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ABSTRACT 

 

 

The Crocodile River East in Mpumalanga Province, South Africa, has seen three 

major floods in a twenty-four-month period, specifically January 2011, January 

2012 and January 2013. The damage included the loss of life, damage and/or loss 

of public or private properties, agricultural land loss, and damage to biodiversity 

and river geomorphology.  

 

The purpose of this study was to understand the consequences and risks to 

livelihoods and river basin systems due to flooding of the river. The study focused 

on a segment of the Crocodile River East, between Riverside and Tekwane.   

 

The study used historic hydro-climatic data for the Crocodile River to determine 

the critical threshold for past flood events and to predict the extent of future flood 

events. Hydrological modelling coupled with the HEC-RAS hydraulic model 

enabled the simulation of these future flood events. The use of orthophotos and 

digital elevation models (DEMs) allowed for a spatial representation of the areas 

affected during the flood events. Flood hazard maps and flood risk maps were then 

developed for the identified flood events within a Geographical Information System 

(GIS). The maps enabled the identification of high risk and flood prone areas along 

this segment of the Crocodile River Basin.  

 

The results showed that when discharge reaches 241.75 m3/s, both locations 

(Riverside and Tekwane) are at risk to flooding. This is therefore the threshold for 

which the two locations are likely to be flooded.  

 

This study provides a methodology to determine the spatial extent of past and 

modelled future river flood events. As such, outcomes of this study may aid in the 

understanding of flood hazard extent and flood prone areas, and may thus help 

catchment management authorities and institutions in flood reconstruction and 

flood risk management. The employed methodology can aid effective spatial 

planning, and can also be extended at the basin scale through integration with the 

existent flood warning system to gain an estimate of flood extent and flood risk.  
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CHAPTER 1 - INTRODUCTION 

 
 

1. INTRODUCTION 

 

Within the next 50 years, the number of people facing water stress will increase 

dramatically (Arnell, 2004). This is because economic development, human 

settlement patterns, population distribution and infrastructure requirements are 

drawn to places where fresh water resources are abundant. However, freshwater 

ecosystems, especially river systems, have experienced rapid degradation due to 

the past century of water resources development and are particularly vulnerable to 

the added effects of climate change (Palmer et al., 2008; Pittock et al., 2008; 

Vorosmarty et al., 2010).  

 

Freshwater ecosystems in Africa are at risk from anthropogenic land use change, 

over-extraction of water and diversions from rivers and lakes, and increased 

pollution and sedimentation loading in water bodies (Vörösmarty et al., 2005; Vié 

et al., 2009; Darwall et al., 2011). Climate change is also beginning to affect 

freshwater ecosystems (Niang et al., 2014). Small variations in climate can cause 

wide fluctuations in the thermal dynamics of freshwaters (Odada et al., 2006; 

Stenuite et al., 2007; Verburg and Hecky, 2009; Moss, 2010; Olaka et al., 2010), 

seasonal flow, and climate extremes (i.e. floods and droughts).  

 

There are numerous factors that result in the fluctuation of hydrological systems. 

These include changes in weather patterns, land use and agricultural practices, 

infrastructure developments along the river basin, surface and groundwater 

dynamics, temperature variability and evaporation, as well as changes in the 

intensity and frequency of rainfall. The inter-connected nature of hydrological 

systems results in a cause and effect relationship between the fore-mentioned 

factors. For example, impacts of land use practices on surface water can be divided 

into (i) impacts on the overall water availability or the mean annual runoff, and (ii) 

impacts on the seasonal distribution of water availability (such as impacts on peak 

flows) (Kiersch, 2001). 
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According to the 2014 IPCC Africa Report (Niang et al., 2014), the weather patterns 

on the African continent are predicted to become more variable, with extreme 

events becoming more frequent and severe. This includes an increase in inland 

flooding, as well as the inundation of coastal areas due to sea-level rise. Future 

precipitation projections show changes in the scale of the rainfall probability 

distribution, indicating that extremes of both signs may become more frequent in 

the future (Kay and Washington, 2008). Climate extremes are attributed to 

changes in relative humidity and increased global mean temperature, which affects 

parameters such as wind velocities, soil moisture and erosion, vegetation cover 

and precipitation patterns; these factors ultimately influence the occurrence of 

floods, hurricanes, droughts, storms and landslides.   

 

In recent years, there has been a significant increase in floods around the world, 

in both developed and developing countries. Not only the frequency, but the 

severity of floods has increased to such an extent that 100-year floods are 

becoming annual occurrences (UNISDR, 2004; Wisner et al., 2004; Shamaoma et 

al., 2006; Alho et al., 2008; Klijn, 2009). There has also been an increase in the 

number of El Niño-related high rainfall events, coastal inundation, and storm 

surges. Changes in tropical cyclone landfall from the southwest Indian Ocean have 

resulted in intense floods in Eastern Africa during the 20th Century (Kay and 

Washington, 2008). 

 

As a result of changing weather patterns, people, assets and river basin 

characteristics will be exposed to water-related disasters at an increasing rate. This 

is of concern as development strategies are currently not able to counter current 

climate risks. There is increased knowledge of maladaptation risks from narrowly 

conceived development interventions and sectoral adaptation strategies that 

decrease resilience in other sectors or ecosystems. Given multiple uncertainties in 

the African context, successful adaptation will depend on building resilience (Niang 

et al., 2014).  

 

Therefore, in order to understand the risks to human livelihood and river basin 

characteristics that may be caused by flood events, this study focuses on providing 

a spatial representation that identifies flood prone areas along the Crocodile River 

Basin in Mpumalanga Province, South Africa. The approach taken in this study is 
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to initially define the flood risk paradigm and the climate change impacts on water 

resources. By using historic hydro-climate data and future rainfall projections, 

future hydrological scenarios were created and used to predict possible future flood 

events. The use of the HEC-RAS hydraulic model allowed for the spatial 

distribution of previous and predicted flood events to be simulated. Flood maps 

were then created within a Geographical Information System (GIS) for each of the 

studied future flood events. This enabled the identification of areas at risk during 

flooding of the Crocodile River Basin under certain future climatic scenarios.  

 

The outcomes of this study may be valuable to catchment management authorities 

and institutions for decision making processes such as identifying possible flood 

extent and flood prone areas.  

 

1.1 Problem Statement 

 

A high proportion of people have settled on or near river banks. This is because 

water resources provide drinking water, and allow for the development of essential 

products and services such as agriculture, energy and transportation. This growth 

in population and settlements has resulted in the development and growth of urban 

and rural centres along river banks, and ultimately floodplains.  

 

Naturally occurring rainfall events in the lowlands may be augmented by human 

interventions in the floodplains, such as road and river embankments (Kiersch, 

2001). Highly populated floodplains are potentially dangerous to occupants during 

flood events, and can result in a loss of life and infrastructure. In order to minimise 

the risk to formal and informal settlements, current and future spatial and land-use 

planning should be informed by effective flood hazard assessment and flood zone 

planning. It is essential to steer developments and critical infrastructure away from 

hazard-prone areas through better land use planning and zoning (Asian 

Development Bank, 2013). 

 

Flood events can have disastrous impacts in developing countries, which is mainly 

due to inadequate flood adaptation capacity. The consequential damages may 

include loss of life and public or private properties, agricultural land loss, and 

economic or monetary loss due to the shutdown of business and industry (Khan 
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and Igbal, 2012). In Pakistan, the major source of frequent flooding is the Indus 

River system that comprises the major rivers of Pakistan (Khan and Igbal, 2012). 

It is reported that in Asia between 1996 and 2005, 472 flood-disasters killed 42,570 

people and affected 1.3 billion people, resulting in economic losses estimated at 

USD$ 129 billion (Satterthwaite, 2007). Similarly, over the same period, there were 

290 flood-disasters in Africa alone, which left 8,183 people dead and 23 million 

people affected, resulting in economic losses of USD$ 1.9 billion (Musungu et al., 

2012).  

 

According to Midgley et al. (2005), floods are a major natural hazard in South 

Africa. Climate change could cause floods to increase due to fewer but more 

severe rainfall events (Midgley et al., 2005). According to the Southern Africa Risk 

and Vulnerability Atlas (2011), climate change is likely to alter the magnitude, 

timing, and distribution of storms that produce flood events. Therefore, an 

increasing occupancy of floodplains and river banks may increase the risk of, 

damage and loss of life caused by flood events.  

 

In South Africa, the principal state organisation, the Department of Water and 

Sanitation (DWS), is responsible for water resource management, planning, and 

guidance for water-related events including flooding. Local scale water 

management is performed by catchment management agencies (CMAs), which 

often have constraints such as large management areas and not enough 

resources. Thus, flood mapping is currently limited to historical maps created from 

previous flood events. Rural and sparsely located areas that are not considered as 

economic hubs or development zones are even more neglected, although some of 

these areas are prone to flood hazards and are highly influenced by flood events. 

These areas have even fewer flood assessments, flood maps, records of data and 

land-use change, and spatial planning systems.  

 

In the recent past, the Crocodile River East in Mpumalanga Province has seen 

three major floods in a twenty-four-month period, in January 2011, January 2012 

and in January 2013. The frequent flood events can be attributed to rainfall events 

from Indian Ocean cyclones that result in larger than usual volumes of water 

flowing into the river. This caused flooding of parts of the river basin, with 

associated erosion, loss of life and damage to infrastructure. Under climate 
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change, similar flood events are likely. Understanding the spatial distribution of 

past flood events and projected future flood events is, therefore, the focus of this 

research.  

 

1.2 Research Question, Aims and Objectives 

 

The main objective of this research was to assess the spatial distribution of 

previous flood events along the Crocodile River Basin, to predict how future flood 

events are likely to be distributed, and to provide a spatial representation of flood-

prone areas along the river basin.  

 

1.2.1 Research Question 

 

The research project was framed by the following research question:  

What is the spatial extent of historic flood events on the Crocodile River Basin 

and which areas along the river banks are most at risk during future flood events 

of varying magnitudes?  

 

1.2.2 Research Aims 

 

Based on the above research question, this project had the following aims: 

 

Aim 1: To evaluate the extent of previous flood events and identify the 

characteristics of the rainfalls that caused them. 

Aim 2: To determine how these previous flood events have affected the 

Crocodile River Basin (e.g. impacts on settlements, human and physical 

characteristics).   

Aim 3: To develop discharge and water level scenarios for possible future flood 

events for the Crocodile River, based on these historical events. 

Aim 4: To develop flood maps for these future scenarios that identify flood-prone 

areas along the Crocodile River Basin.  

Aim 5: To determine how future flood events are likely to affect the settlement 

patterns, human and physical characteristics of the Crocodile River Basin.  
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1.2.3 Research Objectives 

 

In order to reach the above-mentioned research aims, the following research 

objectives have been set: 

 

Objective 1: Conducting a high-level assessment of flood reports that highlight 

the flood events and flood prone areas over a 10-year period (August 2004 - 

April 2014).  (This objective is linked to Research Aim 1) 

Objective 2: Using the identified flood events and the discharge and water levels 

associated with these events to define the several characteristics of floods in 

the Crocodile River. (This objective is linked to Research Aim 1)  

Objective 3: Creating flood maps of the Crocodile River Basin for these previous 

flood events. (This objective is linked to Research Aim 2) 

Objective 4: Defining discharge and water level scenarios for possible future 

flood events for the Crocodile River, in the context of climate change. (This 

objective is linked to Research Aim 3) 

Objective 5: Creating flood maps of the Crocodile River Basin for possible future 

flood events of various magnitudes. (This objective is linked to Research Aim 4) 

Objective 6: Highlighting specific high-risk areas on the flood map by conducting 

a high-level spatial risk assessment of the Crocodile River Basin. (This objective 

is linked to Research Aim 5) 

This research may be valuable in increasing knowledge of flood risk assessment, 

projecting future flood events under climate variability, predicting flood prone areas 

and guiding planning and decision making.  

 

1.3 Research Methodology  

 

This research was aimed at understanding flood events over the previous decade 

(2004 to 2014), the spatial distribution of flood events, as well as understanding 

the potential risk to the Crocodile River Basin under scenarios of increased rainfall. 

A graphical representation of the methodology that was used to meet the aims of 

this research is provided in Figure 1.1.  
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The historic rainfall and hydrological data for the Crocodile River Basin over the 

last decade (2004 to 2014) were sourced from the Hydrological Information System 

(HIS), a database belonging to the Department of Water and Sanitation (DWS), 

and analysed. In parallel, a review of written records of flood events on the river 

was used to identify and assess previous flood events over the last decade. The 

rainfall and hydrological characteristics of the identified past flood events were then 

assessed.  These data, together with spatial data (i.e. topographic data), were then 

used as input data for hydraulic modelling, which was used to simulate the spatial 

distribution of these past flood events. For future flood events, current rainfall and 

hydrological data, as well as future climate projections, were used to create future 

hydrological scenarios. This was based on a rainfall-runoff assessment of the past 

data. The projected hydrological data, together with the spatial data that represent 

the river basin characteristics, were then used as input data for hydraulic modelling. 

This enabled the simulation of the spatial extent of future scenarios of flood events.  

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Flowchart Representation of the Methodology used in this Study 

 

The use of orthophotos and digital elevation models (DEMs) allowed for spatial 

representation of flood extent during individual flood events. Flood hazard maps 

were then developed for the identified flood events. The flood hazard maps, 

together with detailed topography and other spatial data (e.g. land-use), were used 
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to develop flood risk maps for each of the identified flood events along the 

Crocodile River Basin. 

 

The study focused on a 30 km segment of the Crocodile River East, between 

Riverside and Tekwane. This research did not take into account all natural 

processes affecting the catchment such as landslides or geology, but instead 

focused mainly on rainfall and runoff variability. A detailed analysis of the social 

characteristics of the basin was also not conducted with respect to vulnerability. 

These analyses require a wider and more complex framework, which was beyond 

the scope of this research.  

 

Lastly, although data were available for more than 10 years for some gauging and 

weather stations (as illustrated in Chapter 4), the limited written records of flood 

events on the river made it difficult to analyse previous floods events. Therefore, a 

more recent time period was selected (i.e. 2004 to 2014) as this would enable a 

comparison and analysis between flood records and the hydro-climatic data.  

 

1.4 Structure of Dissertation  

 

Following this introductory chapter (Chapter 1), the remainder of this research will 

consists of eight chapters. 

 

Chapter 2 provides the theoretical framework for the research project. This 

includes an investigation into different types of floods, focusing primarily on river 

floods, the flood risk framework, as well as the flood risk assessment framework. 

A description of the uses of hydraulic modelling and GIS for flood risk mapping is 

conducted. In addition, the climate change implications on flooding in South Africa, 

particularly the Mpumalanga province, will be explored. 

 

In Chapter 3, an overview of various characteristics that influence flooding on the 

Crocodile River Basin is provided. This includes a description of the topography, 

geology, soils, ecology, land-use types and settlement patterns. In addition, the 

climatic and hydrological properties of the basin are discussed.  
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Chapter 4 provides a description of data acquisition, analysis and processing for 

the rainfall, hydrological characteristics (namely discharge and water levels), land-

use characteristics and topography (i.e. DEMs). This includes an assessment of 

the decadal trend in rainfall experienced at weather stations in the Inkomati-Usuthu 

Water Management Area (WMA), as well as the runoff (i.e. discharge and water 

levels) readings at gauging stations along the Crocodile River. In addition, a 

description of the analytical approaches and software that were used to collect and 

analyse the data and the quality of the data is provided.  

 

Chapter 5 provides an assessment of historic flood events. Two flood events are 

discussed, and their associated rainfall and hydrological characteristics are 

analysed. In addition, a brief description of the impacts of the floods is provided.  

 

Chapter 6 provides an estimate of future flood events through the development of 

hydrological and flood scenarios. In addition, a brief description of the methodology 

employed for estimating flood events is provided.  

 

Chapter 7 provides flood extent maps for the identified past and future flood events. 

This is based on the use of a hydraulic model and GIS to provide a spatial 

representation of the extent of the two previous flood events. The flood maps 

highlight flood prone areas along the Crocodile River. 

 

Chapter 8 contains a discussion of the results and highlights the findings from the 

research. This discussion is focused on the flood risk maps of the locations along 

the segment of the Crocodile River.  

 

In Chapter 9, the conclusions of the research are provided. The chapter also 

includes the limitations to the study, including data accuracy and completeness, 

and the availability of high-resolution DEMs. In addition, recommendations are 

made for aspects to be considered for further research. 

 

Lastly, several appendices have been provided. The appendices provide additional 

information that supports the material provided in this dissertation.  
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CHAPTER 2 - LITERATURE REVIEW 

 

 

2. LITERATURE REVIEW 

 

2.1 Introduction 

 

Floods are natural phenomena that are defined as the temporary inundation of 

normally dry land areas resulting from overflowing of the natural or artificial 

confines of a river or other body of water, including groundwater (Wisner et al., 

2004; Martini and Loat, 2007; EC, 2009a; Klijn, 2009). Hydrologists define floods 

as a peak in the water level due to an increase in discharge (Els, 2011). Nurritasari 

et al. (2015) defines floods as water inundation over the sub-catchment caused by 

overflowed water. The inundated water will recede through run off to a lower area 

or channel (Nurritasari et al., 2015). 

 

As stated by Eleutério (2012), floods are one of the most damaging natural events 

in the world. Statistics show a continuous increase of hydrological disaster events 

since 1980. In 2008, the Munich Re’s database documented 750 loss events, with 

292 of which being floods and landslides (Taubenböck et al., 2011). The most 

adverse consequence of flooding is the impact on human health, resulting in 

psychological problems, injuries and loss of human life. There is also an additional 

loss of goods and disruption of activities and infrastructure as well as ecosystems 

and environmental issues which indirectly impact human livelihoods. Although 

floods are often viewed as negative and disastrous events, in some cases floods 

can generate benefits, such as in the case of the Nile floods that resulted in the 

fertilisation of floodplains (Eleutério, 2012).  

 

Climate change and urbanization are arguably the most dramatic driving forces of 

global change. The combination of a climatologically driven increase of natural 

hazards, uncontrolled urban sprawl and changing urban patterns results in an 

increasing risk of flood events. Growing population trends, particularly in urban 

areas, imply a dimension of quantitative growth, a high concentration of people, 

and urban sprawl into potentially hazardous locations, such as mountain slopes or 

river floodplains. This high pressure on urban space and, hence, fast and 
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uncontrolled spatial growth and densification, creates settlements in inappropriate 

areas most likely to be exposed to natural hazards (Taubenböck et al., 2011). 

 

2.2 Flood Typology 

 

The flooding phenomenon is defined by meteorological, hydrological and 

landscape parameters; a flood event is thus caused by several factors, individually 

or in combination, that promote the difference between events in different contexts 

(Eleutério, 2012). Floods can be described according to the water source (origin), 

the geography of receiving area, the cause and the speed of onset. The water 

source of floods can originate from the ocean (coastal floods), rivers (fluvial floods), 

from underground (groundwater floods) and from rain (pluvial floods) (EC, 2009b; 

Klijn, 2009). The various types of floods are described in more detail in Table 2.1. 

 

Table 2.1: Flood Typology  

Pluvial floods 

 

Pluvial floods are caused by high to extreme rainfall that leads to the accumulation of rain water in low-

lying (relatively flat) areas. These floods have a slow onset and can be forecast days ahead, although 

they can cause major damage, especially in urban areas, but rarely with fatalities (Klijn, 2009). In addition 

to pluvial floods, the limited or poor drainage of rain water in urban environments can lead to an increase 

in flooded areas even during normal rainfall periods. 

Riverine (fluvial) floods 

 

Riverine (fluvial) floods occur when the rate of rainfall exceeds the maximum capacity for storm water 

drains to remove the water and/or the maximum capacity for the surface to absorb water is exceeded 

(Vogel and Mgquba, 2004). Put differently, fluvial floods occur when the rainfall that is often transformed 

into runoff and can normally be removed by the drainage systems, remains on the impervious surface 

and flows as overland flow into topographic or local depressions to create temporary ponds (Els, 2011). 

The flood onset is sometimes slow, and the river flow exceeds the carrying capacity of the river, causing 

water to over flow onto the flood plains. This type of flood is often characterised by slow velocities and 

large inundated areas (Klijn, 2009). This type of event is the most devastating of all the different types of 

floods due to the high flow, as well as the number of people and aspects exposed to it. 

Flash floods (or fast floods) 

 

Flash floods (or fast floods) are caused by continuous rainfall in the same areas, or by intense rainfall 

over a short time period. This type of flood occurs mainly in mountainous or hilly locations, when excessive 

rainfall occurs at the upper reaches of the river, or in urban areas where anthropogenic surfaces cannot 

absorb the surface water. The floods form when rainfall falls too fast or too abundantly for the ground to 

absorb it. The high velocity and debris load of flash floods (Martini and Loat, 2007; Wright, 2008) often 

results in high fatalities and severe damages (Klijn, 2009). The difficulty in forecasting them make early 

warning and evacuation very difficult (Bunn and Arthington, 2002). 

Coastal (marine) floods 

 

Coastal (marine) floods are caused by coastal storms or large waves caused by physical earth processes 

such as tsunamis. This type of flood affects large areas and causes huge losses in human life and 

livelihoods, as the flooding is accompanied by waves, high velocity water and floating debris that result 

in beach erosion and extensive damage to infrastructure along the coast (Wright, 2008). The onset of 

coastal storms can usually be forecast between days to a few hours ahead (Klijn, 2009) while possible 

storm surges can occur within four to eight hours after the storm has started (Wright, 2008). 

Groundwater floods (seepage 

 

Groundwater floods (seepage) are caused by water rising to the ground surface due to a high water table 

(Klijn, 2009). This type of flood has a slow onset, and is formed during periods where the soil is saturated 

by water. 
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2.2.1 Flood Prone Areas 

 

Environments that are vulnerable to floods include alluvial fans, low-lying inland 

shorelines, low-lying deltas, coasts and low-lying parts of major floodplains (Smith, 

2004). Flood prone areas can be defined as the areas that are vulnerable to floods 

along a river, and can be either a floodway or a floodplain (Els, 2011), as illustrated 

in Figure 2.1.  

 

Figure 2.1: A floodway within a floodplain (FEMA, 2006) 

 

A floodplain represents all areas surrounding the river channel that can be 

inundated during the occurrence of a flood (FEMA, 2008; Wright, 2008). The 

probability of floods decreases as the slope of the floodplain increases (Alexander, 

2000). Floodplains are, therefore “flood-prone” and are hazardous to development 

activities if the vulnerability of those activities exceeds an acceptable level of 

sustainable water resource use within the catchment (Penning-Rowsell, 1996).  

 

A floodway is the minimum area within a floodplain that is required to provide 

sufficient passage for a given volume of water during periods of high rainfall that 

cause river basins to over flow, or during flood events. The floodway can be 

differentiated from the floodplain by its deep water level, high flow velocity and 

containing turbulent and sediment rich flow, which often causes erosion (Els, 

2011). No development should take place in the floodway and only critical 

infrastructure such as bridges should be allowed within it (UNISDR, 2004; Wright, 

2008).  

 

2.2.2 Flood Frequency  

 

Flood frequency analysis is used to determine the probability of the occurrence of 

a flood event of a particular magnitude. Flood lines are an indication of the water 
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level of a flood with a specified annual exceedance probability (Alexander, 2000). 

A flood line is shown as a line on a spatial representation (e.g. map, drawing) where 

the water surface level intersects with the land surface. It depicts water levels likely 

to be reached by a flood that is predicted to recur after a certain time-period. 

 

The recurrence interval is based on the inverse of the probability that the given 

flood event will occur once or more in any given year (Baer, 2008; Wright, 2008; 

Haarhoff and Cassa, 2009; USGS, 2009). Therefore, the recurrence interval is a 

statistical average for annual recurrence and not the number of years between 

flood occurrences of the same magnitude (Wright, 2008; Haarhoff and Cassa, 

2009; NOAA, 2009). For example a 50 year flood has a 1/50 (0.02) or 2% chance 

of being exceeded in any one year, and does not mean that a 50 year flood will 

happen only once in 50 years. 

 

 

       
 
 
 
 
 
 
 
 
 

Figure 2.2: Flood lines with different return periods (10-, 25- and 100-year 

flood lines) on a floodplain (Wright, 2008). 

 

2.3 Causes of Floods 

 

According to Smith (2004), the two most significant types of physical causes of 

flood include environmental hazards such as catchment characteristics (e.g. 

vegetation, slopes and soil types) and atmospheric hazards (e.g. rainfall intensity 

or duration) that creates a large amount of rainfall. In addition, causes of floods 

can also include catastrophic events such as dam burst or the effect of volcanic 

eruptions (Alexander, 1995), as well as tropical depressions, hurricanes and heavy 

rainfall from monsoons (Koutroulis and Tsanis, 2010), and technical related 

aspects such as poor storm water drainage system or channels that are not 

River 
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optimised for high water levels. The severity of floods, on the other hand, is 

influenced by four factors, which include antecedent catchment status of moisture, 

catchment processes, fixed catchment characteristics and rainfall characteristics 

(Alexander, 2000).  

 Antecedent moisture status is based on the moisture saturation of the 

catchment soil or groundwater immediately before the start of rainfall that 

produces floods.  
 

 Catchment processes include channel storage, pondage storage and the 

rate of potential infiltration (Hewitt, 1997). Channel storage is the proportion 

of the overland flow which is necessary for the flood passage in the system. 

Pondage storage is the proportion of the overland flow that is trapped in 

pools that are caused by unevenness of the ground surface.  
 

 Fixed catchment characteristics include land cover, shape, slope and 

catchment size (Alexander, 2000), geology and soils.  
 

 Rainfall characteristics include the direction of rainfall, intensity of rainfall 

and the duration of rainfall.  

 

2.3.1 Weather Systems  

 

Meteorological causes of floods include snowmelt, rain, combined rain and melt, 

and ice melt. Coastal storm surges and estuarine interactions between stream flow 

and tidal conditions also entail partly meteorological causes (Alexander, 2000).  

The meteorological processes that are mainly responsible for flooding in South 

Africa are discussed in Table 2.2.  

