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ABSTRACT 

 

Carbon nanomaterials (CNMs) and nitrogen doped CNMs (NCNMs) with different 

morphologies were obtained by decomposition of various chlorinated organic solvents using a 

chemical vapor deposition (CVD) bubbling and injection methods over a Fe-Co/CaCO3 catalyst. 

CNFs, CNTs with secondary CNT or CNF growth, bamboo-compartmented and hollow CNTs 

were obtained. Increasing the growth time to 90 min resulted in growth of ~ 90 % of secondary 

CNFs on the surface of the main CNTs, using dichlorobenzene (DCB) as source of chlorine. The 

secondary CNFs grew at defects sites of the CNT wall. Secondary CNFs were not observed at 

other studied temperatures, 600, 650. 750 and 800 °C.  

Using an injection CVD method, horn-, straw- and pencil-shaped closed and open-ended 

CNTs/CNFs were obtained from CH3CN/DCB solutions of various volume ratios. CNT growth 

was enhanced after addition of chlorine. Highly graphitic carbon materials were produced from 

feed solutions containing low and high DCB concentrations. CNTs with defects were obtained 

from solutions containing 66.7 vol.% DCB. Post-doping of the N-CNTs with chlorine and of the 

chlorinated CNTs with nitrogen resulted in production of highly graphitic materials. Using a 

bubbling CVD method, mixtures of CNMs namely, hollow and bamboo-compartmented CNTs 

with and without intratubular junctions and carbon nano-onions filled with metal nanoparticles 

were obtained from feed solutions containing TTCE.  

MWCNT/PVP composite nanofibers were successfully synthesized using an electrospinning 

technique. Adsorption capacities of 15–20 g/g were obtained in pure oil or in oil-water mixtures. 

The adsorption capability of the MWCNT/PVP composite depended on the type of oil and its 

viscosity.  
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CHAPTER 1 

Introduction 

 

1.1 Background and motivation 

Most materials fit into the following general categories, namely metals, ceramics, ceramics, 

organic/inorganic polymers, composites, semi-conductors, biomaterials, and advanced materials, 

with carbon nanomaterials being a type of an advanced material. Materials play a major role in 

many technological fields and in human lives. Materials are the basis for improving human 

production and their living standards1. Whenever there is a new material of great importance, a 

huge development in productivity will be received and human society will leap forward1. There 

is a need to create a new generation of materials in order to better our lives. In order to create the 

new generation of materials, it is necessary to understand the relationship between the existing 

materials and their structure. Combination of appropriate materials can result in production of 

materials with desirable properties2. Nanoscience has paved the way to tailor the properties and 

performance of materials to a new level, as researchers create new materials by working at the 

atomic or molecular level.  

The need for lightweight, high strength materials has been recognized since the invention of the 

airplane. As the strength and stiffness of a material increases, the dimensions, and consequently, 

the mass, of the material required for a certain load bearing application is reduced. This leads to 

several advantages in the case of aircraft and automobiles such as increase in payload and 

improvement of fuel efficiency3.   

Since reported by Ijima4, carbon nanotubes (CNTs) proved to be excellent materials because of 

their higher strength and low weight. CNTs have become the material of choice for many 

applications due to their excellent thermal, mechanical and electronic properties. CNTs are 

useful for any application where robustness and flexibility are desired, due to their stability under 

extreme chemical environments, high temperatures and moisture5. The unique properties of 

CNTs have aroused interest in their possible applications namely, as sensors6, in field emission 
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devices7, as flat panel displays8, for energy storage9, in biomedicine10, as adsorbent materials11, 

and in composites12, to name a few.  

Application of CNTs in materials and devices is hindered by the difficulty to process and 

manipulate them and their inability to be dispersed in most solvents (both water and organic 

solvents). Functionalization of CNTs by attaching appropriate chemical groups was found to 

enhance their solubility.  

In this study CNTs and nitrogen-doped CNTs (NCNTs) were functionalized with chlorine, and 

the effect of chlorine on their morphology was studied. Due to the purification properties that 

chlorine has, it is expected that the materials produced after chlorination will be more graphitic 

and have less amorphous carbon. It has been shown that incorporation of Cl in the CNMs results 

in surface functionalisation,13 ease of purification,14 increased yields15 and surface restructuring.16 

The synthesized CNTs in this study will then be used as fillers in polymer matrices. The 

combination of polymer matrix and CNT as nanofillers offer opportunities for future materials 

that can be applied in various fields, namely, in aerospace technology17, drug delivery18, 

filtration19, and as sensors20. CNTs have previously been used as fillers for polymer matrix. 

However, use of chlorine functionalized CNTs with secondary carbon nanofiber growth as fillers 

in polymer matrices has not been reported. The presence of secondary nanofibers on the surface 

of the primary CNTs is expected to enhance the surface area of the nanomaterials and in turn 

increase the interfacial bonding between the CNTs and the polymer matrix for mechanical 

applications. It has been difficult to translate the mechanical properties of CNTs into useful 

materials due to interfacial sliding, matrix/fiber dispersion, and the introduction of defects. Even 

though these carbon nanotubes have exceptional strength and modulus the difficulty in 

dispersing the unmodified nanotubes into polymers, as well as aligning them linearly, makes the 

progress on their integration into fiber slow. This problem has been combated through the use of 

CNT surface modification by oxidation, functionalization and by physical coating. Fixation of 

oxygen is usually carried out by oxidation in a liquid or gas phase but this process is not selective 

as it results in functionalization of CNTs with several types of oxygen containing groups, i.e. 

COOH, C=O, OH.21 Functionalization of CNT surfaces with oxygen groups often result in 

destruction of the CNT structure, mainly decapping at the end of the tubes and cutting and 
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breaking of the tube length. Destruction of the CNT structure may cause changes in their 

mechanical properties.   

The CNT/polymer composite materials will then be applied as adsorbents for oil in oil-spill 

cleanups. Water scarcity has emerged as one of the most serious global challenges which 

threatens over one-third of the world’s population22. Recovery and recycling of wastewater has 

been two promising ways to combat the water scarcity. Oil is one of the pollutants that can enter 

our water streams. Oil spills can affect wildlife, marine and coastal habitats, fisheries and 

recreational activities. The oil harms the wildlife through toxic contamination (inhalation and 

ingestion) or by physical contact. Use of adsorbents to clean oil-spill was found to be the most 

effective. Polymeric materials such as polypropylene and polyurethane foams are the most 

commonly used commercial sorbents in oil spill cleanup due to their oleophilic and hydrophobic 

characteristics23,24. The disadvantage of using these polymeric materials is that they degrade very 

slowly. Hence, in this study PVP was used as polymer since it is easily degradable. Since PVP is 

soluble in water we embedded CNTs inside it in order to improve its properties and render it 

useful in oil adsorption from oil-water emulsions. 

The research questions posed were: 

1. What effect does chlorine have on the morphology of the CNTs and NCNTs? 

2. Can varying the concentration of chlorine in the feed have an impact on the morphology of 

the CNTs and N-CNTs? 

3. Does using an injection or bubbling CVD method have an impact on the morphology of 

chlorine containing MWCNTs and N-MWCNTs? 

4. Can use of chlorine functionalized MWCNTs improve their interaction with the polymer 

matrix? 

5. Can the chlorine functionalized MWCNT/PVP composite membranes be used as adsorbents 

for oil in oil-spill cleanups. 
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1.2 Aims and objectives of the study 

1. Investigation of the effect of chlorine on the morphology of carbon nanotubes (CNTs) using 

acetylene as carbon source, dichlorobenzene as chlorine source and a Fe-Co/CaCO3 as 

catalyst by chemical vapor deposition (CVD) method.  

2. Investigation of the effect of chlorine on the morphology of nitrogen-doped carbon nanotubes 

(N-MWCNTs) using acetylene as carbon source, dichlorobenzene as chlorine source, 

acetonitrile as carbon and nitrogen source and a Fe-Co/CaCO3 as catalyst by injection 

chemical vapor deposition (CVD) method.  

3. Investigation of the effect of chlorine on the morphology of N-MWCNTs using acetylene as 

carbon source, dichlorobenzene as chlorine source, acetonitrile as carbon and nitrogen source 

and a Fe-Co/CaCO3 as catalyst by bubbling chemical vapor deposition (CVD) method.  

4. Synthesis of chlorine functionalized CNTs/polyvinylpyrrolidone (PVP) composite 

nanomaterials using an electrospinning method. 

5. Application of the CNTs/PVP composite nanofiber membranes as adsorbents of oil in oil-

spill cleanups.    

 

 

1.3 Outline of thesis 

Chapter 1: Present the background and motivation as well as the aims and objectives of the 

study. 

Chapter 2: Present a literature review of carbon nanotubes (CNTs), their structure, synthesis 

methods, growth mechanisms, their modification by functionalization and doping, and review of 

CNT/polymer composites, their synthesis methods and applications and finally a brief review of 

application of CNT/polymer composites as adsorbents in oil-spill cleanups.  

Chapter 3: Presents the synthesis of chlorine functionalized MWCNTs, their method of synthesis 

and various morphologies obtained using various chlorinated organic reagents by bubbling CVD 

method. 

Chapter 4: Present a one-step synthesis of CNTs with secondary nanofiber growth using 

dichlorobenzene as chlorine source by bubbling CVD method. The effect of reaction time and 

temperature on the morphology of the CNTs was investigated. 
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Chapter 5: Presents the study on the effect of chlorine on the morphology of N-doped MWCNTs, 

and their synthesis method using dichlorobenzene as chlorine source by injection CVD method 

Chapter 6: Presents the study on the effect of chlorine on the morphology of N-doped MWCNTs 

and their synthesis method using dichlorobenzene and tetrachloroethane as chlorine sources by 

bubbling CVD method. 

Chapter 7: Presents synthesis of chlorine functionalized MWCNTs/PVP composite nanofiber 

membranes by electrospinning method and their use as adsorbents of oil in oil-spill cleanups. 

Chapter 8: General conclusions, summarizing the conclusions of all the results of this study and 

recommendations from the study. 
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CHAPTER 2 

Literature review 

 

2.1 Carbon nanotubes 

CNTs were first discovered in 1952 from the observation of the tubular nature of some nano-

sized carbon filaments that had been made and studied using transmission electron microscope 

(TEM).1 Discovery of multi-walled carbon nanotubes (MWCNTs) was later reported and their 

study popularised by Ijima in 1991.2 These MWCNTs were found in the hard deposit growing at 

the cathode without a catalyst, during electric arc experiments to produce fullerenes. CNTs have 

become the material of choice in most applications due to their excellent thermal, mechanical 

and electronic properties. These properties have aroused interest in their possible applications 

namely, as sensors and probes3,4, in field emission devices5,6, as flat panel displays7, in 

electrochemical devices8,9, for energy storage10, in biomedicine11-13, as adsorbent materials14, and 

in composites15-17. 

 

2.1.1 Structure of carbon nanotubes 

Based on the electronic configuration of carbon, there is a small energy difference between the 

2s and 2p orbital levels which allows the carbon atom to exist in several hybridization states in 

different materials namely, sp, sp2 and sp3 (Figure 2.1). 
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Figure 2.1 Schematic representation of carbon allotropes, (a) graphite, (b) diamond, (c) 

fullerene, and (d) single wall carbon nanotube (SWCNTs)18. 

 

The carbon atoms can arrange themselves in structures of different dimensions ranging from 

diamond (3D), graphite (2D), carbon nanotubes (1D) and fullerene (0D) due to their 

hybridization flexibility of the carbon orbitals (Figure 2.1). 

In graphite, atoms of carbon form planar layers called graphene layers. Each layer is made up of 

rings containing six carbon atoms, linked to each other in a hexagonal structure. Graphite is a 

good conductor of electricity due to the presence of mobile electrons.  

Diamond, is one of the hardest substances known to man and is a naturally occurring form of 

carbon. Each carbon atom is bonded tetrahedrally to four other carbon atoms in an sp3 hybridized 

fashion. Its hardness arises from the fact that all the four valence electrons of carbon are all 

utilized, hence there are no free electrons available for bonding. Diamond is used in industrial 

cutting tools due to its hardness and it is also used for making jewelry.  

Amorphous carbon (Ac) is another form of carbon containing varying proportions of sp2 and sp3 

bonded carbons. Amorphous carbon is usually formed when a carbon material burns in limited 

amount of oxygen. Ac is given several names, such as a lampblack, gas black and channel 

black19. It is not considered an allotrope of carbon because its structure is not well defined.  
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Fullerenes are closed-cage carbon molecules with three-coordinate carbon atoms comprising of 

spherical or nearly-spherical surfaces. A well-known fullerene molecule is buckminsterfullerene, 

C60, which has sixty carbon atoms forming a truncated-icosahedral structure with twelve 

pentagonal rings and twenty hexagonal rings20. While regular hexagons can tile a plane, 

pentagons can tile a sphere,20. Some sp3 character is present in the essentially sp2 carbons of 

fullerenes. It has a structure of a soccer ball.   

A carbon nanotube (CNT) is a tubular structure made of carbon atoms, having a nanometer 

diameter and a large length/diameter ratio. Carbon nanotubes are a type of carbon fiber which 

comprises coaxial cylinders of graphitic sheets, which range from 2 to 50 sheets.    

CNT samples are usually found in one of two forms: multi-wall carbon nanotubes (MWCNTs) 

consisting of an array of coaxial nanotubes and single-wall carbon nanotubes (SWCNTs) 

composed of a single graphene sheet. Diameters of the CNTs usually range between 2 and 25 nm 

and the distance between the sheets is about 0.34 nm21.  

Three types of SWCNTs exist, namely armchair, chiral and zigzag and each depends on how the 

graphene layer is “rolled up” during its creation process. The structure of a SWCNT is 

characterized by a pair of indices (n, m) that describe the chiral vector and is directly linked to 

the electrical properties of CNTs22. When m = 0 the nanotube is called zigzag, when n = m the 

nanotube is called armchair and all other configurations are called chiral23.  

MWCNTs can be formed in two structural models; the Russian Doll model and the Parchment 

model. When a CNT contains another tube inside it and the outer nanotube has a greater 

diameter than the thinner nanotube, it is called the Russian Doll model22. When a single 

graphene sheet is wrapped around itself many times, the same as a rolled up scroll of paper, it is 

called the Parchment model22. 

 

2.1.2 Synthesis of CNTs 

High temperature preparation techniques such as laser ablation and arc discharge have been used 

earlier to produce CNTs. These methods have been replaced by low temperature chemical vapor 

deposition (CVD) techniques which allow temperatures <800 °C to be used. CVD allows control 
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of the alignment, purity, orientation, length, diameter and density of the CNTs24. CVD can be 

used with a wide range of hydrocarbons in any state (solid, liquid or gas. The method enables the 

use of various substrates and offers better control of the growth parameters25. The methods used 

to synthesis CNTs and other CNMs are discussed below. 

 

(i) Arc discharge method 

The electric arc discharge method was the first technique used to synthesize multi-walled and 

single-walled CNTs. In this method an electric arc discharge is generated between two graphite 

electrodes under an inert atmosphere of helium or argon. A very high temperature is obtained 

which allows the sublimation of carbon. The synthesis can be performed by the arc evaporation 

of pure graphite or co-evaporation of graphite and a metal26. For the CNTs to be obtained, 

purification by gasification with oxygen or carbon dioxide is needed27. The first authors to 

successfully produce MWCNTs at the gram level were Ebbesen and Ajayan in 199228. 

Substantial amounts of SWCNTs grown over a metal catalyst as substrate, were first produced in 

1993 by Bethune and coworkers29. The process parameters used were small gaps between 

electrodes (<1 mm), a high current (100 A), and generation of a plasma between the electrode at 

about 4000 K and a voltage range of 30–35 V, using controlled electrode dimensions30. 

However, the use of an arc discharge method is limited by its drawbacks: the synthesis process is 

non-continuous (CNT growth needs to be interrupted to remove the product from the chamber) 

and poor product purity.   

 

(ii) Laser ablation method 

The second very useful and powerful technique used to produce CNTs is the laser ablation 

method. In this process, a piece of graphite is vaporized by laser irradiation under an inert 

atmosphere. This results in soot containing nanotubes which are cooled at the walls of a quartz 

tube. Two kinds of products are possible: MWCNTs or SWCNTs26. In this process a purification 

step by gasification to eliminate carbonaceous material is also needed. The effectiveness of the 

gasification depends on the type of reactant used. Growth of high quality SWCNTs was first 
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achieved by Collins and coworkers31. Although the laser ablation method is known to produce 

CNTs with high quality and high purity single walls32, it is more expensive to use than the arc 

discharge method.  

 

(iii) Chemical vapor deposition (CVD) method 

Carbon filaments and fibers have been produced by thermal decomposition of hydrocarbons in 

the presence of a catalyst since the 1960s33,34. In the CVD process, metal or bimetallic catalyst 

nanoparticles (usually Fe35-37, Co37, Ni38, Fe-Co37,39, or Fe-Ni40) are used as substrates. They are 

placed in a quartz boat which is placed in the furnace. The nanoparticles are then subjected to 

reduction by heating under an inert carrier gas such as nitrogen or argon until the desired reaction 

temperature is achieved. A hydrocarbon gas is then passed into the furnace to grow the 

nanotubes. Methane and acetylene are the most widely used carbon sources. Carbon monoxide 

can also be used as carbon source. In some cases, liquid carbon sources like toluene, benzene, 

methanol, ethanol, etc., are heated and then the inert gas is bubbled through the liquid to 

transport their vapors into the furnace. The diameters of the CNTs formed usually depend on the 

size of the metal catalyst. The CNT growth can be explained by various mechanisms based on 

the catalyst-metal interaction. In situ TEM studies have demonstrated that the nanotube growth 

in CVD is initiated by the formation of a carbon cap at the surface of the particle.41 Kuznetsov et 

al. hypothesized that the carbon nucleus has the form of a flat saucer whose edges are bent in 

order to bond to the metal surface.42 They found that the change in Gibbs free energy for the 

formation of the nucleus includes four contributions: the free energy of precipitation of the 

carbon atoms from the particle, the free energy associated with the nucleus edges and the strain 

energy arising from bending the graphene layer. The model predicts that the critical radius of 

nucleus formation decreases with increasing temperature, increasing saturation of the metal-

carbon solution and decreasing specific edge free energy. A good agreement was observed 

between the diameter and the average diameter of CNTs formed by different methods as a 

function of the catalyst nature and synthesis temperature.42   

When the interaction is weak, CNT precipitates out across the metal bottom, pushing the whole 

metal particle off the substrate. This is called a “tip-growth model” (Figure 2.2a). When the 
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interaction between the substrate and the metal catalyst is strong, CNT precipitation emerges out 

from the metal’s apex, which leads to CNT growing up with the catalyst particle rooted on its 

base in a mechanism called “base-growth model” (Figure 2.2b). A stronger metal-support 

distribution will improve dispersion, give a narrow size distribution and reduce sintering and 

agglomeration of active metal sites. It will also hinder the reduction of the oxide precursors on 

the active catalytic species41.  

   

Plasma-enhanced chemical vapor deposition (PECVD) is another CVD method used to produce 

CNTs. The PECVD method generates a glow discharge in a chamber or a reaction furnace by 

means of a high frequency voltage applied to both electrodes. A substrate is placed on the 

grounded electrode. The reaction gas is supplied from the opposite plate in order to form a 

uniform film. Catalytic metals such as Co, Fe and Ni are used. They are placed on a Si, SiO2 or 

glass substrate using thermal CVD or sputtering. The advantage of using PECVD over the arc 

discharge and laser ablation methods is that the synthesis in PECVD uses feedstock gases such 

as CH4 and CO, so there is no need for a solid graphite source. The argon-assisted plasma is used 

to break down the feedstock gases into C2, CH and other reactive carbon species (CxHy) to 

facilitate growth at low temperature and pressure43.  

 

(iv) The hydrothermal methods 

The sonochemical/hydrothermal technique is another method used to prepare different carbon 

nanostructures such as carbon nano-onions, nanowires, nanorods, nanobelts and MWCNTs. 

Horn-shaped CNTs were produced by hydrothermal processing where a mixture of 

pentachloropyridine and metallic sodium are placed into a 25 mL stainless steel autoclave44. The 

autoclave was sealed, heated to 350 °C and maintained at this temperature for 10 h, and cooled to 

room temperature in the furnace. The product was washed sequentially with ethanol, 

concentrated salt acid aqueous solution and distilled water to remove impurities. The final 

product was then dried at 100 °C in air for 4 h44. The hydrothermal process has advantages when 

compared to other methods namely, (i) the starting materials are easy to obtain and are stable in 
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ambient temperature, (ii) it is a low temperature process (about 150 – 180 °C), and (iii) there is 

no hydrocarbon or carrier gas required for operation.    

 

2.1.3 Properties of CNTs 

CNTs are nanostructured materials which exhibit unique thermal, mechanical, magnetic and 

electronic properties. CNT has the same hardness as diamond, but its thermal capacity is twice 

that of pure diamond. Its current-carrying capacity is 1000 times higher than that of copper and 

they are thermally stable up to 4000 K. CNTs can be metallic or semiconducting, depending on 

their diameter and chirality.  

 

(i) Mechanical properties 

The mechanical properties of a solid must ultimately depend on the strength of its interatomic 

bonds45. CNTs are predicted to have high stiffness and axial strength as a result of the carbon-

carbon sp2 bonding46. A perfect CNT exhibits an elastic modulus of the order 270–950 GPa and 

has a reported tensile strength of 11–63 GPa47, which is 10–100 times higher than the strongest 

steel and with less weight48. CNTs have the highest Young’s modulus when compared with 

composite tubes such as CN, C3N4, BN, BC3, BC2N, etc., These properties, coupled with the 

lightness of CNTs, makes them excellent candidates to use in the production of composite 

materials for various applications.   

    

(ii) Electrical properties 

CNTs can be either metallic or semiconducting depending on their structural parameters, i.e. 

chirality and diameter49-52. Carbon nanotubes conduct electricity better than metals. When 

electrons travel through the metal there is some resistance to their movement. This resistance 

happens when electrons bump into metal atoms. When an electron travels through a carbon 

nanotube, it travels under the rules of quantum mechanics, and so it behaves like a wave 
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traveling down a smooth channel with no atoms to bump into. This quantum movement of an 

electron within nanotubes is called ballistic transport. 

 

(iii) Thermal properties 

As diamond and graphite display the highest known thermal conductivity of all materials at 

moderate temperatures, it is likely that nanotubes should be outstanding in this regard53. The 

thermal properties of CNTs are related to their unique structure and small size. CNTs have 

thermal conductivity values of up to 6600 Wm–1K–1 at low temperatures54.    

(iv) Magnetic properties 

The presence of encapsulated catalyst nanoparticles inside the CNTs can render them magnetic. 

Catalytic nanoparticles can form inside the CNTs via three routes: (1) in situ during CNT growth 

(e.g. from a metal especially an iron containing catalyst during CVD synthesis of MWCNTs), (2) 

from added metallic catalyst particles e.g. from Fe, Co or Ni metal filled electrodes during 

MWCNT or SWCNT synthesis via the arc discharge method, and (3) by filling the synthesized 

open-ended CNTs with nonmagnetic liquid metals56. Studies suggested that the presence of iron 

catalyst inside CNTs may be helpful in their magnetic manipulation, for example alignment of 

CNTs in polymer composites57,58 or for targeted drug delivery59. Tethering of magnetic 

nanoparticles onto the surface of the CNTs have been another way of enhancing their magnetic 

properties60,61.  

 

2.2 Modification of carbon nanomaterials 

2.2.1 Functionalization of carbon nanomaterials 

Translation of CNTs into useful materials is often hindered by their limited solubility in water 

and most organic solvents. Scientists came up with ways to modify the surface of the CNTs in 

order to combat this problem. The surface of the CNTs can be modified by oxidation, 

functionalization or by physical coating. Oxidation involves use of oxidizing acids to add oxygen 

onto the sidewalls of the CNTs. Fixation of oxygen is usually carried out by oxidation in a liquid 
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or gas phase but this process is not selective as it results in functionalization of CNTs with 

several types of oxygen containing groups, i.e. COOH, C=O, OH,62 etc. These types of C–O 

functionalities can be determined by X-ray photoelectron spectroscopy (XPS) and an example is 

shown in Figure 2.263. Here O–C–O and C–O functionalities are detected in the O1s XPS 

spectra. Functionalization of CNT surfaces with oxygen groups often results in destruction of the 

CNT structure, mainly decapping at the end of the tubes and cutting and breaking of the tube 

length. Destruction of the CNT structure may cause changes in their mechanical properties. It is 

desirable to functionalize CNTs with heteroatoms that will result in only one type of chemical 

group. Functionalization can also involve addition of heteroatoms such as halogens, nitrogen, 

sulphur, etc. onto the sidewall of the CNTs. Halogens are a good alternative to attach to CNTs, 

as shown in many studies that they can render only one type of chemical group for every halogen 

(Figure 2.3)64.  

 

 

Figure 2.2 XPS spectra of the O1s region after treatment of CNTs with nitric acid (HNO3) acid 

and ozone (O3)
63. 
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Figure 2.3 Chlorination of MWCNTs by mixing I2Cl6 solution with acetic acid or with carbon 

tetrachloride64.    

 

Modification of the carbon surface and electronic properties with chlorine has been explored but 

the effect of chlorine (Cl) on the morphology of carbon nanomaterials is still not well 

established. Incorporation of Cl in the CNMs resulted in their surface functionalization,65 ease of 

purification,66-68 increased yields69 and surface restructuring.70 The presence of chlorine atoms 

also produced CNTs with increased inner diameters, which resulted in filling of CNTs with 

metal particles.71 

    

2.2.2 Doping of carbon nanomaterials 

Introduction of heteroatoms into the walls of the CNTs by replacing one of the carbon atoms in a 

CNT, was found to enhance their application. Incorporation of nitrogen atom into the structure of 

the CNT results in the formation of an n-type material due to the presence of one extra valence 

electron in the electronic structure of nitrogen.72,73 N-doped CNTs are more chemically active 

but less stable than the un-doped CNTs. The nitrogen doped CNTs has found applications in 

various fields for example in, electronic devices,74 fuel cells,75 and biomedicine.76      

Theoretical calculations77 and experimental measurements78
 have demonstrated that the field-

emission performance of CNTs depends sensitively on their tip structure. An open-ended CNT is 

superior to a close-ended one. Enhanced field emission properties of the CNTs were 

demonstrated by Lv et al. by using a chlorine-containing benzene (trichlorobenzene) as carbon 
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precursor which resulted in the production of open-ended, thin-walled CNTs filled with long 

continuous ferromagnetic metal nanowires.79  

Doping of CNTs with nitrogen was also found to improve the field emission property of the 

CNTs.80 Thin-walled, open-ended and well-aligned N-doped CNTs synthesized using 

acetonitrile as carbon and nitrogen source were found to have enhanced field emission 

properties.81 An increase in the amount of nitrogen incorporated into the CNTs was observed 

when halogenated catalyst sources were used.82 

 

2.2.3 Synthesis of Cl functionalized CNTs and chlorinated N-doped CNTs 

Generally, chlorine functionalization of undoped and nitrogen-doped carbon structures can be 

achieved using the same synthesis methods used to produce carbon nanomaterials. In the usual 

approach the synthesis process involves pyrolysis of hydrocarbons, or other carbon feedstock 

with the addition of a nitrogen source (e.g. nitrogen, ammonia, amines, nitriles) diluted in a 

stream of an inert gas in the furnace system over the surface of the metal catalyst particles.  

Detailed methods used in this study will be given in Chapters 3 – 6. In general, undoped and 

nitrogen-doped carbon structures can be synthesized using two methods:73 (i) “in situ” doping, 

where gases of liquids containing ad-atoms either mixed or individually are bubbled through to 

the reactor containing a catalyst material using appropriate gases during the synthesis of carbon 

nanomaterials, and (ii) post-doping, where the pre-synthesized carbon nanomaterials are post-

treated with a nitrogen precursor (either in liquid or gaseous form).  

  

2.3 Carbon nanotube polymer composites 

A composite is a multiphase material formed from a combination of materials which differ in 

composition or form. Composites retain their own chemical and physical properties and maintain 

an interface between components which act in concert to provide improved specific or 

synergistic characteristics not obtainable by any of the original components acting alone.83,84 A 

composite is usually made of two components of materials, namely, the reinforcement and the 

matrix. The reinforcement provides useful properties such as mechanical, electrical, thermal, 
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optical, etc. needed to enhance the properties of the matrix. The unique mechanical and electrical 

properties of carbon nanotubes make them ideal reinforcing agents in many applications. It is 

because of their outstanding mechanical properties such as high Young’s modulus, high tensile 

strength, high flexibility and high bulk modulus,85 that CNTs promise to be the ultimate fiber 

reinforcements in strong, lightweight polymer composite materials. Use of CNTs as fillers in 

polymer nanocomposites has been a subject of many studies. Challenges exist in the utilization of 

CNTs as fillers in polymer composites, namely CNTs (i) are normally found as mixtures of 

various chiralities, diameters and length, (ii) often contain impurities, (iii) occur as aggregates 

and bundles which leads to non-uniform dispersion and (iv) have poor interfacial bonding with 

the polymer matrix. There have been various reports focusing on increasing the strength and 

modulus of the polymer matrices through the incorporation of CNTs. Improvement in tensile 

modulus and break stress to about 36-42 and 25 % were achieved when 1 wt.% of MWCNTs 

was added to a polystyrene matrix using a solution-evaporation method.86 The modulus and 

hardness of the composite was increased by 1.8 and 1.6 times, when 1 wt.% of MWCNTs was 

added to polyvinyl alcohol (PVA).87 An increase in the storage modulus was observed when the 

MWCNTs loading increased due to a stiffening effect of the nanotubes, during preparation of 

poly(methyl methacrylate) (PMMA)/MWCNTs composites by a melt processing method.88 The 

indentation elastic modulus and micro-hardness characteristics increased when 1 wt.% of 

functionalized and non-functionalized MWCNTs were added to the PMMA matrix.89 Addition of 

1 wt.% of MWCNTs to a polycarbonate (PC) matrix resulted in enhancement of the tensile 

strength and modulus by up to 23 and 75 % and reduction of their electrical resistivity 

significantly from being an insulator to a semi-conductor, indicating a percolation threshold.90 

An enhanced electrical conductivity was observed for nanofiber composites consisting of PVA, 

MWCNTs and manganese dioxide synthesized by an electrospinning process.91 Alignment of the 

MWCNTs into a polyvinylpyrrolidone (PVP) matrix was achieved and resulted in a composite 

with improved electromagnetic interference shielding performance.92      
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2.3.1 Nanocomposite synthesis methods 

Several synthesis methods have been developed to incorporate CNTs into polymer matrices. The 

challenge of producing such nanocomposites is presented by the tendency of CNTs to occur in 

bundles or aggregates which are difficult to break up and to disperse in solution which leads to 

non-uniform distributions within the polymer matrix. In this section we will briefly describe the 

most important processing techniques for synthesis of CNT/polymer nanocomposites. 

 

(i) Solution processing 

The most common and simplest technique to form CNT/polymer nanocomposites is solution 

processing. The method involves intensive agitation (e.g. magnetic stirring, vigorous shaking, 

refluxing, homogenization or even bath/probe sonication) which results in thorough mixing of 

the CNTs with a polymer in a solvent, in order to facilitate nanotube de-bundling and their 

dispersion inside a host polymer matrix.58,93,94 This processing technique is however limited to 

polymers that are soluble in solvents. The process involves dispersion of nanotubes in a suitable 

solvent and mixing with the polymer solution, followed by film casting and solvent evaporation 

leaving behind a nanocomposite sheet. The solvent for the CNTs and a polymer may be the same 

or different, but should be of good miscibility to realize intimate mixing between phases. In 

some cases, CNTs are added directly to the polymer solution followed by intensive mixing 

before film casting. Use of high power ultrasonication or shear mixing for long periods can lead 

to shortening of tube lengths, leading to deterioration of composite properties. 

 

(ii) Melt processing 

Due to the fact that thermoplastic semicrystalline polymers soften when heated above their 

melting point, melt processing has been a very valuable technique for the fabrication of CNT-

based composites. The method is suitable for polymers that cannot be processed with solution 

techniques due to their insolubility in common solvents. In general, melt processing involves the 

blending of a polymer melt with the CNT material by application of intense shear forces. The 

melt mixing can be carried out in a batch or continuous operation using a high shear mixer (e.g. 
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Sigma mixer) and extruder, respectively. A sigma mixer is often used to prepare highly 

concentrated nanocomposites called masterbatches, which may be used to synthesize desired 

CNT-loading composites by mixing with appropriate amounts of neat matrix polymer using an 

extruder. The polymer granules are caught by the rotating screws and pushed forward; they then 

melt inside a heated melting zone due to the externally provided heat and shearing of the material 

between screw and barrel. The CNTs are loaded into the extruder via a separate hopper, such that 

melt-phase mixing takes place due to the combination of shearing and kneading action, and when 

the molten-mixture reaches the homogenization zone, it has already achieved a significant degree 

of mixing. Finally, the mixture passes to the die before coming out as semisolid strands, which 

may be cooled (via air drying or passing through a water bath) and chopped into granules for 

further use. In the melt mixing technique high shear forces and elevated temperatures need to be 

properly addressed in order to avoid the deterioration of the nanocomposites. 

 

(iii) In situ polymerization 

In situ polymerization remains the only viable option for the preparation of composites based on 

insoluble and thermally unstable matrix polymers, which cannot be processed by solution or melt 

processing routes. The main advantage of this method is that it produces polymer-grafted tubes, 

mixed with free polymer chains. Moreover, due to the small size of the molecules, the 

homogeneity of the resulting composite adduct is much higher when compared to mixing CNTs 

and polymer chains in solution. The method allows the preparation of composites with high CNT 

weight percent. The synthesis involves dispersion of CNTs in a monomer, followed by in situ 

polymerization leading to the formation of CNT/polymer nanocomposites. Exploitation of 

functionalized CNTs or use of monomer-grafted CNTs are known to improve the initial 

dispersion of the nanotubes in the monomer and consequently in the formed nanocomposites.  

 

(iv) Electrospinning       

Electrospinning is a versatile method used to produce continuous nanofibers mainly from 

polymer solutions. Electrospinning involves pumping a polymer solution at a constant rate 
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through a needle tip that is placed a set distance away from a grounded or oppositely charged 

collector. When a voltage is applied at the needle tip, an electrostatic field introduces charges in 

the solution and when the mutual repulsions between charges reach a threshold value, a fluid jet 

forms a conical droplet at the tip of a capillary tube, resulting in the formation of a Taylor cone.95 

The jet travels in a straight path, called the jet’s length, and experiences bending instabilities to 

form spiral motions. The polymer fiber is collected on a screen, which is either grounded or 

connected to a DC supply of opposite polarity.  

 

2.4 Treatment of oil-water emulsions by adsorption onto CNT/polymer composites 

Water scarcity is becoming a huge problem all over the world due to contamination of water, 

rapid growth of population, development of an economy and lack of rain. Recently, in Gauteng 

and Cape Town, water restrictions were put into place due to alarming low water levels in the 

water collection and distribution dams. Clean water is essential for both human life and the 

ecosystem. A higher demand for fresh water has forced researchers to look for alternative 

sources to treat wastewater.  

Oil spillage in water bodies can have negative environmental and socio-economical impacts. Oil 

spill pollution can be due to petroleum hydrocarbon discharged into the environment (marine or 

land). This can be caused by accidental spillage or operational spillage whenever oil is produced 

or transported.96 Oil spills can affect wildlife species, marine and coastal habitats, fisheries and 

recreational arears. The oil harms the wildlife through toxic contamination (inhalation and 

ingestion) or by physical contact. The adverse impacts to ecosystems and the long-term effects of 

environmental pollution by these and other releases call for a need to develop a wide range of 

materials for cleaning up oil from oil impacted areas. The effectiveness of oil treatment varies 

with time, the type of oil and spill, the location and the weather conditions.97 Among all of the 

oil spill cleanup methods that show good results in removal of oil from the water surface, the 

sorbent cleaning-up is considered to be one of the most efficient method to remove oil.98 The 

contact of oil with a highly adsorbent material can be a way to collect the oil that is present in 

water.96 Stokes’ Law indicates that, given time and enough surface area, oil and water will 

eventually separate, forming two layers. Oil will float on top of the water forming a thin layer 
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called a slick since it has a lower density than water. A wide range of adsorbents materials have 

been used for oil remediation such as mineral products (zeolites, silica, perlite, graphite, 

vermiculites, sorbent clay, diatomite),99,100 vegetable products (corn cob, straw, kenaf, cotton 

fiber, wood fiber, peat moss, etc.,),100,101 organic synthetic products (propylene, polyurethane, 

etc.,),102,103  activated carbon,104 and CNT sponges.105 Polymeric materials such as polypropylene 

and polyurethane foams are the most commonly used commercial sorbents in oil spill cleanup 

because of their oleophilic and hydrophobic characteristics.106,107 A major disadvantage of using 

polymer materials is that they degrade very slowly in comparison with the mineral or vegetable 

products and are not as naturally occurring as mineral products.101,106, 108,109  

Effective dispersion of MWCNTs in PVP during creation of composite materials has been 

reported, and PVP was found to reduce the aggregation effect of CNTs. However, application of 

a nanocomposite of PVP with functionalized MWCNTs in water treatment has rarely been 

reported. This is because PVP is a highly polar, non-ionic, amphiphilic, and water-soluble 

polymer, that can swell in aqueous media.110-112 PVP has been used as a hydrophilizing additive 

in a variety of CNT/polymer composites, since it increases the number and size of pores in the 

composites.113,114 Chang et al. fabricated a graphene oxide/PVP based PVDF membrane via 

hydrogen bonding and van der Waals forces.115 They observed that without graphene oxide, an 

increasing amount of PVP tended to create larger pores in the PVDF/PVP membranes, and most 

of the PVP was washed away during membrane fabrication.115 However, addition of graphene 

oxide to the membrane resulted in its interaction with PVP, reducing PVP leaching and 

enhancing the anti-fouling properties of the membranes.115  

A few studies have been done on oil adsorption using CNT/PVP composite membranes. Nan et 

al. fabricated CNT/PVP composite nanofibers by electrospinning for oil adsorption.116 CNTs 

were found to be stuck and tightly embedded on the surface of PVP fibers, making it easy to 

utilize CNTs in the adsorption of the oil. The composites showed a high oil adsorption capacity 

of ~ 1 g/cm3, which is higher than that of a carbon sponge (~ 0.7 to 0.8 g/cm3).105 Castro et al. 

fabricated silica-supported PVP filtration membranes via a graft polymerization process for use 

in the treatment of oil-in-water emulsions. They found that incorporation of PVP improved 

selectivity and reduced the fouling tendency of the membranes due to an increased hydrophilicity 

of the membrane.117 
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2.4.1 Adsorption studies 

The sorption capacity of the adsorbent is usually expressed in grams of pollutant (e.g. oil) 

absorbed by an adsorbent per gram of the adsorbent used (i.e. g.g–1):                                 

Qt = 
0

0

m

mmt              (1) 

where Qt (g.g–1) is the adsorption capacity of the adsorbent at a certain time t(s), mt (g) is the 

weight of the adsorbent after adsorption and m0 (g) is the initial weight of the adsorbent. The 

sorption capacity will reach a saturated value Qm (g.g–1) when Qt does not change with t. 

The sorption kinetics process has been used for CNT sponges105 and was described using a 

second-order adsorption model.118,119 

kt
QQQ mtm




11
           (2) 

where Qt is the sorption capacity at time t, Qm is the saturated sorption capacity, t is the sorption 

time, and k is the sorption constant, which is related to the viscosity, surface tension of the oil 

and the pore structure of the CNT sponge. The slope of a t/qt vs t curve gives the saturated 

sorption capacity, Qm and the intercept can be used to calculate the sorption constant, k. 

In this study the role of chlorine on the morphology of un-doped and nitrogen-doped carbon 

nanomaterials will be explored. The effect of using chlorine functionalized CNTs to facilitate 

interaction between CNTs and polymer matrix in formation of CNT/polymer matrix will also be 

investigated. The composite materials will then be applied as adsorbents for oil in oil spill 

cleanups. To date, production of chlorine functionalized CNT/polymer matrices has never been 

reported. Studies on use of chlorinated materials during synthesis of nitrogen-doped carbon 

nanomaterials surfaced recently. The study involved use of chlorine containing catalysts rather 

than chlorinated organic solvents as it is in our case. Hence this will also present some novelty.      
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CHAPTER 3 

The synthesis of carbon nanomaterials using chlorinated hydrocarbons over a 

Fe-Co/CaCO3 catalyst  

 

3.1 Introduction 

Nanotechnology is a topic that is attracting the interest of scientists in academia, research 

institutions and industry as well as government officials and journalists. Carbon nanotubes 

(CNTs) and carbon nanomaterials (CNMs) in general are key components in the progress of 

nanotechnology. Polyhedral carbon clusters (fullerenes) were discovered in 19851 and this 

eventually led to the seminal studies on carbon nanotubes (CNTs) by Ijima in 1991.2 CNTs offer 

opportunities for the development of novel material systems because they possess unique 

electronic properties,3 exhibit high thermal conductivity,4 and mechanical properties5 such as 

stiffness, strength and resilience. SWCNTs were observed to exhibit an electrical current density 

of ~ 4 × 109 A cm–2 and single-layer graphene sheet was found to possess thermal conductivities 

in the range ~ 4.84 × 103 to 5.30 × 103 W/mk.3,4 An effective increase in the strength to ~17 GPa 

for of double-walled CNTs bundles5 and ~60 GPa for multi-walled carbon nanotubes (CNTs)6 

was achieved by applying high-energy electron irradiation, which crosslinks inner shells and 

tubes. These unique properties render CNTs suitable for application in various fields for 

example, their use in environmental monitoring,7 in water purification,8 as tips for atomic force 

microscope probes,9 as catalyst supports10, in field emission devices11, as chemical sensors12, and 

in fuel cells.13 Methods for making CNTs such as arc discharge, laser ablation, and catalytic 

chemical vapor deposition (CCVD) have been developed.14 To date the production of CNTs by 

the CCVD method remains the preferred route for their large scale production.  

 

A limitation related to the use of CNTs in many applications has always been the difficulty in 

dispersing them in solvents. Scientists have thus functionalized the outer walls of CNTs with 

various groups like halogens and carboxylic groups to improve their solubility. Chemical 

modification of CNTs surface to fine tune their properties has thus led to the creation of new 

materials.16 Doping of the carbonaceous materials with non-carbon atoms, such as nitrogen,12-19 
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boron,20-24 sulphur,25-29 oxygen30-36 and halogens11,37-55 has been explored over the past two 

decades. Modification of the carbon surface and electronic properties has also been explored but 

the effect of chlorine (Cl) on the morphology of carbon nanomaterials is not well established. 

