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1

Introduction

łA programming language is low level when its programs require attention to

the irrelevant.ž (Alan J. Perlis)

As a bachelor student, I learned from my future doctoral supervisor that one of the

main responsibilities of computer scientists is to make appropriate abstractions. New

abstractions induce new concepts, and expressing our ideas with those is expected to be

more comprehensible or more efficient in some way. Essentially, the introduced abstrac-

tions shall improve the expression of thoughts, algorithms, or ideas, and should positively

affect how we use them. This fundamental idea determined the way I understood problem

solving ever since.

My doctoral results are dealing with solving complex problems by carefully identifying

and precisely defining problem-specific abstractions. This involves understanding and

establishing syntactic and semantic relationship between the original problem and the

solution. The first two theses literally introduce new languages (with new abstractions)

that bring improvements on how effectively and reliable we can express solutions to

complex problems. The third thesis is also language-oriented, yet it is more about

identifying and exploiting capabilities of well-known language processors.

From the value proposition point of view, my doctoral work improves on the reliability,

the trustworthiness of refactoring transformation definitions, and in addition, it showcases

a special application of the capabilities of a refactoring system by using it for implementing

language extensions. The approach I use along with the voice of the presentation is highly

determined by the fact thatmy entire doctoral researchwas focussed around static analysis

and transformation of software source code, and the fact that I taught Programming

languages, Compilers, Formal semantics and Formal verification throughout the past

years.

The principal case study language formymethods is Erlang, a functional programming

language. Erlang enjoyed a special interest around 2007, the year I joined the refactoring-

focused university research project supported by Ericsson Hungary; many of my results

have been obtained in the scope of this project.

Besides working with static analysis and transformation in functional languages, I

also participated in research of Software Defined Networking (SDN). As a matter of fact,

I wrote the first prototype of T4P4S [40] (Translator for P4 Switches), a retargetable

compiler for the P4 language. This work of mine is not closely related to this dissertation.
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Contributions

I started my research career as a member of the Erlang refactoring project at ELTE. I

contributed to the design of the analysis and transformation framework [35, 6] of our

Erlang refactoring tool, as well as to the design and implementation of various concrete

analysis [32, 55, 7] and transformation [45] steps. I also took part in a project that dealt

with automatic parallelisation of Erlang programs [5, 4], this latter guided my attention

towards high-level refactoring definitions. This work and these results provided me a

solid background knowledge and long-lasting interest to accomplish my doctoral results.

This dissertation presents three theses in three main chapters.

The first two theses deal with dynamic and static verification of refactoring trans-

formations. The dynamic verification approach (Chapter 3) is based on property-based

testing of refactoring with randomly generated programs. My main contribution here

is the method of synthesising data generators for L-attribute grammars [15], and the

attribute grammar I composed for a well-formed subset of Erlang. I also contributed to

the application of the generator for property-based testing of analysis and transforma-

tion components [67]. A few years later I shifted my attention towards static, formal

verification of refactoring transformations (Chapter 4). With the help of Judit Kőszegi,

I designed a refactoring specification language [29] that allows for defining executable

transformations that are automatically verifiable for semantics-preservation. For the

demonstration of the applicability of the approach, we composed a complex case study

refactoring [30], the verification thereof will be discussed in Judit’s doctoral dissertation.

While the first two chapters report on results related to verification of refactoring, the

third chapter presents an unusual application of refactoring frameworks. Chapter 5 uses

slightly customised analyses and program transformations to implement new language

features with a refactoring system. The main contribution is a detailed explanation of how

a refactoring framework is used for extending languages, and some complex case studies

of features implemented with this method [28]. I also contributed to the exploitation of my

language extension method for embedding workflow description operators in Erlang [39].

Although the language extension method is based on refactoring transformations, those

define translational semantics to the new language constructs, therefore they are not

subject to verification techniques discussed in the first two theses.

In the following, Chapter 2 provides a brief overview of the analysis and transforma-

tion framework I worked with, both regarding verification and implementation. Then,

the main chapters detail the main results of the doctoral research. Finally, Chapter 6 will

summarise and conclude.
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Framework for analysis and

transformation

łAny fool can write code that a computer can understand. Good programmers

write code that humans can understand.ž (Martin Fowler)

In this chapter we briefly overview some background to the presented results. We

first introduce the programming language used as a case study language for the methods

presented in this document, then we describe the analysis and transformation system

built for this language. In addition, we identify some key features of the system the thesis

results build on, with focus on semantic analysis and transformation libraries.

Erlang

Most results presented in this document are somehow connected to the functional pro-

gramming paradigm and to the Erlang [11] programming language in particular. Static

analysis and transformation algorithms, domain specific language implementations, al-

most all prototypes of mymethods have been implemented in this programming language.

The most obvious reason for this is the analysis and transformation system available

for this language, which I contributed to during my research. Note, however, that this

does not mean at all that my methods are completely Erlang-specific; rather, they may be

partly restricted to languages showing similar features.

Erlang is a concurrent, impure, functional programming language. It has been de-

signed for creating fault-tolerant, scalable telecommunication systems, and is being used

by the software industry to develop robust server applications. Programs written in

Erlang are composed of files, which consist of a set of forms encapsulating series of

expressions. Files define modules, and forms define program entities such as functions

and records.

Erlang is eagerly evaluated, and it is strongly but dynamically typed. Because of the

dynamic nature of the language, it is rather challenging to provide static analysis and

correct refactoring for programs written in it. One possible approach to Erlang static

analysis is proposed by RefactorErl [70, 69, 6]. The refactoring system we statically and

dynamically verify in the following sections has been written for Erlang, in Erlang.
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2.1 Analysis

The verification and transformation methods discussed in the document have all been

implemented for, or on top of, the above-mentioned static source code analysis and

transformation tool, called RefactorErl. This refactoring system implements a complex

software architecture for statically analysing, representing, inspecting and transforming

Erlang programs.

Being a complex language processor, this refactoring system implements thorough

lexical, syntactic and static semantic analyses of source code, and turns the obtained

information into a three-layered graph representation stored in a database. Not only

these solutions are theoretically founded, but also, the implementation is capable of

handling industrial-scale source code, and it has already been applied to analyse source

code of real-world telecommunication switch software. Beside data-flow, control-flow

and binding analysis, the tool is able to perform dependency analysis, duplicated code

detection and code clustering, to mention but a few of the capabilities.

Syntactic analysis. The refactoring tool uses its own definition of the Erlang language

on all levels, from syntax to semantics. This definition was designed to be extensible,

and easily adaptable to newer versions of the Erlang language [36]. The lexical and

syntactic analysers are automatically generated from a special, lightweight description,

which defines both the concrete and the abstract syntax of the language. Based on this

description, we can synthesise a simple lexical analyser and a yecc grammar description,

and in addition, a dedicated module supporting syntax subtree construction [34].

Semantic analysis. Static semantic analysis is implemented in a novel way in this

tool. Syntactic objects added to the program model are automatically analysed for static

semantic properties. Binding, data-flow [71] and control-flow analyses are implemented

as standalone analyser modules capable of running in parallel, and the synthesised

information is added to the program model in terms of semantic objects and relations.

Semantic analysis is incremental. That is, in case if the model needs to be updated due

to a change in the syntactic part, only those fragments are analysed for semantics that

have beenmodified. Semantic analyser modules are able to handle deletion and addition of

syntactic objects, and they adjust the semantic layer of the model incrementally, without

performing any unnecessary computation. On the other hand, there are analysis steps

that cannot be done incrementally for a reasonable effort. Message-passing analysis and

dynamic function call analysis [32] are two examples that, in case of changes, need to be

rerun from scratch on the whole database.
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2.2 Representation

The way programs are represented in the tool may have a high influence on complexity

and efficiency of analysis and transformation algorithms. The role of semantic program

models is to capture the syntax and static semantics of the code in a compact yet efficient

way. This is achieved via static semantic analysis [72] that enriches the abstract syntax

tree with semantic nodes and edges representing context-sensitive properties. A good

program representation simplifies code understanding, further static analysis and program

transformation.

The syntax tree The fundamental part of any program model is the syntax tree. This

is obtained by performing syntactic analysis (parsing) on the lexically analysed and

preprocessed token stream. We need to make a distinction between concrete and abstract

syntax. Concrete syntax is the language that the compiler accepts and the sentence of

which the programmer writes down. This is the language we write a parser for, which

results the so-called concrete syntax tree (CST). On the other hand, language processors

(compilers and refactoring systems) usually operate on the abstract syntax, which is a

distilled version of the language: symbols required solely for parsing and readability are

left out, only those syntax elements are kept that influence program semantics.

Both in compilers and refactoring tools, the concrete syntax tree (CST) is implicitly

built by the parsing process (performing reductions according to the production rules

of the concrete syntax grammar), while the abstract syntax tree (AST) is explicitly con-

structed by routines associated with the concrete prodution rules. We discuss concrete

and abstract syntax in more detail in Section 3.3.

The semantic program graph (SPG) Static semantic analysis uncovers context-

sensitive properties of programs which cannot be represented in ordinary syntax trees.

More expressive notations like annotated abstract syntax trees (AAST) and higher-order

abstract syntax trees (HOAST) can accommodate extra information, but in RefactorErl,

we decided to build a semantic graph model.

The semantic program graph (SPG) is an extension of the abstract syntax tree; essen-

tially, it is a rooted graph with labelled, indexed and directed edges. On top of the AST, it

includes semantic nodes and semantic edges. We sometimes call nodes objects, empha-

sising that all nodes have a unique id and an attribute set. In analysis and transformation

algorithms, nodes are referred to by their unique id, and most of our algorithms are im-

pure: they suppose a globally accessible graph object, parts of which can be manipulated

via node references.

The methods we present in the forthcoming chapters assume the SPG as the underlying

program model for analysis and transformation. In particular, we assume the model be

represented as a mutable tree or graph, with references to every syntactic and semantic node

(object).
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Worth mentioning that, unlike in compilers, lexical nodes in the refactoring system

store not only the texts of the code elements, but also the comments and the white-spaces

around them. This allows the tool to restore the code according to its original appearance

following any transformation steps.

Example 2.2.1. The following example demonstrates a simple Erlang program and its

corresponding Semantic Program Graph (syntactic and semantic layers).

-module(example).

sum([]) -> 0;

sum([H|T]) -> Sum = sum(T), H + Sum.

Figure 2.1 shows the corresponding program graph. The semantic layer is on top of

the syntactic layer: modules, functions and variables (name bindings in different name

spaces) are treated as semantic entities and get a dedicated semantic node created in

the graph, whilst the semantic nodes are connected to the syntactic nodes with labelled

edges. This kind of representation makes it a one-step traversal from a semantic entity

to localise its definition and its references, which simplifies queries and transformations.

2.3 Transformation

Transformations in RefactorErl are implemented as syntax tree manipulations written in

Erlang. Although these algorithms build on the graph query [47] and tree construction

libraries [35] created for the semantic program graph, they are pretty low-level; Chapter 4

addresses this issue.

Refactoring transformations are implemented as consecutive actions of graph queries

and tree rewritings. Essentially, before any modifications, the side-conditions of refactor-

ing are checked; these guarantee that the transformation preserves the behaviour and

the semantics of the refactored program. If the conditions are met the system starts ma-

nipulating the syntax tree in multiple syntactic transactions, each followed by semantic

analysis. Following the transformation, the framework pretty-prints the modified model

into its textual form (source code) and saves it in the file system.

Graph queries. Node and property lookup is realised by (semantic) graph queries.

Node annotations and edge labels are both exploited in such queries, i.e., while finding

nodes or properties Ð paths in the labelled graph are basically described by means of a

series of edge labels. The query library builds on top of these traversal paths, and uses

language-level concepts for information lookup. For example, one can make queries like

łplease find me all 2-parameter functions that are in module X, refer to some record R or

to some other function Y, and do not have side-effectsž, but apparently, the syntax is not

English-like, it is given by calls to functions in the query library.



2.3 Transformation 7

Figure 2.1: A semantic program graph
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Tree construction. RefactorErl, in order to make tree operations completely indepen-

dent of the actual low-level representation of the graph, provides a library that hides

implementation details behind a simple interface. Via this interface, one can intuitively

add or delete graph nodes, get or update node annotations, and add or remove directed,

labelled edges between two nodes.

Creating subtrees, and making replacement by detaching and attaching nodes is

cumbersome in the low level, but the framework lets us construct syntax trees based

on abstract syntax. In this library, one can reuse existing nodes to build more complex

out of them. That is, in the description of the desired tree, nodes can be specified by

their original identifier, or with a simple Erlang term representing an abstract syntactic

construct composed of other nodes. This set of construction functions, similarly to the

semantic analysis and pretty-printing, is based on a predefined abstract syntax of the

language.

We emphasise that thanks to the automatic and incremental static semantic analysis in

RefactorErl, syntax manipulation is always followed by the automatic re-adjustment of the

semantic layer, without manual graph extensions.

2.4 Correctness

Refactoring, by definition, is semantic-preserving program transformation. However,

in general programmers associate refactoring with program changes that improve ap-

pearance or performance of their software. In this document, we do not consider the

usefulness of refactoring transformations: the focus is on whether the transformation is

guaranteed to preserve program behaviour (or semantics), whilst non-functional proper-

ties are neglected.

A refactoring is said to be correct if it implements a program transformation that is

definitely semantics-preserving. In widely used refactoring systems, transformations

implementations are not formally verified, and there is always concern about whether

they are correct. A refactoring failing to preserve the meaning of the code may cause

significant expenses in a project; in some companies, programmers are discouraged

to do refactoring at all. The concern is well-founded: a study [14] comparing the Java

refactoring steps in Eclipse andNetBeans foundmore than 20 errors in the implementation

of common refactorings in each tool.

There are several static and dynamic approaches to refactoring verification. Refactor-

ing can be tested with test suites or on randomly generated input programs, although the

latter requires a method for checking behaviour-preservation. In Chapter 3 we present a

solution that is based on checking program equivalence with randomly generated input

values. Although this kind of verification may bring confidence in correctness to some

extent, the randomised nature makes it fragile from the coverage point of view. Let us be

honest, it is far from making the refactoring trustworthy for the advanced user.
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Dynamic verification can be improved when combined with static proofs. We can

incorporate formal semantics of the language in verifying concrete (possibly randomly

generated) applications of the refactoring for semantic-preservation. This may not test,

but prove that one particular application of the refactoring (e.g. on program P ) was

definitely correct (resulting in a program P ′ semantically equivalent to P ), but it is left

open whether it would be correct on another P . Apparently, we cannot enumerate all

the possible programs.

P
R // P’

The ultimate correctness verification is proving that the refactoring R is correct for

any possible P , such that applying R on any program P refactoring R preserves its

semantics. This can be achieved by static, formal verification of refactoring definitions,

which requires the refactoring be defined in an abstraction level and formalism that is

amenable to formal verification, as well as the programming language semantics and

the semantic equivalence be precisely defined in a formal notation. This approach is

addressed in Chapter 4.





3
Property­based testing of

refactoring systems

"Discovering the unexpected is more important than confirming the known."

(George E. P. Box)

This chapter investigates dynamic verification of refactoring correctness. Although

testing, unlike formal proofs, cannot ensure the absence of errors, it is seen as the most

important and widespread verification technique for large-scale software. Via testing,

we can show that the program’s run-time behaviour is correct in a significantly large

number of cases. The more test cases we check, the more confidence testing brings, or in

other words, the more chance we have to uncover incorrect behaviour. Indeed, if the test

suite includes some obscure corner cases as well, testing may be just enough to provide

the required confidence in the correctness.

In its simplest form, testing is based on the inspection of output values (and side

effects) on given input values. We naturally associate programs with mathematical

functions (or relations) on special domains (this may be seen as a denotational semantics

of the program), and understand testing as checking of some particular elements in this

function. There is an obvious limitation: the input domain of the computation is typically

infinite, which makes it practically impossible to enumerate all the possible input values

and perform exhaustive testing to prove the program error-free.

In case-based testing, a number of test cases are composed (either via white-box or

black-box, i.e. based on the program or based on its specification), which are expected

to cover all the important (and representative) input-output pairs, and execute as many

paths in the program as possible. The result of this process is a so-called test suite, which

can be used for unit testing and regression testing, and can be regarded as a partial

input-output specification of the program. In the case of refactoring transformations,

such a test collection would contain a number of source code pairs showing the result of

a particular transformation on a piece of code. There is an apparent connection between

the original and the transformed program: they have to be semantically equivalent.

Property-based testing (PBT) is a generalisation of the traditional case-based testing:

rather than enumerating a huge number of input-output pairs, we specify the expected

behaviour of the program in a precondition-postcondition fashion. Namely, concrete

input values are generalized to pre-conditions on the input domain (data set), and concrete

output values are replaced by post-conditions on the resulting data.
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For very simple, total functions, the input domain can be synthesised based on the

type of the function, but in the rest of the cases it has to defined separately with so-called

data generators. The system performs the testing by randomly generating the elements

of the input domain by consecutive calls to the input data generator. Note that when

testing complex programs operating on complex data, both specifying the data generator

and establishing the formal property may be pretty challenging.

Problem statement

In refactoring systems, both the input and the output is program source code. When

specifying the correctness of a refactoring transformation, the precondition would ensure

that the input is a compilable source code, whilst the postcondition tells if the resulting

source code is semantically equivalent to the original one. If we can make sure that the

data generator for the input domain only generates compilable programs, no further

precondition is necessary. Now the question is how to create a PBT data generator for

well-formed Erlang programs and how do we check program equivalence. Let us first

focus on the former one.

Suppose that P is the set of syntactically-valid Erlang programs, which can be pro-

cessed by a refactoring system. When specifying the correctness property of a refactoring

(refactor : Program → Program), we restrict the input domain to semantically valid

(well-formed) programs, and only require the transformation to preserve the semantics

of such programs. Note that the refactoring may or may not transform an ill-formed (e.g.

not compilable) program properly. The following formula defines the above property:

∀p ∈ WellFormedProgram : equivalent(p, refactor(p))

The same property can easily be expressed in QuickCheck, a property specification

language, resulting in the following expression:

?FORALL(P, well_formed_program(), equivalent(P, refactor(P))

This reads "for all well-formed programs, the program and its refactored version are

semantically equivalent"1, which corresponds to the formal statement expressed in first-

order logic. The property seems to be straightforward, but relies on two complex concepts:

the language of well-formed programs and a predicate that tells whether two programs

are semantically equivalent. How do we define these? This is the problem this chapter

investigates.

1The refactored (transformed) variant may be identical to the original program if the transformation’s
precondition is not fulfilled, but this is accepted since two identical programs are semantically equivalent.
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Structure of the chapter

This chapter is structured as follows. First, Section 3.1 overviews related work in the field,

including both grammar-based data generation and automatic testing of refactoring. Then,

in Section 3.2, the underlying theory of testing properties and generators is discussed,

which clarifies the abstraction layer we can build on. Section 3.3 discusses the method we

developed for attribute grammar-based test generation in the QuickCheck property-based

testing framework. As a case study, Section 3.4 demonstrates the method by defining a

subset of Erlang, and Section 3.5 discusses how the grammar-based generator has been

used in testing of refactoring engines. Section 3.6 identifies some limitations and future

work, and sums up the results of the chapter.

3.1 Related work

Both grammar-based test generation and automatic testing of refactoring transformations

have been of interest of both academia and industry for a long time now. Automatic

test case generation for dynamic verification is a big challenge in most programming

paradigms, and if, in addition, the tested program consumes programs, the problem

becomes even more challenging. In this section, we briefly overview the related work in

grammar-based data generation and automatic testing of refactoring engines.

Grammar-based test generation. In software technology context-free and attribute

grammars are mostly used to recognise sentences of languages, but it is not a novel

idea to employ grammars to generate sentences of languages. Enhanced context-free

grammars have been identified long ago as concise and powerful formalism for defining

various kinds of complex and structured data. With the ability of automatic sampling

of generated languages, they can outstandingly support testing of systems defined on

structured input domains.

Since its introduction in the early 1970s, grammar-based test generation has become

well-established: proven on industrial projects and widely published in academic venues.

It has been used in dynamic verification of various hardware and software systems [16,

48], including network processors and integrated circuits. Not surprisingly, given that

programming languages are typically formally defined with grammars, the approach

has also been applied to generate random programs for testing meta-programs, such as

parsers, compilers and refactoring engines [61, 49].

In the related work, which intensified in the years following the millennium, various

domain specific languages and implementations have been created for context-free gram-

mars and variants of attribute grammars. Some of these have been designed to primarily

support extensible programming with special variants of attribute grammars [77, 18],

while others strictly aim at providing assistance for test data generation [27, 24]. Different

applications demanded for different extensions to the classical grammar formalisms.
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The approaches mainly differ in what additional features to attribute grammars

they support (e.g. reference attributes, higher-order attributes, circularity, probabilities),

whether they offer standalone or embedded implementations, in which programming

paradigm they interpret the grammars, and in what terms the grammar is given a se-

mantics. From the semantics perspective, attribute evaluation is a central question, since

uncovering hidden dependencies among attributes may be very difficult, while from

a more syntactic point of view, modularity and compositionality (supporting feature-

oriented language development) are the primary goals of developing attribute grammar

languages. Lämmel [38] made an extensive survey on grammar-based software, which

identifies grammarware an important principle in software engineering. Indeed, attribute

grammars have important role in language specification, language design, implementa-

tion, analysis, and in language sampling for different purposes in general.

