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"Music is the one incorporeal entrance into the higher world of knowledge which
comprehends mankind but which mankind cannot comprehend"

— Ludwig van Beethoven [1712 - 1773]
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"...You see, my dear friend, I am made up of contradictions,
and I have reached a very mature age without resting upon anything positive,

without having calmed my restless spirit either by religion or philosophy.
Undoubtedly I should have gone mad but for music. Music is indeed the most

beautiful of all Heaven’s gifts to humanity wandering in the darkness. Alone it
calms, enlightens, and stills our souls. It is not the straw to which the drowning

man clings; but a true friend, refuge, and comforter, for whose sake life is worth living."

— Pyotr Ilyich Tchaikovsky [1840 - 1893]
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Part I

I N T R O D U C T I O N , R E V I E W A N D D E S I G N

Music genre, while often being vaguely specified, is perhaps the most
common classification scheme used to distinguish music. Many believe
that the fuzziness and instability of genre definitions can lead to inaccu-
rate classification and hence believe that researchers should focus on more
sensible methods for improving music browsing or classification over the
Internet [McKay and Fujinaga 2004]. While a single human response to
genre classification can be biased and stereotypical, there exists a consen-
sus of broad genre definitions across populations worldwide. Genre is
positioned between multiple classification methods (e.g. mood or artist)
overlaying the Internet. Although these methods are also similarity-based
measures across different music meta-data (lyrics, artist, timbre), genre of-
fers a culturally authorised prominence on the construction of traditional
classes which is much more functional for music classification.

This part contains four sections: Introduction, Chapter 1, where we explore
this functionality and emphasise the importance of music genre classifi-
cation over other approaches; the fundamental aspects of music, Chap-
ter 2, which serves as a brief introduction to the components that together
make up music; the Literature Review, Chapter 3, where the contributions
of other authors are acknowledged and presented; and finally, the Research
Design, Chapter 4, where the research methodology is presented and the
research contributions are realised.





1
I N T R O D U C T I O N

The Internet has connected the world in numerous ways making information
quickly available to us from a universe of data. This is done by using informa-
tion retrieval techniques. Information retrieval is a cornerstone of information

system technologies as retrieving data from a database is needed for countless com-
puter software applications. Such applications include online music databases, for
example MusicBrainz [Swartz 2002]. Music databases, such as these, store millions
of music files, MusicBrainz for example stores 16 million [Angeles 2009] such music
files. Without any sophisticated information retrieval systems, if one wanted to find
a particular piece of music in a database, one would have to naïvely compare the
desired music piece’s name and artist with each and every name and artist contained
in the music database. This task would take a long time to complete, particularly
with a large database, and so clever management of the database is needed for quick
information retrieval.

1.1 motivation

The methodology in this dissertation can be used to organise the world of music
from classical Baroque to the newly defined Ratchet genre. This is done by study-
ing different approaches to clustering music into genres, where some clusters may
overlap depending on whether or not music pieces show diverse characteristics from
multiple genres. If one would like to retrieve a piece of music from the database, the
genre for the piece should be detected and the piece can be found, if it exists, in the
cluster for that genre. This dramatically decreases search time and therefore favours
information retrieval speed. Additionally, this approach could be used to generate
labels for new music when it is entered into a database. It is hypothesised that this
concept can be extended to music video, movie, or even art forms.

Since we are not always given the music name, artist or other meta-data to search
by in the music signal itself, we need some element (residing within the music signal)
that will aid music organisation. Many authors have questioned the usefulness of
genre categorization and whether it should abandoned as it seems to lack real profit
for any type of customer. In many music stores, music CDs are arranged by genre,
being a natural classification of music, so the customer can easily divert to a particular
genre section and consider selecting a CD from a few rows rather than searching the
entire CD section of the music store. Analogously, if information in these online music
databases are stored by genre, then it is easier to obtain a piece of music by simply
searching the online music database for the required genre type. This system could
also be able to suggest music based on the customer’s genre preference as well. Music
has been organised by genre for many years and so customers are already familiar
with browsing music within genre categories both on and off the Internet. Lee and

3



4 introduction

Downie [2004] showed that end-users are more likely to browse by genre than artist
similarity, recommendation, or even music similarity.

Large e-commerce companies, such as Amazon, use genre to categorise their media
catalogues so consumers can browse through items based on their genre preference.
These catalogues are usually labelled manually when inserted into the database. If
the media samples are not labelled correctly this will cause the automatic classifica-
tion algorithm to mis-label music. Other similarity-based approaches, for example
mood or composer -based similarity, will suffer the same obscurity between classes
as genre classification does simply because of their ground truth. Some examples of
shortcomings that are caused by the obscurity of ground truth are the inability to com-
pare classification results with other functional algorithms or reusing components of
other classification algorithms that appear successful to build better ones.

One can only begin to understand the value of classification using genre after
first understanding the importance of genre to customers. Genre associations are
frequently used among consumers to describe and discuss music. If you ask a music
lover what kind of music does she listen to, the music lover would generally answer
in terms of genre than style or mood1. Therefore, genre is not only considered by
consumers when searching or browsing media data, but hold deeper significance
when considering personal aspects of consumers’ lives while interacting with other
consumers.

Many consumers associate culturally with genre holding their genre preference as
personal entities that have a heavy influence on their lives. These genre preferences
constantly impact the consumer in a variety of ways psychologically.

Example 1.1. As an example, a listener of an extreme genre such as Grindcore2,
would probably act, talk, and dress differently compared to a listener who enjoys
furniture music3.

North and Hargreaves [1997] showed that music genre has such a pressing influ-
ence on consumers that the listener would prefer one song to another based more on
the song’s genre than the actual song itself. Similar studies by Tekman and Hortacsu
[2002] showed that a listener’s categorization of genre directly influences whether
she will appreciate a piece of music or not.

Successful research in automatic music genre classification contributes consider-
ably to musicology and music theory [McKay and Fujinaga 2005]. Observing interac-
tions between genre classes through content-based features can unveil cultural asso-
ciations that exist between these classes and is of musicological significance.

1 For example: "I listen to classical and rock music".
2 Considered one of the most caustic sounding genres. Inspired by an amalgam of death metal, crust

punk and thrash metal.
3 A very light form of classical music, usually played as background music.
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1.2 the research problem

Music Genre Classification is the process of categorising music pieces using traditional
or cultural characteristics. These traditions and cultures are not precisely defined and
so over the years it has become vague as to what characteristics secure music to a par-
ticular genre or if these bind a piece of music to a clearly defined musical genre at
all. According to White [1976], traditional musical aspects are given by four charac-
teristics: melody, harmony, rhythm and sound - where sound is expanded to include
timbre, dynamics, and texture (further aspects of music are explained in Chapter 2).
These aspects define characteristics of music and can therefore be hypothesised to
contribute considerably to the notion of musical genre. As an example, the definition
for R&B (Rhythm and Blues) and Rock and Roll genres according to Oxford [1989] are
defined as follows:

R&B: "A form of popular music of US black origin which arose during the 1940s
from blues, with the addition of driving rhythms taken from jazz. It was an immediate
precursor of rock and roll."

Rock and roll: "A type of popular dance music originating in the 1950s, characterised
by a heavy beat and simple melodies. Rock and roll was an amalgam of black rhythm
and blues and white country music, usually based around a twelve-bar structure and
an instrumentation of guitar, double bass, and drums."

Although these definitions refer loosely to rhythm and instrumentation (timbre),
there is no specification for dynamics, texture, structure, pitch, tempo, harmony or
scale-use, which according to White [1976] and Owen [2000] are also fundamental
aspects that define music. Therefore, these definitions lack clarity and rather refer
more to the connections between genres, which are less useful (e.g."from blues, ...taken
from jazz" or "popular dance,... black rhythm and blues and white country music"). Also,
since these definitions are qualitative they come across as subjective and therefore are
difficult to automate. It is seen that these genre definitions refer recursively to other
genres, making them context dependent. Furthermore, many artists do not abide
by "genre definitions", even though the composer might have been inspired by one,
which makes us question whether or not some composers are accepted by currently
"defined" music genres. For this reason music genre classification is categorised using
human discretion and is therefore prone to errors and subjectivity as many pieces of
music sit on boundaries between genres [Li et al. 2003].

Successful genre classification makes use of cultural-based rather than content-
based feature dissimilarity between genre classes. Consequently, in order to perform
genre classification optimally, meta-data that describes cultural aspects needs to be
extracted somewhere within some appendix of the signal or from the Internet. Al-
though some of this meta-data might be already available, there is little motivation
to keep extensive records of cultural attributes for every piece of music on the Inter-
net or as an appendix to the music recording4 itself. Acquiring these cultural-based

4 Perhaps as an attachment or as an appendix of information about cultural features.
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features for music genre classification could unlock the potential of this research to
excel through content-based feature constraints.

Constructing dependable ground truth for classifiers is a significant component
for supervised learning algorithms, and hence for successful automatic music genre
classification. The fuzziness of genre definitions can cause some music to become
difficult to classify under one label. This is because certain features of a piece of
music will suggest one genre while other features might suggest another similar
genre or even multiple other genres. It is through this ambiguity that the limitations
of the ground truth becomes inescapably bounded as many people may disagree on a
particular genre classification, limiting the full potential of this research. Additionally,
many genres do not only sound similar but also hold many sub-genres which share
some similar characteristics.

Example 1.2. Western classical music consists of 3 broad periods: Early; Common
practice and Modern & Contemporary. Early contains 2 sub-genres5; Common Practice
contains 3 sub-genres6; and Modern & Contemporary contains 4 sub-genres7. These 9

broad sub-genres contain in themselves other music genres which have their own fea-
tures. Using this framework the Violin Partita No.2 by Johann Sebastian Bach, which is
an early Baroque piece should be classified into a different genre than Deux arabesques
by Claude Debussy which is an early Impressionism. Again, every Western classical com-
posers’ music is further classified by instrumentation which is also a form of genre.
For example, Claude Debussy composed music from eight different music genres that
included Orchestral; Ballet; Soloist and orchestra; Chamber; Solo piano; Piano four hands or
two pianos; Voice and piano; and Other vocal which are just a small extension of western
classical music. The difficulty of genre classification increases tremendously when
considering hundreds of other genre types and their respective sub-genres. This now
creates another issue as manual classification is not only subjective but now a single
piece of music can belong to possibly hundreds of similar genre types which poses a
bigger conundrum, this expresses the difficulty of this problem.

Very little experimental research has been done on human responses to music genre
classification. A study done by Gjerdingen and Perrott [2008] who conducted a survey
in which participants were given brief excerpts of commonly recorded music from
one of ten broad genres of music. The participants were asked to categorise the music
excerpts into one of ten music genre labels. Gjerdingen and Perrott [2008]; Perrot and
Gjerdigen [1999] discovered that humans with little to moderate music training can
achieve about 70% classification accuracy, based on 300ms of audio per recording.
One may argue that had the participants been exposed to more of the recording per-
haps they could have obtained better genre classification results. Another study by
Lippens et al. [2004] considered 27 human listeners where each was given 30 seconds
of popular music and was asked to categorise the pieces in one of six musical genre
labels, where one of these labels was "Other". Listeners might have labelled record-
ings as "Other" not because the recording belonged there, but because the genre was

5 Medieval (500-1400) and Renaissance (1400-1600)
6 Baroque (1600-1760); Classical (1730-1820); and Romantic (1780-1910)
7 Modern (1890-1930); 20th century (1901-2000); Contemporary (1975-present); and 21st century (2001-

present)



1.3 research methodology overview 7

ambiguous. This could also have occurred because of the uncertainty of the listener
trying to meet the requirements of a defined sub-genre. The listeners achieved an
inter-participant genre agreement rate of 76% only. Although Gjerdingen and Perrott
[2008] and Lippens et al. [2004] provide an awareness of genre classification perfor-
mance bounds imposed by human responses to genre classification, further study in
experimental research is needed to draw more concise conclusions regarding human
responses to genre classification and how this affects ground truth.

From these results it is seen that humans are biased and subjective in genre clas-
sification, which ultimately leads to a lack of consensus in genre labels and thus
poor quality of ground truth. Although there exists more authoritative ground truth
sources (e.g. such as AllMusic, Gracenote or Discogs), that contain information about
style and mood, these online music guide services tend to bias genre labels to entire
albums rather than for each individual song - even though it is well known that a
single album can contain multiple genre types depending on each recording. The
methods to how genre labels were obtained for albums and recordings are not pre-
sented, which makes one question if these media tags are reliable and consistent. In
addition, doing genre classification by hand is a monotonous and uninteresting task
and so when presented with 16 000 000 music files to label, such as in MusicBrainz,
humans are likely to take even longer to label each piece by genre resulting in fur-
ther imprecision, not to mention that this task demands time and rare expertise to
perform successfully. Assured genre labelling is needed to prevent over-training su-
pervised classification models with large training samples as genre detection models
need to integrate the same type of intricacy that humans achieve with the delicate
boundaries between genre labels.

To make matters worse, genre definitions evolve over time and continuously give
rise to newer structures that have significantly different feature compositions. These
newer genre might exhibit qualities that the learning model might fail to detect or
perhaps a recently evolved genre might have a completely different definition as it
had many years ago. These changes in definition will significantly alter the integrity
of the ground truth. This will cause the learning model to lose credibility over time
and will have to be retrained periodically. Therefore, regardless of feature dimension-
ality, well-built classification procedures are required to classify features successfully
with some regard for genre development. This is difficult as the scalability of even
the most powerful supervised classification models are unsatisfactory [McKay and
Fujinaga 2006].

A review of the literature shows very few capable genre classification systems.
For this reason, systems thus far have not adopted automatic genre classification
models for media retrieval and recommendation. Noteworthy genre classification
rates include Sturm [2013b] who achieved 73-83% on 10 genres and Bergstra et al.
[2006] who achieved 82.50% on 10 GTZAN (a music dataset by George Tzanetakis)
genres. This work aims to develop single genre classification methods for the purpose
of database retrieval and recommendation systems.

1.3 research methodology overview

Music pieces are represented as discrete-time signals (DTSs). Genre classification
from a collection of DTSs requires the extraction of signal features and subsequently
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Spectral Energy

Spectral Crest Factor
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Spectral Flux
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Naïve Bayes
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Models

Random Forests
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Figure 1: Music genre classification

using a classification algorithm. These features act as individual descriptors for the
DTS and so a range of different features (e.g. zero-crossing rate, energy, crest factor
etc.) are needed to thoroughly describe it. After successfully performing a feature
extraction, a design matrix is created which contains all of the descriptions necessary
for every DTS in the collection. Lastly the design matrix is modelled in n dimen-
sions8 using a set of classification techniques such as K-nearest neighbours, neural
networks, and support vector machines. Figure 1 shows a list of classification ap-
proaches and feature examples used to classify and describe the data respectively for
music genre classification. Chapter 2 introduces the reader to fundamental aspects of
music. These aspects, if understood well, can serve as foundational knowledge when
understanding the features described in Part ii.

8 Where n is the number of features.



2
T H E F U N D A M E N TA L S O F M U S I C A L A S P E C T S

Any part, feature, dimension, element or characteristic of musical audio is con-
sidered as an aspect of music. Musical aspects are fundamental factors used
to describe music and include, but are not limited to: pitch, tempo, rhythm,

melody, harmony, voice, timbre, expression, and structure. In addition to these funda-
mental aspects of music there are also other important aspects that are employed like
scale-use and phrasing [Ajoodha et al. 2014]. White [1976] proposed six traditional
musicological aspects:

• Melody is a set of musical notes played meaningfully in succession.

• Harmony is the use of simultaneous pitches, or chords [Malm et al. 1967].

• Rhythm is the observation of periodically occurring strong and weak beats that
are contained within a melody [Dictionary 1971].

• Tone is a steady periodic sound. A musical tone is characterised by its duration,
pitch, intensity (or loudness), and quality [Roederer and Roederer 1995].

• Form describes the layout or general structure of a composition [Schmidt-Jones
2011; Brandt et al. 2012]. This general structure is noted by the division of dif-
ferent passages or sections that exist in the music. These passages or sections
are considered the same if there is a large degree of similarity between them.
Examples of musical form include binary form, strophic form, and rondo form.

• Tempo is how fast or slow a piece is played and can be measured as the number
of beats per minute [Ajoodha et al. 2014].

Owen [2000] proposed a more grounded definition of sound over that originally
suggested by White [1976]. Owen [2000] included the following aspects of music
alongside White [1976]:

• Pitch refers to an organisation of notes based of their frequency [Klapuri and
Davy 2006]. Through this organisation of frequency some notes are considered
as high or low relative to other notes [Plack et al. 2006], this type of organisation
is best achieved in stable and clear sound distinguished from noise [Randel
2003]. It is understood that pitch, along with duration, timbre, and dynamics,
are the chief components when humans observe sound [Patterson et al. 2010].

• Dynamics are local and global audio volumes (loudness).

• Timbre of a musical sound is the distinct quality of sound that exists for every
instrument. The unique sound distinguishes different types of sound produc-
tions. Examples of differing timbres are obvious if one considers the same note
from a voice, a string instrument and a percussion instrument – such as an
opera singer, a violin and a piano.

9



10 the fundamentals of musical aspects

While the proposed primary aspects by White [1976] and Owen [2000] form a cor-
nerstone in most music definitions, the permutations of these primary aspects must
be considered. Combining these primary aspects to certain degrees yields secondary
aspects of music like structure, texture, style, and aesthetics. These secondary aspects
encompass the following:

• Structure refers to global aspects of a music piece. These include phrasing,
period, repetition, variation, development, form, etc.

• Texture is how the primary features pitch and timbre correlate. It includes: ho-
mophony, where two or more musical sounds move together (usually in chord
progressions); polyphony, which describes how two or more melodies move
together, as opposed to monophony, where a single melody with no harmony
is presented; heterophony, where multiple monophonic lines (from the same
theme) are played together; and simultaneity, where multiple musical textures
occur together and not in succession.

• Style is defined as the way musical aspects are used. Style is used to classify
composers, bands, period, region, or interpretation. For example: using non-
fluctuating dynamics, strict polyphony, variation, and repetition could result in
a baroque genre. A genre can be seen as a cultural classification of similar styles
of music.

• Aesthetics or mood are how the music influences the listener’s emotions. For
example: a slow and yearning melody may make you sad or depressed, while
a lively piece might cause you to be happy or energetic.



3
R E L AT E D W O R K

3.1 introduction

There exist several techniques to perform feature extraction for music genre classi-
fication used in music information retrieval, however the most prevalent of these
techniques are that of:

1. reference feature extraction, where the composer and other meta-data1 are ex-
tracted;

2. content-based acoustic feature extraction, where timbre features are examined for
extraction (e.g. pitch, beat, rhythm or tonality);

3. symbolic feature extraction, where features are extracted directly from the music
score;

4. and text-based feature extraction, where features are extracted from the lyrics of a
piece.

This research employs content-based acoustic feature extraction techniques as the inde-
pendence from the meta-data needed to perform the other above feature extraction
methods is rewarding. Context-based acoustic feature extraction techniques rely only
on the signal itself and has proven a potential solution to genre classification prob-
lems. Therefore, the contributions and recent work in this area must be presented.

In Figure 1, it is seen that two major requirements must be addressed to perform
general music classification: a choice of features, and a choice of classification algorithm.
This chapter presents methodologies2 already explored by other authors who have
made significant contributions in music genre classification as well as other prevalent
audio analysis fields (e.g. from speech recognition to signal compression).

Since mature descriptive techniques for audio feature extraction became available,
in the 1990’s, the domain of content-based music information retrieval experienced
a major uplift [Lidy and Rauber 2005], in particular the study of music genre clas-
sification [Fu et al. 2011]. Aside from the numerous developments that music genre
classification can have on music information retrieval, there are many other applica-
tions upon the success or development over this problem, for example music auto-
tagging3 [Casey et al. 2008] and recommendation. As a result of this, content-based fea-
ture extraction techniques has attracted a lot of attention as researches wish to exploit

1 Those that do not require extended work to obtain, e.g. the title of the piece or perhaps the composers
name.

2 Which comprise of features and classification algorithms.
3 Genre auto-tagging offers little data-discrepancies and eliminates errors.

11



12 related work

content-based feature extraction methods to maximise classification accuracy, and by
doing so, maximise music information retrieval speed. Current approaches hypoth-
esise the usefulness of some features, and classification results deem their accuracy.
Music genre has been favored by many researchers as a hypothetical true descriptor
of musical content [Aucouturier and Pachet 2003] that can be used to categorise mu-
sic into clusters - even though genre is not clearly defined as, stated in Section 1.2, the
components of genre definitions are unlimited [White 1976] and fuzzy [Scaringella
et al. 2006]. Optimistically, this research uses background information and previous
success [Scaringella et al. 2006; Tzanetakis and Cook 2002; Owen 2000], as seen in
Table 1 and Table 2, to assume that audio signals contain some details describing
the inexplicit definitions of musical genre. Table 1 shows related work using GTZAN
genres for music genre classification and Table 2 presents related work using other
dataset such as MIREX 2005, ISMIR 2004, and other corpus constructions.

Remark 3.1. An accepted protocol for music genre classification is by using the bag-of-
features (BOF) approach [Scaringella et al. 2006; McFee et al. 2012; Tzanetakis and Cook
2002; Owen 2000], where audio signals are modelled by their long-term statistical
distribution of their short-term spectral features [Panagakis et al. 2010].

Content-based acoustic features are summarised by the following conventional ex-
tension: timbre content features; rhythmic content features; pitch content features; or their
combinations [Tzanetakis and Cook 2002]. Section 3.2 describes content-based related
work while Section 3.2.1, Section 3.2.2, and Section 3.2.3 provide related work using
timbre, rhythm, and pitch feature extraction respectively.

As shown in Figure 1, the classification step is just as important as the feature
extraction step, and so paramount related work in this step must be realised. Sec-
tion 3.3 presents related work on classification algorithms used for music genre clas-
sification. Although there has been much work in this field, only work directly re-
lated to content-based classification will be presented to express the novelty of this
research. In order to compare the results of this study with those of other studies,
orthodox datasets are used to make the reported classification accuracies comparable
(Section 4.1.3). Noteworthy music genre classification model accuracies are given by
Table 1 and Table 2, which suggest that content-based feature extraction using BOF tech-
niques together with classifier tools such as: k-nearest-Neighbour (k-NN); the support
vector machines (SVM); Gaussian mixture model (GMM); linear discriminant analy-
sis (LDA); non-negative matrix factorisation; and non-negative tensor factorisation,
have been proven most powerful.

Table 1: Related work using GTZAN genres.

Noteworthy Genre Classification Approaches and Contributions

(1) Benetos and Kotropoulos [2008]

Feature set: Audio power, audio fundamental frequency, total loudness, specific
loudness, audio spectrum centroid, spectrum rolloff frequency, audio spectrum
spread, audio spectrum flatness, Mel-frequency cepstral coefficients, autocorrela-
tion values, log attack time, temporal centroid, zero-crossing rate.

Continued on next page
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Table 1 – Continued from previous page

Dataset: GTZAN

Classification Algorithm Accuracy

Non-negative tensor factorisation (NTF) 75.00%

Non-negative matrix factorisation (NMF) 62.00%

Local NMF (LNMF) 64.33%

Sparse NMF (SNMF) 1 (λ = 0.1) 64.66%

SNMF 2 (λ = 0.001) 66.66%

Multi-layer Perceptrons (MLP) 72.00%

Support Vector Machines (SVM) 73.00%

(2) Bergstra et al. [2006]

Feature set: Fast Fourier transform coefficients, real cepstral coefficients, Mel-
frequency cepstral coefficients, zero-crossing rate, spectral spread, spectral cen-
troid, spectral rolloff, autoregression coefficients.

Dataset: GTZAN

Classification Algorithm Accuracy

ADABOOST 82.50%

(3) Cast et al. [2014]

Feature set: Mel-frequency cepstral coefficients.

Dataset: GTZAN, The authors used their model to classify four or three of the
following genres: classical, metal, pop, and country.

Classification Algorithm Accuracy

Naïve Bayes (3-genres) 98.33%

k-Means (3-genres) 95.00%

k-Medoids (3-genres) 87.00%

k-nearest neighbours (3-genres) 86.67%

Naïve Bayes (4-genres) 93.75%

k-Means (4-genres) 85.00%

k-Medoids (4-genres) 80.00%

k-nearest neighbours (4-genres) 72.50%

(4) Holzapfel and Stylianou [2008]

Feature set: MFCCs, non-negative matrix factorisation based features.

Dataset: GTZAN, Five fold cross validation.

Classification Algorithm Accuracy

Gaussian Mixture Models (NMF 5) 71.70%

Gaussian Mixture Models (NMF 10) 74.00%

Gaussian Mixture Models (NMF 15) 73.90%

Continued on next page
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Table 1 – Continued from previous page

Gaussian Mixture Models (NMF 20) 73.20%

Gaussian Mixture Models (MFCC 10) 70.30%

Gaussian Mixture Models (MFCC 20) 71.60%

Gaussian Mixture Models (MFCC 30) 73.00%

Gaussian Mixture Models (MFCC 40) 72.30%

(5) Li et al. [2003]

Feature set: MFCCs, spectral centroid, spectral rolloff, spectral flux, zero crossings,
low energy, rhythmic content features, pitch content features.

Dataset: GTZAN

SVM1 SVM2 LDA KNN

{Bl, Cl} 98.00% 98.00% 99.00% 97.50%

{Bl, Cl, Co} 92.33% 92.67% 94.00% 87.00%

{Bl, Cl, Co, Jaz} 90.50% 90.00% 89.25% 83.75%

{Bl, Cl, Co, Jaz, Met} 88.00% 86.80% 86.20% 78.00%

{Bl, Cl, Co, Jaz, Met, po} 84.83% 86.67% 82.83% 73.50%

{Bl, Cl, Co, Jaz, Met, po, hi} 83.86% 84.43% 81.00% 73.29%

{Bl, Cl, Co, Jaz, Met, po, hi, Reg} 81.50% 83.00% 79.13% 69.38%

{Bl, Cl, Co, Jaz, Met, po, hi, Reg, Ro} 78.11% 79.78% 74.47% 65.56%

(6) Lidy et al. [2007]

Feature set: Loudness, amplitude modulation, rhythm histogram, statistical spec-
trum descriptor, onset features, and symbolic features.

Dataset: GTZAN

Classification Algorithm Accuracy

linear Support Vector Machines 76.80%

(7) Panagakis et al. [2008]

Feature set: Multiscale spectro-temporal modulation features

Dataset: GTZAN

Classification Algorithm Accuracy

Non-Negative Tensor Factorization 78.20%

High Order Singular Value Decomposi-
tion

77.90%

Multilinear Principal Component Analy-
sis

75.01 %

(8) Sturm [2013b]

Continued on next page
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Table 1 – Continued from previous page

Feature set: The system of (SRCRP) uses six short-term features: octave-based spec-
tral contrast (OSC); Mel-frequency cepstral coefficients (MFCCs); spectral centroid,
rolloff, and flux; zero-crossings; and four longterm features: octave-based modula-
tion spectral contrast (OMSC): "low-energy"; modulation spectral flatness measure
(MSFM); and modulation spectral crest measure (MSCM).

Dataset: GTZAN

Classification Algorithm Accuracy

Quadratic discriminate classifier with
sparse approximation

78− 83%

(9) Tzanetakis and Cook [2002]

Feature set: Spectral centroid, spectral rolloff, spectral flux, first five Mel-
Frequency sepstral coefficients, low-energy feature, zero-crossing rate, means and
variances, beat histogram

Dataset: GTZAN, 10-fold cross-validation

Classification Algorithm Accuracy

Gaussian Mixture Models 61.00%

K-nearest neighbour 60.00%

Table 2: Related work that did not use GTZAN genres.

Noteworthy Genre Classification Approaches and Contributions

(1) Basili et al. [2004]

Feature set: Intervals, instruments, instrument classes, time changes, note exten-
sion.

Dataset: Corpus construction, 300 MIDIs, 5-fold cross-validation.

Classification Algorithm Accuracy

Naïve Bayes (NB) 62.00%

Voting Feature Intervals (VFI) 56.00%

J48 - Quianlan algorithm 58.00%

Nearest neighbours (NN) 59.00%

RIPPER (JRip) 52.00%

(2) Berenzweig et al. [2003]

Feature set: Mel-frequency cepstral coefficients.

Dataset: For these experiments, the authors simply hand-picked "canonical" artists
and genres with a criterion in mind.

Classification Algorithm Accuracy

Continued on next page
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Table 2 – Continued from previous page

Gaussian Mixture Models 62.00%

(3) Bergstra et al. [2006]

Feature set: Fast Fourier transform coefficients, real cepstral coefficients, Mel-
frequency cepstral coefficients, zero-crossing rate, spectral spread, spectral cen-
troid, spectral rolloff, autoregression coefficients.

Dataset: MIREX2005

Classification Algorithm Accuracy

ADABOOST 82.34%

(4) Cataltepe et al. [2007]

Feature set: Timbral features: spectral centroid, spectral rolloff, spectral flux, time-
domain zero crossing, low energy, Mel-frequency spectral coefficients, Means and
variances of the spectral centroid, spectral rolloff, spectral flux, zero crossing (8
features), and low energy (1 feature) results in 9-dimensional feature vector and
represented in experimental results as STFT label. Rhythmic and beat features:
BEAT (6 features), STFT (9 features), MFCC (10 features), MPITCH (5 features),
ALL (30 features).

Dataset: McKay and Fujinaga’s 3-root and 9-leaf genre data set (3 genres: Classic,
jazz, pop)

Classification Algorithm Accuracy

10-Nearest Neighbours 75.00%

Linear discriminate analysis 86.33%

(5) Cilibrasi et al. [2004]

Feature set: Similarity function between pieces.

Dataset: Corpus construction, the following three genres were used: 12 rock pieces,
12 classical pieces (by Bach, Chopin, and Debussy), and 12 jazz pieces.

Classification Algorithm Accuracy

Distanced Based Classification 89.50%

(6) Dannenberg et al. [1997]

Feature set: 13 low-level features based on the MIDI data: averages and standard
deviations of MIDI key number, duration, duty factor, pitch and volume, counts
of notes, pitch bend messages, and volume change messages.

