                                   M(OH)4
2-

 + Heat → ZnO + H2O + 2OH
-                      

eq. (4.4) 

The reactions above show that the amount of OH
-
 ions present in solution 

determines the concentration of the M(OH)2 and M(OH)4
2- 

monomers [20-22]. This 

means that by varying the pH of the metal -salt aqueous solution, one can alter the 

amount of OH
- 

ions that will in turn determine the growth mechanism. Different 

monomer concentrations have been reported to result in different morphologies. For 

example, at lower concentration, morphologies such as dots and rice grains 

dominate. As the monomers concentration is increased, rods and heavily branched 

structures become dominant. This variation in morphology indicates that at high 

monomer concentration, anisotropic growth is favoured and isotropic growth is 

preferred only at low monomer concentration [23-26]. The change in morphology 

with pH has been previously reported for colloidal synthesis , but the trend remains 

unclear for microwave synthesis. Colloidal synthesis has been used with great 

success over the years, but long reaction times associated with this method have 

been a challenge. Hence, in the quest to finding a synthesis method that does 

reactions quicker while producing uniform particle sizes, microwave has emerged as 

an effective method to use. Microwave assisted heating is based on heating of 

materials by dielectric heating effects. When a material with a permanent dipole 

moment is exposed to an oscillating microwave field, the dipoles in the material 

will align with the field [27]. This alignment causes rotation that results in friction 
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and ultimately in heat energy.  In this way, the materials are heated homogeneously, 

which has proven to be advantageous since it produce monodispersed nanocr ystals 

in a very short time [27, 28]. This study reports on the synthesis of ZnO 

nanoparticles of various morphologies by microwave assisted heating method using 

zinc acetate dihydrate, cetyltrimethylammonium bromide and sodium hydroxide. 

The influence of the pH (base concentration) on the morphology, optical, structural 

properties and photocatalytic activity of the ZnO is reported.  
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4.2 Synthesis Procedure 

4.2.1 Chemicals and materials 

Zinc acetate dihydrate, Zn(CH3COO)2•2H2O), ≥ 98 %, and cetyltrimethylammonium bromide 

(CTAB) were obtained from Sigma Aldrich. Sodium hydroxide (NaOH), ≥ 98 %, was obtained 

at Glassworld and Rhodamine B was obtained at MAY and BAKER LTD.A Universal 320R 

sonicator (t/min = 10, RPM = 7000) was obtained from Hettich Lab Technology and a 

Microwave Reaction System, (Multiwave 3000 SOLV) was obtained from Anton Paar. All 

chemicals were used as received without any further purification. 

 

4.2.2 Synthesis of ZnO nanoparticles at different pH values 

Typically, 1.5324 g of zinc acetate dihydrate was dissolved in 37.5 mL of CTAB solution (0.1 

M) in a 100 mL beaker and stirred for 5 min. Once the zinc acetate dihydrate was dissolved, the 

pH of the solution was adjusted to the desired pH (i.e. pH 7, 10 and 14) using 0.2 M sodium 

hydroxide (NaOH). The resulting white aqueous solution was then vigorously stirred with the 

help of a magnetic stirrer for 20 min. The white aqueous precipitate was transferred into 2 

vessels and hydrothermally microwaved at 800 W for 11 min. After completion of the reaction, it 

was allowed to ambient temperature and the white powdered samples were collected by 

centrifugation. The powdered samples were washed thoroughly with deionized water and ethanol 

to remove impurities possibly remaining in the final products. Finally, the samples were dried at 

80 °C for 12 h in an oven. 

 

4.2.3 Characterization 

For characterization (UV-Vis, PL and TEM), the ZnO nanoparticles were dissolved in ethanol 

and sonicated for 10 min using a digital ultrasonic cleaner (Model: PS – 20A). The optical 

properties were determined by Photoluminescence (PL) spectroscopy using a Varian Cary 
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Eclipse EL04103870 fluorescence spectrophotometer and UV-Vis absorption spectroscopy using 

a Varian Cary Eclipse (Cary 50) UV-Vis spectrophotometer. For visualization of the sizes and 

morphology of the nanoparticles, transmission electron microscopy (TEM) was used and 

recorded using a FEI Technai T12 TEM microscope operated at an acceleration voltage of 200 

kV. TEM samples were prepared by drop-casting the ethanol diluted samples on a 300 mesh 

carbon coated copper grids. Structural properties were analysed by powder X-ray diffraction 

using a Bruker MeasSrv (D2-205530)/D2-205530 diffractometer using secondary graphite 

monochromated CoKα radiation (λ = 1.79026nm) at 30 kV/30 mA. Measurements were taken 

using a glancing angle of incidence detector at an angle of 2°, for 2θ values between 10 - 90° in 

steps of 0.026° with a step time of 37 s and at a temperature of 25 °C. The light source (solar 

simulator) used for photocatalysis was an ORIEL SOL 2A, Newport, model – 69907 with input 

power: 190-264 VAC, 50/60 Hz, 202 A (serial number – 1723). The specific surface area was 

determined from 0.2 g using a Micromeritics TriStar 3000 instruments operated at -196 °C. 

Before analysis, the samples were degassed at 150 ºC in N2for 3 h. The specific surface area was 

calculated by the Brunauer–Emmett–Teller (BET) method from N2 adsorption data in the relative 

pressure range P/P0 =0.05-0.30. Total pore volumes of the samples were calculated at a relative 

pressure range P/P0 = 0.995.  

 

4.2.4 Photocatalytic degradation of Rhodamine B 

The dye degradation experiments were conducted by preparing 500 mL stock solution of 

Rhodamine B with the desired concentration (e.g. 20 ppm). 100 mL of the stock solution was 

poured into a 200 mL cut beaker and mixed with a known mass (i.e.0.16 g) of the ZnO 

nanoparticles. The dye-nanoparticles mixture was sonicated for 30 min in the dark in order to 

ensure that the ZnO nanoparticles were well dispersed in the solution. At the end of sonication, 

the mixture was subsequently stirred for 60 min using a magnetic stirrer and a stirrer bar in order 

to allow for equilibration between the dye molecules and the nanoparticles. Before the mixture 

was exposed to solar radiation, an aliquot (~ 4 mL) was withdrawn and its absorbance measured, 

and that aliquot was labelled as ‘time zero’, which meant before exposure to light. The progress 

of degradation was monitored using the following equation (eq. 4.5): 
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Ct

C0
× 100 %                      eq. (4.5)  

Where Ct refers to the concentration of the dye after a certain time of irradiation and C0 refers to 

the concentration of the dye before irradiation. The light was then switched on and constantly 

irradiated on the mixture that was continuously stirred. Aliquots were then subsequently 

withdrawn at 30 min intervals and their absorbance determined. The progress of the degradation 

was monitored by the change in the absorbance of the excitation peak (553 nm) of Rhodamine B 

using UV-Vis absorption spectroscopy. The pH of the dye solution was measured using a Starter 

3100 pH Bench. The distance between the dye solution and solar simulator was 12 cm. 
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4.3 Results and Discussion 

4.3.1 Structural properties 

Figure 4.1 displays the PXRD patterns of ZnO nanoparticles synthesized at pH 7, 10 and 14. The 

diffraction peaks in the pattern of the nanoparticles for pH 7 and 10 were indexed to the 

hexagonal wurtzite phase of zinc oxide with the lattice constants a = 3.250 Å and c = 5.199 Å, 

space group P63mc, which was in good agreement with the standard card (JCPDS – 01-080-

0074). The diffraction peaks for the nanoparticles synthesized at pH 14 were indexed to the 

hexagonal zincite phase of zinc oxide (JCPDS – 01-070-2551), space group P63mc, with the 

lattice constants a = 3.250 Å and c = 5.207 Å.  

 

Figure 4.1: PXRD patterns of the ZnO nanoparticles synthesized at (a) pH 7, (b) pH 10, 

and (c) pH 14. 

20 40 60 80

 

 

In
te

n
s

it
y

 (
a

.u
)

2(degrees)

(a) pH 7

(b) pH 10

(c) pH 14

(1
0

0
)

(0
0

2
) (1

0
1

)

(1
0

2
)

(1
1

0
)

(1
0

3
)

(1
1

2
) (2
0

1
)

(1
0

4
)

(0
0

4
)



104 
 

The good crystallinity of the synthesized ZnO nanoparticles was confirmed by the sharpness and 

the high intensity of the peaks. No peaks were correlated to any other phase, which indicated that 

the nanoparticles synthesized were free of any impurities. There is a small noticeable difference 

in values of the lattice constants, with the nanoparticles prepared at pH 7 and 10 having lattice 

constant c = 5.199 Å, while that of the nanoparticles at pH 14 was found to be longer at c = 

5.209 Å. The increase in the length of the lattice constant can be attributed to the formation of 

rods that are oriented along the c-axis. An increase in the relative intensity of the (101) peak 

specifically for the nanoparticles synthesized at pH 14 indicated the presence of many planes 

along the c-axis of the ZnO nanoparticles [29]. 

The variation in the morphology of ZnO nanoparticles as the pH of the precursor solutions was 

altered is shown in Figure 4.2(a–c). A systematic morphological variation of the ZnO 

nanoparticles was observed as it changed from pseudo-spherical (Figure 4.2(a)), to bullet-like 

(Figure 4.2(b)), and further to rod-like (Figure 4.2(b)) morphology as the pH was varied from 7, 

10 and 14, respectively. The trend observed was a change in the preferred growth direction as the 

pH was increased from neutral conditions (i.e. pH 7) to more basic conditions (i.e. pH 14). At 

neutral conditions, pseudo-spherical nanoparticles were formed, indicating that isotropic growth 

was favoured [30]. As the pH was increased to 10 and 14, it was observed that the preferred 

growth direction showed a deviation from isotropic growth (i.e. pseudo-spherical nanoparticles) 

into more anisotropic growth (i.e. bullet- and rod-like nanoparticles) [31]. 