Attribute grammars in Erlang. In the functional paradigm, and particularly in Er-

lang, there are at least two developments definitely worth mentioning. The very first

grammarware solution for Erlang QuickCheck was the component called EQC Grammar,

a compiler that could transform a context-free grammar into a QuickCheck data generator.

Although this proved to be a useful tool for generating some simple kinds of data (such

as context-free protocol messages), it was not expressive enough to generate data with

context-sensitive properties.

A few years later, the QuickCheck development team created support for attribute

grammars [52]. The expressiveness of this solution is pretty similar to mine (in fact,

they can express a larger set of grammars), but the way we formalise and interpret

grammars is very different. In their solution, grammars are embedded into Erlang, not

compiled as a standalone language; the context-free syntax is defined in terms of type

specifications, whilst attribute computations are written as functions in a special syntax.

Conditions on attributes are handled in a very unique way, but they implement implicit

inheritance similar to my solution; they call it chained attributes. The formalism is more

modular then mine, but it is pretty hard to embed a formal attribute grammar into their

language. In contrast, my generator language is basically a textual representation of a

formal L-attribute grammar, meaning it is straightforward to script an already composed

grammar in my language.

Testing of refactoring. Large-scale refactoring systems are usually tested with an

extensive set of manually written test cases. Fortunately, a lot of effort has been put into

property-based testing of refactoring engines, which can significantly increase coverage.

Beside providing meaningful input programs for the refactoring, the main problem of

automatic refactoring verification is checking whether the output is correct w.r.t. the

input program. In general, it is not decidable if two programs are semantically equivalent,

therefore, other, static semantic properties are checked for equivalence or desired change.
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Important results were reported in [14], presenting a QuickCheck-inspired, custom-

designed generator library in which a Java program generator is instantiated. They check

different test oracles on refactorings executed on random programs, similarly to our

approach. For Erlang refactoring, Thompson and Li[42] made the first important steps

towards automatic testing of transformations. Although they used randomly generated

transformation commands, the input code was pre-written, not generated. They checked

correctness via checking binding structures and other lightweight properties of programs.

3.2 Property-based testing with QuickCheck

Before diving deep into the definition of the refactoring correctness property and the

corresponding data generator, let us overview what we cook with. In Erlang, just like in

a number of other programming languages, property-based testing is easiest done with

QuickCheck. QuickCheck is a language and toolset for stating and checking properties of

programs. The implementation uses the host language’s variables and boolean expressions

for composing first-order logic formulas for the properties.

3.2.1 Properties

Properties are many-sorted first-order logic statements that capture aspects of partial

correctness of functions. Variables in these formulas can take values of (sub-types of) data

types definable in the language. That is, variables’ sorts are restricted by the programming

language’s type system.

Example 3.2.1. Consider the example mentioned in the problem statement. Expressed

in first-order logic, the domain of discourse may be either syntactically valid programs

or semantically valid (well-formed) programs. When opting for the former, the property

would not necessarily hold, because the behaviour of refactorings on semantically ill-

formed programs is not defined. Nevertheless, if we restrict the universe to well-formed

programs, the property would hold.

∀p(equivalent(p, refactor(p))

When choosing syntactically valid programs as universe, with implication in first-

order logic, we can explicitly restrict the scope of the property, making it hold.

∀p(wellformed(p) → equivalent(p, refactor(p)))

As mentioned already, QuickCheck uses the typed (many-sorted) variant of first-order

logic, variables’ sorts are explicitly stated. Let us rephrase the formulas typed, to make

universes explicit.
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∀p ∈ Program : wellformed(p) → equivalent(p, refactor(p))

Or equally: ∀p ∈ ⌈wellformed⌉ : equivalent(p, refactor(p))

This formula expresses the property the way we want it. In first-order logic, there is

no difference between restricting the universe and introducing a strong precondition, but

in QuickCheck, there are some technical considerations, and in general, we have to opt

for the second option, where the domain is smaller. The reason is that there is no con-

nection between the implications and the data generators, random values are generated

independently of preconditions. Data dissatisfying the preconditions is simply excluded

from the actual test set. For strong preconditions on complex domains, QuickCheck

would randomly generate extensive amounts of wrong (w.r.t. the precondition) test cases,

without doing actual verification of the property. Therefore, in QuickCheck we shall use

well-specified generators with weak preconditions, rather than general generators with

strong preconditions.

Example 3.2.2 (Advanced generators instead of strong preconditions). Consider the

following generator that produces random even numbers.

?SUCHTHAT(X, int(), X rem 2 == 0)

It seems obvious to ask the testing framework to generate random integers and filter out

the odd ones, but beware that the system cannot magically produce the values we want.

What will happen is that it will keep trying random values one after the other until it

finds one that passes the precondition. If a large percentage of all the possible values do

not pass the test, then a better strategy is to write a more advanced generator that only

generates ’good’ cases:

?LET(X, int(), 2 * X)

Properties expressed in QuickCheck are explicitly typed formulas, all variables are

associated with a corresponding domain. These domains are determined by QuickCheck

data generators. In Erlang QuickCheck, implemented with macros and functions, we

would write the following expression to express the refactoring correctness property:

?FORALL(P, ?SUCHTHAT(P0, program(), wellformed(P0)),

equivalent(P, refactor(P)))

Or rather than building the implication into the generator, we can write it explicitly in

the property:

?FORALL(P, program(),

?IMPLIES(wellformed(P), equivalent(P, refactor(P))))



3.2 Property-based testing with QuickCheck 17

However, as we just emphasised it, it is more practical to opt for a more refined domain

instead of the strong precondition:

?FORALL(P, wellformed_program(), equivalent(P, refactor(P)))

With this, we ended up with the property we sketched in the problem statement. Now

let us overview the set of properties and generators available in QuickCheck.

Basic properties. After the introductory example, we overview all abstractions avail-

able for property construction. We define what we mean by a property in QuickCheck,

then we show the connection between first-order logic specifications and QuickCheck

properties.

Definition 3.2.1 (QuickCheck property). Suppose that BoolExp is the set of boolean

expressions in the programming language. Then, the set of basic QuickCheck properties

(Prop) is defined as follows:

· BoolExp ⊆ Prop

· If B ∈ BoolExp and P ∈ Prop, then (B → P ) ∈ Prop

· If G is a generator for type a and p is a function of type a → Prop, then

(∀G : p) ∈ Prop

· If G is a generator for type a and p is a function of type a → Prop, then

(∃G : p) ∈ Prop

Properties specified as a boolean expression are called primitive properties, while the

inductive cases (implies, for all, exists) are called property combinators. The concrete

syntax of these combinators depends on the programming language that implements the

system. In Erlang, three macros are used to compose such properties: IMPLIES, FORALL

and EXISTS.

Proposition 3.2.1. Basic properties are specifications expressed in many-sorted first-order

logic formulas.

Proof. Boolean expressions in the programming language correspond to simple formulas

over many-sorted first-logic without quantifiers. The three main property combinators

correspond to the implication operator, the universal and the existential quantifiers in

first-order logic.

Remark. In some implementations of QuickCheck (e.g. in Haskell), there are property

combinators for the logic connectives and and or as well.
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Additional property combinators. For technical reasons, there are a few more prop-

erty combinators in Erlang QuickCheck. These do not affect the logic formula the property

checks, but may influence the checking strategy. For example, FORALL_TARGETED, a vari-

ant of FORALL, uses advanced techniques to control test case distribution by optimising

on some target metrics, instead of using simple randomised test case generation. Fur-

thermore, to tackle run-time errors and divergence encountered during test, WHENFAIL,

TRAPEXIT and TIMEOUT can help the property writer handle exceptional scenarios during

check.

3.2.2 Generators

łGood generators are often the difference between finding bugs and not finding

them.ž

Data generators are QuickCheck’s tool to determine domains of discourse for quanti-

fied variables in properties. The simplest data generators are not more than a mapping to

a corresponding data type, while more advanced generators restrict domains or control

distribution of elements in random selection.

First-order generators

First-order generators take no arguments, or take arguments of the data types of the pro-

gramming language that implements QuickCheck. In other words, first-order generators

cannot be parametrized by other generators.

A QuickCheck implementation provides data generators for the types of the pro-

gramming language. In the case of Erlang, there are built-in first-order generators for

all ground types, such as binary, bool, char, int, largeint, nat and real. These generators

randomly generate a value out of the data type they belong to (i.e. the generator int

generates a random integer value).

In addition, there are two first-order generators that take concrete values and lift

them to generators:

· return: Constructs a constant generator for any value in any type in Erlang.

· elements: Takes a value from a list of (possibly heterogeneously typed) elements.

Higher-order generators

Unlike first-order generators, higher-order generators take one or more generators as

arguments. They can either restrict or extend the generated domain, as well as they can

change the probabilities associated with domain elements. We overview most of the

generator combinators available in (Erlang) QuickCheck.
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Dependent generation. Although Erlang, unlike Haskell, has no support for monads,

the abstract type of data generators does have the usual monadic interface: return and

binding (return has been mentioned in the previous section as a first-order generator).

The binding operator (used as the LET macro in Erlang2) supports building generators

whose domain depends on the value produced by another generator. This way, we can

implement monadic composition of generator functions in Erlang, such that a generator

depends on the value of another generator.

Generating structure types. QuickCheck allows for generating compound data types,

such as lists and tuples in Erlang. There are higher-order generators for this, called

list and tuple, respectively. When used with first-order generators, they will generate

homogeneous structures, whilst parametrised with higher-order generators producing

union types, they can generate heterogeneous structures, too.

Domain restriction. There are two ways to restrict the domain of discourse for a

quantified variable in QuickCheck: via a boolean condition on the value, or via limiting

structural complexity (size).

· suchthat: If we need to restrict a domain to a subset of elements satisfying some simple

properties, the SUCHTHAT generator combinator can be used. It can act as a

precondition before passing a generator value to a property.

· sized: During the testing process, QuickCheck maintains a complexity measure (so-

called size) for all data generators. Properly implemented generators take this

value into account, such that the bigger the generator size is, the more values

the generator selects from. The SIZED generator combinator lets the argument

generator rely on the actual value of the generation size. For structured data (e.g.

syntax trees), the size may restrict the domain in terms of structural complexity

(e.g. number of nodes or tree height).

· resize: This generator allows us to modify the size attribute of its argument generator.

Example 3.2.3. To get an idea on how generators are constructed, let us consider a

simple example. The following generator produces a list of points with two integers as

coordinates.

list(?LET({X, Y}, tuple(int(), int()), {point, X, Y}))

Another example demonstrates the use of the SUCHTHAT combinator. The following

line defines a not-too-efficient generator that produces random numbers not being prime:

?LET(Y, int(), ?SUCHTHAT(X, int(), Y > 1 and X rem Y == 0))

2LET(X, E, E2) is defined as bind(E, fun(X) -> E2 end)
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Union domains. It is also possible to extend, or rather, unify (merge) domains. Tech-

nically, the generation system will choose non-deterministically among the argument

generators, but this non-determinism on the domain level means simply taking the union

of the argument domains.

· oneof: This combinator takes a list of generators and results in a new generator that

produces values of the domains of the argument generators with an even probability.

· frequency: This combinator is the weighted variant of oneof, where each and every

argument generator is coupled with a probability. With this, the probability of the

elements in the unified domain can be controlled per component domain.

Example 3.2.4. The following generator produces a numbers such that the probability

of generating an even number is double the probability of getting an odd one.

frequency([ {2, ?LET(X,int(),X*2)}, {1, ?LET(X,int(),X*2+1)} ])

We will use domain unification extensively when producing different kinds of syntactic

program elements of the same syntactic category. Quite naturally, the generator for

the language of expressions is defined in terms of the union of generators for its sub-

languages.

Remark (Analysing distribution.). Most QuickCheck implementations use generators in a

completely random way, and only report about counterexamples of properties. However,

such implementations also provide interface to inspect test data distribution, provided

that there is a classification of the domain. For example, after generating 100 integers

for testing an integer function, the system can report on the distribution of negative and

positive test numbers. This may be of very good use when fine-tuning the probabilities

in frequency.

Remark (Shrinking.). When the property-based testing finds counterexamples to a prop-

erty, creates reports about these so that failing cases can be inspected. In practice, however,

random data generators may produce incomprehensibly complex and large test cases for

disproving a property, and ultimately, such counterexamples hardly help identifying the

roots of bugs. To overcome this issue, QuickCheck introduced a technique called test case

shrinking: when finding a counterexample, it tries to generate a smaller, yet still failing

test case. Shrinking in general is not more than trying to rephrase the counterexample by

re-generating parts of it with a decreased generator size, but the system allows experts

to define shrinking specifically to a particular data generator, too.

Generating recursive types Generators can be given a name by encapsulating them

in functions; thus, recursive generators can be created by means of recursive generator

functions. Generators for recursive types (such as syntax trees) need to be designed with

care, it has to be ensured that the generator eventually opts for the base case and the

branch terminates.
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The problem can be handled implicitly or explicitly. One can rely on the already

mentioned size attribute of the generators and select one of the base cases when the size

is small enough. Alternatively, generators may maintain a recursion limit and implement

explicitly bounded recursion; in the method I designed, I used the latter solution via

storing this recursion limit in a grammar attribute.

Remark (Lazy generators.). There is a generator that is only important from the technical

point of view. Because Erlang is strictly evaluated by its run-time system, there is a

dedicated combinator that makes a generator lazy. When writing recursive generator

functions, we need to make the evaluation of the generator lazy, by encapsulating the

application of the function in an anonymous function. Technically, this job gets easily

done with the generator combinator macro called LAZY.

Proposition 3.2.2. QuickCheck data generators define subsets of data types of the pro-

gramming language, and associate each element (value) with a probability.

Proposition 3.2.3. QuickCheck data generators form a monad over the data types of the

implementing programming language. The monad operators behave as follows: the return

operator creates a constant generator, while the binding operators provide successive relation

between generation steps.

3.2.3 Generator for syntax trees

QuickCheck generators can define any language, therefore they can define a programming

language (or the syntactic terms thereof) without any problems. Representation is not an

issue either: syntax trees can straightforwardly be represented in Erlang by encoding

the tree in lists of tagged tuples. The problem of creating a generator for programs boils

down to creating a generator for such lists of tagged tuples that faithfully represent

well-formed Erlang programs. However, the effort needed to write a generator for a

programming language is significant.

Example 3.2.5. Let us consider a simplified example to demonstrate the complexity of

writing compound generators. Suppose that we want to define a language that consists

of series of expressions represented in a list, where expressions can either bind names,

construct literals or compute binary operations (such as addition or multiplication) on

the values of other expressions. Furthermore, suppose that the types of the expressions in

the list are determined by another list containing type names. Clearly, there are different

kinds of information to be shared among the generators for the various syntactic objects,

and in general, it can be cumbersome to design the flow of inherited and synthesised

data.

Data generators for the above expressions may be scripted in QuickCheck generators

as follows. Even for this simple example, the generator functions are hardly readable or

extensible, because they contain too much low-level, unnecessary details.
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exprs([Type|Types] = _Types, Context) ->

?LET({Expr, NewContext}, expr(Type, Context),

[Expr | ?LAZY(exprs(Types, NewContext))].

expr(Type, Context) ->

oneof([?LET(Name, fresh(Context), {{declare, Name}, Context ++ [Name

(cont.)]}),

case Type of

bool -> ?LET(RandomBool, bool(), {{lit, RandomBool}, Context})

(cont.);

int ->

oneof([

?LET(RandomInt, int(), {{lit, RandomInt}, Context}),

?LET(VarName, elements(Context), {{var, VarName}, Context

(cont.)}),

?LET(LeftExpr, ?LAZY(expr(Type,Context)),

?LET(RightExpr, ?LAZY(expr(Type,Context)),

{{add, LeftExpr, RightExpr}, Context}))

])

end

]).

When looking at the generator function, it is apparent that a significantly large part of the

code is handling context dependencies and passing context. Indeed, in general, complexity

of writing generator functions manually is stemming from handling generation order,

dependencies among constituents, a number of technical details, and of course, the

syntactic noise.

Although the definition of such a generator is inherently imperative, we know that

context-free languages, as well as context-sensitive languages, can be specified declara-

tively by using formal grammars. The above language could be very easily formatted as

an attribute grammar in the notation to be presented in the following section.

exprs -> {$0.types, ~expr}

expr -> fresh :: {declare, ’$1’} [context = ’$0’.context ++ [’$1’]]

| when [type == bool] bool :: {lit, ’$1’}

| when [type == int ] int :: {lit, ’$1’}

| when [type == int ] elements(’$0’.context) :: {var, ’$1’}

| when [type == int ] expr expr :: {add, ’$1’, ’$2’}

The declarative notation, as opposed to the imperative one, is definitely more compre-

hensible, since it is free of the details that are handling control and data flow. As you can

observe, structure of data is well embedded into the production rules of the grammar,

while information inheritance and information synthesis can be handled concisely with

symbol attributes. We are going to exploit this, and build a method that turns grammars

to generators.
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3.3 Method to grammar-based program generation

The problem of program generation is best solved by employing a formal grammar to

synthesise a data generator for syntax trees of well-formed programs. From a declarative,

readable description, an imperative generator is created. With this, we solve the problem

in two halves: defining the language of interest with a formal grammar, and creating a

method that turns the grammar into a data generator. We first investigate the latter issue,

then we give a grammar for well-formed Erlang programs.

Generative formal grammars are widely and extensively used for parsing text. Context-

free grammars are a great tool for defining the syntax of programming languages, while

attribute grammars can express static semantics as well. Most parser combinators (com-

piler compilers) provide support for some restricted class of attribute grammars; top-down

parser generators work well with L-attribute grammars, while bottom-up parser genera-

tors usually support S-attributed grammars, for efficiency reasons (no need for additional

traversal of the syntax tree). While grammar-based definitions of (programming) lan-

guages are mostly used for parsing sentences, they can equally be used for enumerating

language sentences.

Notes on attribute grammars. Throughout this section, we assume that the reader

is familiar with the basics of formal grammars and languages (including the definitions

of formal grammar, generated language, derivation, deterministic grammar and the

Chomsky-hierarchy). On the other hand, let us refresh how attribute grammars extend

context-free grammars, and what restrictions L and S-attribute grammars add to the

general definition.

Definition 3.3.1 (Attribute grammar). An attribute grammar is a context-free grammar

augmented with attributes, semantic rules, and conditions. Attributes are attached to

grammar symbols, semantic rules compute the values of attributes (possibly in terms of

other attributes), while conditions are logical statements on attribute values.

Attributes can be either synthesised or inherited. A synthesised attribute is computed

from the values of attributes of the children, therefore carries information upwards in

the syntax tree. An inherited attribute at a node in the parse tree is defined using the

attribute values at the parent or siblings, thus, it propagates information downwards and

across the tree.

Definition 3.3.2 (S-attribute grammar). An attribute grammar is S-attributed, if all

attributes are synthesised.

Definition 3.3.3 (L-attribute grammar). An attribute grammar is L-attributed, if each

inherited attribute of Xj on the right side of A → X1, X2, . . . , Xn depends only on the

attributes of the symbols X1, X2, . . . , Xj−1 and the inherited attributes of A.

Proposition 3.3.1. Attribute grammars can define languages that are not context-free, i.e.

languages that cannot be defined with context-free grammars.
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Parsing concrete, generating abstract syntax

In static analysis and in compilation, syntactic analysis is based on the concrete syntax

of the language, but static semantic analysis is often implemented on an abstract variant

of the syntax tree, for the sake of analysis simplicity. In abstract syntax, details not

affecting static and dynamic semantics are simply left out. Although the abstract syntax

is usually not explicitly defined by a grammar (rather by a data type), the language of

abstract syntactic terms can be defined by means of formal grammars, too. Actually, most

programming languages have both concrete and abstract syntaxes defined in some way,

with the latter leaving out all details of concrete syntax only required for deterministic

parsing and code readability.

Parsing. Concrete syntax is almost always formally defined by means of a context-free

formal grammar (in BNF) over the lexical layer of the language. Based on this grammar,

(automatically synthesised) parsing yields a concrete syntax tree (CST) that can be easily

mapped to an abstract syntax tree (AST) representing an abstract term in the language.

In this process (Figure 3.1), the CST is implicitly built, while the AST is explicitly created:

tokens of the program are processed by parsing in order to recover the concrete syntax

tree, then the concrete syntax tree is translated to an abstract syntax tree that is further

analysed for static semantic properties.

tokenize // recover CST // ensure static semantics when recovering AST

Figure 3.1: CST and AST in program analysis

We say that a parse tree is implicitly built, if there is no corresponding data structure

built for the tree, only the call stack of the program maintains the grammar symbols

visited. This is the typical implementation of top-down LL parsing via recursive descent

analysis, and we will use a very similar technique in case of top-down random generation.

Generation. One could decide to generate random programs based on the concrete

syntax grammar of the programming language, but as we aim at generating static se-

mantically valid code, we better build our generation primarily on the abstract syntax.

Therefore, we kind of reverse the process used in analysis: we first generate an abstract

syntax tree that is correct with respect to the static semantics of the language, and then

we explicitly construct a concrete syntax tree that corresponds to the abstract one (there

may be many). Observe that the process (Figure 3.2) starts with the AST, so that the

grammar we formalise and use for generation is the abstract syntax of the language,

rather than the concrete syntax. If the concrete syntax is available as a formal definition

yet, some straightforward steps are needed to make it abstract. We will come to this

question in the following sections.
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ensure static semantics when generating AST // generate CST // pretty-print

Figure 3.2: CST and AST in program generation

Remark (Grammar ambiguity). When using a formal grammar for parsing, it is a strict

requirement that the grammar be deterministic, because the syntax tree recovered for

a string has to be unique. However, when using a grammar for sentence generation, it

does not have to be deterministic, since the syntax tree is not recovered but built, and

every alternative derivation of a particular string is acceptable. Thus, it will not cause

any problems that the abstract syntax is not deterministic.