 

It has been shown that incorporation of Cl in the CNMs results in surface functionalisation,41-44 

ease of purification,40,43,45,46 increased yields47-49 and surface restructuring.49,50 The presence of 

chlorine atoms thus produces materials with increased inner diameters, which results in filling of 

CNTs with metal particles51-53 and provides a chemically modified pathway to an ordered carbon 

product.48,49,54 Liquid chlorination of multi-walled CNTs (MWCNTs) gave a Cl loading of about 

0.23 at.%40 based on EDS. XPS analysis of single-walled carbon nanotubes produced from 

dichlorocarbene gave Cl substituted CNTs at a concentration of 1.6 at.%.41 A small number of Cl 

anions were also observed on the surface of the CNTs generated from dichloromethane by XPS 

analysis.11 Chlorine-functionalized CNTs were also produced in the gas phase using a ball-

milling method.42 Purification of CNTs with Cl in both the liquid phase (using CCl4) and the gas 

phase to remove metal particles showed that the gas phase was more effective, but a high 

concentration of Cl on the surface was loaded in the liquid phase.43 Purification and growth of 

vertically aligned MWCNTs in the presence of Cl was  also reported, which resulted in the 

synthesis of CNT arrays with 3.5 mm height.44 

 

The yield of MWCNTs increased from 10% to over 50% using an arc discharge method and KCl 

as a promoter.47 CNMs produced from chlorobenzene were more ordered and their yield 

increased as compared to those obtained from benzene.48 The beneficial role of halogens to form 

charge transfer with Ni particles has been shown by other authors.48,49 An interaction between Cl 

and Ni leading to metal site restructuring was observed when carbon nanofibers (CNFs) were 

grown from Ni/SiO2 and chlorobenzene.50 When the CNMs were grown over Ni/SiO2 carbon 

yields were also shown to increase in the presence of Cl, in the order C2H6 < C2H4< C2H4Cl2< 

C2H3Cl3 < C2H2Cl2 ≤ C2HCl3. The fibre diameter increased with increased Cl substitution in the 

feed.49 Structural changes to give carbons with different structure (CNFs to carbon spheres) were 

observed when CCl2=CHCl was used as a chlorine feed.49 CNFs with tripod-like morphology 

were also synthesized over a NiO xerogel catalyst using trichloroethylene as Cl feed and carbon 

source.54 Synthesis of CNTs over a Fe-Ni catalyst was achieved using chlorinated benzenes and 
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it was observed that the hollow degree of the CNTs increased with an increase in Cl content in 

the feed, which resulted in the CNTs being filled with a Fe-Ni alloy.51 Previous work in our 

group has also shown that the use of chlorobenzene can facilitate growth of CNTs with a large 

inner cavity.53 The participation of Cl was found to play an important role in the synthesis of 

turbostratic CNFs by pyrolysis of a 1,2-dichloroethane/ethanol mixture in the presence of a 

nickel catalyst.55 Ni-Cl bonding on the surface of the catalyst created a poor crystalline layer, 

leading to a coarse surface which caused the disordered precipitation of carbon species and thus 

the formation of turbostratic CNFs.55 Most of the studies of the role of chlorine on the 

morphology of the CNMs have been investigated using a nickel or iron-nickel catalyst. 

 

In previous studies by our group it was found that a Fe-Co/CaCO3 catalyst can be used to make 

good quality CNTs56,57 and nitrogen doped CNTs.58 To further explore the role of this catalyst 

we have investigated the role of chlorine on the morphology of CNTs produced by pyrolysis of 

various chlorine-substituted benzene and ethane feeds using a CCVD method. The results of the 

study are shown below. 

 

3.2 Experimental 

Fe(NO3)3·9H2O (Sigma Aldrich) ≥ 98 %, Co(NO3)2·6H2O (Sigma Aldrich) ≥ 98 %, CaCO3 

(Sigma Aldrich) ≥ 99 %, HNO3 (Sigma Aldrich) ≥ 98 % ACS, chlorobenzene (CB) (Merck), > 

99 % GC, 1,2-dichlorobenzene (DCB) (Sigma Aldrich) 99 % Reagent plus, 1,2,4-

trichlorobenzene (TCB) (Sigma Aldrich) 99 % GC, 1,2-dichloroethane (DCE) (BDH reagent) 

AnalaR grade, 1,1,2-trichloroethane (TCE) (Fluka Chemika) > 98 % GC, 1,1,2,2-

tetrachloroethane (TTCE) (UniLAB SAARChem) 98 % GLC and toluene (UniLab SAARChem, 

Merck) ACS reagent grade, were used. All the reagents were commercially available and used 

without further purification.  

 

3.2.1 Preparation of catalyst by the wet impregnation method56,57 

Fe(NO3)3.9H2O and Co(NO3)2.6H2O were used to prepare the catalyst. Calculated amounts of 

the Fe and Co nitrates were weighed and mixed in a beaker. The salts were then dissolved using 
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30 mL of distilled water to make a 0.3 mol/L Fe and 0.3 mol/L Co precursor solution. The metal 

solution was then transferred to a burette and added dropwise while stirring to a 10 g CaCO3 

support that was placed in a beaker. The mixture was stirred for 30 min. The beaker containing 

the metal-support mixture was then dried paced in an oven for drying at 120 °C for 12 h. The 

metal-support solid was then cooled to room temperature, transferred to a mortar and ground 

with a pestle, followed by screening through a 150 µm molecular sieve. The catalyst powder was 

then calcined at 400 °C for 16 h in a static air oven. This catalyst was completely characterized 

as reported in an earlier article.56 

 

3.2.2 Carbon nanotube synthesis 

The catalyst (1.0 g) was spread in a quartz boat (120 mm × 15 mm) and the boat was placed in 

the center of a quartz tube. The furnace was then heated to 700 °C at a rate of 10 °C/min under 

flowing N2 (50 mL/min). Once the temperature reached 700 °C, the N2 flow rate was set to 240 

mL/min and C2H2 was set at 90 mL/min for chlorinated benzenes; for chlorinated ethanes flow 

rates were set at 280 mL/min N2 and 50 mL/min C2H2, respectively. Both gases were bubbled 

through a chlorinated organic solvent, before introduction into a quartz tube. After 60 min of 

reaction time, the C2H2 flow and bubbling was stopped and the system was left to cool down to 

room temperature under a continuous flow of N2 (50 mL/min). The reaction setup is shown in 

Fig. 1. The quartz boat was then removed from the reactor and the carbon deposit (Cl-

MWCNTs) that formed was weighed.  

 

 

Figure 3.1 Schematic diagram of apparatus used for CNTs synthesis 
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3.2.3  Purification of the CNTs 

Purification of the CNT materials was adapted from Mhlanga et al.56 The carbon materials 

produced were added into a beaker, followed by addition of 30% HNO3. The material mixture 

was stirred in acid at room temperature for at least 30 minutes. The acid-treated carbon materials 

were then filtered over a Whatman No.1 filter paper and the deposits on the filter paper were 

washed with distilled water until the filtrates were neutral (~ pH 7). A pH meter was used to 

measure the final pH of the filtrates. The carbon materials obtained were then dried in an oven at 

120 °C for 12h, weighed and stored in a glass vial.  

 

3.2.4 Characterization of the CNTs 

The morphology and size distribution of the CNTs before and after HNO3 acid treatment were 

analyzed by transmission electron microscopy (TEM) using a FEI TECNAI G2 SPIRIT. The 

samples for TEM analysis were prepared by sonication in ethanol and thereafter deposited on a 

holey carbon-coated TEM Cu grid. The percentage yield of the carbon deposit (% C) was 

determined as described elsewhere.59 The CNTs were also characterized by Raman spectroscopy 

using a Jobin-Yvon T6400 micro-Raman spectrometer. Excitation was provided by the 532 nm 

green laser with spectral resolution of 3-5 cm-1. The impurity content of the CNTs was monitored 

by thermogravimetric analysis (TGA) using a Perkin Elmer TGA 7. The sample was loaded onto 

a platinum pan and heated to 900 °C at a heating rate of 5 °C/min, in a flowing air and nitrogen 

stream both at 20 mL/min.  The phase composition of the samples was determined by powder X-

ray diffraction (PXRD) using a D2 Bruker PXRD with a continuous scan mode using CoKα 

radiation. The scan range was 10–90 2θ degree. The presence of chlorine species in the CNT 

samples was determined by energy dispersive X-ray spectroscopy (EDX) incorporated into the 

SEM. XPS analysis was performed using a PHI 5000 Versaprobe – Scanning ESCA Microprobe 

operating with a 100 µm 25 W 15 kV Al monochromatic X-ray beam. The samples were 

sputtered with 2 kV 2 µA 1 ×1 mm raster – Ar ion gun at a sputter rate of about 18 nm/min for 

60 seconds.  
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3.3 Results and discussion 

The results from the studies of Mhlanga et al.56 and Tetana et al.58 showed that good quality 

MWCNTs and nitrogen doped MWCNTs can be produced from a Fe-Co/CaCO3 catalyst. This 

led us to assume that other hydrocarbons, such as chlorinated hydrocarbons, could be used to 

make CNTs over this catalyst. All products made in this study were black in color; those 

obtained with CB, DCB, DCE, and TCE as chlorine sources appeared soft and spongy, while 

those obtained with TCB, TTCE and toluene were hard. 

 

3.3.1 Structural analysis of the Cl-MWCNTs 

TEM analysis of the carbon deposits after acid treatment showed that the morphologies of CNMs 

varied with the type of feed used. A range of carbons were produced in varying amounts, i.e. 

amorphous material, CNFs and CNTs (open and bamboo), but CNTs were the predominant 

products formed in most cases. 

Purified CNTs produced from CB, DCB and TCB all appeared entangled with a wavy (cooked 

spaghetti-like) morphology (Figs. 3.2, 3.3 and 3.4). It appears that all the aromatic chlorine 

containing reactants gave similar carbon yields (ca. 63-70 %). Purified MWCNTs produced 

using TCB were more entangled and their inner and outer diameters appeared uniform over the 

entire length of the tube (Fig. 3.4). The diameters of the purified CNTs produced from the three 

reactants are given in Table 3.1. Both the inner and outer diameters increased with the reactant’s 

chlorine content. 
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Figure 3.2 TEM image of the purified carbonaceous materials generated using chlorobenzene as 

chlorine source. 

 

TEM analysis also showed the presence of rod shaped catalyst particles embedded inside the 

nanotubes (Figs. 3.2 and 3.4) and some at the tips of the CNFs (Fig.3.3 insert), which were 

formed as a result of un-reacted catalyst particles. This shows that CNTs obtained from the 

aromatic compounds were difficult to purify and this was attributed to the coiled structures as 

well as their narrow inner diameters (Table 3.1). 

Further analysis of TEM images of purified carbon materials produced from DCB revealed the 

presence of small open ended fibrous particles attached to the outside of the CNTs (Fig. 3.3 and 

Supplementary Fig. S4). The secondary nanofibres were initially broad and then became 

narrower as they grew from the primary CNTs. Close inspection of the numerous CNFs 

produced revealed that they all have an inverted cap-like morphology suggesting a loss of metal 

catalyst particles at the tip. The secondary growth was thought to originate from unreacted 

catalyst particles that were left on the surface of the CNTs grown via a tip-growth mechanism. 

The catalyst responsible for the secondary growth was presumably trapped on the surface of the 
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growing CNTs and provided a growth site for secondary CNTs. Similar behavior was reported in 

the literature where some particles were found attached to the ends of CNTs.60 

 

 

Figure 3.3 TEM image of the purified carbonaceous materials generated using dichlorobenzene 

as chlorine source. Growth of small carbon materials on the surface of the CNTs. Insert shows 

metal particles at tips of CNFs. 

 

A small carbon deposit was obtained when TCB was used as chlorine source (Fig. 3.4). The 

large amount of chlorine in the TCB feed was responsible for the few CNTs measured, which 

was attributed to Cl/Fe-Co interactions leading to metal site restructuring that impacted on 

carbon diffusion/precipitation.50 The various morphologies that resulted from the different 

chlorinated feeds were possibly associated with the interaction of gaseous chlorine with the 

catalyst particles. As more chlorine was introduced into the reactor the rate of CNT formation 

decreased, due to catalyst poisoning.  
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Figure 3.4 TEM images of the purified carbonaceous materials generated using 

trichlorobenzene. 

 

Toluene as a representative of a Cl free aromatic hydrocarbon was also tested in this study (Fig. 

3.5). Toluene produced irregular CNTs of similar inner (3 nm) and variable outer diameters (7–

79 nm). MWCNTs of variable inner (7–14 nm) and outer (22–64 nm) diameters were produced 

from a mixture of toluene and ferrocene; iron oxide particles were also seen embedded inside 

some on the outer walls of the CNTs.61 In another study mixed quality carbon structures 

(irregular tubes of different diameters, rods, spirals, fibers, etc.) were found by electron 

microscopy when toluene was used as a hydrocarbon source over an Fe/silica substrate.62 Metal 

particles can also be seen embedded inside the some of the CNTs produced in this study (Fig. 

3.5). Comparison of the CNTs produced using chlorinated benzenes to those obtained using 

toluene shows that the presence of chlorine in the aromatic feed leads to more regular CNTs. 

 

 

 

 

 

 

Metal 

particle 
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Table 3.1 Effect of the reactants on the structure, outer and inner diameters of the purified 

MWCNTs. 
Chlorine 

source 

 

Outer 

diameter  

/nm 

 

Average 

Outer 

diameter 

/nm 

Inner 

diameter 

/nm 

Carbon 

structure(s) 

 

% 

CNTs 

Carbon 

yield 

/% 

Volume of 

hydrocarbon 

source used 

after reaction 

/mL 

CB 11–44 29 3–9 CNTs and a 

measurable 

quantity of 

“Bamboo-

like” CNTs 

90 70 0 

DCB 22–41 

(CNTs) 

62–100 

(CNFs) 

33 

77 

6–11 CNTs 80 68 0 

TCB 23–79 49 17–21 CNTs 70 63 0 

Toluene 7–79 29 3 CNTs 90 72 5 

DCE 52–166 

(CNFs) 

10–30 

(CNTs) 

 

108 

15 

 

4 

CNTs, 

CNFs 

20 92 5 

TCE 16–23 20 5 CNTs and 

“Bamboo-

like” CNTs 

70 82 2 

TTCE 29–66 50 12 CNTs and  

“Bamboo-

like” CNTs 

80 81 1 

 

    
Figure 3.5 TEM images of the purified carbonaceous materials generated using toluene. 

Metal 

particle

s 
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TEM images of the purified MWCNTs produced from the three chlorinated ethanes all appeared 

entangled with a coiled spaghetti-like shape (Fig. 3.6, 3.7 and 3.8). The purified CNMs produced 

from DCE contained a mixture of mainly CNFs (Fig. 3.6a and Supplementary Figure S5) and 

some CNTs (Fig. 3.6b). CNTs with little by-product formation were obtained from TCE and 

TTCE (Fig. 3.7 and 3.8). The formation of CNFs must relate to the amount of hydrogen present 

in the DCE (C2H4Cl2) feed.63 

 

                                  

          

Figure 3.6 TEM image of the purified carbonaceous materials generated using dichloroethane as 

chlorine source. 

(a) 

(b) 
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The carbon yields obtained using chlorinated ethanes were 92, 82 and 81 % for DCE, TCE and 

TTCE, respectively. The carbon yields were not dependant on the amount of chlorine present in 

the feed.  

 

 
Figure 3.7 TEM images of the purified carbonaceous materials generated using (a) 

trichloroethane. Growth of small carbon materials of different shapes on the surface of the CNTs 

can be seen in (b) and (c).  
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The TEM images of carbon materials produced from TCE are shown in Fig. 3.7. The three 

figures reveal different features associated with the CNTs. Fig. 3.7a highlights the entangled 

CNTs and many of these CNTs appear to show bamboo compartment features. Fig. 3.7b shows 

secondary growth of short CNTs with hollow tips, which seem to originate from the main CNTs. 

These are similar to those seen above in Fig. 3.3 when DCB was used as a reactant, but here 

tubes do not taper and the hollow structures can be clearly seen. Finally, wine glass-like 

secondary structures were also seen in Fig. 3.7c. These secondary structures had very thin walls 

and did not show the presence of catalyst particles. The presence of un-reacted catalyst material 

on the surface of the CNTs could be responsible for the secondary growth via a tip-growth 

mechanism. 

 

MWCNTs produced using TTCE also appeared entangled with different outer wall diameters 

(Fig. 3.8a, b). Numerous small particles can also be observed on the surface of the CNTs, but no 

secondary nanofibre growth was observed. This might also be attributed to the amount of 

chlorine in the feed, which if present in large amounts inhibits the growth of secondary fibrous 

particles. The inner diameters of the MWCNTs produced using chlorinated ethanes also 

increased with an increase in the amount of Cl contained in the organic reagent (Table 3.1), 

which suggests HCl-induced metal agglomeration, as has been demonstrated elsewhere.48,50 

 

TEM images of carbon materials produced from TCE and TTCE (Fig. 3.7a and 3.8b 

respectively) also revealed some morphological differences. The carbon materials showed 

nanotubes with ‘segmented’ appearance i.e., a ‘bamboo-like’ structure. TEM images have been 

reported previously in the literature where ‘bamboo-like’ nanofibers were produced when DCE, 

dichloroethylene and TCE were used as sources of Cl over Ni/SiO2 catalyst and were attributed 

to a seed metal reconstruction leading to unequal diffusion of carbon through the metal particle.49 

In our case the bamboo structures might arise from effects related to the interaction of chlorine 

with metal particles leading to catalysts restructuring. Bamboo structures were not seen for the 

CNTs obtained in this study when DCE was used which might be due to their limited production 

but the segmentation was observed from CNFs produced from DCE (Supplementary Fig. S2). 
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More segmented CNTs were observed for CNTs produced from TCE (Fig. 3.7a). The distances 

between compartments appeared similar for both reactants. 

 

 

Figure 3.8 TEM images of the purified carbonaceous materials generated using (a) 

tetrachloroethane. Bamboo compartments can be seen in (b).  

 

 

3.3.2 TGA and PXRD analysis 

TGA and derivative TGA (DTGA) curves of the purified (Fig. 3.9) and un-purified 

(Supplementary Fig. S6). MWCNTs samples were recorded in an oxygen atmosphere to monitor 

the weight loss and thermal stability of the samples. CNTs synthesized in the presence of 

chlorine using CB, DCB and TCB as chlorine sources, revealed oxidation peaks at ~612 °C, 601 

°C and 589 °C, respectively (Table 3.2). Previously, Mhlanga et al.56 showed that CNTs 

synthesized using this catalyst with non-chlorinated reactants oxidized at ~ 550 °C.  

From these thermographs and DTGA data (Table 3.2) it can be seen that the decomposition 

temperature of the purified CNTs made from the aromatic carbon feeds decreased with an 

increase in the amount of chlorine. The DTGA curves of the CNTs also show the appearance of 

peaks at ~ 690 °C. These peaks are well-defined for CNTs generated from CB, but appeared as 
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shoulder peaks for DCB and TCB CNTs. These peaks are assigned to the presence of small 

amounts of graphitic materials.64,65  

Further evaluation of the thermographs obtained from chlorinated benzenes, revealed that the 

CNTs contained residues even after purification in 30 % HNO3 for 30 min (~21 %, 6 % and 10 

% for CB, DCB and TCB (Table 3.2)). An attempt was made to further purify the materials 

generated from CB by stirring the product in 30% HNO3 for 2 h and 3 h (Supplementary Fig. 

S7). The residual mass had not changed (~18% and 20%) after the 2 h and 3 h acid treatments. A 

further harsher treatment was employed by refluxing the product in acid at 110 °C for 4 h which 

resulted in destruction of the CNTs structure but a residual non-carbon mass of 8 % still 

remained (Supplementary Fig. S7). This showed that catalyst particles remained intact and could 

not be removed from the CNTs despite the harsh acid treatment used. The results correlated with 

the TEM observations; where images showed the presence of many catalyst particles embedded 

inside the CNTs (Fig. 3.2) as well as at the tip of a few CNFs made from materials produced 

using DCB (Fig. 3.3 insert). This implied that the catalyst particles were embedded (i) inside 

bamboo structures, (ii) within the graphitic layers of the CNTs and (iii) inside the tips of some 

CNFs (Fig. 3.3 insert). Similar results were observed in the literature using FeNi catalyst when 

the residual metal contents of 31, 27 and 24 wt.% were observed from TGA curves generated 

from trichlorobenzene, dichlorobenzene and chlorobenzene as carbon sources; a 3 wt.% residue 

was observed under the same conditions using xylene as carbon precursor.51  

TGA (Fig. 3.9c) and DTGA (Fig. 3.9d) curves generated from chlorinated ethanes all show 

similar oxidation peaks at ~ 619 °C (for DCE and TTCE) and ~ 621 °C for TCE. The chlorinated 

materials are more thermally stable than those produced from chlorinated benzenes. Catalyst 

particles were not embedded inside the CNTs (< 2 %) for the CNTs produced from chlorinated 

alkanes. 
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Figure 3.9 TGA and corresponding derivative profiles of the purified MWCNT samples 

produced using chlorinated benzenes (a and b) and ethanes (c and d) as Cl sources. 

 

 

 

(a) (b) 

(c) (d) 
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Table 3.2 Decomposition temperatures and residual masses (determined by TGA) of the un-

purified and purified (P) chlorinated CNMs. 

Chlorine source Decomposition temperature / °C Residual mass / % 

CB 617 26.7 

CB(P) 612 21.6 

DCB 597 29.6 

DCB(P) 601 6.6 

TCB 600 29.8 

TCB(P) 589 10.1 

DCE 550 15.9 

DCE(P) 619 0.0 

TCE 594  13.6 

TCE(P) 621 2.5 

TTCE 615 13.5 

TTCE(P) 619 0.0 

 

XRD characterization was performed, to further analyze the purity of the CNTs. The XRD 

profiles of the purified MWCNTs generated from chlorinated hydrocarbons are presented in Fig. 

3.10. All XRD patterns show the presence of graphitic carbon represented by a C(002) peak at 2θ 

= 30° and another peak at 2θ = 53 °. The peak at 2θ = 30 ° has been attributed to MWCNTs.66 

The C(002) peak for CNTs synthesized without chlorine was broader when compared to C(002) 

peaks of CNTs synthesized in the presence of chlorine. The full width at half maximum 

(FWHM) of the C(002) peak decreased after introduction of chlorine, and increased with an 

increase in the amount of chlorine in the feed (Table 3.3). The smaller broadening of the FWHM 

of the C(002) peak with an increase in the amount of chlorine was attributed to an increased 

crystallinity of the materials.66,67  

For chlorinated ethanes, the FWHM of the C(002) peak decreased in the order DCE=TTCE>TCE 

(Table 3.3). CNTs synthesized using TCE were more crystalline than those generated from DCE 

and TTCE. These observations agree well with the TGA graphs where CNTs generated from 

TCE were oxidized at higher temperatures, meaning they were more thermally stable than those 

generated from other chlorinated-ethane feeds.   

Another broad peak closer to the one at 53 ° was attributed to small amounts of carbides in the 

carbon material. PXRD analysis revealed peaks at 2θ ~ 38 °, 43 ° and 64 ° due to the presence of 
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cobalt ferrite nanoparticles68 for CNTs generated from CB, DCB, TCB and TCE, confirming that 

some metal particles still remained after purification as confirmed by the TGA analysis.  

 

 
Figure 3.10 XRD spectra of the purified CNTs produced from (a) DCE, (b) TCE, (c) TTCE, (d) 

Fe-Co/CaCO3 without chlorine56 (e) CB, (f) DCB and (g) TCB. 

 

 

Graphite 

 Fe3C 

CoFe2O4 
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Table 3.3 PXRD structural parameters of purified CNTs synthesized in the absence and presence 

of chlorine. 

Chlorine Source FWHM of C(002) peak (°) 

None 3.2 

CB 1.2 

DCB 2.5 

TCB 2.8 

DCE 3.2 

TCE 2.2 

TTCE 3.2 

 

  

3.3.3 Raman spectral analysis 

The crystalline nature of the MWCNT structures was verified by Raman spectroscopy. Raman 

spectra for all chlorinated MWCNTs (Fig. 3.11 and 3.12) shows a D-band at around 1350 cm-1 

which is attributed to defects in the curved graphene layers and tube ends and a G-band at around 

1576 cm-1 which correspond to the movement in the opposite direction of two neighboring 

carbon atoms in a graphene sheet. The intensity ratio ID/IG is known to depend on the structural 

characteristics of the CNTs.69 An increase in ID/IG corresponds to a higher proportion of sp3 

carbon that is usually attributed to the presence of more structural defects.70 ID/IG ratios of 0.96, 

0.96 and 0.76 were observed for CNTs produced from CB, DCB and TCB respectively (Table 

4.4). These ratios increased slightly as compared to those shown by Mhlanga et.al56 for 

unchlorinated CNTs (0.7). This shows that the CNTs remained graphitic after addition of 

chlorine, but functionalization of carbon with chlorine produced some defects which agrees with 

the TGA and XRD data.  

The ID/IG peak ratio for CNTs produced from DCE (0.89) and TTCE (0.89) were similar, and 

agreed well with the TGA and the XRD data. Structural defects, shown by the highly intense D 

peak (Fig. 3.12), were obtained when TCE was used as a source of chlorine. These can be 

associated with to the formation of bamboo-like CNTs and the growth of open-ended carbon 

nanotubes onto the main CNTs as observed from TEM images. An overtone 2D peak was also 

observed at ~ 2680 cm–1 in the spectra of CNTs generated from DCE, TTCE, CB, TCB and 

toluene (Fig. 3.11 and 3.12). This suggests that the materials have a good percentage of graphitic 

carbon, which agrees with the lower ID/IG ratios produced for these materials. 
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Figure 3.11 Raman spectra of the purified CNTs produced from CB, DCB, TCB and toluene.  

 

 

Figure 3.12 Raman spectra of the purified CNTs produced from DCE, TCE and TTCE.  
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Table 3.4 D-bands, G-bands, 2D-bands and ID/IG ratios of the purified chlorinated CNMs. 

Chlorine 

source 

D-band 

/cm-1 

G-band 

/cm-1 

2D-band  

/cm-1 

ID/IG ratio 

(peak height) 

ID/IG ratio 

(peak area) 

CB 1338 1576 2681 0.96 1.8 

DCB 1338 1589 - 0.96 2.1 

TCB 1341 1576 2680 0.76 1.5 

Toluene 1338 1574 2678 0.71 1.3 

DCE 1339 1575 2679 0.89 1.8 

TCE 1341 1581 - 1.19 2.1 

TTCE 1338 1574 2678 0.89 1.5 
- No peak observed or the observed peak height is negligible. 

 

3.3.4 Energy dispersive X-ray spectroscopy analysis 

The EDX analysis (Table 3.5) revealed the presence of Cl species in all chlorinated samples. It 

was found that the amount of Cl on the MWCNTs (i) increased with an increase in the amount of 

Cl in the organic reagents and (ii) aromatic reactants gave less Cl substitution than aliphatic 

reactants (Table 3.5). This demonstrates that the use of highly chlorine substituted feeds, gives 

greater functionalization of CNTs with Cl. The data correlates with the TEM data where TCE 

and TTCE gave more segmented CNTs; hence incorporation of Cl into the carbon structure and 

secondary fibrous growth observed on the surface of the CNTs can be related to the amount of Cl 

present. 

 

Table 3.5 EDX analysis of Chlorinated-CNMs grown using different chlorinated organic 

solvents. 

Chlorine source Chlorine (Cl) 

Weight 

/% 

CB 0.07 

DCB 0.12 

TCB 0.26 

DCE 0.27 

TCE 0.75 

TTCE 1.53 
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3.3.5 XPS Analysis  

The surface characteristics of purified MWCNTs were analysed by XPS. Supplementary Figure 

S8 and S9 shows the deconvoluted XPS plots of C1s and Cl2p for all the studied chlorinated 

organics. The C1s curve for all MWCNTs was deconvoluted into five components with binding 

energies of ~284.0, 284.8, 285.4, 286.1 and 286.8 eV (Table 3.6). Four of these peaks are readily 

assigned to Csp2, Csp3, C–OH and C=O; it is possible to tentatively assign the fifth peak at 285.4 

to C covalently attached to Cl.71,72  

The Cl2p spectrum of CNTs generated from chlorinated organics (Supplementary Figs. S8 and 

S9) showed two signals at ~201 and 199 eV which are assigned to the 2p1/2 and 2p3/2 of a chloride 

ion (e.g. as found in metal chlorides).72,73 Unfortunately the 2p1/2 peak associated with covalent 

C-Cl bonds overlaps with the 2p3/2 associated with the presence of the chloride ion peak. 

Furthermore, the low concentration of the Cl in the samples generates very small peaks for Cl 

and this makes it difficult to quantify the amount of covalent Cl in the CNTs. However, the 

2p1/2/2p3/2 ratios for the Cl peaks indicate values below ca.1.6, the value expected when only 

ionic chloride is present (Table 3.6). This suggests that indeed small amounts of C-Cl bonds 

have been made; the CNTs made from TTCE thus have the largest amount of C-Cl bonds. This 

chlorine would be attached to sp2 carbons at the periphery of the aromatic structures, or at defect 

sites.71 The low Cl content is not unexpected as C-Cl bonds are readily broken under the high 

temperature condition employed in the CNT synthesis. 
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Table 3.6 XPS analysis of purified chlorine functionalized CNTs grown using different chlorine 

sources 

Binding energy /eV (and atomic concentration /%) 

 

Chlorine source C Cl 

CB 284.0 (69.7 %) 

284.8 (14.7 %) 

285.3 (7.44 %) 

286.0 (4.20 %) 

287.0 (3.95 %) 

199.4 (58.1 %) 

201.0 (41.9 %) 

DCB 284.0 (65.5 %) 

284.8 (16.5 %) 

285.4 (13.2 %) 

286.2 (1.43 %) 

287.0 (3.50 %) 

199.0 (59.8 %) 

200.1 (40.2 %) 

TCB 284.0 (72.1 %) 

284.9 (13.9 %) 

285.5 (6.51 %) 

286.0 (2.00 %) 

287.0 (5.52 %) 

199.2 (62.9 %) 

200.8 (37.1 %) 

DCE 283.9 (62.3 %) 

284.5 (16.5 %) 

285.1 (12.7 %) 

285.7 (4.88 %) 

286.7 (3.64 %) 

199.0 (63.8 %) 

200.6 (36.2 %) 

TCE 284.0 (69.1 %) 

284.7 (8.82 %) 

285.2 (13.9 %) 

286.0 (5.72 %) 

286.7 (2.42 %) 

199.0 (59.1 %) 

200.9 (40.8 %) 

TTCE 284.0 (69.2 %) 

284.7 (22.1 %) 

285.2 (10.7 %) 

285.8 (3.52 %) 

286.6 (0.685 %) 

199.3 (54.5 %) 

200.9 (45.6 %) 

 

3.4 Conclusion 

The role of chlorine on the morphology of MWCNTs synthesized by the catalytic pyrolysis of 

chlorinated organic reagents over a Fe-Co/CaCO3 catalyst was studied. The structural 

morphology of CNTs produced depended on the amount of chlorine present in the feed and on 

the type of organic chlorine compound used. CNTs generated from TCE and TTCE showed the 

formation of bamboo-like structures, which were due to catalyst restructuring by chlorine. 
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Secondary nanofibre and nanotube growth onto the main CNTs was observed when DCB and 

TCE chlorine sources were used. Carbon nanofibers were found to be dominant when chlorine 

sources (i.e, DCE) that contained high concentration of hydrogen were used. Addition of 

chlorine favoured the growth of carbon materials of high purity. Alkanes gave cleaner CNMs 

with higher yields than those formed from the aromatic reactants. XPS studies revealed that most 

of the Cl found in the CNTs was ionic chlorine, most probably associated with the Fe and in the 

CNT tubes. Some surface functionalization of carbon with chlorine is suggested when TTCE was 

used as a reagent. The amount of chlorine functionalized on the surface of CNTs was less than 

1% for all chlorinated organics studied, evidenced by XPS and EDS. The role of chlorine on the 

morphology of nitrogen-doped CNTs and the use of chlorinated MWCNTs as adsorbents for 

selected heavy metals in wastewater treatment is underway.  
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CHAPTER 4 

One step synthesis of carbon nanotubes with secondary growth: role of 

chlorine 

 

4.1 Introduction 

Since their discovery, the unique properties of carbon nanotubes (CNTs)1 and of their less 

crystalline counterparts carbon nanofibers (CNFs)2 have attracted the interest of many scientific 

communities. CNTs and CNFs possess excellent thermal properties,3,4 as well as unique 

electronic5,6 and mechanical properties4,7 which exceed those of many currently applied 

materials. CNTs have a low density, high transparency, large surface area, and high aspect ratio.8 

This makes CNTs a good candidate for use as a nanoscale platform for sensors,9 transparent 

electrodes,10 a catalytic surface for fuel cells,11 emitters for light sources based on field 

emission,12,13 electron sources in transmission electron microscopes,14 etc. Synthesis of CNTs 

with different shapes such as waved, coiled, crossed and branched has been a subject of many 

investigations and the synthesis strategy has the potential to open the way to various 

applications, such as in molecular electronics.15 In order to enhance the use of CNTs as a 

nanoscale platform, a high density network structure of CNTs with chemically connected CNTs 

must be formed.8 If the cross-links between the nanotubes establish a stable connection, then it 

should also be possible to create very strong polymer compound materials.16 There are a few 

reports that have discussed the chemical connection between CNTs, between CNTs and CNFs 

and the synthesis of CNTs on graphite substrates. The limitations of any connections are due to 

various reasons, (i) the inert surface characteristics of CNTs allow only physically aggregated 

bundle structures without chemical connection between CNTs8; (ii) transition metals are easily 

diffused into the carbon substrates; and (iii) the different phases of carbon materials are able to 

form on the graphite substrate because the growth conditions are similar to the diamond or 

diamond-like carbon growth.17,18 To overcome these issues it is proposed that covalent bonding 

between different carbon structures be used.  The first report of CNT growth on carbon fibers 

was by Zhu, et al.19 In their report CNTs were synthesized on graphite fibers by first coating the 
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fiber surface with iron nanoparticles to act as catalyst for CNT growth. CNTs could only be 

fabricated on the graphitic fiber surfaces at low temperatures with catalytic particles on the 

nanotube top ends.19  

These structures in which carbon has secondary growth on top of CNTs or CNFs have found 

some applications. Enhancement of field emission properties of MWCNTs by secondary growth 

was reported by Klinke et al., after they coated primary CNTs with Ni, Au and ferritin before 

resubmission to CVD for secondary growth of nanotubes.16 Electrochemical decoration of CNTs 

with Ni nanoparticles was also employed by Santini et al. for growing branched CNTs.20 

Attachment of colloidal FePt nanoparticles on primary CNTs by dispersion in solution was 

employed by Lee et al. in order to facilitate a uniform deposit of the catalyst on the CNTs for 

growth of secondary CNTs.8 An electron beam welding technique was employed by Terrones et 

al. to locally melt and solidify CNTs at the junction of CNTs.21   

In this study we explored the role of chlorine on the secondary growth of CNFs on the surface of 

CNTs by a one-step CVD method using dichlorobenzene (DCB). To our knowledge secondary 

growth of CNFs onto the primary CNTs by a one-step process has not previously been 

documented. The role of chlorine in the initiation of secondary nanofibers was discovered by 

serendipity in our earlier work.22 

 

4.2. Experimental 

4.2.1 Materials and Chemicals 

Fe(NO3)3·9H2O (Sigma Aldrich) ≥ 98 %, Co(NO3)2·6H2O (Sigma Aldrich) ≥ 98 %, CaCO3 

(Sigma Aldrich) ≥ 99 %, HNO3 (Sigma Aldrich) ≥ 98 % ACS, 1,2-dichlorobenzene (DCB) 

(Sigma Aldrich) 99 % Reagent plus, were used. All the reagents were commercially available 

and used without further purification.  

 

4.2.2 One-step synthesis of CNTs with secondary growth 

The Fe-Co/CaCO3 catalyst (1.0 g) was spread in a quartz boat and the boat was placed in the 

center of a quartz tube. The furnace was then heated to 700 °C at a rate of 10 °C/min under 
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flowing N2 (50 mL/min). Once the required temperature has been reached, the N2 flow rate was 

increased to 240 mL/min and the C2H2 flow rate was set at 90 mL/min. Both gases were bubbled 

through dichlorobenzene, which was introduced into the quartz tube. After 60 min of reaction 

time, the C2H2 flow and bubbling was stopped and the system was left to cool down to room 

temperature under a continuous flow of N2 (50 mL/min). The quartz boat was then removed from 

the reactor and the carbon deposit (chlorinated MWCNTs) that formed was weighed. The 

reaction time was varied from 60 to 120 minutes, in order to establish the effect of reaction time. 

The reaction temperature was also varied using the following temperatures, 600, 650, 700, 750, 

and 800 °C, respectively while maintaining the reaction time of 90 min.  

 

4.2.3 Synthesis of secondary CNFs using CNTs as substrate 

About 0.3 g of as-synthesized CNTs prepared using a method by Mhlanga et al.23 In this method 

a Fe-Co/CaCO3 catalyst, was spread in a quartz boat, which was placed in a quartz tube. The 

tube was inserted into a furnace, which was heated gradually to 700 °C at a rate of 10 °C/min 

under N2 (50 mL/min) flow. Once the required temperature has been reached, the N2 flow rate 

was increased to 240 mL/min and the C2H2 flow was set at 90 mL/min. The CNT substrate were 

then placed into the quartz boat, which was inserted into the quartz tube. The quartz tube was 

inserted into the furnace, which was gradually heated to 700 °C in the presence of an inert gas 

(N2). At 700 °C, N2 (240 mL/min) and C2H2 (90 mL/min) were bubbled through 

dichlorobenzene, and the gas stream was introduced into a quartz tube. After 120 min of 

reaction, the C2H2 flow and bubbling was stopped and the system was left to cool down to room 

temperature under a continuous flow of N2 (50 mL/min). The quartz boat was then removed from 

the reactor and the carbon deposit that formed was weighed.    

 

4.2.4 Synthesis of secondary CNFs onto primary CNTs using CNTs spread with catalyst 

About 0.2 g of purified CNTs prepared over a Fe-Co/CaCO3 catalyst using a method by Mhlanga 

et.al23, was placed in a quartz boat and 0.2 g of Fe-Co/CaCO3 catalyst was spread on top of the 

CNTs and submitted to a CVD process. A mixture of dichlorobenzene, N2 (240 mL/min), and 

C2H2 (90 mL/min) was passed through the reactor for 60 min, while the CVD reactor was kept at 

700 °C. The procedure employed was the same as the one used in 4.2.2. 
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4.2.5 Characterization of CNTs 

The morphology and size distribution of the CNTs before and after HNO3 treatment were 

analyzed by transmission electron microscopy (TEM) using a FEI TECNAI G2 SPIRIT. The 

samples for TEM analysis were prepared by sonication in ethanol and thereafter deposited on a 

holey carbon-coated TEM Cu grid. The CNTs were also characterized by Raman spectroscopy 

using a Jobin-Yvon T6400 micro-Raman spectrometer. Excitation was provided by a 532 nm 

green laser with spectral resolution of 3-5 cm-1. The impurity content of the CNTs was monitored 

by thermogravimetric analysis (TGA) using a Perkin Elmer TGA 7. The sample was loaded onto 

a platinum pan and heated to 900 °C at a heating rate of 5 °C/min, in a flowing air stream at 20 

mL/min. 

 

4.3 Results and discussion 

4.3.1 Structural analysis of the chlorinated CNTs: Effect of reaction time and temperature 

Figures 4.1 to 4.5 shows TEM images of CNTs generated from dichlorobenzene as a chlorine 

source at different reaction times, 60, 90 and 120 minutes, respectively. Multiple secondary 

CNFs with similar shapes and outer diameters were grown on various CNTs after 60 min of 

reaction (Figure 4.1). The secondary CNFs were initially broad and then became narrower as 

they grew. Close inspection of the numerous CNFs produced revealed that they all had an 

inverted cap-like morphology. The length of the secondary CNTs was short, ca. 21–179 nm 

(Figure 4.1). About 40 % of the primary CNTs had secondary CNFs after 60 min of reaction. 

Other carbon nanostructures, carbon nano-onion and carbon nanofibers with metal particles at 

their tips were observed at a 60 min reaction time. Increasing the reaction time to 90 min resulted 

in an increase in the number of secondary CNFs formed (Figure 4.2). The secondary CNFs were 

grown with consistency in terms of their size, length and shape compared to those obtained after 

60 min of reaction (Figure 4.2). The secondary CNFs were also less graphitized and shorter in 

length than the primary CNTs. The quantity of the secondary CNFs increased at longer reaction 

times, with ~ 90 % observed after 90 min of reaction.  
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Figure 4.1 TEM image of purified CNTs showing secondary CNFs generated using 

dichlorobenzene as chlorine source at 60 min reaction time, using the following reaction 

conditions: 700 °C, 240 mL/min (N2), 90 mL/min (C2H2) 

 

Carbon platelets or some amorphous carbon materials were also observed from the images of the 

CNTs obtained from a 90 min reaction time (Figure 4.2d circled parts). A CNT with funnel-like 

open end was also observed from this TEM images (Figure 4.2d arrow).   

(a) 

(c) (d) 

(b) 
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Figure 4.2 TEM images of purified CNTs showing secondary CNFs generated using 

dichlorobenzene as chlorine source at 90 min reaction time, using the following reaction 

conditions: 700 °C, 240 mL/min (N2), 90 mL/min (C2H2). 

 

High resolution TEM image revealed the absence of catalyst particles at the beginning of the 

secondary CNFs (Figure 4.3) which shows that the CNFs were grown from a catalyst free 

surface. Further analysis of the HRTEM images reveal that the secondary CNF appears as a 

continuous extension of the CNT sidewall and not simply attached to the outer wall of the CNTs. 

(a) 

(d) (c) 

(b) 
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This observation suggests that the secondary CNFs may have nucleated from defects or fractures 

in the CNT sidewall. 

 

 

Figure 4.3 HRTEM image of purified CNTs showing the origin of the secondary CNFs growth 

synthesized at a 90 min reaction time and 700 °C temperature. 

 

Few secondary CNFs were also observed growing at different positions of the CNT wall 

structure, for example CNFs were observed growing from the tip of a CNT that contained a 

metal particle embedded at its tip (Figure 4.4a and b shown by arrows). The secondary CNFs did 

not originate from the embedded catalyst it was a continuous extension of the CNT tip wall. A 

large aggregate of entangled CNTs covered with amorphous carbon materials or carbon platelets 

also showed a large aggregate of secondary structures (Figure 4.4c). Another secondary CNF 

was observed growing at the curved or bent part of the CNT (Figure 4.4d shown by arrow), 

which proves that the secondary CNFs were growing from defect sites of the main CNTs. 

Poncharal et al. observed from their in-situ TEM measurements that the greatest deformation 

occurs in the outer layers of a bent nanotube.24 Another secondary CNF can also be observed 

lying on the wall of the main CNT (Figure 4.4d circled part). It appears that a large magnitude of 
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CNTs and CNFs can be grown from each other (i.e. using each other as templates) by simply 

fine tuning the reaction conditions. We suggest that the secondary structures grew via a catalyst 

free mechanism, and this was initiated by defects that were created by covalent bonding between 

carbon and chlorine. Since secondary structures were not observed from CNTs generated using 

the same reagents and reaction conditions in the absence of chlorine source.23  

 

  

  
Figure 4.4 TEM images showing other interesting growth sites of the secondary CNFs from the 

main CNTs, synthesized at 90 min and 700 °C. 

(a) (b) 

(c) (d) 
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Increasing the reaction time to 120 min, resulted in a negligible growth of secondary CNFs and 

production of a measurable quantity of CNTs with rough surfaces (Figure 4.5). A single 

secondary CNF was observed growing on the sidewall of the CNT in the TEM image taken 

(Figure 4.5a, and b, see arrows). The secondary CNF in Figure 4.5c has grown from the tip of the 

CNT. The length of the secondary CNTs were longer than for those obtained from a 60 and 90 

min reactions, about 166.7, 360 and 75 nm for Figure 4.5a, b and c, respectively. Limited growth 

of secondary CNFs at 120 min reaction time, shows that the secondary growth was time 

dependent. The negligible quantity of the secondary CNFs at high reaction times, could probably 

be as a result of lack or limited number of functionalized CNTs with chlorine which only 

resulted in the formation of metal chlorides. The metal chlorides at the surface of the CNTs were 

formed when the amount of chlorine that was purged into the system was too high. Metal 

chlorides blocked the active sites or the defect sites and induced a change in the structure of the 

CNT surface, hence inhibiting growth of the secondary CNFs. 