Dataset: The performer watches a computer screen for instructions. Every fifteen
seconds, a new style is displayed, and the performer performs in that style until
the next style is displayed - 25 examples each of 8 styles.

Classification Algorithm Accuracy

Bayesian Classifier (4-classes) 98.10%

Linear Classifier (4-classes) 99.40%

Neural Networks (4-classes) 98.50%

Bayesian Classifier (8-classes) 90.00%

Continued on next page
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Table 2 – Continued from previous page

Linear Classifier (8-classes) 84.30%

Neural Networks (8-classes) 77.00%

(7) Deshpande et al. [2001]

Feature set: Spectrograms and Mel-frequency spectral coefficients.

Dataset: 157 song samples were collected from the Internet. From each of those, a
20 second long clip was extracted. These 20 sec long clips were used throughout
experiments, both for training and testing - 3 genres: rock, classical and jazz.

Classification Algorithm Accuracy

k-Nearest Neighbours 75.00%

Gaussian Mixture Models Failed (The distribution was not
Gaussian)

Support Vector Machines (classical and
non-classical genres)

90.00%

(8) Dixon et al. [2004]

Feature set: Rhythmic features: none, periodicity histograms, IOI histograms, pe-
riodicity & IOI hist, tempo attributes, and all (plus bar length).

Dataset: The authors collected 698 samples of standard and Latin ballroom dance
music [bal], each consisting of approximately the first 30 seconds of a piece. The
music covers the following eight classes: Cha Cha, Jive, Quickstep, Rumba, Samba,
Tango, Viennese Waltz and (slow) Waltz.

Classification Algorithm Accuracy

AdaBoost (No rhythmic descriptors,
With rhythmic patterns)

50.10%

AdaBoost (11 periodicity hist., With
rhythmic patterns)

68.10%

AdaBoost (64 IOI hist., With rhythmic
patterns)

83.40%

AdaBoost (75 Periodicity & IOI hist.,
With rhythmic patterns)

85.70%

AdaBoost (Tempo attributes, With rhyth-
mic patterns)

87.10%

AdaBoost (All (plus bar length), With
rhythmic patterns)

96.00%

AdaBoost (No rhythmic descriptors,
Without rhythmic patterns)

15.90%

AdaBoost (11 periodicity hist., Without
rhythmic patterns)

59.90%

AdaBoost (64 IOI hist., Without rhythmic
patterns)

80.80%

AdaBoost (75 Periodicity & IOI hist.,
Without rhythmic patterns)

82.20%

Continued on next page
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Table 2 – Continued from previous page

AdaBoost (Tempo attributes, Without
rhythmic patterns)

84.40%

AdaBoost (All (plus bar length), Without
rhythmic patterns)

95.10%

(9) Gouyon et al. [2000]

Feature set: Attack time, decay time, envelope of the attack region, the time differ-
ence between the index of maximum slope and the onset4, number of sinusoids
in the Prony modelling of the reversed attack and decay region, maximum mag-
nitude component in the Prony modeling of the reversed attack and decay region,
exponential decay factor of the maximum magnitude component in the Prony
modeling of the reversed attack and decay region, maximum magnitude compo-
nent in the Fourier transform of the attack and decay region - below the Strongest
Partial FFT Decay, maximum magnitude component in the Fourier transform of
the whole percussive sound, Local mean energy of the attack and decay region, Lo-
cal mean energy of the whole percussive sound, proportion between local mean
energy of the, attack and the decay regions, zero-crossing Rate of the attack region
- below the ZCR Attack, ZCR of the decay region - below the ZCR decay, ZCR of
the whole percussive sound.

Dataset: The authors selected percussive sounds most suited to the problem. They
considered a database consisting of samples taken from the Korg 05RW’s general
MIDI drum kit. These sounds are classified into two categories by hand: bass drum
sounds (15 sounds) and snare sounds (6 sounds).

Classification Algorithm Accuracy

Agglomerative Clustering (2-classes) 87.50%

(10) Grimaldi et al. [2003]

Feature set: 48 time-frequency features

Dataset: 200 instances divided in 5 different musical genres (Jazz, Classical, Rock,
Heavy Metal and Techno), with 40 items in each genre. Each item is sampled at
44100 Hz, mono. 10-fold cross validation

Classification Algorithm Accuracy

Simple K nearest neighbour (with No FS
feature ranking procedure)

78.50%

(11) Guo and Li [2003]

Feature set: Total spectrum power, sub-band powers, brightness, bandwidth, pitch
frequency, Mel-frequency cepstral coefficients. The means and standard devia-
tions of the L MFCCs are also calculated over the nonsilent frames, giving a 2L-
dimensional cepstral feature vector, named "Ceps". The Perc and Ceps feature sets
are weighted and then concatenated into still another feature set, named "Perc-
Ceps", of dimension 18+2L.

Continued on next page

4 That gives an indication of the sharpness or the smoothness of the attack.
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Table 2 – Continued from previous page

Dataset: An audio database of 409 sounds from Muscle Fish is used for the exper-
iments, which is classified into 16 classes by Muscle Fish.

Classification Algorithm Accuracy

Support Vector Machines (Ceps10) 14.65% error rate (29)

k-nearest neighbours (Ceps40) 19.70% error rate (39)

5- nearest neighbours (Ceps40) 24.24% error rate (40)

Nearest center (Ceps80) 40.40% error rate (80)

Support Vector Machines (Ceps8) 08.08% error rate (16)

k-nearest neighbours (Ceps8) 13.13% error rate (26)

5- nearest neighbours (Ceps80) 32.32% error rate (41)

Nearest center (Ceps60) 20.71% error rate (64)

(12) Hamel et al. [2011]

Feature set: Mel-scaled energy bands, octave-based spectral contrast features, spec-
tral energy bands, feature learning and deep Learning using neural networks

Dataset: MIREX 2009, Magnatagatune dataset consists of 29-second clips with an-
notations that were collected using an online game called TagATune.

Classification Algorithm Accuracy

mel-spectrum + Pooled Features Classi-
fier (Average AUC-Tag)

82.00%

Principal Mel-Spectrum Components
+ Pooled Features Classifier (Average
AUC-Tag)

84.50%

Principal Mel-Spectrum Components +
Multi-Time-Scale Learning model (Aver-
age AUC-Tag)

86.10%

mel-spectrum + Pooled Features Classi-
fier (Average AUC-Clip)

93.00%

Principal Mel-Spectrum Components
+ Pooled Features Classifier (Average
AUC-Clip)

93.38%

Principal Mel-Spectrum Components +
Multi-Time-Scale Learning model (Aver-
age AUC-Clip)

94.30%

(13) Holzapfel and Stylianou [2008]

Feature set: MFCCs, non-negative matrix factorisation based features.

Dataset: ISMIR2004, 5-fold cross validation.

Classification Algorithm Accuracy

Gaussian Mixture Models (NMF 5) 75.70%

Gaussian Mixture Models (NMF 10) 83.50%

Continued on next page
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Table 2 – Continued from previous page

Gaussian Mixture Models (NMF 15) 77.70%

Gaussian Mixture Models (NMF 20) 78.60%

Gaussian Mixture Models (MFCC 10) 60.00%

Gaussian Mixture Models (MFCC 20) 61.10%

Gaussian Mixture Models (MFCC 30) 67.70%

Gaussian Mixture Models (MFCC 40) 67.30%

(14) Jiang et al. [2002]

Feature set: Octave-based spectral contrast. The mean and standard deviation of
spectral contrast composes a 24-dimension feature for a music clip.

Dataset: "There are about 1500 pieces of music in our database for experiments,
and five music types are included baroque music, romantic music, pop songs, jazz,
and rock. Most of the baroque pieces in thc database are literatures of Bach and
Handel, who are the most important composers in the baroque era. The roman-
tic database is composed of literatures of Chopin, Schubert, Liszt. Beethoven, and
other composers in the romantic era. Pop songs are those singed by some pop-
ular singers, which includes nine men and sixteen women. Jazz and rock in the
database also include literatures of many different composers. In each music type
database, different possible musical form and musical instruments are included.
All the music data in the database are 16kHz. 16 bits, mono wave files. About
6250 IO-second clips, which are randomly selected from the IS00 pieces of music,
compose the classification database, where 5000 is for training and 1250 for test-
ing. For each music type, there are about 1000 clips in the training set, and about
250 clips in the testing set. IO-second clips from the same music piece would not
appear both in the training set and lesting set. In the classification experiments
on whole music, the training data is the same as those for 10- second music clips,
while the testing data is composed by the music piece whose clips are presented
in the original testing data set."

Classification Algorithm Accuracy

Gaussian Mixture Models 82.30%

(15) Lambrou et al. [1998]

Feature set: Mean, variance, skewness, kurtosis, accuracy, angular second moment,
correlation, and Entropy.

Dataset: (12) musical signals (4 Rock, 4 Piano, and 4 Jazz), for the training stage
of the classification procedure.

Classification Algorithm Accuracy

Least Squares Minimum Distance Classi-
fier (Kurtosis vs. Entropy)

91.67%

(16) Lee et al. [2007]

Feature set: MFCCs, octave-based spectral contrast, octave-based modulation spec-
tral contrast (OMSC).

Continued on next page
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Dataset: In the experiments, there are 1783 music tracks derived from compact
disks. All music tracks in our database are 44.1 kHz, 16 bits, stereo wave files. Half
of the music tracks are used for training and the others for testing. All the music
tracks are classified into seven classes including 342 tracks of chamber (Ch), 405

tracks of dance (D), 183 tracks of hip-hop (H), 203 tracks of jazz (J), 178 tracks of
orchestra (O), 201 tracks of popular (Po), and 271 tracks of rock (R) music.

Classification Algorithm Accuracy

Nearest Neighbour 84.30%

(17) Li et al. [2001]

Feature set: Average energy, spectral centroid, spectral bandwidth, spectral rolloff,
band ratio, delta magnitude, zero-crossing rate, pitch, Mel-frequency cepstral co-
efficients, LPC, delta.

Dataset: The authors collected a large number of audio clips with 7 categories:
Noise, speech, music, speech + noise, speech + speech, speech music. Data was
collected from TV programs, talk shows, news, football games, weather reports,
advertisements, soap operas, movies, late shows, etc.

Classification Algorithm Accuracy

Bayesian Classifier under the assump-
tion that each category has a multidimen-
sional Gaussian distribution

90.10%

(18) Li et al. [2003]

Feature set: MFCCs, spectral centroid, spectral rolloff, spectral flux, zero crossings,
low energy, rhythmic content features, pitch content features.

Dataset: "The collection of 756 sound files was created from 189 music albums
as follows: From each album the first four music tracks were chosen (three tracks
from albums with only three music tracks). Then from each music track the sound
signals over a period of 30 seconds after the initial 30 seconds were extracted in
MP3."

SVM1 SVM2 LDA KNN

{DWCHs} 71.48% 74.21% 65.74% 61.84%

{Beat+FFT+MFCC+Pitch} 68.65% 69.19% 66.00% 60.59%

{FFT+MFCC} 66.67% 70.63% 65.35% 60.78%

{Beat} 43.37% 44.52% 40.87% 41.27%

{FFT} 61.65% 62.19% 57.94% 57.42%

{MFCC} 60.45% 67.46% 59.26% 59.93%

{Pitch} 37.56% 39.37% 37.82% 38.89%

(19) Lidy and Rauber [2005]

Continued on next page
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Table 2 – Continued from previous page

Feature set: Fast Fourier transform (FFT) with hanning window function (23 ms
windows) and 50% overlap, bark scale, spectrum energy, loudness, specific loud-
ness, amplitude modulation (0 to 43 Hz) - 0 through 10 Hz is considered in the
rhythm patterns, weight modulation amplitudes, statistical spectrum descriptor,
rhythm histogram features.

Dataset: ISMIR2004, 10-fold cross validation.

Classification Algorithm Accuracy

Support Vector Machines 79.70%

(20) Lidy et al. [2007]

Feature set: Loudness, amplitude modulation, rhythm histogram, statistical spec-
trum descriptor, onset features, and symbolic features.

Dataset: MIREX2007

Classification Algorithm Accuracy

linear Support Vector Machines 75.57%

(21) Mandel and Ellis [2005]

Feature set: MFCCs.

Dataset: Uspop2002 collection [Berenzweig et al. 2004; Ellis et al.].

Classification Algorithm Accuracy

Support Vector Machine 68.70%

(22) Mandel and Ellis [2007]

Feature set: Temporal Pipeline: Mel spectrum → Magnitude Bands → Low Freq
Modulation → Envelope Cepstrum → Temporal features → Combined features
with Spectral pipeline→ final features. Spectral pipeline: Mel spectrum→MFCCs
→ Covariance → Spectra features → Combined features with temporal pipeline
→ final features.

Dataset: MIREX2007

Classification Algorithm Accuracy

Support Vector Machines 75.03 %

(23) McKay and Fujinaga [2005]

Feature set: Instrumentation, texture, rhythm, dynamics, pitch statistics, and
melody.

Dataset: 950 MIDI files were collected and hand classified for use in training and
testing.

Classification Algorithm Accuracy

Neural Networks and Support Vector
machines (9 classes)

98.00%

Neural Networks and Support Vector
Machines (38 classes)

57.00%

(24) McKinney and Breebaart [2003]

Continued on next page
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Table 2 – Continued from previous page

Feature set: Two feature sets: Static and Temporal Features. Standard low-level
features: RMS, Spectral centroid, bandwidth, zero-crossing rate, spectral roll-off,
band energy ratio, delta spectrum, delta spectrum magnitude, pitch, and pitch
strength. SLL features (36 of them) were captured in the following frequencies: DC
values, 1-2 Hz, 3-15 Hz, 20-43 Hz. 13 MFCCs were captured in the folloiung fre-
quencies: DC values, 1-2 Hz, 3-15 Hz, 20-43 Hz. Psychoacoustic features: average
roughness, standard deviation of roughness, average loudness, average sharpness,
1-2 Hz loudness modulation energy, 1-2 sharpness modulation energy, 3-15 Hz
loudness modulation energy, 3-15 sharpness modulation energy, 20-43 Hz loud-
ness modulation energy, 20-43 sharpness modulation energy. Audio filter bank
temporal envelopes (AFTP): DC envelope values of filters 1-18; 3-15 Hz envelope
modulation energy filters 1-18; 20-150 Hz envelope modulkation energy of filters
3-18; 150-1000Hz envelope modulation energy of filters 9-18.

Dataset: Hand selected popular music from seven different genres: Jazz, Folk,
Electronica, R&B, Rock, Reffae, and Vocal. The database used in the current study
is a "quntessential" subset of a larger database.

Classification Algorithm Accuracy

Quadratic discriminant analysis SLL fea-
ture set (General audio)

86 4%

Quadratic discriminant analysis SLL fea-
ture set (Genre)

61 11%

Quadratic discriminant analysis MFCC
feature set (General audio)

92 3%

Quadratic discriminant analysis MFCC
feature set (Genre)

65 10%

Quadratic discriminant analysis AFTE
feature set (General audio)

93 2%

Quadratic discriminant analysis AFTE
feature set (Genre)

74 9%

(25) Meng et al. [2007]

Feature set: Short term features (20-40ms frame size): MFCCs. Midterm features
(frame sizes 1000-2000ms): high zero crossing rate, , low short time energy ratio.
Long term features (using the full spectrum): beat histogram. Temporal feature
integration was conducted using DAR and avoided MeanVar and FC feature inte-
gration approaches.

Dataset: The first data set, denoted "data set A," consists of 100 sound clips
distributed evenly among the five music genres: Rock, Classical, Pop, Jazz, and
Techno. Each of the 100 sound clips, of length 30 s, are recorded in mono PCM
format at a sampling frequency of 22 050 Hz.

Classification Algorithm Accuracy

Continued on next page
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Table 2 – Continued from previous page

linear model trained by minimizing least
squares error (LM) (Multivariate autore-
gressive model for feature integration
(MAR))

92 1%

LM (Diagonal autoregressive for feature
integration (DAR))

89 1%

LM (Filter bank coefficients for feature in-
tegration (FC))

85 1%

LM (Mean covariance model for feature
integration (MeanCov))

79 1%

LM (Mean variance model for feature in-
tegration (MeanVar))

81 1%

Generalized linear model (GLM) with
MAR

89 1%

GLM with DAR 88 1%

GLM with FC 85 1%

GLM with MeanCov 86 1%

GLM with MeanVar 89 1%

Gaussian classifier (GC) with MAR 87 1 %

GC with DAR 82 1%

GC with FC 84 1%

GC with MeanCov 86 1%

GC with MeanVar 86 1%

Gaussian mixture model (GMM) with
MAR

81 1%

GMM with DAR 83 1 %

GMM with FC 83 1%

GMM with MeanCov 87 1%

GMM with MeanVar 87 1%

(26) Meng et al. [2007]

Feature set: Short term features (20-40ms frame size): MFCCs. midterm features
(frame sizes 1000-2000ms): high zero crossing rate, low short time energy ratio.
Long term features (using the full spectrum): beat histogram. Temporal feature
integration was conducted using DAR and avoided MeanVar and FC feature inte-
gration approaches.

Continued on next page
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Table 2 – Continued from previous page

Dataset: The second data set denoted "data set B" consists of 1210 music snippets
distributed evenly among the 11 music genres: Alternative, Country, Easy Listen-
ing, Electronica, Jazz, Latin, Pop&Dance, Rap&HipHop, R&B Soul, Reggae, and
Rock. Each of the sound clips, of length 30 s, are encoded in the MPEG1- layer 3

format with a bit-rate of 128 kb/s. The sound clips were converted to mono PCM
format with a sampling frequency of 22 050 Hz prior to processing.

Classification Algorithm Accuracy

LM with MAR 45.5 1%

LM with DAR 38 1%

LM with FC 34 1%

LM with MeanCov 35.5 1%

LM with MeanVar 30 1%

GLM with MAR 48 1%

GLM with DAR 43.5 1%

GLM with FC 38 1%

GLM with MeanCov 38 1%

GLM with MeanVar 33 1%

GC with MAR 37 1%

GC with DAR 34 1%

GC with FC 27 1%

GC with MeanCov 27.5 1%

GC with MeanVar 30 1%

GMM with MAR 27 1%

GMM with DAR 35.5 1%

GMM with FC 38 1%

GMM with MeanCov 40 1%

GMM with MeanVar 38 1%

(27) Pampalk et al. [2005]

Feature set: Spectral similarity, MFCCs, Frame clustering, cluster model similarity

Dataset: ISMIR2004

Classification Algorithm Accuracy

Spectral similarity described by Pachet
and Aucouturier [2004]

82.30%

(28) Panagakis et al. [2008]

Feature set: Multiscale spectro-temporal modulation features

Dataset: ISMIR2004

Classification Algorithm Accuracy

Continued on next page
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Table 2 – Continued from previous page

Non-Negative Tensor Factorization 80.47%

High Order Singular Value Decomposi-
tion

80.95%

Multilinear Principal Component Analy-
sis

78.53%

(29) West and Cox [2004]

Feature set: Mel-frequency cepstral coefficients, octave-scale spectral contrast fea-
ture, Marsyas-0.1 single vector genre feature set, reducing covariance in calculated
features, modelling temporal variation

Dataset: In this evaluation, we have used six classes of audio, each represented by
150 samples, which were a 30 second segment chosen at random from a song, also
chosen at random from a database composed of audio identified by the authors
as being from that genre of music. The first 10 seconds of each piece is ignored
as this sometimes contains little data for classification. The genres selected were
Genres: Rock, Classical, Heavy Metal, Drum and Bass, Reggae and Jungle music.
50% training 50% testing.

Classification Algorithm Accuracy

Single Gaussian Model 63 1%

Gaussian Mixture Model 62 1%

Fisher Criterion Linear discriminant
Analysis

45.5 1%

Classification trees with Linear discrimi-
nant Analysis

67.5 1%

Classification trees with single Gaussians
and Mahalanobis distance measurements

67 1%

(30) Xu et al. [2003]

Feature set: Beat Spectrum, LPC derived cepstrum, zero-crossing rate, spectrum
power, Mel-frequency cepstral coefficients.

Dataset: The music dataset used in musical genre classification experiment con-
tains 100 music samples. They are collected from music CDs and Internet and
cover different genres such as classic, jazz, pop and rock. All data are 48.0kHz
sample rate, stereo channels and 16 bits per sample. In order to make training
results statistically significant, training data should be sufficient and cover various
genres of music.

Classification Algorithm Accuracy

Support Vector Machines 93.64%

(31) Xu et al. [2005a]

Feature set: Mel-frequency cepstral coefficients, spectrum flux, cepstrum flux,
spectral power, amplitude envelop, linear prediction coefficients (LPC), (LPC)-
derived cepstrum coefficients (LPCC), zero-crossing Rates.

Continued on next page
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Table 2 – Continued from previous page

Dataset: "They are collected from music CDs and the Internet and cover different
genres such as pop, classical, rock and jazz. Test Set 1: The first part contains 20

pure music samples (40 000 frames)"

Classification Algorithm Accuracy

Support Vector Machines 99.83%

Hidden Markov Model 96.44%

Nearest Neighbours 80.34%

(32) Xu et al. [2005a]

Feature set: Mel-frequency cepstral coefficients, spectrum flux, cepstrum flux,
spectral power, amplitude envelop, linear prediction coefficients (LPC), (LPC)-
derived cepstrum coefficients (LPCC), zero-crossing rates.

Dataset: "They are collected from music CDs and the Internet and cover different
genres such as pop, classical, rock and jazz. Test Set 2: The second part contains
20 vocal music samples (40 000 frames)."

Classification Algorithm Accuracy

Support Vector Machines 93.34%

Hidden Markov Model 92.77%

Nearest Neighbours 77.67%

(33) Xu et al. [2005a]

Feature set: Mel-frequency cepstral coefficients, spectrum flux, cepstrum flux,
spectral power, amplitude envelop, linear prediction coefficients (LPC), (LPC)-
derived cepstrum coefficients (LPCC), zero-crossing rates.

Dataset: They are collected from music CDs and the Internet and cover different
genres such as pop, classical, rock and jazz. Test Set 3: The third part contains 15

pure music samples and 10 vocal music samples (50 000 frames).

Classification Algorithm Accuracy

Support Vector Machines 96.02%

Hidden Markov Model 89.13%

Nearest Neighbours 78.78%

3.2 content-based feature extraction

In this section the major contributions of content-based acoustic feature extraction
from audio are briefly reviewed. Recall that content-based acoustic features can be
classified as timbre, rhythmic, and pitch features [Tzanetakis and Cook 2002], and
so the following related work - in this section - employ a mixture of these content
features for music genre classification.
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Foote [1997], probably one of the first authors in content based audio retrieval, stud-
ied similarities between musical content/audio and used these similarities to gener-
ate sound queries. By doing so, Foote [1997] presented a search engine which was used
to retrieve music content from a database based on these similarities. Foote [1997]
proposed two similarity functions as a composition of distance measures. Another
early author in music style recognition, Dannenberg et al. [1997], studied machine
learning algorithms for music content style classification. Dannenberg et al. [1997] hy-
pothesised that a machine can perform extraction techniques to learn metrics from an
audio signal and use these metrics, along with machine learning algorithms, to build
musical style classifiers. Li [2000] also used distance metrics for music information
retrieval by proposing a nearest feature line method for content-based genre classifica-
tion. Liu and Huang [2000], however, produced a more sophisticated method for con-
text based indexing by proposing a novel metric for distance between two Gaussian
mixture models. Logan and Salomon [2001] used the K-means clustering algorithm
on Mel-frequency cepstral coefficients features along with another novel comparison
metric for content-based audio information retrieval. Pampalk et al. [2003] conducted
a brief comparison between long-term and short-term feature descriptors on various
datasets, including those novel features belonging to Logan and Salomon [2001] and
Aucouturier and Pachet [2002]. The results from Pampalk et al. [2003] informs this
research as analysing spectral histograms thorough large scale evaluation have been
proven most effective. Zhang and Kuo [2001] classified audio signals from popular TV
series and movies by using a heuristic rule-based system that involved content-based
features.

The next three sections further analyse the contributions towards content-based fea-
ture extraction by examining the development of timbre, rhythmic, and pitch content-
based features respectively.

3.2.1 Timbre Content-based Features

Timbre content-based features has its roots in traditional speech recognition as it is
considered a key descriptor in speech classification. Customarily, timbre descriptors
are obtained by first performing a short-time Fourier transform (STFT) and then ex-
tracting from every short-time frame or window a descriptor [Rabiner and Juang
1993]. Timbre features include but are not limited to spectral centroid, rolloff, flux,
energy, zero crossing rate, and Mel-Frequency Cepstral Coefficients (MFCCs) [Ra-
biner and Juang 1993]. The most effectual timbre feature used in speech recognition
are the MFCCs extracted form the spectral histogram. Logan [2000] examined these
MFCCs to model musical content for music/speech classification. Based only on tim-
bre features, Deshpande et al. [2001] classified music datasets into rock, piano, and
jazz using GMMs, SVMs, and the k-NN algorithms. Foote [1997] performed audio
retrieval using simple audio features, including energy, along with 12 MFCCs by
constructing a learning tree vector quantizer. Aucouturier and Pachet [2002] planned
to introduce a timbral similarity measure only for MFCCs to classify various sized
music databases using GMMs. Unfortunately, the timbral similarity measure was not
applicable to large datasets and so Aucouturier and Pachet [2002] proposed a mea-
sure of "interestingness" for MFCC features. Li et al. [2003] proposed a novel feature
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set using Daubechies Wavelet Coefficient Histograms which proved to be suitable to
categorise amplitude variations in musical signals for music genre classification.

3.2.2 Rhythmic Content-based Features

Often when one wants to examine musical content an obvious considerable factor is
rhythm. Rhythmic content-based features refer to the regularity of the rhythm, beat
and tempo of the audio signal. Various authors have successfully explored rhythmic
features in music genre classification literature [Goto and Muraoka 1994; Laroche
2001; Scheirer 1998]. Foote and Uchihashi [2001] represented rhythm by using a beat
spectrum. Lambrou et al. [1998] classified music datasets into rock, piano, and jazz
by using temporal domain statistical features along with various wavelet domain
transforms. Soltau et al. [1998] showed that temporal abstract features can be learnt
by neural networks as representing temporal structures of an input signal, which
could be used for music genre identification. A question often arises whether or not
there exists a difference between music and speech discrimination. Saunders [1996];
Scheirer and Slaney [1997] present a clear discrimination between music and speech
identification. Dixon et al. [2004] experimented with rhythmic patterns combined with
additional features derived from them. Meng et al. [2007] developed a multivariate
autoregressive model to model temporal feature correlation.

3.2.3 Pitch Content-based Features

Pitch content-based features describe the frequency statistics associated with (musi-
cal) signal bands that are sampled using pitch detection or extraction procedures.
Pitch content-based features can be expressed as absolute pitch or interval pitch [Mc-
Nab et al. 1996]. Both of these expressions can be quantified as pitch content-based
acoustic features [Uitdenbogerd and Zobel 1999].

The duration and differences in time onsets for two consecutive notes are expressed
as IOIR and IOI respectively. Pardo and Birmingham [2002] used the logarithm of
variations of IOIR and IOI to perform music identification. McNab et al. [1996]; Uit-
denbogerd and Zobel [1999] have shown that using interval pitch and IOIR on dif-
ferent melodies5 can yield transpositions and time invariance that take advantage of
both pitch and duration to identify melody sequences as more unique. Kotsifakos
et al. [2012] conducted an intense survey on Query-By-Humming (QBH) similarity
techniques based on pitch content-based features. Adams et al. [2004] used absolute
pitches with Dynamic Time-Warping (DTW) for whole sequence matching. The prob-
lem with whole sequence matching is that of tempo variations, which was solved by
scaling the target sequences before applying the DTW [Mongeau and Sankoff 1990;
Mazzoni and Dannenberg 2001]. Lemström and Ukkonen [2000] used dynamic pro-
gramming to embed transposition invariance as a cost function, however, it is often

5 or variations of these descriptors.
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the objective to perform whole query matching without using duration. Bergroth et
al. [2000]; Uitdenbogerd and Zobel [1999] provided an alternative dynamic program-
ming approach called the Longest Common SubSequence (LCSS)6 to asses melodic
similarity. Iliopoulos and Kurokawa [2002] provided a comprehensive algorithm us-
ing absolute pitches for whole query matching for music identification. The algo-
rithm presented by Iliopoulos and Kurokawa [2002] allowed for a constant restricted
amount of gaps and mismatches.

Zhu and Shasha [2003] provided an unusual approach to whole sequence matching
by dividing a song in a dataset into chunks where a query is resolved by comparing
it to each chunk. Following the work by Zhu and Shasha [2003], Hu et al. [2002];
Jang and Gao [2000] addressed whole sequence matching by only using absolute
pitches and tempo scaling upon these chunks. Edit distances (ED) with its respec-
tive variations have been proven to be a useful tool for music retrieval [Lemström
and Ukkonen 2000; Pauws 2002]. Kotsifakos et al. [2011]; Unal et al. [2008] use ED,
taking advantage of pitch and duration statistics, to perform QBH. More recent meth-
ods to resolve QBH uses SPRING [Sakurai et al. 2007] to find chunks from evolving
numerical streams to partly match the query [Kotsifakos et al. 2011].

3.3 related classification techniques

There have been several attempts to conduct automatic music genre classification us-
ing the following supervised classification techniques: K-nearest neighbours (KNN)
[Tzanetakis and Cook 2002; Li and Ogihara 2006; Haggblade et al. 2011], Gaussian
Mixture Models (GMM) [Tzanetakis and Cook 2002; Li and Ogihara 2006; West and
Cox 2004], Linear Discriminant Analysis (LDA) [Li and Ogihara 2006], Adaboost
[Bergstra et al. 2006], Hidden Markov Models (HMM) [Kim et al. 2004], Regularised
Least-squares Framework [Song and Zhang 2008], and Support Vector Machines
(SVM) [Li and Ogihara 2006; Panagakis et al. 2008; Xu et al. 2005a]. Although these
techniques obtain good accuracy and present thorough methodologies, it is hypothe-
sised that many of them can be improved from feature extraction to automatic classi-
fication.