 

Table 2.2: Meteorological Processes responsible for Floods in South Africa   

Mid-latitude cyclone 

 

A mid-latitude cyclone is a low pressure system that develops in the mid-latitudes and moves in an easterly 

direction. They occur together with cold fronts that create a cold mass of air in front of warmer air 

(Alexander, 2000; Tyson and Preston-Whyte, 2000; Halloway et al., 2010; CSAG, 2011). This moving mass 

of warm air forces cold air to rise, causing a very unstable atmosphere, resulting in rain (Alexander, 2000; 

Tyson and Preston-Whyte, 2000; Haarhoff and Cassa, 2009; Halloway et al., 2010; CSAG, 2011). Cyclones 

are mostly responsible for winter rainfall in the Western Cape and are associated with gale force winds and 

snow on high-lying areas (Alexander, 2000; Tyson and Preston-Whyte, 2000; Halloway et al., 2010; CSAG, 

2011). In May 2010, a mid-cyclone passing through Cape Town resulted in flooding (Halloway et al., 2010).  

Cut-off low pressure systems 

 

Most of the major floods in South Africa are caused by cut-off low pressure systems. A cut-off low is a mid-

latitude cyclone that becomes detached from the main circulation or pressure wave. In South Africa, a cut-

off low detaches from a westerly pressure wave to the south and rotates off independently (Alexander, 

2000; Tyson and Preston-Whyte, 2000; Halloway et al., 2010). A cut-off low can remain stationary for days 
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as it loses all momentum during the detachment from the westerly flow. The instability and strong 

convection updrafts associated with cut-off lows cause severe weather conditions (e.g. heavy rainfall, 

strong winds, and snow across mountains) (Alexander, 2000; Tyson and Preston-Whyte, 2000; Halloway 

et al., 2010). Examples of floods that were caused by cut-off low pressure systems are the 1968 flood in 

Port Elizabeth, the 1970 flood in East London, the 1981 flood in Laingsburg, as well as the 2007 and 2008 

floods in the Western Cape (Halloway et al., 2010). 

Convective storm 

 

A convective storm is formed when air moves upward due to the heating of the earth surface and the lower 

atmosphere. These storms occur mostly in the summer when the surface temperatures are high and more 

often inland than in the coastal areas, due to the cooling effects of the ocean (Halloway et al., 2010). It 

seldom causes major floods but these can occur (Alexander, 2000). Convective storms often occur with 

other severe weather conditions (e.g. lightning, hailstorms, and tornadoes) (McKnight and Hess, 2007), 

and are common to the Highveld in South Africa during the summer season. Such weather systems can be 

the cause of localised flooding, particularly in urban areas with low surface permeability. For example, the 

2009 flood in Gauteng was caused by a convective storm. 

Tropical cyclones 

 

Tropical cyclones have a closed low pressure circulation with a pressure gradient that increases from the 

centre to the periphery of the system (Tyson and Preston-Whyte, 2000; CSAG, 2011). Tropical cyclones 

are formed from small clusters of convection clouds over the tropics and energy from high sea surface 

temperatures (Tyson and Preston-Whyte, 2000). This causes extremely strong winds, large waves and 

abnormally high tides along the coastlines (McKnight and Hess, 2007; CSAG, 2011). Tropical cyclones 

begin over the eastern Indian Ocean, east of Madagascar, and then move into a westerly direction (Tyson 

and Preston-Whyte, 2000). Their influence on the South African rainfall is very limited as they do not occur 

often and when they do, they only last for a few days and will never exceed a horizontal dimension of 400 

to 650 km (Alexander, 2000; Tyson and Preston-Whyte, 2000). They occur mainly in the summer months 

over the KwaZulu-Natal and Mpumalanga regions (CSAG, 2011). The 2012 and 2013 floods that resulted 

in extensive damage in the Mpumalanga, Gauteng and Limpopo Provinces, as well as in Mozambique we 

caused by tropical cyclones.  

 

2.3.2 Land-Use and River Basin Characteristics 

 

The significance of the river basin as a hydrological unit of study in water resource 

management has been identified by many researchers in different disciplines and 

in different areas of the world (Gregory and Walling, 1973; ICRAF, 2001; Clark et 

al., 2003; Dollar and Rowntree, 2003). This is because the severity of riverine 

floods is determined by the characteristics of the catchment area, the drainage 

network and the river channel (Görgens, 2003).  

 

Gregory and Walling (1973) and Peckham (2003) describe a catchment as a 

physical, ecological, biological and climatic entity, where a hydrological balance 

can be struck when one considers inflow and outflow of moisture and energy. In 

other words, it provides an essential geomorphic unit for analysing hydrological 

input and output. A catchment (also known as a river basin) is therefore defined as 

an area of any size that drains into a river, stream, lake or any other water body 

(Goudie and Viles, 2005). A catchment originates at the top or ridge of a mountain 

or hill (called a watershed or divide) and runs down the slopes into the river valley. 

Water runoff flows into major streams and rivers of the catchment and then joins 
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other rivers of surrounding catchments which eventually flows into the ocean (Hill 

and Verjee, 2010).  

 

 

 

 

 

 

 

Figure 2.3: Categorisation of catchments (White et al., 1992) 

 

Hydrological changes, mainly increasing runoff and resultant flooding in the river 

basins, have been a motivation for increased investigation of the geometric 

characteristics of the drainage basin as a unit of landscape analysis (Hardy, 2005). 

The most commonly examined geometric characteristics are the topology of the 

stream networks, and quantitative descriptions of the drainage texture, pattern, 

shape, and relief (Baker et al., 1988). 

 

Dollar and Rowntree (2003) cite five important hydrological factors necessary to 

consider when evaluating a drainage basin, namely: (1) morphometry of the 

drainage network; (2) soil characteristics, particularly those related to infiltration; 

(3) geology as it is related to structure and terrain erodibility; (4) vegetation as it 

affects erosion, infiltration and surface detention; and (5) meteorological-climatic 

conditions that control the nature of rainfall input. 

 

Channel characteristics such as slope, flood control and river regulation works 

influence the water level, course and velocity of water. An increase in channel 

slope combined with the presence of control measures and river regulation 

networks results in an increase in the velocity and energy of floodwaters. The 

speed of the surface runoff and the infiltration is determined by the basin slope. 

Steep slopes cause the infiltration rate to decrease while the speed of surface 

runoff increases, and vice versa (Smithson et al., 2002).   

 

Water flow within basins is determined by the characteristics of the basin, such as 

area, shape and slope. The larger the area of a basin, the more surface runoff can 

Major catchment 
 

Minor internal catchment 
 

River 
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be expected during a rainfall event; the smaller the basin, the more susceptible to 

floods it becomes (Smithson et al., 2002) due to limited surface area to enable 

water absorption. The shape of the basin will also influence the surface runoff; an 

elongated basin will have less surface runoff arriving at the channel at a given time 

than a more circular basin during the same time period. The latter will experience 

possible flooding due to the simultaneous arrival of surface runoff at the same point 

in the channel (Hill and Verjee, 2010).  

 

Streams come together to form a large network of streams. Within this network 

exists a stream order where the first order refers to the smallest streams without 

any tributaries (McKnight and Hess, 2007). First-order streams unite to form 

second-order streams and so on. The stream network develops certain drainage 

patterns that can be described as dendritic, trellis, radial, centripetal, annular and 

parallel. Complex drainage patterns can hinder the absorption of water and could 

cause flooding to occur (McKnight and Hess, 2007). The type of surface will 

determine how much of the surface runoff is temporarily retained in the network 

surface before it becomes part of the stream flow. Thus, a high surface storage, 

within the river channel, surface, lake or pond, can decrease the likelihood for 

flooding (Waugh, 2009).  

 

The amount of water absorption is influenced by the network characteristics, such 

as pattern, surface storage, under-drainage, channel length and bifurcation ratio 

(Smithson et al., 2002). The ratio between the numbers of streams in two 

sequential hierarchies of basins is referred to as the bifurcation ratio, and is an 

indication of the drainage characteristics of the stream network. Chances for 

flooding will increase if this ratio is low, since water flow can concentrate in one 

river (Waugh, 2009). In addition, the climate, geology, soil type and vegetation 

cover influence the storage capacity, infiltration and transmissibility of the 

catchment. The type of rock and soil in the network will determine the under-

drainage, as more permeable rock and soil will allow more drainage and a reduced 

possibility of flooding. Under-drainage refers to the drainage of soils through drains 

that are placed underneath the surface (Waugh, 2009). Peak flows can increase 

as a result of a change if the infiltration capacity of the soil is reduced (e.g. through 

soil compaction or erosion, or if drainage capacity is increased) (Kiersch, 2001). 
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The linkage between deforestation and its associated impact on flooding has led 

to a growing debate among researchers, some of whom have questioned the 

evidence that suggests that loss of forest cover exacerbates runoff, causing 

flooding (Calder and Aylward, 2006; Cui et al., 2007). However, there is evidence 

that deforestation can be linked to the erosion of river beds and a decrease in water 

infiltration. This can increase the velocity and energy of floodwaters.   

 

Irrespective of whether floods are natural or human induced or a combination of 

both, they generally have a direct or indirect impact on people and the economy 

(Calder and Aylward, 2006). This is evidenced, by example, by the extensive 

damage to infrastructure or loss of life, the changes in water quality, or the 

increases in water-borne diseases during flood events.  

 

2.4 Flood Risk 

 

2.4.1 Flood Risk Framework 

 

Scientific literature shows that the concept of flood risk has at least two aspects, 

namely a hazard and the vulnerability of a system. The concepts such as hazard, 

risk and vulnerability are the most commonly used terms to describe the potential 

threats that natural disasters pose to human life, the environment and 

infrastructure (Pistrika and Tsakiris, 2007). As flood risk is a function of flood 

hazard, the value of the properties of river systems that are exposed, and their 

vulnerability, the increase in flood losses must be attributed to changes in some or 

all of these aspects (Kron, 2003).  

 

“Hazard” is generally associated with a causal factor, i.e., a flood event is described 

by its magnitude and the probability of occurrence. On the other hand, risk is linked 

to the exposure of a system to the said hazard. Thus, flood risk evaluation requires 

an understanding of climatological and hydrological conditions (i.e. the causing 

factor) along with the terrain characteristic (i.e. the elements at risk) (Mani et al., 

2013). The terms ‘hazard’ and ‘vulnerability’ are also used to question the coping 

capacity of various structural and non-structural measures, which are applied for 

protection from these threats. An understanding and quantification of the terms is 

essential to obtain a holistic view of the probability of a flood occurring, and likely 
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extent (and associated impact) of floods. This requires that one understands the 

water body, as well as the potentially vulnerable systems. 

 

2.4.1.1 Hazard 

 

A hazard may be defined as a source of potential harm, or a threat or condition 

that may cause loss of life or initiate any failure to natural, modified or human 

systems. Hazards may thus be classified as either of natural origin (e.g. excessive 

rainfalls, floods) or of anthropogenic and technological nature (e.g. sabotage, 

deforestation, industrial site of chemical waste) (Pistrika and Tsakiris, 2007). 

 

The flood hazard can be independent of natural phenomena. Natural floodplains 

have been modified over time in order to adapt the landscape for receiving human 

populations and their activities. Although the modification of water bodies helps 

society to protect goods from natural phenomena, anthropogenic infrastructure 

(e.g. dykes and embankment) may create the conditions for a hazard. These 

hazards can be associated with, or completely dissociated from, natural climate 

and hydrological aspects (Eleutério, 2012).  

 

The most common terms that are used to differentiate between different types of 

hazards are ‘natural’ and ‘anthropogenic’ hazards. Floods can therefore be caused 

by natural or anthropogenic hazards, or by a combination of both. However, it is a 

recognised practice to use the classification by the UNISDR (2002), as given 

below.  

 

 Natural hazards are natural processes or phenomena occurring in the 

biosphere that may constitute a damaging event. Natural hazards are 

typically classified as either geological, hydrometeorological or biological 

hazards. Geological hazards refer to natural earth processes or 

phenomena in the biosphere that include geological, neotectonic, 

geophysical, geomorphological, geotechnical and hydrogeological nature.  

Hydrometeorological hazards refer to natural processes or phenomena of 

atmospheric, hydrological or oceanographic nature. Biological hazards 

refer to processes of organic origin or those conveyed by biological 
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vectors, including exposure to pathogenic microorganisms, toxins and 

bioactive substances.  

 

 Technological hazards are dangers originating from technological or 

industrial accidents, dangerous procedures or certain human activities, 

which may cause loss of life or injury, property damage and social and 

economic degradation.  

 

 Environmental degradation involves processes induced by human 

behaviour and activities (sometimes combined with natural hazards) that 

damage the natural resource base or adversely alter natural processes or 

ecosystems. 

 

Floods can be caused by the existence of any of one these hazards or a 

combination of several hazards. Therefore, the initiating causes of a hazard may 

be either an external (e.g. earthquake, rainfall or human agency), an internal event 

(e.g. an embankment breach) with the potential to initiate a failure of the coping 

capacity of the system, or a combination of several factors.  

 

Full comprehension of flood hazard requires an understanding of the frequency of 

the flood events as well as their magnitudes (and thus their anticipated flood 

damages) (Alexander, 1991). This will allow for the understanding of the flood risk, 

and the probability of occurrence of a flooding event, taking into account 

hydrometeorological and technological aspects (Eleutério, 2012). 

 

A hazard is, therefore, a physical event that has the potential to cause human 

injury, damage to property or damage to the environment. However, not all hazards 

lead to disasters and not all incidents are regarded as disasters. A hazard only has 

the potential of becoming a disaster event when it occurs in populated areas where 

it can cause loss of life or major economic losses (Allen, 1992). A disaster is 

defined as a serious disruption of the functioning of a community or a society 

causing widespread human, material, economic or environmental losses that 

exceed the ability of the affected community or society to cope using its own 

resources (UNISDR, 2002). Disasters may be either natural, for instance a flood, 

or human induced such as a nuclear accident. Disasters may further be classified 

as slow-onset disasters, such as a drought, or as sudden disasters, such as an 
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earthquake (RAVA, 2002). The possibility or chance of harmful consequences, or 

expected loss (of lives, people injured, property, livelihoods, economic activity 

disrupted or environment damaged) resulting from interactions between natural or 

human induced hazards and vulnerable conditions are defined as the disaster risk 

(UNISDR, 2002).  

 

2.4.1.2 Vulnerability  

 

The development of human society is closely linked to the water cycle and the 

availability of water resources. One of the consequences is that the majority of 

civilisations have settled near water-bodies. Unfortunately, a great percentage of 

city areas are still located inside flood zones, increasing the exposure of people 

and goods to floods, such as in the Netherlands and Bangladesh. The concept of 

vulnerability is complex and controversial, and goes far beyond the simple concept 

of exposure of assets to floods (Green et al., 1994; Barroca et al., 2006; Messner 

and Meyer, 2006).  

 

Risk of climate-related impacts results from the interaction of climate-related 

hazards (including hazardous events and trends) with the vulnerability and 

exposure of human and natural systems, including their ability to adapt. Thus, the 

vulnerability to climate change and the capacity for adaptation and mitigation are 

strongly influenced by livelihoods, lifestyles, behaviours and cultures (IPCC, 2014). 

The IPCC (2007) defines vulnerability as “the degree to which a system is 

susceptible to, and unable to cope with, adverse effects of climate change, 

including climate variability and extremes. Vulnerability is a function of the 

character, magnitude, and rate of climate change and variation to which a system 

is exposed, its sensitivity, and its adaptive capacity”.  

 

Vulnerability is a central theme in hazard research, yet there is very little consensus 

on its meaning or exactly how to assess it. Questions of geographical scale and 

social characteristic (i.e. individual, household, community, society) add to the 

confusion (World Bank, 2000). In the context of this study, vulnerability may be 

described as a set of conditions or processes resulting from physical, social, 

economic and environmental factors, which may increase the susceptibility of a 

community or location to the impacts of hazards. It is also important to remember 
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that vulnerability is dynamic, not static; the vulnerability of a community may 

change due to changing climate, the improvements or degradation of social, 

environmental and economic conditions, as well as interventions specifically aimed 

at reducing vulnerability, such as disaster mitigating actions (Zschau and Küppers, 

2003). A vulnerability analysis in the event of a flood hazard considers the 

population and structures at risk within the affected area (Pistrika and Tsakiris, 

2007). 

 

Turner et al. (2003) recognised that holistic studies on vulnerability that are meant 

to have an input into decision making should include all the hazards affecting the 

system, as an assessment of how the system gets exposed to the hazard, as well 

as the coping capacity of the system. Variations in these indicators will invariably 

result in different levels of vulnerability. This is mainly because the incidence of 

disasters tends to be higher in poor communities, which are more likely to be in 

areas vulnerable to hazards such as flooding. There is evidence that the low quality 

of infrastructure in poor communities increases their vulnerability (May, 1998).  

 

The resilience of the various human systems will determine their resistance to 

floods. The IPCC (2007) defines resilience as “the ability of a social or ecological 

system to absorb disturbances while retaining the same basic structure and ways 

of functioning, the capacity for self-organisation, and the capacity to adapt to stress 

and change.” Similarly, Greenberg et al. (2007) defined resilience as the ability of 

a society (within a physical system) to adapt and recover from a shock. Therefore, 

the resilience of a system to floods refers to the potential of a system to recover 

from the effects of flood hazard events, thus reducing the long-term negative 

consequences of the events. The understanding of this aspect of the risk is proving 

to be essential for flood management purposes. 

 

2.4.1.3 Flood Risk  

 

The word risk is may have multiple and different meanings. Risk as e a technical 

meaning refers to a chance or probability of an event happening, such as risk from 

exposure, a consequence or impact, an example being the risk from smoking, or a 

perilous situation like a nuclear power plant that creates a risk (Gerrard et al., 
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2001). Therefore, the definition of “risk” may vary in different research contexts 

depending on the application of the term, and the field in which it is used.  

 

The “common sense” understanding of the concept is the notion that risk is 

connected to a particular hazard, and lies in the consequences caused by that 

particular hazard, increasing with both its frequency and severity; it is also clear 

that these consequences depend on what is exposed to the hazard and its 

vulnerability (Fedeski and Gwilliam, 2007). Thus, risk is defined as the possibility 

of suffering harm from a hazard that can cause injury, disease, economic loss or 

environmental damage. Risk can be expressed in terms of probability, a 

mathematical statement about how likely it is that some event or effect will occur, 

or frequency, the expected number of events occurring in a unit time (Allen, 1992; 

Miller, 2004). Risk as a simple definition then refers to uncertain events that can 

damage the wellbeing of an individual or group (Scoones, 1996). 

 

Flood risk is a complex process that combines human and natural factors. It is 

characterized by the conjunction of the probability of floods to take place and the 

potential consequences associated with them. Floods only cause damage when 

flood zones are occupied by vulnerable human systems (Eleutério, 2012). 

Therefore, even though nature is the source of many risks, including floods, human 

actions very often amplify the consequences (Gerrard et al., 2001).  

 

The European Union Flood Risk Management Directive (2007/EC/60) for flood 

management defines "flood risk" as the likelihood of a flood event, together with 

the actual damage to human health and life, and the environment and economic 

activity associated with that flood event. In this context, flood risk can be 

considered as the actual threat or the real source of flood hazard to the affected 

areas (Messner et al., 2007).  

 

As discussed above, a hazard is the presence of water in a specific place and time, 

and the vulnerable systems would include humans, infrastructure, environment 

and all kind of things that are exposed to the hazard. Therefore, flooding is a natural 

process that considers a flood risk as any aspects of human added value that are 

potentially affected by floodwater. Therefore, the main purpose of risk analysis is 

to understand and measure the possible consequences associated with the 
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occurrence of flooding in areas occupied by vulnerable systems (Eleutério, 2012), 

and refers to the potential or likelihood of an event occurring.  

 

2.4.2 Flood Risk Assessment 

 

In general, approaches to flood risk assessment recognise that floods can often 

not be stopped from occurring, and emphasis should, therefore, be placed on 

reducing the vulnerability of, and the impact on, various catchment aspects such 

as human settlements and infrastructure. Flood assessment is thus aimed at 

understanding and assessing possible consequences of flood events in areas 

occupied by vulnerable systems (Eleutério, 2012). This approach is shared by the 

European Union Flood Risk Management Directive (2007/EC/60), which states 

that flood management plans need to consider first the harmful potential of floods, 

and then identify tangible measures to reduce exposure and sensitivity to floods, 

while improving risk governance.  

 

Risk assessment involves determining the types of hazards involved, estimating 

the probability of each hazard occurring, estimating how many people are likely to 

be exposed to it and how many may suffer serious harm (Miller, 2004). The risk 

assessment process involves the use of data, hypotheses and models to estimate 

the probability of harm to human health, to society or to the environment that may 

result from exposure to specific hazards (Miller, 2004). In this context, the flood 

risk is considered as the combination of hazard and vulnerability, as illustrated in 

Figure 2.4. 

 

Figure 2.4: Flood Risk as the Combination of Hazard and Vulnerability 

(Eleutério, 2012)  
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The impact of a flood event depends on the characteristics of both the system and 

the hazard. Even though each system has its own characteristics, we can consider 

that the vulnerability concept is also intrinsically linked to the hazard characteristics 

(Eleutério, 2012). Thus, a risk assessment emphasises the estimation and 

quantification of risk to determine acceptable levels of risk and safety; in other 

words, to balance the risk of a technology or activity against its social benefits to 

determine its overall social acceptability (Cutter, 1993). 

 

Disaster risk is defined as the possibility or chance of harmful consequences on a 

system or expected loss (of lives, people, injury, livelihoods, economic activity 

disrupted or environmental damage) resulting from interactions between natural 

and human induced hazards and vulnerable conditions (UNISDR, 2002). The 

disaster risk assessment is a process that analyses the nature and extent of the 

risk by considering the potential hazard, the vulnerability and the resilience of the 

community that might be affected (UNISDR, 2010). In general, it is agreed that risk 

is a function of hazard, vulnerability, resilience, capacity to cope and exposure. 

Therefore, in order to ensure that populations can adequately adapt to disaster 

risk, it is essential that a disaster risk assessment is completed. This will allow for 

the identification of high-risk areas where adaptation is required.  

 

The South African National Disaster Management Framework (Republic of South 

Africa, 2005) provides certain guidelines on the execution of a disaster risk 

assessment and specifically instructs that the level of risk associated with a hazard 

is estimated to determine whether it is a priority or not. This should be completed 

by initially collecting information regarding all existing hazards and prevailing 

conditions in the area, on aspects such as climate, demography, groundcover, land 

use, infrastructure and topography. In addition, the assessment of the hazard 

should be conducted, by analysing previous incidences and impacts, and predicted 

future hazards. Similarly, the ANCOLD Guidelines (2003), provide a 

methodological framework for risk identification and estimation. This framework 

can be generally be summarised by the following steps: 

 

 Risk identification, which refers to the spatial and qualitative identification 

of the hazard source.  
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 Risk analysis or risk estimation, which involves estimation of the 

probability of occurrence of the hazardous phenomenon, estimation of the 

actual consequences, and the vulnerability estimation of the affected 

system over the selected hazard scenarios. 

 Risk evaluation, which refers to identification of the local society’s 

tolerable risk policies and criteria as well as to the comprehension of the 

local society’s perception of the hazard impacts by decision makers.  

 Risk assessment, which refers to evaluation of tolerability of estimated 

risks based on the local society’s acceptability criteria. The comparison of 

the estimated risk with acceptable risk results in the decision of what risk 

will be acceptable in the particular affected system and what risk reduction 

measures may be applied. This process is also often referred to as ‘risk 

prioritisation’.   

 

Once the risk assessment has been conducted, the flood risk areas should be 

mapped in order to provide a risk profile for the area. This spatial assessment 

should be incorporated as part of the regional flood assessment, planning and 

management processes. 

 

Flood risk assessment is a challenge in terms of providing scientific knowledge and 

using it to provide essential tools for land-use planning, flood management 

initiatives, and infrastructure investment. There is considerable disagreement over 

the use of risk assessment. Most of these conflicts centre on scientific issues of 

measurement, inference and use of quantitative data. In theory, risk assessments 

are objective attempts to numerically define the extent of human exposure to all 

the hazards they face. Unfortunately, science is not always objective; scientists 

tend to disagree on the interpretations of the quantitative evidence. This lies at the 

centre of many debates on risk assessments (Lofstedt and Frewer, 1998).   

 

2.5 Flood Distribution and Flood Mapping 

 

The European Union Flood Risk Management Directive (2007/EC/60) stipulates 

that disaster and flood risk management should be supported by the production of 

hazard and risk maps. Flood maps are the base of flood risk analysis and can be 

used to regulate land-uses as well as to support project design to alleviate floods.  
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Flood maps bring the spatial dimension of flood analysis and are crucial for project 

appraisal. Different types of flood maps are currently used to support flood 

management (Eleutério, 2012). The use of these different tools is crucial and has 

gained importance over time (Penning-Rowsell and Green, 2000). 

 

There are several methods for flood mapping based primarily on hydrologic, 

meteorologic and geomorphologic approaches. In developing countries where 

hydro-meteorological data are commonly insufficient and inaccurate to generate 

flood models, the geomorphologic method may be more effective and appropriate 

(Wolman, 1971; Lastra et al., 2008). This can be based on aerial photo 

interpretation and field investigation of flood extent (Ho et al., 2010). A 

geomorphologic map provides an overview of the extent of inundation area, and 

changes in river channels through land reforms and sediments deposited by 

repeated floods. Hence, they enable an understanding of the nature of past floods 

and the likely characteristics of floods occurring in the future (Oya, 2002). 

 

The availability of new technologies for the measurement of surface elevation has 

partially addressed the lack of high-resolution elevation data. The increasing 

availability of digital elevation models has given a strong impulse to the 

development of the so-called DEM-based hydro-geomorphic models (Williams et 

al., 2000; Gallant and Dowling, 2003). This approach of flood investigation, i.e. 

flood modelling, has been verified significantly where the channel system and 

floodplain morphology of rivers change dynamically and have high erosive 

potential and substantial sediment supply (Lastra et al., 2008). Moreover, as 

hydrological and meteorological data to develop a flood model are commonly 

restrictive, a method for flood hazard zonation based on the geomorphologic 

approach (Ho et al., 2010) may have to be considered. This is studied further 

below.    