Example 3.3.1. Let us compare the abstract and the concrete syntax definitions of a sim-

ple expression language containing integers combined with addition and multiplication

operators. The concrete syntax explicitly mentions the symbols sentences are constructed

with, including the terminal symbols for addition, multiplication and parentheses.

expr -> int

| expr ’+’ expr

| expr ’*’ expr

| ’(’ expr ’)’

In contrast, the abstract syntax does not include the terminal symbols used in concrete

sentences, it associates syntactic constructors instead (enclosed in braces).

expr -> {lit} int

| {add} exp exp

| {mul} exp exp

In the abstract variant, concrete syntactic symbols of arithmetic operations are replaced

by labels that carry the meaning of the signs. Also, in concrete syntax, there are no

parentheses, since those are only needed to guide the parsing of compound expressions.

Recursive rules. When generating sentences, the choice between the two branches in

arbitrary, generation may select the recursive option all the time, resulting in divergence.

This termination problem can be tackled by bounded generation, forcing the rewriting

system (grammar) to eventually opt for the base case. This can be implemented by using

primitive recursion, which keeps decreasing the structural complexity of the branch. In

the following sections, we will demonstrate the use of such an explicit recursion bound

implemented in attributes to grammar symbols.

expr(0) -> {lit} int

expr(n) -> {add} expr(n-1) expr(n-1)

expr(n) -> {mul} expr(n-1) expr(n-1)
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3.3.1 Generating abstract and concrete syntax

As shown on Figure 3.2, our generation method is two-phased. First we generate an

abstract syntax tree, and then we construct a concrete syntax tree that corresponds to the

abstract one. In this approach, the grammar-based generation phase takes the abstract

syntax into account. How do we define abstracts syntax with a grammar, and how do we

connect concrete syntax to it?

Abstract syntax is typically defined as a data type, rather than as a language; as a

set it contains terms rather than strings. The specification of abstract syntax greatly

varies in the literature, ranging from algebraic data types and constructor signatures to

labelled context-free grammars. As written in [64], as mathematical objects, the various

abstract syntactic categories are built from aggregations (Cartesian products), alternations

(disjoint unions), and list structures. Any notations for these three constructors can serve

to define the abstract production rules; in the end, the point is that any element of the

abstract language should represent a set of syntactically valid concrete programs.

Example 3.3.2 (Defining abstract syntax). Let us come back to the language defined

in Example 3.3.1. The concrete syntax explicitly mentions the signs used to denote the

operations (+ and ∗), but the abstract syntax only cares about the role of those signs

(addition and multiplication). When defining the abstract syntax of this language with

function constructors, we would end up with the following three signatures, constructing

base and recursive cases, respectively.

lit : int → expr

add : (expr, expr) → expr

mul : (expr, expr) → expr

The language of terms producible with the above constructors can be defined with a

so-called term-generating grammar, or labelled context-free grammar. The labels/tags

attached to the context-free production rules define the abstract syntax constructor to be

used on the generated subterms (subtrees), whilst the symbols in the rule determine the

type of the constructor. In this document, we prefer defining abstract syntax with such a

grammar.

expr -> {lit} int

| {add} exp exp

| {mul} exp exp

Observe that expr is a non-terminal, while int is a terminal symbol, even though int itself

is not a 0-ary constructor function in the constructor definition. In practice, int will be

an already defined syntactic category, with constructors and values being opaque from

the grammar point of view.
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From abstract to concrete syntax

Once we manage to generate a sentence (or tree) in the abstract syntax, we need to

turn it into a concrete sentence (or tree) that can be used for property based testing of

the refactoring under test. The mapping between concrete and abstract syntax is not

injective: there may be infinitely many different concrete syntax trees that correspond to

the very same abstract syntax tree.

Once having an AST, we need to select one out of the set of the possible CSTs the

correspond to the AST. The function that maps ASTs to CSTs is usually defined in a

recursive fashion, like in syntax-directed translation: by pattern-matching on the abstract

object, we construct the concrete object with concrete ingredients given as results of

translation of abstract ingredients.

Example 3.3.3. Let us use the grammars defined in Example 3.3.1. By using the abstract

syntax, we are able to construct the following abstract object.

add(lit(int), lit(int))

Now there are several concrete objects that correspond to this very same abstract object,

which, for example, may only differ in how they are parenthesised. The following lines

show a concrete sentence (determining a concrete tree) each.

1 + 2

(1 + 2)

(1) + (2)

It is up to the conversion process which concrete object it selects for the abstract object

constructed with random generation.

Incorporating synthesised attributes

It is not necessary for us to implement term generation and abstract to concrete object

conversion separately. For instance, in compilers it is very common that at the time of

implicit construction of the CST, the AST is built simultaneously, explicitly stored in

synthesised attributes. We will do the same with the implicit construction of the AST

and explicit building of the CST.

Example 3.3.4 (Parsing). In parsing S-attribute grammars, the CST is built based on the

context-free part of the syntax, while the AST is accumulated in synthesised attributes at

the nodes of the CST Ð the complete AST is synthesised in the attribute of the root node.

This way, there is a derivation-time conversion from concrete to abstract syntax.

expr -> int :: lit($1)

| expr ’+’ expr :: add($1, $3)

| expr ’*’ expr :: mul($1, $3)

| ’(’ expr ’)’ :: $2
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When constructing the abstract syntactic object, symbols connected to parsing and

readability (in the concrete syntax) are not included, but they are incorporated in the con-

struction of the abstract object. Labels seen in the previous abstract syntax grammar get

recorded in synthesised attributes to hold the necessary information about the categories

of subtrees.

Remark (Notation for attribute references). In this section, we will use the attribute access

notation introduced in yacc [33]: $N denotes the synthesised attribute of the N th symbol

on the right hand side of the rule. The synthesised attribute of the LHS is set by the

expression following the :: sign (in yacc the LHS is denoted with $$).

Generation. In generation, the above idea of constructing concrete and abstract syntax

simultaneously can be used in reverse: we define an abstract syntax grammar, and

construct the concrete syntax object in the synthesised attributes explicitly.

Synthesising text. Let us consider the grammar seen in Example 3.3.1 once more. We

can extend it to explicitly generate a text representation of the AST in the synthesised

attributes of symbols.

expr -> {lit} int :: to_string($1)

| {add} expr expr :: "(" ++ $1 ++ "+" ++ $2 ++ ")"

| {mul} expr expr :: "(" ++ $1 ++ "*" ++ $2 ++ ")"

Now this extended grammar can be simplified: the labels can be dropped, as the implicitly

built AST is not used in the further process. This formalism demonstrates the true

ambiguousness of the grammar we generate with; not only the context-free rules are

ambiguous, but there are duplicate-like production rules. Apparently, these are not

duplicates, but they belong to abstract term constructors of the very same type signatures

(see above, add and mul). Look at the grammar with the labels removed:

expr -> int :: to_string($1)

| expr expr :: "(" ++ $1 ++ "+" ++ $2 ++ ")"

| expr expr :: "(" ++ $1 ++ "*" ++ $2 ++ ")"

The following abstract tree could be generated with the grammar:

expr

expr

int

expr

int

This abstract tree derived with the above grammar tells nothing about the operation

used; it may be either addition or multiplication. However, a corresponding explicitly

generated concrete text clarifies, which is synthesised in the semantic attribute of the

root expr.
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Synthesising tree. It is up to the grammar writer, what kind of concrete object the

grammar synthesises explicitly. In practice, we do not generate strings, but we construct

a CST. For example, in Erlang, we may produce a syntax tree represented as tagged tuples

and lists. The previous text-generating grammar can be phrased to generate trees instead:

expr -> int :: {expr, $1}

| expr expr :: {expr, $1, ’+’, $2}

| expr expr :: {expr, $1, ’*’, $2}

The only difference is in the computation of the synthesised attribute. For the above

drawn, implicitly generated abstract tree, the following concrete tree could be generated

explicitly:

expr

expr

int

+
expr

int

3.3.2 Generator language based on L-attribute grammars

In this section, we overview the L-attribute grammar based data generator language that

we specifically designed for random program generation. We show a simple example

and list some language features that support easy and concise generator definition; more

detailed description of the formalism can be found in [15].

The brief informal semantics of the various language features, along with some

examples, are provided in this section, while the next section gives more precise meaning

by explaining the conversion of the grammar into generator functions.

Example 3.3.5 (Definition for the anbncn context-sensitive language). To give a quick

and fairly complete idea of what the language looks like, let us specify an L-attribute

grammar that generates the well-known context-sensitive language {anbncn | n ∈ N}

over the alphabet {a, b, c}.

In this example, the mapping between abstract syntax and concrete syntax is very

simple: the concrete syntax is a string that contains the generated alphabet symbols, that

is, the terminals read from left to right.

It is the root symbol that generates the entire sentence in its synthesised value attribute,

while the other non-terminal symbols synthesise sub-languages. The context-sensitive

properties are ensured by the synthesised attributes of a_seq and by the inherited at-

tributes of b_seq and c_seq (all named size), based on which the repetition construct

makes sure the generated strings contain equal number of a, b and c letters. In the tradi-

tional attribute grammar definition of this language, attribute conditions are employed

to ensure this context-sensitive property.
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Nonterminals abc_seq a_seq b_seq c_seq.

Terminals a b c.

Rootsymbol abc_seq.

abc_seq -> a_seq

~> b_seq [ @size = ’$1’.size ]

c_seq [ @size = ’$1’.size ]

:: ’$1’ ++ ’$2’ ++ ’$3’.

a_seq -> {a} :: ’$1’ [ @size = length(’$1’) ].

b_seq -> {’$0’.size, b}.

c_seq -> {’$0’.size, c}.

Erlang code.

a() -> ’a’.

b() -> ’b’.

c() -> ’c’.

Listing 3.1: Definition of the language anbncn

Listing 3.1 shows the concrete syntax we use to script L-attribute grammars. The de-

scription format is very similar to grammar specifications in commonly used parser

combinators (e.g. yacc or yecc): it declares the grammar symbols in directives, then

enumerates context-free production rules, and attribute computations are given in the

host language. Nevertheless, we are going to overview how different this language is

from traditional S-attribute grammar based parser languages.

The value attribute. Our attribute grammars are not as restrictive as those in parser

generators: symbols in our definitions can have multiple synthesised and inherited

attributes. However, there is a restriction: each symbol must have a synthesised attribute

called value, which holds the explicitly built concrete syntactic object belonging to the

symbol.

For terminals, the generator function does nothing but creating this synthesised

attribute by generating an element of the type or syntactic category associated (e.g. int

or var). For non-terminals, following the productions rules, the symbol :: introduces the

semantic routine calculating the distinguished synthesised attribute. When such a clause

is not provided, the system aggregates the value attributes generated by the right hand

side of the rule.

Attribute manipulation. Attribute computations are coupled with the symbols they

belong to, which allows for static (lexical) scoping of attributes. When setting an attribute

by its name, the symbol it belongs to does not have to be explicitly selected; attribute

modifications are always performed on the symbol they follow. This enables easily

comprehensible attribute computations and attribute dependencies are solved by the

lexical scoping (due to the fact that right hand side symbols are generated from left to

right).
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Syntactically, an attribute setting clause can follow either of the right hand symbols

(resulting in setting inherited attributes to RHS symbols) or can be placed after the

entire rule (setting synthesised attributes to the LHS symbol). For technical reasons, the

attribute name is preceded by an at sign (@). When accessing attributes, we follow the

traditional formalism introduced in yacc [33]: symbols are referred to by their position

in production rule (e.g. ’$2’.foo refers to the attribute named foo belonging to the second

RHS symbol, whilst ’$0’ refers to the LHS).

Conditions. Unlike in S-attributed grammar formalisms used in widely used parser

generators, this language supports explicit conditions attached to production rule alter-

natives, behaving like guards. (These conditions are slightly different from the general

definition, because our guards can only refer to the attributes of the LHS.) Following the

when keyword, a boolean expression on the inherited attributes of the LHS can be used

to guard the rule alternative. If all rule alternatives are guarded and none of them are

applicable, the generation stops with an error.

Example 3.3.6. Let us rephrase the rule belonging to b_seq in Listing 3.1. We replace

the repetitive generation with recursion, and introduce a guard for the base case.

b_seq -> (when [@size == 1]) b

| b b_seq [ @size = ’$0’.size-1 ].

With the guard, the first rule alternative can only be selected by the generator function if

the inherited size attribute equals one.

EBNF-like notations In a large number of cases, recursive production rules are simply

employed to produce a series of symbols. In commonly used parser generator formalisms

based on BNF, extensive use of such recursive rules lead to incomprehensible grammars.

This issue is tackled in EBNF by introducing repetition: symbols enclosed in braces.

<exprs> ::= <expr> <exprs> | <expr> (BNF)

exprs = {expr} (EBNF)

We employ this simplification in our generator language, in enhanced versions as well.

exprs -> { expr }

exprs -> { P, expr }

exprs -> { ~ expr }

The first line generates some expressions, the second line generates P expressions, while

the third line generates some expressions dependently, such that they inherit each other’s

attributes. Dependent generation of series of symbols will be of good use when handling

variable and function name context in attributes.
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The repetition construct is implemented as recursive, so termination has to be guaran-

teed during generation. The language allows the repetition to explicitly define the number

of symbols to be generated, but if the is no quantity specified, the system generates an

upper bound before performing repetition. Furthermore, the repetition can be bounded

by the size of another list, in which case the system automatically passes the list values

to the generated symbols, providing a foreach-like behaviour to this language construct.

By default, the repeated symbols are generated simultaneously, adding the ∼ symbol

makes their generation dependent. The next section will elaborate more on how recursive

generation is bounded.

Probabilities Last but not least, a generation-specific feature in the language is weights

attached to rules, which make the described grammar stochastic: all rules get associated

with a probability calculated as dividing their specified weight by the sum of weights of

all alternatives.

a_seq -> (*2) a [ @size = 1 ]

| (*1) a a_seq [ @size = length(’$2’)+1 ].

With this feature, we get a control on which sub-languages are included in the generated

sentences with a higher probability, therefore influencing test case distribution.

3.3.3 The synthesised data generator

Semantics of stochastic L-attribute grammars given in the above described language

could be handled formally, without even connecting them to generators. We do not

define the denotational semantics of the generator language, but describe a translation-

like semantics that maps L-attribute grammars to functions written with QuickCheck

generators in Erlang. In particular, a generator function is synthesised for each and every

non-terminal symbol in the grammar, which can be used to generate the sub-languages.

The translation algorithm

In this section, we overview the algorithm that translates an L-attribute grammar ex-

pressed in our notation to a data generator (more precisely, a series of functions defining

generators). We give a high-level explanation supported with examples, but we note that

in the actual implementation there are various optimisations that make the generator

code hard to comprehend.

Remark. When synthesising the generator, we assume that the attribute grammar de-

fined with the generator language is reduced and well-formed. In case of violation of

these properties, the generated Erlang/QuickCheck code may contain syntactic or static

semantics errors.
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Synthesis associates a data generator function with each and every symbol in the

grammar. These functions have one formal argument, the set of inherited attributes to the

symbol, and their return value determines the synthesised attributes of the symbol. The

only exception is that the root symbol does not take any arguments as it cannot inherit

attributes. Generators for terminals should already be defined in the host language (either

user-defined or pre-defined for basic types); terminals are mapped to the corresponding

generator functions by their name. The following main steps are performed in the

translation:

· Generate the header of the Erlang file along with the attribute-manipulation primi-

tives (for reading and writing attributes of symbols);

· Output the grammar-specific higher-order generator functions (such as those that

generate repetitions of symbols);

· Process non-terminals one by one consecutively, and synthesise a generator func-

tion for each.

In the rest of this section, we explain how the different parts of the grammar definition

are translated into (elements of) generator functions.

Non-terminals

Apparently, the most complex part of the translation is how the non-terminals are

generated. When processing non-terminals, all the production rules are considered that

have the symbol in question on their left hand side (LHS). If there are multiple alternatives,

they are combined with either the oneof or frequency generators, depending on whether

the alternatives are weighted with probabilities. This way, the sub-languages generated

by the alternatives are unified (see Section 3.2.2).

Example 3.3.7. A grammar defining a non-terminal with two one-symbol alternatives

is translated to a function relying on the oneof generator combinator.

a -> b | c

The resulting generator function:

a(Attrs) -> oneof ( [ b(Attrs) , c(Attrs) ] ).

Grammar rules

How do we generate the right hand side (RHS) of a rule? Symbols are mapped to tuple

generators that call the appropriate generator functions associated with the symbols

of the RHS. When there are no dependencies, the RHS generators can be executed

simultaneously, provided that the attached attribute computations pure (do not have any

side-effects).
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Example 3.3.8. Consider an example defining a non-terminal with one alternative

containing two symbols.

a -> b c

The non-terminal (and the corresponding rule) is mapped to a generator function:

a(Attrs) -> merge({ b(Attrs) , c(Attrs) }).

We address attribute merge and aggregation in the subsequent paragraphs.

When there is dependency between the siblings on the RHS, dependent generation is

applied by using the bind generator combinator (see Section 3.2.2).

Example 3.3.9. Complicating the above example a bit, we can introduce dependent

generation.

a -> b ~> c

The non-terminal (and the corresponding rule) are mapped to the following generator

function:

a(Attrs) -> ?LET(Attrs2, b(Attrs), c(Attrs2)).

Note that top-down, left-to-right generation is ensured by the host language eval-

uation strategy. As the RHS symbols are generated as a tuple, they are generated in a

left-to-right order because of the strict evaluation strategy in Erlang. With the symbols

mapped to functions, symbol stack managed by the run-time stack, and visit order pro-

vided by the host language evaluation strategy, our synthesised generation algorithm

generation mimics recursive descent parsing.

Remark. The grammar compiler does not implement a complete recursion analysis on

the production rules, so recursively generated symbols have to be marked in the header

of the grammar. Such symbols are encapsulated in a lazy generator, to ’disable’ strict

evaluation of Erlang, thus avoiding divergence.

Attributes

Attributes are stored in local variables of generator functions, represented as a list of key-

value pairs. Scoping of attributes this way is completely managed by the host language,

Erlang, via variable scopes. Attribute modification and access is solved via the operations

available in Erlang for key-value lists.

There are no assumptions on the attribute computations written in the host language,

the snippets are simply encapsulated into begin-end blocks. The computed attributes are

stored in variables and are passed to attribute modifier macros.
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Conditions

Conditions attached to rule alternatives are used to evaluate whether a particular alter-

native is subject to application or would result in an invalid generated sentence. The

conditions are evaluated at the beginning of the generator function, based on the actual

inherited attributes of the LHS; alternatives with falsified conditions are not included in

the current generation.

Parameters

In our language, non-terminal symbols can have parameters. These parameters are simply

mapped to parameters of the generator function, therefore, pattern matching in the host

language will do the selection between the alternatives.

Example 3.3.10. Consider a non-terminal taking two parameters.

a(N, 1) -> b c

The resulting generator function takes these parameters in addition to the attribute set.

When a appears on the right hand side, actual parameters have to be supplied.

a(Attrs, N, 1) -> merge({ b(Attrs) , c(Attrs) }).

Although a similar behaviour could be achieved with inherited attributes and condi-

tions thereon, sometimes it is more effective to employ the pattern matching available in

the host language. We exclusively use this feature when composing recursive generators

from recursive production rules.

Repetition

Different forms of repetition are handled differently. If a symbol is simply put into braces,

multiple instances of the symbol are generated with the list generator combinator. If there

is a quantity specified (i.e. exact number of symbol instances), the vector combinator is

used as a wrapper on the generator function of the symbol.

When dependent generation is used, the symbol instances are generated consecutively,

exploiting the bind combinator to pass the synthesised attributes of a node to its right

siblings. This latter functionality is hidden behind a function called dependent_list, which

takes the number of instances needed, the generator function, and the attributes to start

with, and hides recursion and attribute handling.

Attribute aggregation. The repetition in the rule is treated as an aggregated, stan-

dalone RHS element. Since each and every symbol instance in the repetition may synthe-

sise attributes with the same name, attributes have to be aggregated into one that will

belong to the repetition construct. In the simplest case, this may be putting the values into
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a list, or if they are lists themselves, concatenating them. However, different attributes

require different aggregation, so beside having some default aggregation operations, the

creator of the grammar can specify how different attributes are aggregated or merged,

based on their name and type.

Example 3.3.11. Consider the generator for a terminal symbols seen in Example 3.3.5

with a specified quantity (namely, 3):

a_seq -> {3, a} :: ’$1’.value --> "aaa"

The entire repetition gets index 1, whilst its value attribute (’$1’.value) is the aggregation

of the values of the several a terminals (the list of characters becomes a string).

Attribute splitting. While synthesised attributes of instances need to be combined

together, inherited attributes of the repetition also need special care. Beside normal

inheritance of attributes to each symbol instance, in case of foreach-like constructs, the

parameter list is split and each symbol instance inherits an element from the list in an

attribute called param.

Note that the recursion that implements these generators is always bounded, there

can be no divergent generation paths stemming from the repetition construct.