Several classification techniques have been explored to perform music retrieval
using content-based acoustic feature extraction [Tzanetakis and Cook 2002; Meek and
Birmingham 2004; Soltau et al. 1998; Basili et al. 2004; Hamel et al. 2011]. Tzanetakis
and Cook [2002] used K-nearest neighbours and Gaussian mixture models for music
genre classification based on a novel set of content-based features. Following attempts
to perform classification for QBH, Meek and Birmingham [2004]; Shifrin et al. [2002];
Unal et al. [2008] presented a HMM approach.

Soltau et al. [1998] extended the work of Meek and Birmingham [2004]; Shifrin
et al. [2002]; Unal et al. [2008] for music genre classification maintaining the HMM

6 This approach allows gaps on both sequences during alignment.
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approach. While HMMs have been proven useful for music composition7 [Khadke-
vich and Omologo 2009; Pearce and Wiggins 2007], it is unlikely that HMMs will
be suitable to model classification of musical genre simply because the training is
computationally expensive given the dimensionality of the problem8 and size of the
dataset9.

Berenzweig et al. [2003] presented a model that mapped the genre and composer of
a corpus constructed dataset to a Cartesian plane using MFCCs as a feature descrip-
tor. The design matrix was represented using the posterior probabilities of different
neural networks in multi-dimensional space. This representation was then used to
classify the corpus construction using Gaussian mixture models and KL-divergence
algorithms were used for comparisons between melodies. Berenzweig et al. [2003] pro-
duced a comprehensive algorithm, however, the accuracy obtained by this methodol-
ogy was unsatisfactory.

McKay and Fujinaga [2005] used a feature significance method where features
were leveraged or ranked by their important characteristics. These ranking or weight
systems were used to appropriately weigh the features in final calculations. McKay
and Fujinaga [2005] heavily leveraged content-based features for music genre classi-
fication (using k-NN, neural networks and combination of several classifiers) which
lost the significance of the weighing system as the application seemed to not need
the other features given their insignificant weighing. The use of priority features by
McKay and Fujinaga [2005] informs this research, however, the weighing system in
final calculations will not be done as this research hypothesises that it is better to
pre-process feature significance (ranking system) and by only using the features with
significant leverage. Therefore this research will consider adopting wrapper and filter
feature selection strategies.

Cataltepe et al. [2007] transformed melodies from MIDI formats to alphabetic-
strings and audio signals. The alphabetic strings employed a normalised compression
distance equation to differentiate between melodies, while the content-based features
were extracted from the audio signal. Cataltepe et al. [2007] used LDC and k-NN
classifiers, in some cases mixed and independently, with appropriate weights to per-
form the final genre classification. Multi-class support vector machine classifiers are
very popularly used in genre classification [Lidy and Rauber 2005; Mandel and El-
lis 2005; Hamel et al. 2011] along with many other interesting approaches [Bergstra
et al. 2006; Cilibrasi et al. 2004; Dannenberg et al. 1997; Tzanetakis and Cook 2002].
David [2000] explored Tree-based Vector Quantisation (VQ) and GMMs [Turnbull et
al. 2007] for music genre classification. Following David [2000], McFee et al. [2012]
explored k-NN on frame-level MFCC features and used the cluster centers for VQ.
Berenzweig et al. [2004] presented an extensive study on subjective and content-based
features. Their study compared several similarity metrics on orthodox datasets. Basili
et al. [2004] studied several classification algorithms on different datasets for music
genre classification.

7 As this is nothing more than observing probabilistic behaviour which HMMs are most suited for.
8 Particularly for large music datasets that we will have to deal with, e.g. MusicBrainz with 16 000 000

entries.
9 The number of music tracks and the length of the sequences used to train the model



32 related work

3.4 music information retrieval

Due to the extensive research to improve music genre classification for music informa-
tion retrieval and recommendation, there has been a demand for common evaluation
to assess and compare different author’s contributions [Downie 2003]. As a result
of this, many music information retrieval (MIR) contests have emerged. The first of
which was an ISMIR contest held in 2004 to evaluate five different components of
MIR research - genre classification being one of them. In 2005 ISMIR continued as
the MIREX contest.

3.5 contributions

Music genre classification is a rudimentary part of MIR and music recommendation
systems. Thorough the availability of digital music on the Internet and significant
customer and industry related contributions, it has been an expanding field of re-
search [Li et al. 2003]. For many years music genre classification has been done by
hypothesising features extracted from an audio signal to be true descriptors of mu-
sic. These features are obtained by listening to an audio signal and then attempting
to replicate the auditory system though a computational model. Many authors have
discovered truly useful features but because of the overflow of ideas, these features
have never been quantitatively compared and analysed for their individual impor-
tance. Furthermore, it is often the case where the discovery of features useful in some
fields10, can be unknowingly useful in other fields.

Example 3.2. For example, energy - which is a prevalent speech processing feature -
might me unknowingly useful in music genre classification, or Mel Frequency Ceptral
Coefficients (MFCCs) might not be as useful as researchers might have hypothesised.

Therefore, this research plans to contribute to current knowledge in music genre
classification by ranking features so future researchers will know which features are
more effective than others using a benchmark dataset (GTZAN).

This research will use six classification techniques, two of which have never been
used for genre classification: random forests and linear logistic regression models.
Linear logistic regression models provides the best classification for genre detection
on GTZAN genres. According to an extensive literature review, only three other au-
thors provide better classification using different techniques with the same BOF set-
ting [Sturm 2013b; Bergstra et al. 2006; McKay and Fujinaga 2005]. Briefly stated, the
proposed research aims to provide the following contributions:

1. A list of existing methods for genre classification, these include more than 42

noteworthy content-based classification methods that are compared in terms of
their feature-sets, dataset, and classification techniques.

10 For example, speech recognition or audio compression
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2. An extensive collection of features with two classification algorithms never used
for genre classification. Table 3 shows a list of some features and classification
algorithms used by previous authors for music genre classification. The first
column is the feature or classification algorithm and the second column is the
author who used the corresponding feature. In the second column a? indicates
that the feature or classification algorithm was not used for genre detection
before. This research will attempt to use these features/classifiers for genre
detection.

3. A thorough comparison of feature representation methods as well as a suit-
able representation for each presented genre detecting feature will be provided.
These feature representations include the arithmetic mean; MFCC; 3, 5, 10, 20,
30 -bin feature histograms; and area methods (better explained in Chapter 5).

4. A complete design matrix with all parameters that achieve 81% classification
using linear regressions on 10 GTZAN genres, along with the corresponding
confusion matrix. This research also emphasises which features are most suited
to classify each GTZAN genre.

Table 3: List of features and classifiers used by previous authors.

Attempting New Classifiers and Features for Genre Classification

Content-based features

Amplitude modulation
Lidy and Rauber [2005]; Mandel and
Ellis [2007]; McKinney and Breebaart

[2003]; Panagakis et al. [2008]

Energy

Lidy and Rauber [2005]; Gouyon et al.
[2000]; Hamel et al. [2011]; Lee et al.

[2007]; McKinney and Breebaart [2003];
Li et al. [2003]; Meng et al. [2007];

Tzanetakis and Cook [2002]; Sturm
[2013b]

Autocorrelation coefficients Benetos and Kotropoulos [2008];
Lambrou et al. [1998]

Mel-frequencies Cepstrum coefficients

Mandel and Ellis [2007]; McKinney and
Breebaart [2003]; Benetos and

Kotropoulos [2008]; Berenzweig et al.
[2003]; Lee et al. [2007]; Li et al. [2003];

Meng et al. [2007]; Tzanetakis and Cook
[2002]; Berenzweig et al. [2003]; Cast et al.
[2014]; Guo and Li [2003]; Holzapfel and

Stylianou [2008]; Mandel and Ellis
[2005]; Meng et al. [2007]; West and Cox

[2004]; Xu et al. [2005a]; Sturm [2013b]

Spectral decrease ?

Spectral flatness Benetos and Kotropoulos [2008]
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Spectral flux Li et al. [2003]; Tzanetakis and Cook
[2002]; Xu et al. [2005a]; Sturm [2013b]

Spectral variation ?

Temporal centroid Benetos and Kotropoulos [2008]

Temporal spread, skewness, and kurtosis ?

Zero-crossing rate

Bergstra et al. [2006]; Gouyon et al.
[2000]; Li et al. [2003]; McKinney and

Breebaart [2003]; Meng et al. [2007];
Tzanetakis and Cook [2002]; Xu et al.

[2005a]; Sturm [2013b]

Spectral derivative ?

Complex domain onset detection ?

Linear predictor coefficients Xu et al. [2005a]

Line spectral frequency ?

Loudness
Benetos and Kotropoulos [2008]; Lidy

and Rauber [2005]; McKinney and
Breebaart [2003]

Compute octave band signal intensity
(with ratio)

?

Perceptual sharpness and spread ?

Spectral crest factor (per band) + peak-
based features

?

Spectral flatness per band ?

Spectral rolloff

Benetos and Kotropoulos [2008];
Bergstra et al. [2006]; Li et al. [2003];

McKinney and Breebaart [2003];
Tzanetakis and Cook [2002]; Sturm

[2013b]

Envelope centroid Mandel and Ellis [2007]

Envelope spread, skewness, kurtosis ?

Spectral centroid

Benetos and Kotropoulos [2008];
Bergstra et al. [2006]; Li et al. [2003];

McKinney and Breebaart [2003];
Tzanetakis and Cook [2002]; Sturm

[2013b]

Spectral spread, skewness, kurtosis
Benetos and Kotropoulos [2008];

Bergstra et al. [2006]; Lambrou et al.
[1998]

Spectral slope ?

Compactness ?

Fraction of low energy ?
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Beat histogram features
Tzanetakis and Cook [2002]; Cataltepe et

al. [2007]; Li et al. [2003]; Meng et al.
[2007?]; Xu et al. [2003]

Chroma ?

Relative difference function ?

Dataset

GTZAN Genre Collection

Benetos and Kotropoulos [2008];
Bergstra et al. [2006]; Cast et al. [2014];

Holzapfel and Stylianou [2008]; Li et al.
[2001 2003]; Lidy et al. [2007]; Panagakis
et al. [2008]; Tzanetakis and Cook [2002]

Classification Algorithms

Naïve Bayes [John and Langley 1995] Basili et al. [2004]; Cast et al. [2014]

Support vector machines [Chang and Lin
2001; EL-Manzalawy 2005]

Benetos and Kotropoulos [2008];
Deshpande et al. [2001]; Guo and Li

[2003]; Lidy and Rauber [2005]; Mandel
and Ellis [2005 2007]; McKay and
Fujinaga [2005]; Xu et al. [2005a]

Gaussian mixture models

Berenzweig et al. [2003]; Deshpande et al.
[2001]; Holzapfel and Stylianou [2008];

Meng et al. [2007]; Tzanetakis and Cook
[2002]; West and Cox [2004]

Multilayer perceptron Benetos and Kotropoulos [2008]

Linear logistic regression models [Sum-
ner et al. 2005; Landwehr et al. 2005]

?

K-nearest neighbours [Aha and Kibler
1991]

Basili et al. [2004]; Cast et al. [2014];
Deshpande et al. [2001]; Guo and Li

[2003]; Lee et al. [2007]; Tzanetakis and
Cook [2002]; Xu et al. [2005a]

JRIP [Cohen 1995] Basili et al. [2004]

J48 [Quinlan 1993] Basili et al. [2004]

Forest of random trees [Breiman 2001] ?

All of the required tools for the proposed methodology are now defined. Chapter 4

shows how a new methodology can be used for genre classification by using a novel
feature selection and various machine learning techniques for supervised classifica-
tion.





4
T H E R E S E A R C H D E S I G N

4.1 research design

This Research is divided into two main parts: the feature extraction step and the
classification step. Figure 2 shows an overview of the research design. The feature
extraction step involves an audio dataset (e.g. GTZAN) which contains all of

the audio data to be included by the experiment. A list of defined features are used
to extract descriptions from every audio file in the training dataset. The features and
dataset together give us the design matrix with dimensions n×(m+1)1. Each row of
the design matrix represents one and only one audio file description and each column
of the design matrix represents a feature value. A feature value is a value obtained
after a feature extraction. The design matrix also contains the genre label for every
audio signal, once the design matrix is complete, it is then passed to the classification
step.

Part II of the research design is called the classification step. In this step various clas-
sification algorithms will be used to classify the labels from the design matrix based
on the feature values. As seen in Figure 2 there will be more than one classification
technique applied to the design matrix. The set of classification algorithms used by
this research include:

1. Support Vector Machines (SVM)

2. Linear Logistic Regression Models (LLRM)

3. K-Nearest Neighbours (KNN)

4. Naïve Bayes (NB)

5. Random Forests (RF)

6. Multilayer Perceptrons (MP)

A detailed description of these classification algorithms are given in the Appendix C
of this dissertation. Lastly, a comparison of strategies is done so the optimal classifi-
cation technique(s) will be declared along with the selected features. The following
factors will guide the analysis of the classification algorithms used:

1 Where n is the number of audio files, m is the number of features, and the last column is the genre
label.
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1. Confusion Matrices: A confusion matrix, commonly referred to as a contin-
gency matrix, is a tool for visualisation between the predicted class and the
actually classified class. This allows us to see clearly how some genres have
been classified as others, which helps us analyse the performance of a learning
model.

2. Success Rates: The classification accuracy or success rate tells us what percent-
age of pieces were correctly classified.

The next two sections, Section 4.1.1 and Section 4.1.2, describe the two main com-
ponents illustrated in Figure 2, in terms of Part I and Part II respectively; feature ex-
traction techniques are explored in Section 4.1.1; Section 4.1.2 extends current binary
classification techniques mentioned above for multi-class classification; and finally,
the dataset used for this analysis will be presented in Section 4.1.3.

The Feature Vector is moved to Part II

Audio Signal
Training Dataset

ZRC

Sflatness

...

SCrest

Feature
Vector

(n×(m+1))

Classification of
Feature Vector

Using a number
of classification strategies

SVM

NB

...

KNN

Part I - Feature Extraction Step

Comparing Strategies

SVM ... MP

Best Clas-
sification

Algorithm

Part II - Classification Step

Figure 2: Research design overview

4.1.1 Features

In order to achieve genre classification from a dataset of discrete-time signals, feature
extraction must be performed. Feature extraction uses measurements to obtain infor-
mation from signal data. This information describes the signal and is used to classify
the elements of the dataset. A list of spectral features used by this research is given
by Table 4.
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Table 4: A general list of features.

Proposed Features

Spectral flux, variability, decrease, flattness, slope, centroid, rolloff, and variation

Shape, envelope, and temporal statistics (centroid, kurtosis, skewness and spread)

Compactness

Mel-frequency Cepstral coefficients

Peak centroid, flux, smoothness, and crest factor

Complex domain onset detection

Loudness (+ sharpness and spread)

OBSI (+ Ratio)

Autocorrelation coefficients

Amplitude modulation

Zero crossing (with the strongest frequency of zero crossings)

Linear predictor coefficients and Line spectral frequency

Energy

Chroma

A less detailed overview of the feature extraction process is given by Figure 3. The
upper layer represents the discrete-time signal as a hyperplane. Each square in this
hyperplane represents a numeric value which together make up the entire signal. In
the lower layer the smaller blocks are made from the larger ones by applying a sig-
nal transform to the DTS. Such signal transforms include the fast Fourier transform,
constant-Q or even energy. These signal transforms serve as suitable interpretations
of the signal and are used to create families of features.

II : Feature Extraction

Discrete Time Signal

Feature X

I Audio Transform

Figure 3: Basic feature extraction process.



The large block (orange) in the second layer indicates a feature being derived from
the signal transform, letâs call this feature X. Using only a few blocks of the signal
transform we were able to create feature X, and so from this signal transform we can
create many instances of the same feature X. Therefore we could land up with 10

000 values for feature X, and so we need some way to represent this feature more
compactly. In Chapter 5 we explore different ways to do this and apply many repre-
sentations for features as many features are best represented differently. Chapter 6,
Chapter 7, Chapter 8, and Chapter 9 introduce different signal transforms and their
respective feature families derived from them.

Music
Dataset

(GTZAN)

Adele
BeethovenP!nk

Chopin Rachmaninov

Discrete-
time

Signal

Fast Fourier Transform Energy

Take the
Magnitude

of Each
Complex

Value

Magnitude SpectrumSpectral Flux

MFCCs

Peak detectionPeak Flux

Peak Centroid

Square the
Magnitude
Spectrum

Power Spectrum

Spectral Rolloff

Spectral Centroid

Beat
Histogram Beat Sum

Weak Beats

Figure 4: More detailed feature extraction process.

Figure 4 shows a more detailed process of feature extraction. The uppermost box
resembles a music dataset, such as GTZAN, this dataset contains a collection of music
signals each with a known genre. For every music signal in the dataset all the signals
windows are examined by a signal transform, such as FFT or Energy. These signal
transforms yield new spectra that given us different features which are added to
the design matrix. Often simple modifications can yield new powerful spectra. For
example, in the case of Figure 4, the magnitude spectrum was squared to yield to
power spectra, which give us spectral rolloff and centroid.

4.1.2 Multi-class Classification

Binary classification techniques need to be extended to accommodate multiple classes
if one is to classify more than two genre types. A way to achieve this classification is
to simply consider multiple binary classification problems as opposed classifying one
complex multi-class dataset [Duan and Keerthi 2005]. Therefore, some mapping must
be achieved in order to model this reduction and extraction of binary classification
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problems from the multi-class set. Duan and Keerthi [2005] and Hsu and Lin [2002]
proposed such reduction techniques. These techniques involve building one of two
binary classification problems: one-verses-all or one-verses-one.

4.1.2.1 The One-verses-all Paradigm

In the one-verses-all paradigm, one class is selected as class 0 and every other class is
modeled as class 1. Classes 0 and 1 are then classified using the binary classification
technique proposed. Further work should be done to model every other class in
this way. The classifications are merged to form what appears to be a multi-class
classification. If new data points are introduced to the multi-class classification model,
a winner-takes-all strategy is employed where the classifier with the highest output
function declares where the point will be classified.

4.1.2.2 The One-verses-one Paradigm

In the one-verses-one paradigm, each class is modelled with respect to every other
class. The classification is then done by using the binary classification technique men-
tioned above. The classifications are again merged to form what appears to be a
multi-class classification. If new data points are introduced to the multi-class classifi-
cation model, a max-wins voting strategy is employed where every classifier allocates a
possible class label to each respective class. Finally, a voting strategy is used to count
the classifier allocations and the class label with the highest vote-count decides the
ultimate classification.

Further attempts to convert multi-class classification to binary classification prob-
lems by Platt et al. [1999] and Dietterich and Bakiri [1995] include Directed Acyclic
Graph SVM (DAGSVM) and item error-correcting output codes respectively. Instead
of decomposing multi-class classification problems into binary classification prob-
lems, Lee et al. [2001 2004]; Crammer and Singer [2002] proposed a multi-class SVM
method which using optimization algorithms to solve multi-class classification prob-
lems.

4.1.3 GTZAN Dataset

In a recent literature review of music genre recognition (MGR) by Sturm [2012b],
it was seen that in the 467 published works, most of MGR experiments involved
used the GTZAN dataset. GTZAN is a compilation of 1000 30-second music excerpts
clearly categorized into 10 labelled genres. Although the GTZAN dataset has been
used very frequently, a recent study by Sturm [2012a] has showed that the dataset
contains several faults particularly in repetitions, mislabelling, and distortions. Ac-
cording to Sturm [2013a], these faults challenge the interpret-ability of any result de-
rived by using GTZAN. Sturm [2013a] maintains that these faults do affect all MGR
systems in the someway and that performances related to GTZAN are still mean-
ingfully comparable to MGR systems since they all contain the same faults. Some
authors who have used the GTZAN dataset include: Benetos and Kotropoulos [2008];
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Bergstra et al. [2006]; Cast et al. [2014]; Holzapfel and Stylianou [2008]; Li et al. [2001

2003]; Lidy et al. [2007]; Panagakis et al. [2008]; Tzanetakis and Cook [2002]. This is
the dataset used in this work.

4.1.4 Feature Selection

In order to select the most effective features from a design matrix, some feature se-
lection methods must be explored. Two very common methodologies are the wrapper
and filter methods to select the most effective features for a given dataset and classifi-
cation algorithm.

4.1.4.1 The Wrapper Method

The wrapper method uses a subset evaluator that creates a set of subsets from the de-
sign matrix, thereafter, uses a classification algorithm (e.g. support vector machines)
to induce classifiers from the features in each subset. It then considers the subset of
features with which the classification algorithm runs the best. For example if we have
12 features - the subset evaluator will try to find every possible subset from those
12 features, perhaps it produces three subsets the first one contains 3 features, the
second one contains 5 features, and the third one contains seven features. The first
subset of features will be applied on the training set with a classification algorithm
which will deduce the classification accuracy. On the bases of the three feature sub-
sets, the wrapper algorithm will present the best subset with the best classification
accuracy. The selection of the feature subset solely depends on the search technique
applied. Some search techniques include random search, depth first search, breath
first search, or a hybrid search which integrates the two of them.

4.1.4.2 The Filter Method

Unlike the wrapper method the filter method uses a feature evaluator, which evalu-
ates the attributes of features, and a ranking algorithm to rank all the features in a
dataset. The ranking algorithm assigns a numeric ranking to each feature in associa-
tion with an attribute evaluator. After ranking the features one can omit them on a
one-at-a-time bases to evaluate the predictive accuracy of the classification algorithms.
An issue with the filter method is that the weights put by the ranking algorithm can
be very different compared to the weights put by the classification algorithm. There
is a danger of over-fitting as the weights provided by the ranking algorithm may not
always match the relative importance of the features in the classifier. The ranking
algorithm is used to rank features and by omitting one feature at a time from the
rank-list one can see how the classification algorithms are performing on the dataset
with the features that are not omitted.



Part II

F E AT U R E A N A LY S I S

Wold et al. [1996] describes acoustic content as comprising of instrument
sounds, speech sound, and environmental sounds. When a human lis-
tener wants to classify a piece of music by genre, she will try to iden-
tify characteristics (instrument, speech, environment [Wold et al. 1996]) in
the music, and see if these characteristics/features are similar to those
belonging to her previous experience of music from the same genre. Sim-
ilarly, for a computer to correctly classify a piece of music by genre, the
computer must try and identify and compare characteristics/features that
exist within a piece of music to those previous classified. Unfortunately, a
computer cannot independently or naturally identify features as good or
bad to create feature extraction mechanisms. Consequently, these feature
extraction mechanisms must be given to the computer to use.

This part presents several features that are hypothesised to be character-
istics that can be used to correctly classify musical genre. This part fur-
ther organises music genre discriminating features into four main com-
ponents: The Magnitude Spectrum, Chapter 6, where timbrel features that
describe loudness, noisiness, compactness, e.t.c. are presented; Tempo De-
tection, Chapter 7, where methods that explore rhythmic aspects of the
signal are provided; Pitch Detection, Chapter 8, where algorithms that de-
scribe the pitch of music signals are presented; and finally Chordal Progres-
sions, Chapter 9, where we explore chroma as a chordal (environmental)
distinguishing feature.





5
F E AT U R E R E P R E S E N TAT I O N

In contrast to feature selection, which reduces the number of features used for classification,
feature representation can be used to approximate a high dimensional design matrix into a

lower dimensional one by combining the content of each feature in such a way to preserve the
intended feature description. These lower dimensional design matrices are referred to as

simplified representations of the original features. A very simple representation is feature
averaging, where an n dimensional design matrix will be represented as a 1-dimensional one

using an expected value to measure the central tenancy characterized by the higher
dimensional design matrix’s probability distribution1. Other feature representations we
explore in this dissertation include MFCC representations, feature histograms, and area

moments.

5.1 introduction

In this chapter we review feature averaging, histogram strategies and introduce
effective method for feature representation using Mel-frequency cepstral coeffi-
cients (MFCCs), although feature representation strategies are usually optimized

based on the individual feature’s distribution. If one assumes that an audio signal
remains stationary2, then some expression can be used to measure the discrete-time
signal’s (DTS) local characteristics.

Remark 5.1. These measurements can be used to describe the timbre characteristics
of a DTS. Timbre refers to the character or quality of a musical sound or voice as
distinct from its pitch and intensity [Oxford 1989]. Timbre measurements can be used
to describe different qualities of the DTS (e.g. intervals, speech etc.) depending on the
defined expression.

These measurements, however, contain a large array of values as they are calculated
upon each window, frame, or envelope of the DTS. Therefore, some representation
needs to be established to approximate the feature description (e.g. timbre measure-
ment) to a compact and small set of values (10, 4, or even 1 value). Before we can
explore different feature representation strategies a DTS is firstly defined.

1 Example of basic representations include the arithmetic mean, median, mode, geometric mean,
weighted mean e.t.c.

2 Signal’s statistical properties do not differ with time.
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Figure 5: A discrete-time signal.

Definition 5.2. Discrete-Time Signal
A real discrete-time signal (DTS) is defined as any time-ordered sequence of real
numbers. A real discrete-time signal can be expressed as a real function, x : Z+ → R,
defined as:

x(n),n ∈ Z+, (1)

where x(n) is the nth real number of the signal, and n represents time as a positive
integer. Figure 5 shows an example of a discrete-time signal.

Using 3 timbre features on GTZAN genres, the centroid, rolloff and energy in each
window were extracted. Figure 6 shows the case count for each extracted design
matrix. In Figure 6 there are 938 480 values for each feature extracted from every
window in the DTS, because there are so many feature values in this set we need a
way to reduce the sample size to a more manageable one. Using the random sampling
method to select 50 000 cases we obtain Figure 7. Figure 35 shows a description of the
reduced sample size and Figure 36 shows the feature histograms of spectral centroid
and rolloff respectively in the appendix of this dissertation3.

5.2 test for normality

In order to use the arithmetic mean as a feature representation effectively it is im-
portant that the feature’s distribution is Gaussian4. Therefore, this section plans to
nullify the following hypothesis:

3 It is noted that energy resembles a similar feature histogram.
4 Gaussian or normal distributions are usually represented by a mean and a standard deviation.
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Figure 6: Case processing summary before sample reduction.

Figure 7: Case processing summary after sample reduction

Hypothesis 5.3. Gaussian Frequency Distribution (N0 )
The spectral centroid, rolloff, and flux feature frequency distributions all follow nor-
mal distributions within a 5% significance level.

Figure 8: Energy of all GTZAN genres represented
by a Gaussian distribution with µ = 0.091
and the σ = 0.09.

As a small visual aid, Fig-
ure 8 shows the frequency dis-
tribution of energy5 binned to
a 33-bin feature histogram. Su-
perimposed on the feature his-
togram is a Gaussian distribu-
tion to represent energy’s fea-
ture distribution. The Gaussian
distribution is presented with
only two constants: the mean,
denoted µ, and standard devi-
ation, denoted σ. Although it
might seem suitable to repre-
sent energy’s distribution by a
Gaussian curve representation,
we need to be sure that this is
the best representation we can achieve. There exists several methods to test if a distri-
bution is normal within a significance level, such methods include the Kolmogorov-
Smirnov and Shapiro-Wilk test. The Kolmogorov-Smirnov test is a nonparametric test

5 The values of energy where extracted from GTZAN genres.
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that is able to check if a feature’s cumulative distribution function (cdf) is equal to
the Gaussian cdf.

Figure 9 shows the results of using two tests of normality: Kolmogorov-Smirnov
and Shapiro-Wilk. In the figure the Kolmogorov-Smirnov and Shapiro-Wilk rejects
the significance (Sig.) for normality since all of the features have a significance less
than 0.05 (5%).

Figure 9: Reduced test for normality.

This is evident when considering the empirical cumulative distribution function
(cdf) and the standard normal cdf in Figure 10 for spectral centroid and rolloff re-
spectively6. In the figure the empirical cdf for both features do not precisely follow
the standard normal cdf.

(a) ECDF for Centroid (b) ECDF for Rolloff

Figure 10: The plot shows the similarity between the empirical cdf of the centered and scaled
feature vectors (centroid and rolloff) and the cdf of the standard normal distribu-
tion.

5.2.1 Discussion and Conclusion

We conclude by rejecting the null hypothesis 5.3 (N0), as the features: centroid, rolloff
and energy frequency distributions do not follow normal distributions within a 5%

6 The ecdf and standard normal cdf for energy is similar.
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significance level for both normality tests. It can be further shown that N0 is rejected
by presenting the Q-Q plots for centroid and rolloff features7. Figure 11 shows the
feature distribution with the plot symbol ′o ′. Superimposed on the plot is a line
joining the first and third quartiles of the graph, together these plots are referred to as
Q-Q plots. These plots are constructed to graphically show if the feature distribution
fits a normal distribution. If the sample is normal then the ′o ′ marked trend will
follow the (red) line, this would indicate that the data is normally distributed. If the
data is not Gaussian then the data will contain many curves and twists similar to
those in Figure 11.

(a) Normal Q-Q Plot of Spectral Centroid
(b) Normal Q-Q Plot of Spectral Rolloff

Figure 11: Normal Q-Q plot for centroid and rolloff features.

5.3 other feature representations

In Section 5.2 we have shown that the features: spectral centroid, rolloff and energy do
not follow normal distribution within a 5% significance level, therefore the mean and
variance appear inadequate representations of these features and other techniques
must be considered. In addition to the mean, the following feature representations
will be explored by this dissertation for music genre classification:

Feature Histogram: The feature histogram arranges the feature’s local window
intensities into bin ranges. The content of each bin is counted and modelled by
a frequency histogram. The histogram bin values are usually normalised and
used for classification.

MFCC Aggregation: MFCC representation is a well-known feature representa-
tion which takes the first n MFC coefficients of the feature samples as it would
a 16khz signal. If the feature contains more than one dimension, then each
dimension is assessed independently and n coefficients will be produced per
dimension. In this dissertation we took n = 4 as the number of MFC coefficients.

7 It is noted that the Q-Q plot for energy is similar.
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See Fujinaga [1996]; McKay et al. [2005a] for some examples of how this method
can be successfully used for genre classification.

Area Moments: Image moments is a central concept in computer vision and
has its root in image processing. Fujinaga [1996] produced 10 such moments
for image processing8. The ideas from Fujinaga [1996] were adapted for signal
processing by McKay et al. [2005a] who created an algorithm that calculates
seven moments using the original algorithm by Fujinaga [1996]. The represen-
tation in this research will employ the method used by McKay et al. [2005a].