 

2.5.1 Hydrological Modelling 

 

Whenever rainfall occurs, a part of it is intercepted by trees and evaporates without 

reaching the surface, and the remainder appears as runoff (Maity, 2009), is stored 

in soil or below the surface (as groundwater), or may evaporated from the surface. 
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This concept is explained in detail by Horton (1933) and Beven (2004). According 

to Horton (1933), infiltration divides rainfall into two parts, which pursue different 

courses through the hydrologic system. One part goes via overland flow and 

stream channels to the sea as surface runoff. The other part initially goes into the 

soil and then through groundwater, and then finally into the stream or is returned 

to the air by evaporative processes. The soil therefore acts as a separating surface, 

and various hydrologic problems are simplified by starting at this surface and 

pursuing the subsequent course of each part of the rainfall as so divided, 

separately (Horton, 1933; Beven, 2004).  

 

The conversion of rainfall into runoff and its routing through the slope and river 

come under the ambit of hydrological modelling (Knocke, 2011). According to 

Allaby and Allaby (1999), hydrological modelling refers to the use of small-scale 

physical models, mathematical analogues, and computer simulations to 

characterize the likely behaviour of real hydrologic features and systems.  

 

2.5.1.1 Hydrological Models 

 

Hydrological models have the five basic components that include governing laws, 

watershed geometry, input, output and boundary conditions (Knocke, 2006). The 

interaction between water network, soil, vegetation, geomorphology, land geology 

and the atmosphere is very complex and makes developing and carrying out the 

models very difficult (Pilgrim and Cordery, 1993).  

 

a) Runoff Estimation 

In order to estimate runoff in a river basin, various approaches have been 

developed that analyse the relationships between the rainfall over a catchment 

area and the resulting flow in a river. These approaches should, therefore, be used 

when attempting to obtain or predict runoff, and are discussed in Table 2.3.  

 

Table 2.3: Runoff Estimation Methods   

Conceptual models 

 

Conceptual models incorporate the important hydrological processes using mathematical 

approximations. Conceptually these types of models usually involve interconnected storage volumes 

receiving recharge and discharge as appropriate for representations of component processes of the 

hydrological cycle (Kokkonen and Jakeman, 2001). The more component processes that are represented 

in the conceptual model, the larger the risk of over-parameterization (Tedela, 2009). 
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Physically-based models 

 

Physically-based models have a theoretical basis that simulates hydrological responses based on the 

governing hydrodynamic and transport equations. A physically-based model is one for which parameters 

and variables of the governing equations are measurable in the field (Beven, 1983). Physically-based 

models are appealing because of the mathematical approximations of real phenomena that are derived 

from first principles (Tedela, 2009). 

Lumped, semi-distributed, or fully distributed models 

 

Lumped, semi-distributed, or fully distributed models are classifications of the conceptual or the 

physically-based rainfall-runoff models (Tedela, 2009).  

 The lumped-parameter model ignores spatial heterogeneity of the catchment response to achieve 

an important advantage of simplicity (Ponce and Hawkins, 1996).  

 Semi-distributed models lump parameters with similar properties together for simplicity and 

convenience (Tedela, 2009).  

 Distributed models attempt to simulate most of the heterogeneous response at a local scale (Beven, 

1989; O’Connell, 1991; Garbrecht et al., 2001). 

Metric (or empirical) models 

 

Metric (or empirical) models are directly based on observations to characterize runoff and are formulated 

with little or no consideration of the hydrologic cycle (Kokkonen and Jakeman, 2001) or river systems, so 

that the model has no theoretical basis. Strictly limited to the range of data used to formulate the model, 

empirical models have two basic uses. Firstly, interpolations over the range of data used to derive the 

model are feasible in that the computer codes serve to estimate a response between observations. 

Secondly, the form and structure of metric models provide insight into the formulation of conceptual 

models or the derivation of physically based models, making extrapolation beyond the original 

observations possible (Tedela, 2009). The unit hydrograph (Sherman, 1949), formulated as a linear 

relationship between rainfall excess and streamflow, was one of the first metric rainfall-runoff models 

developed (Kokkonen and Jakeman, 2001).  

 

Another empirical method is the rational method, which uses an empirical linear equation to compute the 

peak runoff rate from a selected period of uniform rainfall intensity. Originally developed more than 100 

years ago, it continues to be useful in estimating runoff (New Jersey Department of Environmental 

Protection, 2004). The conditions of constant temporal and spatial rainfall, storm duration exceeding time 

of concentration, and overland flow as the dominant runoff mechanism, dictate that the rational method 

be restricted to small basins (Tolland et al., 1998). 

Semi-empirical models 

 

Semi-empirical models have a strong empirical origin, but also have some conceptual basis so that these 

cannot be clearly classified as empirical or conceptual models. The curve number method is the best 

example of a semi-empirical model (Tedela, 2009). The curve number method relates watershed rainfall 

to runoff in engineering drainage design (McCuen, 2005), and was derived from the principle that water 

is conserved in a watershed during a storm (Tedela, 2009). The ad hoc popularity of the technique follows 

from the lumping the complexity of runoff generation into a single watershed potential maximum retention 

parameter easily expressed as the curve number (Nachabe, 2006). Important uses include estimation of 

runoff volume from gauged and ungauged watersheds, determination of hydrologic effects of changes in 

land use and treatment, and as a calibration parameter in watershed models (Tedela, 2009). 

 

a) Design Storm Method 

Flood design generally requires the estimation of flood discharges of a given return 

period at a site. If long stream flow records are available, the flood estimates can 

be derived directly from data by frequency analysis. If no or limited stream flow 

data are available, or floods associated with very large return periods are of 

interest, design floods are generally estimated based on design storms (Viglione 

and Blöschl, 2009).  
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In this procedure, one or more storms of a given return period are used as an input 

to a rainfall-runoff model, and it is then assumed that the simulated peak discharge 

has the same return period (Viglione and Blöschl, 2009). The idea of the design-

storm procedure is to estimate a flood of a selected return period from rainfall 

intensity-duration frequency (IDF) curves for the site of interest (Viglione and 

Blöschl, 2009). A flood event may be described by a multivariate function of the 

peak, volume and duration, as a joint distribution of their marginal distributions 

(Mediero et al., 2010).  

 

There are a number of “parts” that need to be considered in the design storm 

method which include storm rainfall intensity, storm duration, temporal and spatial 

storm patterns, and antecedent soil moisture conditions (Viglione and Blöschl, 

2009). In addition, a pair of peak and volume values will have a different return 

period than that of their marginal distributions. Therefore, peaks and volumes 

cannot be utilized independently as thresholds to assess risk. The threshold must 

be defined as a given water level in the reservoir, so that the return period is the 

inverse of the probability of exceeding that reservoir water elevation in any given 

year (Mediero et al., 2010). The problem is complex and a set of hydrographs can 

have the same design return period (Mediero et al., 2010). 

 

Alfieri et al. (2008) assessed the accuracy of design hyetographs in producing flood 

peaks with the same return period as the storms, and provided a correction factor 

to obtain more robust estimates of the design flood. In South Africa, the 

developmental effort in this regard by Alexander (2002) led to the development of 

a numerically calibrated version of the Rational Method (RM), known as the 

Standard Design Flood (SDF) method, which incorporates engineering factors of 

safety to accommodate the uncertainties in hydrological analyses at a regional 

level. The identification of representative, homogeneous flood-producing regions, 

which followed the boundaries of the drainage regions as depicted by the 

Department of Water Affairs and Forestry (DWAF) (1995) (Gericke and du Plessis, 

2012). These regions are referred to as SDF basins and a total of 29 basins in 

South Africa were identified (Alexander, 2002). This was a major step in the 

development of the SDF method (Gericke and du Plessis, 2012). 

 



Student No: 0504584n 

31 

 

This study utilised the design storm method to predict runoff for future flood events 

at the Crocodile River Basin. This is due to the simplicity of the model, as well as 

the data required for implementation.  

 

2.5.1.2 Uncertainties in Hydrological Modelling 

 

Large-scale hydrological modelling has become a focal point in hydrological 

research in recent years and is of fundamental importance for understanding 

continental and global water balances, impacts of climate and land-use changes, 

and for water-resources management (Werth and Guntner, 2010; Jung et al., 2012; 

Li et al., 2012; Mulligan, 2012). However, hydrological modelling and analysis of 

large spatial domains is severely constrained by data availability and quality 

(Arnell, 1999; Decharme and Douville, 2006; Doll and Siebert, 2002; Fekete et al., 

2004; Guntner, 2008; Hunger and Doll, 2008; Widen-Nilsson et al., 2009; Peel et 

al., 2010). In addition, the modellers’ knowledge of the quality and limitations of 

large-scale datasets is often inadequate, which restricts the possibility to 

distinguish informative from dis-informative data. In a hydrological context, dis-

informative data are data that are physically inconsistent and therefore misleading 

when these are met for model inference and hydrological analyses (Kauffeldt et 

al., 2013).  

 

Uncertainty is also created by the method that is used. The statistical methods 

used and the considerations made when processing existing data can also strongly 

influence the determination of discharge for specific frequencies (Eleutério, 2012). 

This will thus create uncertainty in the data and assumptions used for hydrological 

analysis. Therefore, uncertainty acceptance levels (or confidence intervals) for 

hydrological analysis and modelling should be considered when analysing flood 

risks and when producing flood maps. 

 

According to the NRC (2009), flood frequency analysis of stream gauge records is 

the most reliable hydrological approach in flood risk evaluation process (NRC, 

2009). The objective of flood frequency analysis is to provide the quantiles of 

maximum peak flow or daily discharge corresponding to a given return period 

(Chow et al., 1988). The gauges record length plays a critical role on the liability of 
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the quantiles of maximum peak flow corresponding to a given return period (NRC, 

2000; Xu and Booij, 2007).  

 

2.5.2 Hydraulic Modelling 

 

Hydraulics has its basis in fluid mechanics and is aimed to better understand the 

actual behaviour of water movement in river channels based on the physical nature 

of the system, i.e. water flow in time and space as it moves through the system.  

Hydraulic modelling has the ability to replicate many features of complex river flow 

in various river reaches to support operational decisions of flood management and 

prediction (GHD, 2013). Therefore, hydrological modelling involves the technical 

process consisting of the reproduction of surface flow dynamics using physical 

and/or mathematical models (Patterson, 2013).  In a river basin context, these 

models are used to simulate flows in river channels and on floodplains and in 

wetlands, to account for the operation of regulating structures (e.g. weirs); while 

the hydrological processes are computed from hydrological models (GHD, 2013). 

 

2.5.2.1 Hydraulic Models 

 

In general, hydraulic models are used in the prediction of the stream flow (output) 

of a catchment or river basin (system) in response to the precipitation (input). A 

hydraulic model is an important tool used in planning, simulation and management 

of runoff processes and rainfall as it is designed in a simplified way for both 

qualitative and quantitative modelling of any hydrological processes (Maity, 2009).  

 

There are simple techniques in the applications of flood prediction which are 

available for modelling. These hydraulic models are classified according to their 

temporal and spatial scale, underlying modelling process and method of solution 

(Singh, 1995). The models simulate natural properties of river systems such as 

sediment, the flow of water, nutrients, microbial organisms and chemicals (Singh 

and Frevert, 2006). The spatial and temporal variations of both input and system 

are considered as the driving forces of physically-based hydraulic modelling 

(Pelling, 1999).  
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The modelling of fluids (i.e. runoff) is complex due to the three dimensions involved 

and the accompanying time-dependency (ADWR 2002; Munson et al., 2010). 

Models are classified according to the number of dimensions involved in a physical 

space where the flow variables are considered. It is, therefore, possible to construct 

one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) models 

(ADWR, 2002; Dyhouse et al., 2003; Hunter et al., 2007).  

 

Each of these applications start with some amount of rainfall over the catchment 

area, excess runoff that is found after the removal of all abstractions that include 

infiltration and surface storage, and the application of the hydraulic model that has 

been chosen for the simulation of runoff hydrographs (Knocke, 2006). The process 

of identifying and mapping possible areas at flood risk can then be identified in 

three steps. In a first step, return periods of discharge of particular values are 

determined. Inflow and outflow hydrographs are then created for these selected 

return periods. In a second step, water levels associated with these discharge 

values are determined through the use of numerical methods and numerical codes, 

and finally the computed elevations are used to create flood maps. Derivation of 

flood maps can be realized with different types of approaches, ranging from less 

complex (1D, quasi-2D model) to complex two and three-dimensional modelling 

codes (Werner and Lambert, 2007). These approaches are discussed in Table 2.4. 

 

Table 2.4: Hydraulic Models    

One-dimensional (1D) Modelling 

 

One-dimensional flood modelling considers the flow in only one of the three coordinate dimensions 

(ADWR, 2002), namely along the central streamlines in the channel (Franzini and Finnemore, 2001), 

where streamlines intersect with cross sections at right angles which are parallel to each other (Dyhouse 

et al., 2003). In fluid mechanics, the downstream direction of flow, parallel to the channel, is considered 

as the one-dimensional coordinate, thus longitudinal (ADWR, 2002). All the points in the fluid have the 

same velocity and direction at a specific time (Franzini and Finnemore, 2001; Munson et al., 2010). The 

boundaries for such models are usually the catchment runoff and dry weather flow at the inlets and water 

levels at the outlets. This is a simplified flow analysis where the assumption is made that the velocity 

components in the other two directions are negligible (Franzini and Finnemore, 2001; Dyhouse et al., 

2003; Munson et al., 2010). This analysis is suitable for most open channel hydraulic flows (Dyhouse et 

al., 2003). These models are available in software packages such as MOUSE (DHI, 1986), SWMM (US 

EPA, 1988), INFOWORKS (Wallingford, 2002) and MIKE URBAN (DHI, 2004), and are widely used by 

research organizations, consulting companies and local authorities (Hénonin et al., 2010).  

 

One-dimensional hydraulic models have been the preferred approach for several decades since their 

principles are simple to apply and there is a wide selection of software packages available. Furthermore, 

these models require fewer data inputs and minimum computational power to perform the analysis 

(Pappenberg et al., 2005). However, such models are not suitable to reproduce the network overflow 

phenomenon. As this kind of model does not simulate the surface flood routing and the water level 

calculated in the virtual storage is not linked to any realistic behaviour of the overflow water, it logically 

leads to an overestimation of flood depth (Maksimovic, 2000; Mark et al., 2004). 
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Quasi One-dimensional (1D-1D) Modelling 

 

A variation of the 1D model is the 1D-1D model, which involves a coupling between a 1D collection system 

model and a 1D representation of the surface flow path (usually streams). This modelling approach is 

also known as dual drainage approach (Wisner et al., 1982; Stephenson, 1998; Djordjevic et al., 1999). 

The computed runoff can be distributed either directly into the drainage system or on the surface network, 

depending on the local context. The exchange between the two networks is handled through coupling 

links (Hénonin et al., 2010).  

 

The development of this model involves large amounts of data with detailed GIS dataset including high-

resolution DEM (Digital Elevation Model) or DTM (Digital Terrain Model). The pre-processing and 

verification of both the surface flow paths and storage functions have to be done carefully and can be 

particularly time-consuming, although automatic GIS procedures can be used (Maksimovic and 

Prodanovic, 2001; Mark et al., 2004; Boonya-Aroonnet et al., 2007).  

Two-dimensional (2D) Modelling 

 

In two-dimensional models the velocity of the flow changes along the longitudinal and lateral directions in 

the channel (Janna, 2009). Thus, gradients of the velocity exist in two dimensions of the horizontal plane 

(Franzini and Finnemore, 2001; Janna, 2009; Munson et al., 2010).  

 

Two-dimensional models are used for the modelling of more complex flood parameters (e.g. flow velocity, 

flood wave propagation, inundation duration, flow direction and water rise rate). Additional data about the 

flood wave characteristics are required to determine the duration and peaks in the advanced modelling 

(Büchele et al., 2006; De Moel et al., 2009). The availability of more powerful computers and more 

accurate data have made the two-dimensional models a suitable option where more complex analysis is 

needed (FEI, 2007). 

Quasi Two-dimensional (1D-2D) Modelling 

 

The flow is still modelled in 1D but the surface flow is computed with a 2D engine. The 2D model is used 

to reproduce accurately the urban surface topography, including buildings, ponds, various structures, etc. 

The hydrodynamic flow computation with the 2D surface model allows calculations such as flow velocities 

with 2-directions components. The surface water level is no longer calculated from an interpolation 

formula but the result of 2D modelling of the flow behaviour (Hénonin et al., 2010). This kind of coupled 

modelling has been used in a number of studies and is now available in commercial software packages 

such as INFOWORKS (Wallingford, 2006), MIKE FLOOD (DHI, 2005) and HEC-RAS.  

 

The exchanges between the collection system and the surface are still handled through coupling links as 

for the 1D-1D coupling, but the nodes of the collection system network are connected to cells of the 2D 

surface model. Thus, an issue of such 1D-2D models is the accuracy and resolution of the 2D surface 

model; the accuracy of the 2D model is highly dependent of the input data resolution, i.e. topographic 

data resolution such as density and elevation (Prodanovic et al., 1998; Mark et al., 2004). GIS pre-

treatments are usually required to ensure that the main topographic features will be properly taken into 

account into the 2D model (Hénonin et al., 2010) 

 

This study utilised the Quasi Two-dimensional (1D-2D) model to simulate the flood extent for the Crocodile 

River Basin. This is due to the availability of data, and the advantages offered by this modelling approach. 

The approach employed is discussed in Chapter 4 and Appendix B.    

Three-dimensional (3D) modelling 

 

Three-dimensional modelling considers the velocity changes in all three dimensions of the channel 

(Dyhouse et al., 2003; Janna, 2009) and is applied at nodes in the river network. This model is normally 

applied to complicated reaches as it requires detailed data input, significant computer power and 

engineering expertise (Dyhouse et al., 2003). 

 

One-dimensional models cannot represent the true river basin and limits the 

modelling of the complex conditions of extreme flood events (ADWR, 2002; 

Merwade et al., 2008; Pappenberg et al., 2005), especially the simulation of flood 

waves (Hunter et al., 2007) and the spreading flows on alluvial fans or unstable 

alluvial channels (ADWR, 2002). Although high quality data are available, it would 
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have no effect on the quality of the flood lines generated, as cross-sections across 

the river network are used (Merwade et al., 2008).  

 

The use of two-dimensional modelling codes provides the best approach to flood 

extent modelling (e.g. with MIKE 21, TELEMAC-2D). These codes have the ability 

to represent complex floodplains topography, dynamic wetting and drying of the 

floodplain, and prediction of the exchange of momentum between channel and 

floodplains (Horrit et al., 2007). Although two-dimensional models are far more 

realistic than 1D models to represent the surface flow behaviour, 1D-2D models 

still require more computation time than 1D-1D models. Thus, 1D-2D models are 

currently used for off-line applications only, while 1D and 1D-1D models can be 

used online for real-time forecast applications. Some ongoing research projects 

are investigating the feasibility of 1D-2D online models use for real-time 

applications, focusing on model enhancements methods to reduce computation 

time (Hénonin et al., 2010). 

 

However, common problems regarding the two-dimensional approach are data 

requirements and significant computational time. Due to these inconveniences, a 

new method was developed: coupled one and two-dimensional unsteady hydraulic 

model (Patro et al., 2009; Tuteja and Shaikh, 2009). The flood modelling packages 

include MIKE FLOOD and SOBEK 1D2D, which offer the possibility to dynamically 

link a 1D breach model to a 2D floodplain model (Vanderkimpen and Peeters, 

2008). Similarly, HEC-RAS has the ability to perform 2D hydrodynamic flow routing 

within the unsteady flow analysis portion of the software package. Users can 

perform 1D unsteady‐flow modelling, 2D unsteady‐flow modelling (Full Saint 

Venant equations or Diffusion Wave equations), as well as combined one‐

dimensional and two‐dimensional (1D/2D) unsteady‐flow routing (Brunner, 2014).  

 

The availability of high-resolution data and more computational power has 

increased the use of complex models (Hunter et al., 2007). As natural flows are 

known to be three-dimensional, the use of three-dimensional methods may appear 

obvious. However, some shortcomings have been identified in the complex 

models. Expert knowledge is required to set up complex models according to the 

requirements of the end user (Dyhouse et al., 2003; Hunter et al., 2007) and 

appropriate data for the verification of these complex models are very limited 
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(Hunter et al., 2007). Complex models are also more expensive (Dyhouse et al., 

2003). 

 

2.5.2.2 Uncertainties in Hydraulic Modelling  

 

The selection of hydraulic models is typically based on a trade-off among the 

different factors of physical realism, computational efficiency, consistency with the 

quantity and quality of input and observation data, and objectives of the specific 

study (Mukolwe et al., 2014). The accuracy of the hydraulic model will depend on 

the modelling approach that is employed. However, Dottori et al. (2013) discuss a 

number of important issues that should be taken into account in works related to 

flood modelling. These include the large number of uncertainty sources in model 

structure and available data; the difficult evaluation of model results, due to the 

scarcity of observed data; computational efficiency; as well as false confidence that 

can be given by high-resolution outputs, as accuracy is not necessarily increased 

by higher precision. Dottori et al. (2013) also state that the extreme precision of 

highly resolved models and data sets may lead non-expert users to become 

overconfident in the model results, disregarding a number of issues that have 

importance in performing reliable flood analyses. 

 

The achievement of ‘as accurate as possible’ characteristics of the flood hazard is 

a research challenge that is widely addressed (Mukolwe et al., 2014). Flood 

mitigation methodologies to deal with prior flood warning, quantification of 

envisaged disasters, uncertainty in flood risk management tools and coping 

mechanisms are continuously being researched (e.g. Pappenberger and Beven, 

2006; McCarthy et al., 2007; Montanari, 2007). These initiatives are bolstered by 

the availability of ever-increasing computer power and new models developed to 

analyse hydro-meteorological inputs and generate flood warnings and estimates 

of flood extent and other specific hazard characteristics; new information sources 

such as spatial data derived from satellite imagery are also increasingly becoming 

available (Di Baldassarre et al., 2009a, 2009b; Schumann et al., 2009; Bates, 

2012). These improvements in flood risk management tools and methodologies 

can result in a reduction of flood risk (Mukolwe et al., 2014).  
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It has been widely accepted by hydrologists that the most effective way to reduce 

future flood damages is to restrict development in areas that are subject to flooding 

(Dingman, 1984). However, the role of uncertainty in the production of flood maps 

and flood damage assessment is highly significant and cannot be neglected (de 

Blois and Wind, 1995; Merz et al., 2010), which creates difficulty when planning for 

an uncertain future. Indeed, there are several studies that highlight the importance 

of hydrological uncertainty on the global uncertainty of flood damage estimations 

(de Blois and Wind, 1995; Merz et al., 2010).  

 

2.5.3 Geographical Information Systems 

 

The main advantage of using Geographic Information Systems (GIS) is its ability 

for developing powerful models at different temporal and spatial scales, which 

involve complex interaction among dynamic phenomena and static geographical 

entities through which these entities evolved (Longley et al., 1999). Therefore, the 

spatial dimension provided by GIS-based analyses is crucial for mapping 

processes and natural hazard management issues (Zerger, 2002; Köhler et al., 

2006). However, a great amount of data and knowledge are needed to produce 

and use these maps (Merz et al., 2007; NRC, 2009).  

 

GIS can be used in every step of the flood risk assessments for visualisation, data 

management and modelling (Robayo and Maidment 2005; Goodchild, 2006). Data 

preparation and results visualisation as well as data transfer methodologies can 

be achieved in the flexible GIS environment (Kiesel et al, 2013). Hydrological and 

hydraulic models benefit from GIS because of integration of the models and the 

spatial representation aspects that are offered by the software. 

 

Three issues need to be considered when GIS is integrated with hydraulic and 

environmental modelling. These include considerations of the issue of systems that 

include user interfaces, GIS functionality, data models GIS design; issues of 

modelling that include developing and structuring of models; and issues of spatial 

data that include accuracy, resampling, common formats, access and availability 

(Knocke, 2006). Several complexities associated with data requirements need to 

be overcome in order to use GIS.  



Student No: 0504584n 

38 

 

 Hydrological and geographical data can be very complex as they need to 

include information about possible topological connections of objects which 

have been recorded, together with their attributes (Ogden et al., 2001).  

 Weather and hydrological data comes in different formats and storage 

structures (Carrara et al., 1999).  

 Land use and infrastructural data are available, and are important as they 

provide the baseline information for a hazard assessment, as it is possible 

to map the extent of a hazard (Zschau and Küppers, 2003), and then to 

consider the land-uses and infrastructure affected.  

 

It is, however, usually not easy to transform such data into the correct format for 

each specific model platform.  This can require the users to use an external device, 

which can format the data, or to collect the required data in other formats. But, this 

can be overcome by using GIS (Knocke, 2006), as GIS has the ability to analyse 

and incorporate spatial characteristics in different formats. GIS allows for accurate 

spatial representation of a hazard event, thus enabling disaster management, 

police, medical, fire and other managerial personnel to make decisions based on 

data they can see and judge for themselves. This spatial or geography-based 

method presents essential information in a way that is more understandable than 

any other method (Greene, 2002).  

 

Even though several methods are currently used to evaluate flood risks, the 

construction of comprehensive databases and the harmonisation of methods in 

national and international contexts remains great challenges for researchers and 

practitioners alike (Köhler et al., 2006; Merz et al., 2007). Often, when more 

complex modelling is required, the modelling is extended outside GIS by using 

another software package (Longley et al., 2005). This is generally the approach in 

flood modelling, where external hydraulic software is used to determine the flood 

magnitude. Here, GIS is only used for visualisation and data management (Pilon 

2004; Klijn 2009), as GIS technology is regarded as a computer method for the 

creation of digital maps, digital analysis, and creation of a database for spatial 

features and visualisation of spatial data. By using GIS, it is possible to understand 

the geographic extent of hazards as they very often occur in predictable locations. 