Formation of amorphous carbon on the surface of the CNTs at longer reaction times was also 

reported.25 We can also suggest that lack of secondary CNFs at longer reaction times was due to 

blockage of the main CNT surface by amorphous carbon. Raman spectra and TGA analysis will 

assist in making the final conclusion. The average outer diameters of the CNTs obtained using ~ 

200 CNT samples were 33, 47 and 82 nm, after 60, 90 and 120 min growth time, respectively.  
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Figure 4.5 TEM images of (a) purified CNTs showing secondary CNFs generated using 

dichlorobenzene as chlorine source and (b) showing where the secondary growth originates, at 

following reaction conditions: 120 min, 700 °C, 240 mL/min (N2), 90 mL/min (C2H2). 

 

The effect of the synthesis temperature (600, 650, 700, 750, and 800 °C) on the growth of 

secondary CNFs on the surface of the primary CNTs was also investigated. TEM images 

revealed changes in the morphology of the carbon nanostructures with an increase in the 

synthesis temperature. At lower synthesis temperatures of about 600, 650 and 700 °C, the CNTs 

appeared hollow inside, and had smooth clean surfaces (Figure 4.6a and b, Figure 4.7a and b and 

(a) (b) 

(c) 
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Figure 4.2). CNTs generated at 750 °C started to have curved rough surfaces, some appeared 

compartmented and others irregular (Figure 4.7c and d). Thin CNTs with hollow structures were 

also observed at 750 °C (Figure 4.7c and d). At 800 °C, thinner hollow structured CNTs were 

produced together with a few large compartmented CNTs with rough surfaces (Figure 4.8a). 

Carbon nanospheres were also obtained from the CNMs generated at high reaction temperature 

of 800 °C (Figure 4.8b). Secondary growth was not observed from CNTs generated at reaction 

temperatures 600, 650, 750 and 800 °C, as shown by their TEM images (Figure 4.6 a–d). At low 

temperatures < 650 °C, the reaction temperature was not sufficient for creation of defects needed 

for growth of secondary CNFs, possibly due to limited amount of chlorine atoms functionalized 

on the CNTs. At temperatures higher than 700 °C the synthesis temperature was too high and led 

to increased supply of chlorine atoms into the system, which interacted with catalyst metal 

particles. Interaction of chlorine with catalyst metal particles resulted in formation of metal 

chlorides which covered the substrate hence inhibiting CNT growth.  

 

  
Figure 4.6 TEM images of purified CNTs generated using dichlorobenzene as chlorine source at 

a reaction time of 90 min and reaction temperature of 600 °C. 

(a) (b) 
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Figure 4.7 TEM images of purified CNTs generated using dichlorobenzene as chlorine source at 

a reaction time of 90 min and reaction temperature of 650 (a and b) and 750 (c and d) °C. 

 

(c) (d) 

(a) (b) 
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Figure 4.8 TEM images of purified CNTs generated using dichlorobenzene as chlorine source at 

a reaction time of 90 min and reaction temperature of 800 °C. 

 

SEM images revealed smooth surfaced CNTs with nearly uniform outer diameters at 600 to 700 

°C synthesis temperatures (Supplementary Figure S10). At 750 °C the amount of CNTs formed 

decreased, their length also decreased and they also had variable sizes and appeared open-ended 

(Supplementary Figure S10d). Clumps were observed from the SEM images where CNTs 

seemed to be originating and it was suggested that these clumps were metal chloride particles 

(Supplementary Figure S10). Metal chloride were formed from interaction of chlorine atoms 

with metal catalyst particles and blocked the surface of the substrate inhibiting carbon growth 

rates. The average outer diameters were found to increase with an increase in the reaction 

temperature up to 750 °C as follows, 23, 29, 47, and 72 nm at 600, 650, 700, and 750 °C 

respectively (Figure 4.9, Supplementary Figure S11 and Table 4.1). At low temperatures the 

catalyst particles had small sizes which favored growth of smaller diameter CNTs. Increasing the 

temperature resulted in an increase in an average diameter of the catalyst particles which in turn 

favored growth of large outer diameter CNTs. Hansen et al. observed an increase in particle size 

from 5 nm to 10 nm when the temperature was increased from 650 to 750 °C.26 They explained 

the phenomena as due to a catalyst sintering process, they observed the particles under the 

electron beam of a TEM during temperature changes. They observed that particles at low 

(a) (b) 
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temperatures were stationary, with little noticeable random motion. With an increase in 

temperature migration occurred which was due to particles around 10 nm or larger. When these 

migrating particles encountered other particles on the support, they coalesced and became 

spheroidal within one image frame.26 The average outer diameter decreased tremendously to 27 

nm when the reaction temperature was increased to 800 °C (Supplementary Figure S11 and 

Table 4.1). At high temperatures other factors such as catalyst support sintering also takes 

effect.26 Studies on various model catalyst supports (single crystals of sapphire, quartz, and 

yttria-stabilized zirconia) with similar loadings of Pd, which were subjected to long-term aging at 

900 °C in N2 were performed. They found that the final particle size was significantly different 

for each, with ZrO2 yielding the smallest average particle size.26  

The above findings suggest that at low temperatures > 750 °C, the chlorine supply was limited, 

resulting in exposure of the metal substrate surface to the carbon source favoring carbon growth. 

At 750 °C, chlorine supply was increased which resulted metal chlorides form at the surface of 

the substrate inhibiting carbon growth. At 800 °C, great increase in chlorine supply leading to 

formation of chlorine molecules which serve as a purification agent for the CNTs resulting in 

formation of clean amorphous free CNTs.  

 

Table 4.1 Effect of temperature on the growth of secondary CNFs onto the primary CNTs 

Synthesis 

temperature 

/°C 

Average 

outer 

diameter /nm 

Average 

inner 

diameter /nm 

Mass of 

unpurified carbon 

product /g  

Amount of 

secondary 

CNTs / % 

Carbon 

structure 

600 23 ± 75 5 ± 3.2 2.7715 0 CNTs 

650 29 ± 67 5 ± 4.0 3.4915 0 CNTs 

700 47 ± 39 11 ± 3.5 3.9218 90 CNTs 

750 72 ± 43 11 ± 0.7 2.4726 0 CNTs 

800 27 ± 77 11 ± 3.0 1.2929 0 CNTs 
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Figure 4.9 Plot of the relationship between the synthesis temperature and the average outer 

diameter of the CNTs produced at 90 min reaction time. 

  

In another study the catalyst powder was spread over the synthesized CNTs and then resubmitted 

into the CVD reactor for further synthesis (Figure 4.10). Negligible secondary CNFs were grown 

using this method as shown by a few circled secondary CNFs in Figure 4.10a to c. Limited 

growth of the secondary CNFs was due to the weak interaction between the catalyst particles and 

the main CNTs. Strong interaction is required to produce secondary growth, which can be 

established either by depositing the catalyst particles onto the surface of the CNTs 

electrochemically,20 by sputtering catalyst particles on the primary CNTs16 or by dipping the 

primary CNTs into the catalyst solution then drying them in air.16 It was noted in another study 

that the size and the number of the catalyst particles that are on the surface of the CNTs played a 

role on whether secondary growth will occur or not12. The metal particles may be too small or 

too big for nanotube growth. It was found that Ni particles with diameters in the order of 15 nm 

diffuse into the CNTs instead of nucleating secondary CNTs and the particles were not visible in 

the SEM after the second CVD step.12 Ni particles with diameters larger than 30 nm also 

appeared to suffer from poisoning and did not nucleate secondary CNTs.12 In our case the 
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inhibiting factor that contributed to lack of secondary growth was the lack of interaction between 

catalyst and CNTs.  

 

  

  
Figure 4.10 TEM image of purified CNTs spread with catalysts particles over their surface and 

bubbled with dichlorobenzene using the following reaction conditions: 60 min, 700 °C, 240 

mL/min (N2), 90 mL/min (C2H2). 

 

(c) 

(b) (a) 

(d) 
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Secondary growth of CNFs was also attempted by using the primary un-purified CNTs as 

substrate for secondary CNF growth. Dichlorobenzene was bubbled through the reactor using N2 

as carrier gas and C2H2 as carbon source. Again no visible growth of secondary CNTs was 

observed from the TEM images (Figure 4.11). The CNTs also appears to have shortened in 

length which might be due to increased reaction times (Figure 4.11b). Lack of secondary CNFs 

in this process shows that the growth only occurred in one-step, it required the catalyst as a 

substrate and also proves that the secondary CNFs grew from defects that were created on the 

main CNTs by chlorine. CNTs used in this method had no defects since they were prepared in 

the absence of chlorine and bubbling them with DCB was not enough to create defects.  

 

  

Figure 4.11 TEM image of un-purified CNTs post-doped with chlorine by bubbling 

dichlorobenzene through the reactor at the following reaction conditions: 60 min, 700 °C, 240 

mL/min (N2), 90 mL/min(C2H2). 

 

 

 

(a) (b) 
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4.3.2 Thermogravimetric analysis of the chlorinated CNTs: Effect of reaction time and 

temperature 

The TGA and DTGA profiles of the three purified and un-purified CNTs generated at different 

reaction times are presented in Figure 4.12. Two regions of mass losses were observed from the 

TGA and DTGA curves generated from un-purified CNTs obtained at lower reaction times of 60 

min (Figure 4.12a and b). The first mass loss at ~ 590 °C was assigned to oxidation of chlorine 

functionalized CNTs, while the mass loss at ~ 700 °C, was assigned to oxidation of other 

graphitic materials generated namely (carbon platelets or flakes). One mass loss was observed 

from purified CNTs generated at 60 min reaction time, at ~ 600 °C for oxidation of chlorine 

functionalized CNTs (Figure 4.12b). Two mass losses at ~ 570 and 660 °C and 600 °C and 630 

°C were observed from un-purified and purified CNTs generated at 90 min reaction time (Figure 

4.12c and d, and Table 4.2). The two mass losses were due to oxidation of chlorine 

functionalized CNTs and carbon platelets, respectively. The TGA curves of un-purified and 

purified samples appeared similar with little difference in the oxidation temperatures.     

Only one region of mass loss was observed from TGA and DTGA curves generated at longer 

reaction time of 120 min (Figure 4.12e and f), which shifted to high temperatures ~ 641 °C as 

compared to those generated at lower synthesis temperatures. The thermal stability of the 

purified CNTs decreased in the order 120 < 90 < 60 min, which suggest that an increase in 

synthesis time result in formation of more thermally stable CNTs. 
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Figure 4.12 TGA and DTGA curves of un-purified and purified CNTs generated from DCB at 

different reaction times. 

 

 

(a) 

(c) 

(b) 

(e) 

(d) 

(f) 
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Analysis of the residues left after acid treatment revealed that ~ 6 % residues were left for CNTs 

generated using a 60 min reaction time, while the amount of residues remained the same for 

CNTs generated at 90 min reaction time (Table 4.2). The residues were completely removed by 

acid treatment from CNTs generated at 120 min reaction time (Table 4.2). Longer reaction times 

generated CNTs of high purity (100 %), with no secondary growth. This is due to the fact that 

CNTs generated at 120 min lack defects sites. The TGA results are in agreement with the TEM 

analysis where it was suggested that at higher reaction times chlorine (Cl2) molecules form in the 

reactor and act as purifying agents leading to formation of cleaner, defect free CNTs. The 

absence of secondary CNFs from CNTs generated at longer reaction times is not due to the 

blockage of defects sites by amorphous carbon structures, since the oxidation peak of these 

structures was not observed from the TGA curve.  

 

Table 4.2 Decomposition temperatures and residual masses (determined by TGA) of the un-

purified and purified (P) chlorinated MWCNTs generated by varying the reaction time at a 

reaction temperature of 700 °C. 

Reaction time            

/min 

Decomposition 

temperature Peak 

1 & Peak 2 /°C 

Residual mass      

/% 

Carbon (CNT) yield 

 /% 

60 590 & 700 29.2  

60(P) 590 6.3 93.7 

90 570 & 660 12.2 (see Suppl. Fig.S4)  

90(P) 600 & 630 12.2 87.8 

120 641 6.6  

120(P) 651 0 100 

 

TGA profiles of the purified CNTs generated at various reaction temperatures at the reaction 

time of 90 min are also presented in Figure 4.13. Two weight losses were observed from the 

DTGA curves, for all studied carbon nanostructures, where the weight loss at lower temperatures 

corresponds to oxidation of CNTs and the second one at higher temperatures was due to 

oxidation of carbon platelets (Figure 4.13b). Decomposition of CNTs occurred at 630, 584, 600, 
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625, and 640 °C for CNTs generated at 600, 650, 700, 750 and 800 °C synthesis temperatures, 

respectively (Figure 4.13b and Table 4.3). Carbon yield decreased with an increase in the 

synthesis temperature up to 750 °C (Figure 4.14b and Table 4.3). There was another increase in 

carbon purity (as measured by TGA) at 800 °C (Figure 4.14b). This data is consistent with the 

structural analysis where thin, clean, hollow and smooth CNTs were produced at low 

temperatures (600 to 700 °C). At 750 °C the CNTs were rough, compartmented and had larger 

diameters, whilst at 800 °C a mixture of large compartmented and thin hollow CNTs were 

produced with the thin CNTs dominating. High temperature reactions were found to favor 

formation of single wall carbon nanotubes (SWCNTs).27 As the average outer diameter of the 

CNTs increased the level of purity of the CNTs decreased, suggesting that large diameter CNTs 

encapsulated more metal particles. This is in agreement with the amount of residue obtained after 

acid treatment.  
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Figure 4.13 TGA and DTGA curves of purified CNTs generated from DCB at different reaction 

temperatures and a reaction time of 90 min. 

 

The residual mass left after acid treatment of the CNTs increased with an increase in synthesis 

temperature as follows: 0, 8.3, 12.0 and 20.1 % for 600, 650, 700 and 750 °C, respectively 

(Table 4.3 and Figure 4.14a) but decreased as the synthesis temperature was increased to 800 °C 
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(~7.4 % residues). There is no correlation between the amount of catalyst residues and the inner 

diameter of the CNTs as various temperatures.     
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Figure 4.14 (a) Plot of the effect of the synthesis temperature on the amount of residual catalyst 

that was left after purification and (b) plot of the effect of the synthesis temperature on carbon 

purity, generated from DCB at 90 min and 700 °C. 

 

Table 4.3 Decomposition temperatures and residual masses (determined by TGA) of purified (P) 

chlorine functionalized CNTs generated by varying the reaction temperature at a reaction time of 

90 min. 

Reaction temperature      

/°C 

Decomposition 

temperature /°C 

Residual mass     

/% 

Carbon (CNT) yield 

/% 

600(P) 630 & 700 0 100 

650(P) 584 & 652 8.3  91.7 

700(P) 600 & 630 12.2  87.7 

750(P) 625 & 703 20.1 79.9 

800(P) 640 7.4 92.6 

 

(a) (b) 
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4.3.3 Powder XRD analysis of the chlorinated CNTs: Effect of reaction temperature 

XRD patterns of purified chlorine functionalized CNTs generated at various reaction 

temperatures and at a reaction time of 90 min, are presented in Figure 4.15. All XRD curves 

showed a strong intensity peak at 2θ ~ 26 ° (Figure 4.15a), which was assigned to the C(002) 

reflection of graphite associated with the interlayer spacing of graphene.28 A decrease in the 

FWHM value and intensity of the C002 peak with increase in temperature was observed and was 

due to an increase in outer diameter of the CNTs (Table 4.4). The intensity and width of the C002 

reflection of graphene can be associated with various microstructural parameters of N-CNTs, 

namely: the number of graphene layers, variations in the interlayer spacing, lattice distortions, 

tube outer diameter and crystallinity of the graphene layers.29 This data is consistent with the 

TEM observations, where the outer diameters of the CNTs increased with an increase in 

synthesis temperature from 600 to 750 °C (Table 4.1). The FWHM and the intensity of the C002 

peak increased when the temperature was increased to 800 °C (Table 4.4), which is consistent 

with TEM data where a decrease in outer diameter of the CNTs was observed (Table 4.1). 

The peak appearing at 2θ ~ 45 ° which has a shoulder peak can be attributed to the C100 

(shoulder) and C101 (main peak at 45 °) plane of CNTs and to some traces of iron carbide (Fe3C) 

or iron metallic catalyst.28 Three additional peaks were observed at 2θ ~ 32, 37 and 54 ° from the 

diffractogram of CNTs obtained from 650, 700 and 750 °C synthesis temperatures and were 

assigned to Fe3C reflection. These peaks increased with an increase in synthesis temperature and 

were absent from diffractogram of CNT generated from 600 and 800 °C synthesis temperatures. 

The presence of an Fe3C peak could imply that Fe3C was the predominant catalytic phase during 

CNT growth.30 An increase in the Fe3C peak intensity with increase in reaction temperature can 

be due to increased amount of chlorine in the CVD reactor which interact with iron from the 

catalyst forming iron carbide. These data correlates with the TGA data, where the amount of 

residual metal present increased with an increase in the synthesis temperature from 650 to 750 

°C (Table 4.3). The data also correlates with the TEM images, where poisoning was observed at 

high temperatures which resulted in reduced CNT growth up to 750 °C. For CNTs generated at 

600 and 800 °C synthesis temperature, only one peak due to Fe3C peak was observed at 2θ ~ 54 

°. This peak was very small for CNTs generated from 600 °C, but increased in intensity for 

CNTs generated at 800 °C (Figure 4.15). This data also agrees with TGA data where a residual 
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mass of 0 and 7.4 % was obtained for CNTs generated at 600 and 800 °C synthesis temperature, 

respectively (Table 4.3).  
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Figure 4.15 p-XRD curves of purified CNTs generated from DCB at a reaction time of 90 min 

and at different reaction temperatures. 

 

Table 4.4 Powder X-ray structural parameters of chlorine functionalized CNTs generated at 

various reaction temperatures for 90 min. 

Reaction 

temperature /°C 

Position 

of C(002) 

peak 

FWHM of 

C(002) peak 

/ ° 

Intensity of 

C(002) peak 

Intensity of 

Fe3C peak 

at 32 ° 

Intensity of Fe3C 

peak at 37 ° 

600 25.8 2.8 862.0 – – 

650 25.7 2.6 731.0 114.4 292.5 

700 25.9 2.3 672.7 233.6 599.0 

750 26.0 1.8 540.2 565.1 1338.8 

800 25.8 2.2 620.0 – – 
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4.3.4 Raman spectroscopy analysis of the chlorinated CNTs: Effect of synthesis time and 

temperature 

The Raman spectra of the un-purified and purified chlorinated CNTs synthesized for 60 min is a 

characteristic of a disordered graphitic lattice, as it exhibits a broad highly intense D-band at ~ 

1334 and 1330 cm–1 for un-purified and purified CNTs respectively, corresponding to a 

disordered graphite (Figure 4.16 and Table 4.5). Additional first-order bands were also observed 

a D2 and a G-band. The most intensive of them is a G-band appearing at 1595 and 1581 cm–1, 

which corresponds to an ideal graphitic lattice. A D2 band at 1528 and 1496 cm–1 originates due 

to the presence of amorphous carbon structures on interstitial sites in the distorted carbon lattice 

of the CNTs.31  

 

Table 4.5 Raman bands of the un-purified and purified chlorinated CNTs generated from pure 

DCB at 700 °C for 60 min 

 Band 

name 

Band Position 

(cm–1) 

Bond 

type 

FWHM 

(cm–1) 

Peak Area Designation 

6
0
 m

in
 u

n
-

p
u
ri

fi
ed

 

D 1334 sp2 192 2868 Disordered graphite 

D2 1528 sp3 79 433 Amorphous carbon 

structure 

G 1595 sp2 63 1260 Graphitic like carbonyl 

group 

6
0
 m

in
 p

u
ri

fi
ed

 

D 1330 sp2 166 8905 Disordered graphite 

D2 1496 sp3 69 1091 Amorphous carbon 

structure 

G 1581 sp2 73 4545 Graphitic like carbonyl 

group 

2D1 2680  81 603 1st overtone of D1 band 

2D2 & 

D+G 

2848  828 4802 1st overtone of D1 and 

overtone of 2D 

 

Second order bands were also observed from the Raman spectra of purified CNTs, a weak 2D 

band which assigned to the first overtone of D1 band occurring at 1290 cm–1. A 2D band was 
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deconvoluted into 2D1 at 2680 cm–1 and a broad 2D2 at 2848 cm–1 which shifted upwards due to 

combination with a G + D band and shows increased disorders. The split of the 2D band has 

been described as a characteristic feature of undisturbed or highly ordered graphitic lattices.32 A 

G + D band overlapping with the 2D2 band was assigned to characteristic for disturbed graphitic 

structures.32  

A ID/IG peak ratio is used to characterize the degree of disorder in the disordered graphite, where 

large values are obtained from highly disordered materials. ID/IG values of 2.30 and 1.95 were 

obtained for un-purified and purified CNTs respectively, suggesting that both materials were 

highly disordered (Table 4.5). Large FWHM values also suggest that the materials contain some 

amorphous carbon structures (Figure 4.5).  
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Figure 4.16 Raman spectra of un-purified and purified chlorinated CNTs synthesized at 700 °C 

for 60 min 
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Increasing the synthesis time to 90 min also resulted in formation of defected CNTs shown by 

the presence of a broad highly intense D-band at ~ 1336 cm–1 for un-purified samples (Figure 

4.17 and Table 4.6). Additional first-order bands were also observed a G-band which 

deconvoluted into two bands a G and D’ band. A D’ band at ~ 1619 cm–1 accounts for structural 

disorders in the graphitic plane and is normally observed as a shoulder peak of the G band.31 

Second order bands were also observed from the Raman spectra of un-purified CNTs, a single 

2D band at 2678 cm–1, a G* band at 2444 cm–1 and a G + D band at 2923 cm–1 (Figure 4.17 and 

Table 4.6).  A single 2D band is characteristic of disordered graphite. A G* band is the first 

overtone of a Raman-inactive graphitic lattice vibration (D4 band) occurring at 1220 cm–1.33 

Raman spectra of purified CNTs exhibited additional bands, a D4 band at ~ 1226 cm–1 which 

appears a shoulder of a D-band was assigned to C=C stretching vibrations of a graphitic lattice.31 

Other authors attributed the presence of a D4 peak to existence of finite size of crystalline and 

defect induced carbon.34 A D2 amorphous carbon band was also observed. Splitting of the 2D 

band occurred for purified materials, suggesting that the materials were more ordered. ID/IG 

values of 0.8 and 1.6 were obtained for un-purified and purified CNTs respectively, suggesting 

that more defects were created by acid treatment due to creation of more sp3 bonding 

environments by addition of oxygen functional groups (Table 4.5). Increased FWHM values 74 

and 116 cm–1 for D band generated from un-purified and purified CNTs, suggesting increased 

defects which favors formation of amorphous carbon structures. The ratio of ID/ID’ is used to 

provide information about the type of defects present in the material. If the ratio of ID/ID’ is 13, it 

indicates the presence of related sp3 related defects, 10.5 corresponds to hoping defects, 7 for 

vacancy-like defects, 3.5 for boundary-like defects and 1.3 for on-site defects in graphene.35,36 

The large ID/ID’ value of 7.8 suggest that the type of defects is vacancy-like defects in addition to 

small hoping defects. Vacancy-like defects represent the single and double vacancy in the 

graphitic lattice (a property of a removed atom) and hoping defects represents any defects that 

distort the bonds between carbon atoms, retaining the general sp2 configuration.35,37 The creation 

of this defects resulted in formation of secondary carbon nanostructures. The results agree with 

the TEM observations. 
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Figure 4.17 Raman spectra of un-purified and purified chlorinated CNTs synthesized at 700 °C 

for 90 min 
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Table 4.6 Raman bands of the un-purified and purified chlorinated CNTs generated from pure 

DCB at 700 °C for 90 min 

 Band 

name 

Band Position 

(cm–1) 

Bond 

type 

FWHM 

(cm–1) 

Peak 

Area 

Designation 

9
0
 m

in
 u

n
-p

u
ri

fi
ed

 

D 1336 sp2 74 13704 Disordered graphite 

G 1574 sp2 57 17659 Graphitic like carbonyl 

group 

D’ 1619 sp2 34 1748 Defects in graphitic 

plane 

G* 2444  66 526 1st overtone of D4 band 

2D 2678  81 8264 1st overtone of D1 band 

D + G 2923  68 290 2D overtone 

9
0
 m

in
 p

u
ri

fi
ed

 

D4 1226 sp2 – sp3 126 8120  

D 1338 sp2 116 34667 Disordered graphite 

D2 1526 sp3 164 15588 Amorphous carbon 

structure 

G 1592 sp2 63 21527 Graphitic like carbonyl 

group 

2D1 2661  38 294 1st overtone of D1 band 

2D2 2695  48 731 1st overtone of D1 band 

 

Increasing the reaction time to 120 min resulted in increased defects in the carbon structure. A 

D4, D, D2 and G bands were observed from the Raman spectra of both un-purified and purified 

samples (Figure 4.18). For un-purified samples a weak 2D band was deconvoluted into two 

bands, suggesting that the materials were more ordered, but the weakness of the band suggest 

disordered materials. A D + G band which is a characteristic of disturbed graphitic structures was 

also observed from the Raman spectra of un-purified CNTs. Raman spectra of the purified 

samples were similar to those of the un-purified samples. The only difference was the absence of 

the 2D peak from the Raman spectra of the purified samples, indicating increased disorders in 

materials after purification. ID/IG values of 1.7 and 1.8, suggesting highly disordered materials 

(Table 4.7). The disorders increased in the order 90, 120 and 60 min. There is no correlation 
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between the creation of defects on the CNT surface with the formation of secondary structures or 

the synthesis time.  
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Figure 4.18 Raman spectra of un-purified and purified chlorinated CNTs synthesized at 700 °C 

for 120 min 
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Table 4.7 Raman bands of the un-purified and purified chlorinated CNTs generated from pure 

DCB at 700 °C for 60 min 

 Band 

name 

Band Position 

(cm–1) 

Bond 

type 

FWHM 

(cm–1) 

Peak 

Area 

Designation 

1
2
0
 m

in
 u

n
-p

u
ri

fi
ed

 

D4 1222 sp2 - sp3  115 2376 C=C stretching 

vibrations 

D 1337 sp2 103 11283 Disordered graphite 

D2 1540 sp3 138 2910 Amorphous carbon 

structure 

G 1593 sp2 57 6572 Graphitic like carbonyl 

group 

2D1 2656  24 103 1st overtone of D1 band 

2D2 2693  53 386 1st overtone of D1 band 

D + G 2911  18 47 2D overtone 

1
2
0
 m

in
 p

u
ri

fi
ed

 

D4 1231 sp2 - sp3 132 5999  

D 1341 sp2 109 24901 Disordered graphite 

D2 1532 sp3 153 9427 Amorphous carbon 

structure 

G 1595 sp2 59 13576 Graphitic like carbonyl 

group 

 

 

The effect of temperature on the graphitic nature of the CNTs synthesized at a reaction time of 

90 min, was also investigated using Raman spectroscopy. Raman spectra of the un-purified 

CNTs generated at a reaction temperature of 600 °C, revealed the presence of first order bands a 

D-, D2- and G-band at 1335, 1535 and 1588 cm–1 respectively, suggesting that the CNTs were 

disordered and contained amorphous carbon materials (Figure 4.19 and Table 4.8). Second order 

bands were also observed, a G*, 2D and G + D bands at 2439, 2677 and 2921 cm–1, suggesting 

defected graphitic structures. Raman spectra of purified CNTs showed removal of an amorphous 

D2 band by acid treatment and generation of a D’ band at 1616 cm–1, which is observed as a 

shoulder peak of the G band, due to generation of defects in the graphitic plane. Oxygenation and 

related changes in the interplanar process was found to results in an appearance of a D’ band.38 A 
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2D band was split into two bands after purification a 2D1 at 2656 cm–1 and a 2D2 at 2689 cm–1, 

suggesting that acid purification decreased the amount of defects in the CNTs. ID/IG values of 1.5 

and 1.1 were obtained for both un-purified and purified CNTs, suggesting that CNTs were 

disordered (Table 4.8). The large ID/ID’ value of 34 corresponds to the presence of sp3 related 

defects, which arise due to covalent sp3 bonded functional groups on the carbon atoms.39   
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Figure 4.19 Raman spectra of un-purified and purified chlorinated CNTs synthesized at 600 °C 

for 90 min 
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Table 4.8 Raman bands of the un-purified and purified chlorinated CNTs generated from pure 

DCB at 600 °C for 90 min 

 Band 

name 

Band Position 

(cm–1) 

Bond 

type 

FWHM 

(cm–1) 

Peak Area Designation 

6
0
0
 °

C
 u

n
-p

u
ri

fi
ed

 

D 1335 sp2 88 23368 Disordered graphite 

D2 1535 sp3 119 4007 Amorphous carbon 

structure 

G 1588 sp2 62 15122 Graphitic like carbonyl 

group 

G* 2438  39 119 1st overtone of D4 band 

2D1 2677  86 3262 1st overtone of D1 band 

D + G 2921  72 514 2D overtone 

6
0
0
 °

C
 p

u
ri

fi
ed

 

D 1337 sp2 72 11198 Disordered graphite 

G 1578 sp2 66 10432 Graphitic like carbonyl 

group 

D’ 1616 sp2 25 328 Defects in graphitic 

plane 

G* 2436  42 205 1st overtone of D4 band 

2D1 2656  73 1318 1st overtone of D1 band 

2D2 2689  70 1733 1st overtone of D1 band 

D + G 2925  53 203 2D overtone 

 

Raman spectra of the un-purified CNTs generated at a reaction temperature of 650 °C, revealed 

the presence of first order bands a D-, D2- and G-band at 1335, 1535 and 1588 cm–1 respectively, 

suggesting that the CNTs were disordered and contained amorphous carbon materials (Figure 

4.20 and Table 4.9). Second order bands were also observed, a G*, 2D and G + D bands at 2445, 

2676 and 2913 cm–1, suggesting defected graphitic structures. Raman spectra of purified CNTs 

showed removal of an amorphous D2 band by acid treatment. A 2D band was split into two 

bands after purification a 2D1 at 2656 cm–1 and a 2D2 at 2689 cm–1, suggesting that acid 

purification decreased the amount of defects in the CNTs. ID/IG values of 1.3 were obtained for 

both un-purified and purified CNTs, suggesting that the CNTs were disordered (Table 4.9). 
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Figure 4.20 Raman spectra of un-purified and purified chlorinated CNTs synthesized at 650 °C 

for 90 min 
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Table 4.9 Raman bands of the un-purified and purified chlorinated CNTs generated from pure 

DCB at 650 °C for 90 min 

 Band 

name 

Band Position 

(cm–1) 

Bond 

type 

FWHM 

(cm–1) 

Peak Area Designation 

6
5
0
 °

C
 u

n
-p

u
ri

fi
ed

 

D 1332 sp2 99 31703 Disordered graphite 

D2 1498 sp3 97 3716 Amorphous carbon 

structure 

G 1581 sp2 65 23845 Graphitic like carbonyl 

group 

G* 2445  54 310 1st overtone of D4 band 

2D1 2676  81 5647 1st overtone of D1 band 

D + G 2913  70 424 2D overtone 

6
5
0
 °

C
 p

u
ri

fi
ed

 

D 1336 sp2 100 15810 Disordered graphite 

G 1590 sp2 66 12097 Graphitic like carbonyl 

group 

G* 2370  205 468 1st overtone of D4 band 

2D1 2672  62 1044 1st overtone of D1 band 

2D2 2711  50 499 1st overtone of D1 band 

D + G 2921  49 132 2D overtone 

 

A D4, D, D2 and G bands were observed from the Raman spectra of both un-purified and 

purified samples generated at 750 °C (Figure 4.21). Second order Raman bands G*, and 2D were 

also observed from the spectra of the un-purified and purified CNTs.  A D + G band which is a 

characteristic of disturbed graphitic structures appeared from the Raman spectra of purified 

CNTs, which suggest increased defects after purification. ID/IG values of 1.2 (un-purified CNTs) 

and 1.5 (purified CNTs), also suggest increased defects in the CNTs after purification (Table 

4.10).  
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Figure 4.21 Raman spectra of un-purified and purified chlorinated CNTs synthesized at 750 °C 

for 90 min 

 

 

 

 

 

 

 

 



97 | P a g e  

 

Table 4.10 Raman bands of the un-purified and purified chlorinated CNTs generated from pure 

DCB at 750 °C for 90 min 

 Band 

name 

Band Position 

(cm–1) 

Bond 

type 

FWHM 

(cm–1) 

Peak 

Area 

Designation 

7
5
0
 °

C
 u

n
-p

u
ri

fi
ed

 

D4 1219 sp2 - sp3 140 2425 C=C stretching vibrations 

D 1341 sp2 107 5535 Disordered graphite 

D2 1489 sp3 208 4499 Amorphous carbon 

structure 

G 1591 sp2 71 4437 Graphitic like carbonyl 

group 

G* 2447  50 214 1st overtone of D4 band 

2D 2690  56 320 1st overtone of D1 band 

7
5
0
 °

C
 p

u
ri

fi
ed

 

D4 1235 sp2 - sp3 144 5970 C=C stretching vibrations 

D 1343 sp2 112 19728 Disordered graphite 

D2 1521 sp3 188 13891  

G 1588 sp2 68 12748 Graphitic like carbonyl 

group 

G* 2438  27 156 1st overtone of D4 band 

2D 2687  63 1002 1st overtone of D1 band 

D + G 2933  71 136 2D overtone 

 

A D4, D, and G bands were observed from the Raman spectra of both un-purified samples 

generated at 800 °C (Figure 4.22). A single 2D band at 2679 cm–1 was also observed, suggesting 

the presence of few layered materials. Raman spectra of the purified CNTs showed the presence 

of a defect induced D’ band at 1616 cm–1. Other second order bands G* and G + D bands at 2427 

and 2924 cm–1, were also observed as additional peaks from purified samples. This suggest that 

purification resulted in formation of materials with increased disorders. ID/IG values of 1.3 and 

0.8, suggest reduction in defects in the materials after purification (Table 4.11). The ID/ID’ value 

of 7 was obtained which corresponds to vacancy-like defects. 
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Figure 4.22 Raman spectra of un-purified and purified chlorinated CNTs synthesized at 800 °C 

for 90 min 
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Table 4.11 Raman bands of the un-purified and purified chlorinated CNTs generated from pure 

DCB at 800 °C for 90 min 

 Band 

name 

Band 

Position 

(cm–1) 

Bond 

type 

FWHM 

(cm–1) 

Peak 

Area 

Designation 

8
0
0
 °

C
 u

n
-p

u
ri

fi
ed

 D4 1189 sp2 - sp3 74 2180 C=C stretching 

vibrations 

D 1337 sp2 163 28909 Disordered graphite 

G 1582 sp2 78 22248 Graphitic like carbonyl 

group 

2D 2679  70 2553 1st overtone of D1 band 

8
0
0
 °

C
 p

u
ri

fi
ed

 

D 1338 sp2 63 5557 Disordered graphite 

G 1573 sp2 54 7184 Graphitic like carbonyl 

group 

D’ 1616 sp2 33 772 Defects in graphitic 

plane 

G* 2427  51 220 1st overtone of D4 band 

2D 2677  79 3320 1st overtone of D1 band 

D + G 2924  41 99 2D overtone 

 

Structural information: Comparison of the Raman with other used techniques in this study 

The following conclusions were deduced from the Raman spectra of the effect of synthesis time 

and temperature: 

1. Purified CNTs generated at a reaction time of 120 min exhibited the lowest D and G band 

FWHM, which indicates that the highest degree of graphitization was achieved at this 

synthesis time. The data is consistent with the TGA analysis where materials generated at 

this synthesis temperature had increased thermal stability as compared to materials generated 

at low synthesis times. The thermal stability was observed to increase with an increase in the 

synthesis time as follows, 120 > 90 > 60 min.      

2. Purified CNTs generated at 800 °C exhibited the lowest D and very low G band FWHM, 

which indicated that the highest degree of graphitization among all investigated temperatures 
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and is consistent with the TGA analysis and TEM results. The second reaction temperature 

that generated better graphitized materials was 600 °C. The number of defects (based on the 

FWHM value of the D band) increased as a function of reaction temperature as follows: 700 

(116 cm–1) < 750 (112 cm–1) < 650 (100 cm–1) < 600 (72 cm–1) < 800 °C (63 cm–1). There 

was no correlation between the FWHM value and the reaction temperature. The ID/IG value 

of purified CNTs generated at 800 °C is also the lowest, indicating that these materials were 

more graphitic.  

 

4.4 Conclusion 

The structure and yield of the CNTs was affected by the growth time and temperature. Formation 

of secondary CNFs on the surface of the main CNTs depended on the growth time and growth 

temperature. Longer synthesis times favored formation of high purity CNTs with no secondary 

growth and less defects. The largest number of secondary CNFs were observed at 90 min 

reaction time. Secondary CNFs were found to grow at defects sites of the CNTs as an extension 

of the CNT wall. For the first time, we have identified the type of defects for chlorinated CNTs. 

Vacancy-like defects in addition to small hoping defects due to removal of carbon atoms from 

the graphitic structure and distortion of bonds between carbon atoms as a result of carbon 

removal, were observed from chlorinated CNTs generated at 90 min reaction temperature. These 

type of defects seem to arise due to the presence of large magnitude of secondary CNFs observed 

from their TEM images. CNTs generated at very low (600 °C) and very high (800 °C) were the 

most graphitic, denoted by their low FWHM values of the D and G band and their high thermal 

stabilities. Reduction in the CNT growth was observed at high temperatures (~ 750 °C) due to 

poisoning of the CNT surface by iron carbides resulting from increased formation of chlorine in 

the reactor. CNTs generated at 600 °C contained sp3 related defects, which arise due to covalent 

sp3 bonded functional groups on the carbon atoms. This shows that greater functionalization of 

CNTs with chlorine was achieved at low synthesis temperatures. The large value of ID/IG of 1.1 

suggest that functionalization of CNTs with chlorine increased defects in the graphitic structure. 

Vacancy like defects due to removal of some carbon atoms in the crystal lattice was obtained 

from CNTs generated at 800 °C. This suggest less involvement of chlorine in forming functional 
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groups with the carbon atoms. It was suggested in the TGA studies that at high synthesis 

temperature of 800 °C, a greater amount of chlorine atoms that are in close proximity are formed, 

which resulted in them interacting with each other to form Cl2 molecules which escaped through 

the trap. Formation of these Cl2 molecules resulted in them purifying the CNTs, leading to 

formation of highly graphitized CNTs.   

The synthesized CNTs with secondary growth can be used as fillers for polymer matrix in 

production of polymer composites for water treatment. The presence of secondary CNFs is 

expected to ease the interaction between the CNTs and the polymer matrix. CNTs with 

secondary growth can also be used in electronics as their presence is expected to enhance the 

electrical conductivity of the matrix. 

The effect of chlorine on the morphology of N-doped CNTs was then evaluated in the next 

chapter, because nitrogen-doped CNTs were also observed to enhance the electrical conductivity 

of the carbon materials. 
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CHAPTER 5 

The synthesis of chlorinated nitrogen-doped multi-walled carbon nanotubes 

using a Fe-Co/CaCO3 catalyst by use of an injection CVD method 

 

5.1 Introduction 

The difficulty in producing CNTs with controlled morphology, limits their application as this 

impact on the physicochemical properties of the CNTs. One way to overcome this limitation is to 

introduce foreign atoms into the structure of the CNTs. Addition of foreign atoms into CNTs can 

lead to either functionalization of the CNTs or introduction of a dopant into the walls of CNTs. 

Heteroatom doping of a material is defined as the intentional introduction of foreign atoms, 

known as dopants, into that material. Modification of the method of synthesis can also be used to 

produce CNTs of controlled morphology.   

Doping carbon with nitrogen atoms was shown to enhance their application in various fields such 

as, in water purification, as fillers in composite materials, as supports in catalysis, for CO2 

adsorption, and in energy storage (lithium batteries and supercapacitors). Most work has 

appeared on use of N-doped carbon nanomaterials (N-CNMs) as an attractive electrode material 

in supercapacitors.1-6 Use of N-doped CNMs as supercapacitors was encouraged by their high 

surface area, excellent electronic conductivity, high reversibility and eco-friendliness.7 The 

beneficial effect of nitrogen is strongly related to the specific bonds it forms with carbon.8 For 

instance, pyrrolic structure enriched nitrogen was found to be efficient for supercapacitor 

behavior.9 Electron transfer was enhanced in materials where quartenary and pyridinic-N-oxides 

were dominating.10,11 The pyridinic-N and pyridinic-N-oxide nitrogen groups were found to 

enhance the capacitance due to the positive charge.12  

An increase in capacitance of about 4 times that of the pristine samples was produced from N 

doped graphene based electrodes13, whilst capacitance of over 200 F/g which is about 2 times 

higher than that of pristine samples was achieved from using N doped mesoporous carbon.14  
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A limited amount of work has been reported on use of N doped CNTs in supercapacitors.3,6, 15 A 

capacitance of about 60 F/g was achieved from using N doped CNTs, which was relatively low 

compared to other N doped carbon nanomaterials.15 Enhancement of field emission properties 

and better electro-catalytic performance were observed from using open ended N-doped CNTs 

because of their large specific surface area, as compared to closed ended N-doped CNTs.7,16 

Enhanced electron conductivity was also observed when using open-ended N-doped CNTs 

because they are able to form more electron transport pathways in open tips.17 A technique that is 

normally used for opening the CNT caps is acid treatment or oxidation. The disadvantage of 

opening CNT caps with acid oxidation is that it enhances the number of defects in CNTs and 

also increases both the nitrogen and oxygen functionalities.18 The combined effect of N/O 

functionalities and open-ended tips is shown to improve the supercapacitor performance of the 

CNTs significantly. 19  

Chemical doping of reduced graphene oxide sheets with chlorine by introducing extra charge 

carriers was found to enhance their electrical conductivity.20 Chlorinated reduced graphene oxide 

sheets were found to be very stable in solvents like N,N-dimethylformamide (DMF) possibly 

because of the enhanced repulsive forces between the graphene oxide sheets arising from 

absorbed Cl ions.21  Yeon et al. found that etching a polymer derived SiCN with chlorine resulted 

in formation of carbon material that exhibited meso- and microporous and possessed a high 

specific surface area.22  Zera et al. synthesized a nitrogen-doped carbide derived carbon aerogels 

with high capacitance by chlorine etching of a SiCN aerogel.8 

In our previous work, we studied the effect of chlorine on the morphology of carbon 

nanomaterials prepared by catalytic pyrolysis of chlorinated organic hydrocarbons using C2H2 

and N2 gases over a Fe-Co/CaCO3 catalyst.23 We have shown that the type of chlorinated organic 

reagent used as a chlorine source influence the morphology of the CNMs.    

The role of chlorine and chloride salts on the morphology of N-doped CNTs have been a subject 

of a few studies using various synthesis methods. 30 % of N-doped horn-like CNTs with 

dumbbell-shaped open-ends were prepared by reducing pentachloropyridine with metallic 

sodium in a stainless steel autoclave; the reaction also produced hollow carbon nanospheres. The 

horn-shaped CNTs were found to be initiated by the presence of sodium.24 Various N-doped 
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carbon nanostructures including particles, whiskers, square frameworks, lamellar layers, hollow 

spheres and tubular structures have been synthesized by designed direct chemical reactions of 

small molecule carbon halides (such as CCl4, C2Cl6) and nitridation reagents such as NaN3 in the 

absence of any templates and catalysts in an autoclave at various temperatures.25 The rupture of 

thick CNTs with arms or branches, which changed to a sharp nail structure with a further 

increase in the concentration of NaCl in the byproduct trap were observed when using a 

pyrolysis CVD method that was modified by adding NaCl into the water that was in the 

byproduct trap.26 The nitrogen content was increased in N-doped CNTs synthesized using a 

halogenated ferrocenyl catalyst. A fluorine substituted ferrocene catalyst produced a highest 

nitrogen-doping level as compared to a chlorine substituted ferrocene catalyst, but the chlorine 

substituted catalyst also yielded iron-filled N-CNTs.27 

In this study, we continue to study the effect of chlorine on the morphology of N-doped CNTs. 