After extracting the centroid, rolloff and energy features with two representations:
one with the arithmetic mean and the other with the feature histogram, we achieved
37.3% for the feature histogram and 45.5% for the arithmetic mean and standard
deviation using random forest classification with 10-fold cross validation. There are
two main factors that should influence our choice of representation: a choice of di-
mensionality and classification precision. Although, in many cases, the 20-bin feature
histogram will present better classification accuracy, one may argue that because of
this dramatic increase in dimensionality, for this representation, the possibility of
classification fits increase along with the algorithm’s overall complexity. This could
affect classification precision in the long run. Therefore, the best representation is one
with minimal dimensionality increase that gives better classification precision. Fig-
ure 12 shows the effects of using the same features and classification algorithm with
different feature representations. Figure 12(a) uses the 20-bin histogram, whereas Fig-
ure 12(b) uses the mean representation, were the row and column labels represent
genre labels: G1 = Blues, G2 = Classical, G3 = Country, G4 = Disco, G5 = Hiphop, G6
= Jazz, G7 = Metal, G8 = Pop, G9 = Raggae, G10 = Rock.

5.4 conclusion and discussion

Although the spectral centroid, rolloff and energy design matrices did not follow a
Gaussian distribution within a 5% significance level, the mean representation still
outperformed the 20-bin feature histogram in Figure 12. This result should not sur-
prise us as rejecting null hypothesis N0 only tells us that the test failed to accept that
the feature distributions followed normal distributions. Generally, this means that we
can show that the feature distributions are not normally distributed, but we cannot
show that they are.

Remark 5.4. Although, the rejection of N0 tells us that the feature distribution is not
normally distributed, the tests cannot tell us if the distribution is skewed, fat-tailed,
long tailed, heavy tailed, thin-tailed, e.t.c.

Furthermore, these normality tests rely heavily on the number of samples in the
distribution to create these cdfs. If the sample is too small then the central limits

8 An image is treated as a 2-dimensional function f(x,y) = z, where x and y are indexes of the underlying
matrix.
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G1G2G3G4G5G6G7G8G9G10

G1 38 2 15 5 4 13 8 1 8 6

G2 4 72 1 4 0 10 4 0 0 5

G3 17 4 26 7 3 10 7 10 6 10

G4 3 6 17 30 9 4 6 9 6 10

G5 6 0 2 22 37 2 6 9 13 3

G6 15 15 16 5 4 34 3 2 0 6

G7 5 8 7 5 5 5 56 3 1 5

G8 9 1 10 6 13 5 3 34 15 4

G9 9 3 8 7 23 3 3 6 35 3

G10 13 3 13 15 7 5 17 9 7 11
(a) Centroid, rolloff and energy 20-bin Histogram
Classification

G1G2G3G4G5G6G7G8G9G10

G1 49 0 12 6 3 4 4 6 10 6

G2 3 81 4 1 0 8 1 0 0 2

G3 11 1 38 6 1 15 5 2 10 11

G4 6 2 9 35 16 6 2 11 7 6

G5 7 0 4 19 36 0 1 13 17 3

G6 6 15 11 7 2 47 5 1 0 6

G7 3 0 7 7 2 3 64 1 1 12

G8 7 0 6 10 11 3 1 53 6 3

G9 15 0 11 12 13 2 0 5 38 4

G10 14 2 15 13 4 10 19 3 6 14
(b) Centroid, rolloff and energy arithmetic mean
and standard deviation classification

Figure 12: Confusion matrices for 20-bin feature histogram and mean respectively.

theorem will cause an issue, whereas if there are too many samples in the distribu-
tion, unimportant digressions in the distribution will cause the normality test to fail.
Therefore, for every feature described, multiple feature representations will be used
to describe the feature distribution and based on this, along with dimensionality and
classification precision, a feature representation will be selected.
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M A G N I T U D E B A S E D F E AT U R E S

The magnitude spectrum, obtained from the fast Fourier transform of a signal, houses a
family of spectral features for genre classification. Exploration of the magnitude spectrum has

allowed us to identify signal change, noisiness, loudness and many other spectral features
that describe aspects of discrete time signals for automatic music genre classification.

Exploring peak-based features, from the local maxima of the frequency domain, creates
opportunities to analyse the signal more thoroughly. In this chapter we explore the

magnitude spectrum and present a compact design matrix to classify a benchmark dataset.
Using only magnitude spectrum features we achieve 77.8% precision on 10 GTZAN genres

using linear logistic regression models for automatic classification.

6.1 introduction

The Fourier transform converts time series data to the frequency domain. The
frequency domain is presented as a set of complex numbers, this can be very
difficult visualise and so modern techniques represent this information in terms

of two types of spectra: the magnitude spectrum and the phase spectrum. The magnitude
spectrum is a collection of the magnitude of each complex number given by the fre-
quency domain, equivalently the magnitude is the absolute value of the fast Fourier
transform. The phase spectrum is made up of the angles (radians) of each complex
component of the Fourier transform. In this chapter, we present a diverse set of de-
scriptors obtained from the magnitude spectrum of a DTS to attempt to describe the
indefinable nature of musical genre. Figure 13 shows an example of a magnitude
spectrum obtained from "Arabesque No. 1" by Claude Debussy.

Figure 13: The magnitude spectrum of "Arabesque No. 1" by Claude Debussy.

In order to deduce the best representation of sound for a particular feature, we use
the mean; MFCC representation; area methods; and a 20-bin feature histogram for

53
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sound representation1. Thereafter, multiple classification techniques are performed to
thoroughly assess the data. Six different classification algorithms are used in this anal-
ysis: K-Nearest Neighbours (KNN); Multilayer Perceptron (MP); Naïve Bayes (NB);
Random Forests (RF); Linear Logistic Regression Models (LLRM); and Support Vec-
tor Machines (SVM). This chapter contains three main components: The Magnitude
Spectrum, Section 6.2, provides a detailed feature analysis conducted using only fea-
tures derived from the magnitude spectrum of a DTS; The Power Cepstrum, Section 6.3,
extends the magnitude spectrum into the power ceptrum for feature descriptors for
music genre classification; and finally in Section 6.4, a summary of these features
are provided for music genre classification using magnitude-based (including power
spectrum) features.

6.2 the magnitude spectrum

The are many different types of content-based features that can be derived from
the magnitude spectrum. These content-based features tell us about spectral change
(flux), noisiness (compactness) and many other aspects of music.

Remark 6.1. Although these descriptions might seem vague, signal flux and com-
pactness are present in almost all types of music genres and must be considered for
genre classification.

The definition for the magnitude spectrum is given by the following:

Definition 6.2. Magnitude Spectrum
Given a real and decaying (b>0) exponential signal:

x(t) = ae−btu(t), (2)

the absolute value of the fast Fourier transform of the signal will yield the magnitude
spectrum. Therefore, the magnitude spectrum can be computed as:

|FFT(x(t))| = FFT
(

a

(b+ jw)

)
=

|a|

(b2 +w2)
1
2

. (3)

Now that we have a definition for the magnitude spectrum we can define a fam-
ily of 13 content-based features for music genre classification: 9 from the magnitude
spectrum and 4 from the power spectrum2. The 9 magnitude features include: Spec-
tral Slope, Section 6.2.1, which describes whether a piece of music contains less energy
at high frequencies; Compactness, Section 6.2.2, describes the noisiness of a signal;
Spectral Decrease, Section 6.2.3, describes the degree to which there are more low fre-
quency sounds to high frequency sounds in a DTS; Loudness, Section 6.2.4, describes
total loudness in the bark band - bands produced by the bark scale which consist
of the first 24 critical bands of human hearing - in terms of perceptual sharpness

1 These feature representations have been further expanded in Chapter 5.
2 The power spectrum is the absolute square of the magnitude spectrum.
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(Section 6.2.4.1) and spread (Section 6.2.4.2); Onset Detection, Section 6.2.5, which de-
scribes how a piece of music starts by describing the rise in magnitude from zero;
Octave Band Signal Intensity, Section 6.2.6, using a triangular octave filter bank; Peak-
based features, Section 6.2.7, a family of features based upon the peaks of the DTS;
Spectral Flux, Section 6.2.8, measures the rate of change of the magnitude spectrum;
and Spectral Variability, Section 6.2.9, which measures how closely or spread-out the
signal is clustered. McKay and Fujinaga [2006] explained the significant link between
musicology and psychology, he maintains that this link can be exploited for genre
classification. Therefore, this section is presented in a way to explain the musicolog-
ical and psychological aspects that are involved in each suggested feature. Some of
the underlying mathematical concepts are given in the Appendix A section of this
dissertation.

6.2.1 Spectral Slope

The spectral slope for a continuous natural signal has been understood for many years
[Fry 1979]. The spectral slope can be observed when natural audio signals tend to
have less energy at high frequencies. Peeters [2004] provides a way to quantify this by
applying a linear regression to the magnitude spectrum of the signal, which produces
a single number indicating the slope of the line-of-best-fit through the spectral data.
Spectral slope is just one feature that uses energy distribution over the frequency of
the DTS, other features that use this property include spectral rolloff and centroid
[Peeters 2004].

Using spectral slope represented by the mean we achieve accuracies of 24.4% using
naïve Bayes; 24.8% using support vector machines; 24% using the multilayer percep-
tron; 24.4% using linear logistic regression models; 18.3% using k-nearest neighbours;
and 19.3% using random forests with 10-fold cross validation on GTZAN genres. Al-
though spectral slope does not seem to distinguish genres well, this is because similar
spectral slope is sometimes shared between genres. However, we can expect music
that rely heavily on high pitched melodies to have distinguishing spectral slope. For
this reason, disco and classical music will often have dissimilar spectral slope com-
pared to other genres.

6.2.1.1 Strongest Frequency

The fast Fourier transform provides an excellent representation of sound and so ac-
knowledging simple aspects of this transform can be very fruitful.

Example 6.3. For example, taking the strongest frequency of the FFT, in Hz, can
also be a good feature to measure if a particular genre is bounded by a maximum
frequency strength.

Table 5 shows the classification scores of the strongest frequency using three rep-
resentations with multiple classifiers. Using the strongest frequency, represented by
MFCCs, we achieve accuracies of 23.6% using naïve Bayes; 21.9% using support vec-
tor machines; 23.4% using the multilayer perceptron; 24.5% using linear logistic re-
gression models; 20% using k-nearest neighbours; and 23.8% using random forests
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Representation KNN MP NB RF LLRM SVM

Mean 23.40% 24.90% 18.60% 25.20% 23.00% 14.30%
MFCC 20.00% 23.40% 23.60% 23.80% 24.50% 21.90%
3-bin FH 18.80% 18.60% 16.70% 16.90% 18.20% 15.80%
5-bin FH 20.90% 22.10% 21.00% 22.10% 21.00% 18.40%
10-bin FH 21.60% 24.30% 22.00% 22.30% 24.70% 21.00%
20-bin FH 22.70% 25.40% 23.60% 24.30% 24.90% 22.50%
30-bin FH 23.30% 24.60% 21.90% 25.60% 24.30% 22.30%

Table 5: Classification scores for different feature representations for FFT maximum using a
variety of classification techniques.

with 10-fold cross validation on GTZAN genres. While the feature histogram rep-
resentation provides slightly better classification, increasing the dimensionality and
thus computation, by using a 30-bin feature histogram just for a 0.6% increase in
classification overall, does not warrant the improved performance.

As shown in Figure 14, the strongest frequency cannot independently provide a
good feature for genre classification as music genre constitute many aspects. How-
ever some sub-genres, such as ’Furniture music’ that falls part of classical music,
maintains very weak frequencies, whereas other sub-genres such as ’Baroque’ (also
early classical) maintain very strong frequencies. Therefore, although the GTZAN
dataset does not provide an extensive flavour of musical genre, we still should ex-
pect enormous real databases to contain this diversity of genre and so these detailed
features should also be considered.
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Figure 14: Strongest frequency feature values for 10 GTZAN genres using the mean represen-
tation.
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6.2.2 Compactness

Compactness is a measure of the noisiness of a signal [McKay et al. 2005a] and is
calculated by comparing the value of a magnitude spectrum bin with its surrounding
values. In many genres (e.g. metal) a random and persistent disturbance that obscures
the clarity of sound is desired, which this feature will detect.

Representation KNN MP NB RF LLRM SVM

Mean 33.50% 39.30% 38.30% 35.60% 40.70% 24.70%
MFCC 26.30% 32.50% 32.10% 28.70% 32.90% 33.60%
20-bin FH 20.50% 21.30% 19.40% 20.60% 21.50% 17.30%
Area Moments 25.5% 27.10% 27.40% 27.70% 26.10% 12.20%

Table 6: Classification scores for different feature representations for compactness using a
variety of classification techniques.

Figure 15 shows the compactness feature values of 10 GTZAN genres with one
hundred 30 sec excerpts for each genre. The figure shows the range of values for
compactness for each genre represented by the mean. Although, in some areas in
the figure, these genres overlap indicating that the excerpts correspond to the same
feature value which could cause possible misclassification of genre, using this figure
we can expect a classical piece of music to have an average compactness between
1.700-1.900. Since most of the other genres are out of this moving range we should
expect the correct classification of classical music to be fairly high.

The compactness of a signal is represented using several sound representation tech-
niques outlined in Chapter 5: using the MFCC representation we achieve accuracies
of 32.9% correctly classified genres; using the mean representation we achieved 40.7%;
using a 20-bin feature histogram we achieve 21.5%; and finally using area methods
of moments we achieve 26.1% accuracy on 10 GTZAN genres using linear logistic re-
gression models with 10-fold cross validation. These statistics suggest that compact-
ness using the mean representation is a worthy classification feature for classifying
10 genres, doing better than a 1

10 = 10% chance, and overall produces very good
classification scores for blues, classical, jazz and hiphop genres.

6.2.3 Spectral Decrease

Spectral decrease can be used to distinguish instruments used in music signals. For
this reason, spectral decrease can be used to identify instruments which are unusually
used in a particular genre.

Example 6.4. For example, classical music will have more high frequency sounds (use
of violins), contrastingly, contemporary music will have many low frequency sounds
(use of a double bass guitars and kick drums rather than an acoustic guitar).

Peeters [2003] used spectral decrease to correctly classify large musical instrument
databases. The definition for spectral decrease is given as follows:
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Figure 15: Compactness feature values for 10 GTZAN genres using the mean representation.

Definition 6.5. Spectral Decrease
Spectral decrease is a feature which measures the degree to which there are more
low frequency sounds than high frequency sounds. This feature is a ratio that will be
large if there are more low frequency sounds than high frequency sounds.

Using spectral decrease, represented by the mean, we achieve accuracies of 20.8%
using naïve Bayes; 17.3% using support vector machines; 20.9% using the multi-
layer perceptron; 19.8% using linear logistic regression models; 19.5% using k-nearest
neighbours; and 20.1% using random forests with 10-fold cross validation on GTZAN
genres. These are not particularly high classifications since most genres share similar
instrumentation but differ in harmony and scale use. Therefore, other features also
need to explore these aspects as well.

6.2.4 Loudness

Specific loudness is the loudness associated with each bark band [Peeters 2004; Moore
et al. 1997; Wold et al. 1996], and is denoted by N ′(z), where z is the zth frequency
in the bark band. Total loudness has been used for multi-speaker speech activity
detection [Pfau et al. 2001], automatic speech recognition [Zwicker et al. 1979; Reichl
and Ruske 1995 2011], instrument recognition [Essid et al. 2006] and music genre
classification [Benetos and Kotropoulos 2008]. Before the definition for total loudness
can be given, the definition for specific loudness must first be defined upon local
intervals on the audio signal. Rodet and Tisserand [2001] presented an approximation
of specific loudness for an audio signal by expressing it in its relative scale in terms
of energy:

N ′(z) = E(z)0.02. (4)
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Zwicker and Fastl [1990] extended this definition for total loudness which is the total
sum of specific loudness:

N =

all bands∑
z=1

N ′(z), (5)

where N ′(z) is the specific loudness for the zth band. Further work by Moore et al.
[1997] gives a more precise definition for total and specific loudness. The loudness
feature can be further extended to include perceptual sharpness and perceptual spread.

6.2.4.1 Perceptual Sharpness

According to Zwicker [1977], the sharpness of an audio signal is perceptually equiv-
alent to the spectral centroid but computed using the specific loudness of the bark
bands. Perceptual sharpness is used for video compression [Yang et al. 2006], blur
detection [Narvekar and Karam 2009] and image resolution enhancement [Liu 1999].
Using Equation 6.14 and Peeters [2004] the perceptual sharpness is given as:

A = 0.11·
∑allbands
z=1 z·g(z)·N ′(z)

N
, (6)

where z is the index of the band and g(z) is a function defined by:

g(z) :=

 1 if z < 15

0.066· exp(0.171z) if z > 15.
. (7)

6.2.4.2 Perceptual Spread

The perceptual spread calculates the distance from the largest specific loudness value
to the total loudness. Therefore, an equation for perceptual spread is given as:

ET = (
N−maxzN

′(z)

N
)2. (8)

Perceptual spread has been used for watermarking multimedia [Cox et al. 1997], im-
age classification [Ahumada Jr 1996], and image watermarking [Kankanhalli and Ra-
makrishnan 1998].

Using total loudness, perceptual sharpness, and perceptual spread, represented by the
mean, we achieve accuracies of 45.7% using naïve Bayes; 26.1% using support vector
machines; 54.8% using the multilayer perceptron; 56.6% using linear logistic regres-
sion models; 50.3% using k-nearest neighbours; and 52% using random forests with
10-fold cross validation on GTZAN genres, making this a worthy feature for genre
classification.
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6.2.5 Onset Detection

Duxbury et al. [2003] provided a method to compute onset detection using complex
domain spectral flux. Onset detection describes information about the initial magni-
tude of a piece of music. This feature describes the rise in magnitude from zero to
some initial value. Using complex domain onset detection, represented by the mean, we
achieve accuracies of 25.8% using naïve Bayes; 21.5% using support vector machines;
26.3% using the multilayer perceptron; 25.5% using linear logistic regression models;
22% using k-nearest neighbours; and 22.9% using random forests with 10-fold cross
validation on GTZAN genres. Onset detection classifies pop, classical, and jazz well.

6.2.6 Octave Band Signal Intensity

Essid [2005], provides a way to compute octave band signal intensity using a trigular
octave filter bank. We can also compute the log of OBSI ratio between consecutive
octaves. Using octave band signal intensity and octave band signal intensity ratio, repre-
sented by the mean, we achieve accuracies of 47.9% using naïve Bayes; 55.7% using
support vector machines; 49.1% using the multilayer perceptron; 48.8% using linear
logistic regression models; 52.6% using k-nearest neighbours; and 52.4% using ran-
dom forests with 10-fold cross validation on GTZAN genres. OBSI and OBSIR are
very good classification features across most genre types.

6.2.7 Peak Detection

Studying the peaks of a signal allows us to account for various principal features that
are contained within a signal. For example, peak-based features such as crest factor,
peak flux, centroid and smoothness can help us describe the quality of AC waveform
power and detecting vibration. Music recordings have very widely fluctuating peak-
based features, therefore exploiting these characteristics can be fruitful [Helen and
Virtanen 2005]. The peak detection algorithm by McKay et al. [2005b] will be used for
extracting peak-based features. McKay et al. [2005b] calculated peaks by detecting lo-
cal maximums in the frequency bins, these maxima are calculated within a threshold
where the largest maxima within this threshold is considered. These global peaks per
threshold3 are considered without any information about its bin location. Treating
this set of peak values together as a 16khz signal we can attempt to represent this by
centroid, flux and smoothness.

6.2.7.1 Peak Centroid

Peak centroid is calculated from the peak set extracted from an audio signal. These
values were constructed following the implementation by Peeters et al. [2000].

3 In our experiments we took a peak threshold of 10.
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Representation KNN MP NB RF LLRM SVM

Mean 29.10% 33.60% 28.60% 30.60% 32.50% 35.00%
MFCC 25.30% 30.60% 28.40% 29.50% 28.30% 32.30%
20-bin FH 25.90% 28.00% 26.40% 31.50% 29.70% 23.60%
Area Moments 21.00% 23.10% 22.40% 20.10% 20.20% 14.90%

Table 7: Classification scores for different feature representations for peak centroid using a
variety of classification techniques.

Using peak centroid, represented by the mean, we achieve accuracies of 28.6% using
naïve Bayes; 35% using support vector machines; 33.6% using the multilayer percep-
tron; 32.5% using linear logistic regression models; 29.1% using k-nearest neighbours;
and 30.6% using random forests with 10-fold cross validation on GTZAN genres. Fig-
ure 16 shows the peak centroid feature values of 10 GTZAN genres. The figure shows
the range of values for peak centroid for each genre represented by the mean. Using
this figure we can expect a metal piece of music to have an average value between
2.5-4.5 for peak centroid. Since most of the other genres are out of this moving range
we should expect the correct classification of metal music to be fairly high.
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Figure 16: Peak centroid feature values for 10 GTZAN genres using the mean representation.

6.2.7.2 Peak Flux

Similarly, peak flux is also calculated from a peak value set. The extraction methodol-
ogy followed that of McKay et al. [2005b]; Peeters et al. [2000], where the correlation
between adjacent peaks are considered. Using peak flux, represented by a 20-bin fea-
ture histogram, we achieve accuracies of 14.7% using naïve Bayes; 15% using support
vector machines; 20.1% using the multilayer perceptron; 18.7% using linear logistic re-
gression models; 17.2% using k-nearest neighbours; and 20.5% using random forests
with 10-fold cross validation on GTZAN genres.
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Representation KNN MP NB RF LLRM SVM

Mean 11.30% 18.00% 14.60% 14.40% 17.60% 14.10%
MFCC 13.30% 17.50% 13.10% 12.30% 17.00% 17.40%
20-bin FH 17.20% 20.10% 14.70% 20.50% 18.70% 15.00%
Area Moments 14.40% 17.60% 14.30% 14.20% 15.40% 17.00%

Table 8: Classification scores for different feature representations for peak flux using a variety
of classification techniques.

6.2.7.3 Spectral Crest Factor

A musical discrete-time signal4 has a widely varying crest factor. The crest factor
is a feature of a DTS which displays the ratio of peak points to the RMS, and is
measured in decibels (dB). The spectral crest factor shows the magnitude of peaks
in the spectrum of the DTS. A spectral crest factor of 1 tells us that the spectrum of
the DTS has no peaks, contrastingly, a much larger spectral crest factor will describe
many peaks. Common values of a spectral crest factor for an audio mix5 are around
4-8dB, and 8-10dB for an unprocessed recording. Jang et al. [2008] used spectral crest
factor per band to classify music genre.

Definition 6.6. Spectral Crest Factor
The spectral crest factor is measured by taking the peak amplitude and dividing it by
the RMS of the DTS.

CrestFactor =
max(x)

xrms

. (9)

Using spectral crest factor, represented by the mean, we achieve accuracies of 41.1%
using naïve Bayes; 47.8% using support vector machines; 46.1% using the multi-
layer perceptron; 49.5% using linear logistic regression models; 44.4% using k-nearest
neighbours; and 45% using random forests with 10-fold cross validation on GTZAN
genres. Crest factor is a very powerful feature for genre classification, however, this
feature is represented by 19 components, and therefore 19 dimensions. On the other
hand, crest factor is particularly useful to correctly identify classical, pop and metal
genres.

Representation KNN MP NB RF LLRM SVM

Mean 27.50% 32.90% 28.00% 29.20% 31.00% 25.60%
MFCC 23.30% 30.60% 28.90% 28.30% 28.80% 29.80%
20-bin FH 25.20% 27.40% 25.50% 27.10% 27.80% 22.10%
Area Moments 21.50% 20.80% 19.00% 21.10% 18.20% 12.20%

Table 9: Classification scores for different feature representations for peak smoothness using
a variety of classification techniques.

4 A discrete-time signal obtained from composed music.
5 Multiple recorded sounds are combined into one or more channels.
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6.2.7.4 Peak Smoothness

Finally, peak smoothness is calculated from the peak value set by evaluating the log
of a peak subtracted from the log of the surrounding peaks [McKay et al. 2005b].
Smoothing out peak values allows us to describe inconsistent or unexpected rises
in amplitude that could occur in classical and metal genre. Using peak smoothness,
represented by the mean, we achieve accuracies of 28% using naïve Bayes; 25.6%
using support vector machines; 32.9% using the multilayer perceptron; 31% using
linear logistic regression models; 27.5% using k-nearest neighbours; and 29.2% using
random forests with 10-fold cross validation on GTZAN genres.
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Figure 17: Peak smoothness feature values for 10 GTZAN genres using the mean representa-
tion.

6.2.8 Spectral Flux

Spectral flux is a content-based feature that measures the rate of change of the mag-
nitude spectrum for the DTS. This is achieved by comparing every frame of the mag-
nitude spectrum with its previous frame [Giannoulis et al. 2012]. The spectral flux is
used for onset detection [Dixon 2006] and audio classification [Tzanetakis and Cook
2002; Lu et al. 2002].

Definition 6.7. Spectral Flux
The spectral flux is computed by taking the normalised product between two succes-
sive normalised amplitude spectra: a(t− 1) and a(t) [Peeters 2004]. Then the spectral
flux is given as:

Sflux = 1−

∑
k a(t− 1,k).a(t,k)√∑

k a(t− 1,k)2
√∑

k a(t,k)2
. (10)

It can be shown that

0 6 Sflux 6 1. (11)
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The interpretation of the spectral flux is given as: if Sflux → 0 then the successive spectra are similar.

if Sflux → 1 then the successive spectra are dissimilar.
(12)

Representation KNN MP NB RF LLRM SVM

Mean 26.00% 32.90% 24.80% 27.20% 29.50% 18.20%
MFCC 30.20% 34.80% 35.90% 30.80% 36.40% 36.00%
20-bin FH 20.10% 21.10% 19.40% 22.70% 21.70% 17.20%
Area Moments 28.30% 25.00% 23.90% 30.40% 26.30% 25.60%

Table 10: Classification scores for different feature representations for spectral flux using a
variety of classification techniques.

Table 10 shows spectral flux represented using several sound representation tech-
niques: using the MFCC representation we achieve accuracies of 36.4% correctly clas-
sified genres, using the mean representation we achieved 32.9%, using a 20-bin fea-
ture histogram we achieve 21.7%, and finally using area methods of moments we
achieve 30.4% accuracy on GTZAN genres using 10-fold cross validation and multi-
ple classification techniques. It would seem that the MFCC representation is preferred
by spectral flux and performs the best when classified with linear logistic regression
models.

6.2.9 Spectral Variability

Statistical variability measures dispersion in data, i.e. how closely or spread-out the
signal is clustered. We can achieve this my measuring the standard deviation of the
magnitude spectrum of the signal. Figure 18 shows the classification scores of 10

GTZAN genres with one hundred 30 sec excerpts for each genre. The figure shows
the range of values for variability for each genre represented by the mean. Although
in some areas in the figure these genres overlap indicating a possible misclassification
of genres, using this figure we can expect a jazz piece of music to have an average
variability between 0.1-0.3 (.10−2), and therefore, we should expect the correct classi-
fication of jazz music to be fairly high. The same deduction can be expended for pop,
classical, and hiphop, whereas other genres mostly stay in the same ranges which
could cause misclassification.

Table 11 presents the classification scores for different feature representations for
variability using a verity of classification algorithms. We can see that variability is best
represented by the MFCC feature representation (from the available representations)
and achieves 38.40% classification precision using Naïve Bayes.

6.3 the power cepstrum

The power cepstrum is defined as the rate of change in different spectrum bands. The
tonal formants and pitch are additive in the log of the power spectrum, this makes
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Figure 18: Spectral variability feature values for 10 GTZAN genres using the mean represen-
tation.

Representation KNN MP NB RF LLRM SVM

Mean 28.70% 32.30% 26.80% 31.00% 30.20% 21.40%
MFCC 31.50% 37.00% 38.40% 36.90% 36.40% 38.20%
20-bin FH 23.80% 23.80% 21.60% 23.90% 22.30% 17.60%
Area Moments 25.90% 26.70% 25.80% 28.30% 23.90% 24.00%

Table 11: Classification scores for different feature representations for spectral variability us-
ing a variety of classification techniques.
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them clearly separate [Noll 2005a]. Therefore, this is an ideal tool for determining
the frequency of human speech. Before further defining the power cepstrum, the
definition of the Fourier transform for discrete signals must be reviewed.

Definition 6.8. Discrete Fourier Transform
The discrete-time Fourier transform, notated as DFT, of a discrete-time real set, x(n)
∀n ∈ Z+, is defined by:

X2π(ω) =

∞∑
n=−∞ x(n)e

−iωn, (13)

where ω (frequency variable) has normalised sample units and X is a periodic func-
tion with periodicity 2π.

Definition 6.9. Power Cepstrum
The power cepstrum of a signal is defined as the squared magnitude of the inverse
DFT of the logarithm of the squared magnitude of the DFT of a DTS:

power cepstrum of signal = |DFT−1{log(|DFT{f(t)}|2)}|2. (14)

A short-time cepstrum analysis was proposed by Noll and Schroeder [2005]; Noll
[2005ba] for pitch determination of human speech. The power cepstrum is a com-
monly used feature for describing a musical DTS. This is done by converting the
DTS, using the Mel (melody) scale to Mel-frequency cepstrum 6 (MFC). The MFC is
used as a design matrix for identifying the human voice; musical signals; and content-
based audio classification [Li 2000; Guo and Li 2003]. In the next two definitions, the
discrete cosine transform II is used to further define the Mel-frequency cepstral coef-
ficients (MFCCs).

Definition 6.10. Discrete Cosine Transform II7

The discrete cosine transform (denoted DCT), is defined as a linear, invertible func-
tion f : RN → RN, or equivalently an invertible N ×N square matrix. Let N =

{x0, ..., xN−1} be a set where xi ∈ R ∀i ∈ {0, ...,N− 1}, then one can define the DCT of
set N as:

Xk =

N−1∑
n=0

xncos[
π

N
(n+

1

2
)k] k = 0, ...,N− 1. (15)

The output set is N̄ real numbers {X0, ...,XN−1} which is the transformed set N.