Once the possible extent of a hazard is known, it is then possible to identify 

communities, resources and infrastructure at risk (Zschau and Küppers, 2003). 
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Lastly, GIS also helps during all stages of Disaster Management of floods, 

including pre and post-disaster activities, mitigation, prevention and preparation 

(Haile, 2005). It helps in the provision of user-friendly, spatial data that are 

interactive and powerful.   

 

Chau et al. (2013) used GIS to present a geospatial assessment of flood impacts 

on agricultural land in Quang Nam province, Vietnam. The study demonstrated 

how the results can inform economic assessments of natural disaster impacts and 

associated policy responses to mitigate extreme weather events.  The use of GIS 

is supported also by Musungu et al. (2012), who used the spatial capabilities of the 

software to conduct a case study of an informal settlement in Cape Town. This 

study proposed a methodology of integrating community-based information 

obtained through a participatory multi-criteria evaluation into a GIS that can be 

used by the Cape Town City Council for risk assessment. This methodology 

ensures that different aspects are considered when conducting the risk 

assessment, and that the vulnerability of this study area is correctly assessed. 

Flood risk management approaches can, therefore, be localised and adapted to 

suit the specific area.   

 

2.5.4 Flood Hazard Mapping 

 

Flood hazard maps describe the magnitude and/or probability of a flood where the 

flood risk assessment provides information about the consequences of the flooding 

(Alho et al., 2008; Zimmermann, 2008; De Moel et al., 2009; Klijn 2009). Bründl et 

al. (2009) summarise flood hazard maps that indicate the locations of flood events 

with certain return periods. Flood hazard mapping can be integrated to analyse 

and map the vulnerabilities and the resulting risk to a community (Lechtenbörger, 

2006; Martini and Loat, 2007).  

 

Flood hazard maps can play an integral part in all the phases of flood risk 

assessment as they can communicate the extent of the flood and other flood 

parameters to different stakeholders. The community and disaster management 

role-players can better understand and visualise the characteristics of a possible 

future flood event when using GIS (Hardmeyer and Spencer, 2007). The 

requirements or needs of the stakeholders will determine the flood parameters to 
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be mapped in the flood hazard map (Hardemeyer and Spencer, 2007; Martini and 

Loat, 2007; De Moel et al., 2009). It is, however, important that the information 

gathered is communicated in an uncomplicated yet accurate format, easily 

understandable to experts and laymen alike (Greene, 2002). The basic types of 

flood hazard maps are indicated in Figure 2.5. 

 

 

Figure 2.5: Types of flood hazard maps - (a) historical (event) maps, (b) extent 

maps and (c) flood depth maps. (Source: De Moel et al., 2009).  

 

As shown in Figure 2.5, the basic types of flood hazard maps are:  

a) historical (event) maps, indicating the locations of historical events with 

point symbols on a map (De Moel et al., 2009).  

b) extent maps, which display the inundated areas of a flood event that can 

either be historical or hypothetical; different probabilities of occurrence 

need to be determined for the latter, namely 10 and 50 years for high, 100 

years or greater for a medium, and 1000 years for low probabilities 

(Büchele et al., 2006). 

c) flood depth maps, displaying the water depths (levels) derived from one- 

and two-dimensional models for river flooding (De Moel et al., 2009). 

 

Other types of flood maps include:  

 flow velocity maps, indicating the velocity of the water flow determined by 

two-dimensional models – one-dimensional models can also be used but 

this will be more complex (Büchele et al., 2006).  

 flood wave maps, displaying the movement of waves, as determined by 

two-dimensional models (Büchele et al., 2006).  
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 inundation maps, indicating the area that was or may be under water (De 

Moel et al., 2009).  

 

Flood hazard mapping consists of the quantification of hydraulic parameters and 

their intersection with digital terrain models (DTM) and land use data (Büchele et 

al., 2006; De Moel et al., 2009). Thus, the modelling of the flood hazard consists 

of three main steps, namely (Büchele et al. 2006; De Moel et al., 2009):  

 the collection of historical data of water levels or inundation zones and 

calculating the return period for certain discharge values;  

 the modelling of water levels using hydraulic models, either one- or two-

dimensional; and  

 the modelling of water levels with the DTM or DEM using one- or two-

dimensional models.  

 

There is a wide variety of flood models that can be used to this end. However, 

modelling may be erroneous due to erroneous, incomplete or missing input data. 

Moreover, many of these models have been designed for large scale applications, 

although their results are also used on a local scale to determine flood hazard 

and/or risk (Pappenberger et al., 2007).  

 

Flood hazard maps can be differentiated from flood risk maps in that flood hazard 

maps contain information about the probability and/or magnitude of a flood event, 

e.g. flood extent and water depth distribution; whereas flood risk maps contain 

additional information about the potential consequences of floods, e.g. economic 

loss, human injuries and environmental impacts (de Moel et al., 2009). Both flood 

hazard and risk maps are essential for flood risk assessment and flood 

management. 

 

2.6 Floods under Changing Climate Futures 

 

Climate variability is the natural cycle through which the earth and its atmosphere 

accommodate the change in the amount of energy received from the sun. Changes 

in temperature also influence rainfall, but the biosphere is also able to adapt to a 

changing climate if these changes take place long time periods (Mukheibir and 

Sparks, 2005).  
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The concept of climate variability is an important factor in its own right, but 

especially in regard to its significance within the context of climate change 

(Schulze, 2011). It is therefore important to distinguish between the two concepts;  

 

 Climate Variability signifies any deviation from the long-term expected 

value. It is an entirely natural phenomenon, is reversible and non-

permanent. An example would be the droughts in Southern Africa which 

are associated with the El Niño - Southern Ocean (ENSO) phenomenon. 

Climate variability has time scales which can range from diurnal to daily to 

intra-seasonal to inter-annual and to decadal (Schulze, 2011). 

 

 Climate Change, on the other hand, is irreversible and permanent, where 

a (positive or negative) trend over time is superimposed over naturally 

occurring variability. A commonly cited example of climate change is 

anthropogenically forced global warming, and the associated trends in 

increased temperature which result from the enhanced greenhouse effect 

through increased atmospheric emissions of greenhouse gases. The time 

scale of this climate change is decades to centuries and the trend is more 

likely to occur in steps than linearly over time (Schulze, 2011). However, it 

is important to note that climate change can also be an entirely natural 

process. Naturally induced climate change occurs at a slower rate of 

change than with anthropogenically forced global warming.  

 

2.6.1 Southern Africa 

 

Climate is controlled by complex maritime and terrestrial interactions that produce 

a variety of climates across a range of regions and continents (Mukheibir and 

Sparks, 2005). Africa is considered to be one of the most vulnerable continents to 

climate variability and change because of multiple stresses and low adaptive 

capacity (IPCC, 2007; Davis, 2010). As the livelihoods of people in Africa, including 

South Africa, are often directly linked to the climate of the area (Davis, 2010), 

livelihoods are likely to be affected. This is because climate influences agriculture, 

the environment, water availability and thus the economy of primary sector-

dependent countries all over the world (Mukheibir and Sparks, 2005). 
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Over Southern Africa a reduction in late austral summer precipitation has been 

reported over the western parts, extending from Namibia, through Angola, and 

toward the Congo, during the second half of the 20th Century (Hoerling et al., 2006; 

New et al., 2006). The drying is associated with an upward trend in tropical Indian 

Ocean Sea Surface Temperatures (SSTs). Modest downward trends in rainfall are 

found in Botswana, Zimbabwe, and western South Africa. Apart from changes in 

total or mean summer rainfall, certain intra-seasonal characteristics of seasonal 

rainfall such as onset, duration, dry spell frequencies, and rainfall intensity as well 

as delay of rainfall onset have been identified (Tadross et al., 2005, 2009; Thomas 

et al., 2007; Kniveton et al., 2009).  

 

An increasing frequency of dry spells is accompanied by an increasing trend in 

daily rainfall intensity, which has implications for run-off characteristics (New et al., 

2006). Over Southern Africa, unusually dry austral summers as occurred during 

2002/2003 have become more likely, whereas unusually wet austral summers like 

that of 1999/2000 have become less likely due to anthropogenic climate change. 

There is some tentative evidence that the risk of extreme high 5-day precipitation 

totals (as observed in 1999/2000) have increased in the region. These results are 

consistent with CMIP5 models projecting a general drying trend over SAF during 

December–January–February (DJF) but also an increase in atmospheric moisture 

availability to feed heavy rainfall events when they do occur (Bellprat et al., 2015). 

 

Climate projections over Southern Africa show a drying signal in the annual mean 

temperature over the climatologically dry south-west, extending north-eastward 

from the desert areas in Namibia and Botswana (Moise and Hudson, 2008; 

Orlowsky and Seneviratne, 2012; James and Washington, 2013). Similarly, Lu et 

al. (2015) found that the projected temperature shows an increasing tendency over 

Southern Africa in the near future, especially in the eastern part, while the 

precipitation changes are varying between different months and sub-regions. An 

increase in runoff (and evapotranspiration) is projected for eastern part of Southern 

Africa, i.e. Southern Mozambique and Malawi, while a decrease was estimated 

across the driest region in a wide area encompassing Kalahari Desert, Namibia, 

southwest of South Africa and Angola (Lu et al., 2015). 
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During the summer months, dry conditions are projected in the south-west, while 

projections indicate wetter conditions in the south-east of South Africa and the 

Drakensberg mountain range (Hewitson and Crane, 2006; Engelbrecht et al., 

2009). Drier winters are projected over a large area in Southern Africa by the end 

of the 21st century as a result of the poleward displacement of mid-latitude storm 

tracks (Moise and Hudson, 2008; Engelbrecht et al., 2009; Shongwe et al., 2009; 

Seth et al., 2011; James and Washington, 2013). Rainfall decreases are also 

projected during spring months, implying a delay in the onset of seasonal rains 

over a large part of the summer rainfall region of Southern Africa (Shongwe et al., 

2009; Seth et al., 2011).  

 

The strongest climate change signals are found over humid tropical areas, i.e. 

north of Angola and Malawi and south of Democratic Republic of Congo (DRC). 

Large spatial and temporal variability of climate change signals is found in the near 

future over Southern Africa (Lu et al., 2015). Enhanced heat wave probabilities are 

associated with deficient rainfall conditions that tend to occur during El Niño events 

(Niang et al., 2014). Large uncertainties surround projected changes in tropical 

cyclone landfall from the south-west Indian Ocean that have resulted in intense 

floods during the 20th Century. Future precipitation projections show changes in 

the scale of the rainfall probability distribution, indicating that extremes of both 

signs may become more frequent in the future (Kay and Washington, 2008). 

 

2.6.2 South Africa 

 

South Africa is a country that experiences a wide range of different weather 

conditions. These include thunderstorms of the Highveld, frontal rain over the 

south-western Cape, berg winds along the Eastern Cape coast, and widespread 

flooding over north-eastern South Africa, caused by tropical cyclones making 

landfall over Mozambique (Archer, 2011).  

 

Mean annual temperatures have increased by at least 1.5 times the observed 

global average of 0.65°C over the past five decades and extreme rainfall events 

have increased in frequency (Ziervogel et al., 2014). Rainfall variability is 

particularly pronounced over the dry western parts of South Africa, where a dry 

year can have significant economic repercussions. Furthermore, extreme dry years 
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tend to be more frequent in the driest regions of the country (Mukheibir and Sparks, 

2005). 

 

Rainfall patterns over the country display well-pronounced intra-annual and inter-

annual variability mainly due to the ENSO (Davis, 2010). In the El Niño (dry) years, 

the rainfall is considerably low, whereas in the La Niña (wet) years, rainfall is 

relatively higher (Mukheibir and Sparks, 2005). Steyn (1984) argued that there are 

also other influences on the climate variability of the region, such as changes in 

macro pressure over the interior and adjacent oceans that impact on the weather 

and climate and result in wet and dry spells, and the location of troughs of standing 

westerly waves (Steyn, 1984).  

 

Climate change is expected to impact the earth’s atmosphere through increases in 

temperature and resultant perturbations to rainfall regimes, including increases in 

rainfall variability. This may lead to increases in the intensity and frequency of 

extreme rainfall events of both short duration and long duration and, with that, 

associated flooding (IPCC, 2007). The IPCC (2007) and DEA (2013) suggest 

warming relative to 1986–2005 of 3-6°C by 2081-2100 in the interior, yet less 

certain precipitation changes in terms of both direction and magnitude (Ziervogel 

et al., 2014). There are significant geographical differences in projected rainfall 

changes. Drier conditions are predicted for the south-west of the country in both 

seasons. Rainfall intensity is likely to increase, but will not necessarily imply an 

increase in total rainfall (Davis, 2010). 

 

Many questions arise about climate change and climate variability and how they 

affect South Africa. South Africa’s water resources, already subjected to high 

hydro-climatic variability both over space over time, are a key constraint to the 

country’s continued economic development and the sustainable livelihoods of its 

people (Schulze, 2011). Water resources will continue to be affected, where South 

Africa’s industrial, domestic and agricultural users are highly dependent on a 

reliable supply of water (Mukheibir and Sparks, 2005). A changing climate is likely 

to have considerable impacts on the water sector, with different regions of the 

country likely to be affected in many different ways. For this reason alone, local 

scale analyses are needed to assess potential impacts (Andersson et al., 2009).  
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Streamflow, or channel flow, which refers to the flow of water in streams, rivers and 

other channels, is expected to experience changes in the concentration and timing 

of high and low flows due to changes in rainfall patterns (Archer, 2011), and 

feedbacks through land-use changes and soil characteristics. Changes in mean 

annual streamflow and its variability are anticipated, with an increase in variability 

into the intermediate future of around 20 to 30%, except in the south-Western Cape 

where variability is projected to decrease (Schulze, 2011).  

 

DEA (2013) states that preliminary projections indicate changes in runoff ranging 

from a 20% decrease to a 60% increase by as early as 2050, while other 

projections indicate changes in runoff ranging from a 5% decrease to a 20% 

increase. Spatially, the eastern seaboard and central interior of the country are 

likely to experience increases while much of the Northern and Western Cape are 

likely to experience decreases in runoff (Ziervogel et al., 2014). In the latter part of 

the century a strong decrease in absolute variability of annual streamflow is 

projected not only in the south-west, but also in the south and in parts of the north 

of South Africa (Schulze, 2011). 

 

Greater evaporation rates are likely to increase drought incidence and intensity (as 

defined by the response of available soil moisture and available free water), 

possibly even in regions where total rainfall increases (Davis, 2010). A projected 

increase in extreme events is expected to have a negative impact on the quantity 

and quality of groundwater reserves and surface water. The risk that water 

resources face due to the increase in extreme events, droughts and heavy 

precipitation can be categorised by: a decrease in water quality due to saltwater 

intrusion; an increase in the occurrence of international water conflicts; a decrease 

in water quality due to run-off and erosion; and a decrease in agriculture production 

due to droughts (Archer, 2011).  

 

2.6.3 Mpumalanga Province 

 

With projected changes in global climates into the future, changes in the South 

African water sector will be inevitable (Schulze, 2011). For the north-eastern region 

of the country, which includes Gauteng, Limpopo and Mpumalanga provinces, an 

increase in overall rainfall is projected. Figure 2.6 illustrates the projected change 
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in mean annual precipitation for the north-eastern region of South Africa. CSIR 

(2010) states that future rainfall is expected to increase by between 85 and 303 

mm per annum for the north-eastern region as a whole, and the total rainfall is 

expected to range from 301 mm to 758 mm per annum by 2100 (CSIR, 2010). The 

majority of the increased rainfall that is projected is expected to fall during the 

summer months (December to February). An extension of the rain season may 

occur into early spring due to the increase in rainfall predicted for September to 

November. The number of rain events is expected to increase, which could infer 

that the chances of floods may increase (CSIR, 2010).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Current and Projected Mean Annual Precipitation by 2100 

(Source: Davis, 2010).  

 

The majority of rain events are expected to occur in November to January, which 

have the highest number of rain days. The number of rain days per month is 

expected to increase by between 1.036 and 2.188 days. This small change in the 

number of rain days per month compared with the increase in rainfall demonstrates 

that the intensity of rain events and possibly the severity of rain events may 
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increase (Davis, 2010). The risk of flooding during rain events is also likely to 

increase. 

 

2.6.4 Limitations and Uncertainties of Future Climate Projections 

 

While there is sufficient confidence in the scientific community about climate 

change and the associated global patterns of surface temperatures that are 

controlled by thermodynamics, there is little confident in circulation aspects of 

climate change, which are primarily controlled by dynamics that exert a strong 

control on regional climate. Model projections of circulation-related fields (including 

precipitation) show a wide range of possible outcomes, even on centennial 

timescales (Shepherd, 2014). Projections of future climate change by Global 

Climate Models (GCMs) may provide insight into potential broad-scale changes in 

the atmosphere and ocean, such as shifts in the major circulation zones and the 

magnitude of sea-level rise. However, because these models are computationally 

expensive, they are often integrated at relatively coarse horizontal resolutions, 

where the regional details of climate (such as the characteristics of orographic 

precipitation and thunderstorms) and climate change cannot be sufficiently 

described (Davis, 2010). In addition, due to the costs, most studies tend to rely on 

a few GCMs. This, therefore, creates uncertainty in climate projections.  

 

Daly (2006) cautioned over the tendency to equate resolution with realism in 

climate modelling, as climate-forcing factors assumed to be unimportant at coarser 

resolutions may become significant if the scale is refined. Guentchev et al. (2010) 

pointed out that developers of spatial climate data sets should always 

communicate the strengths and limitations of their data sets. For example, the 

climate projections discussed in Section 2.6.1 are based on a CSIR study that used 

two dynamic regional climate models (PRECIS and MM5) and future precipitation 

variables were obtained from ten statistically downscaled GCMs. The use of 

different GCMs to those employed, more GCMs, or GCMs with a higher resolution 

would likely provide different projections for Mpumalanga. Therefore, it is 

imperative that climate projections are read as estimates of what the future may 

look like, instead of a certainty of what future climate will be.   
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2.7 Conclusions 

 

Floods are among the most recurring and devastating natural hazards, impacting 

human lives and causing severe economic damage throughout the world. It is 

understood that flood risks will not subside in the future, and with the onset of 

climate change, flood intensity and frequency will threaten many regions of the 

world (McCarthy et al., 2001; Jonkman, 2005). However, because global data and 

models are generally tailored to relatively coarse spatial (and to a smaller degree 

temporal) resolutions, the local character and short timescale of floods makes 

prediction difficult (at the global scale). Moreover, the impact of local scale floods 

is dependent on the spatial overlap between a flooded area and the exposed 

assets and inhabitants in the region. The spatial variability of such exposures is 

often large, and there are many examples where they are in fact concentrated in 

flood-prone regions (Winsemius et al., 2013).  

 

It should be noted that flooding is not the only risk associated with climate change; 

it is also likely to impact the country through other feedbacks, such as changes in 

vegetation, land-use, urbanisation, groundwater levels and soil types. Due to the 

interlinkages between these spheres, changes in these characteristics will result 

in changes in river systems and hydrological processes, and therefore changes in 

the basin’s responses to future rainfall, upstream dam releases, and flood events. 

This will have a direct impact on the magnitude of floods.  

 

In the South African context, the major risks to water resources include decreased 

availability of water in rivers as a result of the net effect of increased temperatures 

and increased evaporation, coupled with shifts in the timing and amounts of rainfall; 

changes in the concentration and timing of high and low flows due to changes in 

rainfall; increased incidence of floods as the incidence of very heavy rain events 

increases; and increased risk of water pollution and decreased water quality linked 

to erosion and runoff (Davis, 2010). It is clear that climate change, variability and 

associated increased disaster risks will seriously hamper future development 

(Mukheibir and Sparks, 2005), and potentially harm human, natural and physical 

systems in high risk areas and along river banks.  
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CHAPTER 3 – STUDY AREA 

 

 

3. STUDY AREA 

 

3.1 General Description of Study Area  

 

To facilitate the management of water resources, South Africa’s National Water 

Resources Strategy (NWRS) divided the country into nineteen catchment-based 

water management areas (WMAs). However, as part of the second National Water 

Resources Strategy (NWRS 2), the nineteen WMAs have been amalgamated to 

nine WMAs. The Inkomati-Usuthu WMA, where the Crocodile River (East) is 

located (as is shown in Figure 3.1.), is the focus area for this research.   

Figure 3.1: Location of the Crocodile River (East) in North-East South Africa 

 

The Inkomati-Usuthu WMA falls almost completely in the Mpumalanga Province of 

South Africa. It is managed by the Inkomati-Usuthu Catchment Management 

Agency, and consists of four major catchments, namely the Komati, Crocodile, 
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Sabie-Sand catchments (DWA, 2011) and the recently amalgamated Usuthu 

catchment. The Incomati catchment (Figure 3.2), is comprised of the Crocodile 

River, Inkomati River, as well as the Sabie, Komati, Massintonto, Uanetze and 

Mazimechope Rivers. 

 

 

Figure 3.2: The Incomati Catchment 

 

The Crocodile River, which is the focus of this research, is a perennial river that 

originates at Steenkampsberg, north of Dullstroom, in the western part of 

Mpumalanga. It has a relatively large river basin with a total river length of 

approximately 320 km draining a catchment area of about 10 450 km2 from its 

source to its confluence with the Komati River. At Komatipoort, the Crocodile River 

and the Komati River converge to form the Incomati River which cuts through the 

Lebombo Mountains into Mozambique between the border towns of Komatipoort 

and Ressano Garcia. The Incomati River then flows across the Mozambique 

coastal plain for approximately 250 km before reaching the sea at the Incomati 

Delta at Marracuene, approximately 20 km north-east of Maputo. Its main 

tributaries include the Elands, Sand, White and Kaap Rivers (CSIR, 2001), while 
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the minor tributaries include the Nsikazi (or Sigasi) River and the Mbiyamiti River 

(in the Kruger National Park).  

 

The focus of this research will, however, be on the South African portion of the 

Crocodile River (as shown in Figure 3.3). This is mainly due to data availability and 

the consistency of how data are captured and recorded. Inconsistencies in the data 

that are used would impact the accuracy of this research.  

 

 

Figure 3.3: The Crocodile River (East) in South Africa 

 

3.2 Physical Properties of the Study Area  

 

3.2.1 Topography 

 

The Crocodile River rises at an altitude of approximately 2 000 metres above sea 

level (m.a.s.l.) near Dullstroom in the Steenkampsberg Mountains. The upper 

catchment consists of steep-sided valleys, often with sharply defined cliff slopes 

on the eastern edge of the escarpment. From the escarpment, the Crocodile River 

levels out into the basin of the Kwena Dam, and then winds along the valleys of 

the Drakensberg Mountains (Schoemanskloof) to Montrose Falls and the 

confluence of the Elands River (Roux et al., 1999).  The topography of the 

catchment is illustrated in Figure 3.4. The high interior plateau and the low-lying 
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region have relatively flat rolling terrain, while the escarpment zone is mountainous 

with scarps and steep valley flanks (RHP, 2012).  

 

 

Figure 3.4: Topography of the Crocodile Catchment (shown in metres above 

sea level (m.a.s.l.)) (Data Source: USGS, 2014) 

 

The changes in altitude can be represented through a longitudinal profile through 

the main trunk of the river, which recognises changes in the longitudinal 

characteristics of the river. The longitudinal profile of the Crocodile River is 

illustrated in Figure 3.5. 

 

 

Figure 3.5: Longitudinal Profile of the Crocodile River, showing the 

Mountainous, Foothill and Lowland Zones (Adapted from DWA, 2002)  
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Between Montrose Falls and Nelspruit, the Crocodile River is slightly incised into 

a broad, flat-bottomed valley. Further downstream the steep sided river banks are 

densely covered with riparian vegetation and reed beds. Downstream of its 

confluence with the Kaap River, the gradient of the Crocodile River flattens out until 

its confluence with the Komati River at the town of Komatipoort (Roux et al., 1999). 

   

3.2.2 Geology  

 

The Crocodile River is a slow flowing river whose channel flows over mainly 

bedrock or sandy pools (Roux and Selepe, 2013).  The geology of the Crocodile 

catchment is complex, as is illustrated in Figure 3.6. 

 

 

Figure 3.6: Geology of the Crocodile Catchment (Data Source: WRC, 2011) 

 

It is characterized in the south by sedimentary rocks (such as arenite) and volcanic 

rocks (mainly lavas) of the Barberton sequence. In the west, it is composed of a 

complex mixture of sedimentary rocks (such as arenite and shale), volcanic (mainly 

andesite) and dolomitic rocks of the Transvaal sequence. In the east, it contains a 

very small area of sedimentary rocks (such as shale) and volcanic rocks (mainly 

basalt and rhyolite) of the Karoo sequence (Mussá et al., 2015). 

 

The wider Lowveld has developed as the younger overlying sediments have been 

eroded away, exposing the older granitic geology. The topography associated with 
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the granite is thus typically gently undulating, which has had a concomitant effect 

on the type of drainage present in the area (SANRAL, 2012). The Kruger National 

Park contains rocks that represent the earliest parts of South Africa’s geological 

history. Archaean rocks present in the KNP include both Archaean granitoid 

intrusions and Archaean greenstone belt fragments (Robb et al., 2006). 

 

3.2.3 Soil Typology 

 

The catchment is characterised by plains with moderate slopes and highveld 

grasslands on deep red to yellow sandy soils, overlying granites, quartzites and 

basalts (CSIR, 2013). The soils are highly variable, ranging from moderately deep 

clayey loam in the west, to moderately deep sandy loam in the central areas and 

moderately deep clayey soils in the east (Okello et al., 2015). Figure 3.7 illustrates 

that the dominant soil textures in the catchment, are sandy loam to loamy sand 

(LmSa-SaLm), sandy clay to clay (SaCl-Cl) and sandy clay loam (SaClLm). The 

type of soil in the river basin determines the saturation level of the riverbed because 

the soil type determines whether rainfall will infiltrate and impact the ability of 

vegetation to grow. (Water infiltrates sand quicker than loamy and clayey textures. 