 

Figure 4.2: TEM micrographs of the different morphologies of ZnO nanoparticles 

synthesized at (a) pH 7, (b) pH 10, and (c) pH 14. 
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The change in the growth nature of the ZnO nanoparticles could be explained by looking at the 

concentration effects of OH
- 
and H

+
 ions on the growth mechanism [32, 33]. At medium pH 

values, (i.e. pH = 7), the H
+ 

ions effective density was expected to be higher as opposed to very 

high pH values. The presence of sufficient concentrations of H
+
 in the precursor solution can 

prohibit the condensation and hydrolysis processes that took place during the 

growth process, which resulted in the polycondensation process forming smaller and 

fewer Zn(OH)4
2- 

aggregates [34, 35]. The presence of low concentrations of the 

monomer was not sufficient to sustain anisotropic growth, as it requires the 

presence of abundant monomers. The high concentration of the H
+ 

ions preferably 

reacted with the OH
- 
ions thus inhibiting growth along the [0001] plane (c-plane), favouring 

isotropic growth of the pseudo-spherical crystals. As the pH was increased by the addition of 

NaOH, the concentration of the H
+ 

ions were decreased. The change in the dominant 

type of ions in the reaction medium from H
+ 

to OH
-
 ions resulted in high rates of 

hydrolysis and polycondensation processes, which form ed larger and many 

Zn(OH)4
2- 

aggregates that promoted growth along the [0001] plane (c-axis)as 

confirmed by PXRD [34, 35]. Favoured growth along the  [0001] direction (c-axis) 

formed anisotropic crystals such as bullets and rods. The inset in Figure 3.2(c) 

shows the plate-like nanoparticles (red arrow) that occurred in conjunction with the 

rod-like nanoparticles as the pH was increased to 14. At pH = 14, the effective OH
-
 

ions density was increased and that resulted in unselective and uncontrollable 

condensation/hydrolysis processes. This resulted  in the formation of larger particles 

(sheet-like), with no preferred growth direction, and rods that are interconnected to 

form branched like structures [34-37]. The possible growth mechanism for the 

branched like nanoparticles is shown in Figure 4.3.  
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Figure 4.3: Possible growth mechanism of the aggregated rod like 

nanostructures. 

The reaction between Zn(CH3COO)2•2H2O and NaOH produces the Zn(OH)4
2- 

precipitate, 

which is transformed to ZnO upon exposure to heat. During the reaction, the rods 

grow and come into contact with one another. At the surface of the rods where 

contact occurs, nucleation takes place resulting in the formation of branched 

nanostructures [38]. Similar observation, that is, the formation of branched 

structures and flowers from nanorods has been observed previously by Jiang et al.  

[39]. A closer look at the ends of the rod-like nanoparticles (Figure 4.2(c)) reveals 

that they have tapered tips (blue arrow). This behaviour can b e explained by the two 

processes, mass transport and dissolution, which are involved during crystal growth 

[40-42]. In the presence of sufficient monomers, mass transport dominates and 

promotes diffusion of the monomers into already formed crystal nuclei, allowing for 

further growth. As the reaction proceeds, the concentration of the Zn(OH)4
2-

 

monomers is reduced, and the effects of dissolution, which involves the removal of 

precursor components such as atoms, ions and molecules to the already formed crystal nuclei 

dominates [43-45]. The dissolution along the polar [0001] plane results to tapered ends. Peng 

[46] reported that in a given reaction medium, the required monomer concentration decreases in 

the following order: branched structures, rods, rice grains, and the dots. This means that 

decreasing the concentration of the monomers in the reaction medium, elongated shapes (e.g. 

rods) can be converted into dots if the monomer concentration is not sufficient. Also, dot shapes 

can be converted into elongated shapes at high monomer concentration [46]. SEM analysis 

(Figure 4.4) was performed to further confirm the morphological variation of ZnO because of 

pH.  
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Figure 4.4: SEM images of the different morphologies of ZnO nanoparticles synthesized at 

(a) pH 7, (b) pH 10, and (c) pH 14. 

 

The ZnO nanoparticles synthesized at pH 7 (Figure 4.4(a)) showed a pseudo spherical 

morphology. The sample is composed primarily of particles of nanometric sizes that are highly 

dispersed. Most of the nanoparticles have poorly defined crystal edges which resemble 

hexagonal shape. The nanoparticles synthesized at pH 10 (Figure 4.4(b)) showed bullet like 

nanoparticles that are monodispersed. Figure 4.4(c) shows the flower like morphology of the 

nanoparticles synthesized at pH 14. The morphology is made of rod like nanoparticles that have 

agglomeratedsuch thatthe form a flower like structure. SEM analysis has therefore provided 

conclusive evidence that varying the pH of the precursor solution during synthesis result in 

changes to the morphology of ZnO   

The specific surface area is an important structural parameter of nanoparticles and 

is highly dependent on the morphology. In this study, the variation in the surface 

area is easy to understand. The BET surface area of the pseudo -spherical, bullets 

and rods were found to be 14.73, 10.05 and 8.43 m
2
.g

-1
, respectively. Such results 

show an improved N2 adsorption ability by the different morphologies and the 

highest surface area for the pseudo-spherical nanoparticles.   

  

 

 

(a) (b) (c)
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4.3.2 Optical properties 

Using room temperature UV-Vis absorption and photoluminescence spectroscopy, the optical 

properties of the ZnO nanoparticles synthesized at different pH values were examined and are 

demonstrated in Figure 4.5 and 4.6. In the UV-Vis absorption spectra, exciton peak was observed 

for all the different morphologies, an absorption edge at ~ 388 nm was observed for all, which is 

characteristic of bulk hexagonal wurzite phase of ZnO. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Room temperature absorption spectra of ZnO nanoparticles synthesized at 

different pH values. 

The results obtained were found to be different and as such, a difference was 

expected in the absorption edge due to the size and morphology differences, which 

wasn’t observed in UV-Vis results. The expectation was that the absorption edges 

of the smaller sized (i.e. higher surface area) nanoparticles were  going to be blue 

shifted relative to those with larger sizes (i.e. lower surface area). It was presumed 
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that the reason this difference were not detected was because the difference in the 

nanoparticles was not so large to such an extent that a shift is observed. This 

phenomenon occurs when the nanoparticles are in the weak quantum confinement 

regime, which means that even though they differ from each other, they still ex hibit 

optical properties which resemble those observed in their bulk counterpart [47]. A 

small degree of tailing was observed on the spectra of the different nanoparticles, 

which indicated that the nanoparticles were polydispersed. Contrary to the results 

obtained from UV-Vis absorption spectroscopy, a noticeable difference in the 

emission wavelength for the different morphologies was observed in the PL results 

as demonstrated in Figure 4.6. 

 

 

 

 

 

 

 

 

 

 

 

 

4.6: Room temperature emission spectra and of the ZnO nanoparticles synthesized at 

different pH values. 
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pseudo-spherical nanoparticles relative to the bullet - and rod like nanoparticles 

350 400 450 500

 pH = 7

 pH = 10

 pH = 14

 

 

In
te

n
s

it
y

 (
a

.u
)

Wavelength (nm)



110 
 

which displayed emission maxima at 392, 397, and 399 nm, respectively. Although 

not significant, the blue shift of the emission wavelength relative to one another 

confirms the different sizes which were confirmed by the measured surface areas 

and TEM. Similarly to the explanation given in UV-Vis absorption spectra, it is 

assumed that the weak quantum confinement regime in the nanoparticles 

synthesized at different pH still dominates and hence the small variation in the 

emission wavelength was observed [47].  It is proposed that the small shift observed 

in PL was not observed in UV-Vis due to the fact that different techniques have 

different sensitivity in detecting small change in the property of a particular 

material. In this case, PL was the more sensitive technique able to reveal the blue 

shift as the morphology of the nanoparticles was changed.   

The broadness of the peaks (i.e. large FWHM) in the spectra speaks to the 

polydispersed nature of the nanoparticles. An anomaly is observed with the 

emission wavelengths observed in PL as they are red shifted compared to the bulk 

ZnO emission wavelength of 388 nm this anomaly was  attributed to the fact that 

since the size of the nanoparticles were much larger than the exciton Bohr radius of 

bulk ZnO the quantum size effect is very small to be observed [48]. Secondly, 

synthesis of nanoparticles using capping agents allows for presence of oxygen 

vacancies in the crystal structure of ZnO. The interaction between the capping 

agents and the interstitial oxygen vacancies promotes formation of trapped states. 

The trapped states form a series of energy level that are metastable within the band 

gap. The metastable energy levels promote red -shift of the band gap of ZnO [48].  

 

4.4 Photocatalytic degradation of Rhodamine B 

To show the dependence of photocatalytic activity of ZnO on morphology, the photocatalytic 

degradation of Rhodamine B was assessed by testing the activity of the pseudo-spherical, bullet- 

and rod-like nanoparticles. Time-dependent UV-Vis of Rhodamine B obtained during the 

degradation experiment conducted using the ZnO nanoparticles synthesized at pH 14 (i.e. rod-

like particles) are shown in Figure 4.7. The absorbance of the absorption peak located at 553 nm 
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decreased as the dye solution was being exposed to light, and diminished after 210 min, which 

indicated that the dye molecules had been degraded. Apart from the decrease in absorbance, the 

shade of the pink colour of Rhodamine B changed with time until it was colourless. This colour 

change was also indicative of the removal of the dye molecules in the solution. All other 

morphologies followed a similar trend.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Typical UV-Vis spectra changes of Rhodamine B (20 ppm, neutral water pH) 

upon irradiation in the presence of ZnO (160 ppm) nanoparticles synthesized at pH 14. 

 

 

 

 

 

400 450 500 550 600 650

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 

 

A
b

s
o

rb
a

n
c

e
 (

a
.u

)

Wavelength (nm)

 0 min

 30 min

 60  min

 90 min

 120 min

 150 min

 180 min

 210 min



112 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: The % degradation versus irradiation time plot for the pseudo-spherical, 

bullet- and rod-like nanoparticles. 

Figure 4.8 shows that the three different morphologies (i.e. pseudo-spherical, bullets and rods) 

were all able to degrade the dye but at slightly different rates. The pseudo-spherical, bullet and 

rod-like nanoparticles took 150, 180 and 210 min to completely degrade the dye, respectively. 

This difference in the photocatalytic activity of the different morphologies can be explained 

based on surface area and the proportion of exposed polar surfaces on the surface of ZnO. In this 

study, it was observed that the nanoparticles with the smallest aspect ratio (length of rod/rod 

diameter), being the pseudo-spherical nanoparticles, showed the highest efficiency in degrading 

the Rhodamine B dye. This showed that there was a size effect that influenced the rate of 

degradation. The BET results gave specific surface areas of 14.70, 10.05 and 8.430 m
2
.g

-1
 for 

the, pseudo-spherical, bullets and rod-like nanoparticles, respectively. Nanoparticles with a high 

surface area are known to be more catalytically active due to the high amount of active sites that 

are readily available to degrade the dye molecules in solution. Another important factor that 
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hasn’t been reported extensively in literature is the effect of certain crystal facets that are present 

in different morphologies of the nanoparticles [49-51]. Rod-like nanoparticles grow along the c-

axis and are composed mainly of non-polar facets that are parallel to the c-axis. 

Spherical/hexagonal nanoparticles on the other hand undergo lateral growth and are composed 

mainly of polar facets that are perpendicular to the c-axis [52, 53]. Each of these morphologies 

differs from one another by the proportion of the [0001] and [000-1] polar facets that are exposed 

on the surface of ZnO crystals. Figure 4.9 clearly shows that the spherical/hexagonal 

nanoparticles have a higher proportion of polar [0001] and [000-1] facets than the bullet- and 

rod-like nanoparticles. The [0001] and [000-1](γ
0
(0001-Zn) = 2.49±0.0063, γ

0
(000-1-O) =  1.35 

±0.0063) facets of ZnO have the highest surface energy than any other facets in ZnO 

nanocrystals [53].  