Now that we have a definition for the power cepstrum we can extend the 9 features
defined in the previous section with the 4 features from the power spectrum. The 4

power cepstrum features include: Mel-Frequency Cepstral Coefficients, Section 6.3.1, a
powerful feature for genre detection and representation for musical signal features;
Spectral Flatness, Section 6.3.2, which is used to measure how pure tonal sounds are

6 MFC is a representation of the short-term power spectrum of a sound, based on a linear cosine transform
of a log power spectrum on a nonlinear Mel-scale of frequency

7 The second of four conventional definitions of DCT.
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compared to noisy ones; Spectral Shape Statistics, Section 6.3.3, global descriptors of a
DTS; Spectral Rolloff, Section 6.3.4, which measures the amount of right-skewedness
of the power spectrum.

6.3.1 Mel-Frequency Cepstral Coefficients

Mel-frequency cepstral coefficients (MFCCs) are the coefficients that together make
up an Mel-frequency cepstrum. The components of MFCC are those from the cep-
stral representation of the audio signal. In the Mel-frequency cepstrum the frequency
bands are equally spaced which favours the human auditory system more than using
the cepstrum feature alone, which uses linearly-spaced frequency bands. There are
many more uses for MFC including signal compression.

Definition 6.11. Mel-Frequency Cepstral Coefficients
Xu et al. [2005b]; Sahidullah and Saha [2012] have presented five steps to acquire
MFCCs from a DTS:

1. Take the discrete-time Fourier transform of the signal, using local windows.

2. Map the powers of the spectrum obtained above onto the Mel-scale, using tri-
angular overlapping windows.

3. Take the logs of the powers at each of the Mel-frequencies.

4. Take the discrete cosine transform of the list of Mel log powers, as if it was a
signal.

5. The MFCCs are the amplitudes of the resulting spectrum.

The shape or spacing of the local windows can be adjusted [Zheng et al. 2001] as well
as cepstral/spectral dynamics features [Furui 1986]. The Mel-filter bank is built as 40

log-spaced filters according to the following Mel-scale conversion. The frequency, f
(Hertz), to Mel, m, is given by the following conversion formula:

m = 1127 ∗ log(1+
f

700
), (16)

each filter is a triangular filter with hight 2
(fmax−fmin)

. Then MFCCs are computed as
follows, using the discrete cosines transform by Equation 14:

mfcc = dct(log(abs(fft(hanning(N).x)).MelFilterBank)), (17)

where the hanning window is given in Appendix A. MFCCs have been used in
music modelling [Logan 2000]; early classification of bearing faults [Nelwamondo et
al. 2006]; comparisons of parametric representations for spoken sentences [Davis and
Mermelstein 1980]; and finally in music genre classification [Cast et al. 2014].

The MFCCs can be represented in many different ways and is in itself also con-
sidered a powerful representation. In this study we considered 3 representations for
MFCCs. Using the MFCC representation we achieve accuracies of 66.6%; using the
mean representation we achieved 58.30%; and finally using area methods of moments
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we achieve 37.20% accuracy on GTZAN genres using 10 fold cross validation. Table 12

outlines all precisions obtained using multiple classification algorithms. The best rep-
resentation according to Table 12 is the MFCC representation obtaining 66.60% accu-
racy using support vector machines.

Representation KNN MP NB RF LLRM SVM

Mean 53.20% 55.90% 50.10% 49.40% 58.30% 52.90%
MFCC 50.30% 59.40% 53.90% 55.20% 61.70% 66.60%
Area Moments 32.20% 34.80% 29.00% 33.20% 37.20% 12.60%

Table 12: Classification scores for different feature representations for MFCCs using a variety
of classification techniques.

6.3.2 Flatness

Spectral flatness is a feature used to calibrate how pure tonal sounds are in compar-
ison to noisy ones [Dubnov 2004]. Pure tonal sound refers to resonant structure in
a power spectrum8, compared to other parts containing white noise. A high spectral
flatness (approaching 1.0 for white noise) indicates that the spectrum has a similar
amount of power in all spectral bands - this would sound similar to white noise, and
the graph of the spectrum would appear relatively flat and smooth. A low spectral
flatness (approaching 0.0 for a pure tone) indicates that the spectral power is con-
centrated in a relatively small number of bands - this would typically sound like a
mixture of sine waves, and the spectrum would appear "spiky" [Peeters 2004]. Herre
et al. [2001] and Jang et al. [2008] used flatness to match audio signals and classify
genre respectively. Theorem 6.13 is presented below using two means described in
Appendix A to define spectral flatness.

Definition 6.12. Wiener Entropy or Spectral Flatness
Spectral flatness is defined as the ratio of the geometric mean (Section A.3) to the
arithmetic mean (Section A.2) of the DTS:

SpecFlatness =
GeoMean(x)

Arith(x)
=

N

√∏N−1
i=0 x(i)∑N−1
i=0 x(i)
N

=
e(

1
N

∑N−1
i=1 lnx(i))

1
N

∑N−1
i=0 x(i)

, (18)

where x(n) represents the DTS. The spectral flatness feature is also useful as a local
feature rather than a global one. By Theorem 6.13 the spectral flatness will always
be a positive real number between 0 and 1 inclusive.

Theorem 6.13. Let S = {x1, x2, x3, x4, ..., xn}. Furthermore, let x̄A and x̄G be the arithmetic
(Section A.2) and geometric mean (Section A.3) of S respectively. If S contains no pair of
elements such that xi = xj ∀i, j ∈ {1, ...,n} where i 6= j, then

x̄G < x̄A. (19)

8 The power spectrum of a DTS is the power of that DTS at each frequency that it contains
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Using spectral flatness represented by the mean we achieve accuracies of 41.8% us-
ing naïve Bayes; 39.8% using support vector machines; 50.5% using the multilayer per-
ceptron; 51.6% using linear logistic regression models; 49.5% using k-nearest neigh-
bours; and 44.2% using random forests with 10-fold cross validation. These classifica-
tion scores make spectral flatness a noteworthy descriptor of genre.

6.3.3 Spectral Shape Statistics

Spectral statistics are used as global descriptors of the DTS. There are four types
of spectral shape statistical features: centroid, spread, kurtosis and skewness. The
following definitions extends these statistical feature concepts in terms of the spectral
centroid, however first the spectral centroid must be defined.

6.3.3.1 Spectral Centroid

The spectral centroid has been used to predict spectral "brightness" of a DTS [Grey
and Gordon 1978] and is used widely in digital audio processing as a tool to measure
musical timbre [Schubert et al. 2004]. The spectral centroid is commonly used to
categorise audio signals [Tzanetakis and Cook 2002] and audio data [Li et al. 2001].
The brightness can be defined as the precise place where the "centre of spectral mass"
exists on the DTS. According to Grey and Gordon [1978], this property has a robust
connection with the impression of "brightness" of a sound.

Definition 6.14. Spectral Centroid
The spectral centroid is defined as the weighted mean Section A.5 of the frequencies
present in the DTS, determined using the discrete-time Fourier transform, with their
magnitudes as the weights [Peeters 2004]:

Spectral Centroid = [SC] =

∑N−1
n=0 f(n)x(n)∑N−1
n=0 x(n)

, (20)

where x(n) represents the weight (magnitude at that frequency) of bin number n,
and f(n) represents the center frequency of that bin.

Recall that spectral centroid refers to the centre of mass in the power spectrum
and is often used to calculate the brightness of a music signal. This feature has been
widely used in signal processing as a true timbre descriptor. The results in Figure 19

was calculated with a sample rate of 16khz over a 512 sample window size. Using
the mean representation for spectral centroid we explored the sensitivity to change
of the dependent variable with respect to the in-dependent variable. In each graphic
the feature quality is seen as favourable (for classification) if the genre (coloured
lines) are clearly separable and unfavourable if the genres intersect frequently as this
would mean that the feature descriptor produces the same value for more than one
genre indicating similarity between genres whereas the goal of these descriptor are to
distinguish between genres. Spectral centroid is seen as a very good metal and disco
descriptor among other genres.
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Figure 19: Spectral centroid feature values for 10 GTZAN genres using the mean representa-
tion.

Representation KNN MP NB RF LLRM SVM

Mean 24.80% 32.60% 28.10% 27.90% 30.00% 28.60%
MFCC 26.40% 27.80% 30.70% 28.80% 32.10% 28.30%
20-bin FH 24.80% 26.10% 23.70% 25.60% 25.50% 20.70%
Area Moments 18.30% 19.60% 17.50% 18.80% 17.60% 13.20%

Table 13: Classification scores for different feature representations for spectral centroid using
a variety of classification techniques.
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Table 13 shows the results of using spectral centroid to classify 10 GTZAN gen-
res using multiple classification techniques with 10-fold cross validation. Although
spectral centroid is best represented by MFCCs for this problem, it is seen that the
mean representation classified with a multilayer perceptron yield the optimal result
by 0.50% compared to using linear logistic regression models. Table 14 shows the
results of taking the strongest frequency of spectral centroid (in Hz), not much dif-
ference is noted in this case. The definition of spectral centroid is now extended to
define other shape statistics used for signal classification.

Representation KNN MP NB RF LLRM SVM

Mean 24.80% 32.60% 27.90% 27.90% 30.00% 15.30%
MFCC 26.40% 27.80% 30.30% 30.00% 32.20% 28.30%
20-bin FH 24.80% 26.10% 23.70% 25.60% 25.50% 20.70%
Area Moments 18.20% 18.20% 17.60% 20.40% 17.80% 12.40%

Table 14: Classification scores for different feature representations for strongest frequency of
spectral centroid using a variety of classification techniques.

6.3.3.2 Spread, Kurtosis and Skewness

Extending the definition of spectral centroid in Equation 6.14 as

[SC]i =

∑N−1
n=0 f

i(n)x(n)∑N−1
n=0 x(n)

, (21)

where [SC]i represents the spectral centroid at position i. [SC]i is the normalised ith

moment of the magnitude about zero. [SC]i allows us to define spread, kurtosis and
skewness as:

Definition 6.15. Spread
The spectral spread of a signal is given as

[S]spread =

√
[SC]2 − [SC]21; (22)

Definition 6.16. Kurtosis
The spectral kurtosis of a signal is given as

[S]kurtosis =
−3[SC]41 + 6[SC]1[SC]2 + 4[SC]1[SC]3 + [SC]4

[S]4spread
− 3; (23)

Definition 6.17. Skewness
The spectral skewness of a signal is given as

[S]skewness =
2[SC]41 + 3[SC]1[SC]2 + [SC]3

[SC]3spread
. (24)

Using linear logistic regression models to classify GTZAN genres yields 36.2% us-
ing only shape statistics. In the next section we introduce spectral rolloff which mea-
sures how much of the power spectrum is right-skewed.
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6.3.4 Spectral Rolloff

According to Peeters [2004]; Bergstra et al. [2006], spectral rolloff point is the fre-
quency so that 85% of the signal energy is contained below this frequency. It is corre-
lated to the harmonic/noise cutting frequency [Peeters 2004]. Spectral rolloff has been
used for music genre classification [Tzanetakis and Cook 2002; Alexandre-Cortizo et
al. 2005; Li et al. 2003] and speech classification [Alexandre-Cortizo et al. 2005; Scheirer
and Slaney 1997]. The spectral rolloff is measured by the following equation:

fc∑
0

a2(f) = 0.85
sr/2∑
0

a2(f), (25)

where fc is the spectral roll-off frequency, a is the amplitude of the frequency and sr
2

is the Nyquist frequency. The Nyquist frequency is defined as:

Definition 6.18. Nyquist frequency
The highest frequency that can be represented in a DTS of a specified sampling fre-
quency. Nyquist frequency is equivalent to 1

2 of the sampling rate.

As seen in Figure 20, spectral rolloff classifies metal, hiphop, and disco very well.
This capable classification - using mean representation - is maintained in Table 15,
however, using random forests with a 20 bin feature histogram yields the best classi-
fication score in this setting.
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Figure 20: Spectral rolloff feature values for 10 GTZAN genres using the mean representation.

Now that we have explored a number of magnitude-based features we can sum-
marise this information to effectively classify GTZAN genres.

6.4 conclusion and discussion

In Section 6.2 and Section 6.3 we explored magnitude-based features for music genre
classification using the GTZAN dataset. Some features produced exceptional results
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Representation KNN MP NB RF LLRM SVM

Mean 26.80% 35.90% 30.30% 29.10% 33.60% 27.60%
MFCC 26.70% 30.20% 30.70% 28.00% 31.90% 28.70%
20-bin FH 28.10% 29.20% 29.00% 33.80% 33.00% 23.10%
Area Moments 19.80% 21.10% 20.30% 21.50% 20.40% 18.70%

Table 15: Classification scores for different feature representations for spectral rolloff using a
variety of classification techniques.

(MFCCs, Compactness, loudness) while other features did not distinguish genre cor-
rectly and added unnecessary dimensionality to our design matrix. In this section
we summarize the contributions of Section 6.2 and Section 6.3 into a design matrix
that best describes a music genre database (GTZAN). Optimistically, this research
argues that the GTZAN is a good representation of other music databases (such as
MusicBrainz), and the ideas expressed in this research can be applied to larger music
datasets.

Feature list with representation (149)

Slope (1) Mean
Compactness (2) Mean
Decrease (1) Mean
Loudness (26) Mean
Onset Detection (1) Mean
Octave Based Signal Intensity (17) Mean
Peak-based features (4) Mean
Spectral Flux (4) MFCC
Spectral Variability (4) MFCC
MFCC (52) MFCC
Flatness (20) Mean
Shape Statistics (11) Mean/MFCC
Spectral Rolloff (2) Mean
Peak Flux (2) 20-bin FH
Crest Factor (10) Mean
Strongest Freq of FFT Max (4) MFCC

Table 16: A list of magnitude-based feature for genre classification.

Table 16 presents a list of features selected from Section 6.2 and Section 6.3, the
feature dimensionality9 is given in parenthesis. The feature selection is as follows:
spectral slope is represented by the mean; compactness also given by the mean and
standard deviation (2); spectral decrease is given by the mean (1); loudness is given by
24 coefficients all of which are represented by the mean (24), plus perceptual sharp-

9 The number of coefficients that represent the feature itself, and hence the number of dimensions that
the feature uses.
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ness and spread given by the mean (+2); onset detection is given by the mean (1);
octave based spectral intensity is given by two components - OBSI (9 components)
and OBSIR (8 components), all represented by the mean; peak-based features given
by the mean and standard deviation, these peak-based features include peak cen-
troid (2) and peak smoothness (2); spectral flux represented by 4 MFCC coefficients
(4); spectral variability also represented by 4 MFCC coefficients (4); Mel-frequency
Cepstral coefficients given in the MFCC representation (13× 4 = 52); spectral flat-
ness, given by the mean of 19 bands + the overall average (20); shape statistics that
include centroid and strongest frequency of centroid represented by MFCCs (4 + 4),
and spread, kurtosis & skewness represented by mean (3); spectral rolloff, given by
average and standard deviation (2); peak flux represented by a 20-bin feature his-
togram; crest factor represented by the mean; and finally, the strongest frequency of
FFT represented by MFCC (4). Altogether there are 149 features that make up the
design matrix.

G1G2G3G4G5G6G7G8G9G10

G1 84 1 2 4 0 2 0 0 3 0

G2 0 95 2 0 0 2 0 0 0 1

G3 3 1 74 3 0 1 0 5 2 11

G4 2 1 2 75 4 0 0 4 5 7

G5 1 0 1 2 80 0 3 5 7 1

G6 4 4 4 0 0 84 1 0 1 2

G7 2 0 0 1 1 0 90 0 0 6

G8 0 1 4 5 2 2 0 79 3 4

G9 2 0 2 6 7 1 1 6 70 5

G10 3 0 13 9 1 1 7 3 3 60

Figure 21: Multilayer perceptron classification
(79.5%) of GTZAN genres using
only magnitude-based features.

Using all of the selected features in Ta-
ble 16 with the corresponding represen-
tation we achieve 77.8% successful clas-
sification using linear logistic regression
models; 79.5% using multilayer percep-
tron; 62.7% using random forests; 62.6%
using naïve Bayes; 70.6% using k-nearest
neighbours; and 22% using support vec-
tor machines. In this section content-
based features derived from the magni-
tude spectrum are presented to demon-
strate the effectiveness of using signal
transforms for music genre classification.
Altogether this section organised a de-
sign matrix of 149 dimensions + 1 for the
genre label and even though reducing
data dimensionality could have resulted
in more precise classification - ideas are
explored in Chapter 10 - the main ob-
jective of this chapter is set the stage
for more families of features to be intro-
duced.

Figure 21 shows the confusion matrix for 10 GTZAN genres using only magnitude-
based features with a multilayer perceptron. The row and column labels represent
genre labels where: G1 = Blues, G2 = Classical, G3 = Country, G4 = Disco, G5 =
Hiphop, G6 = Jazz, G7 = Metal, G8 = Pop, G9 = Raggae, and G10 = Rock. To demon-
strate the fuzziness between genres, as explained in Section 1.2, it is noted that in
Figure 21 there are 13 rock pieces which were classified as country and 11 country
pieces classified as rock.

Example 6.19. Another example demonstrates the fuzziness between rock and disco
music where 9 rock pieces where classified as disco and 7 disco pieces were classified
as rock.
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Another pressing factor is the amount of time taken by the multilayer perceptron
to build a classification model. While the other classifiers took between 0.06-10.2
seconds to build a model, the multilayer perceptron took 107.93 seconds. Although
the multilayer perceptron produced an outstanding result in classification, this time
constraint makes us question the reliability of the model to handle more features or
truly enormous datasets, much like MusicBrainz10.

In the next section we introduce another family of features derived from the root
mean square of the DTS. This feature opens doors to analyse beats within a melody
offering a constructive way to perform rhythm analysis.

10 MusicBrainz having 16 000 000 music files.





7
T E M P O D E T E C T I O N

Most music display regular rhythmic formation that creates an impression of tempo. With
the purpose of understanding the nature of music to perform genre classification, tempo must

be understood and preserved as a feature description. In this chapter we establish tempo
detection schemes for music genre classification. Having already established a method to

detect the vitality in a music excerpt by using spectral energy, which is the root mean square
of the music signal, we present in this chapter the Beat Histogram as a crucial design matrix.
The Beat Histogram is then extended to craft more descriptive and useful features regarding

tempo.

7.1 introduction

Every piece of music contains some rendition of rhythm, and thus every piece of
music contains at least one beat, where a beat is defined as one rhythmic unit.
Melodies, chordal progressions, heterophony, and scales all rely on rhythmic

pattern designs to guide and direct successful and structured music. In music, rhythm
is understood by the use of time signatures which expresses an intended relationship
between estimated duration and actual time.

The main beats of a piece can be expressed as the point where the listener would
clap her hands while listening to a piece of music. These beats can be extracted and
measured to provide information about every beat in a given threshold, together
these beats yield the beat histogram. A problem arises where multiple music pieces
will have very similar rhythmic structure belonging to different genres. In this case
our analysis needs to define beat strength, which will help us distinguish pieces of
music with the same rhythm from different genres.

Example 7.1. As an example, understanding beat strength and other features derived
from the beat histogram, can help us distinguish a rock song, with a higher beat
strength, from a classical piece at the same tempo.

Energy is firstly introduced, being a fundamental concept for studying rhythm,
along with some variations of energy that include the relative difference function
and fractions of low energy; and finally, we introduce the beat histogram and beat
strength features.

77
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7.2 energy

Energy is a fundamental descriptor used in speech and audio processing [Lu et al.
2002]. The root mean square is a central concept when understanding energy and is
defined in Section A.1. Energy is defined as follows:

Definition 7.2. Energy
Energy, denoted Es, is measured by calculating the RMS of a DTS. Es is defined as:

Es =

√∑N−1
i=0 x

2
i

N
. (26)

Figure 22 shows the energy feature values of 10 GTZAN genres with one hundred
30 sec excerpts for each genre. The figure shows the range of values for energy for
each genre represented by the mean. In the figure classical, jazz, pop, and hiphop
genres have distinguishing energy ranges compared to other genres.
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Figure 22: Energy feature values for 10 GTZAN genres using the mean representation.

According to Table 17, using energy represented by MFCCs we achieve accura-
cies of 40.3% using naïve Bayes; 40.8% using support vector machines; 37.7% using
the multilayer perceptron; 36.3% using linear logistic regression models; 33.7% using
k-nearest neighbours; and 39% using random forests with 10-fold cross validation.
These results show that energy is a capable feature for music genre classification us-
ing GTZAN genres, although, genres such as blues, disco, country, and rock display
very similar energy values and so other adaptations of energy can also be investi-
gated.

If we examine the arithmetic average of the first n windows of a signal (for our
experiments we took n = 100) and calculate to what fraction of these values are
below the average, then we can calculate the percentage of silence that exists in the
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Representation KNN MP NB RF LLRM SVM

Mean 28.90% 35.70% 27.50% 33.90% 32.60% 20.80%
MFCC 33.70% 37.70% 40.30% 39.00% 36.30% 40.80%
20-bin FH 25.90% 22.40% 21.60% 24.80% 20.70% 17.90%
Area Moments 25.00% 24.50% 26.20% 28.00% 25.20% 24.10%

Table 17: Classification scores for different feature representations for energy using a variety
of classification techniques.

signal - let us call this feature the fraction of low energy. Onset detection can also be
achieved through the study of energy.

Every note in a piece of music consists of an onset1, and could be a useful tool for
music genre detection. Taking the log of the derivative of energy tells us something
about the increase, change in distribution and pitch of spectral energy, this feature is
commonly referred to as the relative difference function of a DTS. The relative difference
function represented by MFCCs achieve accuracies of 21.2% using naïve Bayes; 21.7%
using support vector machines; 20.7% using the multilayer perceptron; 20.7% using
linear logistic regression models; 19.2% using k-nearest neighbours; and 23.7% using
random forests with 10-fold cross validation on GTZAN genres.

The study of energy has allows us to examine tempo, being a fundamental aspect
of music. The next section employs a commonly used tempo detection scheme, using
energy as a primary component, called the beat histogram.

7.2.1 Beat Histogram

The beat histogram is an arrangement of signal strength to yield rhythmic intervals.
This is accomplished by measuring the RMS energy of n consecutive windows and
taking the fast Fourier transform of the result. This type of feature will produce a
very large design matrix and so a simple feature representation is needed. In our
experiments the mean feature representation outperformed MFCC and the 20-bin
feature histogram. Using the beat histogram represented by the mean we achieve
accuracies of 21.4% using naïve Bayes; 34.1% using support vector machines; 33.1%
using linear logistic regression models; 29.2% using k-nearest neighbours; and 29.7%
using random forests with 10-fold cross validation.

Exploiting properties of the beat histogram can prove beneficial, for example tak-
ing the sum of all values in the beat histogram gives us a feature that shows the
significance of regular beats in a music piece. Table 18 shows the sum of all beats of
GTZAN genres using multiple classification techniques and feature representations.
The MFCC representation seems to on average outperform all of the other represen-
tations and the multilayer perceptron, even though takes much longer to build than

1 Onset involves the rise in amplitude when a sound occurs. This rise in energy begins at zero to some
amplitude peak.
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Representation KNN MP NB RF LLRM SVM

Mean 26.10% 27.70% 21.50% 27.90% 24.60% 21.20%
MFCC 25.80% 28.50% 28.10% 29.60% 27.40% 23.50%
20-bin FH 17.90% 16.60% 17.30% 19.60% 19.40% 14.90%
Area Moments 26.90% 24.90% 21.50% 26.60% 23.50% 13.40%

Table 18: Classification scores for different feature representations for beat sum using a vari-
ety of classification techniques.

other classification techniques, appears to classify genre better than any of the other
techniques.

Another way to exploit the properties of the beat histogram is giving the value of
the highest bin of the beat histogram as the strongest beat in the signal. Figure 23

shows the strongest beat of each excerpt of GTZAN genres. It is noted that blues and
pop share similar strongest beats, whereas hiphop, reggae, and disco do not.
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Figure 23: Strongest beat feature values for 10 GTZAN genres using the mean representation.

Table 19 shows the strongest beat of GTZAN genres using multiple classification
techniques and multiple feature representations. The MFCC representation seems to
outperform all of the other representations and K-nearest neighbours classification
appears to classify genre better than any of the other techniques.

Representation KNN MP NB RF LLRM SVM

Mean 22.60% 21.50% 18.80% 22.30% 19.80% 20.10%
MFCC 20.10% 21.70% 18.80% 21.10% 18.70% 19.30%
20-bin FH 18.60% 16.20% 14.60% 19.90% 14.50% 14.90%
Area Moments 21.30% 20.50% 17.60% 21.70% 14.30% 16.80%

Table 19: Classification scores for different feature representations for strongest beat using a
variety of classification techniques.
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We can further use the strongest beat feature to calculate the strength of the strongest
beat, which will measure to what ratio is the strongest beat stronger compared to
other beats. In the next section the ideas of this chapter are summarised and the
contributions of this section are given in terms of a design matrix.

7.3 conclusion and discussion

Tempo is a mandatory aspect of music genre that is only interpreted in a few different
ways. For example, a 4

4 time signature can be used in almost every type of genre.
Therefore, we can expect that identifying tempo in a music signal is not a sufficient
feature on its own to detect genre.

Example 7.3. A typical example would be using the waltz rhythmic pattern which
can be found in jazz (e.g. Mississippi Waltz by the Memphis Jug Band); classical (e.g.
Invitation to the Dance by Carl Maria von Weber); pop (e.g. Kiss from a Rose by Seal);
and rock (e.g. Breakaway by Kelly Clarkson).

Thus, we will not expect to get extraordinary results by classifying music genre
by rhythmic features alone, however, the contributions of rhythmic features when
combined with other features are worthwhile.

Feature list with representation (362)

Energy (2) Mean
Fraction of low energy (2) Mean
Beat Histogram (342) Mean
Strongest Beat (2) Mean
Strength of the Strongest Beat (2) Mean
Beat Sum (4) MFCC
Relative Difference Function (4) MFCC
Temporal Shape Statistics (4) Mean

Table 20: Tempo-based feature list.

Table 20 presents a list of rhythmic features with the feature dimensionality2 given
in parenthesis. The feature selection with each feature’s representation is given as
follows: energy is represented by the mean and standard deviation (1); fraction of
low energy is given by the mean and standard deviation (2); the beat histogram is
given by the mean and standard deviation (342), along with the strongest beat (2)
given by the mean, and strength of the strongest beat (2) given by the mean; the
beat sum given by MFCC representation (4); the relative difference function given by
MFCC values; and finally temporal statistics given by the mean alone (4). Altogether
there are 362 features, + 1 for the genre label, that make up the design matrix.

2 The number of coefficients that represent the feature itself, and hence the number of dimensions that
the feature uses.
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Using all of the selected features in Table 20 with the corresponding representation
we achieve accuracies of 49.3% successful classification using linear logistic regres-
sion models; 46.5% using multilayer perceptron; 37.4% using random forests; 23.3%
using naïve Bayes; 36.1% using k-nearest neighbours; and 36.5% using support vector
machines.

G1G2G3G4G5G6G7G8G9G10

G1 28 1 3 13 9 11 10 13 5 7

G2 0 84 3 0 0 9 2 0 0 2

G3 1 3 34 8 0 19 14 3 3 15

G4 11 0 3 45 8 4 4 6 12 7

G5 4 0 1 14 52 2 0 15 9 3

G6 8 14 15 1 2 39 2 3 7 9

G7 1 0 7 6 1 4 65 5 0 11

G8 1 1 5 6 13 1 5 55 3 10

G9 3 2 3 10 9 6 3 3 61 0

G10 12 5 14 5 2 12 13 4 3 30

Figure 24: A tempo-based design matrix us-
ing linear logistic regression models
classifier achieving 49.3% accuracy.

Figure 24 shows the confusion matrix
for 10 GTZAN genres using only tempo-
based features with linear logistic regres-
sion models. The row and column la-
bels represent genre labels where: G1
= Blues, G2 = Classical, G3 = Country,
G4 = Disco, G5 = Hiphop, G6 = Jazz,
G7 = Metal, G8 = Pop, G9 = Reggae,
and G10 = Rock. To demonstrate a ma-
jor drawback of using only tempo-based
features for music genre classification
we can observe how many music pieces
are misclassified as blues. In this case,
since many blue music excerpts in the
GTZAN dataset contain common rhyth-
mic patterns, many music pieces - al-
though from other genres - are classified
as blue. However, it is hypothesised that
using temporal feature with timbre and
pitch features will clear this obscurity.

In the next section we introduce fea-
tures that are commonly used in signal processing for speech and pitch detection.
These are most likely good features, for genre classification, as tone and singing are
very common aspects in musical content. This research will employ the most effec-
tive signal processing features for speech recognition and observe their effects on
automatic music genre classification.
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P I T C H A N D S P E E C H D E T E C T I O N

Zero-crossing rate is frequently used as a feature for signal classification as a thorough
percussive descriptor. In this chapter we explore tonal and speech-based features for music
genre classification. We show how a signal fluctuations and zero crossings can be used to
detect some aspects of pitch. Using only pitch and speech based features we obtain 67.3%

classification accuracy using multilayer perceptions on GTZAN genres.

8.1 introduction

Pitch is a perceived characteristic contained in the frequency of music content.
Most music of the same genre exhibit melodies that are just combined notes
from a scale set1. For example, most notes from an impressionistic piece are

taken from whole-tone scales, whereas notes from a jazz pieces of music are taken
from pentatonic scales. However, often environmental sounds overtone pitch, dis-
guising available pitch-related elements, which make it difficult to extract pitch com-
putationally. Even human auditory systems can find it difficult to distinguish pitch
under these conditions. Therefore, some sort of pitch extraction mechanisms need
to be adopted to retrieve these pitch elements though the environmental sounds. In
this chapter we explore pitch and speech related algorithms as an amalgam of these
characteristics are hypothesised to describe singing. Together, pitch and speech detec-
tion schemes can help us understand gliding; portamento; or even vibrato (amplitude
modulation).