The ultimate goal is to investigate if modification of N-doped CNTs with chlorine will improve 

their electronic conductivity, by identifying the dominant nitrogen species in the final material.     

To our knowledge, the role of chlorine on the morphology of N-CNTs using a Fe-Co supported 

on CaCO3 as catalyst by an injection CVD method has not been studied. In this study the 

concentration of both chlorine and nitrogen was varied to explore the effect of chlorine on the 

morphology of the obtained CNTs. The effect of the injection flow rate of the liquid reagents 

mixture on the morphology of the chlorinated N-MWCNTs was also.     

 

5.2 Experimental 

5.2.1 Chemicals 

Fe(NO3)3·9H2O (Sigma Aldrich) ≥ 98 %, Co(NO3)2·6H2O (Sigma Aldrich) ≥ 98 %, CaCO3 

(Sigma Aldrich) ≥ 99 %, HNO3 (Sigma Aldrich) ≥ 98 % ACS, 1,2-dichlorobenzene (DCB) 

(Sigma Aldrich) 99 % Reagent plus, 1,1,2,2-tetrachloroethane (TTCE) (UniLAB SAARChem) 

98 % GLC, acetonitrile (CH3CN) ≥ 99.8 % (Sigma Aldrich) were used. All reagents were 

commercially available and used without further purification.  
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5.2.2 Catalyst preparation by wet impregnation method 

Fe(NO3)3.9H2O and Co(NO3)2.6H2O were used to prepare the catalyst. Calculated amounts of 

the Fe and Co nitrates were weighed and mixed in a beaker. The salts were then dissolved using 

30 mL of distilled water to make a 0.3 mol/L Fe and 0.3 mol/L Co precursor solution. The metal 

solution was then transferred to a burette and added dropwise while stirring to a 10 g CaCO3 

support that was placed in a beaker. The mixture was stirred for 30 min. The beaker containing 

the metal-support mixture was then dried paced in an oven for drying at 120 °C for 12 h. The 

metal-support solid was then cooled to room temperature, transferred to a mortar and ground 

with a pestle, followed by screening through a 150 µm molecular sieve. The catalyst powder was 

then calcined at 400 °C for 16 h in a static air oven. This catalyst was completely characterized 

as reported in an earlier article.28 

 

5.2.3 Synthesis of chlorinated N-CNMs using an injection CVD method 

Synthesis of chlorinated N-doped MWCNT was carried out at 800 °C under a nitrogen (N2) and 

acetylene (C2H2) atmosphere. The flow rates were 240 and 90 ml/min for N2 and C2H2 

respectively. A 20 mL mixture of CH3CN and DCB of various volume ratios were placed in a 20 

mL syringe driven by a SAGE syringe pump. About 1 g of catalyst was placed in a quartz boat 

which was then pushed into the middle of the quartz tube. The quartz tube was then placed inside 

a furnace and ensured that a quartz boat is in the center of the furnace. After the temperature of 

the furnace has reached 800 °C, the solution mixture was injected at a rate of 0.24 mL/min into a 

quartz tube reactor (32 cm × 1 m) using a peristaltic pump over the flow of N2 and C2H2. The 

reaction time was 1 h. At the end of the reaction the system was cooled down to room 

temperature under an N2 atmosphere (40 mL/min). Carbon soot was removed from the tube, 

weighed and some of the product purified with 30 % HNO3 by refluxing in acid at 110 °C for 4 

h. The carbon product was then filtered and washed with distilled water until the pH of the 

filtrates reached ~ 7. The carbon product was then dried in an oven at 120 °C overnight. A 

schematic representation of the injection CVD setup is shown in Figure 5.1. 
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Figure 5.1 Schematic diagram of the assembled injection CVD setup used for the synthesis of 

CNMs. 

 

5.2.4 Characterization of carbon nanomaterials 

The morphology and size distribution of the produced MWCNTs before and after HNO3 

treatment were analyzed by transmission electron microscopy (TEM) using a T12 FEI TECNAI 

G2 SPIRIT operating at 120 kV. The samples for TEM analysis were prepared by sonication in 

ethanol and thereafter deposited on a holey carbon-coated TEM Cu grid. The morphology and 

size distribution of the MWCNTs were also determined by scanning electron microscopy using 

FEI Nova Nanolab. The powdered samples were placed on top of a tape that was attached to a 

stub. The samples were coated with carbon and palladium to prevent them from charging. The 

impurity content of the MWCNTs was monitored by thermogravimetric analysis (TGA) using a 

Perkin Elmer TGA 7. The sample was loaded onto a platinum pan and heated to 900 °C at a 

heating rate of 5 °C/min, in a flowing air stream at flow rate of 20 mL/min. The CNTs were 

characterized by Raman spectroscopy using a Jobin-Yvon T6400 micro-Raman spectrometer. 

Excitation was provided by the 532 nm green laser with spectral resolution of 3-5 cm-1. X-ray 

photoelectron spectroscopy (XPS) analysis was done using an AXIS Ultra DLD, with Al 

(monochromatic) anode equipped with a charge neutralizer, supplied by Kratos Analytical. 
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5.3 Results and discussion 

In this section the morphology of the CNMs were evaluated using TEM and SEM. The effect of 

solvent mixture injection rate was optimized and the optimum flow rate used in the 

investigations that follows. The effect of chlorine concentration of the morphology of the CNMs 

was also evaluated. The TEM and SEM characterizations were confirmed by TGA, Raman 

spectroscopy and XPS.   

Dichlorobenzene (DCB) was selected as a chlorine source to use for the investigation of its role 

on the morphology of the N doped CNMs. Our previous results showed that CNTs produced 

using DCB had more uniform diameters and were produced in large quantities.    

5.3.1 Structural analysis of N doped CNMs: Effect of DCB concentration and injection 

flow rate 

In order to study the role of chlorine on the morphology of the N-doped CNMs, we first had to 

study the morphology of the CNMs obtained from pure CH3CN and pure DCB. To our 

knowledge CNMs obtained using pure CH3CN as a nitrogen source and pure DCB as a chlorine 

source over a Fe-Co/CaCO3 catalyst by using an injection CVD injection was never reported. 

The reaction conditions used in this study were as follows: N2 flow rate = 240 mL/min, C2H2 

flow rate = 90 mL/min, reaction temperature = 800 °C, reaction time = 1 h, injection rate = 0.24 

mL/min.  

The morphology of the CNMs using pure CH3CN and DCB were studied by TEM. TEM images 

obtained from pure CH3CN revealed the presence of a mixture of CNMs, hollow thin-walled 

CNTs (Figure 5.2a and b), bamboo compartmented CNTs (Figure 5.2c) and carbon nanospheres 

(CNS) (Figure 5.2d).  A rod-shaped CNF with a measuring-cylinder like tip or base (Figure 5.2a 

shown by arrow) was also observed from a TEM image. Similar rod-shaped CNFs are presented 

in Supplementary Figure S1a and b circled parts.  
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Figure 5.2 TEM images of purified MWCNTs generated from pure CH3CN (20 mL) by a CVD 

injection method at the following reaction conditions: 0.24 mL/min, 800 °C, 1 h, 240 mL/min 

N2, and 90 mL/min C2H2. 

 

TEM images obtained from pure DCB also revealed mixtures of entangled thin- and thick-walled 

CNTs (Figure 5.3a and b). The tube tips and bases were not clearly observed from the TEM 

images due to entanglement and the greater length of the tubes. The quantity of the CNTs 

increased when DCB was used for the synthesis of the CNMs.   

 

(a) 

(d) 

(b) 

(c) 

(b

) 
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Figure 5.3 TEM images of purified MWCNTs generated from DCB (20 mL) by a CVD injection 

method at the following reaction conditions: 0.24 mL/min, 800 °C, 1 h, 240 mL/min N2, and 90 

mL/min C2H2. 

 

To elucidate further on the morphology of the CNMs obtained from pure CH3CN and pure DCB, 

SEM images were recorded. SEM images of the nanomaterials generated from CH3CN revealed 

the presence of a large population of short-rod shaped CNMs (Figure 5.4a). A diameter 

distribution curve showed that the rod-shaped CNMs had average outer diameters of ~ 53 nm 

(Figure 5.4b and Table 5.1). High magnification SEM study showed that the rod-shaped CNMs 

are growing from or attached to some large agglomerated particles or carbon platelets (Figure 

5.4b). The agglomerates were previously seen by other authors when they produced CNTs over 

pyrolysis of acetonitrile using Mg-Co-Al layered hydroxide as a catalyst material and were 

assigned to carbon plate-like particles.29 The length of the rod-shaped CNMs ranged from ~ 60 to 

160 nm. A number of spherical carbon nanomaterials (~15 %) and a few long CNTs (~15 %) 

were also observed from SEM images obtained from pure CH3CN (Figure 5.4d).  

(a) (b) 
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Figure 5.4 SEM images and the diameter distribution curves of purified MWCNTs generated 

from pure CH3CN (20 mL) by a CVD injection method at the following reaction conditions: 0.24 

mL/min, 800 °C, 1 h, 240 mL/min N2, and 90 mL/min C2H2. 

 

SEM images of the nanomaterials generated from pure DCB revealed the presence of a large 

population of entangled long CNTs (Figure 5.5a and b). A diameter distribution curve revealed 

that the CNTs had an average outer diameters of ~ 45 nm (Figure 5.5b and Table 5.1). Growth of 

a large quantity of highly entangled CNTs in the form of a CNT sponge were also reported in the 

literature, from spray pyrolysis of a mixture of ferrocene and DCB.30  

(a) 

(d) 

(b) 

(c) 
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Table 5.1 Diameters of purified CNMs generated from pure CH3CN and pure DCB synthesized 

using an injection CVD method at a 0.24 mL/min injection rate 

Hydrocarbon 

source 

Average outer 

diameter /nm 

Number of structures 

counted (number of 

samples analyzed) 

Carbon structure 

CH3CN 53 (Carbon 

nanorods) 

>200 (duplicates) Carbon nanorods (70 %), 

CNTs and bamboo CNTs 

(15 %), CNSs (15 %) 

DCB 45 >200 (duplicates) CNTs 
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Figure 5.5 SEM images and the diameter distribution curves of purified MWCNTs generated 

from DCB (20 mL) by a CVD injection method at the following reaction conditions: 0.24 

mL/min, 800 °C, 1 h, 240 mL/min N2, and 90 mL/min C2H2. 

(a) (b) 

(c) (d) 
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The effect of a chlorine content on the morphology of N-doped CNMs was studied by TEM and 

SEM. The reaction conditions used in this study were as follows: N2 flow rate = 240 mL/min, 

C2H2 flow rate = 90 mL/min, reaction temperature = 800 °C, reaction time = 1 h, injection rate = 

0.24 mL/min. The studied concentrations, based on the volume percent of nitrogen and chlorine 

sources were as follows: CH3CN:DCB (66.7:33.3); CH3CN:DCB (33.3:66.7); CH3CN:DCB 

(20:80). 

TEM images of un-purified and purified CNMs obtained from mixtures containing various 

volume ratios of CH3CN/DCB revealed the formation of nanomaterials with different 

morphologies (Figure 5.6, 5.7 and 5.8). TEM studies based on the solution containing 33.3 vol.% 

DCB showed that images obtained from un-purified and purified samples were similar (Figure 

5.6a to d). CNTs with open-ends, some with closed-ends (rod-shaped) and large CNFs with 

“funnel-shaped” open-ends were obtained (Figure 5.6a to d). Studies have shown that acid 

treatment opens up the tube ends31, but in our study the tube-ends were opened even before acid-

treatment. This could be one of the roles of chlorine to act as a purifying agent leading to 

opening up of the tube ends.  

TEM images obtained from an increase in DCB concentration in the feed to 66.7 vol.% showed 

formation of CNTs and CNFs of various sizes (Figure 5.7 a to d). A similarity was observed 

from CNMs generated from both un-purified and purified samples (Figure 5.7 a to d). Rod-

shaped CNTs some with closed-ends and others with open-ends were obtained (Figure 5.7a and 

c). Large sized CNFs with pencil-shapes, some with open-ends and others with closed-ends were 

also obtained (Figure 5.7b, c and d circled parts). Some thinner CNFs which also appear to have 

“pencil-shapes” that are not well-developed can be seen from images obtained from solutions 

containing 33.3 vol.% and 66.7 vol.% DCB (Figure 5.6a and 5.7c shown by arrows).     

TEM images of CNMs generated from un-purified samples containing 80 vol.% DCB showed 

rod-shaped CNMs with “funnel-like) open-ends, CNTs, carbon flakes and CNS (Figure 5.8a and 

b). Images obtained from purified samples showed a large quantity of entangled CNTs, CNSs, 

carbon flakes (Figure 5.8c and d) and rod-shaped CNMs (Supplementary Figure S2).  
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Figure 5.6 TEM images of un-purified (a and b) and purified (c and d) CNMs generated from a 

66.7:33.3 vol.% CH3CN:DCB reagent synthesized by a CVD injection at an injection rate of 0.24 

mL/min. 

(a) 

(d) (c) 

(b) 
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Figure 5.7 TEM images of un-purified (a and b) and purified (c and d) CNMs generated from a 

33.3:66.7 vol.% CH3CN:DCB reagent synthesized by a CVD injection at an injection rate of 0.24 

mL/min. 

(a) 

(d) (c) 

(b) 
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Figure 5.8 TEM images of un-purified (a and b) and purified (c and d) CNMs generated from a 

20:80 vol.% CH3CN:DCB reagent synthesized by a CVD injection at an injection rate of 0.24 

mL/min.. 

 

SEM images were also recorded in order to obtain more information on the morphology and 

dominating carbon nanostructures. SEM images obtained from un-purified samples containing 

33.3 vol.% DCB showed the presence of rod-shaped CNMs, covered by droplets of metal 

catalyst particles (Figure 5.9a and b). SEM images of the purified samples revealed that the 

majority of the CNMs in these feeds were “straw-shaped” CNTs with open-ends and of various 

(a) 

(d) (c) 

(b) 
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sizes (Figure 5.9c). The metal catalyst particle droplets were not observed after purification. 

Diameter distribution curves revealed that the open-ended CNTs had average outer diameters of 

~ 107 nm (Figure 5.9b and Table 5.2). A measurable quantity of the rod-shaped CNMs were also 

observed from the SEM images obtained after purification (Figure 5.9c). Their diameter 

distribution curves revealed that they had an average outer diameter of ~ 78 nm (Figure 5.9d and 

Table 4.2). High magnification SEM images were also obtained to get a closer look at the 

obtained morphologies. Closer analysis of the open-ended CNTs showed that they were “horn-

shaped” (Figure 5.10a). The rod-shaped CNMs seems to have increased in lengths in comparison 

to those obtained from pure CH3CN, with the measured lengths of ~ 346 to 540 nm, which was 

about 3 times that obtained in pure CH3CN (Figure 5.10b). This suggest that the presence of 

chlorine enhances the growth of CNMs. A measurable quantity of carbon nanospheres were also 

obtained from these solution (Figure 5.10c).    

 

Table 5.2 Diameters analysis of CNMs generated from solutions containing various volume 

ratios of CH3CN:DCB synthesized using an injection CVD method at an injection flow rate of 

0.24 mL/min 

Hydrocarbon 

source 

Molar ratio    

/vol.% 

(Mole ratio) 

Average 

outer 

diameter 

/nm 

Number of structures 

counted (number of 

samples analyzed) 

Carbon structure 

CH3CN: DCB 66.7:33.3 

(1:0.25) 

107 (open-

ended 

CNTs) 

78 (rod-

shaped 

CNMs) 

>200 (duplicates) Horn- or straw-

shaped CNTs (70 

%), carbon nanorods 

(20 %), CNSs (10 

%) 

CH3CN: DCB 33.3:66.7 

(1:1) 

157 >200 (duplicates) Pencil-shaped CNFs, 

CNTs 

CH3CN: DCB 20:80 (1:2) 95 >200 (duplicates) Straw-shaped CNTs, 

entangled CNTs, 

carbon nanorods, 

CNSs 
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Figure 5.9 SEM images of un-purified (a and b) and purified (c,d,e and f) CNMs generated from 

a 66.7:33.3 vol.% CH3CN:DCB reagent synthesized by a CVD injection at an injection rate of 

0.24 mL/min. 

(a) (b) 

(c) 

(f) (e) 

(d) 



120 | P a g e  

 

  

 
Figure 5.10 High magnification SEM images of purified (a, b) CNMs and (c) carbon 

nanospheres generated from a 66.7:33.3 vol.% CH3CN:DCB reagent synthesized by a CVD 

injection at an injection rate of 0.24 mL/min. 

 

SEM images obtained from un-purified and purified samples containing 66.7 vol.% DCB were 

similar (Figure 5.11a, b and c). A large quantity of rod-shaped CNMs of increased length were 

observed from this solution. A measurable quantity of large “pencil-shaped” CNFs, some with 

closed-ends and others with open-ends were also observed (Figure 5.11a, c, e and f and 

Supplementary Figure S12). A few of these “pencil-shaped” CNFs which were thinner and 

appeared undeveloped (shown by small pointed head) were observed from TEM images 

(a) 

(c) 

(b) 
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generated from a solution containing 33.3 vol.% DCB.  It appears that the presence of chlorine in 

the feed results in structural changes of the “rod-shaped” CNMs to “pencil-shaped” CNFs. This 

is shown by an increase in the thin ended part of the CNF resulting in a formation of a well-

developed “pencil-like” CNF. The open-ended “pencil-shaped” CNFs appears as if their tips 

were broken, resulting in open-ends (Figure 5.11e). The reaction mechanism of this “pencil-

shaped” CNTs still needs to be investigated, but it appears that chlorine is responsible for this.    

of covered by droplets of metal catalyst particles (Figure 5.9a and b). SEM images of the purified 

samples revealed that the majority of the CNMs in these feeds were “pencil-shaped” CNFs with 

most of them under developed shown by the small undefined tip-ends. The average outer 

diameter of all the observed CNMs was about 154 nm (Figure 5.11c and Table 5.3). 

SEM images obtained from solutions containing 80 vol.% DCB concentration revealed also a 

mixture of CNMs. Un-purified samples showed rod-shaped CNMs covered by droplets of metal 

catalyst particles (Figure 5.12a). SEM images of the purified samples revealed mixtures of clean 

CNMs, CNSs, “straw-shaped” open-ended CNTs and entangled CNTs (Figure 5.12 b, c, and e 

and Figure 5.13). The “straw-shaped” CNTs were dominating in this solution and their average 

diameters were about 95 nm (Figure 5.12d and Table 5.3). The average outer diameter of the 

entangled CNTs was about 72 nm (Figure 5.12f and Table 5.3).  It appears that in all 

concentrations studied, the tube length increased with an increase in amount of chlorine present 

in the feed.  

“Sharp nail structures as claws were observed by other researchers when they modified the CVD 

method of producing N-doped CNTs by adding NaCl to the water that was in a by-product liquid 

trap, using benzylamine and ferrocene as nitrogen source and catalyst28. They claimed that as 

they increased the concentration of the salt in water changes in morphology of N-doped CNTs 

occurred. The changes in morphology were probably due to the evaporation of water but the 

authors claimed that it was due to the participation of Na and Cl atoms produced in the water as 

they move back into the hot zone. “How can the ions move back against a flow and take part in 

the reaction?” They also claimed that Na and Cl ions were participating in the catalysis, probably 

reducing the sizes of the nanoparticles”.26   
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Figure 5.11 SEM images of un-purified (a and b) and purified (c (with its diameter distribution 

curve (d), e and f) CNMs generated from a 33.3:66.7 vol.% CH3CN:DCB reagent synthesized by 

a CVD injection at an injection rate of 0.24 mL/min. 

(a) (b) 

(c) 

(f) (e) 

(d) 



123 | P a g e  

 

   

 

100 200 300
0

50

100

150

200

250

P
e
rc

e
n

t 
d

is
tr

ib
u

ti
o

n
 (

%
)

Diameter (nm)

Average diameter = 95 ± 77 nm 

 

 

40 60 80 100
0

50

100

150

200

P
e

rc
e

n
t 

d
is

tr
ib

u
ti

o
n

 (
%

)

Diameter (nm)

Average diameter = 72 ± 69 nm 

 
Figure 5.12 SEM images of un-purified (a and b) and purified (c (with its diameter distribution 

curve (d), e and f) CNMs generated from a 20:80 vol.% CH3CN:DCB reagent synthesized by a 

CVD injection at an injection rate of 0.24 mL/min. 

(a) 

(f) 
(e) 

(d) (c) 

(b) 
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Figure 5.13 High magnification SEM images of purified (a, b) CNMs generated from a 20:80 

vol.% CH3CN:DCB reagent synthesized by a CVD injection at an injection rate of 0.24 mL/min. 

 

TEM images of un-purified and purified CNMs synthesized at different injection flow rates, 0.1 

and 0.16 mL/min are shown in Figure 5.14 and 5.15. TEM images for CNMs generated at all 

flow rates, revealed that un-purified and purified samples yielded similar CNMs. Images 

obtained from an injection flow rate of 0.24 mL/min were already discussed in the previous 

section. TEM images obtained from un-purified and purified samples generated at an injection 

flow rate of 0.16 mL/min revealed CNMs with “funnel-like” open ends (Figure 5.14a, c and d). 

Figure 5.14d shows that the inside of the CNMs are compartmented, “cup-shapes” can be seen 

inside the tube, especially at the tube-end. This shows that the CNMs are actually CNTs with 

thick walls and very thin inner diameters. Carbon flakes were also observed from the TEM 

images (Figure 5.14b, c and d). Decreasing an injection flow rate to 0.10 mL/min resulted in the 

formation of a large quantity of thin CNTs, together with large diameter CNTs with “funnel-

like” open-ends (Figure 5.15a, b, c and d). Images of CNTs before purification and after 

purification appeared similar, all have open-ends and amorphous carbon particles can also be 

observed in both. We can conclude from the TEM images that varying the injection flow rate did 

not result in a great change on the morphology of the CNMs.   

 

(a) (b) 
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Figure 5.14 TEM images of un-purified (a and b) and purified (c and d) CNMs generated from a 

66.7:33.3 vol.% CH3CN:DCB reagent synthesized by a CVD injection at an injection rate of 0.16 

mL/min. 

(a) 

(d) (c) 

(b) 
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Figure 5.15 TEM images of un-purified (a and b) and purified (c and d) CNMs generated from a 

66.7:33.3 vol.% CH3CN:DCB reagent synthesized by a CVD injection at an injection rate of 0.10 

mL/min. 

 

 

 

 

(a) 

(d) (c) 

(b) 
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SEM images were also recorded in order to obtain more information on the morphology and 

dominating carbon nanostructures. SEM images obtained from un-purified samples generated at 

an injection flow rate of 0.16 and 0.10 mL/min, showed the presence of rod-shaped CNMs, 

covered by droplets of metal catalyst particles (Figure 5.16a and b; Figure 5.17a and b). SEM 

images of the purified samples revealed that the majority of the CNMs in these feeds were “rod-

shaped” CNTs with small outer diameters (Figure 5.16c, e and f; Figure 5.17c, e and f). The 

metal catalyst particle droplets were not observed after purification. Diameter distribution curves 

measured for all CNTs showed an average outer diameters of ~ 155 nm and 236 nm for CNMs 

generated from a 0.16 and 0.10 mL/min injection flow rate, respectively (Figure 5.16d and 

Figure 5.71d). A measurable quantity of the large open-ended CNTs were also observed from the 

SEM images obtained after purification (Figure 5.16c, and e and Figure 5.17 c and e). The mass 

of the product obtained at all studied injection flow rates were also similar, 1.3850, 1.1424 and 

1.0433 g for 0.24, 0.16 and 0.10 mL/min injection flow rates respectively. 

Increasing the flow rate to 0.57 mL/min resulted in no increase in the mass of the product 

obtained, instead the mass of the product obtained decreased which showed that the only thing 

that happened was the reduction of the catalyst material. 

The average diameter of the CNMs increased with a decrease in an injection flow rate. 

Production of CNTs with open-ends decreased with an increase in an injection flow rate. CNMs 

generated from applying an injection flow rate of 0.16 and 0.10 mL/min possessed similar 

morphologies. We concluded that an injection flow rate of 0.24 mL/min was the best to use in 

these studies since even if it gave us mixtures of CNMs, it favored mostly formation of open-

ended CNTs which are desirable in field emission devices and as supercapacitors. 
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Figure 5.16 SEM images of un-purified (a and b), purified (c, and d) and high magnification 

SEM images of CNMs generated from a 66.7:33.3 vol.% CH3CN:DCB reagent synthesized by a 

CVD injection at an injection rate of 0.16 mL/min. 

(a) 

(d) (c) 

(b) 

(e) (f) 
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Figure 5.17 SEM images of un-purified (a and b), purified (c, and d) and high magnification 

SEM images of CNMs generated from a 66.7:33.3 vol.% CH3CN:DCB reagent synthesized by a 

CVD injection at an injection rate of 0.10 mL/min. 

(a) (b) 

(c) (d) 

(e) (f) 
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5.3.2 Thermogravimetric analysis of N doped CNMs: Effect of DCB concentration and 

injection flow rate 

The thermal stability and the reactivity of the obtained CNMs were analyzed by 

thermogravimetric analysis (TGA). Derivative TGA profiles of the un-purified samples 

generated from pure CH3CN shows two initial minor weight losses at ~ 480 and 500 °C, due to 

oxidation of amorphous carbon and degradation of surface oxygen functionalities32 (Figure 

5.18b) (Figure 5.18 and Table 5.3). A third mass loss was observed at ~ 620 °C for the oxidation 

of N doped MWCNTs (rod-shaped, bamboo-compartmented and hollow CNTs) (Figure 5.18b). 

A fourth sharp mass loss at higher temperatures above 700 °C can be attributed to decomposition 

of other graphitic materials (CNSs, and carbon platelets observed from the TEM and SEM 

images). Similar mass losses were observed for CNMs generated from purified samples (Figure 

5.18b). A shift to lower decomposition temperatures was observed from DTGA curves obtained 

from purified samples, suggesting that more defects were created by acid treatment. A fourth 

mass loss was greatly reduced in height after purification suggesting removal of other graphitic 

materials like carbon platelets and some catalyst metal particles.  

DTGA curves of the un-purified CNTs generated from DCB alone showed a minor mass loss at 

~ 100 °C due to evaporation of physisorbed water on CNT sheets. The water could have been 

adsorbed onto the CNTs during storage (the CNTs were stored in glass vials). Two more 

oxidation peaks were observed at higher temperatures ~ 600 and 700 °C. The mass loss at ~ 600 

°C which appeared dominant was attributed to functionalized CNTs, while the mass loss at ~ 700 

°C was attributed to impurities such as unreacted metal catalyst particles (Figure 5.18d and Table 

5.3). A single major weight loss (~100 %) was observed from purified samples at ~ 600 °C and 

was attributed to chlorinated CNTs. Materials containing C–Cl bonds were shown to possess 

high thermal stabilities.33   
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Figure 5.18 TGA and DTGA curves of un-purified and purified CNMs generated from pure 

CH3CN (a & b) and pure DCB (c & d) synthesized by CVD injection at 0.24 mL/min. 

 

Table 5.3 Decomposition temperatures and residual masses (determined by TGA) of the un-

purified and purified (P) chlorinated N-MWCNTs generated by injecting different volume ratios 

of CH3CN and DCB. 

CH3CN:DCB 

vol.% 

Peak 1  

decomposition 

temperature, °C 

Peak 2 

decomposition 

temperature, °C 

Residual  

mass, % 

100:0 643 744 28.5 

100:0 (P) 540 621 8.9 

0:100 601 695 25.7 

0:100 (P) 607 – 0 

 

(a) (b) 

(c) (d) 
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Three mass losses were observed from DTGA curves generated from un-purified CNMs while 

two mass losses were observed from purified CNMs synthesized from solutions containing 33.3 

vol.% DCB (Figure 5.19b). The first mass loss at ~ 100 °C, was due to physisorbed water on the 

CNT sheets. The second most intense weight losses at higher temperatures ~ 550, was attributed 

to oxidation of chlorinated N-doped CNTs (Figure 5.19 and Table 5.4). The third mass loss 

appeared at ~ 650 °C for purified CNMs and was at ~ 680 for un-purified CNMs. The third 

weight loss was assigned to oxidation of other graphitic materials (CNSs, and carbon platelets). 

These observations agree with the TEM observations were mixtures of CNMs were observed 

from un-purified and purified samples.  

DTGA obtained from solutions containing 66.7 vol.% DCB were also analyzed. Two mass losses 

at lower temperatures were observed from un-purified samples at ~ 100 and 150 °C. The first 

mass loss at ~ 100 °C was assigned to physisorbed water and the mass loss at ~ 150 °C was 

assigned to decomposition of chemisorbed surface chloride groups32. A broad oxidation peak at 

higher temperatures from 600 to 750 °C which shows three mass losses, of which two are sharp 

at higher temperatures (Figure 5.19 and Table 5.4). The weight loss at ~ 600 °C can be attributed 

to stable C–Cl bonds from chlorinated N-doped CNTs. Two small sharp weight losses at ~ 680 

and 750 °C can be attributed to the presence of other graphitic materials (like large “pencil-

shaped” CNMs) respectively. Another broad oxidation peak at even higher temperatures ~ 800 

°C (Figure 5.19d) was observed, which was assigned to the evolution of nitrogen which is known 

to be released from N-doped carbons.33 Highest weight changes were observed for samples with 

highest chlorine content.34 We can assume that the formation of large “pencil-shaped” CNTs 

some with open-ends and others with closed-ends were enhanced in feeds containing a large 

content of chlorine adatoms. The results agree with TEM images where large “pencil-shaped” 

CNTs were produced from solutions containing 66.7 vol.% DCB that is assumed to release large 

amounts of chlorine vapors into the feed. This situation prevails when formation of Cl2 

molecules which can escape through the trap is hindered by formation of Cl adatoms at opposite 

sides of the CNT tube.35 Formation of Cl2 molecules from two individual Cl atoms is 

energetically favorable when the two Cl atoms are at close proximity to each other.35 

We then analyzed DTGA profiles obtained from solutions containing 80 vol.% DCB. Two mass 

losses at lower temperatures were observed from un-purified samples at ~ 100 and 150 °C 
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(Figure 5.19). The first mass loss at ~ 100 °C was assigned to physisorbed water and the mass 

loss at ~ 150 °C was assigned to decomposition of chemisorbed surface chloride groups32. Two 

broad mass losses were also observed further at high temperatures from the un-purified and 

purified samples at ~550 and 620 °C (Figure 5.19 and Table 5.4). The major weight loss at ~550 

°C can be attributed to oxidation of chlorinated N-doped CNTs (entangled and straw shaped 

open ended CNTs) and the weight loss at higher temperature ~620 °C can be assigned to 

oxidation of other graphitic materials (CNSs, carbon platelets). 

 

Table 5.4 Decomposition temperatures and residual masses (determined by TGA) of the un-

purified and purified (P) chlorinated N-MWCNTs generated by injecting different volume ratios 

of CH3CN and DCB. 

CH3CN:DCB 

vol.% 

Peak 1  

decomposition 

temperature, °C 

Peak 2 

decomposition 

temperature, °C 

Residual  

mass, % 

100:0 643 744 28.5 

100:0 (P) 540 621 8.9 

66.7:33.3 557 684 22.4 

66.7:33.3 (P) 560 621 5.0 

33.3:66.7  560   721 24.6 

33.3:66.7 (P) 560 742 7.0 

20:80 586 656 32 

20:80 (P) 624 721 1.8 

0:100 601 695 25.7 

0:100 (P) 607 – 0 
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Figure 5.19 TGA and the corresponding derivative profiles of un-purified and purified CNMs 

generated by varying the volume ratio of CH3CN:DCB synthesized by a CVD injection at an 

injection rate of 0.24 mL/min.   

 

 

(a) (b) 

(c) (d) 

(e) (f) 
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The thermal stability of the chlorinated N-MWCNTs produced at different injection rates was 

also studied using TGA. DTGA curves of the un-purified chlorinated CNMs generated from 

using a 0.16 mL/min injection flow rate displayed three oxidation peaks (Figure 5.20b). The 

mass loss at ~ 100 ° was due to physisorbed water onto the CNT walls, at ~ 564 °C was due to 

oxidation of chlorinated N-doped CNTs and the one at 670 °C was due to oxidation of other 

graphitic materials (CNSs, large CNTs with funnel-like open-ends and carbon nanoplatelets) 

(Figure 5.20b and d). The mass loss at 100 °C disappeared from the DTGA curves after 

purification, which showed removal of physisorbed water, whilst the other two mass losses at 

high temperature remained. The mass loss at ~ 670 °C remained the same after acid treatment for 

CNMs generated at 0.10 mL/min, but was greatly reduced for CNMs generated at 0.16 mL/min 

(Figure 5.20b and d). The residual mass observed from all the TGA curves (Table 5.5) 

corresponds to the metal oxide nanoparticles, which were probably embedded inside the 

MWCNTs and could not be removed by acid treatment. The residual mass content of the metal 

oxide obtained was different for each sample, and showed no apparent trend (Table 5.5). 

 

Table 5.5 Decomposition temperatures and residual masses of the un-purified and purified (P) 

chlorinated N-MWCNTs generated by varying the injecting flow rate of a 66.7:33.3 vol.% 

CH3CN/DCB solvent mixture. 

Injection rate/mL.min-1 Decomposition 

temperature/°C 

Residual mass/% 

0.10 560 21.8 

0.10P 564 10.4 

0.16 565 21.9 

0.16P 552 3.5 

0.24 567 21.1 

0.24P 567 5.0 

 

 



136 | P a g e  

 

0 200 400 600 800 1000
0

20

40

60

80

100
W

e
ig

h
t 

(%
)

Temperature (
0
C)

 Un-purified

 Purified

0.16 mL/min

0 200 400 600 800
-10

-8

-6

-4

-2

0

D
e

ri
v

a
ti

v
e

 w
e

ig
h

t 
(%

)

Temperature (
0
C)

 Un-purified

 Purified

0.16 mL/min

 

0 200 400 600 800 1000
0

20

40

60

80

100

W
e
ig

h
t 

(%
)

Temperature (
0
C)

 Un-purified

 Purified

0.10 mL/min

0 200 400 600 800
-8

-7

-6

-5

-4

-3

-2

-1

0

1

D
e
ri

v
a

ti
v

e
 w

e
ig

h
t 

(%
)

Temperature (
0
C)

 Un-purified

 Purified

0.10 mL/min

 

Figure 5.20 TGA and DTGA curves of the un-purified and purified chlorinated N-CNMs 

generated at 0.16 mL/min (a and b) and 0.10 mL/min (c and d) using a CH3CN/DCB (66.7:33.3 

vol.%) mixture. 
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5.3.3 Raman spectroscopy analysis of N doped CNMs: Effect of DCB concentration and 

injection flow rate 

Raman spectra of the un-purified and purified CNMs generated from pure CH3CN are presented 

in Figure 5.21 and Table 5.6. Raman spectra provides information about the graphitic nature and 

molecular structure of CNMs. Deconvoluted Raman spectra of the un-purified and purified 

CNMs showed two first-order bands, at ~ 1342 and 1576 cm–1, attributed to defected graphite 

(D-band) and graphitic band (G-band), respectively. For un-purified CNMs, the D-band could 

only be deconvoluted into one band denoted as D3, the G-band was deconvoluted into two bands 

at 1576 cm–1 attributed to graphitic like carbonyl groups (denoted as D’) and at 1621 cm–1 

attributed to defected graphitic plane (Figure 5.21a). For purified CNMs, the D-band was 

deconvoluted into two peaks at 1272 cm–1 attributed to a hexagonal diamond carbon (denoted as 

D1) and a D3 band at 1344 cm–1. The G-band was also deconvoluted into a D’ at 1577 cm–1 and 

a defected graphitic plane as 1624 cm–1. Second order bands were also observed in both Raman 

spectra. 2D band attributed to 1st overtone of a D1 band was observed at 2681 cm–1 for both 

spectra generated from pure CH3CN. Another weak band a G* band which is a 1st overtone of a 

D4 band (which occurs at ~1200 cm–1) appearing at 2435 cm–1 was observed from un-purified 

CNMs and is a defect activated peak. The order of crystallinity of the material can be estimated 

from the corresponding full-width half-maximum (FWHM). An amorphous structure leads to a 

FWHM of approximately 200 cm-1.36 FWHM values for all observed bands were low, suggesting 

that the materials generated from pure CH3CN had no amorphous carbon. FWHM values of 60 

and 63 cm–1 were observed for a D’ band and 58 and 62 for a 2D band obtained from un-purified 

and purified CNMs, respectively (Table 5.6). Low ID/IG peak ratios of 0.56 for un-purified 

samples and 0.68 for purified CNMs were obtained suggesting formation of graphitic materials 

with less disorders (calculated from Table 5.6). There was not much difference between the un-

purified and purified CNMs. These results agree with TEM observations, where mixtures of 

clean CNMs were obtained with no amorphous carbon materials observed, only lumps were 

observed which were attributed to carbon platelets materials. The ratio of ID/ID’ was used to 

provide information about the type of defects present in the material. If the ratio of ID/ID’ is 13, it 

indicates the presence of related sp3 related defects, 10.5 corresponds to hoping defects, 7 for 

vacancy-like defects, 3.5 for boundary-like defects and 1.3 for on-site defects in graphene. 37,38 
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The ID/ID’ value of 5.7 suggest that the type of defects is vacancy-like defects in addition to small 

boundary-like defects. Vacancy-like defects represent the single and double vacancy in the 

graphitic lattice (a property of a removed atom) and boundary-like arise from the scattering of 

phonons with defects from grain boundaries.37,38        

 

 Table 5.6 Raman bands of the un-purified and purified chlorinated CNTs generated from pure 

CH3CN using injection CVD method at an injection rate of 0.24 mL/min 

 Band 

name 

Band Position 

(cm–1) 

Bond 

type 

FWHM 

(cm–1) 

Peak 

Area 

Designation 

C
H

3
C

N
 u

n
-p

u
ri

fi
ed

 

D 1342 sp2 82 3396 Disordered graphite 

G 1576 sp2 60 5419 Graphitic like 

carbonyl group 

D’ 1621 sp2 35 620 Defect in graphitic 

plane 

G* 2435  31 107 1st overtone of D4 

band 

2D1 2669  51 696 1st overtone of D1 

band 

2D2 2696  38 393 1st overtone of D1 

band 

C
H

3
C

N
 p

u
ri

fi
ed

 

D1 1272 sp2 – sp3 28 126 Hexagonal diamond 

carbon 

D 1344 sp2 91 4554 Disordered graphite 

G 1577 sp2 63 6323 Graphitic like 

carbonyl group 

D’ 1624 sp2 37 589 Defect in graphitic 

plane 

2D1 2656  47 97 1st overtone of D1 

band 

2D2 2683  59 1083  

The designation of the Raman bands was adopted from Manoj.39 
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Figure 5.21 Deconvoluted Raman spectroscopy curves of purified CNMs generated from pure 

CH3CN using an injection CVD method at an injection rate of 0.24 mL/min. 

 

Raman spectra curves and data of the CNMs generated from pure DCB are presented in Figure 

5.22 and Table 5.7. Deconvoluted Raman spectra of the un-purified and purified CNMs both 

showed three bands, attributed to a defect band (D-band) at 1337 cm–1, a graphitic band (G-band) 

which was deconvoluted into two bands, an amorphous carbon structure induced band (D2) at 

1491 and 1515 cm–1 and a graphitic like carbonyl group (G) at 1584 and 1587 cm–1, respectively 

(Figure 5.23). Second-order bands were also observed in both un-purified and purified samples, a 

1st overtone of D4 band (band at 1200 cm–1) at 2444 and 2453 cm–1 (G*), a 1st overtone of D1 

band at 2683 cm–1 (2D) and a very weak overtone of D2 band at 2929 and 2926 cm–1 (D + G) 

(Figure 5.23). A 2D band was split into two bands for both un-purified and purified CNMs. This 
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split has been described as a characteristic feature of undisturbed or highly ordered graphitic 

lattices.40 The spliting of the 2D band was also assigned to splitting’s of the π and π* electronic 

states, owing to the interactions between the succesive layer planes.41 The G* band has been 

classified as a defect activated peak.42 The presence of a D + G band shows characteristics of 

disturbed graphitic structures, as a result of functionalization with chlorine. 
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Figure 5.22 Raman spectroscopy curves of un-purified and purified CNTs generated from pure 

DCB using an injection CVD method at an injection rate of 0.24 mL/min 

 

The ID/IG ratio of 1.2 and 1.5 for un-purified and purified CNMs also suggest that the materials 

are highly disordered (Table 5.7). FWHM values for all observed bands were high, suggesting 
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the presence of amorphous carbon structures. FWHM values of 68 and 72 cm–1 were observed 

for a G band and 2D1 band obtained from un-purified and purified CNMs (Table 5.7). Similar 

ID/IG peak ratio were obtained 1.0 for un-purified CNMs and 1.1 for purified CNMs. Peak ratios 

were high (~1) as compared to those generated from CH3CN (~0.6) which shows that 

functionalization of CNMs with chlorine created more defects on the walls of the CNTs.  

 

Table 5.7 Raman bands of the un-purified and purified chlorinated CNTs generated from pure 

DCB using injection CVD method at an injection rate of 0.24 mL/min 

 Band 

name 

Band Position 

(cm–1) 

Bond 

type 

FWHM 

(cm–1) 

Peak Area Designation 

D
C

B
 u

n
-p

u
ri

fi
ed

 

D 1337 sp2 107 32236 Disordered graphite 

D2 1491 sp3 92 4837 Amorphous carbon 

structure 

G 1584 sp2 67 26732 Graphitic like carbonyl 

group 

G* 2444  46 221 1st overtone of D4 band 

2D1 2627  44 239 1st overtone of D1 band 

2D2 2684  72 4548 1st overtone of D1 band 

D + G 2929  83 671 2D overtone 

D
C

B
 p

u
ri

fi
ed

 

D 1337 sp2 114 35362 Disordered graphite 

D2 1515 sp3 110 7251 Amorphous carbon 

structure 

G 1587 sp2 68 23737 Graphitic like carbonyl 

group 

G* 2453  42 105 1st overtone of D4 band 

2D1 2677  93 1544 1st overtone of D1 band 

2D2 2687  70 1544  

D + G 2926  65 261 2D overtone 
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From the above observations it is clear that both chlorine and nitrogen play a certain role on the 

morphology and properties of the Cl/N doped carbon nanomaterials. 

The role of chlorine on the graphitic nature of the N doped CNMs was also evaluated using 

Raman Spectroscopy. Raman curves of un-purified chlorinated N doped CNMs are presented in 

Figure 5.23. Un-purified CNMs generated from solutions containing 33.3 vol.% DCB and 66.7 

vol.% CH3CN, revealed the presence of D-band and G-band (Figure 5.23). For un-purified 

CNMs generated from a 33.3 vol.% DCB, a broad D-band was deconvoluted into two bands a 

weak band at 1182 attributed to C=C strecthing vibrations and and a broad dominating band at 

1349 cm–1 due to disordered CNMs (Figure 5.23a). Both Cl and N created disorders in the 

graphitic lattice. A G-band was also deconvoluted into three bands at 1492, 1585 and 1601 cm–1 

attributed to amorphous carbon structure, graphitic lattices and defects in the graphitic lattice. A 

deconvoluted spectra recorded from un-purified CNMs generated from solutions containing 66.7 

vol.% DCB, showed a single D band and a G band that was deconvoluted into two bands at 1515 

and 1593 cm–1 (Figure 5.23). A defected D’ band was not observed from this CNMs, this could 

be attributed to the surface purification of the CNMs by chlorine resulting in formation of highly 

graphitic materials. A D band was still broad, this could be attributed to creation of defects due 

to functionalization of CNMs with chlorine. The presence of several CNMs of various 

morphologies observed from the TEM images could also contribute to the amount of defects 

created. A deconvoluted spectra recorded from un-purified CNMs generated from solutions 

containing 80 vol.% DCB, showed a broad D band that was deconvoluted into two bands at 1181 

and 1346 cm–1 and a G band that was deconvoluted into two bands at 1508 and 1591 cm–1 

(Figure 5.23). A defective graphitic lattice D’ band was also not observed from these Raman 

curves. The large ID/ID’ value of 10 suggest that the type of defects is hopping defects in addition 

to small sp3 related defects. Hoping defects represents any defects that distort the bonds between 

carbon atoms, retaining the general sp2 configuration and sp3 related defects arise due to covalent 

sp3 bonded functional groups on the carbon atoms.37,38  
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Figure 5.23 Deconvoluted Raman spectroscopy curves of un-purified CNMs generated from 

various vol.% of CH3CN:DCB solution using an injection CVD method at an injection rate of 

0.24 mL/min. 