Clayey textures have the lowest infiltration rate.) This will impact the characteristics 

of the river basin, such as the vegetation and anthropogenic factors. 

 

 

Figure 3.7: Soil Types in the Crocodile Catchment (Data Source: WRC, 2011) 
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3.2.4 Ecology 

 

The natural ecology of the study area consists of savannah-type vegetation, i.e. 

very open woodland with a grassy understorey. Dense thickets and large trees 

occur along drainage lines, wetlands and rivers in the study area (SANRAL, 2012). 

There are 3 major biomes in the study area, grassland, savanna (bushveld) and 

forest (Figure 3.8). The grasslands are found predominantly on the higher altitude 

plateaus and slopes, and the bushveld is dominant in the lower plains. Patches of 

afromontane forest are found on the Drakensberg Escarpment - the western half 

of the catchment has the largest number of exotic plantations. The area below 250 

m altitude falls within the typical Bushveld (Roux and Selepe, 2013).  

 

 

Figure 3.8: Ecology of the Crocodile Catchment (Data Source:  WRC, 2011) 

 

3.2.5 Land Cover and Land Use Typology 

 

A large proportion of the study area has been modified or transformed from its 

natural condition (CSIR, 2001). The increase in modified areas results in changes 

in the relationship between land-use and environmental impacts. For example, an 

increase in urban areas results in an increase in surface runoff and consequently 

erosion and flooding, which is a result of the increase in high flows in localised 

areas. Therefore, the land cover types in the area, illustrated in Figure 3.9, will 

likely influence the possibility and magnitude of flooding.  
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Figure 3.9: Land Cover Types in the Crocodile Catchment (Data Source: NLC, 

2009)  

 

The area is characterised by agriculture (pasture, dryland or irrigated cultivation), 

conservation areas and forestry, as well as mining and industrial activities (RHP, 

2012). The Kaap River sub-catchment has been intensively mined (Heath, 1999). 

Commercial agriculture predominates, with much of the area in the vicinity of White 

River being utilised for the production of subtropical fruit, in particularly citrus, as 

well as sugarcane (SANRAL, 2012).  

 

In certain areas, small compartments of commercial forestry occur (SANRAL, 

2012). In the low-lying region, there are large conservation areas such as the 

internationally renowned Kruger National Park (CSIR, 2001). In addition, there are 

extensive areas of exotic afforestation in the upper and middle areas of the 

catchment (Heath, 1999). 

 

3.2.6 Settlement Patterns 

 

The area is largely rural, although there are a few towns, and urbanisation is rapid 

(RHP, 2012). The major settlement in the catchment is Nelspruit, although parts of 

the area to the north-west of Nelspruit have a low population density. Other 

‘transformed’ parts of the study area include urban areas (residential, retail and 
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light industrial as well as a newly-developed informal settlement component), with 

a number of transport links in the form of road and rail (SANRAL, 2012). Settlement 

patterns along the river basin are illustrated in Figure 3.10.  

 

 

Figure 3.10: Settlement Patterns along the Crocodile Catchment (Data 

Source: NLC, 2009 and Google Imagery, 2014)  

 

The Middle Crocodile River sub-catchment is impacted by intensive urbanisation 

around Nelspruit, aNyamazane and Matsulu (Heath, 1999). Approximately 1.5% of 

the study area is under urban development, although this is expanding rapidly. 

There are concerns about this in terms of loss of natural habitat and increased 

generation of pollution and waste (CSIR, 2001), leading to an increase in 

vulnerability to flood events. 

 

3.3 Climatological Properties of the Study Area  

 

3.3.1 Rainfall 

 

There is a typical rainfall gradient between the escarpment and the lower lying 

areas, with rainfall decreasing as one moves eastward away from the escarpment 

into the Lowveld. The location of parts of the study area within the foothills of the 

escarpment means that these areas have a higher rainfall than other surrounding 

lower-lying areas (SANRAL, 2012). The region, therefore, has variable rainfall 
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distribution due to the large variation in altitude and relief. The mean annual rainfall 

(i.e. precipitation) over the river basin is illustrated in Figure 3.11.  

 

 

Figure 3.11: Mean Annual Precipitation (MAP) in the Crocodile Catchment      

(Data Source:  WRC, 2011) 

 

Rainfall is highly seasonal with rainfall predominantly occurring in the summer 

months (SANRAL, 2012). The Highveld region experiences high rainfall, which is 

mostly received in the form of summer storms (RHP, 2012) as peak rainfall months 

are December through January (DWAF, 2004). The mean annual rainfall for the 

southern part of the study area ranges between 775 and 795 mm per annum. To 

the higher-lying ground to the north, rainfall gradient increases to around 875 mm 

per annum (SANRAL, 2012). On the escarpment, the rainfall is generally higher (in 

excess of 600-1200 mm per annum), while the low-lying areas are drier (400-600 

mm per annum) (RHP, 2012). 

 

Inter-annual fluctuations in rainfall are large, however, and extremes of flooding 

and drought are not uncommon (RHP, 2012). High variability is also common 

seasonally, and high rainfall events that result in flooding are analysed further in 

Chapter 4.1. This high seasonality of precipitation has implications for the 

hydrology of the area, and means that river flows are typically much higher in the 

summer months (SANRAL, 2012). 
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3.3.2 Temperature 

 

The Crocodile River Basin region has variable temperature due to the large 

variation in altitude and relief. The area typically experiences hot summer 

temperatures, whilst winters are generally mild with a low incidence of frost 

(SANRAL, 2012). The Highveld region is cool (10-18°C), while the escarpment 

varies from 10-12°C to 20-22°C (Figure 3.12). In the low-lying areas temperatures 

are generally warmer, with an annual average of 22°C (RHP, 2012). Maximum 

temperatures are experienced during the summer season in January, while 

minimum temperatures are experienced during the winter season in June.  

 

 

Figure 3.12: Average Temperature in the Crocodile Catchment (Data Source: 

ArcGIS Gallery, 2015) 

 

Due to the high and dry temperatures of the region, evaporation is relatively high. 

Potential evaporation decreases from downstream (low altitudes) to upstream 

(high altitudes) (Mussá et al., 2015). Average potential annual evaporation ranges 

from 1 600 mm in the south-west to 2 000 mm in the east. The highest evaporation 

occurs in January (approximately 203 mm) and the lowest in June (101 mm). 
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3.4 Hydrological Properties of the Study Area  

 

The maximum of usable surface water, existing groundwater use and usable return 

flows that can be abstracted from the system (taking into account storage and 

natural runoff), is 859 million m3/a (RHP, 2012). This is referred to as the estimated 

maximum yield, as defined in the NWRS (2004). 

 

The Crocodile Catchment has a natural mean annual runoff (nMAR) of 1 200 

million m3/a. This is the total flow calculated for a specified period of time (i.e. 1 

October to 30 September) in the catchment’s natural state. The mean annual runoff 

(MAR) for each of the sub-catchments in the Crocodile Catchment, which is the 

average flow calculated for a specified period of time for a specified area, is 

illustrated in Figure 3.13.  

 

 

Figure 3.13: The Natural Mean Annual Runoff (million m3/a) for the Sub-

Catchments in the Crocodile Catchment (Data Source: WRC, 2011) 

 

As illustrated in Figure 3.13, the MAR in the western and northern parts of the 

catchment varies between 200 and 500 million m3/a, which can be attributed to the 

Kwena and Witklip Dams that regulate the flow. The eastern part of the catchment, 

where the Kruger National Park is located, has a MAR of less than 10 million m3/a. 

This is mainly attributed to the forested areas, which reduce the runoff that would 

have flowed in the river under natural conditions.  
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3.5 Conclusions  

 

While the Crocodile River catchment is characterized by a semi-arid climate, 

precipitation is highly seasonal. More than 80% of the annual rainfall falls during 

the summer half-year (October to March) and also varies over the catchment - it is 

higher in the middle parts and lower in the upstream and downstream regions 

(Mussá et al., 2015). In addition, there is increasing development along the 

Crocodile River, including rural communities, urban areas, industries and 

agricultural changes. This may increase flood risk, as these natural and hydro-

climatic characteristics create a possible flood hazard for the basin, which may 

result in flood-related impacts on settlements and industries, as well as on 

vegetation cover, fluvial and sediment systems). This relationship is investigated 

further in Chapters 5 to 8.  
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CHAPTER 4 - DATA ACQUISITION, ANALYSIS AND METHODOLOGY 

 

 

4. DATA ACQUISITION, ANALYSIS AND METHODOLOGY 

 

The availability of data determines the methodology and the flood parameters to 

be modelled in flood hazard mapping (Zimmermann, 2008). In order to perform 

flood modelling, the data requirements need to be determined and sourced. These 

data requirements include: 

 Historical climate and hydrological data that describe the flood event,  

 Topographic data that describe the topography of the study area, 

 Land cover, land use and other spatial data that provide a spatial 

description of the river basin characteristics. 

 

The data are required for hydraulic modelling to show flood parameters such as 

extent and depth. In addition, the accuracy of the data is important as it influences 

the accuracy and reliability of the resulting flood hazard maps.  

 

4.1 Hydro-Climatic Data 

 

4.1.1 Data Acquisition 

 

The Department of Water and Sanitation (DWS) is the custodian of all hydrological 

data in South Africa, while the South African Weather Service (SAWS), the DWS, 

as well as agricultural organisations are custodians of meteorological data. 

However, as rainfall directly impacts the hydrological characteristics, namely water 

level and discharge (or flow) of a system, DWS also maintains meteorological data. 

 

Monitoring information needs to be stored in an information system that is 

accessible and comprehensible to decision-makers and water managers (de la 

Harpe, 1998; Republic of South Africa, 1998). The Hydrological Services at DWS 

are responsible for providing hydrological data and information. Their Hydrological 

Information System (HIS) consists of various databases that include data on river 

stations, river flow and other related information. More than 800 gauging stations 

for river flow exist and each station has one or more monitoring points (DWA, 
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2009). This information system aims to provide various water role-players with 

information for research and development, planning, environmental impact 

assessments, determining water resource status, improving public safety, and 

disaster management (de la Harpe, 1998; Republic of South Africa, 1998). 

 

The data for the relevant weather and gauging stations are contained on DWS’s 

online HIS. Table 4.1 shows the weather stations in the Inkomati Water 

Management Area, while Table 4.2 shows the gauging stations. As several stations 

are currently non-operational, they have been excluded from this analysis. As 

stipulated above, the gauging stations record various hydrological data. For this 

research, the water level and discharge rates were deemed as the most suitable 

data entries, and the daily readings were downloaded from DWS’s HIS. Table 4.1 

and Table 4.2 also show the period for which there are available records for 

weather and gauging stations respectively.  

 

Table 4.1: Weather Stations in the Inkomati WMA (Data obtained from DWS’s 

HIS at www.dwaf.gov.za/hydrology/. Accessed: 31 May 2014)  

Station No    Name Daily Data Availability 

X1E003 Nooitgedacht Dam 02/08/1961 30/04/2014 

X1E006 Vygeboom Dam 31/07/1970 01/04/2014 

X1E007 Driekoppies Dam 06/11/2004 30/04/2014 

X2E010 Witklip Dam 31/07/1970 30/04/2014 

X2E013 Kwena Dam 02/12/1979 30/04/2014 

X3E005 Inyaka Dam 31/07/2002 30/04/2014 

 

Table 4.2: Gauging Stations along the Crocodile River (East) (Data obtained 
from DWS’s HIS at www.dwaf.gov.za/hydrology/. Accessed: 31 May 2014)  

Station No    Name Daily Data Availability 

X2H006 Karino 02/10/1929 30/04/2014 

X2H013 Montrose 21/01/1959 30/04/2014 

X2H016 Tenbosch 24/08/1960 30/04/2014 

X2H032 Weltevrede 15/09/1968 30/04/2014 

X2H046 Riverside 04/09/1985 30/04/2014 

X2H070 Badfontein 09/11/1979 30/04/2014 

 

The weather and gauging stations provided in Table 4.1 and Table 4.2 were 

mapped in order to obtain a spatial perspective of their distribution. As the weather 

stations provided in Table 4.1 are for the Inkomati WMA, several of the stations 

(i.e. X1E003, X1E006, X1E007 and X3E005) fall outside of the Crocodile 

http://www.dwaf.gov.za/hydrology/
http://www.dwaf.gov.za/hydrology/
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Catchment and were thus excluded from the analysis. The weather and gauging 

stations that fall within the catchment are illustrated in Figure 4.1. 

 

 

Figure 4.1: Weather and Gauging Stations in the Crocodile Catchment  

 

The analysis of the weather and gauging stations is provided below. In addition, 

the discussion of which weather and gauging stations will be used for the 

remainder of this research and the reasoning behind the selection is also provided.  

 

4.1.2 Data Analysis 

 

As the accuracy of the flood modelling relies on the accuracy of the data, it was 

essential that the quality of the data was assessed. Table 4.3 provides an overview 

of the quality codes that are used by DWS to describe the quality of the data. Only 

the applicable quality codes (i.e. codes that are relevant for the data points for the 

weather and gauging stations in Table 4.1 and 4.2), and the associated 

descriptions, have been provided in Table 4.3. 

 

Table 4.3: Description of Quality Codes for Data Entries (Data obtained from 

DWS’s HIS at www.dwaf.gov.za/hydrology/. Accessed: 31 May 2014) 

Quality Code Description 

Quality Code 1 Good continuous data 

Quality Code 2 Good edited data 

Quality Code 4 Unaudited 
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Quality Code 26 Audited Gauge Plate Readings / dip level readings 

Quality Code 60 Above Rating 

Quality Code 64 Audited Estimate 

Quality Code 65 Unaudited Estimate 

Quality Code 151 Data Missing 

Quality Code 170 Permanent Gap 

 

The quality codes show that codes 1 and 2 are the most desirable quality codes 

as they represent good, continuous and edited data. Codes 4 and 26 are less 

desirable as they represent unaudited data and gauge plate readings or dip level 

readings. Codes 60, 64 and 65 are undesirable as they represent data estimates. 

Codes 151 and 170 represent data gaps, and can therefore not be used for the 

analysis. Based on these quality codes, the quality of the data for each of the 

weather and gauging stations is shown in the Table 4.4 and Table 4.5 respectively.   

 

Table 4.4: Analysis of All Data Records for Weather Stations (Data Range: 02 

October 1929 – 10 April 2014) 

Station No Total Entries  Quality Code 1 Quality Code 4 Quality Code 26 

X1E003 3 560 3 287 273 0 

X1E006 3 529 2 800 729 0 

X1E007 3 438 0 0 3 438 

X2E010 3 560 3 135 425 0 

X2E013 3 560 3 287 273 0 

X3E005 3 560 3 287 273 0 

TOTAL 21 207 15 796 1 973 3 438 

 

Table 4.5: Analysis of All Water Level and Discharge Rate Data Records for 

Gauging Stations (Data Range: 02 October 1929 – 10 April 2014) 

Station 
No 

Total 
Entries 

Quality 
Code 1 

Quality 
Code 2 

Quality 
Code 4 

Quality 
Code 60 

Quality 
Code 64 

Quality 
Code 65 

Quality 
Code 151 

Quality 
Code 170 

Water Level 

X2H006 94 484 84 909 81 9 494 0 0 0 0 0 

X2H013 65 491 55 641 1 412 8 294 0 143 0 0 1 

X2H016 94 405 78 641 2 556 6 613 0 0 6 593 0 2 

X2H032 67 133 50 231 5 16 500 4 389 0 2 2 

X2H046 96 644 84 693 785 11 160 0 0 0 3 3 

X2H070 96 469 85 454 2 736 8 279 0 0 0 0 0 

TOTAL 514 626 439 569 7 575 60 340 4 532 6 593 5 8 

Discharge Rate 

X2H006 94 483 83 642 81 8 560 2 200 0 0 0 0 

X2H013 65 491 55 641 1 412 8 294 0 143 0 0 1 
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X2H016 94 405 78 641 2 556 6 613 0 0 6 593 0 2 

X2H032 67 133 50 231 5 16 500 4 389 0 2 2 

X2H046 96 644 81 821 785 7 765 1 666 4 601 0 3 3 

X2H070 96 469 85 433 2 736 8 279 21 0 0 0 0 

TOTAL 514 625 435 409 7 575 56 011 3 891 5 133 6 593 5 8 

 

Importantly, although data were available for more than 10 years for the gauging 

and weather stations, as discussed in Section 4.4 the limited written records of 

flood events on the river made it difficult to analyse previous floods events. 

Therefore, a more recent time period (i.e. August 2004 to April 2014) was selected 

to enable a comparison and analysis between flood records and the hydro-climatic 

data. The months of August to April were selected to coincide with the rainfall 

season (i.e. summer months), as discussed in Chapter 3.  

 

The selection of the weather and gauging stations was based on the quality of the 

data, as well as the spatial distribution of the stations. A summary of the quality of 

the data (02 October 1929 to 10 April 2014) is provided in Table 4.6, while the 

spatial distribution is discussed below.  

 

Table 4.6: Summary of the Data Quality of All Stations (Data Range: 02 

October 1929 – 10 April 2014) 

Station No 
Good Quality Average Quality Poor Quality Total 

Entries Total % Total % Total % 

Weather Stations 

 X2E010 3 560 100 0 0 0 0 3 560 

 X2E013 3 560 100 0 0 0 0 3 560 

Gauging Stations (Water Level) 

 X2H006 84 990 90 9 494 10 0 0 94 484 

 X2H013 57 053 87 8 294 13 144 0 65 491 

 X2H016 81 197 86 6 613 7 6 595 7 94 405 

 X2H032 50 236 75 16 500 25 397 1 67 133 

 X2H046 85 478 88 11 160 12 6 0 96 644 

 X2H070 88 190 91 8 279 9 0 0 96 469 

Gauging Stations (Discharge Rate) 

 X2H006 83 723 89 8 560 9 2 200 2 94 483 

 X2H013 57 053 87 8 294 13 144 0 65 491 

 X2H016 81 197 86 6 613 7 6 595 7 94 405 

 X2H032 50 236 75 16 500 25 397 1 67 133 

 X2H046 82 606 85 7 765 8 6 273 6 96 644 

 X2H070 88 169 91 8 279 9 21 0 96 469 



Student No: 0504584n 

68 

 

The two weather stations, namely X2E010 (at Witklip Dam) and X2E013 (at Kwena 

Dam) have 100% of good quality data entries. The two weather stations are located 

relatively far apart, with Station X2E013 located in the western part of the 

catchment, and Station X2E010 located in the northern-central part (see Figure 

4.2). As weather patterns of the entire catchment will influence the Crocodile River, 

both weather stations will be used for this dissertation.   

 

The gauging stations do not all have good quality data entries. Station X2H006 (at 

Karino) and X2H070 (at Badfontein) have the highest number of good quality data 

entries for the water level (90% and 91% respectively) and discharge rate (89% 

and 91% respectively), while the X2H032 (at Weltevrede) has the lowest number 

(75% for both water level and discharge rate). Station X2H016 (at Tenbosch) has 

the highest number of poor quality data entries (7%) for both the water level and 

discharge rate.  

 

As this research focuses on a segment of the Crocodile River (as discussed in 

Section 4.4.1), gauging stations that are located upstream of the segment. i.e. 

Station X2H013 (at Montrose), and along the segment, i.e. Station X2H006 (at 

Karino), were selected. The segment, weather and gauging stations that will be 

used for the remainder of this research are illustrated in Figure 4.2. 

 

 

Figure 4.2: The Selected Segment (Red Rectangle), Weather (Pink Circles) 

and Gauging Stations (Purple Circles)  
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The X2E010 Weather Station  

The daily rainfall at X2E010 weather station at Witklip Dam is illustrated in Figure 

4.3. The figure illustrates that the highest daily rainfall event was 210 mm, which 

was experienced on the 17th of January 2012, and the second highest was 184 

mm, which was experienced on the 3rd of February 2009.  

 

 

Figure 4.3: Daily Rainfall for the X2E010 Weather Station at Witklip Dam (1 

Aug 2004 - 30 Apr 2014) 

 

The X2E013 Weather Station 

The daily rainfall at X2E013 weather station at Kwena Dam is illustrated in Figure 

4.4. The figure illustrates that the highest daily rainfall event was 74 mm, which 

was experienced on the 28th of December 2013, and the second highest was 66.4 

mm, which was experienced on the 4th of January 2010.  

 

 

Figure 4.4: Daily Rainfall for the X2E013 Weather Station at Kwena Dam (1 

Aug 2004 - 30 Apr 2014)  
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For both weather stations, seasonal variations in the rainfall patterns are evident, 

with rain falling during the spring and summer seasons and almost no rainfall in 

the winter and autumn seasons. 

 

The X2H006 Gauging Station 

The water levels at the X2H006 gauging station at Karino (circled in purple in 

Figure 4.2), are illustrated in Figure 4.5, while the discharge rates are illustrated in 

Figure 4.6.  

 

Figure 4.5: Daily Water Levels at the X2H006 Gauging Station at Karino (1 

Aug 2004 - 30 Apr 2014)  

 

 

Figure 4.6: Discharge (Flow) Rates at the X2H006 Gauging Station at Karino 

(1 Aug 2004 - 30 Apr 2014)  
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The X2H013 Gauging Station 

The water levels at the X2H013 gauging station at Montrose (circled in purple in 

Figure 4.2), are illustrated in Figure 4.7, while the discharge rates are illustrated in 

Figure 4.8.  

 

 

Figure 4.7: Daily Water Levels at the X2H013 Gauging Station at Montrose (1 

Aug 2004 - 30 Apr 2014)  

 

 

Figure 4.8: Discharge (Flow) Rates at the X2H013 Gauging Station at 

Montrose (1 Aug 2004 - 30 Apr 2014)  

 

The water level and discharge series for both gauging stations exhibit significant 

variations although an annual cycle is evident (i.e. peaks during the spring-summer 

periods).  
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4.1.3 Data Processing 

 

The hydro-climatic data were analysed through the use of the Microsoft Excel 

software package. This involved an analysis of the daily records, mean values, 

trends, and the development of scenarios (as discussed further in Chapter 6).    

 

4.2 Topographical Data  

 

4.2.1 Data Acquisition 

 

Topographical data are required to describe a river and its surrounding area 

(Maidment, 2002; Martini and Loat, 2007). DEMs and contours are examples of 

data sources that can be used for topographical data. 

  
In the past, expensive and time consuming ground surveys and photogrammetric 

data collection had to be done to collect topographic data for study areas (Heywood 

et al., 2002). With the arrival of remote sensing, especially airborne laser altimetry 

(Marks and Bates, 2000) and interferometric synthetic aperture radar (SAR) 

(Maidment and Djokic, 2000; Smith, 2002), topographic data for flood modelling 

analysis can be easily obtained. In European countries, the collection of this high 

resolution data is done periodically (Hunter et al., 2007). This is also the same for 

other developed countries such as those located in North America. The 

topographical data sources that exist in South Africa, are provided in Table 4.7.  

 

Table 4.7: Topographical data sources in South Africa 

Data Sources  Resolution or Interval Coverage 

Contours 

 CD: NGI 1: 10 000 scale topographic mapping 5 m - 20 m interval South Africa 

 CD: NGI 1: 50 000 scale topographic mapping 20 m interval South Africa 

DEMs Derived from Satellite Platforms 

 LiDAR 1 m vertical resolution Global 

 Worldview 1 & 2, GeoEye-1, Pleiades 1A/1B 1 m vertical resolution Global 

 ASTER GDEM 2 m - 30 m resolution Global 

 CD: NGI DEM  25 m - 50 m resolution South Africa 

 SANSA 30 m resolution South Africa 

 SRTM DEM  30 m - 90 m resolution Global 

 GTOPO 30  1 km resolution Global 
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There are several national and international topographical data sources that are 

available: 

 The Chief Directorate: National Geo-spatial Information (CD: NGI) provides 

5 m and 20 m interval contours for partial and national coverage 

respectively. DEMs are available from CD: NGI at 25 m and 50 m grid with 

partial coverage of South Africa and a vertical accuracy of 2.5 m (CD: NGI, 

2011a). 

 Light detection and ranging (LiDAR) offers DEMs at 1 m resolution with a 

vertical accuracy of 0.15 m to 0.25 m. 

 The Worldview 1 and 2, GeoEye-1, and Pleiades 1A/1B satellites offer 

DEMs at 1 m resolution with a vertical accuracy of 0.5 m to 2 m. The data 

are available from the United States Geological Survey (USGS) website. 

 The Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) Global digital elevation model (GDEM) provides DEMs of 2 m up 

to 30 m resolution, with a vertical accuracy of up to 15 m. The data are 

available from the USGS website. (This dataset was used for this 

dissertation, as discussed in Section 4.2.2.) 

 The South African National Space Agency (SANSA) provides DEMs at 30 

m resolution, with a vertical accuracy of 5 m. 

 The Shuttle Radar Topography Mission (SRTM) DEM has a 30 m to 90 m 

resolution, with a vertical accuracy of 10 m. The data are available from the 

USGS website. 

 The Global 30 Arc-Second Elevation (GTOPO 30) is a global digital 

elevation model (DEM) that provides DEMs at 1 km resolution, with a 

vertical accuracy 30 m. The data are available from the USGS website. 

 

The quality of the topographical data source is an important factor in the accuracy 

and reliability of the final flood hazard map (Martini and Loat, 2007; Sane and 

Huokuna, 2008; De Moel et al., 2009), thus it is important to select the most 

suitable topographic data source. Martini and Loat (2007) recommends a 0.5 m 

vertical resolution and a 10x10 m (possibly even 5x5 m) horizontal resolution as 

minimum requirements for a DEM. Where contours are used to generate a DEM, 

the contours should at least be at 1 m vertical intervals (Martini and Loat, 2007). 
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4.2.2 Data Preparation  

 

From Table 4.7 above, it is evident that very limited data at the required resolution 

are available for South Africa. Therefore, it will be essential to obtain data from 

international sources. The USGS website provides access to various DEMs. A 

search on this database provided two DEMs for the study area, ASTER Global 

DEM (GDEM) Version 2 and SRTM, which both provided 1 Arc-Second (30 x 30 

m) grids. Both DEMs were downloaded and uploaded on the HEC-RAS software 

package. This enabled a comparison of the two models, and a selection of the 

most precise model. For this study, the ASTER DEMs provided the most precise 

representation of the study area. In addition, the file type was compatible with the 

software packages. The two ASTER DEMs that were downloaded for use are 

illustrated by the red squares in Figure 4.9.  