8.2 pitch detection

Two important pitch-based features are discussed in this chapter: zero crossing rate, a
primeval pitch detector; and amplitude modulation: a description of tone that describes
how pitch modulates over time.

8.2.1 Amplitude Modulation

For many musical instruments amplitude periodic modulation2 is a distinctive qual-
ity. Figure 25 shows the DTS of a note played by a saxophone3. In Figure 25 there

1 A scale is simply a set of notes.
2 The way the signal oscillates or appears to oscillate over time.
3 The saxophone belongs to the family of wind instruments.
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appears to be a periodic waveform with a period of about 80 time units. The different
periods may not be exactly the same as every other period, but this amplitude modu-
lation or "fluttering" can be quite descriptive for instrument recognition [Eronen and
Antti 2001].
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Amplitude modulation of a note played by a saxophone

Figure 25: Amplitude modulation of a DTS.

According to Eronen and Antti [2001], style introduces characteristic amplitude
variation into music tones. Iverson and Krumhansl [1993] observed that changing
amplitude envelopes leads to similarity judgments on musical timbre. Eronen and
Antti [2001] maintains that the energy (Equation 7.2) envelope is useful to extract fea-
tures measuring amplitude modulation (AM). Martin [1999] observed that heuristic
strength and frequency of AM can be calculated at two frequency ranges. Eronen
and Antti [2001] stated that the first range is between 4 and 8 Hz (where the AM
is in conjunction with vibrato) and the second range is between 10 to 40 Hz which
correspond to "graininess" or "roughness" of the tone. In order to calculate the AM of
a DTS the following steps are followed for each of the described ranges [Mathieu et
al. 2010]:

1. Step 1: Find the frequency of maximum energy in range.

2. Step 2: Calculate the difference of the energy of this frequency and the mean
energy over all frequencies.

3. Step 3: Calculate the difference of the energy of this frequency and the mean
energy in range.

4. Step 4: Take a product of the above two values.
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8.2.2 Zero Crossing Rate

The zero crossing rate (ZCR) is the frequency of sign changes that occur along a
discrete-time signal [Chen 1988]. Being a thorough percussive descriptor4, this fea-
ture has been used in both speech recognition as well as in audio information re-
trieval [Gouyou et al. 2000]. The use of this feature was extended for classification of
percussive sounds [Gouyon et al. 2000]; modulation classification [Hsue and Soliman
1990]; and music genre classification [Xu et al. 2003]. An indicator function is firstly
introduced and is then extended to define the ZCR of a DTS.

Definition 8.1. The Indicator Function
If A ⊆ X, Then

1A : X→ {0, 1}, (27)

is an indicator function defined as:

1A(x) :=

 1 if x ∈ A

0 if x 6∈ A
. (28)

Definition 8.2. Zero Crossing Rate
A formal definition of the ZCR is given by:

ZCR =
1

T − 1

T−1∑
t=1

1{xtxt−1 < 0}, (29)

where x is the discrete-time signal of length T . The indicator function, 1{xtxt−1 < 0},
is 1 if the argument {xtxt−1 < 0} is true or 0 if the argument is false. If one is to
encounter a monophonic5 discrete-time signal, then the ZCR can be used as a primeval
pitch detector.

Figure 26 shows the ZCR values of 10 GTZAN genres with one hundred 30 sec
excerpts for each genre. The figure shows the range of values of ZCR for each genre
represented by the mean. In the figure metal, disco, and hiphop genres have distin-
guishing energy ranges compared to other genres. According to Table 17, using ZCR
represented by the mean we achieve accuracies of 32.3% using naïve Bayes; 28.1%
using support vector machines; 32.50% using the multilayer perceptron; 33% using
linear logistic regression models; 29.1% using k-nearest neighbours; and 29.6% us-
ing random forests with 10-fold cross validation. If we calculate the frequency of
zero crossings in a sample of a discrete time signal we can identify the most intense
component of that sample which could have potential for genre classification. This
component is commonly referred to as the strongest frequency using ZCR and is
measured in Hz.

4 Able to distinguish between musical instruments that are sounded by begin struck or scraped by a
beater, by hand, or by a similar instrument.

5 Melody without accompanying harmony.
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Figure 26: Zero crossings feature values for 10 GTZAN genres using the mean representation.

8.3 speech detection

Speech detection is an ever growing field in computer and information science. In
this section we attempt to use speech-based features for music genre classification.
Using one of the most powerful speech analysis techniques, linear prediction coeffi-
cients, we achieve exceptional results for genre classification. We begin by defining
autocorrelation coefficients as a feature for genre detection.

8.3.1 Autocorrelation Coefficients

Auto-correlation is a tool used to define features such as linear predictor coefficients
(LPC). Auto-correlation itself is also considered as a standard feature and will be
used as such in this research. The definition of auto-correlation is aided by the fol-
lowing definitions: integral transform; complex conjugates (Section A.7); and lastly,
the discrete-time autocorrelation coefficient.

Definition 8.3. Integral Transform
An integral transform is defined by the following transformation of a function f:

(Tf)(x) =

∫t2
t1

K(t, x)f(t)dt, (30)

where f is the transform function and K is a specified choice for the transformation
operator.

Definition 8.4. Discrete-Time Auto-correlation Coefficient
When the autocorrelation function is normalised by mean and variance, it is some-
times referred to as the autocorrelation coefficient [Dunn 2010]. Given a signal f(t),
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the continuous autocorrelation Rff(τ) is most often defined as the continuous cross-
correlation integral of f(t) with itself, at lag τ:

Rff(τ) = (f(t) ∗ f̄(−t))(τ) (31)

=

∫∞
−∞ f(t+ τ)f̄(t)dt (32)

=

∫∞
−∞ f(t)f̄(t− τ)dt, (33)

where f̄ represents the complex conjugatex (Section A.7) and * represents convolution
(Section A.6). For a real function, f̄ = f.

Makhoul [1975] presents a compact way to produce linear prediction coefficients
using Levinso-Dubin algorithm that make use of autocorrelation coefficients. Li et
al. [2001] used this algorithm to perform automatic music genre classification. An
adaptation of this algorithm will be used in this research for classifying GTZAN
genres. The adaptation will further use LPC to define line spectral frequency (LSF)
using the methods by Bäckström and Magi [2006]; Schussler [1976].

8.4 envelope shape statistics

Expanding on Section 6.3.3, which provide spectral shape statistics on the magnitude
spectrum, we can similarly calculate the spectral statistics of each envelope6 of the
DTS. These provide ideal pitch descriptors for tonal features. In the next section all
of the ideas in this chapter are summarised and a design matrix is given that describe
pitch and speech based features.

8.5 conclusion and discussion

In this section we summarize the contributions of the previous sections and intro-
duce a design matrix that best classifies a music genre database (GTZAN). Table 21

presents a list of pitch and speech based features, the feature dimensionality is given
in parenthesis. The feature selection is as follows: 49 autocorrelation coefficients rep-
resented by the mean; 8 amplitude modulation coefficients represented by the mean;
zero crossing represented by MFCCs; 4 envelope statistics represented by the mean
(4); and finally 8 LSF coefficients with 2 linear predictor coefficients. Altogether there
are 75 features (+ 1 for the genre label) that make up this design matrix.

Using all of the selected features in Table 21 with the corresponding representation
we achieve accuracies of 79.5% successful classification using linear logistic regres-
sion models; 78.9% using multilayer perceptron; 65.8% using random forests; 65.3%
using naïve Bayes; 71.7% using k-nearest neighbours; and 20.6% using support vector
machines.

6 An amplitude envelope given by Hilbert’s transform, low-pass filtering and decimation
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Feature list with representation (75)

Autocorrelation Coefficients (49) Mean
Amplitude Modulation (8) Mean
Zero Crossing (4) MFCC
Envelope Statistics (4) Mean
LFS (10) Mean

Table 21: A list of pitch and speech based features for genre classification.

G1G2G3G4G5G6G7G8G9G10

G1 67 1 4 2 4 6 9 0 1 6

G2 0 90 4 0 0 6 0 0 0 0

G3 8 3 52 3 0 16 3 2 2 11

G4 2 1 1 73 4 1 3 4 4 7

G5 5 0 1 6 52 0 6 10 19 1

G6 4 9 9 2 0 63 0 3 4 6

G7 2 0 1 2 3 0 85 0 0 7

G8 0 0 4 2 7 2 0 75 2 5

G9 2 0 5 5 8 1 1 4 67 7

G10 9 0 12 6 3 4 8 7 5 46

Figure 27: Multilayer perceptron classification
(67.3%) of GTZAN genres using
pitch and speech based features.

Figure 27 shows the confusion matrix
for 10 GTZAN genres using only pitch
and speech based features with a mul-
tilayer perceptron. The row and column
labels represent genre labels where: G1
= Blues, G2 = Classical, G3 = Country,
G4 = Disco, G5 = Hiphop, G6 = Jazz, G7
= Metal, G8 = Pop, G9 = Reggae, and
G10 = Rock.

In the next section we introduce a
core feature for music genre detection
derived from the ConstantQ transform.
This feature not only serves as a strong
classifier on its own, but can also can be
used for identifying chordal structures
in music content.
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C H O R D A L P R O G R E S S I O N S

Introducing spectral feature extraction to genre detection problems created opportunities to
exploit single characteristics of music. Chord structure and progressions has been a defining

trait of music for many years but had gone unnoticed in recent music genre detection
schemes. In this chapter we revisit chroma as a viable timbre feature [Aucouturier and

Pachet 2002] and use a MFCC representation technique to classify a benchmark dataset.
Furthermore, we show that MFCC representation provides better classification than using

the arithmetic mean representation on chroma. Using MFCC-based chroma and mean-based
MFCCs we achieve 55.2% precision on the GTZAN dataset using linear logistic regression

models.

9.1 introduction

Since the early development of spectral genre classification, timbre features have
been used to search discrete music signals in an attempt to describe some as-
pects of music [Mandel and Ellis 2005].

Figure 28: Global distribution of MFCC-based
chroma (3 coefficients) on GTZAN
genres.

Timbre features describe content based
musical aspects such as instrumenta-
tion, rhythm and pitch modulation. Ellis
[2007] reviewed the importance of mu-
sic classification and used chroma and
MFCCs to identify artists.

Chroma has been identified as a tim-
bre feature used to describe chord struc-
ture and is barely influenced by in-
strumentation and tempo [Ellis and Po-
liner 2007]. According to Ellis [2007],
chroma is commonly used to match
"cover songs"1. Since cover music con-
tains more-or-less the same harmonic
content but with altered instrumentation
and rhythm, it is safe to assume that
chroma can be used to identify music based on little influence from rhythm and
instrumentation.

1 A new performance or recording of a previously performed recording by someone other than the
original artist.
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Figure 29: Global distribution of MFCC-based
chroma (3 coefficients) on GTZAN’s
classical, disco, and jazz genres.

Chroma is defined as a 12 compo-
nent design matrix where each dimen-
sion represents the intensity associated
with a particular semitone, regardless of
octave [Ellis 2007]. This chapter imple-
ments MFCC-based chroma by extract-
ing MFCCs derived from the 12 com-
ponent chroma design matrix. Compar-
ing the classification results of regular
chroma verses MFCC-derived chroma,
we achieve a 13.8% increase in classifi-
cation precision using naïve Bayes. Fig-
ure 28 shows a visual model of the first 3

dimensions of MFCC-based chroma ap-
plied to the GTZAN dataset.

Since the components of chroma describe the distribution of semitones in a piece
of music, it also tells us how notes are arranged and thus tells us information about
chordal harmonies. Therefore, modelling chroma can tell us if a particular genre
displays an attachment or relation to harmonic chordal progressions, as some genres
do.

Example 9.1. Pop and rock music might have the same chord progressions while jazz
has more distinct/unusual chord progression compared to other genres.

Feature Classifier Accuracy Time (sec)

Chroma (mean)

Multilayer Perception 28.60% 2.340

Naïve Bayes 24.20% 0.010

Support Vector Machine 16.00% 0.660

Linear Logistic Regression Models 31.20% 2.220

Random Forest 30.80% 0.160

Chroma (MFCC)

Multilayer Perception 36.50% 9.470

Naïve Bayes 38.00% 0.001

Support Vector Machines 35.90% 0.970

Linear Logistic Regression Models 36.60% 2.670

Random Forest 37.20% 0.200

Table 22: Classification scores for chroma on GTZAN genres.

Figure 29 shows the global distribution of MFCC-based chroma (3 coefficients) on
GTZAN’s classical, disco, and jazz genres. We can see that although these genres
can exhibit variant tempo and instrument patterns, they are still clustered closely
in the figure. This is because of their chordal sounds that MFCC-chroma detects.
In order to fully understand the potential of MFCC-based chroma three experiments
are conducted. Firstly, we examine the classification of chroma alone using the MFCC
and mean representation; secondly, we observe mean-based MFCC classification; and
lastly, we observe the different precision achieved from mean and MFCC -based
chroma with the mean-based MFCC feature.
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9.1.1 Results

In Table 22 we used MFCC-based chroma and mean-based chroma features alone to
classify the GTZAN database genres. By modelling chroma features alone we are able
to see the global distribution of chroma on each excerpt in the database and thus are
able to compare feature extraction strategies.

Feature Classifier Accuracy Time to build model

MFCC (mean)

Multilayer Perception 47.20% 2.180

Naïve Bayes 45.00% 0.001

Support Vector Machine 46.70% 0.700

Linear Logistic Regression Models 46.70% 1.120

Random Forest 46.10% 0.110

Table 23: Classification scores for MFCCs on GTZAN genres.

G1G2G3G4G5G6G7G8G9G10

G1 27 1 6 14 7 8 18 5 6 8

G2 1 82 3 0 0 12 0 0 0 2

G3 9 4 30 7 9 15 8 6 4 8

G4 13 1 10 38 3 2 13 4 11 5

G5 8 0 4 2 37 0 3 29 12 5

G6 7 12 12 2 1 54 0 2 3 7

G7 19 0 5 18 6 3 36 3 3 7

G8 7 1 4 6 32 3 5 35 2 5

G9 12 3 7 24 15 3 5 8 14 9

G10 12 4 10 12 8 8 14 4 9 19
(a) MFCC representation

Figure 30: Confusion matrix using linear logis-
tic regression models on MFCC and
chroma-MFCC features.

From Table 22 we find that MFCC-
based chroma outperforms mean-based
chroma for all of the classification tech-
niques. Table 23 shows the classifica-
tion of mean-based MFCCs on all of the
GTZAN dataset genres. Although the
multilayer perceptron takes the longest
to build, it performed a little better
compared to all of the other classifica-
tion techniques. We can see that regu-
lar MFCCs only produce about 5% bet-
ter classification compared to MFCC-
based chroma. However, we hypothesise
that since chroma yields information
about chordal progression and MFCCs
describes linguistic content, then we
should expect much better results when
these two features are combined. The
concepts presented here not only show
that chroma is a viable feature for genre
classification but also show that chroma
using MFCC representation yields on av-
erage 10.68% better classification than
using mean-based chroma.

9.1.2 Discussion

Figure 30 shows the confusion matrices for the classification of GTZAN genres using
MFCC-based chroma. The row and column labels represent genre labels where: G1
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= Blues, G2 = Classical, G3 = Country, G4 = Disco, G5 = Hiphop, G6 = Jazz, G7 =
Metal, G8 = Pop, G9 = Reggae, and G10 = Rock. Figure 30 is the result of classifying
10 GTZAN genres with MFCC-based chroma using random forests.

In Figure 30, there are many correctly classified classical and jazz pieces, which
is consistent with our hypothesis. As expected classical music has been classified
very well since classical music uses voice leading progressions which generally have
a well defined soprano and bass voice. The four-part harmony is then completed
by adding the third and fourth inner voices, and is usually terminated with a ca-
dence. These cliché progressions are usually not adopted in more modern music
and so chroma can very keenly classify classical music in this dataset which gen-
erally consists of more modern genres. This is evident in Figure 28 and Figure 29,
where classical music is represented with green circles and classical pieces are fur-
ther away from the centre of the cloud. Modern genres, such as pop, rock and R&B,
use the same melodic phrasing and chordal structure. It important to note that al-
though Reggae music consists of different instrumentation and rhythm patterns this
is ignored by MFCC-based chroma, MFCC-chroma rather picks up the chordal and
melodic progression similarities from Reggae as those by Rock, Pop and R&B genres.

G1G2G3G4G5G6G7G8G9G10

G1 37 1 14 9 4 7 8 3 6 11

G2 0 89 3 1 0 3 0 1 2 1

G3 13 1 39 11 2 11 5 3 1 14

G4 5 1 6 57 4 0 7 5 4 11

G5 3 0 3 5 57 1 5 9 16 1

G6 8 8 11 2 2 56 2 1 3 7

G7 0 0 1 8 7 0 77 5 0 2

G8 6 1 3 4 10 1 0 69 2 4

G9 13 1 3 8 17 3 2 4 42 7

G10 10 3 16 9 2 6 12 4 9 29

Figure 31: Confusion matrix using linear lo-
gistic regression models on MFCC
and chroma-MFCC features for 10

GTZAN genres.

Example 9.2. As an example, Figure 29

shows a the classification of Jazz and
disco GTZAN genres. An very common
example of a Jazz progression is: Cmaj7
Am7| Dm7 G7| Em7 A7| Dm7 and G7.
Some examples of music which make
use of common progression is "Moose
the Mooche" (by Pat Metheny), "Cheek
to Cheek" (by George Van Eps), and
"Shaw Nuff" (by Barney Kessel).

Since major and minor distonic chords
contain many perfect fifths they are
very commonly used in most modern
genre composition. Diatonic melodies
are also used in classical composition
where harmony is an import aspect
for many phrases. On the other hand,
when using non-diatonic scales in In-
dian music composition, often there are
no chordal changes present for MFCC-
based chroma to detect. This lack of

chordal changes using nondistonic scales have been observed in hard rock, hip hop
[Pressing 2002], funk, disco, jazz, etc.

9.2 mfcc-based chroma vs . mean-based chroma

For both MFCC-based and mean-based chroma features, we used a standard mean-
based 20 MFC coefficients, based on a 20-bin Mel-spectrum extending to 16 kHz.
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Feature Classifier Accuracy Time to build model

Test 1

Multilayer Perception 54.6% 13.51

Naïve Bayes 47.5% 0.001

Support Vector Machine 48.8% 1.03

Linear Logistic Regression Models 55.2% 3.59

Random Forest 48.7% 0.13

Table 24: Classification scores for both mean-based MFCC and MFCC-based chroma on 10

GTZAN genres.

Feature Classifier Accuracy Time to build model

Test 2

Multilayer Perception 50.5% 5.33

Naïve Bayes 34.9% 0.03

Support Vector Machine 48.00% 0.98

Linear Logistic Regression Models 51.6% 2.34

Random Forest 49.9% 0.18

Table 25: Classification scores for both mean-based MFCC and mean-based chroma on 10

GTZAN genres.

The results modelling MFCC and mean -based chroma using our standard array
of classification techniques we achieve the results presented by Table 24 and Table 25

respectively. From the results we see that all of the classification algorithms except ran-
dom forests obtain slightly better classification scores for MFCC-based chroma. Com-
bining MFCCs with MFCC-based chromes caused a statistically significant improve-
ment and overall we obtain 3.98% better classification score by using MFCC-based
compared to mean-based chroma. Although the multilayer perceptron produces a
sufficient result in Table 24, it also takes a very long time to build. Linear logistic
regression models produce a small but sufficient improvement with a quicker build
time obtaining 55.2% classification of GTZAN genres. Figure 31 shows the confusion
matrix of the linear logistic regression models’ classification on MFCC-based chroma.
It is clear that MFCC-based chroma and MFCC s quite effective when classifying
Metal, Classical, Jazz, and Pop. It is also expected that these genres do not all share
similar chordal progressions and lingual content.

9.3 conclusion

The results confirm that MFCC-chroma provides 3.6% increase in precision with
an overall 55.2% classification accuracy using only MFCC-based chroma than using
mean-based chroma with MFCCs. Therefore, using MFCC-based chroma for genre
classification not only increases precision but also serves as viable tool to effectively
identify choral progressions. In order exploit the effectiveness of this feature, addi-
tional work is needed to transform chroma into a more effective tool to assess rotation
and transpositions of chordal progressions that frequently appear in music.





Part III

M U S I C G E N R E C L A S S I F I C AT I O N

In this dissertation an exhaustive study for music genre classification is
performed on 10 GTZAN genres. In this part the design matrix derived
in the last four chapters is thinned to remove redundancy and dimension-
ality. In Chapter 10, only features that have a significant contribution to
classify class labels are used to perform genre classification. Finally, in
Chapter 11, the results of this dissertation are discussed and future work
is presented.





10
A U T O M AT I C M U S I C G E N R E C L A S S I F I C AT I O N

Music genre classification is the process where a piece of music is recognised, understood,
and differentiated by a conventional category as belonging to a shared tradition or set of

conventions [Cohen and Lefebvre 2005; Sadie 1980]. In this chapter, we use the information
gain ranking algorithm for feature selection, to express graphically the contributions of each
feature proposed in Chapter 4, and to reduce feature dimensionality. Using feature selection
heuristics we select a cutoff point discarding redundant features and present the final design
matrix with each feature’s representation and dimensionality. Thereafter, the contributions of
all previous chapters will be used to achieve a classification accuracy of 81% for 10 GTZAN
genres using 10-fold cross validation with linear logistic regression models. Alongside this

contribution we present the complete design matrix.

10.1 introduction

Separating a non-linearly separable m-dimensional input vector linearly requires
one to map the input vector to a higher dimension, as with higher dimension-
ality separability increases. However, in some cases, the dimensionality of the

input vector is considered to be excessively large. In these cases, if the input vector
is large and we want to map it non-linearly into a higher dimensional space then
the size of the classifier will increases tremendously. Therefore, if the dimensionality
of the input vector is unnecessarily large, we need to reduce its dimensionality for
a better fit by the classification model. We can do this by detecting and removing
redundancy present in the design matrix. One strategy is to start with many different
features that are possibly relevant, and then out of that (given training samples), try
and extract a good subset of features. This can be done by attempting to find the
smallest subset of features that has the best correlation with the class labels using
information gain ranking.

10.2 information gain ranking

Information gain ranking is a filter method that evaluates the worth of an attribute
by measuring the information gain with respect to the class [Rai and Kumar 2014].
This is done by using the following formula:

InfoGain(Class,Attribute) = H(Class) −H(Class|Attribute). (34)

Features which are labeled as insignificant or redundant in the design matrix can
be considered as noise and only the remaining features will be used for classifica-
tion. The information gain ranking algorithm organises features in terms of their
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contribution so we can easily eliminate feature by simply selecting a cut-off point. To
demonstrate this let ~x be an m-dimensional design matrix describing an element of
an input vector where:

~x = (x1, x2, x3, ..., xm0
, xm0+1

, ..., xm). (35)

Assuming the elements in ~x are ordered according to their information gain, if we
wanted to reduce the dimensionality of ~x then we would simply use all of the features
to the left of xm0

(i.e. ~x = {x1, x2, x3, ..., xm0
}) and discard all the features to the right

of xm0
. We assume that the sum of variances, or mean square error, of the elements

eliminated to the right of xm0
are insignificant or small. Figure 32 shows the results

of using information gain ranking on the features in Table 4. The horizontal axis in
Figure 32 corresponds to the feature numbers in Table 28, whereas the vertical axis
corresponds to the contribution of that feature. Table 28 show the contributions of
each feature in descending order. In order to eliminate features we need only choose
a cutoff point in the scree plot given by Figure 32.
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Figure 32: Information gain ranking of features based on contribution.

Choosing the first 539 features we present the following pruned design matrix in
the first column of Table 26. The second column of Table 26 shows the eliminated fea-
tures from the complete design matrix. The cut-off point was chosen by considering
Figure 33, which shows the results of taking different numbers of features with the
highest contributions and using them to classify 10 GTZAN genres. Although, we
could have chosen up to 100 features and achieved between 70-75% classification ac-
curacy, doing this would bias the learning model to this particular dataset since more
diverse-genre databases might need these descriptors to achieve favourable classifica-
tion.
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Table 26: Information gain ranking: features contributions.

Features Maintained (459) Eliminated Feature (223)

Spectral flux (MFCC) (4) Peak flux (20-bin FH) (20)

Spectral variability (MFCC) (4) Peak smoothness (mean) (1)

Compactness (mean + SD) (2) Shape statistic centroid, skewness and
kurtosis (mean) (3)

MFCCs (MFCC) (52) Strongest frequency of centroid (MFCC)
(4)

Peak centroid (mean + SD) (2) Spectral rolloff (mean) (1)

Peak smoothness (SD) (1) Strongest frequency of FFT (MFCC) (4)

Complex domain onset detection (mean)
(1)

Envelope centroid, skewness and kurto-
sis (mean) (4)

Loudness (+ sharpness and spread)
(mean) (26)

Beat histogram (mean) (171)

OBSI (+ radio) (mean) (17) Strongest beat (mean + SD) (2)

Spectral decrease (mean) (1) Strength of strongest beat (SD) (1)

Spectral flattness (mean) (20) Fraction of low energy (SD) (1)

Spectral slope (mean) (1) Beat sum (MFCC) (4)

Shape statistic spread (mean) (1) Relative difference function (MFCC) (4)

Spectral centroid (MFCC) (4) Temporal statistic centroid, skewness
and kurtosis (mean) (3)

Spectral rolloff (SD) (1)

Spectral crest (mean) (19)

Spectral variation (mean) (1)

Autocorrelation coefficients (mean) (49)

Amplitude modulation (mean) (8)

Zero crossing + SF (MFCC) (8)

Envelope statistic spread (1)

LPC and LSF (mean) (12)

RMS (mean + SD) (2)

Fraction of low energy (mean) (1)

Beat histogram (SD) (171)

Strength of strongest beat (mean) (1)

Temporal statistic spread (mean) (1)

Chroma (MFCC) (48)

10.3 automatic genre classification
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Figure 33: Relationship between the number of features and classification accuracy using IGR
to guide feature trade-off.

G1G2G3G4G5G6G7G8G9G10

G1 84 0 3 3 0 5 1 0 2 2

G2 0 96 1 0 0 2 0 0 0 1

G3 3 0 77 2 0 4 0 1 3 10

G4 1 1 5 76 2 0 0 4 5 6

G5 1 0 0 1 85 0 4 3 6 0

G6 3 4 5 1 0 82 1 2 1 1

G7 2 0 0 1 1 0 90 0 0 6

G8 0 0 4 4 1 0 0 84 1 6

G9 2 0 3 6 6 1 1 4 70 7

G10 5 0 7 9 2 0 5 5 1 66

Figure 34: 81% accuracy achieved with lin-
ear logistic regression models to
classify 10-GTZAN genres using 10-
fold cross validation.

In this section we effectively use all of
the contributions from previous chap-
ters to perform genre classification on 10

GTZAN genres. Table 30, in Appendix B
of this dissertation, details the design
matrix from Table 26 after information
gain was performed. The second col-
umn in Table 30 provides the feature
name; the third column provides the fea-
ture representation; the fourth column
provides the feature dimension; and fi-
nally the fifth column details the param-
eters used when extracting the feature
from the GTZAN genres. These feature
parameters are provided to researchers
who wish to replicate the experiments.

Using the design matrix described in
Table 30 we achieve the results in Ta-
ble 27 which also shows the necessary
time to build and evaluate each model. It
is seen that although the multilayer per-
ception takes a significant time to build
and evaluate, it notably outperforms the
naïve Bayes and support vector machine algorithms. The K-nearest neighbours and
random forest algorithms take the least time to build and evaluate and produce suf-
ficient results. The linear logistic regression model provides the best classification
score. However, with the exception of the multilayer perceptron, the linear logistic
regression model takes the longest time to build.
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In real applications the time taken to build and evaluate the learning model needs
to be considered carefully as a model will need to be retrained periodically should
genre definitions continue to evolve. It is better to choose a classifier that separates
genre spaces more effectively in the long run, than one that just provides excellent
classification for a short time, however, this will entirely depend on the application.
Table 29 provides the top 4 features that classify a particular genre well. These fea-
tures have been selected based on their individual ability to classify each GTZAN
genre with respect to the other 9 genres in Part ii.

Figure 34 shows the confusion matrix for 10 GTZAN genres using linear logistic
regression models with 10-fold cross validation. The row and column labels represent
genre labels where: G1 = Blues, G2 = Classical, G3 = Country, G4 = Disco, G5 =
Hiphop, G6 = Jazz, G7 = Metal, G8 = Pop, G9 = Reggae, and G10 = Rock. Again the
fuzziness between rock and country music (and rock and disco) are observed.

Table 27: Automatic music genre classification of the thinned features vector.

Classifier Accuracy
Time to

build
model

Time to
evaluate

Model

Naïve Bayes 46.40% 0.11 sec 2.13 sec

Support vector machines 32.50% 6.04 sec 38.12 sec

Multilayer perceptron 63.70% 635.37 sec
6 hours

20.12 sec

Linear logistic regression
models

81.00% 20.25 sec
10 mins 31

secs

K-nearest neighbours 72.80% 0.02 sec 13.12 sec

Random forests 66.60% 0.22 sec 3.76 sec

10.4 conclusion

Although recent classification precisions suggest that the performance of learning
models for genre classification have become bounded, there is no confirmation to
date that suggest these bounds cannot be exceeded. Nonetheless, small changes to
existing models are unlikely to produce significantly better classification scores and
so more attention to how feature extraction and classification are performed, or per-
haps completely new approaches, are crucial to greatly excel through these bounds.

Using feature selection techniques that remove features based on variance, such as
principal component analysis and information gain ranking, can disadvantage the ap-
plication of the learning model conceptually. For example, the fraction of low energy
feature, which had been removed in Section 10.2, could be very useful had the dataset
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considered electronic dance and impressionistic music genres. Although, these fea-
ture selection algorithms can optimise classification precision for a specific dataset,
one should consider that these features being eliminated were meant to describe spe-
cific aspects of music that might be explored better in other data. Therefore, imposing
feature selection algorithms that maintain feature definitions instead of eliminating
them should rather be considered1. Alternatively, running feature selection anew for
each new dataset should be a preliminary requirement.