Implicit inheritance in dependent generation

Although inheritance is made automatic from parents to children, and in dependent sibling

generation, not necessarily all attributes are passed over, partly for memory-efficiency

reasons, and partly to avoid name conflicts.

Whoever writing the grammar can define a function called inherit, which takes a list

of attributes and can filter it based on names, types or content. With this, commonly

inherited attributes can be implicitly inherited, without explicit attribute computation

attached to production rules. This proves to be a useful feature when passing e.g. bound

variable names from symbol to symbol.

Example 3.3.12. Consider our original example grammar:

abc_seq -> a_seq ~> b_seq [@size = ’$1’.size] c_seq [@size = ’$1’.size]

With the implicit inheritance of the attribute named size the above line simplified to:

abc_seq -> a_seq ~> b_seq c_seq

Note that both b_seq and c_seq implicitly inherit the synthesised attribute of a_seq.

Dependence is not needed between b_seq and c_seq, because the latter does not refer

to any synthesised attributes of the former.
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Proposition 3.3.2. The language generated by context-free part of a grammar given in

the EBNF-free formalism is the same as the language implicitly constructed by the generator

synthesised for the context-free part of the grammar.

Proof. The synthesised generator functions implement a recursive descent algorithm,

which simulates a push-down automaton that is equivalent to the grammar. Calls to ter-

minal generators (i.e. terminal names in the possible call chains) represent the sentences

in the language accepted by the automaton, which is the same as the language generated

by the grammar. The only difference from a recursive-descent parser algorithm is that

in the automaton implemented with generator functions, alternatives are encoded as

epsilon-transitions without any conditions.

Remark. In recursive descent syntactic analysis, terminals are ’accepted’ by the algorithm,

while in recursive descent analysis, terminals are ’instantiated’. However, the possible

activation records in the stack (defining the sentential forms of the grammar) are the

same.

A generated generator

Here we briefly examine the generator functions synthesised from the grammar presented

in Example 3.3.5. The following code has been generated with the grammar compiler

and it contains a fairly large amount of syntactic noise and apparently useless variables.

The generator generator makes sure that the generated code faithfully implements the

grammar, handles the outputted snippets in a generic way, and it does not do any

simplifications on the synthesised code. The synthesised code is not subject to reading,

but in the following, we explain the elements of it.

1 abc_seq() ->

2 V0 = [],

3 ?LET(V1, (a_seq(inherit(V0))),

4 begin

5 S1 = inherit(V1),

6 ?LET(

7 {V2, V3},

8 {b_seq(?setattr(size, begin ?getattr(size, V1) end, inherit(S1))))

(cont.),

9 c_seq(?setattr(size, begin ?getattr(size, V1) end, inherit(S1))))}

(cont.),

10 begin

11 R2 = begin (?getattr(value, V1)) ++ (?getattr(value, V2))

12 ++ (?getattr(value, V3)) end,

13 ?setattr(value, begin R2 end,

14 (inherit(aggregate({inherit(V2), inherit(V3)}))))

15 end)

16 end).



38 Property-based testing of refactoring systems

In the grammar, abc_seq was marked as the root symbol, so it does not take any

arguments (meaning it cannot have any inherited attributes) and therefore can be used

as a standalone data generator in QuickCheck. The attribute set is initialised as an empty

list (line 2).

In the body of the function, first the a_seq generator is applied to generate its

synthesised attributes (V1, line 3), which are passed to the tuple generator synthesised

from the symbols b_seq and c_seq by using bind (used via the macro LET, lines 7-9),

because of the dependency modified. The symbols b_seq and c_seq are generated

independently of each other, the synthesised attributes of b_seq are not passed to c_seq,

but they both get their size attribute set set to the size attribute of a_seq (lines 8-9). After

all symbols generated, the value of the LHS is computed and stored in R2 (lines 11-12),

which is set as the synthesised value attribute of the LHS (lines 13-14).

1 a_seq(V0) ->

2 ?LET(V1,

3 (independent_list(

4 fun (Attrs) -> ?terminal((a()), Attrs) end, inherit(V0)))),

5 begin

6 R1 = begin ?getattr(value, V1) end,

7 ?setattr(value, begin R1 end,

8 (?setattr(size, begin length(?getattr(value, V1)) end,

9 (inherit(V1)))))

10 end).

The synthesised function for a_seq takes as argument the attributes it inherits (V0 (line

1), then generates a number of a terminals (lines 3-4); the updated attribute set is stored in

V1. The value attribute gets saved in R1 (line 6), and last but not least, the final attribute

set is updated so that the size is set to the length of the value attribute (lines 8-9).

1 b_seq(V0) -> independent_list(?getattr(size, V0),

2 fun (Attrs) -> ?terminal((b()), Attrs) end, inherit(V0)).

3

4 c_seq(V0) -> independent_list(?getattr(size, V0),

5 fun (Attrs) -> ?terminal((c()), Attrs) end, inherit(V0)).

The functions synthesised for b_seq and c_seq are very similar due to the similarity

in the corresponding grammar rules. They generate terminals (b and c, respectively) by

using the independent list generator combinator we defined before.

There are somemacros and functions used in the above code that are used for handling

attributes. Here we give a brief explanation for those:

· getattr: given an attribute set and an attribute name, returns the value of the attribute;

· setattr: given an attribute set, a name and a value, returns an updated attribute set;

· terminal: sets the synthesised value attribute to the terminal to the value it generates;

· inherit: filter function for implicitly inherited attributes;

· aggregate: aggregation of synthesised attributes.
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Implementation

The above described grammar language has been implemented with a compiler that

translates grammar files to Erlang modules containing QuickCheck data generators for

non-terminal symbols. The grammar language literally embeds Erlang code, and therefore

in semantic routines any Erlang code can be written. The semantics of the grammar is

in many aspects determined by the semantics of Erlang, including evaluation order and

scoping rules. The implementation of the translation has been used to transform the

following grammar (defining Erlang) to the corresponding random data generator.

3.4 An attributed grammar for Erlang

Proposition 3.4.1. Erlang is not context-free, therefore it cannot be defined with a context-

free grammar.

Proof. The lemma can be proved by using the pumping lemma for context-free languages.

As Proposition 3.4.1 suggests, we cannot specify a context-free grammar to define

Erlang. At the same time, Proposition 3.3.1 tells us that we can define it with an attribute

grammar, which means we can express the syntax and static semantics of Erlang in our

grammar-based generator language. In this section, we overview some details of the

L-attribute grammar we defined for Erlang, the grammar we use for random generation

of programs fed into refactoring property checks. The section only quotes some snippets

for explanation, but the entire definition is available online [31].

By using both inherited and synthesised attributes, we can specify context-sensitive

aspects (static semantics) of Erlang, meaning we can ensure properties such that the

program does not refer to unbound variable or function names. Thus, the generated

programs will pass compilation, which is important, as it would not make sense to

generate programs that are inherently invalid for testing refactoring engines.

Syntax

Static semantics is defined over abstract syntax, so first of all, we need a syntax definition.

We designed our grammar formalism to be similar to yecc [33] on purpose: this way the

already available concrete syntax definition can be reused, at least partially. Turning a

concrete syntax definition to abstract syntax is pretty straightforward in many cases,

because the only task is to associate terminal symbols with abstract elements and labels.

For instance, consider function definitions:

function_clauses -> function_clause ’;’ function_clauses

| function_clause ’.’

function_clause -> ’(’ patterns ’)’ ’->’ expressions
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By getting rid of the connective, concrete syntax terminal symbols (quoted ones), we

transform the concrete description to an abstract one. We omit labels in this example,

and use the EBNF notation for repetition.

function_clauses -> { function_clause }

function_clause -> patterns expressions

With such changes in the concrete syntax grammar, we can easily reuse most of the

official context-free grammar defined for Erlang, which saves a lot of time.

Syntactic categories. The grammar defines a number of syntactic categories. Most

importantly, it generates a list of files, which may be either modules or headers. In

generated modules, the grammar builds an arbitrary number of function definitions,

which may have one or more function clauses. Headers are generated to contain macro

and type definitions. To support function body generation, there are separate syntactic

categories for patterns and expressions of various types. If the type is specified in an

inherited attribute, the non-terminals generate a pattern or expression with the specified

type, otherwise a random type is synthesised and being used.

Static semantics

Syntax is easily put in context-free rules, static semantics is more interesting to specify.

In the following, we explain how we ensure some important static semantic properties of

Erlang programs via attribute computations and conditions on the attributes.

Function name scope. Function name scope, unlike in C and C++, is not lexical. In

order to make all functions be able to refer to each other (including the first one calling

the last one in order), function specifications are generated before the actual module code

generation. The synthesised function dictionary (containing module and type information

of all functions to be generated) is passed to all elements generated, it is an automatically

inherited attribute.

Example 3.4.1. The function dictionary enumerates all functions with the module they

should be generated into, with their name and type:

[{module1, function1, 1, [int()], int()},

{module1, function2, 2, [int(),bool()], char()}

{module2, function1, 1, [int()], int()}

]

When the functions non-terminal is used to actually generate the functions from the

descriptions, it iterates through the dictionary. Apparently, for one particular module,

only its local functions are generated, but all the function specifications are passed in an

inherited attribute for the grammar to be able to generate inter-module function calls.
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module ->

:: ModName = ’$0’.param, AllFuns = ’$0’.allfuns

~> functions [@allfuns=AllFuns, @module = ModName,

@modfuns=[F || F<-AllFuns,{MN,_,_,_}<-[F],MN==ModName]]

:: {Funs, _FunInfos} = lists:unzip(’$1’),

?S:form_list([?S:attribute(?S:atom(module), [?S:atom(ModName)]),

?S:attribute(?S:atom(compile), [?S:atom(export_all)])

| Funs]).

functions -> {’$0’.modfuns, function} [@funs = ’$0’.allfuns].

Based on the pre-generated function specifications, a number of modules with their

functions are generated. When generating function references, or function calls in

particular, only those signatures can be used for generation that are contained in the

pre-generated set. Thus, provided that all the pre-generated signatures are defined by the

generation, only referring to these signatures cannot result in invalid function references,

avoiding related static semantics and compilation errors.

Example 3.4.2. The function generator takes into account the name, the arity, the

argument types and the return type of the function and generates accordingly.

function ->

:: {_Mod, Name, Arity, {Types, RetType}} = elem(’$0’.param),

%% Non-recursive funs

Funs = [{M, N, A, {T, RT}} || {M, N, A, {T, RT}} <- ’$0’.funs,

N =/= Name orelse A =/= Arity orelse M =/= ’$0’.module]

~> {?ClausesPerFunction, funclause}

[@types = Types, @rettype = RetType, @funs = Funs]

last_funclause

[@types = Types, @rettype = RetType, @funs = Funs]

:: {?S:function(?S:atom(Name), filter_clauses(’$1’) ++ [’$2’]),

elem(’$0’.param)}

[@vars = [], @value = []].

Remark. In parser generators, similar information is stored in symbol tables, which are

implemented as global variables. In our solution, these details are kept in the scope of the

attribute grammar; not only the information is passed in attributes, but the signatures

themselves are generated as synthesised attributes of dedicated symbols.

Variable name scope. In Erlang, variables in a clause exist between the point where

the variable is first bound and the last reference to the variable in the clause. Unbound

variable names are not allowed to be used in expressions.

In our grammar, variable names are not pre-generated, but the variable context is

dynamically extended with bindings generated, and passed to subsequent expressions.

By only choosing variable names from the current active context, it is guaranteed that

the generated code will not refer to unbound names, thus avoiding related static semantic

errors.



42 Property-based testing of refactoring systems

Example 3.4.3 (Making use of dependent generation). Let us consider a simplified rule

that generates a clause of a function. A clause consists of some patterns (matching the

formal parameters) and a body (series of expressions). Obviously, during generation, we

want the function body to refer to the variables in the pattern (the function signature),

so the variables generated there should be visible when generating the function body.

function_clause -> {~ N, pattern}

~> {~ M, expr}

:: create_clause(’$1’, ’$2’).

Supposed that the variable environment is an automatically inherited attribute (as it is in

our grammar), dependent generation of the patterns and the body expressions (the ~>

sign) ensures the required connection between the head and the body of the clause.

Extended static semantics

As mentioned above, pre-generated function descriptions contain randomly generated

type information; nevertheless, this would not be necessary for generating compilable pro-

grams. Type-correctness is part of the so-called extended static semantics we introduced,

which induces the concept of well-formed programs.

Erlang is dynamically typed. Ill-typed expressions can be compiled without any errors,

since type-checking is done dynamically, at run-time. However, those programs that run

into silly run-time errors due to the wrongly typed functions or expressions are waste

of time from the point of dynamic verification. When comparing functions before and

after refactoring, it is a beneficial if they have a meaningful observable behaviour: they

return some values, have some side-effects, which we can compare. Therefore, the static

semantics is extended so that it defines the language of well-typed (well-formed) Erlang

programs. Types are generated by ordinary production rules in the grammar, just like

other syntactic elements, having their own abstract representation (we reused the official

type representation used in the Erlang compiler).

Example 3.4.4. The language of expressions is the union of expressions of different

types, and can take into account if its type has already been generated and is passed as

an inherited attribute. Also, generated expressions synthesise their type, which can be

used in subsequent phases, if needed.

expr(N) -> when subtype_of(integer) integer_expr(N)

| when subtype_of(float) float_expr(N)

| when subtype_of(boolean) boolean_expr(N)

| when subtype_of(atom) atom_expr(N)

| when subtype_of(string) string_expr(N)

| when subtype_of(list) list_expr(N)

| when subtype_of(tuple) tuple_expr(N).

integer_expr(N) -> ... [@type = ?T:t_integer()]
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3.5 CheckingErlang analysis and refactoringwithPBT

Having a QuickCheck generator synthesised for the Erlang programming language, we

can use it to construct random programs for testing. Here we make extra benefit of

expressing the semantics of the grammar in terms of QuickCheck generators, because the

language defined by the grammar is turned into a full-featured data generator. Namely,

our synthesised functions are more than just random generators. Not only we can produce

programs with them, but the original grammar definition seamlessly integrates into the

QuickCheck system: the grammar symbols get inherently sized, and sub-languages do

have shrinking functionality. When composing properties on the generator synthesised

from the grammar, QuickCheck will be able to control the complexity of the generated

programs and simplify counterexamples automatically.

In this section, we overview the use cases in which we applied the random program

generator for testing analysis and transformation of Erlang programs. The first use case

is about testing refactoring transformations, while the second use case addresses testing

of data-flow analysis and graph consistency.

Program equivalence

At the beginning of the chapter, the problem statement considered a property that

expresses the correctness of refactoring. The property, expressed in a first-order logic

formula, relies on a predicate that tells whether two programs are semantically equivalent.

∀p ∈ WellFormedProgram : equivalent(p, refactor(p))

Semantic equivalence can be defined in multiple different ways for programs written

in various paradigms. For Erlang programs, we decided to design a simple notion of

equivalence based on observable behaviour. Although Erlang is functional, it is not pure,

expressions can have side-effects. We define two functions equivalent if and only if they

produce the same output value and same side-effects for a particular input value. Two

modules are defined equivalent if their functions are equivalent. With our definition of

equivalence, only functional behaviour is considered, real-time temporal constraints or

memory constrains are not necessarily preserved during a transformation.

In order to perform property-based testing of refactoring, we generate a large number

of programs with our synthesised generator, along with randomly generated refactoring

commands on them. After the refactoring transformation has been executed, all functions

are inspected and tested for equivalence with a number of random input values generated

based on their type signature. Execution of functions on the random input values can be

done in parallel.
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Example 3.5.1 (Identifying wrong refactoring). Suppose that the following program

is generated by the generator for testing the refactoring łgeneralise functionž (for the

definition of the refactoring, see Section 4.43.

helloworld() -> f("world"). %% writes hello world

hello(Name) -> write("hello "), write(Name).

Also, suppose that the refactoring transformation, by accident, fails to enclose the ex-

tracted expression in an anonymous function. Due to the strict evaluation strategy in

Erlang, the execution of the output of łhellož and łworldž get swapped, meaning the

order of side effects have been changed. This signals that the refactoring was incorrectly

performed and the behaviour is not preserved.

helloworld() -> f("world"). %% writes worldhello

hello(Name) -> hello(Name, write(Name)).

hello(Name, X) -> write("hello "), X.

Our equivalence checking system executes all functions multiple times (with randomly

generated arguments) to check if they behave the same way as before the transformation.

Identifying that the side-effects executed by the function helloworld() happen in different

order before and after the transformation, it can conclude that the refactoring was

incorrect, the test fails and the counterexample is presented to the programmer.

Analysis specifications

Another testing we implemented by using the random generator for programs is checking

of program representations built by static analysers. In particular, we implemented a

specification-based validity (consistency) check on the semantic program graph built in

our Erlang static analyser tool.

∀p ∈ WellFormedProgram : valid(analyse(p))

The testing uses the same program generator that we used for checking refactor-

ing correctness. However, the random programs are not transformed, only analysis is

performed on them, which turns the program text into a graph model.

The randomly generated, complicated, sometime nonsense, programs are fed into

the static analyser and the resulting model is checked for consistency. The consistency

property is defined in terms of syntactic and semantic relationships of objects in the

program. An example mentioned in the paper we published on this topic explains the

validity property of data-flow graphs built on syntax trees. Even though the incremental

data-flow analysis implementation is pretty complicated, the definition of the data-flow

relation can be boiled down to a rather simple property to be checked.

3For the sake of simplicity, we use a function called write to emit side effects in this example. The
current grammar would generate io:format calls, which would have a similar effect.
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3.6 Summary

In this chapter, I gave an overview on a method for property-based testing of refactoring

engines with randomly generated source code. The generic approach I designed is

based on L-attributed grammars, which are given a meaning by transformation to the

language of QuickCheck generators. This conversion turns an inherently declarative,

easily comprehensible definition into an imperative implementation. As a result, sentences

of any language defined with an L-Attribute grammar can be sampled, and shrunk in

property-based test properties. In my particular case study, the Erlang programming

language was formalised with a grammar to enable random generation of well-formed

Erlang programs.

Thesis 1. I have developed a method for transforming stochastic L-attributed grammars into

QuickCheck data generators. I have composed an L-attributed grammar for a sub-language

of Erlang and used the previous method to synthesise a data generator for well-formed

programs. By using this generator, analysis and transformation implementations have been

verified on randomly generated, semantically valid programs.

This chapter discussed dynamic verification of refactoring transformation; the following

chapter addresses static, formal verification thereof.

Future work

There is room for improvement in both the accurateness of the language definition as

well as the way the grammar is utilised for randomised program generation.

As for the first aspect, the attribute grammar for Erlang could be extended to accom-

modate some specifications associated with the transformation the generated programs

are supposed to test, conceivably in a modular way. It would be worth investigating the

random generation of programs that comply with some form of a functional specification.

Considering the second aspect, definitely complete random generation should be

replaced with iterative or adaptive sampling, in order to increase the usefulness of test

cases. Another option could be testing with bounded exhaustive generation. In the end,

the goal is to increase coverage, both in the tested code and in the equivalence classes in

the generation domain.
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Verifiable and executable

specification of refactoring

łA language that doesn’t affect the way you think about programming is not

worth knowing.ž (Alan J. Perlis)

Refactorings can be defined in various formats at various abstraction levels. Some

widely referred refactoring catalogues use informal, English explanations supported

by some simple examples, while academy keeps looking for mathematically precise

definition methods. Although informally described refactorings are easily readable and

pretty much good for end-users, they are inherently ambiguous and cannot be interpreted

in a formal system. The other typical level of refactoring specification is the syntax tree

manipulating algorithms implemented in refactoring tools. Obviously, these contain all

details for the refactoring to be executable, but they are expressed in a form that is not

amenable to formal verification.

Widely used refactorings all mostly given in high-level, general purpose programming

languages. Unfortunately, it is impractical to verify implementations written in high-

level languages (such as C++, Java or Erlang) because those are too complex to have

tractable formal semantics definitions (i.e. definitions which can be reasoned about easily),

making it impossible to rigorously prove properties about designs expressed in them. Yet,

sometimes more correctness guarantees are of demand than that of dynamic verification

can provide, so we need to find a specification method that supports formal verification

and is executable at the same time.

Refactoring tools are complex, multi-tier software: to ensure a refactoring correct,

one needs to prove all the components correct, from the highest level of transformation

logic to the lowest level of removing or adding nodes to the syntax tree of the program.

There are no theoretical obstacles of formal verification of large-scale software, it just

takes excessive amounts of work and expertise. Full-stack verification of refactoring

is not a realistic goal (at least for this dissertation), but a high level of assurance may

be achieved by formally verifying the implementations on the model level, treating the

underlying analysis and model manipulation as trusted components. We narrow down

the focus by capturing and verifying refactoring on the model-to-model level.
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Problem statement

Program transformations and refactorings are understood as algorithms taking source

code and returning source code, but for practical reasons, this process is usually divided

into three phases: analysis, transformation and synthesis. Syntactic and semantic analysis

turns source code into a complex program model, the model is altered by transformations,

and finally, synthesis converts the model back to source code. If we treat analysis and

synthesis as trusted, the transformation logic to be verified is an algorithm on the model

level. Still, even on the model level, manually verifying tens of transformations would be

pretty challenging, not mentioning that some refactoring systems are partly extensible,

such that custom transformations can be added. Cannot we automate the verification of

transformation definitions somehow?