 

 

Figure 4.9: The Two ASTER DEMs (Red Squares) used for this Research 

(Data Source: USGS, 2014) 

 

The two DEMs were used for hydraulic modelling. This enables the development 

of flood maps based on an accurate spatial representation of the topography. To 

enable this, the two DEMs where converted from raster to tin format as this is the 

format required for input into the hydraulic modelling software. The converted 

DEMs are illustrated by the red squares in Figure 4.10. 

 

26S 

30E 31E 32E 

25S 

26S 



Student No: 0504584n 

75 

 

 

 

Figure 4.10: The Two Converted DEMs (Red Squares) used for this Research 

 

4.2.3 Data Processing 

 

There are various software packages that can be used for the modelling of flood 

events. As flood modelling has various processing requirements, a combination of 

software packages is often required. This includes flood modelling software, and 

spatial analysis software to prepare flood maps. A detailed explanation of flood 

modelling software packages is provided in Section 2.5.2, while an explanation of 

spatial analysis and flood mapping software packages is provided in Section 2.5.3.  

 

The software packages that were be used for this research are the HEC-RAS 4.1.0 

package for flood modelling, and ArcGIS 10.3.1 for spatial analysis and flood 

mapping.  

 

 HEC-RAS is a dynamically coupled modelling environment that is used for 

modelling 2D flow.  It can be utilised with numerous software packages that 

are produced by the US Army Corps of Engineers (i.e. RAS Mapper and 

HEC-GeoRAS), and thus combines the advantages offered by the 

individual packages. RAS Mapper offers 2D modelling capabilities, while 

HEC-GeoRAS allows the preparation of geometric data for import into 
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HEC-RAS and also enables processing of post-simulation results exported 

from HEC-RAS.  

 ArcGIS is a collection of spatial analysis software that is produced by ESRI 

(e.g. ArcMap, ArcScene), and can thus be used for 3D analysis, geospatial 

data preparation and map creation. DEMs such as raw LiDAR data can be 

converted to a 3D layer by using the spatial analysis toolbox offered by the 

software package. In addition, the HEC-GeoRAS software package is 

loaded as an extension to ArcGIS, and is therefore accessed through the 

package. 

 

4.3 Land Use and Land Cover Data 

 

4.3.1 Data Acquisition 

 

Land use refers to the human activity (e.g. industry, agriculture) associated with a 

specific land unit, while land cover refers to all natural features (e.g. vegetation 

(natural or planted), water, ice, bare rock) and anthropogenic features (e.g. 

buildings, roads) on the surface of the earth (Thompson, 1996). These two terms 

are often used interchangeably. However, in order to provide the comprehensive 

catchment characteristics, both sets of data need to be considered.  

 

South Africa has four main land cover data sets available: 

 The National Land Cover (NLC) 1994, was released in 1996 by the Council 

for Scientific and Industrial Research (CSIR). It is a manually digitised data 

set based on the Land Remote-Sensing Satellite (Landsat) Thematic 

Mapper (TM) satellite imagery collected from 1994 to 1996. This vector 

data set contains 31 land cover classes (Schoeman et al., 2010). 

 The National Land Cover (NLC) 2000 was released in 2005. It is based on 

the Landsat 7 Enhanced Thematic Mapper (ETM) satellite imagery for the 

period 2000 to 2001. This raster dataset contains 45 land cover classes 

(Schoeman et al., 2010). 

 The National Land Cover (NLC) 2009 and released during 2010. It was 

based on the merging of the NLC 2000 as a base layer with other more 

recent national land cover datasets that were developed by other state 
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organisations or parastatal institutions (SANBI, 2010). This raster dataset 

has a final classification of eight classes (SANBI, 2009). 

 The Environmental Potential Atlas (ENPAT) was developed for the 

Department of Environmental Affairs (DEA) by the University of Pretoria in 

2001. It provides land cover at a scale of 1:250 000, and was developed to 

provide guidance in decision-making regarding environmental impact 

assessments (ENPAT, 2001). 

  

The NLC 2000 contains 45 classes and was carried out at a scale of 1:50 000 over 

the entire country. On the other hand, the NLC 2009 is the most recent dataset. 

However, the fact that the NLC 2009 only contain 8 classes does not make it 

suitable. Both of these datasets were downloaded and analysed, as this enabled 

an assessment of which dataset provided the most detailed representation of the 

catchment.  

 

Other spatial information will also be required. This includes data and/or shapefiles 

showing vegetation, soil types, as well as spatial characteristics (including 

settlement patterns, land use types, administrative boundaries and socio-economic 

data). The data and/or shapefiles were obtained from various databases, such as 

the South African National Biodiversity Institute (SANBI), the Water Research 

Commission (WRC), ArcGIS Gallery and other online GIS databases. The 

Department of Water and Sanitation (DWS), Chief Directorate Surveys and 

Mapping (CDSM), National Geo-spatial Information (NGI), a component of 

Department of Rural Development and Land Reform (DRDLR).  

 

Satellite imagery is used to capture the surface of the earth at a particular time, 

and can be classified into three categories according to their spatial resolution:  

 low/medium resolution (30 m - 1 000 m);  

 medium resolution (10 m - 30 m); and  

 high resolution (0.1 m - 10 m) (Altan et al., 2010). 

 

There is a wide range of satellite imagery available for South Africa that is 

distributed by local and international custodians (as shown in Table 4.8). Table 4.8 

also indicates the imagery that is used for this dissertation.  
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Table 4.8: Aerial and Satellite Imagery Available for South Africa. The 

imagery used for this dissertation is indicated in italics.  

Name 
Horizontal 

Resolution or Scale 
Coverage 

Aerial Photo 

 CD: NGI Panchromatic (Pan) 1: 20 000 - 1: 150 000 South Africa 

 CD: NGI Colour 1: 20 000 - 1: 30 000 South Africa 

Orthophotos 

 CD: NGI Colour 1: 10 000 South Africa 

Satellite Imagery (optical) 

 WorldView-3 (2014 - to date) 0.31 m Global 

 GeoEye-1 (2008 - to date) 0.46 m Global 

 WorldView-1 and WorldView-2 (2007 - to date) 0.46 m Global 

 Pleiades-1A and Pleiades-1B (2011 - to date) 0.5 m Global 

 QuickBird (2001 - 2015) 0.65 m Global 

 IKONOS (1999 - date) 0.82 m Global 

 SkySat-1 and SkySat-1 (2013 - to date) 0.9 m Global 

 SPOT-6 and SPOT-7 (2012 - to date) 1.5 m Global 

 FORMOSAT-2 (2004 - 2015) 2 m Global 

 ALOS (2006 - 2011) 2.5 m Global 

 CARTOSAT-1 (2005 - to date) 2.5 m Global 

 SPOT-5 (2002 - 2015) 2.5 m - 5 m Global 

 RapidEye (2008 - to date) 5 m Global 

 SPOT-1, SPOT-2, SPOT-3 and SPOT-4 (1986 - to date) 10 m Global 

 Landsat-8 OLI (Operational Land Imager) (2013 - to date) 30 m Global 

 
Landsat-7 and Landsat-8 Enhanced Thematic Mapper 

Plus (ETM+) (1999 - to date) 
15 m Global 

 ASTER (1999 - to date)  15 m Global 

 CBERS-2 and CBERS-CCD (2003 - to date) 20 m Global 

 
Landsat-4 and Landsat-5 - Landsat Thematic Mapper 

(TM) sensor (1982 - to date) 
30 m South Africa 

 
Landsat 1-5 Multispectral Scanner (MSS) (1972 - to 

date) 
60 m South Africa 

 Terra (MODIS) (1999 - to date) 250 m, 500 m, 1 km Global 

 NOAA AVHRR (1981 - to date) 1 km Global 

 

The type and scale of the flood hazard map will determine the geometric resolution 

of the imagery. For example, low resolution (250 m) Moderate Resolution Imaging 

Spectroradiometer (MODIS) images are used when the flood extent is large and 

mapped at a national scale (e.g. 1: 500 000) (Altan et al., 2010). Medium resolution 

can be considered for monitoring food events at regional scales (e.g. 1: 25 000 to 

1: 50 000), while high resolution is best suited for local applications (e.g. 1: 5 000 

to 1: 25 000); both medium and high resolution imagery can be obtained from the 
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Chief Directorate: National Geo-spatial Information (CD: NGI). Therefore, a 

combination of MODIS and CD: NGI imagery will be used in this research.  

 

A concern, however, is that high-resolution imagery is not captured daily. For 

example, the Landsat Thematic Mapper (TM) sensor, the Landsat Enhanced 

Thematic Mapper Plus (ETM+) sensor, as well as the Landsat 8 sensors collect 

images of the Earth with a 16-day repeat cycle. Therefore, depending on the day 

for which imagery is required, there is a possibility that no imagery will be available.  

 

4.3.2 Data Analysis 

 

Land use and land cover data, as well as any other relevant data and shapefiles, 

were downloaded from the relevant sources as discussed above. Through the use 

of the shapefiles and Google Imagery, the spatial characteristics of the area were 

identified and analysed. This enabled the selection of a segment for the 

dissertation, as discussed in Section 4.4.  

 

An online search of satellite imagery from the CD: NGI and MODIS database was 

also conducted. In addition, the USGS website, which houses daily global satellite 

imagery was also searched. Challenges were however experienced with the 

available satellite imagery. This was mainly due to the fact that images for South 

Africa are not captured daily.  Although several Landsat 7 ETM+ (30 m resolution) 

satellite images could be found, there were no clear images available for the day 

of the flood events (5 February 2009 or 19 January 2012). (The cloud cover on the 

days after the flood resulted in the images being unclear and unusable.) The high 

resolution images that were available were when the flood had already receded, 

and could therefore not be used to compare the flood distribution. In addition, the 

MODIS images that were available on the flood events were of a poor resolution, 

and could thus not be used to compare the flood distribution. Therefore, as no 

satellite imagery was found for the flood events, no data analysis was conducted.   

 

4.3.3 Data Processing 

 

ArcGIS is a powerful GIS software package that provides a variety of opportunities 

for spatial modelling and analysis, 3D visualization, and developer tools to enable 
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high quality map production. Google Imagery also enabled a representation and  

identification of spatial characteristics. However, as no satellite imagery was found 

for the flood events, no data processing of satellite imagery was conducted.  

 

4.4 Flood Mapping 

 

4.4.1 Segment Identification 

 

The methodology applied in this research was restricted by the available data (as 

discussed in Section 4.1 - 4.3). As discussed in Section 4.1, only a 30km segment 

of the Crocodile River was analysed through hydraulic modelling, and for which 

flood maps were created. Along the segment, two different types of locations were 

selected for detailed analysis, namely 1) Tekwane, a village located approximately 

25 km East of Nelspruit, and 2) Riverside, a suburb situated in Nelspruit. The two 

locations are shown as squares in Figure 4.11, while the segment is the shown 

as a pink line. 

 

 

Figure 4.11: Location of Segment along the Crocodile River (Pink Line). The 

Red Square Indicates Tekwane and the Orange Square Indicates Riverside 

 

The enlarged (large scale) map of the segment is shown in Figure 4.12, while the 

satellite image is shown in Figure 4.13. 
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Figure 4.12: Location of the Selected Segment along the Crocodile River 

(Pink Line) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: Satellite Map of the Selected Segment along the Crocodile River 

(Pink Line) 
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Close up Google Earth Imagery of the two locations, Tekwane and Riverside, are 

shown in Figure 4.14 and Figure 4.15. In addition, the longitudinal profile of the two 

locations are shown below the images. It should however be noted that the 

resolution provided by Google Earth Imagery is low and the elevations therefrom 

cannot therefore be used for quantitative analysis purposes.  

 

 

Figure 4.14: Google Map Imagery and the Longitudinal Profile of Location 1 

(Tekwane) along the Crocodile River  

 

 
Figure 4.15: Google Map Imagery and the Longitudinal Profile of Location 2 

(Riverside) along the Crocodile River  
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Tekwane is a rural population, while Riverside is urban and industrial. The 

relationships between elevation (as indicated in Figure 4.14 and 4.15), and the risk 

of flooding is investigated further in Chapters 7 and 8.  

 

4.4.2 Historical Flood Map  

 

In order to determine the flood events that have occurred in the previous decade 

(Aug 2004 - Apr 2014), it was essential to conduct a high level desktop research 

exercise. This included flood reports from the WRC, DWS and news reports. In 

addition, an online search of satellite imagery for the each of the identified flood 

event (as discussed in Section 4.2) was conducted. When historical flood data are 

used, images captured before and during the disaster are required to allow for 

proper identification of previously existing water levels for calibration and validation 

purposes (Altan et al., 2010). The flood extent image should preferably be captured 

within 8 to 24 hours after the flood event has occurred (GMES, 2010).  

 

Sources of historical data can include dated flood maps, water level records of 

rivers, gauge station records (for velocity), newspaper articles about past flood 

events, historical reports or books about flood events, and aerial and satellite 

photos (FEI, 2007; Martini and Loat, 2007). However, the capturing of data on 

hazard events, both spatially and non-spatially, is very limited in South Africa 

(Halloway et al., 2010). In addition, flood maps and flood reports are often not 

produced for flood events (Sakulski, 2007). Therefore, to enable this research, 

details of historical events are mainly obtained from online news websites, 

newspaper articles and South African Weather Services (SAWS) reports.  

 

4.4.3 Hydraulic Modelling Overview 

 

An overview of the approach that was employed for the hydraulic modelling is 

illustrated in Figure 16. There are three main phases in flood modelling analysis, 

namely data preparation, hydraulic analysis, and post-processing.   

 Data preparation involved GIS data development and generating the RAS 

import file. This was performed in ArcGIS with the HEC-GeoRAS extension. 

 Hydraulic analysis involved utilising the GIS import file, running the 

hydraulic modelling using instrumental flow data, and generating the RAS 
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GIS export file. This was performed within HEC-RAS. An important input 

into this phase was flood scenarios with varying discharge rates. These 

scenarios are discussed in detail in Chapter 6. 

 Post-processing involved using the RAS GIS export file, processing the 

results and creating flood maps.  This was performed in ArcGIS with the 

RAS Mapper extension.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16: Process flow diagram for using ArcGIS, HEC-GeoRAS and HEC-

RAS (Adapted from USACE, 2009) 

 

Utilising the process illustrated in Figure 4.16, the flood events were modelled and 

the flood hazard maps for the two locations were then created. Layers of spatial 

Data 
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features were added through ArcGIS, which allowed for the representation of areas 

on the flood maps. Useful guidance for using HEC-RAS and ArcGIS for hydraulic 

modelling and flood hazard mapping was provided by the HEC-RAS 4.1.0 River 

Analysis System User Manual (2010) and the HEC-GeoRAS User Manual (2009) 

developed by the US Army Corps of Engineers, as well as the Tutorial on Using 

HEC-GeoRAS 10.1 with ArcGIS 10.1 and HEC- RAS 4.1.0 for Flood Inundation 

Mapping in Steady and Unsteady Flow Conditions by Leon (2013). An overview of 

the hydraulic modelling process is provided in Appendix B. 

 

4.5 Flood Risk Identification 

 

4.5.1 Assessing Risk 

 

The approach that was adopted for the flood risk assessment follows the approach 

developed by Gilard (1996), which is divided into the hazard component and the 

vulnerability component. However, as a detailed analysis of the social 

characteristics of the basin was not within the scope of this research, the 

vulnerability analysis only consists of a spatial vulnerability component. The results 

of these two analyses are then combined for the flood risk assessment (Gilard, 

1996; Manadhar, 2010). This process is summarised in Figure 4.17 and Table 4.9.  

 

 

 

 

 

Figure 4.17: Approach for Conducting a Flood Risk Assessment, involving 

(1) a Hazard Component and, (2) a Vulnerability Component 

 

Table 4.9: Approach for Conducting a Risk Assessment (Text adapted from: 

Gilard, 1996; Shrestha et al., 2002; Manadhar, 2010) 

STEP 1: Flood Hazard Analysis  

 

The hazard aspect of the flood risk is related to the hydraulic and the hydrological parameters. This implies 

that the same flood will affect a particular area with the same hydraulic properties regardless of the land 

use. Hazard level may be defined by the parameters like flood extent, flood depth and exceedance 

probability of a particular flood magnitude. In this study, the hazard level is determined by reclassifying the 

flood grid polygons bounding the water surface for different discharge rates (as defined in Appendix B).  

2 1 

Flood Depth Flood Area Land Use 

Hazard Map Spatial Vulnerability 

Flood Risk Map 
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STEP 2: Flood (Spatial) Vulnerability Analysis 

 

The flood (spatial) vulnerability is affected by the land use characteristics of the areas under the influence 

of flood. That is to say, a flood of the same exceedance probability will have different levels of vulnerability 

according to the land-use characteristics and potential for damage. This excludes social vulnerability, as a 

detailed analysis of the social characteristics of the basin was not within the scope of this research. The 

vulnerability analysis, therefore, consists of identifying the land use areas under the potential influence of 

a flood of particular discharge. For this, vulnerability maps are prepared by clipping the land use themes of 

the floodplains with the flood area polygons for each of the flood events being modelled. This depicts the 

vulnerability aspect of the flood risk in the particular area in terms of the presence or absence of flooding 

of a particular return period.  

STEP 3: Flood Risk Analysis 

 

The flood risk analysis includes the combination of the results of both the vulnerability analysis and the 

hazard analysis. This is defined by the relationship between the land use vulnerability classes and the flood 

extent hazard classes in a particular area. For this, the flood risk maps are prepared by overlaying the flood 

extent grids with the land use map. The flood extent polygons prepared during the hazard analysis are 

intersected with the land use vulnerability polygons. This hence depicts potential flood areas in terms of 

both the land use vulnerability classes and water extent. ArcGIS enables the identification of these classes 

by shading polygons red for a high risk area, orange for medium risk, and green for low risk (as defined in 

Section 8.1).  

 

This process enables a spatial risk assessment for flood extent. Although the 

process is simple, it is deemed sufficient for this research. This is particularly 

important as this research has several analytical components.   

 

4.5.2 Identification of Flood Risk Areas 

 

The flood maps that were created for each of the identified flood events portrayed 

areas that were, or may be, impacted during flood events. Using ArcGIS, flood risk 

areas were identified on the flood maps. This was achieved through a risk rating 

system. Using the standard traffic light system, high risk areas are identified as 

red, medium risk areas are identified as orange, and low risk areas are identified 

as green) (as per Table 4.9. and Section 8.1). Therefore, the final output of the 

flood modelling exercise was numerous flood maps, showing high, medium and 

low risk areas along the Crocodile River basin.    

 

4.6 Conclusions 

 

This chapter provided an overview of the data used for this research, focusing on 

how the data were analysed and the various software packages utilised to enable 

this research. The outcome of the research, as well as the various challenges that 

were experienced during this research, are discussed further in Chapters 8 and 9.  
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CHAPTER 5 - HISTORIC FLOOD ASSESSMENT 

 

 

5. HISTORIC FLOOD ASSESSMENT OF THE CROCODILE RIVER 

 

5.1 Background  

 

Despite the obligation imposed by the EU Floods Directive 2007/60/EC that the 

assessment and management of floods and flood risk should be based on a 

collection and assessment of information about previous flood events, in South 

Africa these records are often hard to find. The capturing of data on hazard events, 

both spatially and non-spatially, is very limited. Information can be derived from 

municipal and provincial reports, interviews and actual field research. However, it 

is constrained by protracted lag times between the occurrence of the events and 

the provision of funding for post-impact research. This has happened despite the 

recurrent and costly nature of many storms, and the fact that such studies are 

explicitly required by both national and provincial disaster management 

frameworks (Halloway et al., 2010).  

 

While the meteorological and hydrological conditions leading to floods are well 

documented and analysed, the spatial evolution of floods and the assessment of 

the impacts of floods are quite limited. Therefore, daily satellite imagery, South 

African Weather Services (SAWS) reports and news events are often relied on to 

determine the spatial distribution of floods and the impact of flood events, 

respectively.  

 

The remainder of this chapter provides an overview of two previous flood events 

in the Crocodile catchment (i.e. February 2009 and January 2012). This includes 

an assessment of their meteorological and hydrological characteristics, and the 

flood news reports that give information on the extent and impacts of these floods. 

 

5.2 Identified Flood Events  

 

An online search of flood events revealed that several floods have been 

experienced in the Crocodile River over the past 10 years. This includes January 
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2006, February 2009, January 2011, January 2012 as well as January 2013. An 

analysis of the dataset in Section 4.1 indicated that the two highest rainfall events 

in the past decade were in February 2009 and January 2012. As stated above, 

flood events were also experienced during these two rainfall periods. These two 

events are particularly significant as they coincided with the highest river 

discharge, which resulted in significant flooding in the region. Therefore, these two 

flood events (i.e. February 2009 and January 2012) were investigated in more 

detail.   

 

5.2.1 The February 2009 Flood 

 

Figure 5.1 illustrates the total rainfall that was measured at the X2E010 and 

X2E013 weather stations over a 20-day period, from 26 January to 14 February 

2009. The highest daily rainfall (i.e. 184 mm) was measured on 3 February at the 

X2E010 weather station. 

  

 

Figure 5.1: Daily rainfall during the February 2009 Flood (in mm) 

 

Changes in the water level and discharge (flow rate) are shown in Figure 5.2. As 

evident from Figure 5.2, although lower values for water levels and discharge rates 

are observed at the X2H013 gauging station, similar trends can be observed for 

both stations. The water level and discharge (flow) rate at the X2H006 and X2H013 

gauging stations were the highest on 31 January and on 5 February. 
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Figure 5.2: Discharge (flow) rates and water levels during the February 2009 

flood 

 

On 5 February 2009, the provincial government of Mpumalanga issued a flood alert 

for residents in low lying areas and next to flood lines. This was due to large 

amounts of rain falling over the preceding days, causing larger than usual surface 

runoff. Communities and road users were particularly warned to move to higher 

road, and to be careful as roads were wet, with surface water, and some areas 

experienced rocks falling on to the road. As can be seen from Figure 5.3, the flood 

caused extensive damage in the catchment resulting in death and extensive 

damage to infrastructure (causing outlying communities to be cut off for a number 

of days). Flood hazard maps for the February 2009 flood event are shown in 

Chapter 7. 

 
Figure 5.3: Extract from a news report on the February 2009 flood (Source: 

ioL News, 2009) 
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5.2.2 The January 2012 Flood 

 

Figure 5.4 illustrates the total rainfall that was measured at the X2E010 and 

X2E013 weather stations over a 20-day period, from 7 January 2012 to 26 January 

2012. The highest daily rainfall (i.e. 210 mm) was measured on the 17 January at 

the X2E010 weather station. The changes in the water level and discharge (flow 

rate) are shown in Figure 5.5.  

 

 

Figure 5.4: Daily rainfall during the January 2012 flood (in mm) 

 

 

Figure 5.5: Discharge (flow) rates and water levels during the January 2012 

flood 

 

As evident from Figure 5.5, although lower values for water levels and discharge 

rates are observed at the X2H013 gauging stations, similar trends can be observed 
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for both stations. The water levels and discharge (flow rate) at the X2H006 and 

X2H013 gauging stations were the highest on 17 January. Although the gauging 

station malfunctioned during the flood event (as shown by the straight blue line 

between 18 and 22 January), the study performed by the Kruger National Park (on 

Setting the Thresholds of Potential Concern for River Flow and Quality) estimates 

the discharge rate at high flow to vary between 225 m3/s at Malelane to 255 m3/s 

at Nkongoma (at an average of 240 m3/s, as illustrated by the dotted line in Figure 

5.5). Therefore, a peak rate of approximately 240 m3/s can be estimated for the 

flood event.  

 

On 19 January 2012, the Department of Water Affairs (through the provincial 

government of Mpumalanga) issued a flood alert for residents in low laying areas 

and next to flood lines. This was due to large amounts of rain falling over the 

preceding days, causing dams to spill over and larger than usual surface runoff at 

the Komati and Crocodile Rivers. Communities located in low lying areas were 

particularly warned to move to higher road, while some members of the population 

were evacuated to ensure their safety. An extract of the media release is shown in 

Figure 5.6.   

 

Figure 5.6: Extract from a Media Briefing by the Department of Water Affairs 

on the January 2012 Flood (Source: Mpumalanga Provincial Gov., 2012) 

 

The flood caused extensive damage in the region (as well as neighbouring 

catchment) resulting in death and extensive damage to infrastructure, and causing 

outlying communities to be cut off for a number of days. Damage was particularly 
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severe in downstream areas, and at the Kruger National Park, resulting in road 

closures and restricted access to the National Park. Figure 5.7 illustrates some the 

areas that were inundated during the January 2012 flood event. Flood hazard 

maps for the January 2012 flood event are shown in Chapter 7. 

 

Figure 5.7: Images of the January 2012 Flood: a) Crocodile River at Malelane 

Gate; b) Crocodile Bridge Gate (Source: SAGR Forum, 2012) 

 

5.3 Conclusions  

 

This chapter provided an overview of two previous flood events in the Crocodile 

catchment, namely the February 2009 and January 2012 events. This included an 

assessment of the meteorological and hydrological characteristics, research on 

flood reports and news reports published. It is, however, unfortunate that public 

flood reports for the selected flood events from state institutions (e.g. DWS, WRC, 

or Disaster Management Institutions) were not available. Therefore, the analysis 

provided above is only based on news reports and press releases from the 

Mpumalanga provincial department. Details such as the total number of deaths, 

the total damage to infrastructure or the economic losses as a result of the flood 

were largely not available.  

 

An overview of previous flood events provides a useful starting point in predicting 

future flood events, which is conducted in Chapter 6. Spatial representation of the 

flood events is provided in Chapter 7.    