 

The ID/IG ratio of 1.4, 1.7 and 1.7 were obtained for un-purified CNMs generated from 33.3, 66.7 

and 80 vol.% DCB solutions, which suggets highly defected materials (Table 5.8). Large FWHM 

values for all observed bands shows that the materials contained some amorphous carbon 

structures (Table 5.8).  

 

 

 

(a) (b

) 
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Table 5.8 Raman bands of the un-purified CNMs generated from various volume ratios of a 

CH3CN:DCB solution mixture using injection CVD method at an injection rate of 0.24 mL/min 

CH3CN:DCB 

Volume ratio 

(%)  

Band 

name 

Band Position 

(cm–1) 

Bond 

type 

FWHM 

(cm–1) 

Peak 

Area 

Designation 

6
6
.7

:3
3
.3

 

D4 1182 sp2 – sp3 118 4996 C=C stretching 

vibrations 

D 1349 sp2 192 44968 Disordered 

graphite 

D2 1492 sp3 97 6988 Amorphous 

carbon structure 

G 1585 sp2 105 23770 Graphitic like 

carbonyl group 

D’ 1601 sp2 49 4465 Defect in 

graphitic plane 

3
3
.3

:6
6
.7

 

D 1356 sp2 240 49532 Disordered 

graphite 

D2 1515 sp3 68 4268 Amorphous 

carbon structure 

G 1593 sp2 82 24424 Graphitic like 

carbonyl group 

2
0
:8

0
 

D4 1181 sp2 – sp3 120 7622 C=C stretching 

vibrations 

D 1346 sp2 189 75621 Disordered 

graphite 

D2 1508 sp3 97 13532 Amorphous 

carbon structure 

G 1591 sp2 88 35092 Graphitic like 

carbonyl group 

 

 

Defects in the graphitic structure were created after purification of the CNMs generated from all 

studied concentrations of DCB. Amorphous carbon structures were greatly reduced in the CNMs 

generated from solutions containing 33.3 and 66.7 vol.% DCB. Amorphous carbon structures 
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were compeletely removed by acid treatment from CNMs generated from solutions containing 

80 vol.% DCB. CNMs generated from feeds solutions containing 66.7 vol.% DCB were highly 

defected, as shown by a large broad D peak. Second order bands were also observed from 

purified CNMs generated from solutions containing 33.3 and 80 vol.% DCB. A G* band at 

~2400 and a 2D band that was split into two bands (Figure 5.24 and Table 5.9). A defect induced 

G* band was very weak for both, while a 2D band was weak for CNMs generated from feeds 

containing 33.3 vol.% DCB and very intense for CNMs generated from feeds containing 80 

vol.% DCB CNMs, suggesting that the latter materials were highly graphitic. Another weak 

defect induced band (D + G band) at ~2900 cm–1 was observed from purified CNMs generated 

from solutions containing 80 vol.% DCB (Figure 5.24).  

The ID/IG ratios of 0.72, 1.8 and 0.63 were obtained for purified CNMs generated from 33.3, 66.7 

and 80 vol.% DCB (calculated from Table 5.9). ID/IG values showed that defects in the CNMs 

increased with an increase in the amount of chlorine in the feed, but then decreased with a further 

increase in the concentration of DCB to 80 vol.% in the feed. This results suggests that the 

highest functionalization of CNMs with chlorine was achieved from feeds that contained 66.7 

vol.% DCB. The great involvement of chlorine in creation of defects in these feed was also 

observed from the changes in morphology of the CNMs from their TEM images, where “pencil-

shaped” CNMs of various sizes, some with closed-ends and others with open-ends were 

observed. An ID/ID’ value of 16 which is due to the presence of sp3 related defects, was obtained 

for purified CNTs generated from solutions containing 33.3 vol.% DCB. An ID/IG value of 9.3 

due to vacancy-like defects and hoping defects was obtained from feeds containing 66.7 vol.% 

DCB. An ID/ID’ value of 3.7 which is due to boundary-like defects was obtained from solutions 

containing 80 vol.% DCB. FWHM values were 70, 116 and 39 for a G-band of CNMs generated 

from 33.3, 66.7 and 80 vol.%, respectively (Table 5.9), which are in correlation with the ID/IG 

values. We can also conclude that CNMs generated from feed solutions containing 66.7 vol.% 

DCB, contained huge amounts of defects. Materials generated from feeds containing 80 vol.% 

DCB were the most graphitic, based on the FWHM and ID/IG values. These data agree with the 

TGA observations where a broad oxidation peak with multiple oxidation peaks at ~ 450 to 800 

°C was observed for CNMs generated from feed solutions containing 66.7 vol.% DCB, assigned 

to oxidation of various types of defected CNMs.  
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Figure 5.24 Deconvoluted Raman spectroscopy curves of purified CNMs generated from various 

vol.% of CH3CN:DCB solution using an injection CVD method at an injection rate of 0.24 

mL/min. 

(c) 
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Table 5.9 Raman bands of the purified CNMs generated from various volume ratios of a 

CH3CN:DCB solution mixture using injection CVD method at an injection rate of 0.24 mL/min 

CH3CN:DCB 

Volume ratio 

(%)  

Band 

name 

Band 

Position 

(cm–1) 

Bond 

type 

FWHM 

(cm–1) 

Peak 

Area 

Designation 

6
6
.7

:3
3
.3

 

D 1345 sp2 107 6275 Disordered graphite 

D2 1510 sp3 140 1786 Amorphous carbon 

structure 

G 1583 sp2 70 6472 Graphitic like carbonyl 

group 

D’ 1626 sp2 46 393 Defect in graphitic plane 

G* 2455  26 57 1st overtone of D4 

2D1 2684  49 314 1st overtone of D1 

2D2 2731  117 298 1st overtone of D1 

3
3
.3

:6
6
.7

 

D4 1179 sp2 – sp3 91 1064 C=C stretching vibrations 

D 1349 sp2 186 15915 Disordered graphite 

D2 1482 sp3 67 1043 Amorphous carbon 

structure 

G 1576 sp2 116 8785 Graphitic like carbonyl 

group 

D’ 1599 sp2 55 1705 Defect in graphitic plane 

  
  

2
0
:8

0
 

D1 1284 sp2 – sp3 27 205 Hexagonal diamond 

carbon 

D 1340 sp2 54 4405 Disordered graphite 

G 1570 sp2 39 6080 Graphitic like carbonyl 

group 

D’ 1610 sp2 25 1176 Defect in graphitic plane 

G* 2434  48 172 1st overtone of D4 band 

2D1 2618  30 74 1st overtone of D1 band 

2D2 2678  64 2966 1st overtone of D1 band 

D + G 2931  9 72 2D overtone 
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Raman spectra analysis was also performed for materials generated from varying the injection 

flow rate. Deconvoluted Raman spectroscopy curves of un-purified and purified CNMs 

generated from a 66.7 vol.% DCB solution at an injection rate of 0.16 mL/min are presented in 

Figure 5.25. A D, G, G*, 2D, D+G and 2D’ bands were observed from un-purified CNMs 

(Figure 5.25). A G-band was deconvoluted into two bands, an amorphous D2 band and a 

graphitic G band at 1493 and 1581 cm–1, suggesting the presence of amorphous carbon in the 

CNMs. A 2D band was also deconvoluted to two bands a 2D1 and 2D2 bands at 2676 and 2720 

cm–1, suggesting the formation of highly graphitic CNMs of multiple layers. Raman 

spectroscopy of the purified CNMs revealed bands assigned to D, G, G*, 2D and D+G (Figure 

5.25). A D-band was deconvoluted into two bands at 1212 and 1344 cm–1 attributed to a D4 and 

D band. A G-band was deconvoluted into two bands at 1511 and 1585 cm–1 attributed to D2 and 

G band respectively. A G* and a D2 (amorphous carbon) peaks were enhanced after purification, 

indicating increase in defects (Figure 5.25c and d). A 2D peak was greatly reduced after 

purification which suggest increase in the amount of disorders in the CNMs.       

ID/IG values of 1.28 and 0.97 were obtained from un-purified and purified CNMs generated from 

a 0.16 mL/min injection rate (Table 5.10), showing that the two CNMs were not that different. 

Comparing with an ID/IG value of 0.72 obtained from CNMs generated from a 0.24 mL/min 

injection rate, we suggest that the materials generated at 0.24 mL/min were more graphitic. 

FWHM values of 73 and 70 were obtained for G bands of purified CNMs generated from 0.16 

and 0.24 mL/min injection rates, respectively which again favored a 0.24 mL/min injection rate 

as the optimum with less amorphous carbon structures. 
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Figure 5.25 Deconvoluted Raman spectroscopy curves of un-purified and purified CNMs 

generated from a solutions containing 66.7:33.3 vol.% of CH3CN:DCB using an injection CVD 

method at an injection rate of 0.16 mL/min 
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Table 5.10 Raman spectra analysis of the un-purified CNMs generated a 66.7:33.3 vol.% 

CH3CN:DCB solution mixture using an injection CVD method at an injection rate of 0.16 

mL/min 

0.16 mL/min 

injection 

rate 

Band 

name 

Band 

Position 

(cm–1) 

Bond 

type 

FWHM 

(cm–1) 

Peak 

Area 

Designation 

U
n
-p

u
ri

fi
ed

  

D 1341 sp2 170 31071 Disordered graphite 

D2 1493 sp3 69 3903 Amorphous carbon 

structure 

G 1581 sp2 83 20352 Graphitic like 

carbonyl group 

G* 2442  34 199 1st overtone of D4 

2D1 2676  61 1202 1st overtone of D1 

2D2 2720  17 52 1st overtone of D1 

P
u
ri

fi
ed

 

D4 1212 sp2 – sp3 120 903 C=C stretching 

vibrations 

D 1344 sp2 120 6086 Disordered graphite 

D2 1511 sp3 156 3212 Amorphous carbon 

structure 

G 1585 sp2 73 4008 Graphitic like 

carbonyl group 

G* 2377  184 1544 1st overtone of D4 

2D 2684  88 275 1st overtone of D1 

D + G 2949  68 66 2D overtone 

 

Deconvoluted Raman spectroscopy curves of un-purified and purified CNMs generated from a 

66.7 vol.% DCB solution at an injection rate of 0.10 mL/min are presented in Figure 5.26. A D 

and G bands were observed from un-purified and purified CNMs. For both un-purified and 

purified CNMs, a D-band was deconvoluted into two peaks, a D4 band and a D band and a G-

band was deconvoluted into two peaks, a D2 band and a G band.               
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Figure 5.26 Deconvoluted Raman spectroscopy curves of un-purified and purified CNMs 

generated from a solutions containing 66.7:33.3 vol.% of CH3CN:DCB using an injection CVD 

method at various injection rates. 

 

ID/IG values of 1.4 and 0.82 were obtained from un-purified and purified CNMs generated from 

0.10 mL/min injection rate (Table 5.11), showing that impurities or some materials were 

removed by purification. Comparison with an ID/IG value of 0.72 obtained from CNMs generated 

from a 0.24 mL/min injection rate, we conclude that the materials generated at 0.24 mL/min 

were more graphitic. FWHM value of 71 and 70 were obtained from G bands of purified CNMs 

generated from 0.10 and 0.24 mL/min injection rates, respectively which again favored both 

materials. We can conclude that 0.24 mL/min injection rate was a good choice since its Raman 

analysis showed that its materials were more graphitic, even though the difference is not that 

huge from other injection rates. The data is consistent with the TEM analysis were similar carbon 

nanostructures were obtained at all three injection rates. 
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Table 5.11 Raman spectra analysis of the un-purified CNMs generated a 66.7:33.3 vol.% 

CH3CN:DCB solution mixture using an injection CVD method at an injection rate of 0.10 

mL/min 

0.10 mL/min 

injection 

rate 

Band 

name 

Band Position 

(cm–1) 

Bond 

type 

FWHM 

(cm–1) 

Peak 

Area 

Designation 

U
n
-p

u
ri

fi
ed

  

D4 1189 sp2 – sp3 95 2924 C=C stretching 

vibrations 

D 1334 sp2 146 29714 Disordered 

graphite 

D2 1555 sp3 76 10978 Amorphous 

carbon structure 

G 1598 sp2 56 12075 Graphitic like 

carbonyl group 

P
u
ri

fi
ed

 

D4 1212 sp2 – sp3 77 424 C=C stretching 

vibrations 

D 1348 sp2 125 4572 Disordered 

graphite 

D2 1527 sp3 181 2948 Amorphous 

carbon structure 

G 1593 sp2 71 3139 Graphitic like 

carbonyl group 

 

 

 

5.3.4 X-ray photoelectron analysis of N doped CNMs: Effect of DCB concentration 

Three main peaks were observed from the wide scan XPS spectra of the N doped MWCNTs 

produced from pure acetonitrile at 284.2, 400 and 531 eV and were attributed to C 1s, N 1s and 

O 1s, respectively (Supplementary Figure S13). Three main peaks were also observed in the 

wide scan XPS spectra of chlorine functionalized MWCNTs produced from pure DCB. This 

peaks occured at 200, 284.2, and 531 eV and were attributed to Cl 2p, C 1s and O 1s, 

respectively (Supplementary Figure S13).  

The deconvoluted C 1s peak for materials obtained from pure CH3CN, was fitted into four 

components with binding energies 283.5, 284.8, 287.4 and 290.7 eV, the first two peaks were 
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attributed to graphite-like C–C sp2 and sp3 bonds, the next two to C–N and O–C=O bonds, 

respectively (Supplementary Figure S14). The relative broadness of the C–N peak was attributed 

to the lattice distortion introduced by nitrogen doping and that of the O–C=O was attributed to 

mixing of various CO-type bonds.43,44 The deconvoluted C 1s peak for materials obtained from 

pure DCB, was fitted into four components with binding energies 283.4, 284.5, 287.7 and 290.1 

eV, attributed to graphite-like C–C sp2, C–C sp3, C–Cl and O–C=O bonds, respectively 

(Supplementary Figure S14). 

The deconvoluted C 1s peaks of all the studied N-doped materials that contained chlorine, were 

fitted into four components. The peaks were at the following binding energies 283.6–284.8, 287 

and 287–290 eV and were attributed to C–C sp2 and sp3 carbon bonds, C–N or C–Cl  groups and 

O–C=O carboxylic groups, respectively (Supplementary Figure S6). CNTs generated from a 

mixture of CH3CN/DCB showed a broad peak at ~ 287 eV which was attributed to overlap 

between C–N and C–Cl groups. The intensity of this peak at ~287 eV increased after addition of 

DCB in the feed, which suggest formation of new C–Cl bonds which overlap with a C–N bond. 

Covalent bonding between carbon and chlorine was also suggested in the Raman data where the 

degree of disorder was found to increase with addition of chlorine due to formation of new sp3 

C–Cl bonds. The formation of sp3 C – Cl bonds was evidenced by the presence of an additional 

peak an amorphous D2 peak, occuring from the Raman spectra of chlorinated CNMs (Figure 

5.23 to 5.26).  

 

The high resolution N 1s XPS spectra recorded for pure CH3CN consisted of four peak 

components at 399.3, 401, 402.7 and 405.8 eV binding energies (Figure 5.27a). The peaks at 

399.3 and 401.0 eV were attributed to pyrrolic (NPyr) and quaternary nitrogen (NQ). Quaternary 

nitrogen corresponds to substitution of carbon atoms located in the graphene sheet by nitrogen. 

The peak at 402.7 eV was attributed to oxidized nitrogen (NOx) which was bonded to oxygen.45 

The peak at 405.8 eV was attributed to molecular nitrogen (NMo), since molecular nitrogen can 

be encapsulated inside the tubes46  or can exist in an intercalated form between graphite layers 

during the formation of CNx tubes.47 Molecular nitrogen was the dominant peak in this case and 

pyridinic nitrogen was not observed. Other authors have attributed the N 1s peaks at 405.3 – 

406.1 eV to the nitrogen atoms that form endohedral or exohedral complex with carbon-carbon 
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bond on the tube walls and called them sorbed nitrogen.47 It has also been shown that these 

nitrogen atoms are covalently bound to the CNTs.48 The peaks at ~407.8 – 408.9 eV were 

attributed to molecular nitrogen.46  

Wide scan XPS spectra of chlorinated N-doped CNMs generated at various volume ratios of 

CH3CN:DCB are presented in Supplementary Figure S15. Four peak components were observed 

from this spectra at ~ 200, 284, 400 and 531 eV, attributed to Cl2p, C1s, N1s and O1s, 

respectively.    

The N1s peak for N-doped CNMs generated after addition of various concentrations of DCB are 

presented in Figure 5.27b to d. Addition of 33.3 and 66.7 vol.% of DCB to CH3CN resulted in a 

solution with 1:0.25 and 1:1 molar ratios CH3CN:DCB. The CNMs produced from these 

mixtures revealed an increase in the peak intensity ratio of the NQ and the NOx species (Figure 

5.27b,c and Figure 5.29a), while the peak intensities of the NPyr and the NMo were greatly 

reduced (Table 5.12). The pyridic nitrogen (NP) peak was also present and appeared at 397.5 and 

398.4 eV for CNMs generated from solutions containing 33.3 and a 66.7 vol.% DCB, 

respectively (Figure 5.27b and c and Table 5.12). The NP peak increased in intensity with an 

increase in the amount of DCB in the feed up to 66.7 vol.%, but this peak was abscent in 

solutions containing no DCB (0 vol.%) and very large 80 vol.% DCB (Figure 5.27a,d and Figure 

5.29a). Increasing the nitrogen concentration was shown to give rise to an increase in the peak 

intensity of the NP peak.49  Pyridine-like nitrogen atoms, contribute to the π system with a pair of 

π electrons and are bonded to two C atoms (C–N=C), which has been associated with generation 

of bamboo-like structures.50 The intensity of the quaternary nitrogen peak increased with the 

introduction of chlorine in the system from pure CH3CN to CH3CN solutions containing 33.3 

vol.% DCB, but decreased with a further increase in DCB concentration to 66.7 vol.% (Figure 

5.29a). Increased functionalization of carbon atoms in CNMs with Cl appears to interfere with N 

doping, we suspect that N-substitution of carbon atoms in the CNM lattice will occur readily on 

non-functionalized carbon atoms. Highly disorderd CNMs were observed from Raman spectra of 

CNMS generated from a 66.7 vol.% DCB solution due to increased functionalization of the 

CNMs with chlorine. A great involvement of chlorine was also observed from the TEM images 

where a change in the morphology of the CNMs was evident from CNMs generated from 

solutions containing 66.7 vol.% DCB. A further increase in the DCB concentration in the 
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CH3CN feed from 66.7 to 80 vol.%, resulted in an increase in the intensity of the NQ peak, and 

the disappearance of a NP peak (Figure 5.27d and Table 5.12). This was attributed to a less 

defected graphene sheet, due to reduced functionalization of CNMs with chlorine. This is 

consistent with the Raman data where a decrease in the ID/IG peak ratio to 0.63 was obtained at 

80 vol.% DCB concentration.     
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Figure 5.27 N 1s XPS spectra of purified CNTs generated from (a) pure CH3CN, (b) 66.7:33.3 

(c) 33.3:66.7 and (d) 20:80 vol.% of CH3CN:DCB synthesized by an injection CVD at 0.24 

mL/min. 
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Table 5.12 Nitrogen content and type of the N-species incorporated in the chlorinated N-

MWCNTs grown at various volume ratios of CH3CN:DCB solution. 

CH3CN:DCB 

volume ratio    

(mole ratio) 

Pyridinic 

NP /(%) 

Pyrrolic 

NPyr/(%) 

Quaternary 

NQ /(%) 

Absorbed N or 

Nitrogen oxides 

 NOx/(%) 

Molecular 

NMo /(%) 

100:0 (1:0) – 31.8 24.2 2.01 42.0 

66.7:33.3 (1:0.25) 7.1 8.5 61.7 19.7 3.0 

33.3:66.7 (1:1) 13.5 8.4 33.6 25.2 19.3 

20:80 (1:2) - 43 41.7 14.1 1.2 

 

The deconvoluted Cl 2p XPS curves for CNTs generated from DCB and CH3CN:DCB of various 

ratios were also recorded to determine the degree of chlorine functionalization at various DCB 

concentrations. Two or three distinct peaks at ~198, 200 and 202 eV, were observed from the 

deconvoluted Cl 2p spectra (Figure 5.28a,b, c, and d). For the CNTs generated from pure DCB, 

two peaks appearing at 200.1 and 201.7 eV were observed (Figure 5.28a). This peaks were 

attributed to C–Cl bonds, which indicate covalent bonding between chlorine and carbon atoms 

from the CNTs. CNTs generated from mixtures of CH3CN:DCB of various volume ratios 

showed two peaks at binding energies  ~ 198 and 200 eV (Figure 5.28a and b). Each of the Cl 2p 

peak was split into two peaks, where the first two peaks located at the lower binding energy ~ 

198 eV were assigned to the ionic state of Cl and the two peaks located at higher binding 

energies ~ 200 eV were assigned to covalently bonded Cl. The two peaks appearing at ~200 and 

201 eV were assigned to Cl–C=O and covalent C–Cl bonds, respectively. The two Cl 2p peaks 

appearing at ~ 198 eV were assigned to the presence of a chloride ion propably bonded to metal 

catalyst particles or ionically bonded to the CNT. From the TGA analysis it was shown that 

residual metal catalyst were still present after purification. The intensity of the Cl 2p peak at 

lower binding energies increased with an increase in the DCB concentration from 33.3 to 66.7 

vol.%, but this peak was abscent from CNTs generated from 80 vol.% DCB and pure DCB 

solutions (Table 5.13). This data is consistent with TGA data where the residual mass remained 

after purification of CNMs generated from a 33.3 and 66.3 vol.% DCB solutions. No residual 

mass was observed from the CNMs generated from pure DCB and solutions containing 80 vol.% 

DCB, which agree with the absence of a chloride ion peak in the Cl 2p XPS spectra. The ID/IG 
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peak ratio slightly increased after addition of DCB as defects increased, from 0.68 (for pure 

CH3CN) to 0.72 (for solutions containing 33.3 vol.% DCB). This was shown by an increase in 

the percentage of a Cl 2p1/2 peak at ~201 eV (Figure 5.29b) and was attributed to introduction of 

new sp3 C–Cl bonds. A further increase in the DCB concentration to 66.7 vol.% resulted in a 

huge increase in the ID/IG value to 1.5, due to an increase in the number of C–Cl bonds. A further 

increase in the DCB concentration to 80 vol.% resulted in a huge decrease in the ID/IG peak ratio 

to 0.63 (Figure 5.29b). It was suggested that at high concentrations of DCB there was a release of 

Cl2 gas to the trap, which resulted in production of fewer C–Cl covalent bonds.       
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Figure 5.28 Cl 2p XPS spectra of purified CNTs generated from (a) pure DCB, (b) 66.7:33.3 (c) 

33.3:66.7 and (d) 20:80 vol.% of CH3CN:DCB synthesized by an injection CVD at 0.24 mL/min. 
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Table 5.13 Binding energy and atomic concentrations of chlorine in the chlorine functionalized 

N-MWCNTs grown at various volume ratios of CH3CN:DCB solution. 

CH3CN:DCB 

volume ratio 

Binding energy 

(eV) and 

atomic 

concentration 

of 
2

32 pCl /(%) 

for ionic Cl  

Binding energy 

(eV) and atomic 

concentration of 

2
12 pCl /(%) for 

ionic Cl 

Binding energy 

(eV) and atomic 

concentration of 

2
32 pCl /(%) for 

covalent Cl 

Binding energy 

(eV) and atomic 

concentration of 

2
12 pCl /(%) for 

Covalent Cl 

0:100 –  200.1 (54.1) 201.7 (45.9) 

66.7:33.3 198.1 (9.8) 198.8 (5.4) 200.2 (48.7) 201.8 (36.0) 

33.3:66.7 198.3 (29.9) 198.9 (0.72) 200.2 (48.5) 202.0 (20.9) 

20:80 –  200.2 (51.0) 201.7 (49.0) 
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Figure 5.29 XPS data analysis of N-MWCNT and chlorinated N-MWCNTs (a) relative 

abundance behavior of different types of nitrogen as a function of chlorine content, bars are 

labelled with the type of nitrogen, (b) Raman peak ratio (ID/IG) versus Cl 2p1/2 (C–Cl covalent 

bonds) percent, squares on the graph are labelled with the DCB volume percent used.   

 

 

(a) (b) 



159 | P a g e  

 

5.4 Conclusion 

Synthesis of chlorine-functionalized nitrogen-doped and un-doped CNMs using a CVD injection 

method over an Fe-Co/CaCO3 catalyst was successful. DCB was found to be an excellent 

chlorine source that led to formation of a large quantity of CNTs. Chlorine influenced the 

morphology, length, and outer diameters of the N-doped CNMs, as well as enhanced their 

growth. Limited quantity of CNMs were obtained when pure CH3CN was used as a feed 

solution. Horn-, straw- and pencil-shaped N-doped CNMs and CNFs were obtained from varying 

the amount of DCB in the feed. TGA, Raman and XPS analysis showed that an increase in the 

amount of DCB in the feed to 66.7 vol.% resulted in formation of highly defected CNMs, due to 

an increase in the number of chlorine atoms functionalized on the surface of the CNMs. Defects 

associated with sp3 hybridization (ID/ID’ = 16), were observed from purified CNMs generated 

from a 33.3 vol.% mixture. We can conclude that addition of 33.3 vol.% DCB resulted in 

formation of defects due to functionalization of carbon atoms with chlorine and the type of 

covalent bonding that dominated. Vacancy-like and hopping defects (ID/ID’ = 9.3) were obtained 

from CNMs generated from feed streams containing 66.7 vol.% DCB, suggesting various 

bonding configurations between Cl and C, namely charge-transfer complexes, covalent bonding, 

and doping. Boundary like defects (ID/ID’ = 3.7) were observed from purified CNMs generated 

from 80 vol.% DCB solutions, suggesting non-bonding interactions between carbon and 

chlorine. This shows that Cl atoms that were produced at 80 vol.% DCB were in close proximity 

and hence they interated with each other to form Cl2 molecules which acted as purifying agents 

for the CNMs resulting in production of CNMs with less defects and that were highly graphitic. 

A high FWHM value of 116 cm–1 for the G band of purified CNMs generated from a 66.7 vol.% 

DCB feed suggested that these materials were highly defected in comparison with the FWHM of 

70 and 54 cm–1 found for CNMs generated from 33.3 vol.% and 80 vol.% DCB feeds. ID/IG value 

was also the highest at 1.8 for CNMs generated from feeds containing 66.7 vol.% DCB. The 

Raman data is thus consistent with the XPS analysis where all types of N-species were generated 

in appreciable amounts for CNMs generated from feeds containing 66.7 vol.% DCB, which is 

characteristic of highly defected materials. Graphitic nitrogen species dominated the XPS data of 

CNMs generated from feeds containing 80 vol.% DCB, which is also consistent with the Raman 

data. Raman data are also consistent with the TEM observations where various shaped and sized 



160 | P a g e  

 

CNMs were generated from feed solutions containing 66.7 vol.% DCB. Observation of the 

molecular nitrogen peak from the XPS spectra is also consistent with the broad peaks that were 

found when CNMs were oxidized at ~ 800 °C that led to nitrogen evolution, for CNMs generated 

from feeds containing pure CH3CN and those containing 66.7 vol.% DCB. Effect of an injection 

flow rate did not have much effect on the morphology and graphitic nature of the CNTs.  

In this work we have shown that it is possible to control the morphology of N-doped CNMs by 

adding chlorine, which can enhance their application in many fields. The open-ended CNTs 

generated from a mixture of CH3CN and DCB can be applied in field emission devices, as 

supercapacitor electrodes for an electrochemical storage of energy, as magnets in water treatment 

by adding magnetic metals inside the open tubes and also as fillers in composite materials for 

production of membrane systems for water treatment.  

In the chapter that follows we will evaluate post-doping treatments of synthesized heteroatoms of 

chlorine and nitrogen doped CNMs using acetonitrile with aromatic and non-aromatic 

chlorinated solvents.    
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CHAPTER 6 

Heteroatom of chlorine and nitrogen doped carbon nanomaterials using 

acetonitrile with aromatic and aliphatic chlorinated solvents: Post-doping 

treatments 

 

6.1 Introduction 

Properties of the carbon nanotubes (CNTs) can be tailored by their interaction with molecules 

that can either withdraw of donate electrons. This phenomenon is referred to as doping which is 

intentional replacement of carbon atoms on the walls of the CNTs by other elements. Tailoring 

of the properties of the CNTs can also be achieved by their surface functionalization with 

heteroatoms. Methods of synthesizing nitrogen heteroatom doped CNTs have been developed 

and were categorized into in-situ and post treatment doping methods. In-situ doping methods 

involve direct incorporation of nitrogen into the carbon matrix during the CNT synthesis process. 

The most widely used in-situ techniques include catalytic vapor deposition (CVD), chemical 

solvothermal, high temperature arc-discharge and laser ablation methods. In the post-treatments 

methods, CNTs are first synthesized, then annealed at high temperatures together with the 

nitrogen-containing precursors. Post treatments methods include thermal annealing, wet 

chemical methods, plasma and arc-discharge approaches. Challenges remain for synthesis of N-

doped graphene materials with less defects via an in-situ method. Firstly, the mixed flow of 

carbon and nitrogen precursors in the gas phase triggers a competition between nitrogen 

incorporation and the NHx group, leading to increased defect densities.1 Secondly, even though 

nitrogen doping is increased at low temperatures ~ 600 to 800 °C, defects are also created at low 

temperatures.2  

Post-treatments methods have not been used widely because they require, high temperatures 

(800–1200 °C) and toxic precursors which limits their application. High temperatures required 

for successful doping of graphene with nitrogen resulted in formation of defects on their 

structures.3 High temperature post-treatments of CNTs were also found to favor formation of 

graphitic nitrogen in the carbon framework with small amounts of defects.4 



165 | P a g e  

 

Thermal annealing is the most preferred post-treatment method, because of its high doping 

efficiency5 and its ability to recover the sp2 carbon network.6 Most work reported on post-doping 

with N was done on graphene and graphene oxide. Thermal annealing of graphene oxide with a 

solid source of nitrogen is appealing because the materials can be scaled up without a catalyst.7 

N-doped graphene material with ~ 5 % N doping was synthesized by post-treating graphene 

oxide with 2-methylimidazole via thermal treatment.8 N-doped graphene materials which 

exhibited outstanding catalytic performance were synthesized by post-treatment of graphene 

oxide with urea at low-temperature in air.9 Post-treatment of graphene with ammonia resulted in 

formation of N-doped graphene of which 80 % were graphitic N species with small amounts of 

defects.10   

N-doped few-wall CNT with 3–5 walls which possessed excellent electrocatalytic activity 

towards electrocatalytic oxidation of dopamine, was successfully synthesized by post-treating 

CNTs with urea via thermal annealing by a solvothermal method.11 N-doped CNTs were 

synthesized by post-treatment of oxidized CNTs in NH3 at 300, 500 and 700 °C. It was found 

that the type of N-species incorporated into the CNTs depended on the reaction temperature.12                 

High levels of nitrogen, sulphur and boron were produced by post-treating fluorinated carbon 

nanomaterials (graphene, graphene quantum dots and single-wall CNTs) with a dopant source by 

thermal annealing.4 By changing the degree of fluorination, the doping level was tuned over a 

wide range, which was important for optimizing the performance of doped low-dimensional 

graphitic materials.4 Functionalization of acid-treated and annealed graphene oxide with chlorine 

was achieved by post-treatment of graphene oxide with thionylchloride (SOCl2).
13 Covalently 

bonded chlorine was suggested to develop at vacancy edges as a result of SOCl2 interaction with 

hydroxyl groups.13 Doping of reduced graphene oxide (RGO) with chlorine was achieved by 

post-treatment of RGO with a mixture of NaClO and H2SO4 by a wet chemical method.14 The 

Cl-RGO was found to possess high specific capacitance and can be used as an electrode material 

for high performance supercapacitors.14 Halogenation of graphene with chlorine, bromine and 

iodine was achieved by exfoliation of graphene oxide in a halogen atmosphere by thermal 

annealing.15  
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Doping of CNTs with nitrogen can also yield NCNTs with unusual shapes. Not only is it 

possible to dope and make NCNTs in a one-step process, but it is also possible to make CNTs 

that are covered by NCNTs. In this case the NCNTs are produced by post-treatment procedures. 

For example, CNT/N-CNT interconnects were produced after post-doping CNTs synthesized 

from C2H4 with CH3CN.16 The formation of multi-terminal junctions requires the presence of 

topological defects between the nanotubes.17 CNTs with substitutional doped junctions such as 

CNT/NCNT were used in rectifiers,18-20 photoelectrical switches,21 logic gates and circuits,18 etc. 

Branched CNTs with nitrogen doped/un-doped intratubular junctions have been synthesized by a 

simple one-step co-pyrolysis of hexamethylenetetramine and benzene over ferrocene as 

catalyst.22 Nitrogen-doped bamboo-shaped Y-junction CNx nanotubes with 7.8 atomic.% 

nitrogen were synthesized by pyrolysis of monoethanolamine and a ferrocene mixture at 950 °C 

on a GaAs substrate.23 He et al. showed that the growth of carbon onions was enhanced in a 

nitrogen environment due to incorporation of nitrogen in the carbon onion.24   

Chlorine is also known to affect the growth of un-doped CNTs. For example, Nano-onion like 

carbon structures were obtained from chlorinating TiC at 900 °C, with small amounts of 

nanotube-like structures formed at the edges of the nano-onions.25  

This poses a question: will incorporation of chlorine into the N-doped CNTs structure affect their 

morphology and properties? The preparation of halogen containing NCNTs have been a subject 

of very few studies. Ombaka et al. investigated the effect of halogens on NCNT growth using a 

halogenated ferrocenyl catalyst.26 The authors observed an increase in nitrogen content when a 

fluorine substituted catalyst was used as compared to a chlorine substituted catalyst.27 

Thermolysis of an acetonitrile:ferrocene mixture, using bromine trifluoride vapor at room 

temperature, that were grown on a silicon substrate, resulted in formation of a film of F-

containing MWNCNTs.28  

In the previous chapter, we studied the role of chlorine on the morphology of N-doped CNTs 

grown using a Fe-Co supported on CaCO3 as catalyst by injection of a mixture of acetonitrile and 

dichlorobenzene. In this study the concentration of both chlorine and nitrogen will be varied to 

explore their effect on the morphology of the CNMs using a CVD method. Post-treatments of the 
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N-doped CNTs with dichlorobenzene and of chlorinated CNTs with acetonitrile will also be 

performed.    

 

6.2 Experimental 

6.2.1 Materials and chemicals 

Fe(NO3)3·9H2O (Sigma Aldrich) ≥ 98 %, Co(NO3)2·6H2O (Sigma Aldrich) ≥ 98 %, CaCO3 

(Sigma Aldrich) ≥ 99 %, HNO3 (Sigma Aldrich) ≥ 98 % ACS, 1,2-dichlorobenzene (DCB) 

(Sigma Aldrich) 99 % Reagent plus, 1,1,2,2-tetrachloroethane (TTCE) (UniLAB SAARChem) 

98 % GLC, acetonitrile (CH3CN) ≥ 99.8 % (Sigma Aldrich) were used. All reagents were 

commercially available and used without further purification.  

 

6.2.2 Synthesis of chlorinated N-doped CNTs by a bubbling CVD method 

The catalyst (1.0 g) was spread in a quartz boat (120 mm × 15 mm) and the boat was placed in 

the center of a quartz tube. The furnace was then heated to 800 °C at a rate of 10 °C/min under 

flowing N2 (50 mL/min). Once the temperature reached 800 °C, the N2 flow rate was adjusted to 

240 mL/min. C2H2 was also bubbled through the reactor at a flow rate of 90 mL/min for 

acetonitrile, dichlorobenzene and their mixtures. For tetrachloroethane and its mixtures with 

acetonitrile, flow rates were set at 280 mL/min N2 and 50 mL/min C2H2, respectively based on 

optimized flow rates in chapter 3. Both gases were bubbled through a studied organic solvent, 

before being introduced into the quartz tube. After 60 min of reaction time, the C2H2 flow and 

bubbling was stopped and the system was left to cool down to room temperature under a 

continuous flow of N2 (50 mL/min). The quartz boat was then removed from the reactor and the 

carbon deposit that formed was weighed.  

 

6.2.3 Post doping of N-MWCNTs with chlorine and of chlorine functionalized MWCNTs 

with nitrogen 

In the first experiment, we preheated the furnace with an empty quartz tube and the temperature 

was allowed to increase gradually at a rate of 10 °C/min rate until it reached 800 °C. Once the 

furnace reached a set temperature, a quartz boat containing purified N-doped CNTs was pushed 
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with an aluminum rod into the quartz tube to the center of the furnace. Dichlorobenzene was then 

bubbled through using nitrogen as a carrier gas at a flow rate of 240 mL/min for 30 minutes. The 

furnace was then allowed to cooled down to room temperature before analysis of the product. In 

another experiment the same procedure was followed but as-synthesized chlorine functionalized 

CNTs were post-doped with nitrogen by bubbling acetonitrile through the quartz tube using 

nitrogen as a carrier gas at a flow rate of 240 mL/min for 30 minutes.  

 

6.2.4 Purification of the CNTs 

Purification of the CNT materials was performed as described elsewhere.28,29 The N-doped 

CNTs, and the chlorinated N-doped CNTs were purified by refluxing them in 55 % HNO3 in an 

oil bath at 110 °C for 4 h to remove catalyst residues. The acid-treated CNTs were then washed 

with distilled water until the washings were neutral and the products were dried in an oven at 120 

°C for 12 h. Chlorinated CNTs and the Cl functionalized CNTs post doped with nitrogen were 

purified by stirring in 30 % HNO3 at room temperature for 2 h, followed by washing the 

materials with distilled water until the washings were neutral and finally dried in an oven at 120 

°C for 12 h. Nitrogen doped CNTs that were post-doped with chlorine were not purified since we 

used purified samples as substrates for post-treatments.     

 

6.2.5 Characterization of the CNTs 

The morphology and size distribution of the CNTs before and after HNO3 treatment were 

analyzed by transmission electron microscopy (TEM) using a FEI TECNAI G2 SPIRIT. The 

samples for TEM analysis were prepared by sonication in ethanol and thereafter deposited on a 

holey carbon-coated TEM Cu grid. The CNTs were also characterized by Raman spectroscopy 

using a Jobin-Yvon T6400 micro-Raman spectrometer. Excitation was provided by a 532 nm 

green laser with spectral resolution of 3-5 cm-1. The impurity content of the CNTs was monitored 

by thermogravimetric analysis (TGA) using a Perkin Elmer TGA 7. The sample was loaded into 

a platinum pan and heated up to 900 °C at a heating rate of 5 °C/min, in a flowing air and 

nitrogen stream both at 20 mL/min.  The phase composition of the samples was determined by 

powder X-ray diffraction (PXRD) using a D2 Bruker PXRD with a continuous scan mode using 
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CoKα radiation. The scan range was 10–90 2θ degree. X-ray photoelectron spectroscopy (XPS) 

analysis was done using an AXIS Ultra DLD, with Al (monochromatic) anode equipped with a 

charge neutralizer, supplied by Kratos Analytical. 

 

6.3 Results and discussion 

6.3.1 Synthesis of N-doped CNTs: Effect of DCB concentration 

6.3.1.1 Structural analysis of the N-doped CNTs: Effect of DCB concentration 

Bamboo-compartmented CNTs were produced when acetonitrile was used as a nitrogen source 

by Tetana et al.29 Figure 6.1a shows bamboo-shaped MWCNTs produced using acetonitrile as 

nitrogen source by a pyrolysis CVD method. The outer diameter of the N-MWCNTs varied from 

17 to 143 nm with an average of 70 nm (Table 6.1)29. Nitrogen incorporation into the nanotubes 

resulted in an increase in the outer diameter of the MWCNTs. The inner diameter of the 

MWCNTs also increased when nitrogen was doped into the CNTs (Table 6.1).  

 

Table 6.1 Diameters of purified CNMs generated from pure CH3CN and pure DCB synthesized 

using a bubbling CVD method 

Hydrocarbon 

source 

Average outer 

diameter /nm 

Number of structures 

counted (number of 

samples analyzed) 

Carbon structure 

CH3CN 70 >200 (duplicates) Bamboo CNTs including 

those with intratubular 

junctions (50 %), hollow 

CNTs (45) CNSs (5 %) 

DCB 33 >200 (duplicates) CNTs and CNTs with 

secondary growth (80 %), 

CNFs (15 %), carbon 

nano-onions (5 %) 
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Figure 6.1 TEM images of purified CNMs generated from pure CH3CN at 800 °C, and 240 

mL/min N2 and 90 mL/min C2H2 flow. 

 

In our previous study28 MWCNTs with secondary carbon nanofibers (CNFs) attached to their 

outer walls were synthesized using dichlorobenzene as chlorine source (Figure 6.2). The outer 

diameters of the chlorinated CNTs varied from 22 to 41 nm with an average of 33 nm (Table 

6.1). 

  

(a) (b) 

(c) (d) 
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Figure 6.2 TEM images of purified CNMs generated from pure DCB at 700 °C, and 240 

mL/min N2 and 90 mL/min C2H2 flow. 

 

The effect of chlorine on the growth of N-doped CNTs was investigated using two DCB 

concentrations, 33.3 and 66.7 vol.%. Addition of 33.3 vol.% of DCB into a 66.7 vol.% CH3CN 

solution, resulted in production of CNMs of variable morphologies (Figure 6.3). Bamboo-

compartmented CNTs (white arrow), metal-filled carbon nano-onions (circled part) and CNTs 

with intratubular junctions (dashed arrow) were obtained (Figure 6.3). Hollow CNTs were also 



172 | P a g e  

 

observed (Figure 6.3). CNTs with intratubular junctions were observed after nitrogen doping by 

other authors.22  

 

  

Figure 6.3 TEM images of purified CNMs generated from CH3CN feed containing 33.3 vol.% 

DCB by bubbling CVD method. 

 

Entangled CNMs were observed from the SEM images (Figure 6.4). The diameter distribution 

curve showed that the outer diameters of the CNMs ranged from 75 to 176 nm, with an average 

of 115 nm (Figure 6.4b, and Table 6.2). The CNMs were very long as we could not see where 

they begin and were they end, from the high magnification SEM (Figure 6.4c and d).  

 

(a) (b) 
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Figure 6.4 SEM images and diameter distributions curves of purified CNMs generated from 

CH3CN feed containing 33.3 vol.% DCB by bubbling CVD method. 

 

An increase in the amount of chlorine in the feed to 66.7 vol.% resulted in formation of regular 

hollow and bamboo-shaped CNTs with open-ends (Figure 6.5). Branched CNTs with N 

doped/un-doped Y-junctions were also obtained, where the main CNT was hollow and the 

branch was compartmented or had a bamboo-shape (Figure 6.5d circled part).  
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Figure 6.5 TEM images, SEM images and diameter distributions curves of purified CNMs 

generated from CH3CN feed containing 66.7 vol.% DCB by bubbling CVD method. 