 

Figure 4.9: The dominant facets present on the surface of ZnO with different morphologies 

(modified from [53]). 

This high surface energy means that the OH
-
 ions can be easily adsorb onto the [0001] face 

because of its positive charge caused by the high surface energy. The OH
- 
ions are the ones that 

have to come into contact with the surface of ZnO nanoparticles in order to be converted in OH• 

species that are responsible for degrading with the dye molecules [53, 54]. The high 

photocatalytic activity of the pseudo-spherical ZnO compared to the bullet- and rod-like 

nanoparticles is therefore attributed to both high surface area and large proportion of polar 

surfaces present. The rod-like nanoparticles that have a high aspect ratio (length of rods/rods 

Decreasing proportion of polar faces [0001] at the surface of ZnO 
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diameter) were the least effective in the degradation of Rhodamine B. Results obtained by Li et 

al. [55], provided a new way to look at the effect of morphology on photocatalytic activity [55]. 

They reported a good correlation between the amount of surface oxygen vacancies and the 

proportion of exposed polar surfaces on the surface of ZnO. Presence of high content of oxygen 

vacancies allow for good electron-hole pair separation because of the ability of oxygen to trap 

the photogenerated electrons. The rapid charge recombination is a drawback in ZnO and hence 

introducing a potential well for the electrons aids high photocatalytic activity [55]. In another 

study reported by Mclaren et al. [56], they found that the plate-like particles were ˃ five times 

more efficient in degrading methyl blue than rod-like particles [56]. They attributed the high 

photocatalytic activity of the plate-like particles to be due to the presence of high proportions of 

the [0001] and [000-1] facets which are more active than the non-polar (100) and (101) facets 

dominating in rod-like particles [58].   

The kinetic study of the photocatalytic degradation of Rhodamine B using as-synthesized ZnO 

was investigated with the Langmuir–Hinshelwood kinetic model, which also covers the 

adsorption properties of the substrate on the photocatalyst surface [59]. The equation is 

represented as follows: 

𝑅𝑎𝑡𝑒 =  
𝑑𝐶

𝑑𝑡
=  𝑘

𝐾𝐶

1+𝐾𝐶
                       eq. 4.6   

Where C is the concentration of Rhodamine B at the irradiation time, k the reaction rate constant, 

and K is the degradation coefficient of the reactant. Where k′ is the apparent rate constant. A plot 

of ln (C0/C) versus time results in a straight line; its slope is the pseudo first- order degradation 

rate constant (Kapp) [59, 60]. The experimental data obtained in the kinetic study of Rhodamine B 

degradation when different ZnO photocatalyst morphologies were used was fitted with the 

Langmuir–Hinshelwood kinetic model. The results obtained are illustrated in ANNEXURE A. 

The plots of the data gave a straight line, showing that the photocatalytic degradation of 

Rhodamine B can be described by the pseudo-first-order kinetic model [59]. The correlation 

coefficient constant for the fitted line and the rate constants are graphically obtained 

(ANNEXURE A) and their values are represented in table 4.1. 
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Table 4.1: Rate constants for photocatalytic degradation of Rhodamine B using different 

ZnO morphologies. 

 

 

Morphology 

 

Initial 

concentration 

(ppm) 

ZnO 

concentration 

(ppm) 

Kapp R
2 

Pseudospherical 20 160 0.022 0.968 

Bullets 20 160 0.020 0.966 

Rods 20 160 0.018 0.981 

     

 

The rate constant for the degradation of Rhodamine B using the different morphological forms 

confirm that the rate at which the pseudo-spherical nanoparticles degraded the dye molecules 

was faster compared to the bullets and rod-like nanoparticles.    
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4.5 Conclusion 

This study showed that the application of an easy and quick microwave assisted heating method 

for the synthesis of pure ZnO nanoparticles of various controlled morphologies and their activity 

in photocatalysis. A methodical investigation of the effect of pH on the morphology showed that 

the pH of the precursor solution has a significant influence on the structural properties of ZnO 

nanoparticles. Small pseudo-spherical nanoparticles were formed at pH 7 and changes were 

observed when the pH was increased to 10 and 14, resulting in bullet- and rod-like nanoparticles. 

On the basis of microscopic (TEM) results, it can be concluded that the morphology/size of the 

ZnO nanoparticles can be manipulated by varying the pH of the precursor solution. 

Compositional analysis (PXRD) showed that the synthesized ZnO nanoparticles were pure and 

were highly crystalline. Furthermore, the results from UV-Vis absorption and photoluminescence 

spectroscopy showed that the as-synthesized ZnO nanoparticles possessed good optical 

properties, which are comparable to those observed in bulk ZnO. The surface area influenced the 

photocatalytic activity with the nanoparticles having the highest surface area being more efficient 

in degrading Rhodamine B. Apart from higher surface area resulting in high degradation rates; it 

was proposed that the type of facets that are exposed on the different ZnO morphologies played a 

role in influencing the rate of degradation. The morphology with more polar facets ([0001] and 

[000-1]) was more photocatalytically active than the morphologies composed dominantly of 

polar facets (100).  
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Chapter 5: Effect of reaction time on the size, morphology and 

photocatalytic activity of ZnO nanoparticles. 

5.1 Introduction 

Scientists have been fascinated by the ability to prepare mono-dispersed nanoparticles of specific 

sizes ever since Faraday prepared gold solutions composed of various colours in 1857 [1].Since 

then, researchers have attempted to synthesize various morphological forms such as spheres, 

rods, flowers, belts, and disks with sizes ranging from a few nanometres to several micrometres 

[2-4]. The drive behind this is not only to achieve morphological and size diversity, but also to 

get a better understanding of the underlying principles that allow for the formation of a distinct 

morphology and the different properties associated with the various synthetic materials [6, 7]. In 

any synthetic products that are produced, it is important to find a plausible growth mechanism 

that led to the formation of that particular morphology or size [5].  

Previously accepted descriptions of particle growth have been focused on the Ostwald ripening 

mechanism. According to this mechanism, nucleation causes the formation of very small nuclei 

in a reaction medium that has reached supersaturation. Once the critical cluster size has been 

ascertained, growth proceeds through addition and removal of precursor components such as 

atoms, ions and molecules to the already formed crystal nuclei through processes known as mass 

transport and dissolution. The rate of removal of precursor components from an already formed 

particle is said to increase rapidly for smaller particles. As a result, in a reaction medium made 

up of different sized particles, the large particles tend to grow at the expense of the smaller ones 

forming much larger particles [8-10].  

Due to the simplicity of the Ostwald ripening mechanism, it was generally accepted as a 

plausible way to look at the growth of spherical crystals. More advanced research has managed 

to produce more complex shapes (e.g. rods, bullets, disks, etc.) whose growth process cannot be 

easily explained using the Ostwald ripening mechanism. This meant that crystal growth took 

place using other mechanisms [11]. One plausible mechanism that has been proposed is called 

oriented attachment. This mechanism is based on the idea that when particles that are close to 
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each other and oriented along the same crystallographic direction, they can change their 

orientation spontaneously and rearrange in such a way that they are able to coalesce, resulting in 

further growth.  

Nanocrystals grown in this way commonly show a great deal of anisotropic growth characterized 

by shapes that are highly irregular. In the case where the nature of the orientation occurs in an 

orderly fashion, larger single crystals may be formed through aggregation of primary particles 

[8-11]. In the case where surface area is important, such as when the synthesized nanoparticles 

have to be used as photocatalysts, the formation of larger particles reduces the photocatalytic 

activity of the nanoparticles. Hence, it became important to put in an effort to synthesize 

different sizes of ZnO nanoparticles and study the effect that the size of the ZnO nanoparticles 

had on the photocatalytic activity. Herein, we report on the synthesis of ZnO nanoparticles using 

microwave assisted heating method. The effect of different heating conditions on the size, 

morphology and photocatalytic activity of the ZnO nanoparticles on the degradation of 

Rhodamine B has been evaluated. Various methods such as sol-gel, CVD and colloidal synthesis 

methods have been previously used to produce ZnO. These methods are however associated with 

long reaction times and high temperatures. In the quest to finding a synthesis method capable of 

reducing reaction times while producing uniform particle sizes, microwave has emerged as an 

effective method to use [12]. Microwave heating method is based on heating materials by 

dielectric heating effects. When a material that has a permanent dipole is exposed to an 

oscillating microwave field, the dipoles in the material will align with the field. This alignment 

causes rotation that results in friction, and ultimately in heat energy [13, 14].  
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5.2 Synthesis procedure 

5.2.1 Chemicals and materials 

Zinc acetate dehydrate (Zn(CH3COO)2•2H2O), 98 %, was obtained from Sigma Aldrich, 98 % 

sodium hydroxide (NaOH) from Glassworld and reagent grade urea (CO(NH2)2) was obtained 

from Promark Chemicals. Rhodamine B was obtained at MAY and BAKER LTD.A Universal 

320R sonicator (t/min = 10, RPM = 7000) was obtained from Hettich Lab Technology and a 

Microwave Reaction System, (Multiwave 3000 SOLV) was obtained from Anton Paar. All 

chemicals were used as received without any further purification. 

 

5.2.2 Synthesis of ZnO nanoparticles 

ZnO was synthesized using a simple microwave (MW) assisted heating method. Zinc acetate 

dehydrate was dissolved in 37.5 mL of deionized water in a 100 mL beaker to make a 0.1 M 

solution. About 0.6 g of urea was dissolved separately in 10 mL deionized water and added to 

the 0.1 M zinc acetate dihydrate solution in order to aid the hydrolysis of the Zn
2+

 cations. The 

mixture was then adjusted to pH 10 using 0.2 M NaOH, which resulted in the formation of a 

white aqueous precipitate [1]. The precipitate was then vigorously stirred with the help of a 

magnetic stirrer for 20 min at room temperature. The white aqueous precipitate was transferred 

into two vessels and hydrothermally microwaved at 400 W (5 min step time) for 30 min until the 

final temperature reached 200 °C, this sample was denoted as ‘time 30’. Using the same method, 

four other samples were synthesized by varying the microwave power which resulted in reaction 

times of 18, 15, 11 and 8 min. These products were denoted as time 18, 15, 11 and 8, 

respectively. The time differences were achieved as follows: time 18 and 15 were synthesized at 

MW powers of 600 and 800 W, respectively, using a 5 min step time. Time 11 was synthesized 

at MW power of 800 W with 1 min step time. Lastly, time 8 was first heated to 50 °C using a hot 

plate then microwaved at 800 W with 1 min step time. After completion of the reaction, the 

resulting white powder was allowed to naturally cool to room temperature and was collected by 

centrifugation. The powdered samples were then washed thoroughly with deionized water and 
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ethanol to remove impurities possibly remaining in the final products. Finally, the samples were 

dried at 80 °C for 12 h using an oven. 