The difficulty of verification depends on the abstraction level on which the trans-

formation is defined. Low-level implementations are hard to be verified, because they

contain too many details, while high-level specifications do not define the transformation

fine-grained enough. Our main point in addressing this problem is the following: all

refactorings can be expressed as graph transformations, but not all graph transformations

are refactorings. Therefore, we must focus on expressing a restricted set of transfor-

mations on a level of abstraction that is in between the corner cases mentioned above.

We need to design a language that only allows for defining a restricted set of graph

transformations, those that define behaviour-preserving modifications. Obviously, at

the same time it should not be too restricted, because it has to be able to express a fair

amount of real-world, useful refactoring transformations.

We need to design the proper abstraction level for defining refactoring, which is

both executable and verifiable. The refactoring specification has to be low-level enough

to be interpretable as an algorithm or function that maps program models to program

models, while at the same time it has to be high-level enough to provide readability

and verifiability with a reasonable amount of effort. We aim at creating a system in

which refactorings are programmable, executable, and semi-automatically verifiable for

correctness.

Structure of the chapter

This chapter is structured as follows. We first summarise the related work in the field

of transformation formalisms and verifiable refactoring definitions in Section 4.1, then

we overview term rewriting and strategic rewriting in Section 4.2 to prepare the presen-

tation of the language we developed based on term rewriting (Section 4.3). In order to

demonstrate the applicability of the method, we present a complex case study refactoring

definition in Section 4.4. Finally, we identify limitations and future work in Section 4.5.
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4.1 Related work

There are tons of ways to represent programs, define semantics of models, their transfor-

mations, as well as the semantic equivalence requirement. In this section, we overview

the most important and influencing approaches to executable and verifiable refactoring

specification.

We note that although the abstractions for defining refactoring, with the levels of

correctness guarantees, are varying from approach to approach, almost every one of

them incorporates the fundamental work of Opdyke [57] that suggests refactorings be

composed of basic steps called micro-refactorings. Simpler transformations are easier to

read, write and to verify, but on the other hand, decomposition of extensive refactorings

to simple steps requires experience and considerable effort.

Strategic term rewriting. Context-free conditional rewrite rules and functional strate-

gies [9] are widely used to implement program transformations and structured data trans-

formations in general. Furthermore, Bravenboer et al. show that by adding dynamically

defined rewrite rules into the system [8], context-dependent transformations [56] are

also definable.

Indeed, traversal programming is an expressive and exciting paradigm, but as Lämmel

et al. point out in their comprehensive study [46], error-free use of strategy combinators

requires expertise, not mentioning the difficulties of formal verification (the termination

property of a complex strategy alone is a considerably difficult problem). The paper

characterises typical mistakes in strategic programming, and one of their findings is

that errors mostly stem from mixing up selection of terms of interest (their type and

pattern), keeping track of the origin of data, checking side conditions and doing actual

transformation. Separation of these concerns is addressed in our approach.

Graph rewriting. Semantic program graphs capture the binding structure, the data

and control flow relations in the program, while they may also depict properties of

specific program symbols. It is apparent that semantics-aware, verifiable transformations

can be specified with graph rewriting [50] as well, but the graphical descriptions of graph

rewrite rules are relatively complex compared to concrete syntax patterns. In addition,

matching a graph pattern to a semantic program graph is computationally more complex

than matching a first-order term pattern to a term. Since the graphical format of rules is

representation-dependent and rather complicated, this system is less likely to be used by

users to define their own refactorings. Some systems use a graph model, but express the

context-sensitive rewrite rules with a special textual representation, e.g. Padioleau et al.

use a transformation language [58] incorporating semantic conditions into the textual

patterns. We follow a similar route, but with significantly different formats for patterns

and conditions.
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Refactoring languages. Designing domain specific languages for refactoring pro-

gramming is an established idea, there are related results for different object languages

with different representations. Some of these define the entire code transformation logic

including term-level rewriting, while some only offer a formalism for composing atomic

steps in a convenient way.

Leitão [41] gives an executable, rewrite-based refactoring language with expressive

patterns, Verbaere et al. [75] propose a compact, representation-level formalism for

executable definitions. These formalisms are expressive and language-independent, but

at this generality they cannot support correctness checks for refactoring definitions. For

Erlang, Li and Thompson [43] define an API for describing prime refactorings and a

feature-rich language for interaction-aware composition, but formal verification is not

addressed in their work either.

Verifiable refactoring definitions. For the object-oriented paradigm, Schaefer and

de Moor introduce a system [63] in which they reason about semi-formal definitions of

a set of basic refactorings. The idea of using locks and language extensions instead of

preconditions is exciting and promising, but the expressiveness is limited due to the lack

of custom rewritings, and full semantics-preservation cannot be expressed and proved

in the system. Roberts [62] applies a different definition style, with an emphasis on the

side-conditions and proper composition of the base refactorings. However, neither of

them provides formally verified or executable definitions.

There are some results [66] in defining provably correct refactorings for simple lan-

guages, some mechanised proofs even for real-world refactorings [13] are available, but

none of these allow for defining custom transformations and provide automatic verifica-

tion for those. [23] presents a preliminary work on defining verifiable and executable

refactoring in Maude, with a similar approach to ours as to rewriting-based definitions,

but their definitions are very low-level and hardly readable, out of reach for an average

programmer to specify their own refactoring.

4.2 From basic to advanced term rewriting

Term rewriting serves as a great foundation for any program transformation formalism,

because it can define complex changes in the program structure in a declarative way. It

hides the complexity of pattern matching, variable context, replacement construction

and condition checks. We build our refactoring language on the basics of term rewriting

and strategies thereon. In order to help the reader understand the importance of term

rewriting, as well as to prepare the presentation of the advanced features we added, we

overview the basics of generic term rewriting and strategies in this section. We also point

out the aspects where we improved on the current methods.
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4.2.1 Term rewriting systems in general

A term rewriting system consists of an alphabet and a set of rules that can be applied

to terms phrased over the alphabet. Terms are built from variables and constants using

function symbols given in the alphabet. Rules consist of a matching and a replacement

pattern, and may be guarded by conditions making statements about the equivalence of

terms. In the scope of program transformations, terms are programs or program patterns

expressed in abstract syntax.

Formally, a term rewrite system is anR = (Σ, R) where Σ is the alphabet and R is

the set of rewrite rules. Here Σ defines both variables and function symbols of arbitrary

arities, the symbols terms are built with. The rewrite rules in R are given in the form

l → r, where l cannot be a single a variable, and variables of r must be variables of l as

well. Conditional rules are given in form l → r if c. The condition states equivalence (or

rather equality) between two terms involving the variables present in l.

The semantics of the rewriting system defines whether a term can be rewritten to

another term (t ⇒ t′). The direct rewriting relation above all terms is defined with the

simple match-and-apply principle: if there exists a substitution θ mapping variables to

terms such that t is a θ-instance of the term l, then t can be rewritten to t′, a θ-instance

of the term r.

if (l → r) ∈ R ∧ ∃θ : θ(l) = t ∧ θ(r) = t′ then t ⇒ t′

The reflexive-transitive closure on this defines the indirect rewriting relation.

Generic rewrite systems can be employed to define transformations, but they are usu-

ally used as reduction systems. In reduction systems, the goal is to obtain a normal form

of the original term by exhaustive non-deterministic applications of rewrite rules. The

choice of which rule to apply is made non-deterministically from amongst the applicable

rules; similarly, the choice of which subterm to apply a rule to is non-deterministic. That

is, in some sense, generic term rewrite systems are ’uncontrolled’.

There are two basic, important properties of rewrite systems:

· Termination: whether the system normalises any term without divergence, i.e.

there are no infinite rewrite sequences. In the literature, lots of different limitations

on the form of the rules have been considered, to provide termination guarantees. In

strategic term rewriting, rules are not applied exhaustively, but there is a recursion

operator, so termination is not a straightforward property in that context either.

· Confluence: whether the normal form is unique for any term, even for non-

deterministic reduction paths. Although this property is of great importance in

general-purpose term rewriting systems used for term reduction, we will not

consider it, because our strategic rewrite system will be fully deterministic and

does not involve exhaustive rewriting.
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4.2.2 Strategic term rewriting

Term rewriting was identified as a great tool for describing different types of transforma-

tion and normalisation problems, including transformations on programs represented

by means of terms. It involves exhaustively applying rules to subterms until no more

rules apply, where selection of subterms to be rewritten can be non-deterministic, or

may be according to some order (e.g. the innermost strategy applies rules automatically

throughout a term from inner to outer terms, starting with the leaves).

The lack of explicit control of rule applications (traversal strategies) makes the system

simple, there is no need to define traversals over the syntax tree, the rules express basic

transformation steps and the exhaustive rewriting takes care of applying it everywhere.

However, the complete normalization approach of rewriting turns out not to be adequate

for advanced program transformation, because rewrite systems for programming lan-

guages will often be non-terminating and/or non-confluent. Also, in general, it is not

desirable to apply all rules at the same time or to apply all rules under all circumstances.

Rather than using the rules for non-deterministic normalisation, strategic term rewrit-

ing writes simple programs (composed of strategies) that apply the rewrite rules according

to a specific control. With these, one can write transformation programs that, amongst

others, can implement program refactoring. Control of rewrite rule applications could

be given in different paradigms; we originate our system in System S [76] and Stratego,

which introduce a simple imperative language for controlling rewrite rule execution. The

programs written in this system define an ordinary term rewrite system via a big-step

operational semantics.

Basic strategies

Basic strategies can be regarded as control statements in a simple traversal programming

language. Strategy programs are built from conditional rewrite rules and other strategies.

We briefly enumerate the basic strategies, but for more details and formal semantics

definitions, we refer to the paper [76] on a core language (System S) for rewriting.

There are two main sorts of strategies: for control and for traversal. For control,

simple sequential combinators are introduced that implement sequencing, branching (non-

deterministic choice and left-choice) and iteration (fixed-point operator). The semantics

of these are partly based on the following property: if a conditional rewrite rule fails to

match or its condition evaluates to false, the entire application of the rewrite rule fails.

All control statements are failure-aware. Traversal strategies help in selecting the terms

of interest for a given rewriting or strategy. They take a strategy and apply it to the

subterms selected for traversal. There are basic strategies for applying a rule or strategy

on the i-th subterm of the current term, for congruence and for applying the strategy on one,

some or all subterms of the term of interest.
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The basic strategies can be combined into complex strategies implementing rewrite

and transformation programs on structured data. Strategic rewriting greatly improves on

weaknesses of generic term rewriting, but it is still not the best formalism for defining

refactoring.

In strategic rewriting, analysis and transformation concerns are not separated, queries

and transformations get mixed up, which complicates the definition of complex trans-

formations. It is also not trivial how to encode refactoring preconditions and semantic

dependencies. Furthermore, in strategic rewriting, unless using dynamic rules [8], rewrite

rules are context-insensitive, which makes it extremely difficult to implement transfor-

mations that have to maintain context-sensitive properties. This latter is typical in

refactoring, so in our refactoring language we need to improve on the capabilities of

strategic term rewriting.

Custom strategies and the lack thereof

We not only improve on the strategies of System S and Stratego, but at the same time,

we restrict the strategies available in these systems. Our limitations primarily support

verifiability of transformations.

Basic strategies in System S are simple, because more complex, custom strategies can

be defined in terms of combinations of simple ones. For example, bottom-up traversal

is expressed as bottomup(s) = µx(all(s); s) (applying the strategy to all subterms recur-

sively, and then to the current term), which is composed of the all strategy, sequential

composition and fixed-point iteration. With this approach, all required strategies can be

composed from a set of primitive strategies, so the strategy set is extensible.

In contrast, in our refactoring language we restrict the strategies available for com-

bining rewrite rules, and strategies cannot be combined into other strategies. As a

compensation, the traversal strategies we provide are way more expressive due to the

more fine-grained program model that uses per-node references and the semantic func-

tion and predicate set. While in System S, delegation of a strategy is only possible to

the subterms of the current term, in our method the node of interest can be changed

to any object in the entire model by using semantic queries. In our experience, the set

of pre-defined traversals and combinators we provide is sufficient for defining complex

refactorings in the system, yet they remain verifiable.

4.2.3 Context-sensitive rewriting

Rewriting strategies provide control over the application of transformation rules, thus

addressing the problems of confluence and termination of rewrite systems. However,

another problem of pure rewriting is the context-free nature of rewrite rules. A rule

has access only to the term it is transforming, but transformation problems are often

context-sensitive.
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For example, when inlining a function at a call site, the call is replaced by the body

of the function in which the actual parameters have been substituted for the formal

parameters. This requires that the formal parameters and the body of the function are

known at the call site, but these are only available higher-up in the syntax tree. There are

many similar problems in program transformation, including bound variable renaming,

type checking, data flow transformations such as constant propagation, common subex-

pression elimination, and dead code elimination. Although the basic transformations in

all these applications can be expressed by means of rewrite rules, these require contextual

information. In this section, we demonstrate the difference between the approach of

System S and our method to context-sensitive rewriting.

In strategic rewriting, context-sensitive rewriting can be achieved by the extension

of rewriting strategies with scoped dynamic rewrite rules. Dynamic rules are otherwise

normal rewrite rules that are defined at run-time and that inherit information from their

definition context.

Example 4.2.1 (Context-sensitive rewriting with dynamic rules). As an example, con-

sider the following strategy definition [8] as part of an inlining transformation.

DefineUnfoldCall =

?|[ function f(x) = e1 ]|

; rules(

UnfoldCall : |[ f(e2 ) ]| -> |[ let var x := e2 in e1 end ]|

)

There above rule applied to a function definition defines a new (dynamic) rule that can

transform the function call accordingly. Note that there are local variables in UnfoldCall

that are bound outside the rule, they are not free in the rule. UnfoldCall in its definition

is context-sensitive, because of those variables coming from the context.

Parametrising the rule. Let us rephrase the dynamic rule definition, making the

dependency explicit. We note that the following rules would be invalid in Stratego, we

only use them as explanation as to how it relates to our approach.

UnfoldCall(f,x,e1) : |[ f(e2 ) ]| -> |[ let var x := e2 in e1 end ]|

As the rephrased rule shows it clearly, the unfold rewriting depends on the function

name, its arguments and its body. What if we could reach out to the context to gather this

context information without ever visiting it in a traversal? The semantic graph model

used in RefactorErl allows for such a query. Let us rephrase the previous rewriting such

that we make the query explicit (informally, though):

UnfoldCall :

query (f,x,e1) from the definition of the transformed call (context)

then |[ f(e2 ) ]| -> |[ let var x := e2 in e1 end ]|
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In our approach. Now it is apparent where the query and the transformation should

happen. The rule needs to make sure that the queried information can be accessed in

the rewrite rule. In our method, we do this by combining two rewrite rules, where the

second rule can refer to the variables bound by the first one. Furthermore, thanks to the

reference-based representation, we can easily reach the definition of the called function

via a semantic graph query and get its graph node reference, so that we can use it in

further steps. In our approach, unlike in System S, it is not the function definition that

induces the definition of the transformation, the transformation exists independent of

whether there are any function definitions or calls.

Supposed that the target node (the term of interest) of the refactoring is the function

call (as opposed to the definition), we can phrase the unfold transformation in our

language the following way. This combined (extensive) transformation reaches out to the

definition, does matching to bind variables, and then uses the bound variables to change

the call site.

REFACTORING unfold()

ON referred_function(THIS)

F(Args..) -> Exprs..

THEN ON THIS

F(ActArgs..)

---------------------------------------

(fun(Args..) -> Exprs.. end)(ActArgs..)

Such so-called extensive transformations are better expressed via refactoring schemes.

We will come to the detailed presentation of the concept of schemes later in this chap-

ter, in Section 4.3, but let us give give an example of rephrasing the above extensive

transformation with the łfunction refactoringž scheme:

FUNCTION REFACTORING unfold()

ON DEFINITION

F(Args..) -> Exprs..

--------------------

F(Args..) -> Exprs..

ON REFERENCE

THEN ON THIS

F(ActArgs..)

---------------------------------------

(fun(Args..) -> Exprs.. end)(ActArgs..)

Note that the program model along with the semantic queries makes our simple set

of strategies very powerful. Application of the rewrite rule can be delegated to nodes

defined by the context variables or by context-sensitive queries. In the following sections,

we give detailed explanation on the limited set of strategies available in our method, and

as to how they are so expressive just by using a different program model.
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4.3 Rewriting-based refactoring of semantic program

graphs

Achieving executability and verifiability at the same time is not easy, as it is apparent

from the related work. Some refactoring formalisms are too high-level: they are almost

informal, hardly expressible in terms of low-level rewriting steps, although provide good

basis for reasonably complex proofs. On the other hand, term rewriting based formalisms

are executable, but they defines complex, non-deterministic programs on rewrite rules,

hard to verify even for termination, not to mention functional correctness. We aimed

at designing a formalism inheriting the best of both worlds: by building on the features

of the semantic program graph representation and by incorporating some fundamental

results from term rewriting research, we designed a novel refactoring language. We

developed refactoring language abstractions with the following design goals in mind.

The refactoring language shall be:

· Executable: Definitions are not only specifications, but implementations as well, mean-

ing that they precisely determine an algorithm transforming a syntax tree.

· Verifiable: Definitions are able to be verified for correctness, i.e. it can be formally

proven that the transformation preserves the semantics of well-formed programs.

· Applicable: The expressive power enables for defining complex transformations of code,

not only toy examples. The language allows for defining a wide range of real-world

refactoring steps.

· Intuitive: Only language-level concepts are used. Writing programs in the refactoring

language does not require familiarity with term rewriting, static analysis or the

program representation.

We fulfilled these goals by carefully developing language features of abstraction levels

that express transformations independent of the underlying program model, are concrete

and detailed enough to be interpreted, and are abstract enough to be handled by formal

methods.

Strategic term rewriting rethought

Our language in its roots inherits a lot from strategic term rewriting, but makes it

more specific, and also more general, in various aspects. Our definitions are much less

representation-dependent, more liberal in term patterns, but restrict conditions to be

composed of a pre-defined set of high-level semantic predicates. Also, we employ a

limited set of expressive strategies.

In our solution, concerns are clearly separated: semantic analysis, semantic conditions,

target node selection and transformations are given in different segments of the definition.
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The description is independent of the program model used, which makes it easier to

compose specifications. Rewriting rules in our system are given with rich set of patterns

using concrete syntax, while conditions are phrased in terms of statements on language-

level semantic properties. Complex, extensive transformations are ensured to make

complete and consistent changes by using semantic dependency driven compositions of

rewritings.

Interestingly enough, our restricted set of conditions and schemes make specifications

semi-automatically verifiable, yet they can be translated back to concepts that can be

interpreted in the transformation system. Also, the developed language is expressive

enough to accommodate refactorings ranging from renaming or lifting variables to

inlining or generalisation of function definitions.

Remark (Trusted components.). We emphasise that verifiability in this context applies to

the refactoring logic, not its implementation. The various elements of the refactoring

system, including the syntactic and semantic analysis, pattern matching and the graph

transformation library, are trusted components. We do the verification in an abstract

model, not the actual system. Nevertheless, if the refactoring engine is properly imple-

mented, the changes described with the refactoring specifications in our language are

guaranteed to preserve program semantics. Verification of the entire refactoring system

is definitely a challenging future work.

4.3.1 Refactoring-oriented programming in a nutshell

A programming paradigm is characterized by a set of features, and the approach it uses

to solve programming problems. The language we designed has some features that are

not common (at least together), so we believe the language suggests a new paradigm

of programming refactoring program transformations. The main characteristics of the

refactoring-oriented programming paradigm are the following:

· The goal of programs is to specify semantics-preserving program transformations.

· The state space (or problem space) of the program is a program model, preferably is

a semantic program graph. Both syntactic and semantic entities of the program are

modelled as syntactic and semantic objects in the model, they have type-specific

attributes and are accessed and modified through references.

· Refactorings are defined in terms of refactoring functions. Refactoring functions

are executed on syntactic or semantic objects (terms if interest) and are expected

to modify the program model in a consistent way.

· Refactoring functions can be prime, composed of rewrite steps, or can be composite,

combining prime refactoring functions.

· Prime refactoring functions are preferably derived from verified refactoring schemes.

· Refactoring programmers are advised to decompose refactoring to the smallest

steps possible, into so-called micro-refactorings.
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The language inherited many of its features from already existing paradigms:

· Strategic term rewriting: The language carries the features of term rewriting in its very

basics. The most fundamental building block for refactoring is context-dependent

term rewriting. Nonetheless, we generalised and at the same time restricted the

original definition of term rewrite rules: the matching and replacement patterns are

more general in our case, the conditions are more restrictive. In addition, we made

the patterns and the condition context-sensitive, such that the matching pattern

and the condition can refer to variables of the rule context, as well as conditions

can refer to context-sensitive properties of the term.

Strategies took significant influence on the language, too. The way we combine

rewrite rules into sequential programs has its origins in System S [76], although

our formalism did not inherit the fixed-point combinator, and we added a number

of combinators specifically designed for our graph-based representation supporting

node references. Compared to strategic term rewriting, our rules are executed on a

globally accessible term with a target being a reference to a subterm, not on the

subterm. Traditionally, rewriting is pure, it takes a term and returns another term,

in our case, the rewriting takes a reference and has a side-effect of changing the

global term.