  

a b 
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CHAPTER 6 - DETERMINING FUTURE FLOOD EVENTS 

 

 

6. DETERMINING FUTURE FLOOD EVENTS FOR THE CROCODILE RIVER 

 

6.1 Estimating Future Rainfall Events 

 

According to Ampitiyawatta and Guo (2009), precipitation is a good long-term 

indicator of changes that may impact on water resources. Furthermore, changes 

in precipitation patterns are very important for water resource managers who deal 

with water resource planning and management (Odiyo et al., 2015).  

 

Several studies, such as Hewitson and Crane (2006), Engelbrecht et al. (2009) 

and Schultz (2011), have been undertaken on rainfall changes in South Africa, 

including in the Mpumalanga Province. As illustrated in Section 2.6, in the north-

eastern region of the country, which includes the Gauteng, Limpopo and 

Mpumalanga provinces, an increase in overall rainfall is projected. Under future 

climate change scenarios, rainfall is expected to increase by between 85 and 303 

mm per annum for the region as a whole, and is expected to range from 301 mm 

to 758 mm per annum by 2100 (CSIR, 2010). This equates to an increase in rainfall 

of between 20% and 40% by 2100.  

 

The majority of the increased rainfall that is projected is expected to fall during the 

summer months, namely December, January and February (DJF) (CSIR, 2010). 

An extension of the rain season may occur in early spring with an increase in 

rainfall predicted between September to November. The number of rain events is 

expected to increase, which could infer that the chances of floods may increase  

based on wetter antecedent conditions (CSIR, 2010).    

 

6.2 Estimating Runoff during High Rainfall Events 

 

The Long-term Adaptation Scenarios (LTAS) Study conducted by the Department 

of Environmental Affairs (DEA) and the South African National Biodiversity Institute 

(SANBI) (2013) provided an estimate of the projected changes in catchment runoff. 

These runoff projections are illustrated in Figure 6.1. 
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Figure 6.1: Median impact of climate change on the average annual 

catchment runoff for the period 2040–2050. The Crocodile (East) catchment 

is circled in red (Source: DEA, 2013) 

 

The estimates suggest that, for the Crocodile (East) catchment (i.e. red circle in 

Figure 6.1), an increase of 5% to 15% in annual catchment runoff is projected. The 

Mpumalanga Province is also noted to show the highest risks of extreme runoff 

related events, together with KwaZulu-Natal and the Eastern Cape. It should 

however be noted that these projections are annual averages, and may not be 

applicable at the sub-daily or daily time interval of a flood occurrence. 

 

In order to estimate the rainfall events for this study, two scenarios were selected. 

Section 6.1 estimates an increase in rainfall of between 20% and 40%. However, 

as stated in Appendix A, which provides background context to the rainfall-runoff 

relationship, only a portion of the rainfall is converted to runoff (i.e. the runoff 

coefficient). According to the Food and Agriculture Organization (FAO), the runoff 

coefficient (K), can be represented mathematically as: 

 

𝐾  =  𝑅𝑢𝑛𝑜𝑓𝑓 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙⁄        [Equation 1] 
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Therefore, to estimate runoff when rainfall and the runoff coefficient (K) is available, 

the following equation can be used:  

𝑅𝑢𝑛𝑜𝑓𝑓  =  𝐾 ×𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙      [Equation 2] 

 

Alexander (2002) calculated the runoff coefficient for the Inkomati catchment to be 

estimated at 5% for a 2-year return period and 40% for a 100-year return period. 

Therefore, for the two identified rainfall scenarios (i.e. a 20% or 40% increase in 

rainfall), the associated estimate runoff can be determined. By applying Equation 

2, i.e. multiplying the runoff coefficient with the rainfall, an estimate of the future 

increase in runoff can be obtained (as shown in Table 6.1).   

 

Table 6.1: Estimating a Percentage Increase in Runoff  

Projected Increase in MAP K = 5% K = 40% 

20% Runoff = (0.05 * 0.2) = 1% Runoff = (0.4 * 0.2) = 8% 

40% Runoff = (0.05 * 0.4) = 2% Runoff = (0.4 * 0.4) = 16% 

 

An increase in runoff of 1% and 2% can be estimated for a 20% and 40% increase 

in rainfall respectively for a 2-year flood return period, and an 8% and 16% increase 

in runoff for a 20% and 40% increase in rainfall respectively for a 100-year flood 

return period. 

 

The 100-year projections (i.e. an 8% and 16% increase in runoff for a 20% and 

40% increase in rainfall) are similar to those provided by the LTAS Study (provided 

in Section 6.2), which project an increase of 5% to 15% in annual catchment runoff. 

Therefore, the two flood scenarios that were selected for the remainder of this 

dissertation are the two ranges provided in the LTAS Study, which have been 

accepted by the national regulating authority, namely a 5% to 15% increase in 

runoff for the Crocodile River catchment.  

 

6.3 Rainfall and Hydrological Scenarios 

 

In Chapter 5, two base scenarios, namely the February 2009 and January 2012 

flood events, were identified. As shown in Figure 5.1 and Figure 5.4, the rainfall 

data measured at the X2E013 weather station is significantly less than that 

measured at the X2E010 weather station. This is because, as illustrated in Figure 

3.13, the X2E013 weather station is located in an area with less MAP than the 
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X2E010 weather station. Due to the interconnected nature of catchment process, 

the runoff of the Crocodile River will be affected by the weather patterns throughout 

the catchment. However, as this dissertation estimates flood events by using the 

runoff coefficient, i.e. estimating runoff by using projected rainfall, the high rainfall 

measured at the X2E010 weather station will provide higher runoff estimations for 

flood events. Therefore, to serve the purpose of this dissertation, only the X2E010 

weather station will be used. 

 

The X2H013 gauging station is located approximately 40 km upstream of Riverside 

and approximately 50 km upstream of Tekwane, whereas the X2H006 gauging 

station is located approximately 10 km downstream of Riverside and approximately 

10 km upstream of Tekwane. The peak discharge recorded at the X2H013 gauging 

station is 17.953 m3/s for the February 2009 flood event, and 99.419 m3/s for the 

January 2012 flood event. For the X2H006 gauging station, the peak discharge is 

119.967 m3/s for the February 2009 flood event, and 241.750 m3/s for the January 

2012 flood event. Therefore, to fulfil Objective 2 of this dissertation, which is “using 

the identified flood events and the discharge and water levels associated with 

these events to define the several characteristics of floods in the Crocodile River”, 

only data from the X2H006 gauging station will be used to create flood scenarios. 

However, to ensure completeness, the 99.419 m3/s discharge recorded at the 

X2H013 gauging station (for the January 2012 flood event) will also be modelled. 

This will serve as an integral part of the spatial risk assessment, which is provided 

in Chapter 8.   

 

The runoff (m3/s) for the two base runoff scenarios are shown in Figure 6.2, where 

X represents the February 2009 flood event, and Y represent the January 2012 

flood event. The two runoff scenarios identified above (i.e. a 5% and 15% increase 

in runoff) were applied to each of the base scenarios, resulting in a total of four 

scenarios (this is explained in detail in Appendix A.2). The resulting runoff for the 

four future flood events is provided in Figure 6.2, where X1 and Y1 represent a 5% 

increase in runoff for base scenario X and Y respectively, and X2 and Y2 represent 

a 15% increase in runoff for base scenario X and Y respectively. In addition, as 

indicated earlier, the discharge recorded at the X2H013 gauging station will also 

be used for the hydraulic modelling. This is shown as scenario Z in Figure 6.2.  
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Figure 6.2: The seven scenarios for hydraulic modelling (given as m3/s) 

 

The peak runoff value for each of the four scenarios, as well as the runoff for the 

two base scenarios, is provided in Table 6.2. As in Figure 6.2, X1 and Y1 represent 

a 5% increase in runoff for base scenario X and Y respectively, and X2 and Y2 

represent a 15% increase in runoff for base scenario X and Y respectively. The 

99.419 m3/s discharge recorded at the X2H013 gauging station is shown as 

scenario Z. The peak runoff for the seven identified flood events is provided in 

Table 6.2, and provided in detail in Table A.1. 

 

Table 6.2: Peak runoff for the scenarios for hydraulic modelling (values are 

given as m3/s) 

Scenario Base Scenario Scenario 1 Scenario 2 

X 119.967 125.965 137.962 

Y 241.750 253.838 278.013 

Z              99.419 

 

6.4 Conclusions  

 

This chapter provided four scenarios for future flood events. The runoff for each of 

the flood events was projected, based on rainfall projections. The scenarios were 

developed using the accepted rainfall projections provided by the LTAS study, 

namely a 5% to 15% increase in runoff for the Crocodile River catchment. Although 

the projections are based on uncertainties, and the methodology utilised is simple, 
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the scenarios provide an estimate of the probable magnitude of floods in the 

Crocodile River basin (i.e. the magnitude of future floods). These projections 

should not be taken as facts, but as an indication of what the future may look like.  

 

As the water level is determined by river discharge, the associated changes in 

water level for each of the identified scenarios will be modelled through hydraulic 

software, and provided in the following chapter. In addition, the flood extent of the 

identified flood events, as well as the base scenarios, will be determined. A spatial 

flood risk assessment of the Crocodile River basin will then be provided.  
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CHAPTER 7 – FLOOD EXTENT MAPPING 

 

 

7. FLOOD EXTENT MAPPING 

 

7.1 Introduction 

 

Chapter 5 provided an overview of two previous flood events in the Crocodile River 

Catchment (i.e. February 2009 and January 2012). Chapter 6, on the other hand, 

provided four scenarios for future flood events, where the runoff of each base 

scenario was projected based on a projected increase in rainfall. An additional 

scenario was also provided, based on the discharge recorded at the X2H013 

gauging station.  

 

The aim of this chapter is to simulate the flood extent and provide flood extent 

maps for each of the seven identified flood events. No detailed analysis is done for 

the seven flood events – the flood risk assessment (conducted in Chapter 8) 

provides a detailed analysis of the two locations selected along the segment of the 

Crocodile River.  

 

For hydraulic modelling purposes, complex analyses were not possible since the 

required detailed data for both the topographic representation and flow are not 

available in South Africa. Therefore, coupled one and two-dimensional hydraulic 

modelling (i.e. HEC-RAS) was used to determine flood parameters such as flood 

extent. The detailed process that was undertaken to develop the flood extent maps 

is provided in Appendix B. The advantages offered by this hydraulic method are 

discussed in detail in Chapter 2. 

 

7.2 Previous Flood Events  

 

As discussed in Chapter 5, numerous floods have been observed in the Crocodile 

River (East) River basin. However, only two of these floods were discussed in detail 

in Chapter 5. The two identified flood events also happened to be the flood events 

with the highest observed rainfall in ten years (i.e. during August 2004 - April 2014). 

The remainder of this section discusses the extent of these flood events.  
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7.2.1 Base Scenario X (in February 2009) 

 

As provided in Chapters 5 and 6, the peak discharge for base scenario X (in 

February 2009), is 119.967 m3/s. Floods were experienced in the area on 5 

February. The flood extent was modelled through HEC-RAS software, and is 

illustrated in Figure 7.1. Although several Landsat 7 ETM+ (30 m resolution) 

satellite images could be found, there were no images available for 5 February 

2009 or any day immediately after. The images that were available are when the 

flood had already receded, and could therefore not be used to compare the 

maximum flood extent. 

 

 

Figure 7.1: Flood extent map for the Base Scenario X  

 

7.2.2 Base Scenario Y (in January 2012) 

 

As provided in Chapters 5 and 6, the peak discharge for base scenario Y (in 

January 2012), is 241,750 m3/s. Floods were experienced on 19 January. The 

extent of the flood was modelled through HEC-RAS software, and is illustrated in 

Figure 7.2. Although several Landsat 7 ETM+ (30 m resolution) satellite images 

could be found, there were no images available for 19 January 2012 or any day 

immediately after. The MODIS images that were available on 20 and 21 January 

were of a poor resolution, and could thus not be used to compare the flood extent. 

High resolution images that were available are when the flood had already 

receded, and could therefore also not be used to compare the maximum flood 

extent. 
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Figure 7.2: Flood extent map for the Base Scenario Y 

 

7.2.3 Scenario Z (in January 2012) 

 

As provided in Chapters 5 and 6, the peak discharge for scenario Z (in January 

2012), is 99.419 m3/s. Floods were experienced in the area on 19 January. The 

extent of the flood was modelled through HEC-RAS software, and is illustrated in 

Figure 7.3. As identified in Section 7.2.2., satellite images for the flood event were 

not available. 

 

 

Figure 7.3: Flood extent map for the Scenario Z 

 

7.3 Future Flood Events  

 

In Chapter 6, four scenarios for future flood events were developed. The runoff for 

each of the flood events was projected, based on the two previous flood events 

(i.e. February 2009 and January 2012). This was achieved by applying two runoff 

increase projections, namely a 5% increase in runoff and a 15% increase in runoff, 

resulting in 4 future flood scenarios. The four scenarios were modelled, and the 

remainder of this section discusses the extent of the flood events. 
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7.3.1 Flood Event: Scenario X1 

 

As provided in Chapters 5 and 6, the peak discharge for scenario X1 is 125.965 

m3/s. This scenario represents a 5% increase in runoff for base scenario X (i.e. 

119.967 m3/s). The extent of the flood was modelled through HEC-RAS software, 

and is illustrated in Figure 7.4. 

 

 

Figure 7.4: Flood extent map for the Scenario X1  

 

7.3.2 Flood Event: Scenario X2 

 

As provided in Chapters 5 and 6, the peak discharge for scenario X2 is 137.962 

m3/s. This scenario represents a 15% increase in runoff for base scenario X (i.e. 

119.967 m3/s). The extent of the flood was modelled through HEC-RAS software, 

and is illustrated in Figure 7.5. 

 

 

Figure 7.5: Flood extent map for the Scenario X2  
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7.3.3 Flood Event: Scenario Y1 

 

As provided in Chapters 5 and 6, the peak discharge for scenario Y1 is 253.838 

m3/s. This scenario represents a 5% increase in runoff for base scenario Y (i.e. 

241.750 m3/s). The extent of the flood was modelled through HEC-RAS software, 

and is illustrated in Figure 7.6. 

 

 

Figure 7.6: Flood extent map for the Scenario Y1 

 

7.3.4 Flood Event: Scenario Y2 

 

As provided in Chapters 5 and 6, the peak discharge for scenario Y2 is 278.013 

m3/s. This scenario represents a 15% increase in runoff for base scenario Y (i.e. 

241.750 m3/s). The extent of the flood was modelled through HEC-RAS software, 

and is illustrated in Figure 7.7. 

 

 

Figure 7.7: Flood extent map for the Scenario Y2 
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7.4 Synthesis: Flood Extent 

 

The extent of each of the flood events was modelled as illustrated in Section 7.2 

and 7.3. For each flood event, the total area that is likely to be flooded is provided 

in Table 7.1 (ranked from the smallest discharge to the lowest). The total area 

under water for Scenario Z is 1.92 km2. This is the smallest flood extent area, and 

it also corresponds to the smallest discharge. The largest flood extent area is 8.77 

km2, which corresponds to Scenario Y2. This also corresponds to the largest 

discharge. 

 

Table 7.1: The area flooded under each scenario (values are given as km2) 

Scenario Z X X1 X2 Y Y1 Y2 

Discharge (m3/s) 99.419 119.967 125.965 137.962 241.750 253.838 278.013 

Area (km2) 1.92 2.24 3.44 3.73 5.78 6.68 8.77 

 

Graphically (as shown in Figure 7.8), the change in area, based on a change in 

discharge, more or less follows a linear trade for all scenarios expect Scenario Y2 

(i.e. 278.013 m3/s). Similarly, if you exclude Scenario X1 and X2, the change in 

area follows an exponential trend and not a linear trend. This means that while the 

area flooded during a flood event with a predetermined discharge can be roughly 

estimated, an accurate representation of flood extent requires a detailed 

hydrological and hydraulic analysis (as conducted in this dissertation).  

 

 

Figure 7.8: Change in the area flooded (i.e. flood extent) under each scenario 
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7.5 Conclusions 

 

This chapter provided an overview of the flood extent of identified flood events. 

Flood hazard maps were created for each of the identified flood events. This will 

enable the identification of high risk areas along the Crocodile River basin, which 

is discussed in Chapter 8.  

 

A major limitation of this study was the quality of the elevation data. This created 

various inconsistencies in the elevation profile for the study area, which ultimately 

affected the simulated flood profiles. Availability of high quality data would have 

increased the accuracy of the flood simulation. 

 

The aim of this chapter was also to compare the simulated extent of previous flood 

events with the observed distribution. However, due to the unavailability of 

archived satellite imagery at an adequate resolution, the flood extent for the 

previous flood events could not be validated.  
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CHAPTER 8 – SPATIAL FLOOD RISK ASSESSMENT 

 

 

8. SPATIAL FLOOD RISK ASSESSMENT 

 

8.1 Introduction  

 

This chapter discusses the flood extent maps that were produced in Chapter 7. 

The aim of the chapter is to identify high flood risk areas along the Crocodile River 

Basin. This risk assessment is based on the likelihood of the basin area being 

flooded during flood events, and therefore includes the elevation of the basin (as 

discussed in Chapter 4), the simulated flood extent (as discussed in Chapter 7), 

the flood scenarios (developed in Chapter 6) and the flood frequency (as discussed 

in Chapters 5 and 6). This will enable a spatial risk assessment, using the 

methodology provided in Chapter 4 and Appendix B.  

 

The analysis of the likelihood of an area to be flooded by a flood event of particular 

discharge was conducted using ArcGIS. This was done by intersecting the seven 

polygons that represent the discharge of the seven flood events. As illustrated in 

Table 8.1., when an area is intersected by seven polygons (one polygon for each 

of the flood events), this area is likely to be flooded by all seven flood events, and 

is therefore at very high risk during flood events. Similarly, an area identified as 

medium risk is intersected by four polygons, and is likely to be flooded by four flood 

event. The areas with the lowest risk are likely to be flooded by one flood event. 

Using the standard traffic light system, high risk areas are identified as red, medium 

risk areas are identified as orange, and low risk areas are identified as green.   

 

Table 8.1: Risk Rating System   

Risk Categories Description  

Minimal   Intersected by 1 polygon  

Low   Intersected by 2 polygons  

Low-Medium  Intersected by 3 polygons  

Medium  Intersected by 4 polygons  

Medium-High  Intersected by 5 polygons  

High  Intersected by 6 polygons  

Very High  Intersected by 7 polygons  
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ArcGIS enables the identification of different risk categories by shading polygons 

based on the risk categories. As there were seven profiles modelled, seven risk 

categories were determined (as shown in Table 8.1). Layering the polygons on the 

land use map enabled an identification and discussion of flood risk for each of the 

two locations along the segment of the Crocodile River. Rather than create a risk 

map for each of the flood events, the polygons were overlain (as discussed above) 

and an overall risk assessment was conducted. This approach enabled a 

comparison between the different flood events, and a spatial risk assessment 

(showing the seven risk categories). For each location, a discussion of the flood 

risk is provided, which includes the discharge that is associated with the flood 

event(s).   

 

It should be noted, due to the challenges experienced during the floodplain process 

of the hydraulic modelling exercise (as discussed in Appendix B.2), the standard 

method (i.e. developing a water surface and floodplain inundation polygon for each 

water surface profiles using HEC-GeoRAS) could not be used. Therefore, the 

water extent polygons (which are relevant for this dissertation) were created in 

ArcGIS manually by joining the flood extent points on each cross section.  

 

8.2 Future Food Risk Profile   

 

8.2.1 Segment 1: Tekwane 

 

The spatial flood risk profile for Tekwane is illustrated in Figure 8.1. As illustrated, 

the left bank (i.e. the top part of the figure) is at a higher risk than the right bank. 

This is because the elevation of the right bank is higher than the left bank, 

particularly the lower right portions of the area that was modelled. The yellow area 

(identified as low-medium risk) illustrates areas that are at risk to flooding when 

discharge reaches 241.75 m3/s. The areas in orange and red are at a higher risk 

to flooding (identified as medium to very high risk), and are at risk to flooding even 

when discharge is less than 137.96 m3/s. These areas are however largely 

unpopulated. Therefore, there is a minimal risk to the population of Tekwane when 

the discharge is less than 241.75 m3/s.  
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Figure 8.1: Spatial Flood Risk Profile for Tekwane, with the Crocodile River 

shown as a white line  

 

On the right bank, the area is largely agricultural, with a low population density. 

However, the left bank is populated with rural settlements. Rural settlements are 

often more sensitive to flood events as they are often directly exposed to climatic 

events, such as floods. Houses are often poorly built, are poorly located, or lack 

flood and lightning protection, efficient water systems, or damp-proofing, which 

make them more vulnerable to floods (DEA, 2013).  

 

In addition, rural households which have a lower ability to cope with flood events 

than their urban counterparts due to lower adaptive capacity. Households without 

access to electricity, water, sanitation and waste management services are more 

impacted by climate extremes, while factors such as poverty and unemployment 

reduce the ability of households to recover from climate shocks (DEA, 2013). In 

addition, from a spatial planning perspective, the population at Tekwane should be 

located at a higher elevation. This is particularly important as climate projections 

indicate that intense floods are likely to be a regular feature of the Crocodile River 

(East) (as discussed in Section 2.6). 

 

 While rural settlements inherently have a lower adaptive capacity than urban 

settlements, it is the ability of an individual household to cope with flood hazard 

that determines its overall risk to flooding (International Institute for Environment 

and Development, 2013). Although this is largely determined by financial 

Tekwane 
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circumstances, innovative strategies to flood management have the ability of 

increasing the ability of rural households to cope to flood events. Therefore, further 

assessment of the rural settlements would provide a more detailed assessment of 

the flood risk to the Tekwane population.  

 

As indicated in Chapter 2, flood risk can only be determined when the sensitivity 

and adaptive capacity of a system is determined. However, the assessment of the 

individual adaptive capacity, as well as the sensitivity of a system to a hazard, 

which have an influence on the overall impact and impact to a system, is not in the 

scope of this study. 

 

8.2.2 Segment 2: Riverside 

 

The spatial flood risk profile for Riverside is illustrated in Figure 8.2. As illustrated, 

the right bank is more at risk than the left bank in the higher reaches of the 

Crocodile River. This is because the elevation of the right bank is higher than the 

left bank, particularly the upper portion of the area that was modelled.  

 

 

Figure 8.2: Spatial Flood Risk Profile for Riverside, with the Crocodile River 

shown as a white line 

Riverside 
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The yellow area (identified as low-medium risk) illustrates areas that are at risk to 

flooding when discharge reaches 241.75 m3/s. Similar risk areas can also be 

identified on the northern parts of Riverside along the Sand River tributary. The 

areas in orange and red are at a higher risk to flooding (identified as medium to 

very high risk), and are at risk to flooding when discharge is less than 137.96 m3/s. 

These areas are however largely unpopulated. Therefore, similarly to Tekwane, 

there is a minimal risk to the population of Riverside when the discharge is less 

than 241.75 m3/s. 

 

The right bank is largely unpopulated, with small agricultural patches located close 

to the river banks. This means that even if these areas do get flooded, there will 

be a minimal impact to human livelihoods and lives. Higher elevations are largely 

urbanised, and have not been identified as being at risk to flooding. However, 

medium risk areas have been identified on the left and right portions of the river 

banks. These areas currently contain urban, industrial and agricultural areas.  

 

In addition, the sensitivity of a system to flood events is also important. (Industrial 

sites are, for example, often deemed as more sensitive to floods than agriculture, 

as they are less able to absorb the impacts of flood events.) Therefore, in order to 

minimise the sensitivity of the area as a whole, flood management interventions 

need to be implemented. The determination of the individual adaptive capacity and 

the sensitivity of the various systems within the basin is therefore required. This is 

however, not in the scope of this study.  

 

Alternatively, the adaptive capacity of the population can be increased. The overall 

capacity of the urban population to cope with flood events is usually deemed higher 

than the rural population, as there are often more options, solutions and 

interventions available to cope with flood events. However, as previously indicated, 

individual households and industrial sites will have varying adaptive capacity. 

Interventions such as effective storm management systems can play larger part in 

mitigating the impacts of flood events in urban areas. In addition, spatial planning, 

such as locating residential and industrial areas at a higher elevation will also be 

effective at minimising the impacts of flood events.  
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8.3 Discussion   

 

The two locations are at risk to flooding when discharge reaches 241.75 m3/s. This 

is based on Section 8.2, which indicates that when discharge reaches 241.75 m3/s,  

areas at both Tekwane and Riverside are at risk to flooding (identified as low-

medium risk – i.e. the yellow areas on the map). This is therefore the threshold for 

which the two locations are likely to be flooded.  

 

While every effort was made to obtain the flow rates for various return periods for 

the Crocodile River (East), this was not possible. The discharge could therefore 

not be compared to the return periods (e.g. 50-, 100-, or 200-year). This meant that 

a comparison of which (if any) return periods have been exceeded could not be 

performed. 

 

However, based on the data downloaded from the DWS HIS, an analysis of the 

daily discharge readings could be made. This enabled an analysis of how often the 

241.75 m3/s discharge was exceeded in the Crocodile catchment. As provided in 

Figure 8.3, the 241.75 m3/s discharge was exceeded at gauging stations X2H006 

(one time), X2H016 (twenty-five times) and X2H046 (three times). This means that 

the over one decade (2004 to 2014), 241.75 m3/s was exceeded 0.03%, 0.70% 

and 0.08% times at stations X2H006, X2H016 and X2H046, respectively. In total, 

the observed trends indicate that 241.75 m3/s was exceeded 0.14% times at 

various stations across the Crocodile catchment.  

 

 

Figure 8.3: Daily discharge readings for all 6 gauging stations (shown as 

points) and the 7 flood scenarios (shown as straight lines) 
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Based on previous trends, there is therefore a less than 1% likelihood that the 

segment analysed in this dissertation will be flooded will be flooded over a 10-year 

period. However, as discussed in Chapter 2, a key indication from climate 

projections is that the likelihood of extreme flood events for the north-eastern 

provinces of South Africa (where the Crocodile catchment is located) will increase. 