 

5.2.3 Photocatalytic degradation of Rhodamine B 

Typically, the dye degradation experiment was conducted by preparing 100 mL solution of 

Rhodamine B (i.e. test dye) with the desired concentration (i.e. 20 ppm) in a 200 mL beaker and 

mixed with a known concentration (160 ppm) of the ZnO nanoparticles. The dye-photocatalyst 

mixture was sonicated for 30 min in the dark in order to ensure that the ZnO nanoparticles were 

well dispersed in the solution. At the end of sonication, the mixture was subsequently stirred for 

60 min using a magnetic stirrer and a stirrer bar in order to allow for equilibration between the 

dye molecules and the photocatalyst. Before the mixture was exposed to solar radiation, an 

aliquot was withdrawn and its absorbance measured, and that aliquot was labelled as ‘time zero,’ 

which meant before exposure to light. The progress of degradation was monitored using the 

following equation: 

Ct

𝐶0
× 100%                        eq. (5.1) 

Where Ct refers to the concentration of the dye after a certain time of irradiation and C0 refers to 

the concentration of the dye before irradiation. The light was then switched on and constantly 

irradiated on the mixture that was continuously stirred. Aliquots were then subsequently 

withdrawn at 30 min intervals and their absorbance determined. Each aliquot (~ 4 mL) was 

collected using a 10 mL syringe fitted with a 0.2 µm syringe filter. The syringe filter was used to 

ensure that no residual ZnO nanoparticles were in the aliquot during the analysis of the dye 

solution. The progress of the degradation was monitored by the change in the absorbance of the 

excitation peak (553 nm) of Rhodamine B using UV-Vis Spectroscopy. 
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5.2.4 Characterization 

Prior to characterization, the ZnO nanoparticles were dissolved in ethanol and sonicated for 10 

min using a Digital ultrasonic cleaner (Model: PS–20A). The optical properties were determined 

by photoluminescence (PL) spectroscopy using a Varian Cary Eclipse EL04103870 fluorescence 

spectrophotometer and UV-Vis absorption spectroscopy using a Varian Cary Eclipse (Cary 50) 

UV-Vis spectrophotometer. For visualization of the sizes and morphology of the nanoparticles, 

Transmission Electron Microscopy (TEM) was used and recorded using a FEI Technai T12 TEM 

microscope operated at an acceleration voltage of 120 kV. TEM samples were prepared by drop-

casting the ethanol diluted samples on a 300 mesh copper grids. Structural properties were 

analysed by Powder X-ray Diffraction using a Bruker MeasSrv (D2-205530) diffractometer 

equipped with a secondary graphite monochromated CoKα radiation (λ = 1.79026 nm) at 30 

kV/30 mA. Measurements were taken using a glancing angle of incidence detector at an angle of 

2°, for 2θ values between 10-90° in steps of 0.026° with a step time of 37 seconds and at a 

temperature of 25 °C. The light source (solar simulator) used for photocatalysis was an ORIEL 

SOL 2A, Newport, model – 69907 with input power: 190-264 VAC, 50/60 Hz, 202 A (serial 

number – 1723).  
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5.3 Results and Discussion 

5.3.1 Structural properties 

To determine the crystal phase and crystallinity of the nanoparticles synthesized at various 

periods (i.e. 8, 11, 15, 18, and 30 min), PXRD analysis was performed and the results are shown 

in Figure 5.1. All the nanoparticles were single phase compounds as they could be matched to 

the hexagonal phase of ZnO as reported in the JCPDS [15] database as shown in Table 5.1. The 

strong and sharp peaks of the different nanoparticles showed that they were highly crystalline. 

There were no additional peaks in the diffractograms which indicated that the crystalline ZnO 

nanoparticles were the sole component synthesized with no impurities present. Varying the 

reaction time had no significant influence on the crystal structure of the nanoparticles as there 

were no significant differences in the position of the peaks for all the difference samples. 

However, there were slight differences in the full width half maximum values (FWHM) as 

shown in Table 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: PXRD diffractograms of ZnO nanoparticles prepared at different reaction 

times using microwave assisted heating. 
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Table 5.1: Corresponding PXRD data of the different ZnO. 

Reaction 

time 

Compound  

name 

Card 

number 

FWHM  (10
-3

) 

(radians) 

Crystallite 

Size (nm) 

8 Zincite, Syn 01-070-2551 8.64 20.0 

11 Zincite, Syn 01-070-2551 6.21 27.8 

15 Zincite, Syn 01-070-2551 5.47 31.6 

18 ZnO 01-079-2205 5.45 31.7 

30 ZnO 01-079-2205 4.35 39.7 

 

The difference in the FWHM is characteristic of the size of the nanoparticles [16]. It has been 

reported that the internal reflections that occur within a system (i.e. ZnO) due the smaller sized 

nanoparticles are capable of promoting intense spreading of the diffraction peaks [17].This 

principle is supported by the size of the crystallites (Table 5.1) calculated using the Scherrer’s 

equation (eq. 5.2): 

 D = 0.9λ/βCosθ                           eq. (5.2) 

Where D is the crystallite size, λ the wavelength of Co Kα radiation (0.179026 nm), β the full-

width half maximum (FWHM) of the most intense peak (101 plane) in the diffraction pattern, θ 

is the angle which is obtained from the 2θ corresponding to the (101) plane (maximum intensity 

peak) in radians. The increase in particle size with increasing reaction time is indicative of 

coalescence occurring during the course of the reaction resulting in larger nanoparticles. Overall, 

the microwave assisted heating route comes with the benefit of obtaining pure ZnO nanoparticles 

at both short and long reaction times. 
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TEM micrographs of the ZnO nanoparticles synthesized at different reaction times are illustrated 

in Figure 5.2. The sizes of the nanoparticles (N = 100) were determined using ImageJ. The 

diameter of the nanoparticles was reported for hexagonal nanoparticles and for bullet-like 

nanoparticles both the width and length are reported. For reaction time of 8 min, the average 

length and width of the bullet-like nanoparticles was 158 and 80 nm, respectively, while the 

hexagonal nanoparticles had an average diameter of 69 nm. At 11 min reaction time, the average 

length and width of the bullet-like nanoparticles was found to be 87 and 165 nm, respectively, 

with the hexagonal nanoparticles having an average diameter of 92 nm. The mean nanoparticles 

diameter was found to be 91, 168, 332 nm for the hexagonal nanoparticles synthesized for 15, 18 

and 30 min, respectively. From the calculated dimensions of the nanoparticles, a positive 

correlation between the size of the ZnO nanoparticles and the reaction time was observed. The 

size of the ZnO nanoparticles increased as the reaction time increased and decreased as the 

reaction time was decreased. 
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Figure 5.2: TEM micrographs of the ZnO nanoparticles synthesized for (a) 8, (b) 11, (c) 15, 

(d) 18, and (e) 30 min via microwave assisted heating. 

The reason for this observed trend is because longer reaction time allows enough time for the 

precursor components to diffuse to the interface of the particles that are already growing, 

resulting in further growth. Also, the diffusion process is limited at fast reaction, therefore, 

already existing particles don’t have enough time to aggregate and form larger particles [18–20]. 

It was observed that the naturally preferred growth of ZnO to form a rod-like morphology (i.e. 

growth along the c-axis was hindered for shorter reaction times and resulted in the formation of 

hexagonally shaped particles. However, the growth along the c-axis was preferred when reaction 

was ran for longer, resulting in a bullet-like morphology. The hindrance of the growth rate along 

the c-axis resulted in the formation of hexagonal ZnO structures when the microwave power was 

set to 400, 600, 800 W at 5 min step time (30, 18 and 15 min reaction times). A slight change in 

the morphology, from solely hexagonal nanostructures to a mixture of hexagonal and bullet 

shaped nanostructures, was observed when the microwave power was set to 800 W at 1 min step 

(a) (b)

(e)(d)

(c)
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time (8 and 11 min reaction times). The reason for this change in morphology can be explained 

in terms of the surface energy of the initially formed crystallites and viscosity changes in the 

reaction mixture. It is postulated that when the heating rate is increased rapidly enough energy is 

supplied to the reaction mixture to allow for burst of crystal nuclei in the reaction medium [21]. 

As the particles begin to grow, they do so quickly such that smaller sized particles are abundant 

in the reaction mixture. Smaller sized particles possess high surface energy and hence will 

undergo self-organization that will lead to reduced surface energy via oriented attachment. The 

fusion of the hexagonal particles sharing a common crystallographic orientation leads to the 

formation of the bullet-like morphology [22, 23]. Another plausible reason is that when the 

temperature of the aqueous mixture increases rapidly, it causes a rapid decrease in the viscosity 

of the reaction medium, which in turn allows more collision of the initially formed crystallites. 

The decreased viscosity causes the water medium to be unstable, making it easy for the ZnO 

crystallites to undergo aggregation [24]. In a study done by Taung et al. [24] on the synthesis of 

TiO2, they noticed through careful observation, that the diameter of the smallest nanorods was 

comparable to the diameter of the spherical particles [25]. This served as an indication that the 

formation of nanorods occurred through nucleation growth of the smaller spherical nanoparticles 

[25]. This observation agrees with the results in this study as it was also noted that the smallest 

nanobullets had a width that is comparable to diameter of the smallest hexagonal nanoparticles. 

It is important to note that there is a significant difference between the sizes estimated using the 

Scherrer’s equation and TEM. This difference may be due to the fact that when using the 

Scherrer’s equation, it calculates the size of individual crystallites, while TEM gives the size of 

individual grains that may have formed as a result of the particles that aggregated during growth 

because of the high-energy nature of nanometric crystals [26]. 

 

5.3.2 Optical properties 

The UV-Vis absorption spectra of the ZnO nanoparticles are shown in Figure 5.3. The spectra 

display strong absorption peaks in the range 374–378 nm (3.32–3.28 eV), which are attributed to 

electronic transitions between the valence and conduction band characteristic of pure hexagonal 

ZnO phase. 
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Figure 5.3: The UV-Vis absorption spectra of the as synthesized ZnO nanoparticles. 