· Functional influences: Variables in rewritings are bound by pattern matching, and in

prime refactoring functions (composed of rewrite rules) variables are always single

assignment, that is, once bound to a value, they cannot be modified. Conditions

of rewrite rules are pure, they are free of any side effects. Semantic functions

and predicates can only traverse the tree, but cannot change the variables or the

model. Changes to the syntax tree are completely enclosed in rewriting rules, there

are no other ways to change the program representation. Multiple refactoring

functions are composed by monadic sequencing, where the monad is over the

program representation. We actually use a do-notation for composite refactoring

functions, where each function call in the sequence is changing the global program

representation.

· Object-oriented influences: As mentioned already, the different aspects of refactoring

execution (analysis, target lookup and actual rewriting) have been separated in our

method. As a consequence, our refactoring functions are meaningless without a

target to be executed on. Similarly to methods executed on objects, refactoring

functions are executed on nodes (subtrees) of the program graph. The target node

is a hidden argument to the refactoring function, and is stored in a local variable

called THIS. Furthermore, when calling a refactoring function, we use the well-

known obj.fun(args) notation. In composite refactoring, variables are bound by

assignment, and are mutable, in order to simplify the function definition.
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4.3.2 Refactoring taxonomy

Before discussing the low-level abstractions we use in our refactoring language, we

overview some high-level concepts regarding the pragmatics of the language. This

involves clarifying the distinction between prime and composite refactoring, as well as

the difference between local and extensive transformations. After understanding the

taxonomy of refactoring, we can dive deep into the features that make up these high-level

concepts.

In refactoring programming, the programmer is encouraged to divide (decompose) the

refactoring to the smallest steps possible. These non-decomposable steps are called prime,

or micro refactorings, they cannot be divided into smaller steps. Prime refactorings are

always standalone, semantics-preserving transformation definitions. Some of them can

be expressed with a single rewrite rule, while others can only be defined as a combination

of multiple rewrite rules. Refactorings of the former kind define shorter, local changes,

while the steps of the latter kind are called extensive.

In the related work of refactoring languages, prime refactorings are mostly considered

to be already defined on a lower level (e.g. with an API, outside the language) and only

the composition is realised as a domain specific language. In our system, refactorings

are formally defined to the smallest step, so that the entire transformation logic can be

verified for correctness.

Extensive transformations. There are prime refactorings that cannot (practically)

be expressed with a single rewrite rule. This is the case when the refactoring involves

changes at multiple locations in the program, and the connection among these program

elements is purely semantic. Since there are dependencies among program objects,

sometimes they can only be changed if all the dependent elements are changed at the

same time, accordingly. We say that such changes are extensive.

Extensive transformations change interdependent parts of the program, while the

changes have to maintain consistency. For example, if we rename a function at its defini-

tion, we need to change the name at all the reference sites as well, including directives,

calls and other mentions. The connection between the elements to be changed is the

semantic entity (the function in this case), the locations to be modified are determined

by semantic relations such as łdefinesž and łcallsž. Also, this example demonstrates the

typical scheme of extensive changes: there are some steps that make a twist in the seman-

tics (changing a function name), which are then compensated by a series of additional

changes (correcting the name at the call sites).

In order to simplify the definition and the verification of extensive transformations,

we introduce refactoring schemes that capture the general patterns underlying similar

refactorings. These schemes can be instantiated with one or more conditional rewrite

rules, and expand to refactoring transformations provided that the rewrite rules meet

some constraints. We elaborate on schemes in Section 4.3.5.
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Composite functions. Refactoring functions can be composed into compound refac-

toring functions by using sequential composition and iteration. Such transformations are

inherently correct, since they only execute semantics-preserving steps in some order to

some program elements of interest.

Refactoring

ww ((

Prime

zz ''

Composite

Local Extensive

Figure 4.1: Taxonomy of refactoring

Figure 4.1 sums up the categories of refactoring transformations. In the following subsec-

tions, we address the various features of the language one by one, and explain how they

can be interpreted in a refactoring engine and how they are verified in a formal system.

This overview is bottom-up: we start from the smallest building blocks (such as term

rewrite rules), and move towards the more complex elements (refactoring and selector

functions).

4.3.3 Rewrite rules

The fundamental and most essential building block of our formalism is conditional

context-sensitive term rewriting. The format is very similar to that of seen in ordinary

conditional term rewriting:

l → r when c

We use the following syntax for scripting rewrite rules in our refactoring language. The

left pattern (matching pattern) and right pattern (replacement pattern) are separated by

a line composed of dashes, while the condition follows after the WHEN keyword. We will

cover more details on how patterns and conditions are composed.

<matching pattern>

---------------------

<replacement pattern>

WHEN

<condition>

The semantics of these rewrite rules is the same as that of the classic rules, except that the

unifying substitution θ may map lists of terms to variables (as opposed to single terms),

and in addition, a variable-to-value context γ has to be taken into consideration.
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Remark (Term rewriting on graphs). Rewrite rules of the above form define term or tree

rewriting, not graph rewriting. On the other hand, our program model in the refactoring

system is a semantic program graph. We remark here that the semantic program graph

includes the entire syntax tree, therefore we can do the match and construct logic on the

syntactic layer of the graph, while the semantic layer of the graph is recalculated by the

static analysis engine to restore the consistency of the graph.

Patterns

Patterns are first-order terms: generalised syntactic terms involving variables that can

match arbitrarily compound subterms. Patterns in our language are always given in

concrete syntax. Variables appearing in patterns are called metavariables, as opposed to

variables in the transformed language. In our current notation, metavariables are denoted

by Erlang variables, whilst literal variables are matched by using a special semantic

predicate. Consequently, metavariables follow the naming rules of Erlang variables and

start with a capital letter.

Example 4.3.1. Consider the following unconditional rewrite rule (the condition is the

true literal), which swaps any two expressions connected by an addition operator.

X + Y

-----

Y + X

Applying the rule on [[1 ∗ 2+3]] and supposing an empty environment (bothX and Y are

free variables), the matching θ would be [X → 1∗2, Y → 3] and the resulting expression

would be [[3 + 1 ∗ 2]]. However, similarly applying the rule on the same expression, but

in a context γ = [X → 3], the matching would fail, since unification of 1 ∗ 2 and 3 is not

possible.

Remark (Equivalence in unification). In our matching algorithm, unification uses equiva-

lence checking rather than strong equality or join-ability. The algorithm allows for type

conversion between values and program entities, such that a semantic function object is

treated equivalent to its signature, or a syntactic integer literal is equivalent to its value.

Equality of nodes (subterms) is defined recursively as structural equivalence.

Remark (Implicit conversion in replacement). Automatic conversion between literal

nodes and literal values is not only done in matching and unification, but also in building

replacement terms. For example, when a metavariableX holds the value 1 of type integer,

in a replacement term containing X , it will be converted to a syntactic expression object,

a literal of value 1.

Example 4.3.2 (Non-linear patterns). For the sake of increasing the expressiveness of

patterns, the language allows non-linear patterns in rewrite rules. For example, the

following rewrite rule has both its matching pattern and replacement pattern non-linear.
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A, A, B

-------

A, B, B

Nonetheless, at some aspects, this causes unreasonable complexity in the implementation,

and the verification part does not support it fully either. It is recommended to use equality

checks and matching conditions instead of relying on non-linear patterns. Rephrasing

the above rewrite rule to only use linear patterns and additional conditions results the

following rule:

A, B, C

-------

A, D, C

WHEN

A = B AND D = C

List metavariables

We syntactically and semantically distinguish variables that hold a list of values or terms

from those that store a single value or term. While ordinary metavariables match and

record exactly one syntactic subterm (subtree) or value, list metavariables (denoted

by postfixing the variable name by two dots) can match and store zero, one or more

consecutive, sibling subterms, i.e. a list of values. Otherwise, they are used the same way

as single-value variables, can appear in patterns and conditions.

By distinguishing list metavariables, our language can support associative-commutative

matching (although verification support is not complete for this yet): when multiple

list metavariables are matching a list of nodes, pattern matching results all the valid

combinations.

Example 4.3.3. Matching [A.., B, C..] against [1, 2, 3] would produce the following

results (tupled values of A, B, and C respectively): [([], 1, [2, 3]), ([1], 2, [3]), ([1, 2], 3, [])].

When the result of the matching contains multiple valid results, it is the responsibility of

the condition to invalidate all but one. For instance, adding the condition length(A..) =

1 would deterministically select the second option. Similarly, matching the pattern

[A.., 2, C..] against the above ground term would determine the very same single solution.

Let us mention a practical use case to this feature. In automatic parallelisation,

we used such patterns to match on formal arguments of recursive function definitions

processing lists, where it was not known at which position the processed list is present

in the argument list. The following pattern provided solution, by generic matching and a

strong enough condition on the variable L. Such a pattern let us localise the processed

list in the argument list and treat specially in the rewriting.

Fun(Args.., L, Rest..) WHEN is_list(L) AND recursively_consumed(L)
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Example 4.3.4 (Metavariables and context query). The following rewrite rule matches

simple (module-local) function applications and turns them into module-qualified (ex-

ternal) calls, making it explicit which module the called function belongs to. Since we

match the arguments with a list metavariable, regardless of how many arguments the

invoked function takes (zero or more), the expressions of actual parameters are simply

reused in the new call.

Fun(Args..)

---------------

Mod:Fun(Args..)

WHEN

atom(Fun) AND Mod = module(THIS)

Semantic functions and predicates

An important concept in our approach is providing a language-specific, pre-defined set

of semantic functions and semantic predicates. Semantic predicates provide the predicate

set available in rewrite rule conditions, they are applied to node references and return

true or false. Semantic functions are used both to lookup node references and to query

semantic data (e.g. find a function by its name, or query the name of a function from its

object).

These are pre-defined and language-specific on purpose. Side-conditions of refac-

torings are usually phrased like łF is an exported functionž, łexpression A depends on

expression Bž or łexpression E is purež. It is apparent that an easily readable formalism has

to provide the same abstraction level as the human has when considering the conditions

of a transformation. We defined a set of such functions for Erlang, which we believe are

sufficient to express a reasonably large variety of transformations.

Example 4.3.5 (Semantic predicate syntax and semantics). Semantic predicates are

incorporated both in execution and verification of rewrite rules. To explain how, let us

consider an example property of an expression being pure is defined by the semantic

predicate pure/0. Applying this to a syntactic or semantic object is returns with the fact

whether the object, when executed, can have any side-effects.

From the operational semantics point of view, there is a static analysis algorithm

(or an inductive definition) behind telling whether an expression is free of side-effects.

This analysis checks if the expression affects the state, raises exceptions or refers to

any impure internals (e.g. reading or writing IO). The predicate evaluates to true, if the

expression does not have any side-effects on the global state, while evaluates to false, if it

may have side-effects 1.

1In the refactoring engine, there is differentiation between expressions that may have side-effects and
those that definitely have side-effects. More on this in our paper [4] written on automatic parallelisation of
Erlang programs.
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From the verification point of view, axiomatic semantics of the predicate is more im-

portant. For purity, the following statements are added to the set of valid rules (formulas)

in the verification system:

E ⇐⇒ (fun() -> E end)() when pure(E)

E, Es.. ⇐⇒ Es.., E when pure(E)

This expresses that if an expression is pure, it does not matter where in the evaluation

order it is visited, and it can be unwrapped if it is enclosed by a function abstraction.

When refactoring definitions refer to purity in the condition, the verification system

takes the above equalities into account and tries to use them in the correctness proof.

Amongst others, there are semantic functions for querying properties of semantic

entities such as modules, functions or variables, while predicates tell whether particular

relationships exist between program units. Semantic functions and predicates are built-in

and have a well-defined semantics; user-defined functions cannot be added, the system is

not extensible in this sense.

Conditions

Rule conditions control whether a rewrite rule can be applied. In the refactoring ter-

minology, conditions specify the so-called side-conditions of transformations, that are

required to be met for the transformation to be semantics-preserving.

Conditions are first order logic formulas built upon semantic functions and predicates.

Formulas are applications of semantic predicates, or equivalence checks on values of

expressions; they are composed by negation (NOT ), conjunction (AND) and disjunction

(OR). Expressions include constants, metavariables and applications of semantic functions.

Formulas are evaluated left-to-right, call-by-value.

Example 4.3.6. Consider the following simple rewriting rule that expresses the expres-

sion unwrapping in a different form. It matches an argument list to the function closure,

but only allows the rewriting if it is empty. This means that the rule can be applied to

anonymous functions having a non-empty argument list, the matching succeeds, and the

condition will make the rule fail.

fun(Args..) -> E end

--------------------

E

WHEN

pure(E) AND length(Args..) = 0

The verification of this rewrite rule can be performed based on the language semantics

and the axioms presented above for the pure predicate.
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Proposition 4.3.1 (Verifiability of local refactoring). Local refactorings defined with a

single conditional rewrite rule expressed in the above formalism are automatically verifiable

for semantics-preservation.

Proof. It is detailed in [29] that we can derive the correctness of a rewrite rule to equiva-

lence of two expression patterns under a given condition. Furthermore, we can reduce the

previous equivalence property of the two expression patterns to a correctness property

of an aggregated program constructed by the two expression patterns. Then we can

apply a language-independent, general-purpose proof system to automatically check the

validity of the property. The semantic predicates and functions available in conditions

are axiomatised in the proof system.

Remark (Equalities in conditions). In ordinary term rewriting rules, equality checks in

conditions test whether the two sides are the same, or their normal forms are equal. This

check relies on the same relation that is defined by the rule, so checking the condition

may result in infinite recursion. In our language, formulas cannot refer to the rewriting

relation, equality checks are performed by structural or value-based comparison.

Matching or binding conditions. Advanced conditions may have a kind of side-

effect: if the left hand side of a condition (equality check) is a free variable, the value of

the right hand side is bound to the variable. Note that metavariables bound this way can

be used in the replacement pattern to contribute to the new subtree, so this way some

context-dependent information can be gathered for the transformation in the condition.

The following example demonstrates a use case for matching conditions.

Example 4.3.7 (Binding condition). The following refactoring rewrites an Erlang list

comprehension into an application of the map higher-order function, whereas the gener-

ated list and the head function are extracted into auxiliary variables (List and Fun).

[ Head || GeneratorsFilters.. ]

------------------------------------------

List = [{ Vars..} || GeneratorsFilters..],

Fun = fun({Vars..}) -> Head end,

lists:map(Fun , List)

WHEN

Vars.. = intersect(bound_vars(GeneratorsFilters..), vars(Head)))

AND fresh(List)

AND fresh(Fun)

Note thatHead matches arbitrarily complex expressions, while Vars.. captures all variables

that are bound by the comprehension generators and are referred to in the comprehension

head. The lists of variables returned by the semantic functions vars and bound_vars are

intersected according to set intersection; the ordering in the final result is undefined Ð

and irrelevant in this particular case.



66 Verifiable and executable specification of refactoring

Via the condition stating that the variables List and Fun are fresh names, the transfor-

mation guarantees that the newly introduced variable names are not bound in the scope

of the transformation. Note that this condition is context-sensitive, since its validity is

dependent on the context of the term of interest. It is a special form of binding condi-

tion, which binds the metavariable to a randomly generated variable name having the

metavariable name as prefix.

4.3.4 Combinators and modifiers

Since complex data and control dependencies are present among the various elements of

the program, some transformations can only be complete and correct if all the depen-

dencies are handled properly when the origin of the dependency changes. This requires

combination and control of rewrite rule applications, via methods similar to strategies.

We define the so-called extensive transformations by combining conditional rewrite rules

via combinators and modifiers, which are specialised, reference-based strategies. The

following strategy-like constructs are available in our methodology.

· sequencing: The keyword THEN makes sequential composition of two rewrite rules.

The semantics is similar to that of in System S: A THEN B executes A first, and if it

succeeds, executes B as well.

· left-choice: The keyword OR creates the left-biased composition of rewritings. In se-

mantics, A OR B executes A, and proceeds to B only if A has failed for some

reason.

We did not include non-deterministic choice and general, unbounded recursion (fixed-

point combinator) into our strategy set, because these bring the main complexity into the

verification process, yet we can express most transformations without them. The former

one is not a desired feature of our language, while the latter is left out due to its very

generic nature. Although without the fixed-point operator our language is not Turing-

complete, the bounded recursion implemented with modifiers and selectors provides

enough flexibility for refactoring definition.

Modifiers can be regarded as advanced traversal strategies. With combinators, one

can compose rewritings, while with modifiers, we control the target of the rewriting.

Without modifiers, rewrite rules apply on the target of the refactoring function, but with

modifiers, one can change the node/term of interest. Modifiers evaluate expressions that

determine node(s) on which the rule is applied:

· one-level traversal: The modifier ON takes an expression, evaluates it (the result should

be a node reference or a list of node references), and sets the target of the rule to

the result. If the expression evaluates to a single node, the rewrite rule is applied

on the subtree determined by the node. If the result of the expression is a list, the

rewrite rule is executed on each element of the list; on empty lists, it takes no effect.
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· multi-level traversal: The modifier IN is very similar to the ON modifier, but the rule

is applied not only on the result of the expression, but on all the nodes within

its subtree, recursively. The semantics is terminating, as the subtree is traversed

and the target nodes are collected before applying the rewrite rule. That is, nodes

synthesised by the application of the rule are not added to the target set.

Remark. The IN modifier can be suffixed by the keywords BOTTOMUP and TOPDOWN,

in order to control the order in which the subtree is visited. The default is top-down.

Both IN and ON may be suffixed by the keywords ALL and ANY, in order to control

failure handling. When the latter is used, the application of the rewriting rule accepts

failing cases (but requires at least one succeeding case), while the former one requires

the rewriting to succeed on all targets (this is the default behaviour).

Remark. There are benefits and drawbacks lying in the semantics of IN. Although the pre-

collection of target nodes is simple and prevents divergence, it may cause null reference

exceptions when it reaches a subtree that has been changed in a preceding iteration. In

such cases, the traversal ignores the exceptional case and proceeds with a warning.

Example 4.3.8. The following example demonstrates simplified variable inlining by

using combinators and modifiers. This extensive rewriting can be applied to expression

lists starting with a simple variable binding, and after removing the binding (match

expression), it continues by traversing the rest of the expression list to propagate the

right hand side of the assignment to the references of the removed variable.

X = Y, E..

----------

E..

WHEN var(X)

THEN IN E..

X

---

Y

Remark (Transaction-aware variants of combinators). For technical reasons, there ad-

ditional combinators and modifiers in the refactoring language, which control the fi-

nalisation of transactions in the refactoring system. Semantic analysis is only executed

at the end of each transaction, so that the refactoring language helps make explicit

control of when the semantic layer has to be re-analysed. There is a sequencing combi-

nator called ALSO which postpones semantic analysis, while there is a modifier called

SIMULTANEOUSLY, which keeps changes made by a traversal in one single transaction.

Definition 4.3.1 (Executable refactoring specification). We say that a refactoring specifi-

cation is executable, if it can be given a mathematically precise meaning which defines a

program-to-program transformation in terms of an algorithm or function on the program

model.
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Proposition 4.3.2 (Executability of prime refactoring). Local and extensive transforma-

tions defined by context-sensitive conditional rewrite rules, combined and modified with the

above discussed control and traversal strategies are executable in a refactoring system that

incorporates a semantic program graph model.

Proof. Local refactoring definitions are defined with a single conditional term rewrite rule.

The target node (determining a term of interest) is always a syntactic object (determining

a syntactic subtree), on which the term rewriting can be done with the ordinary semantics.

Conditions are given as semantic predicates on expressions composed with semantic

functions, each defined on the semantic program graph as executable, type-unifying and

type-preserving queries.

Extensive refactoring definitions combine executable conditional rewrite rules. The

combinators inherit their semantics from System S (essentially, sequential composition of

transformations), while modifiers implement simple traversal and iteration with selectors

that are composed of variables and executable semantic functions.

Remark. It is not straightforward that semantic functions and semantic predicates are

always computable and their computation terminates. In our implementation, program

semantics is approximated in a finite amount of time, which is guaranteed to terminate.

Remark. TheON and INmodifiers combinedwith the children one-level syntactic traversal

selector can show the behaviour of the System S compound combinators. For example,

the traversal ANY ON children(THIS) shows similar behaviour to the strategy combinator

some in System S, while ANY IN children(THIS) TOPDOWN is similar to sometd.

4.3.5 Refactoring schemes

Extensive code transformations can be expressed with traversal strategies, strategy

combinators and complex semantic queries. However, they are basically as hard to be

verified for semantics-preservation as any structured sequential program implementing

a refactoring. Since our goal was to provide a tool set in which all refactorings can be

semi-automatically verified, we need to restrict extensive transformations so that they

become automatically verifiable.

The idea: generic semantics-driven extensive change

In a typical extensive refactoring, the modifications that have to be carried out simulta-

neously (connected with rewrite rule combinators) are related from the semantics point

of view. The connection between dependent parts is determined by some semantic entity

or relationship, such as data-flow and control-flow. As a matter of fact, this induces

grouping among extensive refactoring steps: some extensive transformations change

functions, while others alter data-flow or control-flow.
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We exploit this idea and make generic extensive refactoring steps. The generalisation

is on the actual rewriting the transformation applies on the interdependent parts of the

program. The generic part of the transformation is responsible for traversal control

(ensuring the changes are complete), while the specific part determines the modification

to be made at the interdependent locations of code (specific parts of the transformation

need to define consistent changes).

A motivating example: renaming functions

Let us illustrate the idea with the following motivating example. Suppose that we would

like to write an extensive refactoring that can rename a function. Assume that the name

of the function to be renamed is given in the variable OldName, while the new function

name is given in the variable NewName (for the sake of simplicity, we first assume that

the name alone identifies the function, but later on we also add module name and arity).