Given the variety of genre in current online music databases (MusicBrainz, Ama-
zon, and BeeMp3) it is unlikely that they can be accurately represented by small
datasets with 1000 songs and 10-genre labels2. Erroneous genre labels are often
caused by inexperienced respondents; not being exposed to enough of the record-
ing [Gjerdingen and Perrott 2008; Perrot and Gjerdigen 1999; Lippens et al. 2004]; and
attempting to test the functionality of a learning model in a specific way rather than
a more general way. The reliability of a learning model is purely measured by the
quality of its ground truth and so extensive measures must be taken to ensure that
the ground truth is well founded and motivated.

1 Such methods include genetic algorithm-based and forward-backward feature selection algorithms.
2 Such as GTZAN which contains 100 songs per genre.



11
C O N C L U S I O N A N D F U T U R E W O R K

Efforts in automatic music genre classification have only been producing minor improved
success rates in recent literature. Being an arduous research direction, many authors believe
that efforts should rather focus on devising a new method to enhance music organisation and

browsing. In spite of these views, automatic music genre classification holds great
significance both towards industry as well as to individual consumers. In this chapter we

review the importance of genre classification and provide useful ideas for the enhancement of
the research direction. Optimistically, this would inspire researchers to appreciate the

potential of this problem and further encourage research in automatic music genre
classification.

In this dissertation we analysed content-based features for music genre classifica-
tion. As expressed in Section 1.2, since genre classification is usually performed
by humans who observe cultural features (observations of arts and other manifes-

tations of genre cognitively regarded collectively) more than content related features,
we should not expect to achieve ground breaking results by classifying genre purely
on content-based features. This is evident as the best genre classification algorithms
using content-based features only achieve between 75-83% on 10 GTZAN genres. Gen-
eral ideas associated with fundamental musicology and genre, rather than concise
regulations concerning genre, are essential concepts when composing or performing
music. It can be further seen that the interest that many composers and performers
have to convey culture far surpass their need to abide standard genre ’definitions’
in music content itself. Thus, incorporating cultural features with structural ones in
the feature domain could notably increase current classification rates [McKay and
Fujinaga 2004; McKay 2004]. Although obtaining these cultural features can be in-
convenient, Whitman and Smaragdis [2002] investigated the rewards of using web
content mining for cultural features together with content-based features for music
genre classification.

Large scale musical structures are present in most music genre types. Sometimes
these structures are suppressed into the music by the composer, for example cyclic
form and baroque dances, and other times the songwriter is unknowingly condi-
tioned to a particular large scale structure, for example rondo (ABCBA) or even bi-
nary form (AABB). Understanding the form of a piece of music can immediately
designate a small set of potential genre categories to which the piece could belong to.
Most researchers who perform feature extraction for genre classification only calcu-
late features based on local window intensities and disregard how a piece of music
structurally changes over time. These overall structure-based feature descriptions can
be preserved in learning models by using classifiers that exhibit memory1. Preserv-

1 Much like how hidden Markov models or recurrent neural networks work.
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ing memory in learning models have been mostly ignored and could hold the key to
better understanding chordal progressions and complex melodic structures.

Since feature extraction, selection, representation, and classification are all techni-
cally demanding tasks, researchers spend more time on these components and do not
spend the time needed to compile quality datasets with masterful labelling. Ignoring
this component compromise the performance of the entire learning model. Further-
more, many authors conveniently construct corpus datasets with genre labels that
could be biased towards their study or completely inaccurate [Basili et al. 2004; Cili-
brasi et al. 2004]. However, publicly available music genre datasets, such as GTZAN
and Magnatune [MAG], themselves have a lot to be desired. Researchers should not
just use publicly available music databases without significant attempts to rectify am-
biguous labelling in the dataset. Furthermore, since the significance of the dataset
is to provide a representative example of an actual popular music database, these
datasets should contain recent and more popular music that the public are aware of.

Instead of trying to contain the entirety of genre diversity from these enormous
databases into these relatively small datasets, one can rather construct datasets based
on different characteristics that a genre learning model should exhibit and detect. For
example, being able to detect instrumentation within classical music can be tested
using a separate dataset altogether, whereas another dataset might test for structural
form. It can be seen that the more datasets that are used to detect different charac-
teristics in the learning model, the more dependable the learning model becomes.
Someways to ensure the reliability of datasets include exposing these datasets to mu-
sic genre experts; using surveys to assess genre labels; and web content mining to
extract meta-data of recordings from the Internet. These three methods can be com-
pared and a final decision will be made on the music genre label.

The musicality of a listener is not only required when constructing ground truth,
but can also be used to satisfy a particular customer’s genre preference. Further em-
pirical research in human responses to genre classification can reveal if certain con-
sumers with different musicality will appreciate music differently. Empirical research
should compare and contrast different classification scores for different kinds of cus-
tomers in terms of age, culture, and musicality. This type of psychological research
will enhance our understanding of the possibilities to increase the dependability of
ground truth and will also allow us to personalise multiple learning models to cater
for groups of individuals’ needs rather than forcing a one fits all approach.

Another key aspect to consider when labelling recordings is the list of genre labels
used. Again, using music genre experts; surveys; and web content mining to obtain
genre candidates for a set of recording could produce promising results as using 10

broad genres to classify a large set of recordings is impractical. Time should be taken
to organise promising candidates corresponding to a recording that can be easily
presented for empirical research. These candidates will include both broad genres as
well as possible sub-genres. Furthermore, genre labels need to be thoroughly under-
stood by the respondent, as once the ambiguity between genre definition have been
somewhat cleared the respondent can participate to the best of their ability.

An additional problem with current genre labelling is placing albums and artists
into genre catalogues. This causes every recording belonging to that said artist or
album to inherit their genre label, which should not be the case. Taylor Swift, for
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example, had been publicly labelled as a country singer, however, after publishing
her 1989 album, in 2014, she made a ’genre jump’ and declared that she will now be
writing more pop music than county. Other examples of artists who have made ’genre
jumps’ include Kate Nash (who moved from pop to punk music); Snoop Dogg (who
moved from rap to reggae and back to rap again); Bob Dylan (who moved from world
to rock); and Nellie Furtado (who moved from Pop to Hiphop). Therefore, recordings
which inherit genre labels from artists or albums are unrealistic and efforts need to
be made to ensure that all recording are labelled independently.

A promising approach to music genre classification is performing multi-label au-
tomatic classification, which offers a solution to the fuzziness between genre defini-
tions. Consequently, additional efforts need to be made to assign multiple labels to
the ground truth. This could increase the burden on the respondent rendering fewer
labelled tracks and genre subjectivity. Conversely, this could in fact accommodate
respondents better as it would allow them to tag multiple genre labels on a single
recording, should the piece of music resemble features from many different genres
types, rather than being forced to chose just one. It would be even more useful to
allow the respondent to tag an assignment percentage to each recording - should it
belong to multiple genre labels. For example, ’Dear Mr. President’ by P!nk could be
50% soft rock, 25% acoustic, and 25% country rock. The intended purpose of these
percentages tell us which genre is more noticeable in the music. For example, these
assignment percentages, tagged on the song by P!nk above, gives us a good idea that
the piece exhibits more soft rock properties than the other genre tags. This type of
classification will enhance the calibre of ground truth, which is a major contribution
in and of itself2.

Understanding the strength of connections between genre tags could aid the con-
struction of a weighted graph that maps genre to genre relationships. This type of
ontological composition can not only help us understand how genres influence each
other, but would also allow us to model structured classification strategies [McKay
2004]. This type of framework can account for differences in respondents’ opinions
when classifying music by genre, this is evident as studies by McKay [2004] show
that organising structured classification strategies for genre, based on similarity rank-
ings, can contribute considerably to better human classification rates. This model of
genre relationships will help enhance music recommendation systems as customers
will be able to search through large music databases based on the strength that their
preferred genre has with respect to other genre types. For example, if a customer
prefers progressive and disco music genres than the customer should also appreciate
electronic dance genre types. Implementing this type of relationship will also allow
customers who know more about specific genre labels to find other genres that might
peek their interests by browsing through genre with high correlation corresponding
to their preferred genre. For example, a customer who might be mildly interested
in classical music might want to only explore classical pieces at a very high level,
whereas a customer with a thorough background might rather prefer to browse a
database for Baroque music that only have a certain type of counter-point or articula-
tion.

2 This allows for more realistic implications.
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Another noteworthy comment about automatic music genre classification concerns
the type of mis-classifications that a learning model can achieve. For example, clas-
sifying some disco music as pop is less serious than classifying it as classical. As
mentioned before, the definitions of genre are fuzzy, and to further complicate mat-
ters, the ground truth for genre classification models are not always of great quality.
The genre interrelationship model, described above, can be used to account for these
mis-classification and emphasise the closeness that some genres have between oth-
ers. Furthermore, this genre relationship model can be integrated into the learning
model to help guide classification decisions in some way both in the training as well
as the final classification - perhaps some aspects of reinforcement learning could be
useful. However, this type of model could be insensitive to music that displays differ-
ent genre features in completely separate sections of the recording - which could be
a good indicator for very high level genre labels.
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F U N D A M E N TA L M AT H E M AT I C A L C O N C E P T S

a.1 root mean square

Definition A.1. Root Mean Square
The root mean square measures the magnitude of a varying quantity, which makes
it very suitable for discrete-time signals. Let {y1,y2,y3,y4, ...,yn} be a set of arbitrary
values, then the root mean square is calculated as:

yrms =

√
1

n
(y21 + y

2
2 + y

2
3 + ... + y2n). (36)

Extending this definition for a DTS, x(n), defined over the interval T1 6 T2, leads to:

xrms =

√
1

T2 − T1

∫T2
T1

[x(n)]2dt. (37)

Cartwright [2007] demonstrates how to calculate the RMS of a DTS without explicitly
solving the integral.

a.2 arithmetic mean

Definition A.2. Arithmetic Mean
The arithmetic mean is defined as the sum of a set of numbers divided by the set

size [Jacobs 1994]. Let S = {x1, x2, x3, ..., xn} containing n terms. Then the arithmetic
mean of S is given as:

x̄ =
1

n

n∑
i=1

xi. (38)

The arithmetic mean is commonly denoted as x̄A, where x̄A is the arithmetic mean
of the set {x1, x2, x3, ..., xn} containing n terms [Medhi 1992].

a.3 geometric mean

Definition A.3. Geometric Mean
The geometric mean is defined as the nth root of a product of n numbers. Let
S = {x1, x2, x3, x4, ..., xn} containing n terms. Then the geometric mean of S is given
by:

x̄G = (

n∏
i=1

xi)
1
n = n

√
x1x2x3...xn. (39)
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a.4 euclidean distance

Definition A.4. Euclidean Distance
The Euclidean distance is defined as the linear segment that connects two points. If
p = (x1, x2, ..., xn) and q = (y1,y2, ...,yn) are two points in n-dimensional space,
then the Euclidean distance from x to y (or symmetrically y to x) is defined as:

D(x,y) = D(y, x) (40)

=
√
(x1 − y1)2 + (x2 − y2)2 + ... + (xn − yn)2 (41)

=

√√√√ n∑
i=1

(xi − yi)2 (42)

Taking x as a positional vector in n-dimensions yields the following norm for x:

||x|| =
√
x21 + x

2
2 + ... + x2n. (43)

a.5 weighted mean

Definition A.5. Weighted Mean
Let S = {x1, x2, ..., xn} be a set where S 6= ∅with non-negative weightsW = {w1,w2, ...,wn}.
Then the weighted mean is defined as:

x̄W =

∑n
i=1wixi∑n
i=1wi

, (44)

where that the arithmetic mean is a special case, with wi = 1∀i.

a.6 convolution

Definition A.6. Convolution
The convolution of two functions, f and g, is defined as an integral transform by
Equation 30, choosing K = t− τ, convolution is defined as follows:

(f ∗ g)(t) (45)

=

∫∞
−∞ f(t− τ)g(τ)dτ (46)

=

∫∞
−∞ f(τ)g(t− τ)dτ (47)

The convolution is commonly written as f ∗ g.
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a.7 complex conjugate

Definition A.7. Complex Conjugate
Complex conjugates is a pair of complex numbers, both having the same real part, but
with imaginary parts of equal magnitude and opposite signs [Mathews and Walker
1970]. The conjugate of the complex number z: z = x + iy and z̄ = x − iy, where
x,y ∈ R, are equivalent.

a.8 hanning window

Definition A.8. Hanning Window
The Hanning function is a discrete window function typically used to choose a sub-
set series of samples to perform a discrete-time Fourier transform operation. The
Hanning window function is given by:

w(n) = 0.5(1− cos(
2πn

N− 1
)), (48)

or

w(n) = sin2(
πn

N− 1
). (49)





B
A D D I T I O N A L TA B L E S A N D F I G U R E S

Table 28: Information gain ranking: features contributions.

Contribution Number Feature

0.7395 1 Spectral flatness Coefficient 11

0.7283 2 MFCC: Chroma coefficient 36

0.7261 3 Compactness Average 0

0.696 4 MFCC: Chroma coefficient 12

0.6955 5 MFCC: Chroma coefficient 8

0.6921 6 MFCC: Chroma coefficient 0

0.6918 7 MFCC: Chroma coefficient 4

0.688 8 MFCC: Chroma coefficient 40

0.6875 9 MFCC: Chroma coefficient 28

0.6865 10 MFCC: Chroma coefficient 16

0.6849 11 Spectral flatness Coefficient 10

0.681 12 MFCC: Chroma coefficient 20

0.6781 13 MFCC: Chroma coefficient 24

0.6746 14 MFCC: Chroma coefficient 32

0.6663 15 MFCC: Chroma coefficient 44

0.6625 16 Spectral flatness Coefficient 9

0.6606 17 AutoCorrelation ACNbCoeff 24

0.6572 18 Spectral flatness Coefficient 13

0.6567 19 MFCC: MFCC8

0.6449 20 AutoCorrelation ACNbCoeff 28

0.6447 21 AutoCorrelation ACNbCoeff 30

0.6446 22 AutoCorrelation ACNbCoeff 29

0.6439 23 AutoCorrelation ACNbCoeff 26

0.6423 24 SpectralCrestFactorPerBand Coeff 9

0.6421 25 AutoCorrelation ACNbCoeff 25

0.6417 26 LPC Coeff 1

0.6374 27 Spectral flatness Coefficient 8

0.635 28 Spectral flatness Coefficient 12

0.6315 29 AutoCorrelation ACNbCoeff 21

0.6262 30 SpectralCrestFactorPerBand Coeff 11

Continued on next page
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Table 28 – Continued from previous page

Contribution Number Feature

0.6255 31 SpectralCrestFactorPerBand Coeff 10

0.6235 32 Spectral flatness Coefficient 14

0.6218 33 MFCC: Spectral Flux0

0.6215 34 AutoCorrelation ACNbCoeff 20

0.6176 35 Complex Domain Onset Detection

0.6142 36 SpectralCrestFactorPerBand Coeff 14

0.614 37 SpectralCrestFactorPerBand Coeff 13

0.6084 38 Amplitude Modulation: 4

0.6076 39 AutoCorrelation ACNbCoeff 31

0.607 40 SpectralCrestFactorPerBand Coeff 12

0.6035 41 AutoCorrelation ACNbCoeff 16

0.601 42 LPC Coeff 2

0.5996 43 AutoCorrelation ACNbCoeff 23

0.5987 44 MFCC: MFCC16

0.5946 45 AutoCorrelation ACNbCoeff 27

0.5912 46 SpectralFlatness

0.5868 47 MFCC: Spectral Variability0

0.5821 48 Amplitude Modulation: 2

0.5809 49 Spectral flatness Coefficient 7

0.5804 50 AutoCorrelation ACNbCoeff 18

0.5787 51 AutoCorrelation ACNbCoeff 22

0.5784 52 AutoCorrelation ACNbCoeff 32

0.5762 53 Spectral Shape Statistics: spread

0.5741 54 Amplitude Modulation: 7

0.5737 55 AutoCorrelation ACNbCoeff 13

0.572 56 OBSI Coeff 9

0.5664 57 Loudness Coeff 24

0.5611 58 AutoCorrelation ACNbCoeff 8

0.5597 59 AutoCorrelation ACNbCoeff 19

0.5584 60 AutoCorrelation ACNbCoeff 9

0.557 61 AutoCorrelation ACNbCoeff 10

0.5514 62 AutoCorrelation ACNbCoeff 11

0.5512 63 Root Mean Square Standard Deviation0

0.5489 64 MFCC: MFCC12

0.5453 65 SpectralCrestFactorPerBand Coeff 8

0.5445 66 Amplitude Modulation: 3

0.5432 67 AutoCorrelation ACNbCoeff 33

Continued on next page
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Table 28 – Continued from previous page

Contribution Number Feature

0.5361 68 AutoCorrelation ACNbCoeff 14

0.535 69 MFCC: Strongest Frequency Via Zero Crossings0

0.5348 70 SpectralCrestFactorPerBand Coeff 7

0.5308 71 LSF 4

0.5301 72 AutoCorrelation ACNbCoeff 34

0.5279 73 AutoCorrelation ACNbCoeff 12

0.5269 74 AutoCorrelation ACNbCoeff 6

0.5232 75 AutoCorrelation ACNbCoeff 7

0.5232 76 AutoCorrelation ACNbCoeff 17

0.5202 77 AutoCorrelation ACNbCoeff 15

0.5193 78 Spectral flatness Coefficient 6

0.5132 79 AutoCorrelation ACNbCoeff 35

0.5042 80 SpectralCrestFactorPerBand Coeff 15

0.5026 81 Amplitude Modulation: 8

0.5001 82 AutoCorrelation ACNbCoeff 36

0.4986 83 Amplitude Modulation: 6

0.4984 84 Loudness Coeff 23

0.4973 85 AutoCorrelation ACNbCoeff 5

0.4961 86 LSF 10

0.4947 87 AutoCorrelation ACNbCoeff 4

0.4942 88 SpectralVariation

0.4929 89 AutoCorrelation ACNbCoeff 3

0.4922 90 AutoCorrelation ACNbCoeff 1

0.4916 91 Spectral Shape Statistics: centroid

0.4893 92 MFCC: Zero Crossings0

0.4869 93 LSF 9

0.4829 94 Spectral flatness Coefficient 15

0.4814 95 PerceptualSharpness

0.4805 96 Spectral flatness Coefficient 5

0.4801 97 MFCC: MFCC45

0.48 98 SpectralCrestFactorPerBand Coeff 6

0.4798 99 MFCC: MFCC4

0.4787 100 MFCC: MFCC41

0.4737 101 MFCC: MFCC1

0.4729 102 MFCC: MFCC0

0.472 103 AutoCorrelation ACNbCoeff 2

0.4712 104 AutoCorrelation ACNbCoeff 42

Continued on next page
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Table 28 – Continued from previous page

Contribution Number Feature

0.4709 105 TemporalShapeStatistics spread

0.4699 106 Spectral flatness Coefficient 4

0.4694 107 AutoCorrelation ACNbCoeff 43

0.4681 108 Beat Histogram Average 148

0.4672 109 Beat Histogram Average 149

0.4664 110 Beat Histogram Average 147

0.4635 111 MFCC: MFCC37

0.4631 112 Beat Histogram Average 133

0.4622 113 Spectral Shape Statistics: skewness

0.4618 114 Beat Histogram Average 111

0.4608 115 Beat Histogram Average 164

0.4607 116 Beat Histogram Average 163

0.4598 117 Root Mean Square Average 0

0.4598 118 Beat Histogram Average 120

0.4594 119 MFCC: Spectral Centroid0

0.459 120 Beat Histogram Average 32

0.459 121 Beat Histogram Average 101

0.4586 122 Beat Histogram Average 116

0.4585 123 Beat Histogram Average 165

0.4584 124 Beat Histogram Average 67

0.4583 125 Beat Histogram Average 62

0.4574 126 LSF 3

0.4571 127 Beat Histogram Average 103

0.4564 128 Beat Histogram Average 167

0.4563 129 Beat Histogram Average 150

0.4562 130 Beat Histogram Average 102

0.4562 131 Beat Histogram Average 113

0.4561 132 Beat Histogram Average 140

0.4559 133 Beat Histogram Average 168

0.4557 134 Beat Histogram Average 146

0.4549 135 Beat Histogram Average 48

0.4544 136 Beat Histogram Average 31

0.4543 137 Beat Histogram Average 122

0.4541 138 Beat Histogram Average 114

0.454 139 Beat Histogram Average 99

0.454 140 Beat Histogram Average 119

0.4539 141 Beat Histogram Average 52

Continued on next page
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Table 28 – Continued from previous page

Contribution Number Feature

0.4538 142 Beat Histogram Average 100

0.4532 143 Beat Histogram Average 145

0.4532 144 Beat Histogram Average 158

0.4531 145 Beat Histogram Average 33

0.453 146 Beat Histogram Average 93

0.453 147 Beat Histogram Average 135

0.453 148 Beat Histogram Average 157

0.4529 149 MFCC: Strongest Frequency Via Spectral Centroid0

0.4529 150 Beat Histogram Average 97

0.4529 151 Beat Histogram Average 121

0.4527 152 Beat Histogram Average 49

0.4527 153 Beat Histogram Average 104

0.4527 154 Beat Histogram Average 156

0.4525 155 Beat Histogram Average 63

0.4524 156 Beat Histogram Average 61

0.4523 157 Beat Histogram Average 123

0.4522 158 Beat Histogram Average 64

0.4522 159 Beat Histogram Average 65

0.4521 160 Beat Histogram Average 26

0.4521 161 Beat Histogram Average 98

0.452 162 Loudness Coeff 22

0.4519 163 Beat Histogram Average 134

0.4516 164 Beat Histogram Average 46

0.4515 165 Beat Histogram Average 45

0.4515 166 Beat Histogram Average 144

0.4514 167 Beat Histogram Average 51

0.4513 168 Beat Histogram Average 42

0.4512 169 Beat Histogram Average 66

0.4511 170 Beat Histogram Average 115

0.4511 171 Beat Histogram Average 127

0.4509 172 Beat Histogram Average 53

0.4509 173 Beat Histogram Average 57

0.4508 174 Beat Histogram Average 112

0.4507 175 Beat Histogram Average 47

0.4504 176 Beat Histogram Average 136

0.4503 177 Beat Histogram Average 96

0.4501 178 Beat Histogram Average 128

Continued on next page
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Table 28 – Continued from previous page

Contribution Number Feature

0.4501 179 Beat Histogram Average 131

0.4501 180 Beat Histogram Average 132

0.45 181 Beat Histogram Average 129

0.45 182 Beat Histogram Average 139

0.4494 183 Beat Histogram Average 34

0.4494 184 Beat Histogram Average 110

0.4492 185 Beat Histogram Average 40

0.4492 186 Beat Histogram Average 50

0.4492 187 Beat Histogram Average 56

0.449 188 OBSI Coeff 8

0.4488 189 Beat Histogram Average 83

0.4488 190 Beat Histogram Average 152

0.4487 191 Beat Histogram Average 143

0.4485 192 Beat Histogram Average 92

0.4484 193 Beat Histogram Average 130

0.4484 194 Beat Histogram Average 159

0.4482 195 Beat Histogram Average 24

0.4482 196 Beat Histogram Average 41

0.4482 197 Beat Histogram Average 55

0.4481 198 Beat Histogram Average 74

0.448 199 Beat Histogram Average 91

0.448 200 Beat Histogram Average 117

0.4479 201 Loudness Coeff 20

0.4479 202 Beat Histogram Average 124

0.4478 203 Beat Histogram Average 44

0.4477 204 Beat Histogram Average 16

0.4476 205 Beat Histogram Average 154

0.4476 206 Beat Histogram Average 160

0.4474 207 Beat Histogram Average 43

0.4474 208 Beat Histogram Average 58

0.4474 209 Beat Histogram Average 71

0.4473 210 Beat Histogram Average 27

0.4469 211 Beat Histogram Average 20

0.4469 212 Beat Histogram Average 81

0.4468 213 Beat Histogram Average 15

0.4466 214 Beat Histogram Average 94

0.4465 215 Beat Histogram Average 37

Continued on next page



additional tables and figures 119

Table 28 – Continued from previous page

Contribution Number Feature

0.4465 216 Beat Histogram Average 90

0.4465 217 Beat Histogram Average 107

0.4464 218 Beat Histogram Average 30

0.4462 219 Beat Histogram Average 151

0.4459 220 Spectral Rolloff Point Standard Deviation0

0.4458 221 Beat Histogram Average 155

0.4457 222 Beat Histogram Average 13

0.4457 223 Beat Histogram Average 25

0.4457 224 Beat Histogram Average 82

0.4456 225 Beat Histogram Average 95

0.4455 226 Beat Histogram Average 35

0.4455 227 Beat Histogram Average 60

0.4455 228 Beat Histogram Average 138

0.4454 229 Beat Histogram Average 39

0.4452 230 Beat Histogram Average 7

0.4451 231 LSF 5

0.4451 232 Beat Histogram Average 84

0.4451 233 Beat Histogram Average 109

0.4451 234 Beat Histogram Average 141

0.445 235 Beat Histogram Average 36

0.4448 236 Beat Histogram Average 23

0.4448 237 Beat Histogram Average 153

0.4447 238 Beat Histogram Average 108

0.4446 239 Beat Histogram Average 22

0.4443 240 Beat Histogram Average 69

0.444 241 Beat Histogram Average 19

0.444 242 Beat Histogram Average 21

0.444 243 Beat Histogram Average 106

0.4438 244 Beat Histogram Average 54

0.4438 245 Beat Histogram Average 80

0.4437 246 Beat Histogram Average 4

0.4435 247 Beat Histogram Average 8

0.4435 248 Beat Histogram Average 142

0.4433 249 Beat Histogram Average 59

0.4431 250 Beat Histogram Average 17

0.4431 251 Beat Histogram Average 118

0.4431 252 Beat Histogram Average 137
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0.443 253 Beat Histogram Average 18

0.4425 254 Beat Histogram Average 38

0.4425 255 Beat Histogram Average 166

0.4424 256 Beat Histogram Average 0

0.4424 257 Beat Histogram Average 86

0.4423 258 Beat Histogram Average 28

0.4423 259 Beat Histogram Average 125

0.4422 260 Beat Histogram Average 70

0.442 261 Beat Histogram Average 6

0.4419 262 Beat Histogram Average 89

0.4419 263 Beat Histogram Average 105

0.4418 264 Beat Histogram Average 5

0.4417 265 Beat Histogram Average 73

0.4415 266 Beat Histogram Average 126

0.4413 267 Beat Histogram Average 14

0.4412 268 Beat Histogram Average 12

0.4409 269 Beat Histogram Average 1

0.4409 270 Beat Histogram Average 3

0.4407 271 Beat Histogram Average 169

0.4406 272 Beat Histogram Average 29

0.4406 273 Beat Histogram Average 76

0.4404 274 Beat Histogram Average 87

0.4402 275 Beat Histogram Average 162

0.4397 276 LSF 8

0.4397 277 Beat Histogram Average 2

0.4397 278 Beat Histogram Average 85

0.4396 279 Beat Histogram Average 72

0.4389 280 Beat Histogram Average 68

0.4384 281 Beat Histogram Average 9

0.4383 282 Partial Based Spectral Centroid Standard Deviation0

0.4383 283 Beat Histogram Average 10

0.4377 284 Beat Histogram Average 11

0.4376 285 Beat Histogram Average 75

0.4371 286 Beat Histogram Average 79

0.4366 287 Beat Histogram Average 170

0.4362 288 Beat Histogram Average 88

0.4354 289 OBSIR Step 7
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0.4346 290 Beat Histogram Average 161

0.4327 291 Beat Histogram Average 78

0.4325 292 MFCC: MFCC49

0.4323 293 Beat Histogram Average 77

0.4305 294 AutoCorrelation ACNbCoeff 47

0.4296 295 Spectral flatness Coefficient 3

0.4285 296 MFCC: Beat Sum0

0.4259 297 MFCC: Spectral Variability1

0.4242 298 AutoCorrelation ACNbCoeff 40

0.4237 299 AutoCorrelation ACNbCoeff 46

0.4228 300 OBSI Coeff 2

0.422 301 AutoCorrelation ACNbCoeff 44

0.4219 302 AutoCorrelation ACNbCoeff 41

0.4194 303 OBSI Coeff 3

0.4177 304 AutoCorrelation ACNbCoeff 45

0.4146 305 SpectralCrestFactorPerBand Coeff 5

0.405 306 AutoCorrelation ACNbCoeff 49

0.403 307 AutoCorrelation ACNbCoeff 48

0.4019 308 OBSI Coeff 1

0.4001 309 MFCC: MFCC33

0.3997 310 Loudness Coeff 6

0.3994 311 LSF 7

0.3982 312 LSF 6

0.391 313 TemporalShapeStatistics kurtosis

0.389 314 Spectral flatness Coefficient 2

0.3862 315 MFCC: MFCC20

0.3814 316 OBSI Coeff 4

0.374 317 MFCC: MFCC24

0.3715 318 LSF 2

0.3714 319 Loudness Coeff 21

0.369 320 AutoCorrelation ACNbCoeff 37

0.3654 321 Loudness Coeff 19

0.3647 322 AutoCorrelation ACNbCoeff 38

0.3628 323 OBSIR Step 8

0.3621 324 Spectral Shape Statistics: kurtosis

0.3606 325 AutoCorrelation ACNbCoeff 39

0.3569 326 MFCC: MFCC25
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0.3535 327 MFCC: MFCC29