The absorption peaks in the range of 374-378 nm are slightly blue shifted from that of the 

exciton state in the bulk which occurs at wavelength of ~ 387 (3.33 eV) [27]. This blue shift is 

not too significant for the different sizes as also observed in the PL spectra. The shift to lower 

absorption wavelength as the size of the particles is decreased is known as quantum confinement 

[28]. However, this phenomenal has been mainly reported for particles with sizes that are nearly 

equal to the Bohr radius of the nanocrystals, which is not the case in our study whereby the 

smallest nanocrystals are much larger (≥ 20 nm) than the Bohr radius of ZnO (2.34 nm). This 

discrepancy of applying the term ‘quantum confinement’ only to quantum dots has been recently 

described as inaccurate and has in turn led to the introduction of regimes of quantum 

confinement based on the ratio between the nanocrystals (R) and the bulk exciton-radius (aB) 

[28]. Under the weak regime of quantum confinement observed in this study, the changes in 

electronic and optical properties due to particle sizes are not as pronounced and therefore 

resemble those observed in bulk materials. The presence of this absorption peak alone in the 

spectrum support the high purity of the synthesized nanoparticles as observed in PXRD 

diffractograms. 
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Room-temperature PL spectra (Figure 5.4) of ZnO nanoparticles were obtained using an 

excitation wavelength of 290 nm  in order to get a better understanding of the optical properties 

of the synthesized nanoparticles. 
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Figure 5.4: PL spectra of ZnO synthesized over 8, 11, 15, 18 and 30 min reaction time via 

microwave assisted synthesis. 

The PL spectra of the as-synthesized ZnO nanoparticles all showed well defined broad peaks in 

the range of 391–398 nm that are characteristic of pure bulk ZnO. As the reaction time was 

reduced, the emission peak wavelength slightly moved to lower wavelength (blue shifted) as 

indicated by the red dotted line in Figure 5.4 (illustrating the top most position of the peaks 

relative to the one for the nanoparticles synthesized at 8 min). This was postulated to be due to 

the size differences between the nanoparticles. The broadness of the peaks (i.e. large FWHM) in 

the spectra speaks to the polydispersed nature of the nanoparticles. 
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5.4 Photocatalytic degradation studies 

A typical time-dependent UV-Vis spectrum of Rhodamine B obtained during the degradation 

experiment conducted using the ZnO nanoparticles synthesized for 8 min is shown in Figure 5.5 

(a). The absorbance of the absorption peak located at 553 nm decreased as it was being exposed 

to light, and diminished after 120 min which indicated that the dye molecules had been degraded. 

The change in concentration (i.e. absorbance) of the dye during irradiation is represented as the 

% degradation which was calculated as ratio of the dye concentration after certain amount of 

time of irradiation (Ct) to the dye concentration before irradiation multiplied by 100 (
Ct

C0
 × 100 

%). The time-dependent changes in the concentration of Rhodamine B solutions when they were 

irradiated in the presence of the ZnO nanoparticles synthesized at different reaction times (8, 11, 

15, 18 and 30 min) are shown in Figure 5.5. The decrease in the concentration of the dye (% 

degradation) during photocatalysis using the as-synthesized ZnO was an indication that they 

were all photoactive. 
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Figure 5.5: (a) UV-Vis absorption spectra changes of Rhodamine B and (b) % degradation 

for the photocatalysts synthesized at different reaction times. 
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There is a significant difference in the rate of degradation between the photocatalyst synthesized 

at different reaction times. It can be observed that the ZnO synthesized for short reaction times 

resulted in high degradation rates, while the rate of degradation significantly decreased when 

ZnO synthesized for long reaction time was used in the degradation of Rhodamine B. The ZnO 

nanoparticles synthesized at short reaction times were found to be smaller than those synthesized 

at longer reaction times. This observation indicated that the extent to which Rhodamine B was 

adsorbed and hence be degraded on the suspended ZnO photocatalyst was high when the size of 

the nanoparticles was small. The ZnO photocatalyst synthesized for 8, 11, 15 and 18 min 

achieved 100 % degradation efficiency in 2, 3, 4 and 4
1

2
 hours, respectively. For the 

photocatalyst synthesized for 30 min, only 83 % degradation was achieved after 4
1

2
 hours. The 

significant difference in the time that it took to completely degrade the dye can be explained in 

terms of the number of active sites available for dye degradation. The photocatalyst synthesized 

for a short period was composed of small sized nanoparticles, which can be correlated with a 

high surface area [29]. The high surface area meant that there were more photocatalytic active 

sites available for the dye molecules to bind and be degraded, which resulted in a high 

degradation rate. Long reaction times produced very large nanoparticles which have a smaller 

surface area. The limited number of exposed photocatalytic active sites for larger nanoparticles 

resulted in a reduced degradation efficiency [29–32]. The trend observed in this study is 

consistent with the work of Xu et al. [33] on their study of the effect of the particle size of TiO2 

on the degradation of methyl blue [33]. Contrary to what most researchers have found about the 

reduced particle size resulting to high degradation rates, Zhang et al. [34] reported a reduced rate 

of degradation at very small particle sizes. They have attributed this trend to the increased rate of 

recombination of the charge carriers due to the small distance between the electron and holes 

which aids recombination, but only at quantum size region [34].  

 

The kinetic study of the photocatalytic degradation of Rhodamine B using as-synthesized ZnO 

was investigated with the Langmuir–Hinshelwood kinetic model, which also covers the 

adsorption properties of the substrate on the photocatalyst surface [35]. The equation is 

represented as follows: 
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𝑅𝑎𝑡𝑒 =  
𝑑𝐶

𝑑𝑡
=  𝑘

𝐾𝐶

1+𝐾𝐶
                       eq. 5.3   

Where C is the concentration of Rhodamine B at the irradiation time, k the reaction rate constant, 

and K is the degradation coefficient of the reactant. Where k′ is the apparent rate constant. A plot 

of ln (C0/C) versus time results in a straight line; its slope is the pseudo first- order degradation 

rate constant (Kapp) [35, 36]. The experimental data obtained in the kinetic study of Rhodamine B 

degradation when different ZnO photocatalyst morphologies were used was fitted with the 

Langmuir–Hinshelwood kinetic model. The results obtained are illustrated in ANNEXURE B,  

The plots of the data gave a straight line, showing that the photocatalytic degradation of 

Rhodamine B can be described by the pseudo-first-order kinetic model [37]. The correlation 

coefficient constant for the fitted line and the rate constants are graphically obtained 

(ANNEXURE B) and their values are represented in table 5.2. 

 

Table 5.2: Rate constants for photocatalytic degradation of Rhodamine B using ZnO 

nanoparticles synthesized at different reaction times.  

 

 

Reaction time 

 

Initial 

concentration 

(ppm) 

ZnO 

concentration 

(ppm) 

Kapp R
2 

8 20 160 0.069 0.908 

11 20 160 0.054 0.816 

15 20 160 0.053 0.766 

18 

30 

20 

20 

160 

160 

0.045 

0.030 

0.949 

0.769 

 

The rate constant for the degradation of Rhodamine B using ZnO nanoparticles synthesized at 

different reaction times confirm that the rate at which the dye molecules were degraded was 

faster when the nanoparticles synthesized at short reaction time was used.  
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Conclusion 

It was shown that ZnO nanoparticles possessing high photocatalytic activity can be prepared by 

using short reaction times at relatively low temperature (200 °C) using a cheap, simple and 

effective microwave assisted synthesis method. All the nanoparticles prepared showed a high 

degree of agglomeration indicating the moderate ability of urea to act as a capping agent. The 

size of the nanoparticles was found to be highly dependent on the reaction time. Long reaction 

time produced large nanoparticles with hexagonal morphology while shorter reaction times 

produced small particles with mixed hexagonal and bullet-like morphologies. Particle size 

influenced the photocatalytic activity with the smaller sized nanoparticles being more efficient in 

degrading Rhodamine B than the larger nanoparticles. The reason for the high catalytic activity 

was attributed to higher surface area.  
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CHAPTER 6: The role of zinc metal salts on size, morphology and 

photocatalytic activity of ZnO 

6.1 Introduction 

A lot of interest has risen towards ZnO in nanotechnology due to the wide range of properties 

that it possesses such as semiconducting, piezoelectricity, conductivity, photoactivity and 

ferromagnetism [1–3]. There is therefore a need to gradually produce ZnO nanostructures 

suitable for use in the broad range of industrial applications. Recently, ZnO has shown superior 

properties as a photocatalyst used in the photocatalytic degradation of dyes (e.g. methyl orange, 

Rhodamine B, crystal violet) in aqueous solution [4-7]. The environmental friendliness and 

cheapness associated with photocatalytic degradation of dyes has changed the scientific focus 

when it comes to solving problems such as water pollution in rivers, which go against 

environmental protection laws. One way that has been used to ensure that water pollution caused 

by dyes in rivers is effectively removed is to synthesize nanomaterials that are effective as 

photocatalysts. Effective photocatalysts have been previously obtained by using nanoparticles 

with certain morphologies and sizes, and this can be achieved by varying the way in which the 

nanoparticles are synthesized [8, 9]. Manipulation of the synthesis procedure has been the main 

focus in improving the catalytic activity of ZnO nanoparticles. Varying synthesis reaction 

parameters, such as using shorter reaction times to produce small nanoparticles with high 

quantum efficiency, and capping agents to manage the final particle morphology has led to 

improved activity of ZnO nanoparticles [10]. Even though reaction time and capping agents have 

produced the desired results before, changing the type of precursor used during synthesis has 

also been reported to be capable of producing nanoparticles that demonstrate superiority in the 

degradation of organic pollutants. Changing the type of precursor that’s used doesn’t only have 

an effect on the structural properties (i.e. size, morphology etc.) of the nanoparticles; it also 

affects the way in which the desired product performs in applications such as photocatalysis, gas 

sensing and biomedical application [11, 12]. In a study done by Mayekar et al. [13], they 

reported the role of the precursor in the enhancement of the antibacterial activity of ZnO, which 

results mainly because of the change in morphology as the precursor is varied [13]. Different 
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zinc metal salts (Zn(CH3COO)2•2H2O, Zn(NO3)2•6H2O, ZnCl2 and ZnSO4.H2O) are made up of 

different counter anions such as NO3
-
, CH3COO

-
, Cl

-
 and SO4

2-
. These different counters anions 

are important because their electrostatic stabilizing ability in each metal salt is different, hence it 

is expected that this difference will influence the sizes and morphology depending on how it 

interacts with the individual nuclei that form during the reaction [14]. Counter anions with a high 

stabilizing ability such as CH3COO
-
, have the ability to bind to growing crystal planes during a 

reaction, inhibiting growth. The stabilizing ability results in the formation of smaller sized 

nanoparticles. The counter anions such as NO3
-
 which doesn’t possess any stabilizing result in 

the formation of larger nanoparticles [14]. This study reports on the microwave synthesis of ZnO 

nanoparticles using different zinc metal salts in conjunction with the resulting optical (PL and 

UV-Vis), structural (PXRD, TEM and BET) and photocatalytic activity of the resulting 

nanoparticles.  
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6.2 Synthesis procedure 

6.2.1 Chemicals and materials 

Zinc acetate dihydrate (Zn(CH3COO)2•2H2O), ≥ 98 %, zinc nitrate hexahydrate 

(Zn(NO3)2•6H2O), ≥ 98 %, zinc chloride (ZnCl2), ≥ 98 %, and zinc sulphate monohydrate 

(ZnSO4.H2O), ≥ 98 %, were obtained from Sigma Aldrich. Sodium hydroxide (NaOH), ≥ 98 %, 

was obtained from Glassworld and reagent grade urea (CO(NH2)2) was obtained from Promark 

Chemicals. Rhodamine B was obtained from MAY and BAKER LTD. A Universal 

320Rsonicator (t/min = 10, RPM = 7000) was obtained from Hettich Lab Technology and a 

Microwave Reaction System, (Multiwave 3000 SOLV) was obtained from Anton Paar. All 

chemicals were used as received without any further purification. 