The following rewrite rules should be combined some way to rename the function

both in its definition and its calls. For the function definition with the signature and the

function body expressions:

OldName(Args..) -> Exprs..

--------------------------

NewName(Args..) -> Exprs..

And for the function calls with the function name and the actual arguments:

OldName(Args..)

---------------

NewName(Args..)

Individually, they are transformations causing inconsistency, but properly combined,

they can make an extensive, complete, consistent change in the program.

We can use the combinators discussed in the previous section to create an extensive

transformation. With the combinator THEN we compose an extensive rewriting from the

two rules, while by using ON we target the rules to their targets. It is not straightforward

what the selectors for the modifiers and the condition for the transformation should be.

ON (modifier?)

OldName(Args..) -> Exprs..

--------------------------

NewName(Args..) -> Exprs..

WHEN (condition?)

THEN ON (modifier?)

OldName(Args2..)

----------------

NewName(Args2..)
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Note that in the combined version, we need to change the argument-matching metavari-

able in the second pattern (from Args.. to Args2..), otherwise the system would try to

match the formal parameters with the actual parameters by syntactic structure, which

may or may not succeed, but it is not intended. We also need to add a condition that

prevents name clash, which is an obvious side-condition of the renaming refactoring,

and we should provide modifiers that delegate the rewriting rules to the definition and

the calls of the function.

We can rely on the static semantic information available in the semantic program

graph, and the semantic functions and predicates defined thereon: function_definition and

function_references point from the function to its defining clauses and calls, respectively,

whilst function_exists is a predicate that tells whether a function in a particular module

with the given name and argument count exists or not.

The following definition shows the extensive refactoring transformation that renames

a function. Observe that extensive refactoring is always semantics-controlled: in this

case, the locations to be changed are connected by the semantic function object stored

in variable Fun. The variable OldName is not necessarily a parameter of the rewriting

any more, but the new name is still expected to be given in NewName. When wrapping

this extensive step into a refactoring function, Fun will be an implicit parameter, while

NewName will be an explicit parameter.

ON function_definition(Fun)

OldName(Args..) -> Exprs..

--------------------------

NewName(Args..) -> Exprs..

WHEN NOT function_exists(module(Fun), NewName, length(Args..))

THEN ON function_references(Fun)

OldName(Args2..)

----------------

NewName(Args2..)

The above specification visits the definition of the function, checks if the new name is

not taken yet, and if the condition is true, renames the function in its definition. Then

visits all calls to the function and changes the function name to the new one. This way,

the changes made in the program are consistent, because we changed the function name

at all locations accordingly. Correctness of this transformation can be verified manually.

Extracting the scheme. Now observe that this extensive refactoring induces a scheme:

refactoring a semantic function entity by changing the function signature in both its

definition and its references. We can image a lot of different rewritings that we can apply

on the definition and on the calls of the function that change the code consistently, which

would result in different refactoring definitions. Indeed, this is a scheme (or skeleton) of

extensive rewriting.
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ON function_definition(THIS)

P1 -> Exprs..

-------------

P2 -> Exprs..

WHEN C

THEN ON function_references(THIS)

P1

----

P2

As you can see, such a scheme is parametrised by a rewrite rule P1 → P2 if C , which is

applied to both the definition and the references of the function with a proper control

and traversal. In fact, we can instantiate this scheme with several different rewrite rules

to obtain different refactoring transformations. Rewriting the name in the signature gives

us the łrename functionž refactoring.

FUNCTION SIGNATURE REFACTORING rename(NewName)

Name(Args..)

---------------

NewName(Args..)

WHEN

NOT function_exists(module(THIS), NewName, length(Args..))

Rewriting the argument list by coupling the arguments in a tuple gives another instantia-

tion of the scheme, namely, a refactoring known as łtuple function argumentsž.

FUNCTION SIGNATURE REFACTORING tuple_function_arguments()

Name(Args..)

--------------

Name({Args..})

WHEN

NOT function_exists(module(THIS), Name, 1)

There is a more general variant of this scheme, which is parametrised by two separate

rewrite rules that change the function definition and its references. Several schemes will

be discussed in the subsequent parts of this section.

The essence of schemes

Schemes can be understood as complex strategies in traversal programming, but in fact

they are much more: schemes define the format of their parameter rewrite rules and

may inspect the elements of the rules in order to define the compound strategy they

carry out. They are verified parametrised by arbitrary rewrite rules complying with

some contracts, such that instantiated with contract-complying rewrite rules they are

guaranteed to be semantics-preserving. Apparently, verifying a scheme is a difficult task,

but it then provides a verified skeleton for further refactorings.
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Schemes make sure that the transformation will reach out to all code locations that

might be affected, and also make sure that the changes made are consistent. Intentionally,

schemes hide the complexity connected to semantics-based term selection and side

conditions, while at the same time they fully control the application of rewrite rules

by relying on these semantic connections. Schemes are instantiated with a series of

conditional term rewrite rules, which are expressed in the concrete syntax of the object

language, and they may refer to pre-defined semantic functions and predicates. These

latter provide access to the program representation with an interface that resembles

object language level concepts, allowing anyone knowing the object language to read

and write refactoring definitions.

Proposition 4.3.3. Extensive refactorings defined by instantiation of pre-verified schemes

are semi-automatically verifiable for correctness.

Proof. The methodology of the two-phase verification of scheme-based extensive trans-

formations is discussed in [30].

Schemes currently defined in the system

In order to implement some complex case studies, we defined a number of schemes we

could instantiate extensive refactorings with. We decided to add a scheme even for local

refactoring, which makes us define each and every prime refactoring with a scheme,

either local or extensive. Most schemes are based on dependencies among program

fragments. In general, they fall into one of the following categories:

· Local refactoring. The simplest scheme transforms a single sub-tree (or sub-term)

in the program, and there is no control or conditions built into this strategy. Local

refactoring simply applies the rewrite rule it takes directly to the program element

selected for transformation.

· Data-flow, control-flow driven refactoring. One of the core ideas of schemes

is that dependencies connect program elements that shall be changed consistently.

Data-flow induces data dependency, so when an element of a data-flow chain is

changed, it entails the need for adjusting the rest the chain. We have two schemes

that can be used for refactoring data-flow chains: forward data-flow, which starts

from the data origin and visits references, and backward data-flow, which first

modifies the data reference and then compensates data sources accordingly.

· Binding driven refactoring. Names can induce data and control dependencies,

and inmost cases, when changing binding definitions, references have to be adjusted

in order to preserve behaviour. Since our case study object language is Erlang, we

identified refactoring schemes for refactoring variables, functions, records and types.

Any semantic objects that can be given a name can be treated the same way, and

obviously, in different programming languages, the set of these will differ.



4.3 Rewriting-based refactoring of semantic program graphs 73

· Introduce binding. Introducing abstractions into the program is special in some

sense, because although it involves changes at two different locations, one is merely

addition and only the other is modification. Schemes of this kind introduce a name

and, at the same time, they rewrite a piece of code to use the new binding. In fact,

the change is the use of a name, and the compensation of this change is introducing

the binding. Semantically, not only the binding is added to the code, but inherently

the flow and dependency graphs are extended, too. Currently, we have schemes

that introduce variables and functions by extracting expressions.

The above classification of schemes intentionally uses language-independent concepts,

such as data-flow and name bindings. There is already some effort put in making the

entire methodology available for other paradigms and languages.

Although most schemes are described and illustrated with examples in Section 4.4

(the compound refactoring case study), in the following example we provide a detailed

explanation of the forward data-flow scheme in order to help the reader get familiar with

the core idea of making these steps executable and verifiable.

Example 4.3.9 (Forward data-flow refactoring scheme and instance). The data-flow

schemes are based on the data dependency induced by data-flow. In the forward change

scheme, the dependency is followed from the origin to the references. If an expression

constructing a value is changed, all the expressions into which the value flows (and

therefore induces data and behavioural dependency) should be changed as well.

This skeleton is parametrised by a number of rules applied to either the construction

site or a reference site of the data. That is, one of the definition rules is applied on the

defining expression (the target of the refactoring), while the expressions referring to the

data are transformed by one of the reference rules. In our current model, all elements

on the data-flow path starting with the expression constructing the value are regarded

as references. If the definition or any of the references cannot be transformed by a

corresponding rule, the refactoring fails.

The syntactic skeleton is the following (there can be multiple rewrite rules for the

definition and the references, but for the sake of simplicity, we present the simplified

skeleton).

FORWARD DATAFLOW REFACTORING <name>(<arguments>)

DEFINITION

<pattern1>

---------- WHEN <condition>

<pattern2>

REFERENCE

<pattern3>

----------

<pattern4>
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There is an important side-condition for this scheme. Refactorings created with it will

fail when any of the references to be compensated have any data sources (i.e. preceding

data-flow nodes) other than the originally selected refactoring target. In the expansion of

the scheme, we use the predicate single_source that does backward data-flow reaching to

determine if there is only one data origin. The metavariable CURRENT holds a reference

to the node currently transformed by the iteration. After instantiation (expansion), we get

a refactoring function composed of the patterns and conditions specified in the parameter

rewrite rules.

REFACTORING <name> (<arguments>)

ON THIS

<pattern1>

----------

<pattern2>

WHEN <condition>

THEN ON fw_dataflow(THIS)

<pattern3>

----------

<pattern4>

WHEN single_source(CURRENT)

Let us see a concrete example refactoring that is defined with the forward data-flow

scheme. By instantiating the scheme, we can define a transformation that can eliminate

an anonymous function unnecessarily wrapping a pure expression. The definition rule

extracts the value, while the reference rules take care of the applications of the anonymous

function. With a similar refactoring definition, we might inline the unnamed function

by referring to the body of the function in the reference rules. (The explicit mentions

of variables F and G after the keyword REFERENCE are needed for verification purposes

and target node lookup.)

FORWARD DATAFLOW REFACTORING fun2value()

DEFINITION

fun() -> E end

--------------

E

WHEN pure(E)

REFERENCE F

F()

----

F

REFERENCE G

apply(G, [])

------------

G



4.3 Rewriting-based refactoring of semantic program graphs 75

Execution. Let us demonstrate the effect of applying the extensive refactoring. Executing

the łfun2valuež refactoring on the fun expression checks if the value łapplež is side-effect

free, and then it removes the unnecessary abstraction and application. Changes are

carried out both in the data definition node and on its reference.

X = fun() -> apple end,

. . . ,

atom_to_list(X())

fun2value()
−−−−−−→

X = apple,

. . . ,

atom_to_list(X)

Verification. In many cases, the definition and reference rules are inverse in some sense,

which is the intuitive understanding of the verification method. The instantiation contract

of the data-flow scheme is that the definition and reference rules make consistent changes

(expresses as equivalence formulas composed by combining thematching and replacement

patterns of the rewrite rules specified for definitions and references). For łfun2valuež, the

instantiation is said to be correct if following formulas are valid (these formulas provide

the denotational semantics of the extensive refactoring defined by the scheme).

(fun() -> E end)() ≡ E

apply(fun() -> E end, []) ≡ E

These formulas express conditional equivalence between expression patterns, which can

be automatically verified [30].

4.3.6 Refactoring functions

Scheme instances can be given a name and can be parametrised by variables of any type

(including node references as well), resulting in so-called extensive refactoring functions.

These are complete specifications, determining the algorithm that is a correct, semantics-

preserving transformation step. Such functions can be combined similarly as individual

rewrite rules have been combined, resulting in compound refactoring functions.

REFACTORING <name> (<parameters>)

<rewriting rule(s)>

Refactoring functions are identified by their name and arity (number of parameters).

They have an implicit parameter, the node of interest of the transformation (variable

THIS), but may have any number of additional arguments; the return value is the node(s)

changed by the refactoring.

Transformation or refactoring? It is worth clarifying that the generic language we

built upon term rewriting can define non-refactoring transformations, but functions that

are instances of schemes are provably correct. Therefore, functions instantiating schemes

are always refactorings, not only in their name, but in their semantics, too.
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Compound refactoring. Refactorings functions can be composed of sequential appli-

cations of other refactoring functions. Calls to other refactoring functions composed with

the combinators and modifiers introduced in the previous sections form a compound

refactoring transformation. The syntax is a bit different, but in compound refactoring

functions, other functions instead of rewriting rules are executed according to some

strategy. The keyword DO indicates that the refactoring function is compound (and

therefore requires no verification).

Sequential composition is implicit, the THEN keyword is not needed. However, there is

another control statement available in compound refactoring: the keyword ITERATE keeps

executing the supplied refactoring function until it fails. As a consequence, compound

refactoring is correct if it terminates, but it is not guaranteed to terminate (i.e. total

correctness is not guaranteed).

REFACTORING <name> (<parameters>)

DO

[ <var> = ] <selector>.<function>(<parameters>)

...

[ <var> = ] <function>(<parameters>) [ <modifier> <selector> ]

...

[ <var> = ] ITERATE <selector>.<function>(<parameters>)

As the above syntactic skeleton suggests, refactoring functions can be applied to

nodes with two different syntaxes: an object-oriented style notation (meaning an ON

modifier on the selector), or modifiers can be explicitly written after the call (either ON

or IN ). These modifiers have the same semantics as seen previously (ON applies the

function on the term determined by the selector, while IN executes the function on all

subterms of the term determined by the selector).

The result of a refactoring call (node references) can be stored in function-local

mutable variables to be used later on as parameters or in selectors.

4.3.7 Selectors

Selectors are expressions that evaluate to node references. Syntactically, they can be

either references to variables or applications of semantic and selector functions.

Selector functions. Selector functions do traversal, pattern matching and condition

checking, without any modifications of the graph. This is a special language construct

that provides node lookup and branching in a rather unique way.

SELECTOR <name> (<parameters>)

<modifier> <selector>

<pattern> WHEN <condition>

RETURN <selector>
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Selector functions behave very similar to refactoring functions, but they are pure,

have no side-effects of modifying the programmodel. The target node is a hidden, implicit

argument to the selector function, just like to refactoring functions, and selector functions

explicitly return node reference(s) to be further processed by other functions.

Remark (Selectors instead of branching statements). As it is apparent now from this

chapter, our refactoring programming language does not have if-like or switch-like

branching. However, the branching control structure is present in the language: if the

application of a function call depends on a condition expressible as a boolean formula, it

can be put into the condition of a selector, so that if the condition is false, the selector

returns an empty set of nodes and thus the functions does not get executed.

Proposition 4.3.4. If all prime refactorings are defined as instances of schemes, the entire

refactoring program is semi-automatically verifiable for correctness.

Proof. Instances of schemes are semi-automatically verifiable, so if all prime refactorings

are defined with scheme instances, all prime refactorings are semi-automatically verifiable.

Compound refactorings only change the program model via calling refactoring functions

(selectors cannot have effects on the semantic program graph), but the functions they

may call are semi-automatically verifiable (inductive hypothesis), and if those are correct,

their sequential composition and iteration (defining a series of semantic-preserving

transformations) is inherently correct. If all refactoring functions are correct, the entire

program is correct.

Pros and cons of using node references

The definition of a refactoring transformation highly depends on the abstraction level

and richness of the used program model: the more advanced the model is, the easier to

express preconditions and transformation steps.

We decided to use the semantic graph model, and manipulate it via node references.

There are some complications that stem from using strategic term rewriting in an impure

way, modifying a global graph rather than implementing pure transformations on terms.

Nevertheless, there are some clear advantages as well, so we enumerate some of them in

the following paragraph.

On the positive side, we have efficiency and simpleness, especially compared to

ordinary strategic term rewriting.

· Memory-efficiency: When terms are passed to rewrite steps or functions, they are passed

by reference. Thus, no copy takes place when a syntactic or semantic object is

passed to another function in the program, which is efficient both in time and

memory. Semantic properties and related nodes can be easily accessed through the

reference.
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· Easy lookup of context: When transformations need to look out for their context in

order to check their context-sensitive condition or find their target node of interest,

they can use graph-wide queries to obtain the required information easily and

effectively. Semantically interdependent syntactic parts are always connected in

the graph, therefore relevant semantic queries only take one or two traversal steps.

· Easy query of semantic properties: Semantic properties are usually complex to tell, but

in our refactoring engine, approximated static semantics of programs are already

stored in the semantic program graph as additional nodes and edges. Semantic

nodes store their properties in their object attributes. Therefore, querying semantic

properties about any syntactic elements takes little effort.

Manipulating a global data via references may be effective and convenient, but need

careful consideration and experience in some situations.

· Re-matching: Let us recall Example 4.3.1, which defined a rule that swaps arguments

to an operator. We stated that applying the example rule on [[1 ∗ 2 + 3]] results

the matching [X → 1 ∗ 2, Y → 3]. Actually, the matching will bind variables to

node references, and not values, and the system has to work with the references

afterwards. In some cases, the replacement pattern has to be re-matched on the

result subtree in order to update reference identifiers in metavariables present in

the replacement pattern. A typical scenario for this is when replacement pattern is

not linear, and construction creates copies of nodes with new identifiers.

· Changing context: A node that is affected by rewriting does not necessarily disappear,

but may be get moved in the tree. Consequently, metavariables holding a reference

to a node, may receive different answers executing the very same query before and

after a transformation. The explanation to this is that the queries on the nodes may

be context-sensitive, and even if the node itself is not changed, its context may be

altered.

· Null pointers: In complex refactoring functions, dozens of variables of different scopes

are bound to various node references. Although rewriting makes sure to track

changes and update the corresponding references, in some cases, references get

invalid. Unfortunately, the garbage collection implemented in the refactoring

engine cannot properly take into consideration the references hold bymetavariables

in the refactoring language interpreter.

· Impurity: Last but not least, impure refactoring functions are not straightforward to be

run in parallel, in contrast to System S programs, which in theory are completely

pure and their concurrent execution is simple due to the lack of dependencies.

Nevertheless, adding dynamic rules to System S introduces dependencies and

impurity; thus, real refactoring definitions are not amenable to parallelisation with

dynamic rules either.
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4.3.8 Notes on the formal semantics

The semantics of the refactoring language can be approached both from the operational

and from the denotational perspective. Traditionally, operational semantics defines how

a program in the language is executed, while denotational semantics maps the program

to a so-called denotation that captures the meaning.

Operational semantics. Defining an operational semantics for the language would

definitely justify that the specifications are executable. We have already addressed

the question of giving a big-step semantics to the refactoring language, but it has not

been published yet. This semantics would define a transition relation that mimics the

operational semantics of term rewrite systems.

Nevertheless, the language already has an operational semantics determined by its

implementation in Erlang, although it cannot be regarded a formal definition.

Translation semantics. It would be worth investigating whether the semantics of the

refactoring programs can be expressed in terms of graph rewrite rules or programs in

System S. Beyond questions, graph rewriting over an extended program model seems

to be a proper domain to express refactorings, but as Stratego suffers defining complex

transformations, expressing our entire query and transformation logic in System S with

dynamic rewrite rules would be rather challenging.

Denotational semantics. In our current understanding, the denotational semantics of

refactoring specifications in our language is a set of conditional equivalence formulas (in

matching logic) that are to be valid for the transformation to be correct. All scheme-based

prime refactorings should be mappable to such a formula set, local transformations to

single formulas, while extensive refactorings to a set of multiple formulas.

Although this kind of verification method is already well-designed, the prototype is

not stable yet. However, our proof of concept demonstrates that we can indeed transform

our specifications to automatically verifiable formulas.

4.3.9 Notes on the verification method

In our methodology, prime refactorings are mapped to equivalence formulas to be verified

based on the formal semantics of the object language. Local refactorings are mapped to

formulas of a very similar form to the rewrite rule they define, while extensive refactorings

are verified in two parts: verification of the scheme and verification of the instantiation

of the scheme. The former proves that the refactoring is complete, whilst the latter guar-

antees that the refactoring makes consistent changes; we identified these two properties

to be fulfilled at the beginning of the chapter.
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The verification of refactorings is not my particular result, my colleague, Judit Kőszegi

worked on developing the method of producing proofs for all sorts of refactoring. Let me

briefly summarise the verification technique. In [29] we presented how to use a proof

system to prove refactorings whose correctness can be expressed by the equivalence of

two expression patterns under a given condition. We reduced the equivalence property

of the two expression patterns to a correctness property of an aggregated program

constructed by the two expression patterns (according to [12]), then we applied the

language-independent, general-purpose proof system to automatically check the validity

of our property.

According to our terminology, refactoring correctness is defined with respect to a

formal semantics of the object language and an equivalence relation. We formalised a

nearly complete, sequential and deterministic sub-language of Erlang with matching

logic formulas, used throughout our proofs.

In order to verify refactorings, we turn refactoring functions into sets of conditional

equivalence formulas. For local refactorings, this means simply treating the conditional

rewrite rule as a pair of patterns; for strategy-combined rewritings, we face a more

complex issue that has to glue rewriting, context and control. We split the verification

problem in half: check that the scheme is correct under some assumptions (i.e. a contract),

and then prove that the instantiation of the scheme satisfies those assumptions. Typically,

contracts are equivalence formulas constructed from elements of the instantiation rules,

while the verification of the scheme itself is a structural induction proof with base cases

proven by the contract.

4.4 Applicability: a complex case study

In the previous sections, we introduced refactoring oriented programming and the ab-

stractions of the language we designed for specifying Erlang refactorings. We made

propositions on whether and how transformations defined in this language are exe-

cutable or verifiable. Nevertheless, there was another design goal of ours stated at the

beginning of the chapter: the language shall be applicable. By this, we mean that useful,

complex refactoring transformations should be expressible with the formalism.