0.3458 328 PerceptualSpread

0.3415 329 Loudness Coeff 5

0.3345 330 Beat Histogram Standard Deviation157

0.3341 331 OBSIR Step 6

0.3334 332 MFCC: MFCC2

0.3331 333 Loudness Coeff 18

0.3301 334 Peak Based Spectral Smoothness Standard Deviation0

0.3276 335 MFCC: Spectral Flux2

0.3241 336 Beat Histogram Standard Deviation139

0.3234 337 Beat Histogram Standard Deviation133

0.3198 338 Partial Based Spectral Centroid Average 0

0.3164 339 Spectral flatness Coefficient 19

0.3158 340 SpectralCrestFactorPerBand Coeff 2

0.314 341 SpectralCrestFactorPerBand Coeff 4

0.3133 342 Beat Histogram Standard Deviation154

0.312 343 Beat Histogram Standard Deviation132

0.3116 344 OBSI Coeff 7

0.3084 345 Beat Histogram Standard Deviation160

0.3078 346 MFCC: MFCC6

0.3075 347 SpectralDecrease

0.3007 348 Beat Histogram Standard Deviation134

0.3004 349 Beat Histogram Standard Deviation158

0.3002 350 Beat Histogram Standard Deviation123

0.2996 351 Beat Histogram Standard Deviation162

0.2993 352 Beat Histogram Standard Deviation143

0.2991 353 Beat Histogram Standard Deviation170

0.2986 354 Beat Histogram Standard Deviation126

0.2982 355 Beat Histogram Standard Deviation135

0.2979 356 MFCC: Zero Crossings2

0.2979 357 MFCC: Strongest Frequency Via Zero Crossings2

0.2979 358 Beat Histogram Standard Deviation121

0.2974 359 Beat Histogram Standard Deviation161

0.2973 360 Beat Histogram Standard Deviation156

0.2962 361 Loudness Coeff 4

0.296 362 Beat Histogram Standard Deviation122

0.296 363 Beat Histogram Standard Deviation169
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0.2955 364 Spectral flatness Coefficient 16

0.2955 365 Beat Histogram Standard Deviation165

0.2951 366 Beat Histogram Standard Deviation144

0.2947 367 MFCC: MFCC42

0.2947 368 Beat Histogram Standard Deviation131

0.2942 369 Beat Histogram Standard Deviation155

0.2933 370 Beat Histogram Standard Deviation166

0.293 371 Beat Histogram Standard Deviation138

0.2924 372 Beat Histogram Standard Deviation125

0.292 373 Beat Histogram Standard Deviation140

0.2915 374 Beat Histogram Standard Deviation163

0.2912 375 Beat Histogram Standard Deviation142

0.291 376 Beat Histogram Standard Deviation141

0.2909 377 Beat Histogram Standard Deviation124

0.2909 378 Beat Histogram Standard Deviation146

0.2901 379 Beat Histogram Standard Deviation149

0.2896 380 Beat Histogram Standard Deviation127

0.2894 381 Beat Histogram Standard Deviation145

0.2888 382 Spectral flatness Coefficient 1

0.2887 383 SpectralCrestFactorPerBand Coeff 19

0.2887 384 Beat Histogram Standard Deviation137

0.2885 385 Beat Histogram Standard Deviation153

0.2884 386 Beat Histogram Standard Deviation148

0.2882 387 Beat Histogram Standard Deviation119

0.2875 388 Beat Histogram Standard Deviation120

0.2865 389 Beat Histogram Standard Deviation147

0.2861 390 Beat Histogram Standard Deviation159

0.2859 391 Beat Histogram Standard Deviation150

0.2857 392 Beat Histogram Standard Deviation136

0.2843 393 MFCC: MFCC44

0.2839 394 Beat Histogram Standard Deviation111

0.2836 395 Beat Histogram Standard Deviation151

0.2833 396 Beat Histogram Standard Deviation71

0.2832 397 Beat Histogram Standard Deviation114

0.2825 398 Beat Histogram Standard Deviation112

0.2823 399 Beat Histogram Standard Deviation128

0.2818 400 Beat Histogram Standard Deviation115
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0.2818 401 Beat Histogram Standard Deviation130

0.2814 402 Beat Histogram Standard Deviation94

0.2802 403 OBSIR Step 3

0.2801 404 SpectralCrestFactorPerBand Coeff 3

0.2798 405 Beat Histogram Standard Deviation118

0.2796 406 Beat Histogram Standard Deviation168

0.2792 407 Spectral flatness Coefficient 17

0.2789 408 SpectralCrestFactorPerBand Coeff 16

0.2789 409 Beat Histogram Standard Deviation129

0.2787 410 Beat Histogram Standard Deviation109

0.2782 411 MFCC: MCC28

0.278 412 Beat Histogram Standard Deviation152

0.2779 413 Beat Histogram Standard Deviation167

0.2778 414 Beat Histogram Standard Deviation95

0.2774 415 SpectralCrestFactorPerBand Coeff 17

0.2771 416 Beat Histogram Standard Deviation164

0.2764 417 Beat Histogram Standard Deviation107

0.2764 418 Beat Histogram Standard Deviation110

0.2757 419 Beat Histogram Standard Deviation83

0.2755 420 Beat Histogram Standard Deviation85

0.2748 421 Beat Histogram Standard Deviation113

0.2747 422 Beat Histogram Standard Deviation93

0.2747 423 Beat Histogram Standard Deviation116

0.2746 424 OBSIR Step 1

0.2732 425 Beat Histogram Standard Deviation117

0.2723 426 Beat Histogram Standard Deviation82

0.2713 427 Beat Histogram Standard Deviation108

0.2708 428 Beat Histogram Standard Deviation86

0.2708 429 Beat Histogram Standard Deviation106

0.2707 430 Beat Histogram Standard Deviation102

0.2705 431 Beat Histogram Standard Deviation87

0.27 432 Beat Histogram Standard Deviation103

0.2692 433 Strength Of Strongest Beat Standard Deviation0

0.2679 434 Compactness Standard Deviation0

0.2673 435 MFCC: MFCC48

0.2668 436 Beat Histogram Standard Deviation104

0.2665 437 Beat Histogram Standard Deviation96
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0.2645 438 Beat Histogram Standard Deviation68

0.2637 439 Beat Histogram Standard Deviation73

0.2633 440 Beat Histogram Standard Deviation81

0.2633 441 Beat Histogram Standard Deviation98

0.2632 442 Loudness Coeff 9

0.2629 443 Beat Histogram Standard Deviation97

0.2625 444 Beat Histogram Standard Deviation67

0.2622 445 Beat Histogram Standard Deviation84

0.2615 446 OBSIR Step 4

0.2611 447 Beat Histogram Standard Deviation65

0.2609 448 Beat Histogram Standard Deviation92

0.2606 449 Beat Histogram Standard Deviation60

0.2604 450 Beat Histogram Standard Deviation66

0.26 451 Beat Histogram Standard Deviation105

0.2597 452 Beat Histogram Standard Deviation54

0.2589 453 Beat Histogram Standard Deviation90

0.2588 454 Beat Histogram Standard Deviation99

0.2584 455 Beat Histogram Standard Deviation75

0.2584 456 Beat Histogram Standard Deviation88

0.2581 457 Beat Histogram Standard Deviation77

0.258 458 Beat Histogram Standard Deviation51

0.258 459 Beat Histogram Standard Deviation91

0.2578 460 MFCC: MFCC32

0.2578 461 Beat Histogram Standard Deviation8

0.2575 462 Beat Histogram Standard Deviation63

0.2574 463 Beat Histogram Standard Deviation13

0.2573 464 Beat Histogram Standard Deviation74

0.2572 465 Beat Histogram Standard Deviation53

0.2565 466 MFCC: MFCC5

0.2565 467 Beat Histogram Standard Deviation72

0.256 468 SpectralCrestFactorPerBand Coeff 18

0.2554 469 Beat Histogram Standard Deviation58

0.2554 470 Beat Histogram Standard Deviation101

0.255 471 Beat Histogram Standard Deviation57

0.2548 472 Beat Histogram Standard Deviation0

0.2548 473 Beat Histogram Standard Deviation7

0.2548 474 Beat Histogram Standard Deviation52
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0.2543 475 Beat Histogram Standard Deviation100

0.2542 476 Beat Histogram Standard Deviation69

0.2538 477 MFCC: MFCC38

0.2538 478 Beat Histogram Standard Deviation64

0.2535 479 Beat Histogram Standard Deviation50

0.2533 480 Beat Histogram Standard Deviation49

0.2526 481 Beat Histogram Standard Deviation78

0.2525 482 Beat Histogram Standard Deviation41

0.2522 483 Beat Histogram Standard Deviation80

0.2517 484 Beat Histogram Standard Deviation59

0.2517 485 Beat Histogram Standard Deviation76

0.2516 486 Beat Histogram Standard Deviation22

0.2516 487 Beat Histogram Standard Deviation79

0.2514 488 Beat Histogram Standard Deviation55

0.2512 489 Beat Histogram Standard Deviation1

0.2509 490 Beat Histogram Standard Deviation5

0.2507 491 Beat Histogram Standard Deviation6

0.2507 492 Beat Histogram Standard Deviation56

0.2505 493 Beat Histogram Standard Deviation40

0.2501 494 Beat Histogram Standard Deviation9

0.25 495 Beat Histogram Standard Deviation23

0.2494 496 Beat Histogram Standard Deviation14

0.2487 497 Beat Histogram Standard Deviation25

0.2479 498 Beat Histogram Standard Deviation26

0.2478 499 MFCC: MFCC46

0.247 500 Loudness Coeff 17

0.2469 501 Beat Histogram Standard Deviation70

0.2467 502 Beat Histogram Standard Deviation61

0.2466 503 Beat Histogram Standard Deviation11

0.2461 504 Beat Histogram Standard Deviation17

0.2459 505 Beat Histogram Standard Deviation48

0.2445 506 Beat Histogram Standard Deviation16

0.2444 507 Beat Histogram Standard Deviation24

0.2443 508 Beat Histogram Standard Deviation4

0.244 509 Beat Histogram Standard Deviation18

0.2437 510 Beat Histogram Standard Deviation89

0.2435 511 Beat Histogram Standard Deviation43
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0.2422 512 Loudness Coeff 8

0.2422 513 Beat Histogram Standard Deviation10

0.2422 514 Beat Histogram Standard Deviation27

0.2422 515 Beat Histogram Standard Deviation42

0.2421 516 Beat Histogram Standard Deviation12

0.2417 517 MFCC: MFCC21

0.2416 518 OBSI Coeff 5

0.2415 519 Beat Histogram Standard Deviation3

0.2414 520 Beat Histogram Standard Deviation2

0.2412 521 Beat Histogram Standard Deviation39

0.2409 522 MFCC: MFCC10

0.2406 523 Beat Histogram Standard Deviation38

0.2405 524 Beat Histogram Standard Deviation15

0.2405 525 Beat Histogram Standard Deviation19

0.2393 526 Beat Histogram Standard Deviation21

0.2392 527 Beat Histogram Standard Deviation29

0.2392 528 Beat Histogram Standard Deviation62

0.2382 529 Beat Histogram Standard Deviation28

0.2382 530 Beat Histogram Standard Deviation30

0.2378 531 Loudness Coeff 16

0.2375 532 Beat Histogram Standard Deviation33

0.2374 533 Beat Histogram Standard Deviation44

0.2366 534 Beat Histogram Standard Deviation31

0.2366 535 Beat Histogram Standard Deviation34

0.2366 536 Beat Histogram Standard Deviation47

0.2355 537 Beat Histogram Standard Deviation36

0.2353 538 Envelope Shape Statistics: Spread

0.2347 539 Histogram: Partial Based Spectral Flux19

0.2336 540 Beat Histogram Standard Deviation32

0.2326 541 Beat Histogram Standard Deviation45

0.2322 542 Beat Histogram Standard Deviation37

0.2319 543 OBSI Coeff 6

0.2318 544 Beat Histogram Standard Deviation20

0.2305 545 Beat Histogram Standard Deviation35

0.23 546 Beat Histogram Standard Deviation46

0.2233 547 SpectralCrestFactorPerBand Coeff 1

0.2222 548 Peak Based Spectral Smoothness Average 0
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0.2211 549 Spectral Rolloff Point Average 0

0.2185 550 Loudness Coeff 1

0.2146 551 MFCC: MFCC50

0.2137 552 MFCC: MFCC34

0.2116 553 MFCC: Chroma coefficient 42

0.2083 554 MFCC: MFCC40

0.2039 555 MFCC: MFCC36

0.1956 556 MFCC: Relative Difference Function2

0.1855 557 Strongest Beat Average 0

0.1847 558 Loudness Coeff 10

0.1843 559 Loudness Coeff 3

0.1782 560 MFCC: Chroma coefficient 45

0.1772 561 MFCC: Chroma coefficient 38

0.1745 562 MFCC: Chroma coefficient 34

0.1736 563 MFCC: Chroma coefficient 26

0.1728 564 Amplitude Modulation: 1

0.1713 565 Loudness Coeff 15

0.1661 566 MFCC: Chroma coefficient 2

0.1651 567 MFCC: Chroma coefficient 18

0.1643 568 MFCC: MFCC13

0.1636 569 Loudness Coeff 2

0.1634 570 MFCC: Chroma coefficient 46

0.163 571 MFCC: MFCC17

0.163 572 MFCC: Chroma coefficient 10

0.1612 573 MFCC: MFCC14

0.1596 574 MFCC: Chroma coefficient 30

0.159 575 MFCC: Spectral Centroid2

0.159 576 MFCC: Strongest Frequency Via Spectral Centroid2

0.1589 577 MFCC: Chroma coefficient 33

0.1586 578 MFCC: Chroma coefficient 37

0.1571 579 MFCC: Chroma coefficient 25

0.157 580 MFCC: Chroma coefficient 17

0.156 581 Loudness Coeff 7

0.1554 582 Spectral flatness Coefficient 18

0.1552 583 MFCC: Chroma coefficient 14

0.1547 584 MFCC: Chroma coefficient 6

0.1527 585 MFCC: Chroma coefficient 22
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0.152 586 OBSIR Step 5

0.1499 587 MFCC: Spectral Flux1

0.143 588 MFCC: Spectral Centroid1

0.143 589 MFCC: Strongest Frequency Via Spectral Centroid1

0.1422 590 MFCC: MFCC18

0.1395 591 MFCC: MFCC9

0.1387 592 Strength Of Strongest Beat Average 0

0.1339 593 OBSIR Step 2

0.1319 594 LSF 1

0.1316 595 TemporalShapeStatistics skewness

0.1294 596 MFCC: Strongest Frequency Via FFT Maximum1

0.1293 597 Loudness Coeff 11

0.1267 598 MFCC: MFCC35

0.1225 599 MFCC: Relative Difference Function3

0.1221 600 MFCC: MFCC43

0.119 601 TemporalShapeStatistics centroid

0.1176 602 MFCC: MFCC51

0.1175 603 MFCC: Zero Crossings3

0.1175 604 MFCC: Strongest Frequency Via Zero Crossings3

0.1162 605 MFCC: MFCC26

0.1155 606 MFCC: Spectral Centroid3

0.1155 607 MFCC: Strongest Frequency Via Spectral Centroid3

0.1153 608 MFCC: MFCC22

0.1153 609 MFCC: MFCC30

0.1148 610 MFCC: MFCC7

0.1148 611 MFCC: Chroma coefficient 21

0.1132 612 MFCC: MFCC39

0.1118 613 MFCC: MFCC31

0.1115 614 MFCC: Strongest Frequency Via FFT Maximum0

0.1111 615 MFCC: Chroma coefficient 41

0.1072 616 MFCC: MFCC27

0.1069 617 MFCC: Chroma coefficient 29

0.1051 618 MFCC: MFCC47

0.1051 619 MFCC: Chroma coefficient 13

0.1039 620 MFCC: Chroma coefficient 1

0.1038 621 MFCC: Chroma coefficient 5

0.1035 622 Fraction Of Low Energy Windows Standard Devia-
tion0
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0.103 623 MFCC: Chroma coefficient 9

0.0966 624 MFCC: Spectral Variability2

0.0959 625 MFCC: Beat Sum1

0.0942 626 Loudness Coeff 12

0.0909 627 Loudness Coeff 13

0.0893 628 MFCC: Zero Crossings1

0.0893 629 MFCC: Strongest Frequency Via Zero Crossings1

0.0887 630 MFCC: MFCC3

0.0836 631 MFCC: MFCC11

0.0833 632 MFCC: Relative Difference Function1

0.0784 633 Fraction Of Low Energy Windows Average 0

0.0768 634 MFCC: MFCC15

0.0728 635 MFCC: MFCC19

0.0712 636 MFCC: Spectral Variability3

0.0699 637 MFCC: MFCC23

0.0695 638 MFCC: Strongest Frequency Via FFT Maximum3

0.0677 639 Histogram: Partial Based Spectral Flux13

0.0658 640 MFCC: Strongest Frequency Via FFT Maximum2

0.0642 641 Histogram: Partial Based Spectral Flux15

0.0637 642 Histogram: Partial Based Spectral Flux12

0.0637 643 Loudness Coeff 14

0.0623 644 Histogram: Partial Based Spectral Flux14

0.0618 645 Strongest Beat Standard Deviation0

0.0611 646 MFCC: Chroma coefficient 15

0.0559 647 Histogram: Partial Based Spectral Flux17

0.0291 648 MFCC: Relative Difference Function0

0 649 MFCC: Spectral Flux3

0 650 Histogram: Partial Based Spectral Flux0

0 651 Histogram: Partial Based Spectral Flux1

0 652 Histogram: Partial Based Spectral Flux2

0 653 Histogram: Partial Based Spectral Flux3

0 654 Histogram: Partial Based Spectral Flux4

0 655 Histogram: Partial Based Spectral Flux5

0 656 Histogram: Partial Based Spectral Flux6

0 657 Histogram: Partial Based Spectral Flux7

0 658 Histogram: Partial Based Spectral Flux8

0 659 Histogram: Partial Based Spectral Flux9
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0 660 Histogram: Partial Based Spectral Flux10

0 661 Histogram: Partial Based Spectral Flux11

0 662 Histogram: Partial Based Spectral Flux16

0 663 Histogram: Partial Based Spectral Flux18

0 664 Amplitude Modulation: 5

0 665 Envelope Shape Statistics: Centroid

0 666 Envelope Shape Statistics: Skewness

0 667 Envelope Shape Statistics: Kurtosis

0 668 MFCC: Beat Sum2

0 669 MFCC: Beat Sum3

0 670 MFCC: Chroma coefficient 3

0 671 MFCC: Chroma coefficient 7

0 672 MFCC: Chroma coefficient 11

0 673 MFCC: Chroma coefficient 19

0 674 MFCC: Chroma coefficient 23

0 675 MFCC: Chroma coefficient 27

0 676 MFCC: Chroma coefficient 31

0 677 MFCC: Chroma coefficient 35

0 678 MFCC: Chroma coefficient 39

0 679 MFCC: Chroma coefficient 43

0 680 MFCC: Chroma coefficient 47

Table 30: Feature list with each feature’s representation; number of dimensions; and parame-
ters.

No. Feature Name Rep. Dim. Parameters

1 Spectral Flux MFCCs 4 Window size = 512 (no over-
lap); 16 kHz size rate.

2 Spectral Variability MFCC 4 Window size = 512 (no over-
lap); 16 kHz size rate.

3 Compactness Mean + SD 2 Window size = 512 (no over-
lap); 16 kHz size rate.

4 MFCCs MFCC 52 Window size = 512 (no over-
lap); 16 kHz sample rate; 13

coefficients.

5 Peak Centroid Mean + SD 2 Window size = 512 (no over-
lap); 16 kHz size rate;
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6 Peak Smoothness SD 1 Window size = 512 (no over-
lap); 16 kHz size rate;

7 Complex Domain On-
set Detection

Mean 1 Window size = 512 (no over-
lap); 16 kHz size rate; us-
ing Hanning window for FFT
transform; output frame size
= 1024.

8 Loudness (+ Sharpness
and Spread)

Mean 26 Window size = 512 (no over-
lap); 16 kHz size rate; us-
ing Hanning window for FFT
transform; normalising each
band to sum to 1; output
frame size = 1024.

9 OBSI (+ Radio) Mean 17 Window size = 512 (no over-
lap); 16 kHz size rate; us-
ing Hanning window for
FFT transform; minimum fre-
quency for OBSI filter = 27.5;
output frame size = 1024.

10 Spectral Decrease Mean 1 Window size = 512 (no over-
lap); 16 kHz size rate; us-
ing Hanning window for FFT
transform; output frame size
= 1024.

11 Spectral Flattness Mean 20 Window size = 512 (no over-
lap); 16 kHz size rate; us-
ing Hanning window for FFT
transform; output frame size
= 1024.

12 Spectral Slope Mean 1 Window size = 512 (no over-
lap); 16 kHz size rate; us-
ing Hanning window for FFT
transform; output frame size
= 1024.

13 Shape Statistic spread Mean 1 Window size = 512 (no over-
lap); 16 kHz size rate; us-
ing Hanning window for FFT
transform; output frame size
= 1024.

14 Spectral Centroid MFCCs 4 Window size = 512 (no over-
lap); 16 kHz size rate.
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15 Spectral Rolloff SD 1 Window size = 512 (no over-
lap); 16 kHz size rate; 85.5%
cutoff point.

16 Spectral Crest Mean 19 Window size = 512 (no over-
lap); 16 kHz size rate; us-
ing Hanning window for FFT
transform; output frame size
= 1024.

17 Spectral Variation Mean 1 Window size = 512 (no over-
lap); 16 kHz size rate; us-
ing Hanning window for FFT
transform; output frame size
= 1024.

18 Autocorrelation Coeffi-
cients

Mean 49 Window size = 512 (no over-
lap); 16 kHz size rate; num-
ber of coefficients = 49; out-
put frame size = 1024.

19 Amplitude Modulation Mean 8 Window size = 16384 (no
overlap); 16 kHz size rate;
Decimation factor to com-
pute envelope = 200; output
frame size = 32 768.

20 Zero Crossing + SF MFCC 8 Window size = 512 (no over-
lap); 16 kHz size rate.

21 Envelope Statistic
Spread

Mean 1 Window size = 16384 (no
overlap); 16 kHz size rate;
Decimation factor to com-
pute envelope = 200; output
frame size = 32 768.

22 LPC and LSF Mean 12 Window size = 512 (no over-
lap); 16 kHz size rate; num-
ber of coefficients = 2; output
frame size = 1024.

23 RMS Mean + SD 2 Window size = 512 (no over-
lap); 16 kHz size rate.

24 Fraction of Low Energy Mean 1 Window size = 512 (no over-
lap); 16 kHz size rate; n = 100

(see Section 7.2).

25 Beat Histogram SD 171 Window size = 512 (no over-
lap); 16 kHz size rate.

26 Strength of Strongest
Beat

Mean 1 Window size = 512 (no over-
lap); 16 kHz size rate.

Continued on next page
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Table 30 – Continued from previous page

No. Feature Name Rep. Dim. Parameters

27 Temporal Statistic
Spread

Mean 1 Window size = 512 (no over-
lap); 16 kHz size rate;

28 Chroma MFCC 48 Window size = 512 (no over-
lap); 16 kHz size rate; output
frame size = 1024.

Table 31: Parameters of classifiers used.

No. Feature Name

SVM SVMType C-SVC (classification);
CacheSize 40.0; coef0 0.0; cost 1.0;
debug false; degree 3; replace miss-
ing values; eps 0.001; gamma 0.0;
kernalType radial basis function:
exp(−gamma ∗ |u − v|2); loss 0.1;
normalise false; nu 0.5; probability
Estimates false; seed 1: shrinking
true

LLRM Heuristic Stop 50; Max boosting it-
erations 500; Num boosting itera-
tions 0

MP Hidden Layer a; learning rate 0.3;
momentum 0.2; seed 0; training
time 500; validation set size 0; vali-
dation threshold 20

KNN K-NN 1; don’t cross window size 0

RF Max Dept 0; number features 0;
num trees 10; seed 1
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Figure 35: Description after sample reduction.
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(a) ECDF for Centroid (b) ECDF for Rolloff

Figure 36: Empirical cumulative distribution functions for centroid and rolloff.

(a) Normal Distribution on Spectral Centroid (b) Exponentially Decreasing Distribution on Spec-
tral Centroid

Figure 37: Other examples of probability distributions on spectral centroid.
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Table 29: Suggested features to discriminate a particular genre.

Blues

Compactness
Strongest Beat
Chroma
OBSIR

Classical

Variability
Compactness
Decrease
Onset etection

Country

Chroma
OBSIR
Crest Factor
MFCC

Disco

Crest factor
Spectral Rolloff
Strongest Beat
Zero-crossing

Hiphop

Compactness
Spectral Centroid
Energy
Strongest Beat

Jazz

Compactness
Onset etection
Variability
Energy

Metal

Loudness
Peak-based features
Spectral Centroid
Energy

Pop

Onset Detection
Variability
Spectral Rolloff
Energy

Reggae

Strongest Beat
Chroma
OBSIR
Flattness

Rock

Total Loudness
MFCCs
OBSIR
LPC & LSF





C
C L A S S I F I C AT I O N A L G O R I T H M S

c.0.1 Support Vector Machines

The aim of the support vector machine is to find the optimal equation of the hyper-
plane that best classifies two datasets. This optimal hyperplane maximises the margin
between the boundary points of the two datasets.

Definition C.1. Hyperplane
Let a1,a2,a3, ...,an be scalars where ai ∈ R and ai 6= 0 for i in(1, ...,n). Then the set
H of all vectors

X =


x1

x2
...

xn

 , (50)

in Rn such that

a1x1 + a2x2 + a3x3 + ... + anxn = c, (51)

for c is a constant is a subspace of Rn called a hyperplane.

The margin is defined as the width of the line parallel to the hyperplane such that
there are no points (from either set) between the hyperplane and the margin. Two
such margins will exist on both sides of the hyperplane. Figure 38 shows a SVM
classification of two datasets: ψ and φ. ψ∗1, ψ∗2 , φ∗11, φ∗16 are called support-vectors
as they are the closest points to the separating hyperplane and therefore lie on the
margin boundaries.

Definition C.2. Support Vector Machine
Let X = {x1, x2, x3, ..., xn} for X ∈ Rm be a set of points and let Y define two categories

Y =

1
0

 , (52)

then the equation of the hyperplane is

< W,X > +c (53)

where W ∈ Rm, < W,X > is the dot product and c ∈ R.

139
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φ6
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φ8
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Support Vector Machine

H: y = x

Figure 38: Classification of two datasets using a support vector machine.
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Definition C.3. Optimising the Hyperplane
The best separating hyperplane is defined when W and c minimise ||W|| for (X,Y)
such that

Y(< W,X > +c) > 1 (54)

The support vectors are the X values which appear on the boundary i.e. Y(<W,X> +
c) = 1.

c.0.2 Naïve Bayes Classifier

c.0.2.1 Introduction

When features are independent from one another within each class, the Naïve Bayes
classifier is often used. Although this assumption is usually made on the feature set,
the algorithm has appeared to work even when this assumption is not valid. The
classification process for the Naïve Bayes classifier is as follows [Krauss et al. 1994]:

1. Training step: "Using the training samples, the method estimates the parame-
ters of a probability distribution, assuming features are conditionally indepen-
dent given the class."

2. Prediction step: "For any unseen test sample, the method computes the poste-
rior probability of that sample belonging to each class. The method then classi-
fies the test sample according the largest posterior probability."

c.0.2.2 The Naïve Bayes Classification Process

Given a DTS d and a class c, if one wants to calculate the conditional probability of
a DTS d belonging to a class c this can be done by using Bayes rule which is equal
to the probability of the DTS given a class multiplied by the probability of the class
over the probability of the DTS:

P(c|d) =
P(d|c)P(c)

P(d)
(55)

Equation 55 can be used to select the most appropriate class for DTS d. The best class
is, out of all classes, is the one that maximises the probability of the class given the
DTS. Therefore, if one is looking for the class where the DTS is the greatest, by Bayes
rule, that should be the same as whichever class maximises the probability of c given
d:

CMAP = argmax
c∈C

P(c|d), (56)

also maximises the probability of d given c multiplied by the probability of c:

CMAP = argmax
c∈C

P(d|c)P(c)

P(d)
. (57)
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As is traditional in Bayesian classification, whichever class maximises Equation 57

also maximises:

CMAP = argmax
c∈C

P(d|c)P(c), (58)

where the two qualities P(d|c) and P(c) are learnt from the data during training.
This is done by dropping the denominator as the probability of the DTS will remain
the same for every class - this makes the probability of the DTS a constant which
is also expensive to compute. Therefore the most likely class will be the one that
maximises the product of the two probabilities given by Equation 58. Each DTS can
be measured by different features, therefore, P(d|c) can be seen as the probability of
a vector of features given a class:

CMAP = argmax
c∈C

P(x1, x2, . . . , xn|c)P(c) (59)

To calculate the probability of the class one would compute how often that class
occurs. Since the feature set might be large the complexity of O(|X|n.|C|) is expected,
which is quite large, therefore, assumptions must be met to reduce this complexity.
The following assumptions can be made:

• Bag of Words assumption: Assuming that the feature position is negligible,

• and assume that all feature probabilities, P(xi|cj), are independent.

Therefore using these assumptions one can represent the probability as:

P(x1, ..., xn|c) = P(x1|c) · P(x2|c) · . . . · p(xn|c). (60)

That is the joint probability of every feature conditioned on a class as the product
of a whole collection of independent probabilities as shown in Equation 60. In other
words in order to compute the simplifying naïve Bayes assumption to compute the
most likely class by the multiplying a likelihood of a set of features times the probility
of a class can be simplified as the best class, by the naïve Bayes assumption, is the class
that maximises the prior probability of the class multiplied by (for every feature in a
set of features) the probability of that feature given the class:

cNB = argmax
cj∈C

∏
i∈positions

P(xi|cj) (61)

c.0.3 K - Nearest Neighbours

The K-nearest neighbours classification model is used to map new points to a class
based on a given training set. The nearest neighbours algorithm finds the k nearest
neighbours in the feature space of a point and uses this information to classify the
point into one of n classes [Altman 1992]. The nearest neighbours technique only
approximates points using a local setting. Furthermore, most of the computation is
left until the classification is actually necessary, and so this method is considered the
simplest classification method from all classification techniques available. Although
the neighbours technique is considered simple, it is known also for its usefulness
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when considering the contribution of a new point’s neighbours’ weights, making its
classification decisions mostly on the closest points rather then considering all of
the points fairly. For example, if one would want to classify a new point p, then a
weighting problem is considered where all neighbouring points are given 1

si
, where

si is the distance from p to the ith neighbour. When using the nearest neighbours
method for classification the closest points from p are taken from a set of objects with
a known class. A big disadvantage is that the method is sensitive to local structure.
Altman [1992] have shown that the nearest neighbours technique can be used for
regression as well. Haggblade et al. [2011] used k-nearest neighbours to classify music
genre.
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