 

6.2.2 Synthesis of ZnO nanoparticles using different precursors 

The ZnO nanoparticles were prepared under the same experimental conditions, with only the 

zinc metal salt being varied. Typically, the desired zinc metal salt (i.e. (Zn(CH3COO)2•2H2O, 

Zn(NO3)2•6H2O, ZnCl2 or ZnSO4.H2O) was dissolved in 37.5 mL deionized water in a 100 ml 

beaker to make a 0.1 M solution. 0.6 g of urea (CO(NH2)2) was dissolved separately in 10 ml 

deionized water and added to the 0.1 M precursor solution in order to aid the hydrolysis of the 

Zn
2+

 cations. The mixture was then adjusted to pH 10 using 0.2 M NaOH. The resulting white 

precipitate was vigorously stirred with the help of a magnetic stirrer for 20 min. The white 

precipitate was transferred into 2 vessels and hydrothermally microwaved at 800 W for 11 min, 

with the maximum temperature set to 200 
º
C for all the samples. After completion of the 

reaction, it was allowed to naturally cool to room temperature and the white powder collected by 

centrifugation. The white powdered samples were washed several times with deionized water 

and ethanol to acquire maximum purity in the final products. Finally, the samples were dried at 

80 
º
C for 12 h in an oven. The four samples synthesized were labelled as SNO3

-
, SCH3COO

-
, SCl

-
 and 

SNO3
-
 based on the type of counter anion in the zinc metal salt.  
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6.2.3 Characterization 

For characterization (UV-Vis, TEM and PL), the ZnO nanoparticles were dissolved in ethanol 

and sonicated for ten min using a Digital ultrasonic cleaner (Model: PS – 20A). The optical 

properties were determined by Photoluminescence (PL) spectroscopy using a Varian Cary 

Eclipse EL04103870 fluorescence spectrophotometer and UV-Vis spectroscopy using a Varian 

Cary Eclipse (Cary 50) UV-Vis spectrophotometer. For visualization of the sizes and 

morphology of the nanoparticles, Transmission Electron Microscopy (TEM) was used and 

recorded using a FEI Technai T12 TEM microscope operated at an acceleration voltage of 200 

kV. TEM samples were prepared by drop-casting the ethanol diluted samples on a 300 mesh 

copper grids. Structural properties were analysed by Powder X-ray Diffraction using a Bruker 

MeasSrv (D2-205530)/D2-205530 diffractometer using secondary graphite monochromated 

CoKα radiation (λ = 1.79026nm) at 30 kV/30 mA. Measurements were taken using a glancing 

angle of incidence detector at an angle of 2°, for 2θ values between 10-90° in steps of 0.026° 

with a step time of 37 s and at a temperature of 25 °C. The specific surface area was determined 

from 0.2 g using a Micromeritics TriStar 3000 instruments operated at -196 °C. Before analysis, 

the samples were degassed at 150 
°
C in N2for 3 h. The specific surface area was calculated by the 

BET method from N2 adsorption data in the relative pressure range P/P0 =0.05-0.30. Total pore 

volumes of the samples were calculated at a relative pressure range P/P0 = 0.995.  
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6.2.4 Photocatalytic degradation of Rhodamine B 

The dye degradation experiments were conducted by preparing 100 ml solution of Rhodamine B 

with the desired concentration of 20 ppm in a 200 ml beaker and mixed with a known 

concentration (160 ppm) of the zinc oxide photocatalyst. The dye-photocatalyst mixture was 

sonicated for 30 min in the dark in order to ensure that the zinc oxide nanoparticles were well 

dispersed in the solution. At the end of sonication the mixture was subsequently stirred for 60 

min using a magnetic stirrer and a stirrer bar in order to allow for equilibration between the dye 

molecules and the photocatalyst. Before the mixture was exposed to solar radiation, an aliquot 

was withdrawn and its absorbance measured, and that aliquot was labelled as ‘time zero,’ which 

meant before exposure to light. The progress of degradation was monitored using the following 

equation: 

𝐶𝑡

𝐶0
× 100%                 eq. (6.1)    

Where Ct refers to the concentration of the dye after a certain time of irradiation and C0 refers to 

the concentration of the dye before irradiation. The light was then switched on and constantly 

irradiated on the mixture that was continuously stirred. Aliquots were then subsequently 

withdrawn at 30 min intervals and their absorbance determined. Each aliquot (4mL) was 

collected using a 10 mL syringe fitted with a 0.2 µm syringe filter. The syringe filter was used to 

ensure that no residual ZnO nanoparticles were in the aliquot during the analysis of the dye 

solution. In this study, four photocatalytic degradation experiments were done to compare the 

activity of the different ZnO nanoparticles prepared using the different zinc metal salts. The pH 

of the dye solution was measured using a Starter 3100 pH Bench.  
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6.3 Results and Discussion 

6.3.1 Structural properties 

Figure 6.1 displays the PXRD patterns of the ZnO nanoparticles synthesized using microwave 

assisted heating method for 11 min. The diffraction data of the nanoparticles synthesized using 

Zn(NO3)2•6H2O (SNO3
-
), Zn(CH3COO)2•2H2O (SCH3COO

-
) and ZnCl2 (SCl

-
) were well indexed to 

the zincite (syn) structure of ZnO with the lattice constants a = 3.249 Å and c = 5.199 Å, space 

groupP63mc, which was in good agreement with the standard card (JCPDS – 00-005-0664) [15]. 

The diffraction data of the nanoparticles synthesized using ZnSO4.H2O (SSO4
2-

) was indexed to 

the hexagonal wurzite structure of ZnO with the lattice constants a = 5.249 Å and c = 5.207 Å, 

space group P63mc, which was in good agreement with the standard card (JCPDS – 01-089-

0511) [16].  

 

Figure 6.1: PXRD of ZnO nanoparticles synthesized using different zinc metal salt 

precursors. 
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The good crystallinity of the synthesized ZnO nanoparticles was confirmed by the sharpness and 

the high intensity of the peaks. No peaks were correlated to any other phase, which indicated that 

the nanoparticles synthesized were free of any impurities. The high intensity of the (101) peak in 

all the diffractograms indicated that the synthesized nanoparticles had a preferred growth 

direction being the c-axis. This preferred growth direction is particularly prominent for SSO4
2-

which is supported by its morphology that is elongated in one direction (Figure 6.2) [17]. The 

intensity of the (101) plane for the SNO3
-
 is the lowest of all the nanoparticles, which might be an 

indication of the high proportion of spherical morphology which indicated dominant isotropic 

growth over anisotropic growth.  

To estimate the size of the crystallites, the Debye-Scherrer’s equation was used (eq. 6.2) [18].  

D = 0.9λ/βCosθ                        eq. (6.2) 

Where D is the crystallite size, λ the wavelength of Co Kα radiation (0.179026 nm), β the full-

width half maximum (FWHM) of the most intense peak (101 plane) in the diffraction pattern, θ 

is the angle that is obtained from the 2θ corresponding to the (101) plane (maximum intensity 

peak) in radians. The different sizes of the crystallites for the ZnO nanoparticles synthesized 

using different zinc metal salts are shown in Table 6.1. 

 

Table 6.1: Full-width half maximum and relative crystallite sizes of the ZnO nanoparticles. 

Sample names θ (radians) FWHM (10
-3

) 

(radians) 

Crystallite size 

(nm) 

SNO3
-
 

SCH3COO
-
 

SCl
-
 

SSO4
2-

 

0.371 

0.371 

0.371 

0.372 

8.43 

6.55 

6.07 

3.15 

20.5 

24.6 

26.5 

54.9 
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It is known that there is an inversely proportional relationship between the width of the peak 

(FWHM) and the size of the crystallites. Represented in Table 6.1 are the results that show that 

as the peaks in the diffractogram gets broader (i.e. large FWHM), the size of the crystallites 

become smaller. This difference in the sizes of the crystallites was also confirmed by the shift of 

the emission peaks to lower wavelength (i.e. higher energy) in the PL spectra shown in Figure 

6.4. A similar trend was observed by Sheikhnejad-Bishe et al. [19], in their study of reaction time 

on the photocatalytic properties of TiO2 [19]. 

Shown in Figure 6.2(a-d) are the electron micrographs of the ZnO nanoparticles synthesized 

using different zinc metal salts. The micrographs clearly show that changing the type of 

precursor used during synthesis has an influence on the size and morphology of the 

nanoparticles.    
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Figure 6.2: TEM micrographs of ZnO synthesized using (a) SNO3
-
, (b) SCH3COO

-
,(c) SCl

-
, and 

(d) SSO4
2-

zinc metal salts. (Red arrows – Oriented attachment) 

The micrographs for the SNO3
-
, SCH3COO

-
 and SCl

- 
samples are made up of a mixture of spherical 

and rod-like nanoparticles, with varying proportions of the spherical and rod-like morphology. 

The SNO3
-
 sample is composed mainly of small spherical nanoparticles with an average diameter 

of 40nm; the rod-like nanoparticles have an average width of 50 nm and length of 128 nm.  