 

SEM images revealed the presence of entangled CNTs of various sizes (Figure 6.6). Diameter 

distribution curves showed that the obtained CNTs had outer diameters varying from 30 to 90 

nm and an average of 57 nm (Figure 6.6b, and Table 6.2).  
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From our results we can conclude that an increase in chlorine concentration in the CH3CN feed 

resulted in a decrease in the average outer diameter of the CNTs. Inner diameters of the CNTs 

were also observed to decrease with an increase in the amount of chlorine in the feed (Table 6.2).  
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Figure 6.6 SEM images and diameter distributions curves of purified CNMs generated from 

CH3CN feed containing 66.7 vol.% DCB by bubbling CVD method. 
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Table 6.2 Diameters of purified CNMs generated from CH3CN feeds containing various 

concentrations of DCB synthesized using a bubbling CVD method 

CH3CN:DCB 

volume ratio 

/vol.% 

Outer 

diameter 

distribution 

/nm 

Average 

outer 

diameter 

/nm 

Average 

inner 

diameter 

/nm 

Number of 

structures counted 

(number of 

samples analyzed) 

Volume of 

reagent used 

/mL 

66.7:33.3 75 – 176  115 22 >500 4 

33.3:66.7 30 – 90  57 14 >500 3 

 

 

6.3.1.2 Thermogravimetric analysis of the N-doped CNTs: Effect of DCB concentration 

TGA and DTGA curves of un-purified and purified CNTs generated from pure CH3CN and DCB 

are presented in Figure 6.7. Un-purified CNTs generated from CH3CN showed two weight losses 

the first at 568 °C due to oxidation of N-doped CNTs and the second at ~ 690 °C due to 

oxidation of other graphitic carbons like carbon nanospheres observed from the TEM images 

(Figure 6.7a and b and Table 6.3). Purified CNTs generated from CH3CN showed one mass loss 

at ~578 °C due to oxidation of N-doped CNTs.      

Un-purified CNTs generated from DCB shows a variety of weight losses, the initial minor 

weight loss observed around 100 °C was due to evaporation of physisorbed water (Figure 6.7c 

and d). The second minor weight loss at ~ 450 °C was due to decomposition of amorphous 

carbon structures. The third major weight loss with an onset temperature of ~ 500 °C was due to 

oxidation of CNTs, while the fourth minor weight loss at 700 °C was due to oxidation of other 

graphitic carbon structures (i.e. carbon nanofibers, CNTs with funnel-like open ends, observed 

from the TEM images) (Figure 6.7c and d and Table 6.3). Purified CNTs generated from DCB 

showed one broad weight loss at ~ 550 to 700 °C due to an overlap between oxidation of CNTs 

and other graphitic carbon structures mentioned above (Figure 6.7c and d and Table 6.3). The 

CNTs generated from DCB possess comparative stability possibly due to functionalization of 

their surface with chlorine.30 Incorporation of chlorine also resulted in production of highly 

graphitic materials, as seen by the absence of an amorphous carbon oxidation peak from DTGA 

curves obtained after purification. The amount of residual metal was greatly reduced after 
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purification, which shown that un-purified samples contained a large number of un-reacted 

catalyst metal particles. Some residual metal particles were observed at the tip of the carbon 

fibers observed from TEM images obtained from pure DCB.   
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Figure 6.7 TGA and DTGA curves of un-purified and purified CNMs generated from room 

temperature solutions of pure CH3CN (a and b) and pure DCB (c and d)   
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Table 6.3 Decomposition temperatures and residual masses (determined by TGA) of the un-

purified and purified (P) chlorinated N-MWCNTs generated by bubbling different ratios of a 

CH3CN and DCB. 

Hydrocarbon source Decomposition temperature /°C Residual mass /% 

CH3CN 568 & 690 21.7 

CH3CN (P) 578 5.6 

DCB28 597 29.6 

DCB28 600 6.6 

 

TGA and DTGA curves of un-purified and purified CNTs generated from acetonitrile feeds 

containing low concentration of DCB (33.3 vol.%) appeared similar. A broad oxidation peak was 

observed at ~ 550 to 750 °C and ~ 550 to 800 °C for un-purified and purified materials 

respectively (Figure 6.8 and Table 6.4), assigned to oxidation of chlorinated CNTs and other 

graphitic carbon materials (carbon nanoonions, hollow CNTs and CNTs with junctions). This 

oxidation peak had a shoulder peak at ~ 800 °C and above 800 °C for un-purified and purified 

materials, due to evolution of nitrogen which is known to be released from N-doped carbons.31 

These results agree with the TEM observations where various types of CNTs of various sizes and 

morphologies were obtained.  

Two regions of mass losses were observed from un-purified CNTs generated from acetonitrile 

solutions containing 66.7 vol.% DCB (Figure 6.8c and d). The first major weight loss was 

observed at ~ 600 to 650 °C, due to oxidation of chlorine functionalized bamboo N-doped CNTs 

(Figure 6.8 and Table 6.4). The second minor weight loss at ~ 700 °C was due to oxidation of 

functionalized hollow CNTs (Figure 6.8 and Table 6.4). DTGA curves of purified CNTs 

generated from feed solutions containing 66.7 vol.% DCB showed only one broad region of mass 

loss at 550 to 650 °C, which could be due to overlap between oxidation of chlorine 

functionalized N-doped and hollow CNTs. TGA data agrees with the TEM observations where 

bamboo-compartmented and hollow were observed. The results show that the carbon materials 

of different morphologies can be obtained by varying the amount of chlorine in the feed.  

We also analyzed the residual mass present in chlorinated N-doped samples after purification 

with acid. The residual mass of 7.7 and 0 were obtained for N-CNTs generated from a feed 
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containing 33.3 and 66.7 vol.% DCB, respectively (Table 6.4). From this results it appears that 

metal particles were completely removed from solutions that contained high concentrations of 

DCB rather than those that contained lower concentrations of DCB. This can be attributed to 

greater encapsulation of metal particles into large diameter CNTs generated from low 

concentration of DCB, which were difficult to remove by acid treatment.  
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Figure 6.8 TGA and DTGA curves of un-purified and purified CNMs generated from room 

temperatures solutions of acetonitrile containing various concentrations of DCB. 
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Table 6.4 Decomposition temperatures and residual masses (determined by TGA) of the un-

purified and purified (P) chlorinated N-CNTs generated from solutions containing different 

CH3CN:DCB volume ratios. 

CH3CN:DCB volume ratio /% Decomposition temperature /°C Residual mass /% 

66.7:33.3 651 & 737 19.3 

66.7:33.3 (P) 671 7.7 

33.3:66.7 610 & 643 11.0 

33.3:66.7 (P) 600 0 

 

 

6.3.1.3 Raman spectroscopy analysis of the N-doped CNTs: Effect of DCB concentration 

Raman spectra analysis of the purified CNTs generated from pure CH3CN and pure DCB are 

presented in Figure 6.9. A disorder-induced band (D-band) and a graphitic band (G-band) were 

observed in both Raman spectra. For CNTs generated from pure CH3CN, a broad D-band was 

deconvoluted into two bands, a D4-band at 1210 cm–1 attributed to C=C stretching vibrations and 

a D-band at 1339 cm–1 attributed to topological defects on the CNT walls due to substitution of 

carbon with nitrogen. A G-band was also deconvoluted into two peaks, a D2-band at 1513 cm–1 

assigned to the presence of amorphous carbon structures and a G-band at 1585 cm–1 due to sp2 

carbon atoms in a graphitic plane. An ID/IG value of 1.2 was obtained, which suggest the 

materials are highly defected. Large FWHM values of 126 and 71 cm–1 for D and G-band 

respectively also suggest the presence of amorphous carbon structures (Table 6.5).           

Raman bands of purified CNTs generated from pure DCB also showed a D-band that was 

deconvoluted into two peaks, a D4-band at 1236 cm–1 and a D-band at 1338 cm–1 (Figure 6.9). A 

G-band was also deconvoluted into two peaks, a D2-band at 1498 cm–1 and a G-band at 1587 

cm–1. The amorphous carbon D2-band also is very broad and intense as compared to the one 

obtained from Raman curves generated from CH3CN, which suggest the formation of sp3 carbon 

due to chlorine functionalization.  
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Figure 6.9 Deconvoluted Raman spectra of purified MWCNTs generated from (a) CH3CN and 

(b) DCB using a bubbling CVD method.   

 

An ID/IG value of 1.0 was obtained, which suggest that the materials are highly defected due to 

surface functionalization of the CNTs with chlorine. The lower value of ID/IG of 1.0 for CNTs 

generated from DCB as compared to 1.2 for CNTs generated from CH3CN suggests that the 

CNTs generated from DCB were less defected. This data agrees with the TGA analysis of the 

materials. Also from comparison of FWHM values with those obtained from CH3CN samples, 

lower FWHM values were obtained from CNTs generated from DCB 109 and 66 cm–1 for D and 

G-band respectively (Table 6.5). This again suggest that the materials generated in DCB were 

more graphitic than those generated from CH3CN.      

 

 

 

 

 

(a) (b) 
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Table 6.5 Raman bands of the purified CNMs generated from pure CH3CN and pure DCB using 

injection CVD method at an injection rate of 0.24 mL/min 

Heteroatom 

Source 

Band 

name 

Band 

Position 

(cm–1) 

Bond type FWHM 

(cm–1) 

Peak 

Area 

Designation 

C
H

3
C

N
 p

u
ri

fi
ed

 

D4 1210 sp2–sp3 126 983 C=C stretching 

vibrations 

D 1339 sp2 126 6701 Disordered graphite 

D2 1513 sp3 85 1042 Amorphous carbon 

structure 

G 1584 sp2 71 5312 Graphitic like 

carbonyl group 

D
C

B
 p

u
ri

fi
ed

 

D4 1236 sp2–sp3 179 4472 C=C stretching 

vibrations 

D 1338 sp2 109 5375 Disordered graphite 

D2 1498 sp3 214 5760 Amorphous carbon 

structure 

G 1587 sp2 66 3703 Graphitic like 

carbonyl group 

 

Raman spectra was also recorded for materials generated from varying the concentration of DCB 

in the CH3CN feed. Raman curves of un-purified CNTs generated from solutions containing 33.3 

vol.% DCB in the feed presented three bands namely, a D, G and 2D band (Figure 6.10). A D-

band was deconvoluted into one band a disorder-induced D-band at 1341 cm–1. A G-band was 

deconvoluted into two peaks, a minor D2-band at 1551 cm–1 assigned to amorphous carbon 

structures and an intense G-band at 1581 cm–1 assigned to sp2 carbons in a graphitic plane. A 2D 

band which is an overtone of a D band was also deconvoluted into two peaks a 2D1 at 2669 cm–1 

and a 2D2 at 2702 cm–1. This split has been described as a characteristic feature of undisturbed or 

highly ordered graphitic lattices.32 The spliting of the 2D band was also assigned to splitting’s of 

the π and π* electronic states, owing to the interactions between the succesive layer planes.33 

Raman spectra of the purified CNTs showed only three bands that were deconvoluted into one 
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peak each, a D, G and single 2D band. The G-band was very intense and higher than the D-band 

which suggests highly graphitic materials were generated after purification.   
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Figure 6.10 Deconvoluted Raman spectra of un-purified (a and b) and purified (c and d) 

MWCNTs generated from a feed made of 66.7:33.3 vol.% CH3CN:DCB reagents using a 

bubbling CVD method.   

 

Analysis of the peak ratios revealed ID/IG values of 0.81 and 0.63 which suggest that some 

amorphous carbon structures were removed by acid-treatment. FWHM value of 66 cm–1 for a G-

(a) 

(c) 

(b) 

(d) 
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band were obtained from un-purified and purified samples, which suggest that the graphitic 

nature of the materials was the same (Table 6.6).   

 

Table 6.6 Raman bands of the un-purified and purified CNMs generated from a 66.7:33.3 vol.% 

CH3CN:DCB solution mixture using injection CVD method at an injection rate of 0.24 mL/min 

66.7:33.3 

vol.% 

CH3CN:DCB  

Band 

name 

Band 

Position 

(cm–1) 

Bond 

type 

FWHM 

(cm–1) 

Peak 

Area 

Designation 

U
n
-p

u
ri

fi
ed

 

D 1341 sp2 106 7865 Disordered graphite 

D2 1551 sp3 151 2371 Amorphous carbon 

structure 

G 1581 sp2 66 7316 Graphitic like carbonyl 

group 

2D1 2669  60 694 1st overtone of D1 

2D2 2701  55 364 1st overtone of D1 

P
u
ri

fi
ed

 

D 1343 sp2 83 1797 Disordered graphite 

G 1572 sp2 66 2824 Graphitic like carbonyl 

group 

2D 2678  75 676 1st overtone of D1 

 

Raman spectra of both un-purified and purified CNTs generated from CH3CN feed solutions 

containing 66.7 vol.% DCB are presented in Figure 6.11. A D-band was deconvoluted to one 

peak at 1337 and 1334 cm–1 for un-purified and purified CNTs attributed to presence of defects 

on the CNT walls. A G-band was deconvoluted into two bands, a D2-band attributed to 

amorphous carbon structures and a G-band attributed to graphitic planes. A G-band was larger 

than a D-band in purified samples but a D-band was larger than a G-band in un-purified samples, 

which suggests that purification improved the graphitic nature of the CNTs.    
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Figure 6.11 Deconvoluted Raman spectra of un-purified (a) and purified (b) MWCNTs 

generated from a feed made of 33.3:66.7 vol.% CH3CN:DCB reagents using a bubbling CVD 

method.   

 

Analysis of the ID/IG band showed values of 1.3 and 1.0 for un-purified and purified samples. 

Comparison with the ID/IG value of 0.63 for CNTs generated from feeds containing 33.3 vol.% 

DCB, suggest that CNTs generated from feeds containing 66.7 vol.% DCB were highly 

functionalized with chlorine, which resulted in formation of more sp3 carbon bonds and greater 

defects in the CNT walls. FWHM value of 66 cm–1 was obtained for a G-band of both CNTs 

generated from feeds containing 33.3 and 66.7 vol.% DCB, which suggest that CNTs generated 

from both feeds contained similar amounts of amorphous carbon structures (Table 6.7).    

 

 

 

 

 

(a) (b) 
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Table 6.7 Raman bands of the un-purified and purified CNMs generated from a 66.7:33.3 vol.% 

CH3CN:DCB solution mixture using injection CVD method at an injection rate of 0.24 mL/min 

33.3:66.7 

vol.% 

CH3CN:DCB  

Band 

name 

Band 

Position 

(cm–1) 

Bond 

type 

FWHM 

(cm–1) 

Peak 

Area 

Designation 

U
n
-p

u
ri

fi
ed

 

D 1337 sp2 122 35189 Disordered graphite 

D2 1519 sp3 108 8002 Amorphous carbon 

structure 

G 1588 sp2 67 19698 Graphitic like carbonyl 

group 

P
u
ri

fi
ed

 

D 1344 sp2 94 9149 Disordered graphite 

D2 1527 sp3 72 1446 Amorphous carbon 

structure 

G 1572 sp2 66 2824 Graphitic like carbonyl 

group 

 

 

6.3.1.4 XPS analysis of the N-doped CNTs: Effect of DCB concentration 

XPS analysis of N-MWCNTs were produced in our group from pyrolysis of acetonitrile.29 About 

1.32 % of total N concentration was found in this study. Peaks corresponding to C 1s, N 1s and 

O 1s at 284.7, 400 and 532 eV were obtained from the wide scan XPS spectra of the CNTs. The 

N 1s XPS spectrum was deconvoluted into three peaks, identified as molecular nitrogen (NMo) 

intercalated within the wall and inside the CNTs at 405 eV, quaternary nitrogen (NQ) at 401.4 eV 

and pyridinic nitrogen (NP) at 398.7 eV. Molecular nitrogen was dominant in these NCNTs as 

shown by their peak intensities. About 0.35 % NQ, 0.21 % NP and 0.76 % NMo were obtained. 

The C 1s peak was deconvoluted into three peaks at 284.7, 287.2 and 286.1 eV attributed to C–C 

sp2 hybridized carbon, C–N and O–C=O bonding respectively.29    

XPS data of chlorinated MWCNTs was reported earlier in our study from pyrolysis of DCB.28 A 

C 1s spectrum of the materials was deconvoluted into four peaks with binding energies of 284, 

284.8, 285.4, 286.2, and 287 eV attributed to C–C sp2, C–C sp3, C–Cl, C–OH and O–C=O 

respectively (Supplementary Figure S16).  
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Wide scan XPS spectra of both chlorine containing N-doped CNTs revealed peaks at 200, 284, 

400 and 532 eV assigned to Cl 2p, C 1s, N 1s and O 1s, respectively (Supplementary Figure 

S17). The deconvoluted C 1s peaks of the materials produced from various volume ratios of 

DCB, was fitted into four components at 283–284 eV for C–C sp2 and sp3 carbon bonds, at ~ 286 

eV for overlap between C–N and C–Cl  groups and ~ 289 eV for O–C=O carboxylic groups 

(Supplementary Figure S18). The peak at 286 eV assigned to overlap between C–N and C–Cl 

carbon bonds, increased in intensity from 12.9 % to 20.1 % with an increase in DCB 

concentration from 33.3 to 66.7 vol.% (Supplementary Figure S18).  

The N 1s XPS spectra was deconvoluted into four and five peaks for both studied concentrations 

of CH3CN and DCB (Figure 6.12a and c). For chlorinated N-CNTs generated from solutions 

containing 33.3 vol.% DCB in the feed, the N1s was deconvoluted into five peaks appearing at 

397.6 (6.3 %), 398.5 (10.9 %), 399.9 (0.94 %), 400.8 (60.1 %) and 405.7 (21.8 %) eV and were 

assigned to tetrahedral nitrogen bonded to sp3–C (probably due to un-decomposed N–H bond), 

pyridinic N (NP), pyrrolic N (NPry), quaternary N (NQ) and molecular N (NMo), respectively 

(Table 6.8 and Figure 6.12a). The atomic percentages suggest that quaternary nitrogen was the 

most predominant form of nitrogen present at this studied concentration. These results suggest a 

more homogeneous distribution of nitrogen species in the CNTs. Graphitic N forms by merging 

N atoms into the defect region of the graphene, resulting in a graphene with less defects.10 This 

data is consistent with Raman data where low ID/IG value was obtained at this DCB 

concentration, showing that the CNTs contained less defects. 

N 1s XPS spectra of N-CNTs generated from CH3CN feed solutions containing 66.7 vol.% DCB 

was deconvoluted into four peaks appearing at 398.2 (2.0 %), 400.2 (31.7 %), 401.9 (4.8 %) and 

405.8 (61.6 %) eV attributed to NP, NPyr, NQ and NMo, respectively (Table 6.8 and Figure 6.12c). 

An increase in the concentration of DCB resulted in a reduction of the amount of nitrogen 

incorporated into the CNTs, as shown by a great reduction in the atomic percentage of 

quaternary nitrogen species (Figure 6.13a). Molecular nitrogen was found to be the dominant 

nitrogen species at this concentration (Figure 6.13a). An increase in peak intensity of the 400.2 

eV peak which was assigned to pyrrolic nitrogen was also observed at this concentration (Figure 

6.13a). The pyrrolic nitrogen is a substitutional nitrogen, that is part of a five-membered ring and 

is sp3 hybridized. An increase in the contribution of pyrrolic nitrogen causes an increase in the 
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number of defects and disorders in the CNTs. The dominance of the pyrrolic nitrogen species at 

high concentrations of DCB was the reason for the observed capped tube ends and bent 

structures of NCNTs observed from the TEM image. This data is consistent with Raman data 

where an ID/IG peak ratio increased from 0.63 to 1.0 with an increase in DCB concentration from 

33.3 to 66.7 vol.%, due to highly disordered CNTs. 

 

Table 6.8 Nitrogen content and type of the N-species incorporated in the chlorinated N-

MWCNTs grown at various volume ratios of CH3CN:DCB solution. 

CH3CN:DCB 

volume ratio (mole 

ratio) /% 

N–Csp3 

/% 

Pyridinic 

nitrogen (NP) 

/% 

Pyrrolic 

nitrogen 

(NPyr) /% 

Quaternary 

nitrogen 

(NQ) /% 

Molecular 

nitrogen  

(NMo) /% 

66.7:33.3 (1:0.25) 6.3 10.9 0.94 60.1 21.8 

33.3:66.7 (1:1) –  2.0 31.7 4.8 61.6 
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Figure 6.12 N 1s and Cl 2p XPS spectra of purified N-MWCNTs generated from (a and b) 

66.7:33.3, (c and d) 33.3:66.7 vol.% of CH3CN:DCB and (e) Cl 2p XPS spectra of DCB alone 

synthesized by bubbling CVD method. 

 

(a) (b) 

(c) (d) 

(e) 
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The deconvoluted Cl 2p XPS peaks for CNTs generated from DCB and CH3CN/DCB of various 

ratios showed two and three distinct peaks at ~198, 200 and 202 eV (Figure 6.12 c,d, and e). For 

CNTs generated from pure DCB and CH3CN solutions containing 33.3 vol.% of DCB, two main 

peaks appearing at ~199 and 200 eV were observed (Figure 6.12b and e). Each of this Cl 2p 

peaks was split into two peaks, where the first two peaks located at the lower binding energy ~ 

199 eV were assigned to the ionic state of Cl and the two peaks located at higher binding 

energies ~ 200 eV were assigned to covalently bonded Cl. For CNTs generated from 66.7 vol.% 

DCB, a peak at ~200 eV which was split into two peaks at 200 and 201.6 eV was observed 

(Figure 6.12d) and attributed to Cl–C=O and covalent C–Cl bonds, respectively. The two Cl 2p 

peaks appearing at ~ 199 eV for feeds containing pure DCB and 33.3 vol.% DCB in CH3CN, 

were assigned to the presence of a chloride ion propably bonded to metals in the catalyst or 

ionically bonded to the carbon in the CNT. This data is consistent with the TGA analysis where 

~7.7 of residual mass was found from CNTs generated from a solution containing 33.3 vol.% 

DCB and no residues were found from CNTs generated when the concentration of DCB in the 

feed was increased to 66.7 vol.%. A graph of ID/IG peak ratio versus the percentage of covalent 

Cl 2p1/2 peak was plotted to see the correlation between Raman and XPS data (Figure 6.13b). 

ID/IG decreased with addition of 33.3 vol.% DCB which shows reduction of  defects in the N-

MWCNTs by chlorine. Further increase in DCB concentration to 66.7 vol.% resulted in an 

increase in ID/IG but the value but was still less that the one obtained in pure CH3CN. We suggest 

that increase in the amount of chlorine in the feed result in increased formation of sp3 C–Cl 

bonds, which resulted in increased disorder.  
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Table 6.9 Binding energy and atomic concentrations of chlorine in the chlorinated NCMTs 

grown at various volume ratios of CH3CN:DCB solution. 

CH3CN:DCB 

volume ratio 

Binding energy 

(eV) and atomic 

concentration of 

2
32 pCl /% for 

ionic Cl 

Binding 

energy (eV) 

and atomic 

concentration 

of 
2

12 pCl /% 

for ionic Cl 

Binding energy 

(eV) and atomic 

concentration of 

2
32 pCl /% 

for covalent Cl 

Binding energy 

(eV) and atomic 

concentration of 

2
12 pCl /% 

for covalent Cl 

66.7:33.3 197.5 (0.60) 198.9 (16.30 200 .0 (36.4) 201.5 (46.7) 

33.3:66.7 – – 200 (49.8) 201.6 (50.2) 

0:100 198.4 (25.5) 199.6 (43.2) 200.8 (17.0) 202.0 (14.4) 
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Figure 6.13 XPS data analysis of N-MWCNT and chlorine functionalized N-MWCNTs (a) 

relative abundance behavior of different types of nitrogen as a function of chlorine content, bars 

are labelled with the type of nitrogen, (b) Raman peak ratio (ID/IG) versus Cl 2p1/2 (C–Cl covalent 

bonds) percent, squares on the graph are labelled with the DCB volume percent used.   

 

6.3.2 Post-doping of chlorinated CNTs and N-doped CNTs 

In this section we investigated the effect of chlorine on the morphology of N-CNTs by post-

doping the N-doped CNTs with chlorine using DCB as a source of chlorine. In the second test 

we post-doped the chlorine functionalized CNTs with nitrogen using CH3CN as a source of 

nitrogen.  

(a) (b) 
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6.3.2.1 Structural analysis of post-treated CNTs 

TEM images for N-doped CNTs post-doped with chlorine are shown in Figure 6.14 below. 

Bamboo compartmented CNTs are still observed after post-treatment with chlorine (Figure 6.14 

shown by arrow). The distance between the compartments also increased after post-doping with 

chlorine. TEM images also revealed the formation of intratubular junctions in some of the 

produced CNTs, where some portions of the inside of the CNTs appear branched (Figure 6.14b 

shown by arrow). Metal filled carbon onions were also observed from images in Figure 6.14b 

circled parts, whose growth was possibly initiated by the presence of chlorine. The TEM images 

are similar to those observed from solutions that contained 33.3 and 66.7 vol.% of DCB in the 

N/Cl feed mixture. The average outer diameter of the CNTs increased from 70 nm for N-CNTs 

to 88 nm for N-CNTs post-doped with chlorine (Figure 6.16a). An increase in the inner diameter 

of the N-CNTs was observed after post-doping with chlorine which suggests increased N-

doping. An increase in the internal diameter of N-CNTs and a decrease in wall thickness with 

increased N-doping was observed by other authors.34 

 

  

Figure 6.14 TEM images of purified N-CNTs (a and b) generated after post-doping with DCB as 

chlorine source.   

 

(b) (a) 
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TEM images of CNTs generated using DCB as a chlorine source, post-doped with nitrogen are 

presented in Figure 6.12. About 50 % of bamboo-shaped CNTs which appeared as stacked cups 

were generated after post-doping with nitrogen (Figure 6.15a), and the rest of the CNTs were 

hollow (Figure 6.15b). CNTs with secondary CNF growth were also still present after post-

doping with nitrogen (Figure 6.15b insert and circled part). CNTs generated after post-doping 

with nitrogen were mostly bamboo-compartmented (Figure 6.15a), suggesting that post-doping 

was an effective method to introduce nitrogen into the CNTs by replacing one of the carbon 

atoms. Some authors found that in-situ doping of nitrogen atoms into the structure of CNTs 

during the growth gives much better nitrogen stabilities than the post-treatment method.35 The 

average diameter of the chlorine containing CNTs decreased from 33 nm to 28 nm after post-

doping with nitrogen (Figure 6.17b).    

 

  

Figure 6.15 TEM images of chlorinated CNTs (a and b) generated after post-doping with 

CH3CN nitrogen source.   

 

 

 

 

 

(a) (b) 
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Figure 6.16 SEM images and diameter distribution curve of purified N-CNTs post-doped with 

chlorine. 

(a) (b) 

(d) (c) 
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Figure 6.17 SEM images and diameter distribution curves of purified chlorinated CNTs post-

doped with nitrogen.  

 

6.3.2.2 Raman spectroscopy analysis of post-treated CNTs 

Raman spectra of the N-CNTs post-doped with chlorine showed three bands, the D-, G-and 2D-

band (Figure 6.18). The disorder induced D-band was deconvoluted into one peak at 1344 cm–1 

and the graphitic peak G-band was deconvoluted into two peaks a graphitic carbon G-band at 

1573 cm–1 and a disordered graphitic plane D’-band at 1613 cm–1. A low intensity 2D band also 

appeared at 2686 cm–1 and a very low intensity defect-induced G* peak at 2440 cm–1. A 2D peak 

(a) 

(d) (c) 

(b) 
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was not observed from the N-doped CNTs generated from CH3CN, which suggest that post-

treatment with chlorine resulted in the formation of highly graphitic materials. The ID/IG peak 

area values of 1.2 and 0.65 for NCNTs and NCNTs post-treated with chlorine, which also 

suggest that the graphitic nature of the CNTs was improved by Cl incorporation. FWHM values 

of 71 and 40 cm–1 for NCNTs and NCNTs post-treated with Cl also suggest that post-

incorporation of chlorine resulted in formation of amorphous free NCNTs (Table 6.10). A ID/ID’ 

value of 5.5 corresponds to formation of vacancy-like defects, a property of removed carbon. 

Vacancy-like defects with an ID/IG value of 5.7 were obtained from CNMs generated from pure 

CH3CN by an injection CVD method. This suggest that post-doping with chlorine might have 

increased the number of nitrogen atoms doped into the CNTs. 

    

Table 6.10 Raman bands of the purified N-doped CNTs generated from pure CH3CN and after 

post-treatment with DCB 

Carbon 

nanostructure 

Band 

name 

Band 

Position 

(cm–1) 

Bond 

type 

FWHM 

(cm–1) 

Peak 

Area 

Designation 

P
u
ri

fi
ed

 N
-d

o
p
ed

 C
N

T
s 

 

D4 1210 sp2–sp3 126 983 C=C stretching 

vibrations 

D3 1339 sp2 126 6701 Disordered graphite 

D2 1513 sp3 85 1042 Amorphous carbon 

structure 

G 1584 sp2 71 5312 Graphitic like 

carbonyl group 

N
-d

o
p
ed

 C
N

T
s 

p
o
st

-

tr
ea

te
d
 w

it
h
 D

C
B

 

D3 1338 sp2 77 1793 Disordered graphite 

G 1587 sp2 50 2347 Graphitic like 

carbonyl group 

D’ 1613 sp2 31 429 Defects in graphitic 

plane 

G* 2440  36 82 1st overtone of D4 

2D 2686  55 300 1st overtone of D1 
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Figure 6.18 Deconvoluted Raman spectra of purified N-doped CNTs generated from (a) 

CH3CN, and (b and c) after post-treatment with DCB. 

 

Raman spectra of the chlorinated MWCNTs post-doped with nitrogen showed three bands, the 

D-, G-and 2D-band (Figure 6.19). The disorder induced D-band was deconvoluted into one peak 

at 1340 cm–1 and the graphitic peak G-band was deconvoluted into one peak at 1576 cm–1. A 

highly intense 2D band also appeared at 2678 cm–1 and a very low intensity defect-induced G* 

peak at 2444 cm–1. A 2D band was not observed from the chlorinated CNTs generated from 

DCB, which suggests that they were introduced during post-doping treatments with nitrogen. 

(a) 

(c) 

(b) 
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This suggests that post-treatment with nitrogen results with the formation of more graphitic 

materials. Unfortunately, we did not have access to XPS (hence we could analyze only a limited 

samples) it would have been informative to see the type of dominating nitrogen species in this 

samples.  
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Figure 6.19 Deconvoluted Raman spectra of purified chlorinated CNTs generated from (a) DCB, 

and (b and c) after post-treatment with CH3CN. 

 

(a) 

(c) 
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The ID/IG peak area values of 1.0 and 0.8 for chlorinated CNTs and chlorinated CNTs post-

treated with nitrogen, also suggest that the graphitic nature of the CNTs was improved by post-

doping with nitrogen. FWHM values of 66 and 61 cm–1 for chlorinated CNTs and chlorinated 

CNTs post-treated with N also suggest that post-incorporation of nitrogen resulted in formation 

of amorphous free CNTs (Table 6.11).  

 

Table 6.11 Raman bands of the purified chlorinated CNTs generated from pure DCB and after 

post-treatment with CH3CN 

Carbon 

nanostructure 

Band 

name 

Band 

Position 

(cm–1) 

Bond 

type 

FWHM 

(cm–1) 

Peak 

Area 

Designation 

P
u
ri

fi
ed

 c
h
lo

ri
n
at

ed
 

C
N

T
s 

 

D4 1236 sp2–sp3 179 4472 C=C stretching 

vibrations 

D 1338 sp2 109 5375 Disordered graphite 

D2 1498 sp3 214 5760 Amorphous carbon 

structure 

G 1587 sp2 66 3703 Graphitic like 

carbonyl group 

P
u
ri

fi
ed

 

C
h
lo

ri
n
at

ed
 C

N
T

s 

p
o
st

-t
re

at
ed

 w
it

h
 

C
H

3
C

N
 

D 1340 sp2 71 6026 Disordered graphite 

G 1576 sp2 61 7584 Graphitic like 

carbonyl group 

G* 2444  46 274 1st overtone of D4 

2D 2678  72 3015 1st overtone of D1 
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6.3.4 Effect of concentration of TTCE in CH3CN  

Various CH3CN:TTCE reagent volume ratios namely, 100:0, 0:100, 50:50, 66.7:33.3 and 75:25 

vol.% were studied to see their effect on the morphology of the CNMs. Pyrolysis of the mixture 

of nitrogen and chlorine source was performed at room temperature and at 100 °C.  

6.3.3.1 Structural analysis of the N-doped CNMs: Effect of TTCE concentration and 

synthesis temperature 

Synthesis of CNTs using only tetrachloroethane (TTCE) as chlorine source was performed using 

the method developed previously.28 Hollow CNTs were generated and metal particles were 

observed at the tip of some CNTs suggesting a tip-growth mechanism (Figure 6.20a and b shown 

by arrow). SEM images of purified CNTs generated from room temperature TTCE solutions 

revealed formation of highly entangled CNTs and clumps particles (Supplementary Figure S19).  

  

Figure 6.20 TEM images of purified CNMs generated from (a and b) tetrachloroethane (TTCE), 

(N2 = 280 mL/min, C2H2 = 50 mL/min, T = 700 °C, t = 60 min). 

 

Studies were then performed to investigate the effect of chlorine on the growth of N-doped 

CNTs using a mixture of room temperature solutions of CH3CN and TTCE of various volume 

ratios. TEM images obtained at different volume ratios of the two organic reagents at room 

temperature are presented in Figure 6.21 to Figure 6.23. In all the studies, carbon nano-onions 

were formed and metal-nanoparticles were encapsulated in some of the nano-onions. A 

(a) (b) 
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measurable quantity of other shaped CNTs with funnel-shaped (or Y-shaped) mouths or open-

ends (Figure 6.21b and Figure 6.22b) were also observed. Similar Y-shaped tube ends were 

observed in this study from CNTs obtained when DCB was used as a chlorine source mixed with 

CH3CN using an injection CVD method (Chapter 5). At lower concentrations of DCB (25 and 

33.3 vol.%) carbon nano-onions were connected to bamboo-shaped carbon nano-bells which 

showed increased nitrogen incorporation (Figure 6.21c and Figure 6.22c). 

 

  

 
Figure 6.21 TEM images obtained from purified CNMs generated from a 75:25 vol.% 

CH3CN:TTCE solution mixture (N2 = 280 mL/min, C2H2 = 50 mL/min, T = 800 °C, t = 60 min). 

(a) (b) 

(c) 
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Figure 6.22 TEM images obtained from purified CNMs generated from a 66.7:33.3 vol.% 

CH3CN:TTCE solution mixture (N2 = 280 mL/min, C2H2 = 50 mL/min, T = 700 °C, t = 60 min). 

 

Studies were also performed to investigate the effect of chlorine on the growth of N-doped CNTs 

using a mixture of room temperature solution of CH3CN and TTCE of various volume ratios. 

The formation of carbon nano-onions increased with an increase in the concentration of DCB (50 

vol.%) in the feed (Figure 6.23). Chlorination of metal carbides was found to enhance formation 

(a) (b) 

(c) 
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of carbon nano-onions.25 From the XRD studies in our previous work we found that iron carbide 

was formed as a bi-product28 of the chlorinated CNTs. Carbon nano-onions were formed in 

another study when nitrogen was used as a carrier gas unlike when hydrogen was used.24 The 

nitrogen concentration in the carbon nano-onions and the carbon nano-onion yield increased with 

increasing reaction time.24 Atomic scale electron loss spectroscopy analysis of nano-onions in 

CNx thin film36 and CNx nanotube37 showed that the nitrogen concentration increases as the 

curvature of the graphitic layer increases. The carbon onion could be easily obtained due to 

presence of nitrogen, which can reduce the strain energy required for the spherical graphitic layer 

of carbon onion and thus decrease the activation energy for both the nucleation of the graphitic 

layer on the catalyst surface and the structural evolution of the carbon onion during growth.24 We 

conclude that combination of chlorine and nitrogen resulted in the enhanced growth of carbon 

nano-onions based on the above explanations. SEM images recorded for all studied TTCE 

concentrations showed that the interconnected carbon nano-bells are dominating structures 

(Supplementary Figure S20 to S22).   

 

  

Figure 6.23 TEM images obtained from purified CNMs generated from a 50:50 vol.% 

CH3CN:TTCE solution mixture (N2 = 280 mL/min, C2H2 = 50 mL/min, T = 700 °C, t = 60 min). 

 

(a) (b) 
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Studies were also performed to investigate the effect of chlorine on the growth of N-doped 

CNMs using heated solutions of CH3CN and TTCE and of their mixtures of various volume 

ratios. In this study the temperature of acetonitrile was kept at 90 °C, while that of TTCE and 

CH3CN/TTCE reagents mixtures were kept at 100 °C to evaluate its effect on the morphology of 

the CNMs.  

Bamboo-shaped CNTs and connected carbon nano-bells were observed from the TEM images 

generated from heated solutions of CH3CN (Figure 6.24). The amount of bamboo-

compartmented CNTs was increased when we compare to those generated from room 

temperature CH3CN. SEM images of CNMs generated from CH3CN revealed the presence of 

various carbon structures, carbon nanospheres (CSs), carbon nano-platelets, some coiled 

structures (which are probably connected carbon nano-bells or carbon nanospheres) 

(Supplementary Figure S23). Carbon nanospheres which were linked together in a necklace-like 

fashion were observed in another study from vaporization of CH3CN at 80 °C.29 CSs of this 

nature are usually prepared by pyrolysis of a hydrocarbon by CVD in the absence of a catalyst.38 

The ratio of the produced N-CNTs/carbon nano-bells/CSs was about 60/30/10.  

Hollow CNTs (Figure 6.25a to c) and carbon nano-onions (Figure 6.25d) were produced when 

heated TTCE was used as a source of chlorine. Few carbon nano-onions were observed from 

room temperature solutions of TTCE and their formation seem to have increased at increased 

reagent temperature. An increase in temperature of TTCE led to greater vaporization of chlorine 

which resulted in chlorine interacting with the Fe3C formed on the catalyst surface, enhancing 

the formation of carbon nano-onions. SEM images reveal formation of CNMs of various 

morphologies, CNTs, CNFs, coiled CNTs, some clustered carbon structures (probably carbon 

platelets or amorphous carbon structures) and a few large open-ended CNTs (Supplementary 

Figure S24). CNTs seems to be dominating but it was very difficult to determine the ratio of the 

various carbon structures.   
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Figure 6.24 TEM images of purified CNMs generated from a heated solution of acetonitrile (90 

°C) (N2 = 240 mL/min, C2H2 = 90 mL/min, T = 800 °C, t = 60 min). 

(a) (b) 

Carbon 

nano-bells 

(d) (c) 
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Figure 6.25 TEM images of purified CNMs generated from heated solutions of 

tetrachloroethane (100 °C) (N2 = 280 mL/min, C2H2 = 50 mL/min, T = 700 °C, t = 60 min). 

 

 

 

(a) 

(d) (c) 

(b) 
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An effect of temperature was also investigated for systems that contained a mixture of 

CH3CN:TTCE with different volume ratios. TEM images obtained from acetonitrile feed 

solutions that contained low concentration of TTCE (25 vol.%), revealed formation of CNMs of 

variable morphologies. Coiled and un-coiled bamboo-compartmented CNTs, hollow CNTs, 

connected carbon nano-bells and nano-onions, bamboo-compartmented carbon nano-bells, 

carbon nano-bells with metal particle encapsulated inside and a variety of carbon nano-bells 

connected to each other in a leave branches format (Figure 6.26). We suggest that the presence of 

chlorine molecules enhanced the formation of carbon nanostructures with intratubular junctions, 

as it interacted with an iron carbide formed on the surface of the catalyst substrate. It was found 

in another study that carbide-forming elements like titanium as dopants in the catalyst can also 

facilitate the synthesis of branched junctions.17 SEM images (Supplementary Figure S5) and 

TEM images reveal that the majority of the CNMs were interconnected carbon nano-bells. 

Increasing the DCB concentration in the CH3CN feed to 33.3 vol.%, resulted in the formation of 

bamboo-compartmented and hollow CNTs (Figure 6.27). Metal particles encapsulated inside 

some of the CNTs was observed from Figure 6.27b. Some coiled hollow CNTs were also 

observed from the TEM images. The formation of carbon nano-bells was greatly reduced at this 

concentration (Figure 6.27c insert). SEM images reveal formation of regular CNTs of similar 

sizes (Supplementary Figure S26). The ratio of CNTs/carbon nano-bells can be estimated as 

80/20. 

TEM images obtained from acetonitrile feeds containing 50 vol.% TTCE also revealed formation 

of mixed CNMs with various morphologies, bamboo-shaped CNTs and interconnected carbon 

nano-bells (Figure 6.28c), hollow CNTs (Figure 6.28a), and some carbon nano-onions (Figure 

6.28d). SEM images also shows mixtures of CNTs, and interconnected carbon nano-bells 

(Supplementary Figure S27). From the SEM images we estimated the ratio of the CNTs/carbon 

nano-bells as 20:80. The amount of chlorine in the feed had a great effect on the morphological 

changes of the N-doped CNMs. A solution containing 66.7:33.3 CH3CN:TTCE volume ratio 

selectively produced CNTs, while a 50:50 and 75:25 volume ratio solutions gave mixtures of 

CNMs. One can find tune the amount of chlorine in the feed to obtain CNMs for their desirable 

application. SEM images recorded for all studied TTCE concentrations showed that the 
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interconnected carbon nano-bells are the dominating structures (Supplementary Figure S20 to 

S22) 

 

  

  

Figure 6.26 TEM images obtained from purified CNMs generated from a 75:25 vol.% 

CH3CN:TTCE solution mixture (N2 = 280 mL/min, C2H2 = 50 mL/min, T = 700 °C, t = 60 min). 

(a) 

(d) (c) 

(b) 
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Figure 6.27 TEM images obtained from purified CNMs generated from a 66.7:33.3 vol.% 

CH3CN:TTCE solution mixture (N2 = 280 mL/min, C2H2 = 50 mL/min, T = 700 °C, t = 60 min). 

 

 

 

(a) 

(d) (c) 

(b) 
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Figure 6.28 TEM images obtained from purified CNMs generated from a 50:50 vol.% 

CH3CN:TTCE solution mixture (N2 = 280 mL/min, C2H2 = 50 mL/min, T = 700 °C, t = 60 min). 

 

 

 

 

 

 

(a) (b) 

(d) (c) 
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6.3.3.2 Thermogravimetric analysis of the N-doped CNMs: Effect of TTCE concentration 

and synthesis temperature 

TGA and DTGA curves of un-purified and purified CNTs generated from heated pure CH3CN 

(90 °C) and TTCE (100 °C) are presented in Figure 6.29. Un-purified CNTs generated from 

CH3CN showed a variety of weight losses, the initial minor weight loss observed around 100 to 

300 °C was due to evaporation of physisorbed water at the onset temperature of 100 °C, together 

with decomposition of chemisorbed water and surface chloride groups at ~ 150 to 300 °C. The 

second minor weight loss at ~ 450 °C was due to decomposition of amorphous carbon structures. 

The third major weight loss (~ 55 %) with an onset temperature of ~ 580 °C was due to oxidation 

of CNTs, while the fourth minor weight loss at 700 °C was due to oxidation of other graphitic 

carbon structures (i.e. carbon nano-bells, carbon nanospheres, observed from the TEM images). 

Purified CNTs generated from CH3CN showed three mass losses. The weight loss due to 

physisorbed and chemisorbed water together with surface chlorides was not observed after 

purification. The water could have been removed during drying of the CNTs at high temperature 

after purification and the surface chlorides could have reacted with the hydrogen from the acid 

used for treatment. The first minor weight loss was observed at ~350 to 400 °C due to 

amorphous carbon structures. The second major weight loss was observed at ~ 500 °C and was 

assigned to oxidation of N-doped CNTs.  