This implies that the likelihood of the Crocodile river segment flooding will increase, 

and the magnitude of these flood events will increase. For the Crocodile river 

segment that was analysed, this will translate to an increase in the area that will 

be flooded. A spatial assessment of the areas that are at risk during flood events 

of varying magnitudes was conducted for this dissertation.  

 

8.4 Conclusions  

 

This chapter provided a spatial flood risk assessment of two locations along the 

Crocodile River Basin. The spatial risk assessment enabled the comparison the 

flood risk for seven different discharge rates, using the methodology provided in 

Chapter 4 and Appendix B. As discussed in Appendix B, high risk areas (identified 

in red) have a higher probability of being flooded, medium risk areas (identified in 

orange) have a lower probability than the high risk areas, while the low risk areas 

(identified in green) have the lowest probability of being flooded.  

 

However, flood risk is a function of the sensitivity to flood events, as well as the 

ability of a system to cope with floods (i.e. its adaptive capacity). Therefore, it is 

important to determine the individual sensitivity, as well as adaptive capacity of all 

systems within a basin. This would enable the determination of the risk of the 

individual systems within this basin. This assessment is however beyond the scope 

of this study. In addition, assessment of interventions which would decrease the 

risk to flood are also outside of the scope of this study.  

 

This study aimed to identify areas that are at high risk to flood events (i.e. spatial 

risk assessment), and not identify systems that are at high risk. Therefore, the 

intended outcome was achieved in this chapter.    
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CHAPTER 9 - CONCLUSIONS 

 

 

9. CONCLUSIONS 

 

In the recent past, the Crocodile River East in Mpumalanga Province has seen 

three major floods in a twenty-four-month period, in January 2011, January 2012 

and in January 2013. Alarmingly, the frequency of floods is increasing around the 

world (Alho et al., 2008) and in South Africa (Halloway et al., 2010). Added to this, 

the Southern Africa Risk and Vulnerability Atlas (2011) indicates that climate 

change is likely to alter the magnitude, timing, and distribution of storms that 

produce flood events in the region. This is particularly the case in the Mpumalanga 

Province, where the likelihood of flood events is projected to increase in coming 

decades. Therefore, proper planning is required for effective flood risk 

management.  

 

The principal state organisation, the Department of Water and Sanitation (DWS), 

is responsible for, among others, water resource management, planning and 

guidance for water related events including flooding. However, flood mapping is 

currently limited to historical maps created from previous flood events.  

 

In this light, the main objective of this research was to assess the extent of previous 

flood events along the Crocodile River Basin, to predict future flood events and 

estimate how future floods are likely to be distributed, as well as to provide a spatial 

representation of flood prone areas along the river basin. Therefore, a key outcome 

of this research was flood risk maps for two locations along a segment of the 

Crocodile Basin. The flood risk maps provided an indication of the areas along the 

segment that are at a risk of being inundated during flood events. 

 

However, flood risk is a complex process that combines human and natural factors. 

It is characterized by the conjunction of the probability of floods to take place and 

the potential consequences associated to them. Floods only cause damage when 

flood zones are occupied by vulnerable human systems (Eleutério, 2012). Turner 

et al. (2003) recognised that holistic studies on vulnerability that are meant to have 

an input in decision making should include a study of all the hazards affecting the 
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system, as an assessment of how the system gets exposed to the hazard, as well 

as the coping capacity of the system. Variations in these indicators will invariably 

result in variations in vulnerability. This research, however, does not conduct a 

detailed overview of the vulnerability of the systems along the basin, but merely 

identifies the areas that are at high risk. It acknowledges the fact that within a ‘high 

risk area’, for example, the vulnerability of different households will vary. This is 

due to the fact that the adaptive capacity and resilience of different households will 

vary. An assessment at this level is not in the scope of this project.  

 

Therefore, although this research acknowledges the fact that it is essential to 

identify high flood risk areas (which was achieved and outlined in Chapter 8), it 

also acknowledge that within high flood risk areas, the risk of individual systems 

can vary.  

 

9.1 Limitations of Research 

 

There were various challenges that were experienced during this research, which 

limited and influenced the outcome of this dissertation. Limitations were 

experienced in the following areas: 

 

 Water level and discharge data: Although numerous stations exist along 

the Crocodile River, data accuracy and data completeness presented 

challenges in conducting an accurate assessment. Peak discharge values 

for flood events are integral for modelling previous flood events. For one 

of the flood events, peak discharge values were not available. This data 

gap was filled with data acquired from a different source. This approach is 

often not desirable as different organisation utilise different data monitoring 

and measuring techniques. Therefore, data monitoring and measuring 

needs to be a priority for water management institutions.  

 

In addition, as the analysis used data for only 10 years of data, it prevented 

any rigorous statistical analysis which is typical of flood risk assessment. 

 

 Topographical data: The availability of high resolution topographical data 

to accurately represent the river channel and surrounding terrain is one of 
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the main impediments for flood modelling. Topographic data are 

fundamental to flood modelling as they are used throughout the process 

(Els, 2011). Although either a raster or tin format can be used for 

topographic representation, a tin format is often recommended for 

modelling processes. For this dissertation, the vertical resolution offered 

by the tin and the raster was not at the required scale (i.e. approximately 

0.5 m). There is, therefore, a need for South Africa to invest in developing 

and/or acquiring high resolution DEMs.   

 

 Orthophotos and Satellite Imagery: Several challenges were 

experienced with the available satellite imagery. This was mainly due to 

the fact that daily images for South Africa are not captured. Firstly, 

although several Landsat 7 ETM+ (30 m resolution) satellite images could 

be found, there were no images available for the flood events or any day 

immediately after. The cloud cover on the days after the flood resulted in 

the Landsat 7 ETM+ satellite images being unclear and unusable. The high 

resolution images that were available were when the flood had already 

receded, and could therefore not be used to compare the flood distribution. 

Secondly, the MODIS images that were available for the flood events were 

of a poor resolution, and could thus not be used to compare the flood 

distribution. Lastly, the limitations in the recording of flood events in South 

Africa meant that there were no official archive of historical images 

capturing flood events. There is therefore a need for South Africa to invest 

in daily satellite imagery and in proving historical images capturing flood 

events.   

  

Data limitations determine the flood modelling methodology that is used. Higher 

quality data availability will enable more detailed analysis and the use of 

sophisticated hydraulic modelling applications. With higher quality data, more 

accurate and larger scale flood modelling assessments can be conducted. This 

would enable the application of effective flood planning and the implementation of 

appropriate flood management approaches. 
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9.2 Revisiting the Research Aims  

 

This section revisits each of the research aims, and discusses whether these were 

achieved; 

Aim 1: To evaluate the extent of previous flood events and identify the 

characteristics of the rainfall periods that caused them. (Achieved - see 

Chapters 5 and 7) 

Aim 2: To determine how these previous flood events have affected the 

Crocodile River Basin. (Partly achieved - see Chapters 5 and 7) 

Aim 3: To develop discharge and water level scenarios for possible future flood 

events for the Crocodile River, based on these historical events. (Achieved - 

see Chapter 6) 

Aim 4: To develop flood maps for these future scenarios that identify flood-prone 

areas along the Crocodile River Basin. (Partly achieved - see Chapters 7 and 

8) 

Aim 5: To determine how future flood events are likely to affect the settlement 

patterns, human and physical characteristics of the Crocodile River Basin. 

(Partly achieved - see Chapters 7 and 8) 

 

Although various challenges were experienced regarding data availability, and the 

accuracy of the available data, the data that was available enabled the research to 

be completed. A challenge was, however, experienced in terms of obtaining high-

resolution daily satellite imagery. This meant that the extent of modelled historic 

flood events could not be compared with observed flood events. This meant that 

Aim 2 could only be partially completed.  

 

This research showed that flood modelling is possible with the use of data that is 

currently available in South Africa. Applications such as ArcGIS, HEC-RAS and 

MIKE FLOOD enable good quality hydrological analysis, spatial assessment and 

flood mapping. This research will be instrumental in increasing knowledge of flood 

risk assessment, projecting future flood events under climate variability, predicting 

flood prone areas, and therefore guiding planning and decision making.  
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If South Africa can enhance the existing data sources required for hydraulic 

modelling, the methodology can be improved and better flood hazard maps can be 

created. Some African countries already have better quality historic satellite 

imagery and topographic data. This should encourage South Africa to improve its 

in-house data if it would like to become the leader in spatial information in Africa 

(Els, 2011). 

 

9.3 Recommendations for Further Research 

 

The recommendations presented in this section are based on the research findings 

drawn from the previous sections. In addition, while conducting this research, there 

were several components that were identified where opportunities for further 

research exist. These will increase the richness of the outcomes of flood risk 

assessments. 

 

The data limitations, particularly the lack of high resolution DEMs, creates 

challenges in obtaining accurate flood maps. This could have a catastrophic impact 

for planning processes such as land-use and settlement planning. Communities 

that are considered as socially vulnerable, and thus have a low adaptive capacity, 

could be located in areas that would have been other-wise been considered as 

high risk. High quality DEMs enables an accurate representation of the elevation. 

There is therefore a need for a project, funded by government, which undertakes 

for high-quality DEMs to be captured across the country.  

 

Lastly, this research conducted a spatial vulnerability assessment. It did not 

conduct a detailed overview of the vulnerability of the systems along the basin, but 

merely identified the areas that are at high risk. An identification of each of the 

individual components of the systems along the basin would require extensive 

resources, which were beyond the scope of this project. Further research in this 

area would increase the validity of the flood risk and vulnerability assessment of 

this basin.  
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APPENDIX A: SUPPORTING INFORMATION 

 

A.1 Estimating Future Floods – The Rainfall-Runoff Relationship 

 

The overall feature of the distribution of Mean Annual Precipitation (MAP) is that it 

decreases fairly uniformly westwards from the escarpment across the interior 

plateau of South Africa (as illustrated in Figure 3.11 in Section 3.3.1). Between the 

escarpment and the Indian Ocean in both the southern and the eastern coastal 

margins, there is the expected complexity of rainfall patterns induced by 

irregularities of terrain (Schulze, 2011). According to Lynch (2004), approximately 

20% of South Africa’s land surface area receives less than 200 mm MAP, and 47% 

receives less than 400 mm MAP. Only about 9% of South Africa receives a MAP 

in excess of 800 mm (Lynch, 2004).  

 

In hydrology, a fundamental truism is that the runoff response to rainfall is 

nonlinear, with a larger proportion of rainfall being converted to runoff when a 

catchment is wetter, either because a region is inherently in a high rainfall zone or 

because the soil water content just prior to a rainfall event may have been high as 

a result of previous rainfall. As the runoff-rainfall relationship is a nonlinear one, 

any changes in rainfall may be amplified in its runoff responses (Schulze, 2011). 

The nonlinearity of implies that there is low predictability of the behaviour of the 

system.  

 

Another factor affecting the rainfall-runoff relationship is the size of the catchment. 

Small homogeneous catchments give simple rainfall-runoff relationships but the 

case is different with large catchments (of national or international scale), or with 

catchment of complex or variable shapes. In the intermediate scale, of both area 

and time, rainfall-runoff relationships are complicated due to physical factors (such 

as geology) and hydrological factors (such as evaporation, infiltration and 

groundwater flow) (Nicandrou, 2010). In addition, human activity such as 

engineering developments, land-use types and urbanisation also have an impact 

on the rainfall-runoff relationships.  
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Runoff patterns reflect a combination of rainfall characteristics (e.g. the amount of 

rainfall, its intensity, the concentration of the rainfall season and the persistence of 

rain days, i.e. whether rain falls on consecutive days causing high runoff 

responses, or as isolated events) and soil characteristics (e.g. water holding 

capacity, drainage rates) (Lynch, 2004). In addition, runoff patterns also depend 

on other catchment characteristics. These include the land cover, the terrain, the 

drainage pattern and density.   

 

The heterogeneous spatial and temporal distributions of rainfall result in a low 

overall conversion rate of rainfall to runoff; an average of ~ 9% of rainfall is 

converted to runoff for South Africa as a whole (Schulze, 2011).  Figure A.1 shows 

that over much of the interior of South Africa the ratio of Mean Annual Runoff 

(MAR) to MAP is less than 10%, with significant tracts in the west at less than 5% 

and only small parts exceeding 20%. The eastern region of the country has the 

highest number of areas where the MAR to MAP ratio is greater than 20%. This 

low conversion rate is the consequence as much of an overall paucity of rainfall as 

it is of very high evaporative demand (Schulze, 2011). In addition, the land surface 

and rainfall properties also have an impact on the conversion rate. The ratio of 

MAR to MAP is also known as the runoff coefficient.  

 

 

Figure A.1: Ratios of MAR to MAP over South Africa, Illustrating the Low 

Conversion Rate of Rainfall to Runoff (Schulze, 2011). The Inkomati 

catchment is circled in red.  
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As shown in Figure A.1, the runoff coefficient in the Inkomati catchment (circled in 

red) varies between 10% and 20%, while a smaller portion of a catchment has a 

runoff coefficient between 20% and 40%. This implies that a minimum of 10% and 

a maximum of 40% of rainfall in the catchment is converted to runoff. Therefore, in 

some areas, where 40% of rainfall is converted to runoff, high rainfall events are 

likely to increase the risk of flooding. However, it is important to note that the MAR 

shown above is an average, and will therefore vary spatially within the catchment. 

In addition, the MAR will also vary between rainfall events, as rainfall 

characteristics such as duration and intensity also impact the conversion of MAP 

to MAR.  

 

A.2 Data for Flood Scenarios  

 

The runoff (m3/s) for the two base runoff scenarios is shown in Table A.1, where X 

represents the February 2009 flood event, and Y represents the January 2012 

flood event. The two runoff scenarios identified in Chapter 6 (i.e. a 5% and 15% 

increase in runoff) were applied to each of the base scenarios (i.e. columns 3 and 

4), resulting in a total of four scenarios - where X1 and Y1 represent a 5% increase 

in runoff for base scenario X and Y respectively, and X2 and Y2 represent a 15% 

increase in runoff for base scenario X and Y respectively. In addition, as indicated 

in Chapter 6, the 99.419 m3/s discharge recorded at the X2H013 gauging station 

will also be used for the hydraulic modelling (and is shown as Scenario Z). The 

resulting runoff for the seven identified flood events is provided in Table A.1. Four 

values. As multiple readings are captured each day, only four time periods are 

shown in Table A.1, which were taken at equal time spacing throughout the day.  

 

Table A.1: Two Base and Four Flood Scenarios for Hydraulic Modelling 

(Values for Flood X (Feb 2009) and Flood Y (Jan 2012) are given as m3/s)  

DAY TIME X Y X1 Y1 X2 Y2 Z 

1 1 23.447 20.992 24.619 22.042 26.964 24.141 2.820 

2 19.576 23.734 20.554 24.920 22.512 27.294 2.935 

3 23.822 24.788 25.013 26.027 27.395 28.506 2.763 

4 33.632 23.963 35.314 25.161 38.677 27.557 2.722 

2 1 30.907 23.743 32.452 24.930 35.543 27.304 2.681 

2 28.347 23.523 29.765 24.699 32.599 27.051 2.655 

3 26.660 22.612 27.992 23.742 30.658 26.003 2.629 

4 23.579 21.700 24.758 22.785 27.116 24.955 2.533 

3 1 21.168 20.690 22.226 21.724 24.343 23.793 2.533 

2 20.448 19.679 21.470 20.663 23.515 22.631 2.533 

3 21.293 18.684 22.358 19.618 24.487 21.487 2.533 
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4 21.157 17.689 22.215 18.573 24.331 20.342 2.533 

4 1 21.899 17.129 22.994 17.985 25.184 19.698 2.436 

2 25.091 17.535 26.346 18.412 28.855 20.165 2.443 

3 26.413 17.129 27.734 17.985 30.375 19.698 2.449 

4 28.654 17.975 30.086 18.873 32.952 20.671 2.526 

5 1 32.507 21.443 34.132 22.515 37.383 24.659 2.862 

2 50.442 30.053 52.964 31.555 58.009 34.561 3.009 

3 42.865 24.324 45.008 25.540 49.294 27.972 2.827 

4 74.885 23.837 78.629 25.029 86.117 27.413 2.735 

6 1 88.131 23.211 92.538 24.372 101.351 26.693 2.669 

2 89.022 22.240 93.473 23.352 102.375 25.576 2.603 

3 88.349 21.231 92.766 22.292 101.601 24.415 2.577 

4 82.875 20.528 87.019 21.554 95.307 23.607 2.500 

7 1 87.039 19.350 91.391 20.318 100.095 22.253 2.475 

2 73.998 19.075 77.698 20.029 85.098 21.936 2.449 

3 68.542 18.800 71.969 19.740 78.823 21.620 2.449 

4 68.152 17.947 71.560 18.844 78.375 20.639 2.449 

8 1 61.178 19.314 64.237 20.280 70.355 22.211 2.577 

2 54.012 20.876 56.713 21.920 62.114 24.007 2.883 

3 50.740 20.470 53.277 21.494 58.351 23.541 3.873 

4 49.374 27.431 51.843 28.803 56.780 31.546 3.553 

9 1 47.417 72.770 49.788 76.408 54.530 83.685 3.336 

2 51.629 63.684 54.211 66.868 59.374 73.237 3.118 

3 67.459 36.923 70.832 38.769 77.578 42.461 2.918 

4 56.338 32.610 59.155 34.241 64.789 37.502 2.776 

10 1 50.334 28.541 52.850 29.968 57.884 32.822 2.603 

2 67.720 25.109 71.106 26.364 77.878 28.875 2.590 

3 92.379 23.125 96.998 24.281 106.235 26.594 2.577 

4 119.967 21.581 125.965 22.660 137.962 24.818 2.513 

11 1 115.051 24.316 120.804 25.532 132.309 27.964 2.612 

2 102.596 65.719 107.725 69.005 117.985 75.576 2.992 

3 98.313 90.133 103.229 94.640 113.060 103.653 3.688 

4 95.592 113.067 100.371 118.720 109.930 130.027 5.655 

12 1 95.639 136.000 100.421 142.800 109.985 156.400 12.190 

2 95.682 166.057 100.466 174.360 110.034 190.966 36.695 

3 92.506 183.783 97.131 192.973 106.382 211.351 39.270 

4 90.128 241.750 94.634 253.838 103.647 278.013 50.706 

13 1 88.939 234.848 93.386 246.590 102.280 270.075 72.565 

2 87.750 219.333 92.138 230.300 100.913 252.233 99.419 

3 84.282 207.267 88.496 217.630 96.924 238.357 98.888 

4 80.814 194.500 84.855 204.225 92.936 223.675 93.972 

14 1 75.924 174.667 79.720 183.400 87.312 200.867 84.649 

2 71.033 159.467 74.585 167.440 81.688 183.387 78.111 

3 64.276 154.667 67.490 162.400 73.917 177.867 76.202 

4 61.256 148.533 64.319 155.960 70.444 170.813 67.308 

15 1 59.703 141.067 62.688 148.120 68.658 162.227 61.972 

2 58.150 135.800 61.058 142.590 66.873 156.170 56.011 

3 54.019 132.533 56.720 139.160 62.122 152.413 51.732 

4 50.368 125.667 52.886 131.950 57.923 144.517 48.012 

16 1 47.217 121.267 49.578 127.330 54.300 139.457 39.632 

2 51.499 119.658 54.073 125.641 59.223 137.607 34.678 

3 59.163 118.853 62.121 124.796 68.037 136.681 33.338 

4 61.165 118.049 64.224 123.951 70.340 135.756 31.655 

17 1 54.223 115.699 56.934 121.484 62.356 133.054 31.379 

2 50.490 115.850 53.015 121.643 58.064 133.228 30.376 

3 45.712 114.799 47.998 120.539 52.569 132.019 29.925 

4 43.127 112.850 45.283 118.493 49.596 129.778 28.683 

18 1 42.486 104.449 44.610 109.671 48.859 120.116 26.291 

2 44.852 100.091 47.095 105.096 51.580 115.105 25.144 

3 66.930 95.391 70.277 100.161 76.970 109.700 25.144 

4 64.177 94.139 67.385 98.846 73.803 108.260 27.246 
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19 1 57.267 102.416 60.130 107.537 65.857 117.778 50.766 

2 50.184 118.605 52.693 124.535 57.712 136.395 43.363 

3 47.217 128.357 49.578 134.775 54.300 147.611 41.489 

4 45.712 131.893 47.998 138.488 52.569 151.677 41.030 

20 1 45.413 123.786 47.684 129.975 52.225 142.354 39.114 

2 43.126 126.479 45.282 132.803 49.594 145.451 36.255 

3 42.427 119.100 44.548 125.055 48.791 136.965 35.458 

4 40.919 111.270 42.965 116.833 47.057 127.960 32.212 
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APPENDIX B: FLOOD HAZARD AND SPATIAL RISK MAPPING  

 

 

APPENDIX B: FLOOD HAZARD AND SPATIAL RISK MAPPING  

 

To enable the development of flood hazard maps and spatial flood risk mapping, 

two broad processes were conducted, namely hydraulic modelling and spatial flood 

risk assessment. This appendix lays out the steps that were taken for the hydraulic 

modelling, and the spatial flood risk assessment. Largely, this can be summarised 

as follows:   

A. Hydraulic modelling, involving three broad phases:  

1. Preparing data for HEC-RAS 4.1.0 hydraulic modelling using ArcGIS 

10.3.1 and the HEC-GeoRAS extension  

2. Conducting the hydraulic analysis in HEC-RAS 4.1.0 

3. Processing the HEC-RAS 4.1.0 results in ArcGIS 10.3.1 and the 

HEC-GeoRAS extension 

B. Spatial risk assessment in ArcGIS 10.3.1 

 

This appendix does not contain a detailed description of the steps that were taken, 

but merely provides a brief step-by-step process description. A detailed description 

can be obtained from US Army Corps of Engineers (2009, 2010), and Leon (2013). 

 

B.1 Hydraulic Modelling     

 

STEP 1: HEC-GeoRAS Pre-Processing    

1. Preparation of the Raster DEM in ArcGIS 

a. The two ASTER DEMs (as per Chapter 4.2.2) were merged to form one 

DEM 

b. The coordinate system was changed from WGS 1984 to WGS 1984 World 

Mercator (i.e. degrees to metres) 

2. HEC-GeoRAS Pre-processing was conducted  

a. Setting up Layer and analysis environment in RAS Geometry 

b. Creating RAS Layers:  

i. river center line and 3D center line – the river consisted of 5 reaches  
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ii. river banks (left and right)  

iii. flow paths (channel, left and right)  

iv. cross sections and 3D layer for XS cutlines  

 

c. Assigning Manning’s n values (US Army Corps of Engineers, 2010) to 

cross-sections based on land use types, as per the table. 

Land-use Type Natural Waterbodies Cultivation Degraded Urban (Built-up) 

Manning’s n Value 0.055 0.035 0.055 0.030 0.050 
 

3. Generate HEC-RAS Import file using HEC-GeoRAS 

 

Reach 2 

Reach 1 

Reach 3 

Reach 4 

Reach 5 
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STEP 2: HEC-RAS Modelling     

1. Importing import file into HEC-RAS  

 

2. Running HEC-RAS 

a. The flow data were entered (in m3/s), and a steady analysis was prepared 

for the 7 profiles (i.e. flood events identified in Section 6.3).  

PF1 PF2 PF3 PF4 PF5 PF6 PF7 

119.9669 241.7500 125.9652 253.8375 137.9619 278.0125 99.4190 
 

b. Boundary conditions were defined as normal depth  

 

c. 7 water surface profiles were computed 

3. The HEC-RAS export file was developed.    

 
STEP 3: HEC-GeoRAS Post-Processing    

1. Converting the RAS SDF to XML using HEC-GeoRAS 

2. Setup up GeoRAS to import the converted RAS data   
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3. Import the converted RAS data   

4. Post-processing of RAS results and floodplain mapping using HEC-GeoRAS 

a. Developing Stream Network, Cross Section and Bounding Polygon  

 

b. Developing water surface and flood inundation polygons. The standard 

method (i.e. developing a water surface TIN and floodplain inundation 

polygon for each water surface profiles using HEC-GeoRAS) could not be 

used due to the resolution of the TIN (as discussed in Section 4.2.).  

 

Using raster instead of TIN was not possible, as several challenges were 

experienced which could not be solved. Therefore, the water extent 
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polygons (which are relevant for this dissertation) were created in ArcGIS 

manually by using following method:  

i. Extract data from the water surface extent for all 7 water profiles 

 

ii. Create polygons for each of the 7 profiles, joining the relevant water 

surface extent points 
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B.2 Spatial Risk Assessment    

 

This process that was undertaken for the spatial flood risk assessment is provided 

in Section 4.5. Briefly, this involved:  

 

1. Flood extent mapping – consisting of identifying the land use areas under the 

potential influence of a flood of a particular discharge. For this, vulnerability 

maps are prepared by clipping the land use themes of the floodplains with the 

flood area polygons for each of the flood events. 

  

2. Identifying flood prone areas - For this, the flood risk maps are prepared by 

overlaying all the flood extent polygons with the land use map.  

 

3. Spatial Risk Analysis - This involved the analysis of the likelihood of an area 

to be flooded - i.e. the likelihood of an area to be flooded by a particular 

discharge (shown by polygons). This was enabled by a risk rating exercise. 

ArcGIS enables the identification of different risk classes by shading polygons 

red for a high risk area, orange for medium risk, and green for low risk. As 

there were 7 profiles modelled, the risk categories were determined as 

follows.  

Risk Categories Description  

Minimal   Intersected by 1 polygon  

Low   Intersected by 2 polygons  

Low-Medium  Intersected by 3 polygons  

Medium  Intersected by 4 polygons  

Medium-High  Intersected by 5 polygons  

High  Intersected by 6 polygons  

Very High  Intersected by 7 polygons  
 

4. A flood risk assessment, which uses the risk categories above, as well as the 

discharge rates associated with the polygons, and describes the areas along 

the Crocodile River that are at risk. This is provided in Chapter 8.  

 