(a) (b)

(c) (d)
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Poly dispersity and agglomeration in the SCH3COO
- 
nanoparticles was observed, similarly to what 

was observed in the SNO3
-
 nanoparticles. The SCH3COO

- 
sample is composed mainly of the rod-like 

nanoparticles with a much larger width of 67 nm, length of 118 nm, which was shorter than that 

of SNO3
-
. The spherical nanoparticles had an average diameter of 65 nm. In the SCl

-
 photocatalyst, 

it was observed that the morphology took on a predominantly rod-like morphology of varying 

sizes with only a handful of spherical particles observed. The spherical nanoparticles had an 

average diameter of 65 nm, and the rod-like nanoparticles were found to have an average width 

of 78 nm and length of 189 nm. For the SNO3
-
, SCH3COO

-
 and SCl

- 
nanoparticles, it could be noted 

that there was an increase with regards to the type of dominant morphology, the SNO3
-
 

photocatalyst favoured the formation of more spherical particles and this preferred growth 

direction seem to change as the counter anion is changed to either Cl
-
 and CH3COO

-
. It can 

therefore be concluded that the formation of more rod-like nanoparticles occurs with the change 

of the counter anion in the order Cl
- 
> CH3COO

- 
> NO3

-
. A significant change in the morphology 

was observed for the SSO4
2-

 sample, which adopted a trapezium-shaped morphology in which the 

particles are linked together through self-oriented assembly as indicated by the arrow in Figure 

6.2(d). Figure 6.3 depicts the proposed mechanism for the formation of self-oriented trapezium 

shaped ZnO nanoparticles. Self-oriented assembly occurs when there are specific interactions 

among particles that result in particle aggregation as shown in [20].  

 

Figure 6.3: Proposed mechanism through which ZnO nanoparticles undergo oriented 

attachment.   

The formation of the spherical and rod-like nanoparticles in this study can be explained by 

considering the crystal structure of ZnO. ZnO is designed such that in the hexagonal form, the 

crystals are made up of both [0001] polar facets and [10-1] non-polar facets, which are parallel to 

the c-axis as shown in Figure 6.4(a-b). Axial growth (Figure 6.4(a)) is observed when the [0001] 

polar facets are more favoured for growth resulting to rod like morphology, whereas hexagonal 

Self-oriented

Assembly
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morphology dominates when equatorial growth (Figure 6.4(b)) along the (10-1) non-polar facets 

is favoured.  
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Figure 6.4: ZnO crystal showing the axial and equatorial face specific growth which 

formed (a) rod- and (b) hexagonal nanoparticles, respectively. 

(001) –Axial growth 

(10 -1)

(10-1) - Equatorial growth 

(001)

(c-axis)

(a)

(b)
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The polar Surfaces have a very high surface energy (γ
0
(0001-Zn) = 2.49±0.0063, γ

0
(000-1-O) = 

1.35 ± 0.0063) , which makes them thermodynamically unstable compared to the non-polar 

facets [21-23]. This means that the growth rate of ZnO along the c-axis is enhanced during 

crystal growth in a reaction medium. In the SNO3
-
 photocatalyst, the dominant morphology 

observed is the spherical nanoparticles which results due to an enhanced growth rate along the 

non-polar facets. This enhanced growth rate along the non-polar facets could be due to the 

presence of excess NO3
-
 ions in the solution, which binds to the [0001] growth plane, reducing 

access of the precursor components to this plane resulting in the formation of more spherical 

nanoparticles. In the case of the SCH3COO
-
, SCl

- 
and SSO4

2-
 nanoparticles, it was proposed that the 

formation of more elongated nanoparticles was due to the Cl
-
, CH3COO

-
 and SO4

2-
 counter 

anions inability to inhibit the fast growth along the (0001) plane. In order to get a better 

understand of the size differences that results when different zinc metal salts are used to 

synthesize zinc oxide, BET method was used to determine the specific surface area, pore volume 

and pore diameter and the results are shown in Table 6.2. 

 

Table 6.2: BET results of the synthesized ZnO nanoparticles 

Sample 
Surface area (m2

.g
-1

) Pore width (nm) Pore volume (cm
3
.g

-1
) 

 
   

SNO3
-
 13.25 41.53234 0.139084 

SCH3COO
-
 12.34 42.37589 0.135425 

SCl
-
 12.02 44.04713 0.134994 

SSO4
2-

 1.24 19.01317 0.005899 
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From the experimental results, it can be noted that the surface area is largely affected by the 

change in precursor. An inversely proportional relationship between the particle size and surface 

area is known to exist, and states that as the size of the particles decrease, the surface area 

increases. Using this relationship together with the estimated particle size estimated from TEM, 

it can be said that the size of the ZnO synthesized using different precursors increase in the order 

SNO3
- 

> SCH3COO
- 

> SCl
- 

> SSO4
2-

, which is in good agreement with the reported surface area 

measurements. Using different zinc metal salts which contain different counter anions has been 

studied in the synthesis of ZnO due to the belief that it will result in different nucleation and 

growth kinetics [24-26]. The different nucleation and growth kinetics tend to influence the 

morphology, size, photoluminescence and crystallographic properties of the resulting 

nanoparticles. In the study done by W. Tang [27], where three different precursors were used to 

prepare zinc oxide, they found that changing the zinc metal salts resulted in rod-like, rice-like 

and granular like morphologies when Zn(NO3)2•6H2O, ZnCl2 and Zn(CH3COO)2•2H2O were 

used, respectively. The different nanoparticles showed different activity in the degradation of 

Methyl Orange, which was attributed to surface area differences with the degradation rate 

increasing in the order granular-like > rice-like > rod-like [27].  

In another study done by Pourrahimi et al. [28], they reported that the counter anion, which has 

the strong ability to stabilize nuclei during growth, will produce particles that are more mono 

dispersed than those with a counter anion with no coordinating ability. In their study, they found 

that the zinc metal salt containing the CH3COO
-
 counter anion produced smaller sized particles 

since it is capable of coordinating either with the uni- or bidentate oxygen to the nuclei 

composed of positively charged zinc atoms. The absence of coordinating functional groups in the 

NO3
-
, Cl

-
 and SO4

2-
 meant that there was no stabilization of the zinc atoms which allowed for 

extensive fusion during growth resulting too much larger particles [28]. Apart from the 

stabilizing ability of the counter anion, it is reported that the morphology and growth rate might 

also be influenced by how the Na
+
 cation from NaOH (i.e. precipitating agent used during 

synthesis) interact with the different counter anions [28]. The trend reported by Pourrahimi et al. 

[29] is different from our observation where we found that the zinc metal salt containing the 

NO3
-
 counter anion produced smaller sized particles than the precursor composed of the 

CH3COO
-
 counter anion. This difference could be due the type of synthesis method used as they 

used a reactor vessel for synthesis and we used microwave assisted heating in our study. It is 
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important to note that there is a significant difference between the sizes estimated using the 

Scherrer’s equation and TEM. This difference may be due to the fact that when using the 

Scherrer’s equation, it calculates the size of individual crystallites, while TEM gives the size of 

individual grains that may have formed as a result of the particles that aggregated during growth 

because of the high-energy nature of nanometric crystals [29].  

 

The minimum amount of energy that is needed to transfer an electron from the Highest Occupied 

Molecular Level (HOMO) to the Lowest Unoccupied Molecular Orbital (LUMO) is known as 

the band gap energy and can be determined using UV-Vis spectroscopy [30]. Determining the 

band gap of a material is important because it provides information about the type of material 

being dealt with (i.e. insulator, semiconductor or metal). Figure 6.5 display the different 

absorption spectra of the ZnO nanoparticles synthesized using zinc metal salts made up of 

different counter anions (NO3
-
, CH3COO

-
, Cl

-
, and SO4

2-
).  
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Figure 6.5: Absorption spectra of ZnO nanoparticles synthesized under the same 

experimental conditions varying only the zinc metal salts. 

The different ZnO nanoparticles display the maximum absorption peaks in the range 372–385 

nm. The polydispersed nature of the SNO3
-
, SCH3COO

-
 and SCl

- 
ZnO nanoparticles is responsible for 

the tailing of their respective UV-Vis spectra. This polydispersed nature is in agreement with the 

different morphologies and sizes depicted in TEM micrographs (Figure 6.2(a–c)). This tailing is 

however not prominent in the spectra of the SSO4
2-

 photocatalyst. This is expected since the 

nanoparticles for this photocatalyst are composed of only trapezium shaped morphology with a 

very narrow size distribution.  

Figure 6.6 depicts room temperature emission spectra of the ZnO nanoparticles that were ran 

using an excitation wavelength of 290 nm. The UV-range (λ < 400 nm) in which the 

nanoparticles show a strong emission peak (UV near band edge) is apparent. The broadness of 

the peaks in the spectra is indicative of the polydispersed nature of the nanoparticles as observed 

in TEM micrographs, which shows the mixture of morphologies and sizes in the different 

nanoparticles prepared.  
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Figure 6.6: Room temperature emission spectra of ZnO synthesized using different zinc 

metal salts. 

 The spectra shows a slight shift to higher energy (i.e. lower wavelength) as the precursors are 

changed with the order of SNO3
-
 ˃ SCH3COO

-
 ˃ SCl

- 
˃ SSO4

2-
, in terms of increasing emission energy. 

This shift to lower wavelength is beneficial in nanoparticles with a wide band gap such as ZnO 

as it allows for absorption of the UV light from the sun which is needed for photoexcitation in 

wide band gap nanoparticles. The correlation between the emission wavelength and efficiency of 

a photocatalyst was observed in the photocatalytic study (Figure 6.7) where the SNO3
-

photocatalyst was more efficient than the other nanoparticles (SCH3COO
-
, SCl

-
, and SSO4

2-
) which 

have an emission peak at slightly higher wavelength relative to it. In the work of Moore et al. 

[31], where they studied the effect of particle size on the photocatalytic activity, they reported 

that the blue shift of the emission wavelength was due to size differences of the ZnO 

nanoparticles that cause a phenomenon known as quantum size effect or quantum confinement 

[31]. This effect emerges when the size of the nanoparticles is so small to such an extent that it’s 
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comparable to the Bohr radius of the charge carrier (i.e. ZnO) resulting to changes in its optical 

properties relative to those observed in bulk material[31, 32]. 

 

6.4 Photocatalytic degradation of Rhodamine B 

In order to study the activity of SNO3
-
, SCH3COO

-
, SCl

-
 and SSO4

2- 
nanoparticles, photocatalytic 

degradation studies were conducted by running the degradation experiments under the same 

experimental conditions ([ZnO] = 160 ppm, [Dye] = 20 ppm, pH = 6.8 (natural water)), with 

only the type of nanoparticles being varied. Figure 6.7(a-d) displays typical time-dependent UV-

Vis spectra of the Rhodamine B solutions obtained during the photocatalytic degradation process 

together with % degradation versus irradiation time plot (Figure 6.7 (e)) showing the amount of 

the dye degraded in every 30 min interval for the different nanoparticles. 
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Figure 6.7: UV-Vis spectral changes of Rhodamine B during the course of degradation 

using (a) SNO3
-
,(b) SCH3COO

-
, (c) SCl

-
, and (d) SSO4

2- 
nanoparticles.  
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For the SNO3
-
 photocatalyst, the absorbance of the peak located at wavelength 553 nm was 

decreased by 71 % after being irradiated for 60 min, after 120 min of being exposed to solar 

light, the absorbance decreased to zero, showing 100 % degradation of the dye Figure 6.7(a). 