Only one major broad weight loss was observed from TGA curves of un-purified and purified 

CNMs generated from room temperature TTCE solution (Figure 6.29). The weight loss occurred 

at ~ 580 to 700 °C which could be attributed to oxidation of chlorinated CNMs (Figure 6.29). 

The broadness of the oxidation peak suggest that various stable carbon nanostructures were 

oxidized at this temperature range. This data is consistent with the TEM observations where 

CNTs and carbon-nano-onions were generated, with CNTs dominating. The residual mass of ~ 

10 and 15 % was observed from the TGA curves obtained from CH3CN and TTCE before 

purification, which was completely removed after purification shown by a residual mass of zero. 

This shows that purification with acid was effective for removal of any catalyst metal particles 

that remained on the surface of the CNMs after synthesis.    
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Figure 6.29 TGA and DTGA curves of un-purified and purified CNMs generated from room 

temperature solutions of pure CH3CN (a and b) and pure TTCE (c and d)   

  
A two stage oxidation process shown by two regions of weight losses was observed in the TGA 

and DTGA curves of the unpurified CNMs generated from room temperature CH3CN feeds 

containing low concentration of DCB (25 vol.%). The first major weight loss was broad and 

occurred at ~ 550 to 680 °C, which could be attributed to oxidation of various N-doped CNTs 

and carbon nano-bells which are chlorine functionalized and un-functionalized (Figure 6.30a and 

b). The second minor weight loss at ~ 680 to 750 °C could be due to carbon platelets and other 

metal encapsulated CNMs (Figure 6.30a and b). This data agrees with the TEM observations 

were carbon nanostructures of various morphologies were observed. The weight losses shifted to 

higher oxidation temperatures after acid treatment, due to stabilization of the CNMs by 

(a) 

(d) 
(c) 

(b) 
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functionalization of the CNMs with oxygen functional groups (Figure 6.30a and b). Another 

weight loss was observed at higher temperatures > 800 °C from purified CNMs due to evolution 

of nitrogen. The residual mass was again reduced from ~ 20 % to zero, suggesting that acid 

treatment was effective in removal of catalyst metal particles that could have been on the surface 

of the CNMs. 

TGA and DTGA curves of CNMs generated from room temperature solutions containing 

increased concentration of TTCE in the acetonitrile feed to 33.3 vol.% are presented in Figure 

6.30c and d. Two weight losses are observed from both the un-purified and purified samples. The 

first major weight loss was at ~ 550 to 650 °C for un-purified CNMs and was at ~ 530 to 680 for 

purified CNMs, due to oxidation of chlorinated and un-chlorinated N-doped CNTs. The second 

weight loss at ~ 650 to 700 °C was due to oxidation of other graphitic materials like carbon 

nano-bells observed from the TEM images. The residual mass loss was not reduced to zero after 

acid treatment which suggest that some catalyst particles were still present after acid treatment. 

Catalyst particles encapsulated into the CNTs were observed from the TEM images. 

TGA and DTGA curve of un-purified CNMs generated from a further increase in the amount of 

TTCE in the CH3CN feed to 50 vol.% was similar to the one obtained from solutions containing 

33.3 vol.% (Figure 6.30e and f). Three weight losses were observed from purified CNMs 

generated from solutions containing 50 vol.% TTCE concentration (Figure 6.30e and f). They 

were at about 550, 600 and 700 °C which were assigned to oxidation of un-functionalized CNTs, 

chlorine functionalized CNTs and other chlorine functionalized carbon structures (carbon nano-

bells and carbon nano-onions) observed from the TEM images.                      
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Figure 6.30 TGA and DTGA curves of un-purified and purified CNMs generated from room 

temperatures solutions of various concentration of TTCE in the acetonitrile feed. 

(a) (b) 

(d) 
(c) 

(f) 
(e) 
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The level of purity of the CNMs generated from hot solutions was also investigated using TGA 

and DTGA. TGA and DTGA curves of un-purified CNMs generated from heated TTCE all 

solutions revealed two main oxidation peaks for the oxidation of chlorine functionalized CNTs at 

~ 580 °C and other crystalline graphitic particles (carbon-nano-onions, large-sized CNTs with 

open-ends and carbo platelets) at ~ 700 °C (Figure 6.31a and b). Purified CNMs showed one 

broad weight loss at ~ 600 °C that had a shoulder peak at ~ 650 °C due to oxidation of chlorine 

functionalized CNTs and other graphitic materials mentioned above for the un-purified CNMs 

(Figure 6.31c and d).  

 

Table 6.12 Decomposition temperatures and residual masses (determined by TGA) of the un-

purified and purified (P) chlorine functionalized NCNMs generated by bubbling different ratios 

of CH3CN and TTCE at room temperature. 

Hydrocarbon source Decomposition 

temperature/°C 

Residual mass/% 

CH3CN  697 7.9 

CH3CN (P) 633 0 

TTCE28 615 13.5 

TTCE (P)28 619 0 

CH3CN:TTCE (50:50) 600 24 

CH3CN:TTCE (50:50) (P) 627 7.7 

CH3CN:TTCE (66.6:33.3) 600 21 

CH3CN:TTCE (66.6:33.3) (P) 615 7.5 

CH3CN:TTCE (75:25) 600 22.5 

CH3CN:TTCE (75:25) (P) 630 3.6 
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Figure 6.31 TGA and DTGA curves of un-purified (a and b) and purified (c and d) CNMs 

generated from heated solutions of pure CH3CN (90 °C) and pure TTCE (100 °C)   

 

TGA and DTGA of CNMs generated from heated solutions of CH3CN containing 25 vol.% DCB 

showed two weight losses in the un-purified samples and one weight loss from the purified 

samples (Figure 6.32a and b. The weight loss at ~ 600 °C observed from both un-purified and 

purified samples was due to oxidation of chlorine functionalized N-doped CNMs (Figure 6.32a 

and b). The minor peak at ~ 700 °C observed from un-purified solution is probably due to 

oxidation of carbon platelets, which were removed by purification. Similar observations were 

obtained from CNMs generated from feed solutions containing 33.3 and 50 vol.% TTCE 

concentrations, except that the amorphous carbon peak was also observed at this feed solutions at 

~ 450 °C from both un-purified and purified CNMs (Figure 6.32c to f). Residual mass of zero 

(a) (b) 

(d) 
(c) 
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was obtained from all studied TTCE concentrations, suggesting that the materials were free of 

any metal catalysts particles on their surface.    
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Figure 6.32 TGA and DTGA curves of un-purified and purified CNMs generated from heated 

(100 °C) solutions of various concentration of TTCE in the acetonitrile feed. 

(a
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(d) 
(c) 
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Table 6.13 Decomposition temperatures and residual masses (determined by TGA) of the un-

purified and purified (P) chlorine functionalized NCNMs generated by bubbling different ratios 

of a CH3CN and TTCE at 100 °C. 

Hydrocarbon source Decomposition 

temperature/°C 

Residual mass/% 

CH3CN 592 9.4 

CH3CN (P) 544 0 

TTCE 589 24 

TTCE (P) 611 3.2 

CH3CN:TTCE (50:50) 628 18.2 

CH3CN:TTCE (50:50) (P) 627 2.3 

CH3CN:TTCE (66.7:33.3) 568 21.6 

CH3CN:TTCE (66.7:33.3) (P) 592 0 

CH3CN:TTCE (75:25) 611 3.1 

CH3CN:TTCE (75:25) (P) 627 0 

 

6.3.3.3 Powder XRD analysis of the N-doped CNMs: Effect of TTCE concentration and 

synthesis temperature 

XRD patterns of the purified N-CNTs, Cl functionalized CNMs and chlorine functionalized 

NCNMs samples generated from room temperature solutions and from heated solutions, are 

presented in Figure 6.33. The XRD data for materials generated from reagents at room 

temperature, showed a strong intensity peak at 2θ ~ 26 ° (Figure 6.14a), assigned to the C(002) 

reflection of graphite associated with the interlayer spacing of graphene.39 The full width at half 

maxima (FWHM) of the C002 peak increased with an increase in the TTCE content in the feed 

(Table 6.14). Broadening of the FWHM of the C002 peak can be due to an increase in the amount 

of nitrogen doped into the CNMs. An increase in nitrogen doping increased the structural strain 

by increasing the surface defects on the regular graphite layers of the CNTs leading to 

broadening of the FWHM.40 The data is consistent with the TGA analysis, where an increase in 

the amount of TTCE in the feed resulted in the production of less thermally stable materials. The 

peak appearing at 2θ ~ 45 ° which had a shoulder peak was attributed to the C100 (shoulder) and 

C101 (main peak at 45 °) plane of CNMs and to some traces of iron carbide (Fe3C) or iron 
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metallic catalyst.39 Two additional peaks were observed at 2θ ~ 32 ° and 37 ° from the 

diffractogram obtained from a 50:50 and 66.7:33.3 volume ratio solutions and pure TTCE and 

were assigned to Fe3C reflections. The peak at 54 ° theta was also observed and was assigned to 

the presence of iron (II) oxide, FeO. The presence of an Fe3C peak could imply that Fe3C was the 

predominant catalytic phase during CNM growth.41 The intensity of the Fe3C peak was the same 

for chlorine functionalized NCNMs generated from a CH3CN:TTCE with 50:50 and 66.7:33.3 

volume ratios, and disappeared from XRD patterns generated from CNMs generated from a 

CH3CN:TTCE of 75:25 volume ratio. A decrease in the Fe3C peak with low amounts of TTCE 

was also evidenced from the TGA curves of chlorine functionalized NCNMs, where a decrease 

in the residual weight was observed from feeds containing 25 vol.% of TTCE (Table 6.14). The 

Fe3C peak was also not observed from PXRD patterns of N-CNTs (Figure 6.34a), which is also 

consistent with the TGA data where no residual weight was observed after purification (Table 

6.14). The XRD data correlates with the TEM images where carbon nano-onions were formed 

from reagent mixtures that contained high concentrations of TTCE (50 and 33.3 vol.%) in the 

feed. The amount of metal particles encapsulated inside the nano-onions was also observed from 

solutions that contained appreciable amount of TTCE.  

 

Table 6.14 Powder X-ray structural parameters of chlorine functionalized MWCNTs, N-

MWCNTs and chlorine functionalized NCNMs generated using room temperature solutions of 

TTCE and CH3CN. 

Chlorine/nitrogen 

source 

Position 

of C(002) 

peak 

FWHM of 

C(002) peak 

/ ° 

Intensity of 

C(002) peak 

Intensity of 

Fe3C peak 

Volume of 

hydrocarbon 

source used /mL 

TTCE 25.90 2.30 918 – 0 

CH3CN 25.82 2.07 619 – 8 

CH3CN:TTCE 

(75:25) 

25.81 1.50 1502 _ 8 

CH3CN:TTCE 

(66.7:33.3) 

25.91 1.75 1220 220 6 

CH3CN:TTCE 

(50:50) 

25.93 1.83 993 220 4 
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All diffractogram generated from heated reagents also displayed, similar behavior to those 

generated at room temperature (Figure 6.33b and Table 6.15). In this case the Fe3C peak was 

only observed from the diffractogram of CNMs generated from solutions containing high 

concentrations of TTCE (50 vol.%).  

 

Table 6.15 Powder X-ray structural parameters of chlorine functionalized MWCNTs, N-

MWCNTs and chlorinated NCNMs generated using room temperature solutions of TTCE and 

CH3CN. 

Chlorine/nitrogen 

source 

Position 

of C(002) 

peak 

FWHM of 

C(002) peak 

/ ° 

Intensity of 

C(002) peak 

Intensity of 

Fe3C peak 

Volume of 

hydrocarbon source 

used /mL 

TTCE 25.8 2.07 669 – 0 

CH3CN 26.0 1.92 1234 – 45 

CH3CN:TTCE 

(75:25) 

25.8 1.50 1492 _ 26 

CH3CN:TTCE 

(66.7:33.3) 

26.2 1.60 2298 – 20 

CH3CN:TTCE 

(50:50) 

25.9 1.70 1270 291 10 
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Figure 6.33 P-XRD spectroscopy of purified CNMs generated from varying the volume ratio of 

(a) room temperature and (b) hot (100 °C) mixture of CH3CN:TTCE. 
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6.3.3.4 Raman spectroscopy analysis of the CNMs: Effect of TTCE concentration and 

synthesis temperature 

Raman spectra analysis of the purified CNTs generated from room temperature pure CH3CN and 

pure TTCE are presented in Figure 6.34. A disorder-induced band (D-band) and a graphitic band 

(G-band) were observed from the Raman spectra of CNMs generated from CH3CN. A broad D-

band was deconvoluted into two bands, a D4-band at 1210 cm–1 attributed to C=C stretching 

vibrations and a D-band at 1339 cm–1 attributed to topological defects on the CNT walls due to 

substitution of carbon with nitrogen. A G-band was also deconvoluted into two peaks, a D2-band 

at 1513 cm–1 assigned to the presence of amorphous carbon structures and a G-band at 1585 cm–1 

due to sp2 carbon atoms in a graphitic plane. An ID/IG value of 1.2 was obtained, which suggest 

the materials are highly defected. Large FWHM values of 78 cm–1 (average of D2 and G-band) 

also suggest the presence of small amounts of amorphous carbon structures (Table 6.). These 

amorphous carbon structures were not detected by TGA analysis, which shows that their 

amounts are very little.             

Raman bands of purified CNTs generated from pure TTCE showed a D-band that was 

deconvoluted into a single peak at 1337 cm–1 (Figure 6.34). A G-band was deconvoluted into 

two peaks, a D2-band at 1469 cm–1 and a G-band at 1574 cm–1 (Figure 6.34). The amorphous 

carbon D2-band is very small as compared to the one obtained from Raman curves generated 

from CH3CN, which suggest the reduced formation amorphous carbon. A second order 2D band 

which was highly intense was also observed from CNMs generated from TTCE, which suggest 

that these materials were highly graphitic. An ID/IG value of 0.83 suggest that the materials were 

highly graphitic in comparison to those obtained from pure CH3CN. FWHM value of 78 cm–1 

(average of D2 and G band) also suggest the presence of small amounts of amorphous carbon 

present (Table 6.16). These amorphous carbon structures were not detected by TGA analysis, 

which shows that their amounts are very little.    
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Table 6.16. Raman bands of the purified CNMs generated from room temperature pure CH3CN 

and pure TTCE 

Heteroatom 

Source 

Band 

name 

Band 

Position 

(cm–1) 

Bond type FWHM 

(cm–1) 

Peak 

Area 

Designation 

C
H

3
C

N
 p

u
ri

fi
ed

 

D4 1210 sp2–sp3 126 983 C=C stretching 

vibrations 

D 1339 sp2 126 6701 Disordered graphite 

D2 1513 sp3 85 1042 Amorphous carbon 

structure 

G 1584 sp2 71 5312 Graphitic like 

carbonyl group 

T
T

C
E

 p
u
ri

fi
ed

 

D 1337 sp2 88 3094 Disordered graphite 

D2 1469 sp3 89 539 Amorphous carbon 

structure 

G 1574 sp2 66 3202 Graphitic like 

carbonyl group 

2D 2678  108 1652 1st overtone of D1 
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Figure 6.34 Raman spectra of purified CNTs generated from room temperature solutions of (a) 

pure CH3CN and (b and c) pure TTCE.  
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Raman spectra analysis of the purified CNMs generated from room temperature CH3CN feed 

solutions containing 25 vol.% TTCE are presented in Figure 6.35. A disorder-induced band (D-

band), a graphitic band (G-band) and a second order 2D band were observed in the Raman 

spectra. A D-band was deconvoluted into one peak at 1349 cm–1 attributed to topological defects 

on the CNT walls due to substitution of carbon with nitrogen. A G-band was deconvoluted into 

two peaks, a D’-band at 1616 cm–1 assigned to the defects in the graphitic plane and a G-band at 

1585 cm–1 due to a perfect graphitic plane. A very weak defect induced G* band was also 

observed at 2429 cm–1 due to the presence of defects in the CNMs. A 2D band which was split 

into two bands a 2D1 at 2674 cm–1 and a 2D2 at 2702 cm–1. This split has been described as a 

characteristic feature of undisturbed or highly ordered graphitic lattices32 and interaction of 

succesive layers.33 An ID/IG value of 0.4 was obtained, which suggest that the materials were 

highly graphitic. Small FWHM values of 40 cm–1 (average of D’ and G-band) also suggest that 

the materials were free of amorphous carbon structures (Table 6.17). The Raman data is 

consistent with the TGA data since amorphous carbon structures were not detected from the 

TGA curves.     

Similar Raman spectra were obtained from CNMs generated from CH3CN room temperature 

feed solutions containing 33.3 and 50 vol.% TTCE (Figure 6.35c to f). ID/IG values of 0.4 and 0.6 

were obtained for solutions containing 33.3 and 50 vol.% TTCE respectively, suggesting that the 

materials are highly graphitic. Low FWHM values of 43 cm–1 also suggest materials with no 

amorphous carbon as observed from the TGA curves (Table 6.17). An ID/ID’ value of 4.3 was 

obtained from CNMs generated from feed solutions containing 25 vol.% TTCE due to vacancy-

like defects with additional small boundary-like defects. An ID/ID’ value of 3.17 was obtained 

from CNMs generated from feed solutions containing 33.3 vol.% TTCE corresponding to 

boundary-like defects and small on-site defects. On-site defects describe out-of-plane atoms 

bonded to sp3 hybridized carbon atoms. An ID/ID’ value of 6.3 was obtained from CNMs 

generated from feed solutions containing 50 vol.% TTCE corresponding to vacancy-like defects.     
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Figure 6.35 Raman spectra analysis of purified CNMs generated from varying the volume ratio 

of CH3CN:TTCE solution at room temperature 
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(b) 

(f) 

(c) 



227 | P a g e  

 

 

Table 6.17 Raman bands of the purified chlorinated N-doped CNTs generated from various 

volume ratios of room temperature CH3CN and TTCE solution mixtures 

CH3CN:TTCE 

volume ratio 

(%) 

Band 

name 

Band 

Position 

(cm–1) 

Bond 

type 

FWHM 

(cm–1) 

Peak 

Area 

Designation 

7
5

:2
5

 

D 1349 sp2 62 1623 Disordered graphite 

G 1572 sp2 51 4171 Graphitic like 

carbonyl group 

D’ 1616 sp2 24 376 Defects in graphitic 

plane 

G* 2429  54 198 1st overtone of D4 

2D1 2674  62 1099 1st overtone of D1 

2D2 2701  40 151 2D overtone 

6
6
.7

:3
3
.3

  

D 1343 sp2 52 1268 Disordered graphite 

G 1571 sp2 37 2636 Graphitic like 

carbonyl group 

D’ 1608 sp2 25 400 Defect in graphitic 

plane 

G* 2425  52 150 1st overtone of D4 

 2D 2680  64 1394 1st overtone of D1 

5
0
:5

0
 

D 1341 sp2 77 4629 Disordered graphite 

G 1569 sp2 54 7558 Graphitic like 

carbonyl group 

D’ 1618 sp2 33 729 Defect in graphitic 

plane 

G* 2430  42 103 1st overtone of D4 

2D 2675  76 2957 1st overtone of D1 

 

Raman spectra analysis of the purified CNTs generated from heated solutions of pure CH3CN 

and pure TTCE are presented in Figure 6.36. A disorder-induced band (D-band), a graphitic band 

(G-band) and a second order 2D band were observed from Raman spectra generated from both 
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reagents. For CNTs generated from pure CH3CN, a D-band was deconvoluted into one band at 

1343 cm–1 attributed to topological defects on the CNT walls due to substitution of carbon with 

nitrogen. A G-band was also deconvoluted into two peaks, a D’-band at 1614 cm–1 and a G-band 

at 1573 cm–1. A second order 2D band which was highly intense was also observed at 2698 cm–1. 

An ID/IG value of 0.9 was obtained, which was smaller than that obtained from room temperature 

solutions, suggest that heating resulted in formation of more graphitic CNMs. Low FWHM 

values of 40 cm–1 compared to 78 cm–1 (average of D2 and G-band) generated from room 

temperature CH3CN also suggest materials with no amorphous carbon structures (Table 6.18). 

An ID/ID’ value of 8.9 corresponding to hoping defects produced by the deformation of the 

carbon bond, was obtained. The data is consistent with the TGA analysis were no amorphous 

oxidation peak was observed.  

Raman bands of purified CNTs generated from heated solution of pure TTCE showed a D-band 

that was deconvoluted into a single peak at 1336 cm–1 (Figure 6.37). A G-band was 

deconvoluted into two peaks, a D2-band at 1508 cm–1 and a G-band at 1589 cm–1 (Figure 6.36). 

The amorphous carbon D2-band is very small which suggest small amounts of amorphous 

carbon. A weak second order 2D band was also observed, which suggest that these materials 

were less graphitic as compared to those generated from room temperature TTCE. An ID/IG value 

of 1.7 suggest that the materials were highly defected in comparison to those obtained from room 

temperature TTCE. Heating of the TTCE probably results in generation of more chlorine vapors 

which results in generation a large number of functionalized CNMs leading to highly defected 

materials. FWHM value of 67 cm–1 (average of D2 and G band) suggest the presence of small 

amounts of amorphous carbon (Table 6.18). These amorphous carbon structures were not 

detected by TGA analysis, which shows that their amounts are very little.    
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Figure 6.36 Raman spectra of purified CNTs generated from heated solutions of (a) pure 

CH3CN (90 °C) and (b) pure TTCE (100 °C).  
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Table 6.18. Raman bands of the purified CNMs generated from heated solutions of pure CH3CN 

and pure TTCE 

Heteroatom 

Source 

Band 

name 

Band 

Position 

(cm–1) 

Bond type FWHM 

(cm–1) 

Peak 

Area 

Designation 

C
H

3
C

N
 p

u
ri

fi
ed

 

D 1343 sp2 89 2190 Disordered graphite 

G 1573 sp2 54 2098 Graphitic like 

carbonyl group 

D’ 1614 sp3 23 245 Amorphous carbon 

structure 

2D 2698  175 1254 1st overtone of D1 

T
T

C
E

 p
u
ri

fi
ed

 

D 1336 sp2 188 5820 Disordered graphite 

D2 1508 sp3 62 488 Amorphous carbon 

structure 

G 1589 sp2 72 2868 Graphitic like 

carbonyl group 

2D 2685   451 1st overtone of D1 

 

All Raman spectra curves of the purified CNMs generated from heated solutions of an CH3CN 

feed containing 25, 33.3 and 50 vol.% TTCE are presented in Figure 6.37. A disorder-induced 

band (D-band), a graphitic band (G-band) and a second order 2D band were observed in the 

Raman spectra. A D-band was deconvoluted into one peak at ~ 1347, 1352 and 1344 cm–1 for 

solutions containing 25, 33.3 and 50 vol.% TTCE respectively, attributed to topological defects 

on the CNT walls due to substitution of carbon with nitrogen. A G-band was deconvoluted into 

two peaks, a D2-band at 1482, 1488 and 1472 cm–1 assigned to amorphous carbon structures and 

a G-band at 1577, 1579 and 1575 cm–1 due to a perfect graphitic plane for solutions containing 

25, 33.3 and 50 vol.% TTCE respectively. An intense 2D band was also observed at 2689, 2695 

and 2687 cm–1, suggesting that the materials were highly graphitic. The presence of a D + G 

band at 2908, 2923 and 2903 cm–1, shows characteristics of disturbed graphitic structures, as a 

result of functionalization with chlorine. An ID/IG value of 0.9, 0.9 and 0.7, for CNMs generated 

from feeds containing 25, 33.3 and 50 vol.%, suggesting that the materials obtained at low TTCE 

concentrations had similar graphitic natures. The highly graphitic materials were generated from 
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feeds containing high concentration of TTCE (50 vol.%). Small FWHM values of 74, 72, and 84  

cm–1 (average of D’ and G-band) suggest that the materials contained some amorphous carbon 

structures (Table 6.19). The Raman data is consistent with the TGA data since amorphous carbon 

structures were also detected from the TGA curves.     
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Figure 6.37 Raman spectra of purified CNTs generated from heated solutions of CH3CN:TTCE 

(100 °C) of various volume ratios.  
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(b) 
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Table 6.19 Raman bands of the purified chlorinated N-doped CNTs generated from various 

volume ratios of heated solutions of CH3CN containing various TTCE concentrations 

CH3CN:TTCE 

volume ratio 

(%) 

Band 

name 

Band 

Position 

(cm–1) 

Bond 

type 

FWHM 

(cm–1) 

Peak 

Area 

Designation 

7
5
:2

5
 

D 1347 sp2 113 78427 Disordered graphite 

D2 1482 sp3 80 18040 Amorphous carbon 

structure 

G 1577 sp2 67 68937 Graphitic like 

carbonyl group 

2D 2689  114 29998 1st overtone of D1 

D+G 2908  214 13841 2D overtone 

6
6
.7

:3
3
.3

  

D 1352 sp2 111 139335 Disordered graphite 

D2 1488 sp3 76 27481 Amorphous carbon 

structure 

G 1579 sp2 68 121571 Graphitic like 

carbonyl group 

2D 2695  142 30442 1st overtone of D1 

D+G 2923  180 17287 2D overtone 

5
0
:5

0
 

D 1344 sp2 77 60154 Disordered graphite 

D2 1472 sp3 111 17692 Amorphous carbon 

structure 

G 1575 sp2 58 66910 Graphitic like 

carbonyl group 

2D 2687  105 44496 1st overtone of D1 

D+G 2903  166 11298 2D overtone 

 

  

6.3.3.5 CN elemental analysis of the N-doped CNMs: Effect of TTCE concentration 

CN elemental analysis of the purified chlorine functionalized NCNMs obtained from heated 

solutions (100 °C) was also performed to quantify the amount of nitrogen in the carbon product 

(Table 6.20). The percentage of nitrogen inserted into the CNMs was found to increase with a 
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decrease in the amount of TTCE in the feed from the reagents with ratios of 50:50 to 66.7:33.3 

vol.% CH3CN:TTCE. The 33.3 vol.% TTCE concentration gave the maximum insertion of 

nitrogen onto the CNMs. These data agree with the Raman spectroscopy analysis recorded for 

these materials. Solutions containing low concentrations of chlorine resulted in an increase in the 

amount of nitrogen inserted into the CNMs since their percentage was higher than that of CNMs 

obtained from using only acetonitrile (Table 6.20). The amount of nitrogen inserted into the 

CNMs was reduced when high concentrations of chlorine were added into the feed. We conclude 

that chlorine aided in increasing the percentage of nitrogen into the CNMs but the amount of 

chlorine needs to be controlled to maximize this effect.  

 

Table 6.20 CN elemental analysis of the purified NCNTs and chlorine functionalized NCNMs 

Reagent Solvent 

Temperature/°C 

Atomic % C Atomic % N 

CH3CN 100 85.21 1.31 

CH3CN:TTCE 

(50:50) 

100 89.18 1.19 

CH3CN:TTCE 

(66.7:33.3) 

100 93.84 2.21 

CH3CN:TTCE(75:25) 100 89.54 1.45 

 

6.4 Conclusions 

The effect of chlorine on the morphology of the N-doped MWCNTs was evaluated using DCB 

and TTCE as chlorine sources by use of a bubbling CVD method over an Fe-Co/CaCO3 as a 

catalyst. Mixtures of bamboo compartmented CNTs, CNTs with intratubular junctions, carbon-

nano-onions and carbon nano-bells were observed from CH3CN feed solutions containing low 

concentrations of DCB. Increasing the concentration of DCB resulted in formation of hollow and 

bamboo-compartmented CNTs. A large increase in the amount of nitrogen doped into the CNTs 

was achieved at a high DCB concentrations, evidenced by a decrease in the outer diameters of N-

MWCNTs with an increase in the DCB concentration. Highly graphitic materials were produced 

at low concentrations of DCB (33.3 vol.%) as evidenced by the TGA, Raman and XPS data. N-
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MWCNTs that were thermally stable, had a small value of the ID/IG peak ratio and had graphitic 

N species dominating in their N1s XPS spectra were produced when low concentrations of DCB 

(33.3 vol.%) were used, as compared to N-MWCNTs obtained from pure CH3CN and high DCB 

(66.7 vol.%.) concentration. Post-doping of the N-MWCNTs with chlorine and of the chlorinated 

CNTs with nitrogen resulted in production of highly graphitic materials, as evidenced by the low 

ID/IG peak ratios obtained after post-doping. Carbon nano-onions were observed from NCNMs 

when TTCE was used as a source of chlorine. The formation of carbon nano-onions increased at 

a low TTCE concentration, which was attributed to greater incorporation of nitrogen into the 

CNMs. An increase in the TTCE concentration resulted in the formation of mixtures of carbon 

nano-onions and bamboo-compartmented carbon nano-bells. NCNMs generated from heated 

solutions of CH3CN and TTCE mixtures, resulted in formation of mixtures of CNMs, especially 

at high concentrations of TTCE. Selectivity was achieved at low concentrations (33.3 and 25 

vol.%) of TTCE. Hollow and bamboo-compartmented NCNTs were observed from 33.3 vol.% 

TTCE feed solutions and bamboo-compartmented carbon nano-bells with intratubular junctions 

were obtained from 25 vol.% TTCE solutions. NCNMs generated from 25 vol.% TTCE solutions 

were thermally stable, had little residual catalyst material, had a small narrow FWHM value for 

the C002 peak, and a small ID/IG peak ratio values, suggesting that the materials were highly 

graphitic. Chlorine functionalization of the CNTs with DCB gave selective CNMs as compared 

to when TTCE was used, where mixtures of CNMs were produced. Aromatic chlorinated organic 

compounds are better suited for use in studies of the effect of chlorine on the morphology of the 

CNMs than are aliphatic chlorinated organic compounds. Chlorinated NCNTs that contained 

smaller amounts of DCB (33.3 vol.%) can be used to enhance the electrical conductivity of 

NCNMs due to a better wetting with the electrolyte.42 This appears to be related to quaternary 

nitrogen being the dominant nitrogen species.    

Selective carbon nanomaterials were obtained for chlorinated NCNMs generated using an 

injection CVD method rather than when using the bubbling CVD method. 
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12. K.F. Ortega, R. Arrigo, B. Frank, R. Schlögl, and A. Trunschke, Chem. Mater., 2016, 28, 

6826−6839. 

13. V. A. Tur1, A. V. Okotrub, Yu. V. Shubin, B. V. Senkovskiy, and L. G. Bulusheva, Phys. 

Status Solidi B, 2014, 251, 2613–2619. 

14. K. Kakaei, M. Hamidi and S. Husseindoost, J. Colloid Int. Sci., 2016, 479, 121–126. 

15. H.L. Poh, P. Šimek, Z. Sofer and M. Pumera, Chem. Eur. J. 2013, 19, 2655–266. 

16. G-L. Tian, M-Q. Zhao, Q. Zhang, J-Q. Huang, and F. Wei, Carbon, 2012, 50, 5323-5330. 

17. D. Wei and Y. Liu, Adv. Mater., 2008, 20, 2815–2841. 

18. P.A. Hu, K. Xiao, Y.Q. Liu, G. Yu, X.B. Wang, L. Fu, G.L. Cui and D.B. Zhu, Appl. Phys. 

Lett., 2004, 84, 4932. 

19. K. Xiao, Y.Q. Liu, P.A. Hu, G. Yu, L. Fu, and D.B. Zhu, Appl. Phys. Lett., 2003, 83, 4824. 

20. Y. Chai, X.L. Zhou, P.J. Li, W.J. Zhang, and J.L. Wu, Nanotechnology, 2005, 16, 2134. 

https://onlinelibrary.wiley.com/doi/10.1002/aenm.201200038/abstract
https://espace.curtin.edu.au/bitstream/handle/20.500.11937/50850/248286.pdf?sequence=2


237 | P a g e  

 

21. K. Xiao, Y. Fu, Y.Q. Liu, G. Yu, J. Zhai, L. Jiang, W.P. Hu, Z.G. Shuai, Y. Luo and D.B. 

Zhu, Adv. Funct. Mater, 2007, 17, 2842. 

22. G.K. Goswami, R. Nandan, and K.K. Nanda, Carbon, 2013, 56, 97-102. 

23. P. Ghosh, M. Subramanian, R.A. Afre, M. Zamri, T. Soga, T. Jimbo, V. Filip, and M. 

Tanemura, Appl. Surf. Sci., 2009, 255, 4611–4615. 

24. C. He, N. Zhao, C. Shi, X. Du, J. Li, L. Cui and F. He, Scr. Mater., 2006, 54, 1739 – 1743. 

25. J. Zheng, T.C. Ekström, S.K. Gordeev and M. Jacob, J. Mater. Chem., 2000, 10, 1039–1041. 

26. L.M. Ombaka, P.G. Ndungu, B. Omondi, J.D. McGettrick, M.L. Davies and V.O. Nyamori, 

J. Solid State Chem., 2016, 235, 202–211. 

27. L.G. Bulusheva, A.V. Okotrub, A.G. Kudashov, N.F. Yudanov, E.M. Pazhetnov, A.I. 

Boronin, O.G. Abrosimov, and N.A. Rudina, Russ. J. Inorg. Chem., 2006, 51, 613–618. 

28. W.K. Maboya, N.J. Coville and S.D. Mhlanga, S. Afr. J. Chem., 2016, 69, 15–26. 

29. Z.N. Tetana, S.D. Mhlanga, G. Bepete, R.W.M. Krause, and N.J. Coville, S. Afr. J. Chem., 

2012, 65, 39–49. 

30. C. Yuan, W. Chen and L. Yan, J. Mater. Chem., 2012, 22, 7456–7460. 

31. S. Zhang, S. Tsuzuki, K. Ueno, K. Dokko and M. Watanabe, Angew. Chem. Int. Ed., 2015, 

54, 1302–1306. 

32. A. Cuesta, P. Dhamelincourt, J. Laureyns, A. Martinez-Alonso and J.M.D. Tascon, Carbon, 

1994, 32, 1523–1532. 

33. L. Bokobza, J.-L. Bruneel and M. Couzi, Carbon, 2015, 1, 77–94. 

34. M.I. Ionescu, Y. Zhang, R. Li, H. Abou-Rachid and X. Sun, Appl. Surf. Sci., 2012, 258, 

4563–4568. 

35. D. Goldberg, Y. Bando, L, Bourgeois, K. Kurashima, and T. Sato, Carbon, 2000, 38, 2017–

2027.  

36. Z. Czigany, IF. Brunell, J. Neidhardt, L. Hultman and K. Suenaga, Appl. Phys. Lett., 2001, 

79, 2639. 

37. W.Q. Han, P. Kohler-Redlich, T. Seeger, F. Ernst, M. Ruhle, N. Grobert, W.K. Hsu, B.H. 

Chang, Y.Q. Zhu, H.W. Kroto, M. Terrones and H. Terrones, Appl. Phys. Lett., 2000, 77, 

1807–1809. 

38. A.A. Deshmukh, S.D. Mhlanga, and N.J. Coville, Mater. Sci. Eng., R, 2010, 70, 1–28. 



238 | P a g e  

 

39. A. Hachimi, B. Merzougui, A. Hakeem, T. Laoui, G.M. Swain, Q. Chang, M. Shao, and 

M.A. Atieh, J. Nanomater., 2015, http://dx.doi.org/10.1155/2015/453725. 

40. Y.C, Chiang, W.-H. Lin, and Y.-C. Chang, Appl. Surf. Sci., 2011, 257, 2401–2410. 

41. C.T. Wirth, B.C. Bayer, A.D. Gamalski, S. Esconjaurequi, R.S. Weatherup, C. Ducati, C. 

Baehtz, J. Robertson, and S. Hofmann, Chem. Mater., 2012, 24, 4633–4640. 

42. I. Kunadian, S.M. Lipka, C.R. Swartz, D. Qian, and R. Andrews, J. Electrochem. Soc., 2009, 

156, K110eK115. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



239 | P a g e  

 

CHAPTER 7 

Fabrication of chlorine functionalized MWCNT/polyvinylpyrrolidone 

composite nanofiber mats by electrospinning for use in oil adsorption studies 

 

7.1 Introduction 

Materials play a key role in every field of technology with the aim of making our lives more 

comfortable. As technology advances there is a need to develop new materials with improved 

properties. In order to create new generation materials, it is necessary to understand the 

relationship between the existing materials and their structure. By combining appropriate 

materials, new desired properties can be achieved.1 Nanocomposites are made by placing a 

nanomaterial into a matrix, in order to introduce new functionalities into the matrix to harness 

new properties. A nanocomposite thus consists of a matrix to which nanoparticles (a filler) has 

been added to improve a particular property of the material. Polymer composites containing 

fillers such as carbon nanotubes (CNTs) have been studied.2-13 CNT/polymer nanocomposites are 

promising materials with excellent mechanical and physical properties, due to the extraordinary 

properties introduced by the CNTs coupled with easily tailored characteristics of polymers.14-23 

Polymer materials have properties such as low density, good insulation, flexibility and 

outstanding mechanical properties and they are cheap. CNTs possess high flexibility, low mass 

density, large aspects ratio, and extremely high tensile moduli and strength. CNT/polymer 

composites have been applied in various fields, namely in sensors,24-26 electromagnetic 

interference shielding,6,27 electronic packaging,28 aerospace technology,29 drug delivery,30 in 

filtration,31-36 as biomaterials for wound dressing,37 and for tissue engineering.38 Challenges still 

arise in the fabrication of CNT/polymer nanocomposites, such as lack of uniform dispersion of 

CNTs and orientation of nanotubes within the polymer matrix. The challenges arise due to the 

fact that (a) CNTs tend to aggregate to form tight bundles due to strong van der Waals 

interactions and their small size which leads to non-uniform dispersion39,40 and (b) the poor 

interfacial bonding of the CNTs with the polymer matrix which results in production of non-

oriented CNTs within the polymer.41,42 As a result of these problems, the mechanical and 

physical properties of the composite material can be considerably lower than expected. 
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Interaction between CNTs and polymers can be enhanced by functionalization of CNTs. 

Functionalization can create defects on the side walls,43,44 which decrease the Young’s modulus 

and strength of CNTs.45 CNT/polymer composites have been fabricated using solution casting,46 

melt processing,47 electrospinning48 and in-situ polymerization49 with the aim of 

deagglomerating the CNTs to realize a uniform dispersion inside the polymer matrix. It has been 

demonstrated that electrospinning is a potential method for aligning and debundling CNTs.50 

Electrospinning is a relatively low cost, fast and versatile method to produce continuous 

nanofibers mainly from polymer solutions. The resultant fibers have unique properties, namely, 

high surface area-to-volume ratio, small pore sizes, high porosity and the potential for controlled 

release of active materials.51,37 The principle of electrospinning operation involve the use of a 

high-voltage electrostatic field to draw a jet from a polymer solution. When this jet travels 

toward the collector electrode, the solvent evaporates and a polymer fiber is formed. 

Electrospinning is used to produce a conductive polymer by combining additives with a 

spinnable polymer.52 Factors that affects the electrospinning process and the nanofiber 

morphology are the structural properties of the polymer, polymer solution parameters, processing 

conditions and ambient parameters.6 Polymer concentration is one of the most significant 

parameter that affect the morphology of the nanofibers. At very low polymer concentration, the 

viscosity of the solution is low and not enough polymer entanglements occur for fiber formation, 

resulting in formation of particles due to instabilities a process called “electrospraying”. 

Electrospinning of low polymer concentration solutions can also result in formation of beaded 

fibers, due to low viscosity solution which possesses a low viscoelastic force which is not able to 

match the electrostatic and columbic repulsion forces that stretch the electrospinning jet. This 

causes the jet to break up.53 Electrospinning of a low 5 wt.% poly(vinylidene fluoride) (PVDF) 

solution resulted in formation of droplets. However, using a 10 and 15 wt.% PVDF solution 

resulted in formation of smooth fibers, with the fiber diameters increasing with an increase in 

polymer concentration.54 Highly concentrated solutions have been shown to produce more 

uniform fibers with fewer beads. The shape of the beads also changed from spherical to 

spindlelike when a polymer concentration increased.55 Very high polymer concentrations also 

produced flattened nanofibers with a ribbon shape, due to solvent evaporation which get reduced 

with higher solution viscosity, resulting in wet fibers that reach the collector and are flattened by 

the impact forming ribbon-like structures.56 A needle-tip to collector distance is another 
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parameter that greatly affects the shape of the fibers. An increase in nanofiber diameter was 

observed when a short needle-tip to collector distance ~ 8 cm was used, during electrospinning 

of TiO2/PVP nanofibers. A reduction in the nanofiber diameter was obtained by increasing the 

needle-tip to collector distance to 11 cm.57 Nanofibers produced from electrospinning 

polycaprolactone were found to decrease in diameter with an increase in needle-tip to collector 

distance to ~ 20 cm.58 As the distance increased the jet became more stretched, thereby reducing 

the jet diameter. This was attributed to lower electric field found for longer needle-tip to 

collector distance, which result in breaks in solution flow.58     

The feasibility of using an electrospinning method to embed CNTs into polymer nanofibers has 

been demonstrated by various authors. Ajayan et al. were the first to report polymer 

nanocomposites using CNTs as fillers.59 There have been numerous reports dedicated to the 

fabrication of polymer nanocomposites and the study of their mechanical, thermal and electrical 

properties. A series of polymers have been studied for their ability to suspend individual CNTs, 

namely polyvinyl alcohol (PVA),9 polyvinyl pyrrolidone (PVP),7 poly(ethylene oxide) (PEO),60 

polyacrylonitrile (PAN),61 polymethyl methacrylate (PMMA),62 polyurethane,63 

polycaprolactone,64 polycarbonate,65 nylon 6,6,66 polystyrene,67 to name a few. 

PVP was chosen in our study because it is an important synthetic polymer with good 

complexation and adhesion properties, excellent physiological compatibility, low chemical 

toxicity and reasonable solubility in water and most organic solvents. Blending of PVP with 

SWCNTs by electrospinning resulted in formation of nanofibers containing aligned individual 

SWCNTs.2 Addition of MWCNTs to PVP to form nanocomposite fibers resulted in an increased 

charge carrier concentration and polarizability, and reduction of the porosity of the electrospun 

fiber films.7 Highly dispersed MWCNTs/PVP composite nanofibers were synthesized by 

electrospinning and found to be used as an effective, light weight electromagnetic interference 

shielding material.6  

The need to provide clean water to communities, in both urban and rural arears is now a huge 

challenge. Clean water is essential for both human life and for our ecosystem. An increasing 

growth of population; rapid development of an economy and urbanization; as well as domestic, 

agricultural, environmental and climate change are great contributors to water pollution. About 3 
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billion people will be forced to survive under water scarcity by year 2025, as estimated by World 

Water Council.68 The increasing pressure on water scarcity issues requires cost-effective water 

treatment technologies to produce high-quality clean water. 69-71 

Polymeric membranes are currently the most widely used membrane type for water treatment. 

The polymers have straight pores, higher flexibility, small footprints required for installation and 

are of relatively low cost compared to their inorganic membrane equivalents.72 However, use of 

polymeric membranes is hindered by several challenges for example, low resistance to fouling 

and a trade-off relationship between permeability and selectivity.73 Development of cost-

effective and energy efficient membranes with good antifouling properties and high permeability 

and rejection is essential for water treatment. CNT-based composite membranes have been one 

popular type of separation membrane used for water treatment, since it combines the excellent 

performances of traditional membrane materials with those of CNTs.74  

Separation of oil and water is becoming more crucial due to oil spill accidents occurring during 

transportation, utilization, transfer and storage.75 Oily wastewaters are produced in many 

industries such as in the production of crude oil,76 lubricants,77 and in the metallurgical,78 

petroleum refinery,79 food80 and textile processing81 industries. This makes it one of the most 

common pollutant all over the world. Frequent oil spill accidents result in energy loss and waste 

of resources while posing long-term threats to the ecological environment on which our society 

depends.82-84 

Membrane technology has been proved to be one of the best methods for the separation of oil 

from oil-water mixtures.85 Membrane separation technology offers higher oil removal efficiency, 

stable effluent quality and a low energy cost making it one of the most effective ways to separate 

oil-water mixtures for a wide range of industrial effluents.86,87 Membrane filtration including 

microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF) has been applied widely for oil-

water treatment with distinct advantages of high quality water produced, low energy 

consumption and small footprint.88-90 The difficulty in using these membranes has resulted from 

the deformable nature of oil droplets, which renders the use of size exclusion separation 

ineffective for fully removing oil from water.84 CNTs are hydrophobic and have adequate 

adsorption site for oil molecules in water. Hence the use of CNTs incorporated into polymers to 
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make composite materials have been proposed as a way to make effective membranes to treat an 

oil-in-water emulsion.    