Using SCH3COO
-
, SCl

-
 and SSO4

2-
 nanoparticles, 57 %, 54 %, 2 % of the dye was degraded after 60 

min of exposure to light, respectively. Complete degradation was observed after 150 and 180 

min for the SCH3COO
-
 and SCl

-
 nanoparticles. The SSO4

2-
 photocatalyst managed to degrade only 15 

% of the dye after 210 min, making it the less effective in the four nanoparticles synthesized in 

this study. The difference in the degradation efficiency of the different nanoparticles tested in our 

study is easy to understand based on the surface area measurements as shown in Table 6.2. The 

surface area of the nanoparticles follows the order SNO3
- 

> SCH3COO
- 

> SCl
- 

> SSO4
2-

. The 

correlation between the rate of degradation and surface area is apparent, showing that as the 

surface area increase, the rate of degradation increase. Hence the SNO3
-
 catalyst with the highest 

surface area achieved complete degradation in the shortest time (120 min) compared to the other 

photocatalyst as shown in Figure 6.7(e). Since the oxidation/reduction reactions that results to 

the degradation of the dye occurs at the surface of the catalyst, it is expected that the high surface 

area provides more photocatalytic active sites which are available for the dye molecules to bind 

and be degraded resulting to a high degradation rate [33, 34]. In a study done by Tang et al. [27], 

looking at the degradation of methyl orange using ZnO (rod-like, granular and rice-like) 

synthesized using different metal salts, they found the rod-like morphology to be the less 

effective as opposed to the granular and rice morphologies. Low surface area was described to be 

the reason for the low activity, which is in good agreement with the results of this study where 

the morphology showed significant anisotropic growth (i.e. trapezium shaped) having low 

degradation efficiency. Surface area is an important factor that controls the efficiency of a 

photocatalyst but other factors, such as the proportion of certain crystallographic facets exposed 

in a photocatalyst also play a role. In the study conducted by Mclaren et al. [35], they reported 

that hexagonal plate like particles were more active in degrading methylene blue than rod-shaped 

particles. They attributed the difference in activity to be due to the terminal [0001] and [000-1] 

facets being more active than the [100] and [101] facets which are perpendicular to them [36]. In 

this study, we can assume that since the SNO3
-
 photocatalyst contained more spherical particles 

than the other nanoparticles, the polar facets exposed in this photocatalyst were abundant as 

opposed to the others and hence the high activity. The absence of any spherical particles in the 
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SSO4
2- 

(i.e. trapezium shaped) meant only a smaller proportion of the polar surfaces were exposed 

and this contributed to the small activity of this photocatalyst. 

 

The kinetic study of the photocatalytic degradation of Rhodamine B using as-synthesized ZnO 

was investigated with the Langmuir–Hinshelwood kinetic model, which also covers the 

adsorption properties of the substrate on the photocatalyst surface [36]. The equation is 

represented as follows: 

𝑅𝑎𝑡𝑒 =  
𝑑𝐶

𝑑𝑡
=  𝑘

𝐾𝐶

1+𝐾𝐶
                       eq. 6.6   

Where C is the concentration of Rhodamine B at the irradiation time, k the reaction rate constant, 

and K is the degradation coefficient of the reactant. Where k′ is the apparent rate constant. A plot 

of ln (C0/C) versus time results in a straight line; its slope is the pseudo first- order degradation 

rate constant (Kapp) [36, 37]. The experimental data obtained in the kinetic study of Rhodamine B 

degradation when different ZnO photocatalyst morphologies were used was fitted with the 

Langmuir–Hinshelwood kinetic model. The results obtained are illustrated in APPENDIX C. 

The plots of the data gave a straight line, showing that the photocatalytic degradation of 

Rhodamine B can be described by the pseudo-first-order kinetic model [38]. The correlation 

coefficient constant for the fitted line and the rate constants are graphically obtained 

(APPENDIX C) and their values are represented in table 6.1. 
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Table 6.2: Rate constants for photocatalytic degradation of Rhodamine B using ZnO 

nanoparticles synthesized from different zinc metal salts.  

 

 

Reaction time 

 

Initial 

concentration 

(ppm) 

ZnO 

concentration 

(ppm) 

Kapp R
2 

SNO3
-
 20 160 0.0.24 0.948 

SCH3COO
-
 20 160 0.023 0.975 

SCl
-
 20 160 0.020 0.952 

SSO4
2-

 20 

 

160 

 

0.000 

 

0.983 

 

 

The rate constant for the degradation of Rhodamine B using ZnO nanoparticles synthesized from 

different precursors confirm that the rate at which the dye molecules were degraded was faster 

when the nanoparticles synthesized using zinc nitrate hexahydrate was used.  
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6.5 Conclusion 

The synthesis of ZnO using different zinc metal salts via microwave assisted digestion was 

successfully conducted. The nanoparticles took on rod-like and pseudo-spherical morphologies 

when the ZnO2•6H2O, (Zn(CH3COO)2•2H2O and ZnCl2 precursors were used, with the 

proportion of the NO3spherical morphology in each photocatalyst varying in the order 

Zn(NO3)2•6H2O > Zn(CH3COO)2•2H2O > ZnCl2. The ZnSO4.H2O precursor yielded trapezium 

shaped particles dominated by characteristic self-oriented assembly. In all the nanoparticles, 

significant amount of agglomeration was observed, indicating the inability of the urea to keep the 

individual grains apart. The crystallite sizes determined using the Scherrer’s equation was found 

to be 20.5, 24.6, 26.5 and 54.9 nm for the SNO3
-
, SCH3COO

-
, SCl

-
 and SSO4

2- 
nanoparticles, 

respectively. During photocatalytic degradation studies, the fastest degradation was achieved 

using the SNO3
-
 photocatalyst, which degraded the dye in a period of 120 min, followed by 

SCH3COO
-
 at 150 min, SCl

-
 at 180 min and SSO4

2- 
managing to degrade only 15 % of the dye after 

240 min. The difference in the activity was attributed to surface area differences, which followed 

the order SNO3
- 
> SCH3COO

- 
> SCl

- 
> SSO4

2-
, with the photocatalyst that had the highest surface area 

showing high degradation rates. The large number of spherical particles in the SNO3
- 

photocatalyst was also raised as a factor that was responsible for the high activity due to it 

having a high proportion of the high energy [0001] and [000-1] facets known to be highly active.  
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Chapter 7: Conclusions and Recommendations 

7.1 Conclusions 

In this dissertation, the synthesis of various morphologies and sizes of ZnO nanoparticles using a 

simple microwave assisted heating method is reported. Furthermore, the activity of the ZnO 

nanoparticles was studied in the photocatalytic degradation of Rhodamine B. Various reaction 

parameters such as pH of precursor solution, type of precursor, and reaction time were varied in 

order to produce various morphologies and sizes of ZnO. Varying the pH (i.e. 7, 10, and 14) of 

the precursor solution resulted in three different morphologies that took on pseudo-spherical, 

bullet-, and rod-like shapes. The BET measurements found that the surface areas for the pseudo-

spherical, bullet-, and rod-like ZnO nanoparticles were 14.73, 10.05 and 8.43 m
2
.g

-1
, 

respectively. In the studies of the photocatalytic degradation of Rhodamine B, the morphology 

with the highest surface area and the highest proportion of exposed polar facets, which is 

dependent on the type of morphology, was obtained when synthesis was done at pH 7. In this 

study, the pseudo-spherical nanoparticles were found to be the most efficient in degrading 

Rhodamine B. 

The synthesis of ZnO nanoparticles while varying the reaction time produced different sized 

nanoparticles, with the long reaction time producing larger nanoparticles than those synthesized 

at shorter reaction time. The nanoparticles synthesized at long reaction times (i.e. 30, 18 and 15 

min) had a hexagonal morphology, as the reaction time was reduced to 11 and 8 min, the 

nanoparticles took on a more rod-like morphology. PL results indicated a slight blue shift of the 

nanoparticles synthesized at 8 min relative to those synthesized at much longer reaction times 

(i.e. 30, 18, 15, and 11 min). In the studies of the photocatalytic degradation of Rhodamine B, a 

trend was observed whereby the smaller sized nanoparticles showed the highest activity in the 

degradation of Rhodamine B than those that were larger. This difference in photocatalytic 

activity was attributed to the fact that smaller sized nanoparticles had a high surface area and 

hence more active sites were exposed on the surface for the Rhodamine B molecules to bind and 

be degraded. 
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The synthesis of ZnO nanoparticles using different zinc metal salts was performed in order get a 

better understanding of the effect of counter anions on the structural, optical and photocatalytic 

activity of the ZnO nanoparticles. The PL results indicated slight shift to higher energy (i.e. 

lower wavelength) as the precursors were changed with the order of SNO3
-
 ˃ SCH3COO

-
 ˃ SCl

- 
˃ 

SSO4
2-

. The difference in the emission energy of the nanoparticles was attributed to size 

differences. The surface area measured by BET was found to be 13.25, 12.54, 12.02, and 1.24 m
2
 

.g
-1

 for the of SNO3
-
 ˃ SCH3COO

-
 ˃ SCl

- 
˃ SSO4

2-
 nanoparticles, respectively. The photocatalytic 

activity of the different nanoparticles were significantly different with the SNO3
-
, SCH3COO

-
, SCl

-
, 

and SSO4
2-

 degrading Rhodamine B dye in 120, 150, 180, and 240 min. The difference in the 

degradation rate was explained using surface area. The nanoparticles with the highest surface 

area were more efficient in degrading the dye molecules due to the vast amount of active sites 

present on their surface.   

 

7.2 Recommendations 

The photocatalytic activity of ZnO nanoparticles is highly dependent on the size and morphology 

of the nanocrystal being used. Therefore, suggestions for future work include using different 

capping agents in the synthesis of ZnO as a means of producing monodispersed nanoparticles. 

The ability to produce nanoparticles with a narrow size distribution and one type of morphology 

would allow for better understanding of the effect of morphology on the photocatalytic activity 

of ZnO. To get a better understanding of the practical application of ZnO as a photocatalyst in 

real environmental conditions, photocatalysis can be done using direct sunlight. The possibility 

of using ZnO in the degradation of other dyes can be investigated. To fully confirm that 

Rhodamine B was entirely converted into carbon dioxide and water, mass spectroscopic analysis 

of the colourless solution obtained can be performed in order to support the complete 

degradation claim reported in literature.  
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Annexure 

 

ANNEXURE A: Graphical representation of the determination of the rate constants for 

degradation of Rhodamine B using different ZnO morphologies.  

 

ANNEXURE B: Graphical representation of the determination of the rate constants for 

degradation of Rhodamine B using ZnO nanoparticles synthesized at different reaction 

times.  
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ANNEXURE C: Graphical representation of the determination of the rate constants for 

degradation of Rhodamine B using ZnO synthesized from different zinc metal salts. 
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