Most electrospun fibers used for oil-water separations have superhydrophobic/superoleophilic 

surface.85 Due to the hydrophobic properties of the surface, the separation membranes/sponges 

are unlikely to be contaminated by bacteria.85 CNT/PVP surface composite were fabricated by 

electrospinning and found to demonstrate high oil adsorption capabilities.91 Incorporation of 

MWCNTs into a PVA barrier layer was found to improve the water flux and showed a high 

rejection rate during separation of an oil/water emulsion.92   

 

7.2 Experimental 

A polyvinylpyrrolidone (PVP) powder with molecular weight of 40,000 g/mol, was supplied by 

Sigma Aldrich. Chlorine functionalized multi-walled carbon nanotubes (MWCNTs) were 

prepared in this study and purified by stirring in hot (110 °C) HNO3 for 24 h, washed with 

distilled water and dried in an oven for 12 h. The dichlorobenzene (DCB) that was used as 

chlorine source for the synthesis of MWCNTs was supplied by Sigma Aldrich. 

Dimethylformamide (DMF, Merck), and tetrahydrofuran (THF, Associated Chemical Enterprises 

(ACE)) were used to disperse the PVP and MWCNT/PVP compounds. Engine oil (Total SAE 40 

diesel and gasoline engine oil) was purchased from Builders Warehouse in South Africa. The 

mineral oil (Shell Spirax S2 ATF D2 power steering and hydraulic oil) was purchased from a 

Shell garage. Vegetable oil (Sunfoil, triple refined sunflower oil) was purchased from Pick ‘n 

Pay grocery store.  

 

7.2.1 Preparation of PVP and MWCNT/PVP composite nanofibers by electrospinning 

The optimization of the electrospinning parameters for PVP was first established. Solutions with 

various concentrations of PVP were prepared by dissolving appropriate amounts of PVP in a 1:1 

vol/vol (v/v) mixture of DMF and THF using a magnetic stirrer at room temperature for 12 h to 

form a homogeneous solution. Solutions with 30, 35, 40 and 45 wt.% PVP in DMF/THF were 

prepared. 
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A 40 wt.% PVP solution in DMF/THF (1:1) at room temperature was prepared. A homogeneous 

solution was obtained. Various concentrations of MWCNTs (0.4, 0.5, 0.6 and 0.7 wt.%) were 

then added to the PVP solution. The MWCNT/PVP solution was stirred using a magnetic stirrer 

at room temperature for 24 h to obtain a homogeneous suspension of CNTs in the PVP/solvent 

mixture.  

The prepared solutions were added to a 25 mL plastic syringe with a stainless steel needle that 

was connected to a power supply, which can generate DC voltages in the range of 0 to 30 kV. An 

electrospinning voltage of 15 kV was applied to the needle and the distance between the needle 

tip and the drum collector was set at 16 cm. The feed rate of the polymer solutions was set at 1 

mL/h and a take-up speed of 6.37 cm/min was selected to collect the electrospun composite 

nanofibers. A rotating drum covered with an aluminum foil was used as a nanofiber collector. 

The electrospinning set-up is presented in Figure 7.1. 

 

 
Figure 7.1 Electrospinning set-up used for fabrication of nanofibers. 

 

7.2.2 Adsorption experiments 

An MWCNT/PVP composite nanofiber membrane (of 1.5 mm thickness obtained after 

electrospinning for 16 h) was immersed in a 1 L water bath containing 20 ml of oil. The oil was 

suspended on top of the water. The electrospun composite membrane was placed on the surface 

of the water and allowed to move through the oil area. The electrospun membrane was left 
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immersed in the oil for 1 min. The membrane was then removed from the oil-water solution, held 

for about 60 s to allow the residual oil that is on the surface to drip away and the membrane was 

then weighed. In the second experiment, an electrospun membrane was immersed in 20 mL oil 

bath, for about 10 minutes. The residual oil on the membrane was then allowed to drip off for 60 

s and then the membrane was weighed. The sorption capacity of the CNT/PVP electrospun 

membrane was expressed in grams of the oil absorbed per gram of composite membrane (g/g): 

Qt = 
0

0

m

mmt                (1) 

where Qt (g/g) is the sorption capacity on the CNT/PVP composite at a certain time t(s), mt (g) is 

the weight of the CNT/PVP composite after adsorption and m0 (g) is the initial weight of the 

CNT/PVP composite. The sorption capacity reached a saturation value Qe, when Qt did not 

change with time. 

 

7.2.3 Characterization of the composite nanofibers 

The CNTs, PVP nanofibers and PVP/CNT composite nanofibers mats were characterized by 

scanning electron microscopy (SEM, FEI Nova NanoLab FIB/SEM), transmission electron 

microscopy (TEM, FEI TECNAI G2 SPIRIT), Raman (Jobin-Yvon T6400), X-Ray diffraction 

(D2 Bruker PXRD with a continuous scan mode using CuKα radiation), and Fourier transform 

infrared (FTIR) spectroscopy. BET surface areas and pore sizes of the chlorinated MWCNT and 

MWCNT/PVP composites were obtained through N2 adsorption using a ASAP 2000 

Micrometrics TriStar and Pore Analyzer.  
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7.3 Results and Discussion 

7.3.1. Study of the influence of electrospinning parameters on the morphology of PVP 

nanofibers 

Uniform spinning or ejection of the charged jet requires that the concentration, viscosity, 

conductivity and surface tension of the polymer solution be optimized. Therefore, prior to 

electrospinning, parameters that were used to produce CNT/polymer mats were optimized. These 

parameters included concentration, collector to needle distance, applied voltage and polymer 

solution feed rate.   

The effect of PVP polymer concentration on the morphology of the electrospun nanofibers was 

investigated using 30, 35, 40 and 45 wt.% PVP concentrations in a 1:1 v/v DMF:THF solvent 

mixture. SEM images of the electrospun mats are presented in Figure 7.2. The diameter 

distribution curves at all concentrations are presented in the Supplementary Section Figure S28.  

At 30 wt.% PVP, only about 4 cm of a 50 cm Al foil was covered with smooth nanofibers of 

large diameters ~ 879 nm (Figure 7.2a). At this concentration the solution viscosity was below 

the limit required for molecular entanglement and fiber formation.93 At 35 wt.% PVP 

concentration, the amount of nanofibers formed on the collector increased. Thin nanofibers with 

outer diameters of ~ 385 nm were obtained but they contained beads (Figure 7.2b). A 35 wt.% 

solution, generated jets with insufficient viscoelastic forces to fully suppress droplet breakup due 

to the Rayleigh instability to reduce surface area resulting in beads formation.94 Uniform smooth 

nanofibers with diameters of ~ 532 nm were produced when the PVP concentration was 

increased to 40 wt.% (Figure 7.2c). This is due to the increased solution conductivity which led 

to more charge density and more elongation forces imposed to the jet under the electric field.5 A 

further increase in PVP concentration to 45 wt.% resulted in the formation of nanofibers with 

very large diameters ~ 2078 nm (Figure 7.2d). Some nanofibers appeared branched and partially 

fused together, forming fiber doublets. The increase in polymer concentration caused the solvent 

to dry faster and thus less time was needed for the repulsive columbic force to stretch the fiber, 

resulting in formation of larger diameter fibers.95 
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Figure 7.2 SEM images obtained using various concentrations of PVP (a) 30, (b) 35, (c) 40 and 

(d) 45 wt.%. The fibers were electrospun from a 1:1 v/v DMF/THF solvent mixture (spinning 

conditions: voltage = 15 kV, distance = 16 cm and feed rate = 1 mL/h).  

 

Electrospinning parameters such as the applied voltage and the distance between the tip of the 

needle and the collector were also optimized.  

The distance between the needle tip and the collector was varied from 8 to 18 cm at an applied 

voltage of 15 kV and a feed rate of 1 mL/h. SEM images of the obtained nanofibers are 

presented in Figure 7.3. The average nanofiber diameter was found to be 1030, 992, 723, 523 

(a) 

(d) (c) 

(b) 
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and 711 nm for spinning distances of 8, 10, 12, 16 and 18 cm, respectively (Supplementary 

Figure S29). The fiber diameter decreased with an increase in the spinning distance from 1030 to 

523 nm but with improved uniformity. This was attributed to complete solvent evaporation, 

stretching and thinning of the jet which favored the formation of thinner fibers.96 At 8 cm 

distance, irregular beaded fibers with large diameters were obtained (Figure 7.3a). Increasing the 

distance to 10 cm resulted in the formation of smooth, non-beaded uniform fibers (Figure 7.3b). 

The electrospun mat at a 10 cm distance had holes with no fibers, which showed that at some 

stage the fiber did not have enough time to solidify before reaching the collector (Figure 7.3b). 

At a 12 cm distance smooth, curved, large nanofibers with non-uniform diameters were obtained 

(Figure 7.3c). Curved nanofibers are obtained if the nanofibers cannot be fully stretched under 

the electrospinning conditions, i.e. under the applied electric force8. Increasing the distance to 16 

cm resulted in the production of thinner fibers which appeared more regular and uniformly 

distributed (Figure 7.3d). A further increase in the distance to 18 cm resulted in formation of 

beaded fibers with large diameters. The 16 cm spinning distance was then chosen as the distance 

to be used in further optimization studies, since it gave smooth thin fibers without beads.   

Nanofibers were then electrospun by varying the applied voltage from 11 to 17 kV at a tip to 

collector distance of 16 cm and a feed rate of 1mL/h. The diameter distributions are presented in 

Supplementary Figure S30. At 11 kV, non-uniform branched fibers with very large diameters 

(1381 nm) were obtained (Figure 7.4a). This was attributed to the voltage not being high enough 

to produce a stable jet. Applying a voltage of 13 kV, resulted in a reduction in the diameter of the 

electrospun fibers to 958 nm, but the fibers still appeared non-uniform with some of them 

curving or bending (Figure 7.4b). Increasing the applied voltage further to 15 kV resulted in 

production of more uniform, regular, smooth fibers with small diameters ~ 523 nm (Figure 7.4c). 

A further increase in voltage to 17 kV, resulted in formation of uniform fibers but with large 

diameters (1184 nm) (Figure 7.4d). This is possibly a result of the stability of the jet due to 

increased charge density on the surface of the jet, polymer jet velocity and polymer strands 

elongation forces.97,98 Hence, a 15 kV applied voltage was chosen as the optimum voltage to 

study the effect of MWCNT concentration of the morphology of electrospun MWCNT/PVP 

nanofiber composites. 

 



249 | P a g e  

 

  

  

 
Figure 7.3 SEM images of electrospun nanofibers prepared from 40 wt.% PVP in a mixture of 

DMF:THF (1:1v/v) applying the voltage of 15 kV at (a) 8, (b) 10, (c) 12, (d) 16 and (e) 18 cm 

collector distances.  

(a) (b) 

(c) (d) 

(e) 
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Figure 7.4 SEM images of electrospun nanofibers prepared from 40 wt.% PVP in a mixture of 

DMF:THF (1:1 v/v) using a 16 cm needle to collector distance at an applied voltage of (a) 11, (b) 

13, (c) 15 and (d) 17 kV.  

 

7.3.2 Effect of the MWCNT content on the morphology of the electrospun PVP nanofibers 

The concentration of chlorine functionalized MWCNTs was varied from 0.4 to 1 wt.% to obtain 

the critical viscosity/concentration required to prepare electrospun MWCNTs/PVP solutions. 

Addition of 0.4 wt.% MWCNTs into the PVP solution resulted in formation of smooth 

nanofibers of variable diameters with an average diameter of 1828 nm (Figure 7.5a). A PVP 

solution containing 0.5 wt.% MWCNTs produced nanofibers with highly reduced average 

(a) (b) 

(c) (d) 
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diameters of 402 nm (Figure 7.5b). A further increase in CNT concentration to 0.6 wt.% resulted 

in formation of curved smooth nanofibers with largely increased average diameter of 2486 nm 

(Figure 7.5c). A reduction in the average diameter to ~ 1203 nm, was observed again for 

composites generated from a solution containing 0.7 wt.% of CNTs (Figure 7.5d). CNTs with 1 

wt.% concentration could not be dispersed in the solvent mixture, they were insoluble. As a 

result, we could only electrospin solutions up to 0.7 wt.%. The diameter distribution curves are 

presented in Supplementary Figure S31. As a result, a 0.5wt.% MWCNT concentration was 

chosen as an optimum as it gave smooth, uniform thin fibers and was used in further studies.  

Electrospinning parameters such as feed rate and voltage were also evaluated for a PVP solution 

containing 0.5 wt.% CNTs at a spinning distance of 16 cm. At 11 kV beaded curved nanofibers 

with large diameters (2429 nm) were obtained (Figure 7.6a). Fiber breakage was also observed 

from the solutions electrospun at an applied voltage of 11 kV (Figure 7.5a circled parts). At a 

low applied voltage there is a decrease in the concentration of water vapor molecules in the 

atmosphere (low humidity environments) which result in a decreased amount of electrostatic 

discharge leading to higher charge density on the jet causing fiber breakage.94 At 13 kV the size 

and amount of beads on the nanofibers were greatly reduced due to the increased charge density, 

but the nanofiber diameter was still large at ~1943 nm. The number of nanofiber breakages were 

also reduced at 13 kV. At a 15 kV applied voltage smooth, thin, more uniform nanofibers with an 

average diameter of 402 nm were obtained. Increasing the voltage further to 17 kV resulted in 

formation of non-uniform branched nanofiber doublets with a very large average diameters of ~ 

2293 nm. The formation of branches in jets and fibers occurs with more concentrated and 

viscous solutions and unusually high electric fields are used.99 If the excess charge density on the 

surface of the jet was high undulations are predicted to form on the surface of a cylindrical jet. 

These undulations grow large enough to become unstable and initiate branches which grow 

outward from the primary jet.99 The diameter distribution curves showing the average diameters 

of the electrospun nanofibers are presented in Supplementary Figure S32. 
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Figure 7.5 SEM images of nanofibers prepared from 40 wt.% PVP containing (a) 0.4 wt.% (b) 

0.5 wt.%, (c) 0.6 wt.% and 0.7 wt.% MWCNTs, electrospun from a mixture of DMF:THF (1:1 

v/v) at 15 kV, 16 cm and 1 mL/h applied voltage, collector distance and feed rate.  

 

The average diameter of the MWCNTs/PVP nanofibers increased with an increase in the 

solution feed rate from 402 to 1142 nm for a 1 mL/h to 2 mL/h feed rates, but decreased slightly 

to 996 nm for a 3mL/h feed rate (Supplementary Figure S33 and Figure 7.7). Zong et al. found 

that low solution feed rates produced fibers with smaller diameters, while relatively large fiber 

diameters were observed in fibers spun from a higher solution feed rate.30 They reasoned that 

since the droplet suspended at the end of the spinneret becomes larger when a higher feed rate is 

(a) (b) 

(c) (d) 
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used, the solution jet can carry the fluid away with faster velocity. Therefore, the electrospun 

fibers may not be completely dry when they reach the target.30  

 

  

  

Figure 7.6 SEM images of electrospun nanofibers prepared from 40 wt.% PVP_0.5 wt.% 

MWCNTs in a mixture of DMF:THF (1:1 v/v) at 16 cm collector distance and an applied voltage 

of (a) 11, (b) 13, (c) 15 and (d) 17 kV.  

(a) (b) 

(c) (d) 
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Figure 7.7 SEM images of electrospun nanofibers prepared from 40 wt.% PVP_0.5 wt.% 

MWCNTs in a mixture of DMF:THF (1:1) at 16 cm and 15 kV, collector distance and applied 

voltage at various injection flow rates (a) 1, (b) 2, and (c) 3 mL/hr.  

 

7.3.2.1 X-ray diffraction, FTIR spectroscopy and TEM analysis of the materials 

The physical states of the MWCNTs in the composite nanofibers was determined from XRD 

patterns. An XRD pattern of the purified MWCNTs, pure PVP and MWCNT/PVP composite 

nanofibers are presented in Figure 7.8. Purified MWCNTs exhibit peaks at 2θ = 26°, 44.7° and 

53.8°, corresponding to graphite 002, 100 and 004 reflections. Additional peaks assigned to Fe3C 

were also observed at 2θ = 32°, and 37°. PVP nanofibers exhibited only two broad peaks at 11.7° 

(a) (b) 

(c) 
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and 21.2°, in good agreement with the literature.6 An XRD pattern of a PVP/MWCNT-0.5 wt.% 

composite nanofibers showed all the peaks that were observed from pure PVP and a small 

graphitic peak at 2θ = 26° which was also observed in the diffractogram of purified MWCNTs. 

The absence of other peaks observed from the diffractogram of the purified MWCNTs and the 

reduction in intensity of the C002 peak are correlated with the MWCNT/PVP composite 

formation. These results are similar to those obtained in the literature for other MWCNT/PVP 

composite nanofibers.6    
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Figure 7.8 XRD patterns of purified MWCNTs, pure PVP and PVP/MWCNT-0.5 wt.% 

composite nanofibers electrospun from a 1:1 v/v DMF/THF solvent mixture.  

 

FTIR spectra of the purified MWCNTs revealed bands at 1539, 1716, 2328 and 2896 cm–1 

assigned to C=C stretching in aromatics, presence of C=O group in carboxylic acids, C–OH 

stretches associated with hydrogen bonding due to oxygen containing groups, and asymmetric 

C–H stretching modes (Figure 7.9). FTIR spectra analysis of PVP before and after addition of 

0.5 wt.% MWCNTs is shown in Figure 7.9. Peaks located at 2918, 1654, 1425 and 1290 cm–1 

were found in the FTIR spectrum of PVP and can be assigned to C–H, C=O, C=C and C–N 
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vibrations respectively (Figure 7.9). FTIR spectra of the MWCNT/PVP composite showed 

additional peaks at 3435, 2891, and 1020 cm–1 assigned to an O–H stretch of the hydroxyl group, 

asymmetric and symmetric C–H and R–OH groups respectively (Figure 7.11c). The shift in the 

absorption band from 1654 cm–1 for PVP to 1651 cm–1 for PVP/CNT composite suggests the 

presence of molecular interactions between CNTs and PVP.9,100      
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Figure 7.9 FTIR spectra of purified MWCNTs, pure PVP and PVP/MWCNT-0.5 wt.% 

composite nanofibers electrospun from a 1:1 v/v DMF/THF solvent mixture.  

  

TEM analysis of the composite fibers, prepared by dispersing the nanofibers in ethanol showed 

only CNTs with an average outer diameters of ~ 48 nm (Figure 7.10). The absence of PVP fibers 

could be due to the fact that PVP is soluble in ethanol. In order to observe MWCNTs inside the 

PVP nanofiber one has to directly electrospun the cmposite onto a copper grid and do solid 

TEM. The analysis will be done later since at the moment we could not access solid TEM.  
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Figure 7.10 TEM image of PVP/MWCNT-0.5 wt.% composite nanofibers electrospun from a 

1:1 v/v DMF/THF solvent mixture.  

 

7.3.3 Oil adsorption capacity of the MWCNT/PVP composite nanofibers 

The densities and viscosities of the studied oils are presented in Table 7.1. The MWCNT/PVP 

composite nanofiber membrane used in this study was electrospun for 16 h. The dimensions of 

the composites were 300 mm long, 247 mm wide and 1.5 mm thick. The BET surface area of the 

MWCNT/PVP composite was 0.1811 m2/g while that of acid treated MWCNTs was 59.5 m2/g. 

The average pore size of the MWCNT/PVP composite was 275 nm, that of purified MWCNTs 

was 19.5 nm. The oil adsorption capacity of MWCNT/PVP composite nanofibers was tested 

using engine, mineral and vegetable oil by either immersing the composite membrane in an oil-

water emulsion or in pure oil. For adsorption performed with engine oil-water solutions, 

MWCNT/PVP composites demonstrated high adsorption capacities of 11 to 16 times their own 

weight (Figure 7.11). A high adsorption was achieved within 30 s. The MWCNT/PVP composite 

maintained its shape and size even after 90 minutes of oil adsorption (Figure 7.12).  

Adsorption of mineral oil by the composite showed increased adsorption of oil from 12 to 13.49 

g/g for a 30 s to 60 s adsorption time (Figure 7.11). The adsorption capacity then decreased from 
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11 to 4.05 with an increase in adsorption time from 120 s to 1200 s (Figure 7.11). Pictures of the 

MWCNT/PVP composite after 1 min and 10 min mineral oil adsorption shows that the 

composite decreased in size and changed shape after 1 min of oil adsorption (Figure 7.12 c and 

d). The decrease in size of the adsorbent can be attributed to leaching of PVP into water leaving 

only MWCNTs. The MWCNT/composite mat was not well suspended in an oil-water mixture 

because of a high density of the mineral oil. The composite was found to be suspended between 

the oil and water in the mixture, which resulted in PVP leaching into water, since PVP is highly 

soluble in water. For vegetable oil adsorption, the PVP leached out into solution immediately 

after the composite was added to an oil-water mixture, CNTs were observed floating on top of 

the mixture (Figure 7.12e). This was a result of a very high density of vegetable oil which is 

closer to that of water.    

In order to establish the equilibrium time for maximum uptake of oil, pure oil was used and the 

amount of oil adsorbed on the MWCNT/PVP membrane was studied as a function of contact 

time. The relationship between the amount of oil adsorbed per gram of adsorbent Qt as a function 

of time is plotted in Figure 7.11. The amount of oil adsorbed increased with an increase in the 

contact time. The rate of oil uptake was rapid at the beginning, and continued until saturation 

was reached when no more oil adsorption occurred as all the pores have been utilized. 

 

Table 7.1 Physical properties of the oils and organic reagents used in this study. 

Oil Density (g.mL-1) Dynamic viscosity (cP) @ 20 ° C 

Diesel and gasoline engine oil 0.79 345 

Mineral oil 0.88 129.8 

Vegetable oil 0.94 51.1 

DMF 0.95 0.92 

Ethyl alcohol 0.79 1.095 

Hexane 0.66 0.297 

 



259 | P a g e  

 

0 1000 2000 3000 4000 5000 6000

12

14

16

Q
t 

(g
.g

-1
)

Time (s)
 

0 200 400 600 800 1000 1200

4

6

8

10

12

14

Q
t 
(g

.g
-1
)

t (s)
 

Figure 7.11 Adsorption curves of (a) engine oil, and (b) mineral oil in oil-water mixture oil, 

using CNT/PVP composite membranes as adsorbents. 

 

   

  

Figure 7.12 Snapshots showing oil adsorption of the CNT/PVP composite in an oil-water 

mixture (a) before oil adsorption, (b) after 4 min of engine oil adsorption, (c) after 1 min and (d) 

after 10 min of mineral oil adsorption and (e) after 1 s of dropping the composite in water 

containing vegetable oil. 

 

(a) (b) 

(a) (b) (c) 

(d) (e) 
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For adsorption experiments performed in pure oil, MWCNT/PVP composites demonstrated high 

adsorption capacities for all studied oils. Adsorption capacities of 15–20, 14–17 and 10–15 times 

their own weight were observed for engine oil, mineral oil and vegetable oil, respectively (Figure 

7.13). The time to reach an equilibrium was greatly reduced for low viscosity oils as they can 

penetrate much more easily through the web-like structure of the MWCNT/PVP composite 

nanofibers. The saturated oil adsorption capacity was similar to that of MWCNT/PVP (where 

CNTs were attached to the outer layer of PVP fiber) composite used in the literature (~ 18 – 20 

g/g or 0.9 – 1.1 g/cm3).85  
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Figure 7.13 Adsorption curves of pure (a) engine oil, (b) mineral oil and (c) vegetable oil using 

CNT/PVP composite membranes as adsorbents. 
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The rate of oil adsorption could not be measured using selected organic reagents. For example, 

the use of low viscosity solutions like ethyl alcohol and DMF resulted in mat disappearance, due 

to the dissolution of the PVP nanofibers. CNTs remained floating inside the solvents. No 

dissolution of PVP was observed in a low viscosity, low density hexane, but the mat was greatly 

wetted and it tore into pieces during pick up. The adsorption capacity of the MWCNT/PVP 

composite in hexane was only 8.5 times the weight of the composite before adsorption. The 

adsorption capacity was half the adsorption capacity of the studied oils, which shows that 

viscosity and density of oils plays a crucial role in their adsorption by the composite nanofiber 

membranes. Larger Q values were observed for higher density liquids during adsorption of 

various oils and organic solvents by the CNT sponge.101           

The sorption kinetics was described using the pseudo-second-order models. This considers the 

rate-limiting step as the formation of chemisorptive bond involving sharing or exchange of 

electrons between the adsorbate and the adsorbent.102 

t
qqkq

t

eet

.
11

2

2

           (2) 

where qt is the amount of oil removed at time t (g/g), qe is the adsorption capacity at equilibrium 

(g/g), t is the contact time (min) and k2 is the pseudo-second-order rate constant of adsorption. 

The parameters qe and k2 can be estimated from the slope and intercept, respectively of a plot of 

t/qt versus t103,104. 

The oil adsorption of surface composites was well fitted by Eq. (2) (Table 7.2). The rate constant 

and the equilibrium adsorption capacity of different oils were obtained from the intercept and 

slope of a t/qt versus t plot (Supplementary Figure S34). The rate constant calculated from the 

best fit lines (with R = 0.99 in all cases) were 0.0374, 0.154 and 0.1334 g.g–1.min–1 for engine, 

mineral and vegetable oil respectively, for adsorption experiments performed in pure oil (Table 

7.2). A rate constant of 0.123 g.g–1.min–1 was observed for adsorption of engine oil from oil-

water solutions (Table 7.2). The electrospun membrane prepared in this work is highly effective 

for oil spill cleanups of low density oils that occur in oil-water solutions. The composite 

membranes are also effective for adsorption of the studied low density oils for land oil spills (as 

long as the oils are not immersed in water). Nan et al. reported rate constants for adsorption of 
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oil by a MWCNT/PVP composite, of 12.61 s–1 (0.757 min–1 for engine oil), 1.04 s–1 (0.0624 min–

1 for mineral oil) and 6.52 s–1 (0.391 min–1 for vegetable oil).91 The sorption capacities obtained 

from the slope of the linearized equation (2) were 15.92, 16.67 and 15.13 g.g–1 for engine, 

mineral and vegetable oil (Table 7.4), which are in good agreement with the experimental data 

obtained in this study.     

 

Table 7.2 Adsorption constant and saturation sorption capacity of MWCNT/PVP composite 

membrane for various oils 

Oil type k (g.g–1.min–1) R2 Qt (g.g–1) 

Gasoline and diesel 

oil 

0.123 (oil-water mixture) 

0.0374 (oil only) 

0.999 

0.997 

15.92 

20.19 

Mineral oil 0.154 (oil only) 1.00 16.84 

Vegetable oil 0.1334 (oil only) 1.00 15.13 

 

 

7.4 Conclusion 

The synthesis of MWCNT/PVP composite nanofibers was successful. Studies showed that the 

presence of chlorine and secondary CNTs on the surface of the MWCNTs greatly enhanced their 

interaction with PVP matrix. This was shown by a huge decrease in the 2θ degree peak at 26 ° 

from XRD patterns and a shift in the absorption band at 1654 cm–1 for PVP to 1651 cm–1 for 

MWCNT/PVP composites, suggesting the presence of molecular interactions between PVP and 

MWCNTs. A CNT concentration of 0.5 wt.% added to the PVP solution was chosen as the 

optimum to be used in further studies since it gave uniform nanofibers with small diameters. The 

MWCNT/PVP composite showed high oil adsorption capacities of ~ 15 to 20 g.g–1. The 

adsorption capability of the composite for various oils and organic solvents was found to depend 

on their viscosity. High viscosity solvents were easily adsorbed, but the rate of adsorption could 

not be measured for very low viscosity solvents as the MWCNT/PVP composite was dismantled 

due to dissolution of PVP fibers in the solvents. Best fit linearized plots were obtained for all 

studied oils and the data was used to obtain the rate constant and the equilibrium adsorption 
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capacity. A good correlation between the equilibrium adsorption capacity obtained from the 

linearized equation (2) with the experimental data was obtained.         
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CHAPTER 8 

Summary of Conclusions and recommendations 

 

The synthesis of chlorinated MWCNTs and chlorinated N-MWCNTs was achieved by means of 

a fixed-bed CVD method using various chlorinated organic solvents as sources of chlorine and 

acetonitrile as a source of nitrogen over an Fe-Co/CaCO3 catalyst. The morphology of the 

synthesized carbon materials and composites were confirmed by various characterization 

techniques such as SEM, TEM, TGA, XRD, BET, XPS, FTIR and Raman spectroscopy.  

The number of chlorine atoms substituted on the organic compound had a huge effect on the 

morphology, yield, diameter, and quality of the MWCNTs produced. XPS analysis confirmed 

that functionalization of carbon from MWCNTs with chlorine was successful. The average outer 

diameters and inner diameters of the MWCNTs increased with an increase in the amount of 

chlorine atoms substituted on the organic compound. CNFs, CNTs, CNTs with secondary 

growth, and hollow CNTs were produced when DCE, CB, DCB and TCE, TCB and TTCE were 

used as chlorine sources, respectively. About 10 and 40 % of the CNTs generated from TCE and 

DCB respectively showed secondary growth on top of the MWCNTs. Raman spectroscopy 

showed that the materials contained defects, due to the creation of new sp3 C–Cl bonds. CNTs 

that had secondary growth were highly disordered. Alkanes gave cleaner CNMs with higher 

yields than those formed from the aromatic reactants. 

Growth of secondary carbon nanostructures on the surface of the primary CNTs was investigated 

by varying the reaction time and temperature using DCB as a chlorine source. DCB was chosen 

since from our previous study, it produced an appreciable quantity of CNTs with secondary 

growth. The graphitic nature, structure, yield of the CNTs and the formation of secondary CNFs 

on the surface of the main CNTs were affected by the growth time and temperature. Longer 

synthesis times resulted in formation of highly graphitic CNTs of high purity with no secondary 

CNF growth and with less defects. The largest number of secondary CNFs were observed at a 90 

min reaction time at 700 °C. The average diameters of the CNTs increased with an increase in 

temperature due to catalyst sintering. Small catalyst particles were formed at lower temperatures 
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and large catalyst particles were formed at higher temperatures. The presence of secondary CNFs 

induced defects and disorders in the materials produced as evidenced by the Raman spectral 

analysis. Growth of the CNTs was greatly reduced at high temperatures. Poisoning of the CNT 

surface by iron carbides was observed with an increase in reaction temperature due to increased 

formation of chlorine in the reactor.  

Synthesis of chlorine-functionalized nitrogen-doped MWCNTs by injection CVD over a Fe-

Co/CaCO3 was successful. DCB was found to be an excellent chlorine source that led to 

formation of large amounts of CNTs. Chlorine influenced the morphology, length, yield and 

outer diameter of the N-doped MWCNTs. A limited quantity of rod-shaped MWCNTs were 

obtained when CH3CN was used alone as a feed. Horn-, straw- and pencil-shaped N-MWCNTs 

and CNFs were obtained by varying the amount of DCB in the feed. TGA, Raman and XPS 

analysis showed that an increase in the amount of DCB in the feed to 66.7 vol.% resulted in 

formation of CNTs with large defects, due to an increase in the concentration of nitrogen 

incorporated into the CNT walls. TGA and XPS analysis also confirmed the presence of chloride 

ions on the surface of the CNTs bound to metal ions. Covalent functionalization of carbon with 

chlorine was also confirmed by Raman and XPS analysis. Addition of chlorine favored 

formation of graphitic nitrogen atoms, but the amount of chlorine in the feed has to be controlled. 

Highly graphitic carbon materials were produced at low (33.3 vol.%) and high (80 vol.%) DCB 

concentrations. TTCE was found to be a poor chlorine source to make N-doped MWCNTs, and 

resulted in the production of very little product. The carbon materials produced mostly contained 

lumps of carbon platelets.   

Synthesis of chlorine-functionalized N-doped MWCNTs by a bubbling CVD method was also 

successful.  DCB and TTCE were used as chlorine sources and acetonitrile as a nitrogen source. 

The morphology of the CNMs depended on the amount of chlorine in the feed. Bamboo-

compartmented CNTs and CNTs with intratubular junctions were obtained from solutions 

containing at a low concentration of DCB (33.3 vol.%). Hollow and bamboo-compartmented 

CNTs were obtained from solutions containing a high concentration of DCB (66.7 vol.%). A 

large increase in the amount of nitrogen atoms doped into the CNTs was achieved at low DCB 

concentration, evidenced by a decrease in the outer diameters of the N-MWCNTs with an 

increase in DCB concentration. Highly graphitic materials were produced after post-doping of N-
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MWCNTs with chlorine and of the chlorinated MWCNTs with nitrogen. Highly graphitic 

materials were produced at a low concentration of DCB (33.3 vol.%) as evidenced by TGA, 

Raman and XPS analysis. Thermally stable CNTs with a smaller value of the ID/IG peak ratio, 

which had graphitic N species dominant in the N1s XPS spectra were observed at a low 

concentration of DCB. Carbon nano-onions were formed when TTCE was used as a source of 

chlorine. The formation of carbon nano-onions increased at low TTCE concentrations, which 

was attributed to greater incorporation of nitrogen into the CNMs. Increase in the TTCE 

concentration resulted in mixtures of carbon nano-onions and bamboo-compartmented carbon 

nano-bells. NCNMs generated from heated solutions of CH3CN and TTCE resulted in formation 

of mixtures of CNMs, especially at high concentrations of TTCE. Selectivity was achieved at 

low concentrations (33.3 and 25 vol.%) of TTCE. CNTs were produced when DCB was used as 

a source of chlorine while mixtures of CNMs were produced when TTCE was used. Aromatic 

chlorinated organic compounds rather than aliphatic chlorinated organic compounds are better 

suited for use in studies in which the effect of chlorine on the morphology of CNMs is studied.  

An MWCNT/PVP composite membrane was successfully synthesized. XRD and FTIR studies 

showed that the MWCNTs were embedded inside the PVP matrix. The MWCNT/PVP composite 

membrane is capable of adsorbing oil from land or oil-water mixtures. High adsorption 

capacities of 15 – 20 g/g were achieved. The adsorption capability of the composite membrane 

depended on the viscosity of the solvents or oils. 

The dependence of the adsorption capability of the MWCNT/PVP composite membrane 

synthesized in this study on the viscosity of the solvents, limits its use for the adsorption of 

various solvents and oils. This is mainly attributed to the ability of PVP to dissolve in low 

viscosity solvents like water.  

PVP is indeed a pore former and easily biodegradable, and this warrants its use in these types of 

applications. It is therefore recommended that PVP must be cross-linked with other chemicals 

like glutaraldehyde, maleic acid, etc., together with MWCNTs in order to make them water 

resistant.  

Chlorine functionalized CNTs that contains secondary CNFs on their surface can be used as 

nanoscale templates in various applications, since in this applications materials that form high 



274 | P a g e  

 

density network structures with chemically connected CNTs are required. Chlorinated NCNTs 

can be applied in electronics to enhance their field emission properties as they are open-ended. 

The chlorinated NCNTs can also be applied in water treatment as magnets to attract metal 

pollutants, by first filling them with magnetic metal nanoparticles to render them magnetic.    
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Appendix A: Supplementary Materials 
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Figure S1 TEM images of CNMs generated from dichloroethane as a chlorine source, varying 

the flow rate of nitrogen and acetylene. 

 

240 N2, 90 C2H2 240 N2, 90 C2H2 

230 N2, 100 C2H2 230 N2, 100 C2H2 
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Figure S2 TEM images of CNMs generated from dichloroethane as a chlorine source, varying 

the flow rate of nitrogen and acetylene. 

 

180 N2, 150 C2H2 180 N2, 150 C2H2 

330 N2 330 N2 



278 | P a g e  

 

  
Figure S3 TEM images of CNMs generated from dichloroethane as a chlorine source, varying 

the flow rate of nitrogen and acetylene. 

 

 

Figure S4 Secondary growth on TEM images of MWCNTs generated using dichlorobenzene 

(DCB) as chlorine source. 

280 N2, 50 C2H2 280 N2, 50 C2H2 
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Figure S5 TEM images of segmented CNF generated using dichloroethane (DCE) as chlorine 

source.  
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Figure S6 TGA and corresponding derivative profiles of the un-purified MWCNT samples 

produced using chlorinated benzenes (a and b) and ethanes (c and d) as chlorine sources. 
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Figure S7 TGA and corresponding derivative profiles of the purified MWCNT samples 

produced using chlorobenzene (CB) at different acid treatment times.  
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Figure S8 Deconvoluted C 1s and Cl 2p XPS spectra of the purified MWCNT samples produced 

using chlorobenzene (a and b), dichlorobenzene (c and d) and trichlorobenzene (e and f).  
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Figure S9 Deconvoluted C 1s and Cl 2p XPS spectra of the purified MWCNT samples produced 

using dichloroethane (a and b), trichloroethane (c and d) and tetrachloroethane (e and f). 
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Figure S10 SEM images of purified CNTs generated using DCB at a 90 s reaction time and 

reaction temperatures of (a) 600 °C, (b) 650 °C, (c) 700 °C and (d) 750 °C. 

(a) 

(d) (c) 

(b) 
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Figure S11 Diameter distribution curves of purified CNTs generated from DCB at various 

synthesis temperatures for 90 min. 
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Figure S12 SEM images of purified CNTs generated from a 33:3:66.6 vol.% of CH3CN:DCB 

synthesized by a CVD injection method at the following reaction conditions: 0.24 mL/min, 800 

°C, 1 h, 240 mL/min N2, and 90 mL/min C2H2. 

(a) 

(d) (c) 

(b) 
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Figure S13 XPS spectra of purified chlorine functionalized and nitrogen doped CNTs generated 

from DCB and CH3CN. 
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Figure S14 C 1s XPS spectra of purified CNTs generated from (a) pure CH3CN, (b) pure DCB, 

and various volume ratios (c) 66.7:33.3 (d) 33.3:66.3 and (e) 20:80 vol.% of CH3CN:DCB 

synthesized by CVD injection at 0.24 mL/min. 
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Figure S15 XPS spectra of purified chlorine functionalized nitrogen doped CNTs generated 

from CH3CN:DCB solvent mixtures of various volume ratios. 
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Figure S16 C 1s XPS spectra of chlorinated CNTs generated from DCB by bubbling CVD 

method.   
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Figure S17 XPS spectra of chlorinated N-doped CNTs generated from various CH3CN:DCB 

solvent mixture by bubbling CVD method.   
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Figure S18 C 1s XPS spectra of chlorinated N-doped CNTs generated from (a) 66.7:33.3 and (b) 

33.3:66.7 vol.% CH3CN:DCB solvent mixture by bubbling CVD method.   

(a) (b) 
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Figure S19 SEM images of CNMs generated from room temperature solutions of TTCE by a 

bubbling CVD method 

  

Figure S20 SEM images of CNMs generated from room temperature solution mixtures of 

CH3CN:TTCE (75:25 vol.%)  by a bubbling CVD method 

 

(a) (b) 

(a) (b) 
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Figure S21 SEM images of CNMs generated from room temperature solution mixtures of 

CH3CN:TTCE (66.7:33.3 vol.%)  by a bubbling CVD method 

   

Figure S22 SEM images of CNMs generated from room temperature solution mixtures of 

CH3CN:TTCE (66.7:33.3 vol.%)  by a bubbling CVD method 

(a) (b) 

(a) (b) 
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Figure S23 SEM images of N-doped CNMs generated from heated solutions of CH3CN (90 °C). 

[N2 = 240 mL/min, C2H2 = 90 mL/min, t = 1h and temperature = 800 °C). 
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Figure S24 SEM images of chlorinated CNMs generated from heated solution of TTCE (100 

°C). [N2 = 240 mL/min, C2H2 = 90 mL/min, t = 1h and temperature = 800 °C)  

 

 

 

 

(a) 

(d) (c) 

(b) 
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Figure S25 TEM images of purified CNMs generated from a 75:25 volume ratio of heated 

CH3CN:TTCE (heated at 100 °C).  

 

 

 

(a) 

(d) (c) 

(b) 
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Figure S26 TEM images of purified CNMs generated from a 66.7:33.3 volume ratio of heated 

CH3CN:TTCE (heated at 100 °C).  

 

 

(a) 

(d) (c) 

(b) 
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Figure S27 TEM images of purified CNMs generated from a 50:50 volume ratio of heated 

CH3CN:TTCE (heated at 100 °C).  
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Figure S28 Diameter distribution curves of PVP nanofibers of various concentrations (a) 30 

wt.%, (b) 35 wt.%, (c) 40 wt.% and (d) 45 wt.% electrospun from a (1:1 v/v) DMF/THF solvent 

mixture. 
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Figure S29 Diameter distribution curves of 40 wt.% PVP nanofibers electrospun at various 

needle tip to collector distance (a) 8 cm, (b) 10 cm, (c) 12 cm and (d) 18 cm using a (1:1 v/v) 

DMF/THF solvent mixture. 
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(d) (c) 

(b) 



300 | P a g e  

 

1000 2000 3000 4000 5000 6000 7000
0

2

4

6

8

10

12

14

16
P

e
r
c

e
n

t 
d

is
tr

ib
u

ti
o

n
 (

%
)

Diameter (nm)

Average diameter = 1381 ± 3.2 nm 

 

800 1000 1200 1400
0

2

4

6

8

10

12

14

16

18

P
e

r
c

e
n

t 
d

is
tr

ib
u

ti
o

n
 (

%
)

Diameter (nm)

Average diameter = 958 ± 5.4 nm 

 

600 800 1000 1200 1400 1600 1800 2000 2200
0

2

4

6

8

10

12

14

16

18

P
e
r
c

e
n

t
 d

is
t
r
ib

u
t
io

n
 (

%
)

Diameter (nm)

Average diameter = 1184 ± 4.5 nm 

 

Figure S30 Diameter distribution curves of 40 wt.% PVP nanofibers electrospun by varying the 

applied voltage (a) 11 kV, (b) 13 kV, and (c) 17 kV using a (1:1 v/v) DMF/THF solvent mixture. 
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Figure S31 Diameter distribution curves of nanofibers prepared from 40 wt.% PVP containing 

(a) 0.4 wt.% (b) 0.5 wt.%, (c) 0.6 wt.% and 0.7 wt.% MWCNTs, electrospun from a mixture of 

DMF/THF (1:1 v/v) at 15 kV, 16 cm and 1 mL/h applied voltage, collector distance and feed rate 

(a) 

(d) (c) 

(b) 
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Figure S32 Diameter distribution curve of a PVP/MWCNT-0.5 wt.% composite nanofibers 

electrospun by varying the applied voltage (a) 11 kV, (b) 13 kV, and (c) 17 kV using a (1:1 v/v) 

DMF/THF solvent mixture. 
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Figure S33 Diameter distribution curve of a PVP/MWCNT-0.5 wt.% composite nanofibers 

electrospun by varying the feed rate (a) 2 mL/h, and (b) 3 mL/h. 
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Figure S34 Second-order kinetic model for adsorption of (a) engine oil in oil-water emulsions, 

(b) pure engine oil, (c) pure mineral oil and (d) pure vegetable oil by MWCNT/PVP composite 

membrane.   
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