Applicability, as well as the methodology of applying decomposition and schemes for

defining refactoring is best demonstrated through ameaningful case study. We explain the

decomposition process and the role of schemes as building blocks by formally specifying

a well-known and fairly complex function refactoring: generalise function definition. As

object language, we keep using Erlang.
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4.4.1 Informal specification

Our case study łgeneralise functionž is a refactoring transformation that turns some

value (i.e. a sub-expression within the function body) into a function parameter, thus

making the function more abstract. The generalization increases the function arity by

one, meaning it will take an extra formal argument compared to the original signature

Ð this requires that this generalised signature is not defined in the code yet, which is

one of the side-conditions of this transformation. In practice, there are two well-known

realisations of this refactoring:

1. Generalise the function and then create a fall-back version with the original arity,

where the fall-back function simply invokes the newly generalised version by

passing as extra argument the extracted expression. This way, call sites to the

original function can be left unchanged, since by calling the fall-back function their

behaviour remains the same.

2. Change the call sites so that they pass the extracted expression as extra argument

to the new, generalised function. This variant does not duplicate the function, but

may affect a large number of code locations if there are a number of references to

the generalised function.

The first variant is more local as the effect of the transformation remains in the module,

while the second variant might reach out to other modules calling the generalised function.

In both versions, the expression in question is moved from the function body to the call

sites, thus the transformation has to make sure that the binding structure present in the

expression is not affected by the relocation. Also common in both variants that they

refactor variable and function objects in a general manner, which makes their definition

pretty similar. In fact, the first one is a bit more challenging as it both changes the original

function and adds a new one, which have to be kept semantically consistent, so we put

our focus on defining the first variant of the refactoring.

Example. In order to demonstrate the behaviour (the desired effect) of this transfor-

mation, we present a small piece of code and generalise the function f by lifting the

(potentially impure) function call i() into a function argument. The presented example is

intentionally overly simple, yet it shows how the abstractions are extended and changed,

which sheds some light on what kind of schemes might be needed for ensuring consistent

modification.

f(X) -> begin X * i() end. % function to be generalised

g(X) -> f(X+1). % a reference

The refactoring generalises the function by adding a new parameter to it and replacing

the extracted program part with the new parameter in the body. At the same time, it

creates a copy of the function that simply calls the generalised one with the original
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value. It might seem useless in this example, but because the expression we relocate (i())

may have side-effects, it should get encapsulated by a lambda function (denoted with the

fun keyword in Erlang) and its application Ð this encapsulation enables the refactoring

to keep the order and number of side-effects.

f(X, Y) -> begin X * Y() end. % new, generalised function

f(X) -> f(X, fun() -> i() end). % invokes the new one

g(X) -> f(X+1). % callee unchanged

After carrying out function generalization, new names and signatures appear: a łnewž f

taking two arguments gets introduced, where the last argument is the newly introduced

variable that takes the extra function parameter. In the next section, we elaborate on how

the introduction and manipulation of these abstractions can be split into multiple stages.

4.4.2 Decomposition

By decomposition, we mean expressing a complex refactoring transformation in terms of

smaller, simpler refactoring steps. This requires additional effort compared to specifying

a transformation as a whole, but it pays off: smaller steps are easier to read, write, and

are more easily checked for correctness. In order to decompose a refactoring, we need to

understand how it affects language objects, data-flow and control-flow, clarifying how it

is boiled down to simpler yet behaviour-preserving steps. Note that in many cases, there

are multiple possible decompositions, which may differ in complexity and verifiability.

Avoiding detached refactoring. When designing decomposition, we avoid hidden or

detached changes, i.e. those that introduce or modify dead code. These are easy to reason

about since they are not part of the control-flow nor the data-flow (their modification

is not observable from the semantic point of view), but relating detached changes to

the original program requires overly complex syntactic or semantic conditions. In the

most difficult case, side conditions involving dynamic semantic equivalence of arbitrary

expressions might be needed, which we do not support in our formalism. As a matter

of fact, we do not incorporate the formal semantics of the object language into the

refactoring execution. When checking equivalence is inevitable, the condition might

refer to a more restrictive condition that ensures syntactic equivalence.

The łgeneralise functionž refactoring could be seen as two big, standalone steps: a

(detached) refactoring that creates the generalised function definition, plus another one,

which rewrites the original function as an application of the generalised one. Needless

to say, this would pose a need for a complex precondition for the second step, namely

a formula ensuring that calling the generalised function with the originally selected

expression as extra argument is semantically equivalent to the original function body.

Rather than composing the complex transformation of two independent transformations,

we are going to specify it as a composition of several refactoring scheme instances.



4.4 Applicability: a complex case study 83

Scenario. By building on the refactoring schemes, we divide the case study refactoring

into prime refactoring transformations that are easier to understand and verify. It is

apparent that the complex refactoring will introduce new abstractions: a new function

abstraction is created for the generalised instance, and a variable abstraction is created for

the new parameter holding the value of the generalised expression. Rather than copying

the function and then inlining, or adding an unused parameter and then integrating

it into the body, we operate with slight yet completely behaviour-preserving changes

to the abstractions. In each step, we highlight the term of interest we rewrite with

a micro-refactoring (also, on the arrows, we identify the refactoring function and its

arguments).

f(X) -> begin X*i() end.

g(X) -> f(X+1).

wrap expression
−−−−−−−−−−−−−−−−−−−−−−→

(change expression)

→ f(X) -> begin X*fun() -> i() end() end.

g(X) -> f(X+1).

extract expression to function (z)
−−−−−−−−−−−−−−−−−−−−−−→

(introduce function)

→
z(X) -> begin X*fun() -> i() end() end.

f(X) -> z(X).

g(X) -> f(X+1).

extract expression to variable (Y)
−−−−−−−−−−−−−−−−−−−−−−→

(introduce variable)

→
z(X) -> begin Y=fun() -> i() end, X*Y() end.

f(X) -> z(X).

g(X) -> f(X+1).

outer variable
−−−−−−−−−−−−−−−−−−−−−−→

(change variable scope)

→
z(X) -> Y=fun() -> i() end, begin X*Y() end.

f(X) -> z(X).

g(X) -> f(X+1).

variable to function parameter (Y)
−−−−−−−−−−−−−−−−−−−−−−→

(change function)

→
z(X, Y) -> begin X*Y() end.

f(X) -> z(X, fun() -> i() end).

g(X) -> f(X+1).

rename function (z to f)
−−−−−−−−−−−−−−−−−−−−−−→

(change function signature)

→
f(X, Y) -> begin X*Y() end.

f(X) -> f(X, fun() -> i() end).

g(X) -> f(X+1).

After performing 6 small refactoring steps, we arrive at the same result we had in our

example presented in the previous section, which is the core idea behindmicro-refactoring.

In the following section, we are going to define each of these refactoring transformations

in our specification formalism, and we also define a composite refactoring function that

controls the application of these constituent steps.
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4.4.3 Formal definition

In this section, we give a formal specification for the steps used in the decomposition.

Our definition includes two composite function definitions and six prime refactoring

functions derived from multiple schemes. We omit the formal definition of the selector

łfunction_partž, which queries the lambda function from the result of wrapping, and we

also use some semantic functions that are not defined formally in this presentation.

Composite refactoring functions

Themain refactoring function is called generalise_function and it takes one argument

determining the name of the new variable added to the function signature. It is merely

a sequential composition of the rest of the refactoring functions, though it refers to

two semantic functions as well: function associates the containing function with any

syntactic element, while name simply returns the name of the function.

REFACTORING generalise_function(ParamName)

DO

THIS.wrap()

THIS = THIS.function_part()

Old = function(THIS)

Name = name(Old)

Params = function_params(Old)

New = Old.body().extract_to_function(tmp, Params)

Var = THIS.extract_to_variable(ParamName)

Var.to_function_parameter()

New.rename_function(Name)

The result of one transformation can be the target or argument to other functions, like in

pipelines. When a component step fails, the entire composition fails, and all intermediate

results are rolled back. Although incomplete composite functions are correct as all

composed steps are refactorings alone, intermediate changes may be undesired.

We introduce another composite refactoring function, to_function_parameter,

which is targeting the variable matching created by a preceding step, and it lifts the new

variable into a function parameter. This involves two different steps: it iterates lifting

between scopes until the variable reaches the scope of the function (at this point the

iteration construct will terminate successfully), and then it lifts the function-level variable

to the parameter list.

REFACTORING to_function_parameter()

DO

ITERATE THIS.outer_variable()

function(THIS).var_to_param(THIS)
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Prime refactoring functions

In this case study, all prime refactorings are expressed with schemes. First, we define

a local refactoring for making an arbitrary expression łmovablež, as a result of which

the expression is wrapped into a lambda function. Though being a simple change, it

has complex conditions: it requires that the expression does not bind any variables that

are used outside the expression (predicate non_bind), while another condition binds a

metavariable to hold the variable names that are free in the expression (referred to by

the expression, but bound in the context).

LOCAL REFACTORING wrap()

E

-------------------------------

(fun(Vars..) -> E end) (Vars..)

WHEN

Vars.. = free_vars(E) AND non_bind(E)

We define two instances of the variable introduction scheme for introducing and lifting

the new parameter of the generalised function. Both define the syntactic construct

creating the binding, determine the place (the scope) of the binding, and they also specify

the rewrite rule that will transform the target expression to use the newly introduced

binding. Since new variable bindings can be placed either in the current scope or in an

outer scope, this has to be decided in the instantiation of the scheme, while the conditions

regarding name clash should be handled inherently. With this, we can express both

introduction and lifting with the same scheme, and in the second one, the variable name

is coming from the already present binding rather than from the refactoring argument.

Syntactic noise (e.g. dead scope) introduced by intermediate steps can be removed by

dedicated clean-up refactorings at the end of the process, however, we do not include

clean-up transformations in this definition.

INTRODUCE VARIABLE

extract_to_variable(Name)

DEFINITION IN SCOPE

Name = E

REFERENCE

E

----

Name

INTRODUCE VARIABLE

outer_variable()

DEFINITION IN OUTER SCOPE

Name = E

REFERENCE

Name = E

--------

Name

We use the function introduction scheme for creating the fall-back function. Unlike in

variable introduction, function definition placement is not an issue (the module name

space is flat in Erlang), it does not matter where in a module a function is placed. The

scheme implementation will append the new definition to the file.
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INTRODUCE FUNCTION extract_to_function(Name, Params..)

DEFINITION

Name(Params..) -> E .

REFERENCE

E

--------------

Name(Params..)

WHEN is_subset(free_vars(E), vars(Params..))

Perhaps the most interesting components in the compound refactoring are the ones

transforming the function and its signature. The function refactoring scheme transforms

the function as well as its references by applying the supplied rewrite rules on the

definition and on all kinds of references, including calls, name references and directives.

FUNCTION REFACTORING var_to_param(X)

DEFINITION

(Args..) -> X = E, Body..

-------------------------

(Args.., X) -> Body..

REFERENCE

(Args2..)

------------

(Args2.., E)

WHEN pure(E) AND closed(E)

A special case of function refactoring is function signature refactoring, which only

transforms the head of the function definition and its references. As we demonstrated in

our previous paper [29], this scheme can be used as well for renaming a function and to

restructure or reorder its arguments.

FUNCTION SIGNATURE REFACTORING rename_function(NewName)

Name(Args..)

---------------

NewName(Args..)

4.4.4 Verification

Since all refactoring functions used in the compound refactoring function are instances

of refactoring schemes, the entire definition of łgeneralise functionž presented above can

be automatically verified (see Proposition 4.3.4). The verification of some schemes and

their instances used in this case study have sketch proofs in our paper [30].
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4.5 Summary

In this chapter, I presented a formalism that allows for specifying refactoring transforma-

tions in an executable and verifiable way. The proposed method is based on an enhanced

variant of conditional term rewriting on semantic program graphs. Complex, extensive

context-sensitive transformations are made automatically verifiable via semantics-driven

refactoring schemes, which ensure completeness and consistency of the multiple changes

in the program.

Thesis 2. I have developed scheme-based term rewriting with semantic strategies and

semantic conditions executed on semantic program graphs, and showed that this novel

approach provides an effective system for defining correct-by-construction refactoring. Erlang

refactoring definitions specified in this method via decomposition to scheme instances can be

automatically verified and interpreted in an Erlang static analysis and transformation tool. I

have specified several complex refactorings with this method to demonstrate its applicability.

I believe that with this work I established the basics of refactoring oriented pro-

gramming, which may have influence on how semantics-preserving transformations

are specified formally. Even though the presentation of the results in dissertation is

partly Erlang-specific, the methodology can be adapted to other languages. Indeed, one

of my fellows is already working on making the method available for Java refactoring

specifications.

Future work

There are different aspects these results shall be improved. On one hand, I will prepare

even more case studies to examine the limits and to demonstrate the capabilities of the

method. Furthermore, the implementation has to bemade stable and open for contribution,

this is a definite requirement if we want to make it popular among people in the field.

Another aspect that has to be addressed is generality. In order to spread the idea, I

will need to make sure the method is realised for different, widely used programming

languages, like Java or C++. As I mentioned already, the prototype design and a draft

paper explaining it is already available for the Java language.

Last but not least, sooner or later, together with my fellows we will need to get rid

of trusted components of the framework and start building verification methods for the

entire refactoring system. Only this achievement can ensure that the refactoring is not

only trustworthy, but correct.





5
Extending languages via program

transformations

łIf someone claims to have the perfect programming language, he is either a

fool or a salesman or both.ž (Bjarne Stroustrup)

No programming language is perfect, but we opt for one or the other based on their

unique features that make them the best choice for solving our particular problem. For

instance, applications written in Erlang are famous for their robustness, fault-tolerance

and scalability, which may be definite and understandable reasons to choose Erlang

to implement a wide variety of systems. On the other hand, many programmers are

dissatisfied with the syntax of the language, the lack of static checks and the limits of

extendability.

In case of such well-established languages, language extensions are incorporated

slowly, with a high attention on preserving stability; in exchange, usually they provide a

fairly easy way to add ad-hoc extensions to the language via compiler plugins manipulat-

ing the syntax tree or the intermediate representation. Erlang, along with its compiler,

was not designed with flexible extensibility in mind: although the compiler supports

compile-time syntax tree transformations via the so-called ’parse transformations’, the

use of these is extremely limited.

If one wants to add features, or just complex syntactic sugars to Erlang, the only

viable option is creating a new compiler or a pre-compiler for the extended language

(not counting the possibility of forking the official one). Creating such a system requires

implementing the entire compiler architecture, from syntactic analysis to semantic anal-

ysis, modelling, transformation and synthesis. This can be achieved with a standalone

implementation or in a dedicated language workbench, but it takes a lot of effort for sure.

Problem statement

In one of our projects in 2013, we needed to implement an iTask-like [59] work-flow

system in Erlang, but we could not fit the task operations and the remote execution into

the language. Neither the syntax nor the semantics was proper. At the same time, we

found that there is a list [17] of plenty of similar possible language extensions edited

by the Erlang community. Most of these enhancement proposals are simple extensions

to the syntax and more or less complex extensions to the semantics. They cannot be

implemented by ordinary parse transformations, they need changes in the compiler, or

literally creating a new compiler.
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Interestingly enough, just like the language features we needed for the work-flow

embedding, the Erlang enhancement proposals could be realised as transformations to the

original language by translation. We did not want to put our hand on the official compiler,

but we were in possession of our own Erlang analysis and refactoring framework, which

implements the components the compiler does. We started to investigate if we can reuse

the refactoring engine to implement language extensions via some kind of translation.

What is the pragmatics of such a methodology? Can we translate all the required

extensions to the original language? We are going to address these questions in this

chapter. We propose a method that allows for adding extensions to the language without

modifying a single line of its compiler. Our approach in some sense is similar to hygienic

macros, but on semantic program graphs, and implemented by a pre-compiler built upon

a refactoring tool [6]. The method allows for extending Erlang with complex, novel

features by defining their translation semantics.

Structure of this chapter

The chapter is structured as follows. First we overview related results in Section 5.1.

Section 5.2 explains how we employ a refactoring engine to serve as a pre-compiler

(translator) for the extended language, and then Sections 5.3 and 5.4 demonstrate two

complex language features implemented with the proposed method. Finally, Section 5.5

sums up the results and identifies potential directions of improvement.

5.1 Related work

We summarise related results in regard to language extension implementations in various

programming languages, particularly in Erlang.

Extensions to Erlang. Erlang has a macro language, and it offers its programmers

a way to perform compile-time transformations on the syntax tree of their programs

before the actual compilation process. Numerous language extensions have been made

with such tree transformations [21, 44], even some query languages in the standard

library, but this method has some inherent disadvantages and limitations. So-called parse

transformations cannot extend the language syntactically (i.e. only language extensions

compatible with the standard Erlang syntax specification are supported). A parse trans-

formation is allowed to change the semantics of already existing language constructs, and

to correct programs that otherwise would not compile due to static semantic errors, but it

cannot introduce syntactically new constructs. Also, these transformations are executed

before any semantic analysis was done by the compiler; thus, the implementation of a

parse transformation needs to gather all the semantic information needed on its own,

by traversing the tree. Parse transformations are good for making local changes, but

implementation of program-wide (or application level) transformations is not practical.
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Erlang-based extensible languages. There are programming languages that can be

compiled to Erlang, or to bytecode executable by the Erlang virtual machine. They do

not allow us to extend Erlang, but they make it possible to exploit the unique capabilities

of the Erlang VM through different constructs in their own language. The most famous

such language is called Elixir [74]. It is a meta-programming language on Erlang, which

means it compiles to Erlang bytecode and offers everything that Erlang does.

Elixir uses a fairly different syntax compared to Erlang, and implements vehicles

for powerful meta-programming. Elixir offers hygienic macros: macro arguments are

passed as their representation (let us say, their syntax subtree), while the result of the

macro expansion is actually the replacement syntax subtree (and not a text). Amongst the

other features of the language, its macro language makes it a good choice for prototyping

domain specific languages; nevertheless, implementing semantics-aware macros would

be as difficult as in the case of parse transforms, and also, our goal is not to move onto a

completely different programming language, as it would make us unable to use the tools

we already have for Erlang.

Precompilation. In most cases, language extensions are implemented by introducing

a precompiler (or preprocessor) into the compilation process, rather than modifying the

compiler of the language. The role of the precompiler is to translate the extended language

back to the base language. Such a precompiler can be implemented on different levels of

program representations. If the extensions are completely separable and independent of

the base language, one can implement a so-called lazy precompilation, where only new

language elements are taken into account, the rest of the code is unprocessed (typically,

macro preprocessors). Processes of this kind can be effective, but they do not allow the

meaning of the new concepts depend on the meaning of the rest of the code written

in the base language. Heinlein [25, 26] implemented such a lazy precompiler for C+++,

which is a C++ based language with user-defined operators. During the process, new

operator constructs are translated back to plain C++ code. Note that this idea is very

similar to one of our extension case studies.

Translation. Considerably complex language extensions are implemented by creating

complete compilers for the extended language, which translate extended programs back to

the base language. Baumgartner and Russo [3] implemented the concept of type signatures

in C++ by translating new elements back to C++, but similar approach is presented

in [1] to translate C++11 code to C++03 to support legacy compilation environments.

Eden [60] extends Haskell with a small set of syntactic constructs for explicit process

specification and creation, and translates back to plain Haskell by employing Template

Haskell. Broberg [10] extended Haskell with regular expression patterns, the meaning of

which Ð similarly to the previously seen extension Ð is determined by translating them

back to base Haskell.
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In addition, there are language extensions that implement extensible variants of

well-known programming languages. By building on Stratego/XT, SugarJ [19] offers

library-based language extensibility for Java, while SugarHaskell [20] does similar for

Haskell. Both variants support definition of extensions, and translate instances of the new

language elements back to the base languages. Extending Erlang in such a transformation

framework would require the formalisation of the entire language before realising any

transformations. This initial investment takes almost as much effort as implementing a

source code analyser for Erlang, which in turn we already possess.

Without using an existing transformation framework, one can think of completely

custom code representations and transformation definitions. The Java Syntactic Exten-

der [2] presents a standalone solution for extending the language with syntactic sugars,

while Nystrom [53] implements an extensible compiler framework for Java. For C++, an

extensible analysis and transformation framework is implemented in PUMA [73], based

on which they can add aspects to bare C and C++ by translation [65]. Their approach

is pretty similar to ours. Similar results are presented by Mihalicza et al. [51], based on

another toolset for C++, they integrate an advanced access control in the language by

using translation semantics.

Portable functions in Erlang. We remark that following the publication of the papers

this chapter is based on, two separate implementations have been created for portable

functions in Erlang. One [54] is based on parse transformation, but it is extremely simple,

does not even handle function dependencies, the other one [68] is a native implementation

in the compiler, with a more advanced closure semantics tracking function dependencies,

but this solution has not been integrated into the official compiler either.

5.2 Pre-compilation in a refactoring tool

This section explains the methodology of employing a refactoring system for implemen-

tation of language extensions. Apparently, refactoring is not compilation, it uses the

same language for the input and the output program. In contrast, a compiler transforms

a program of language A to a program in another language B. Yet, if B is a subset of A,

the compilation can be understood as a refactoring in language A.

5.2.1 From refactoring to translation

Let us make a clear distinction between program translation and program rephrasing.

While during translation the language of the transformed program and the language

of the result is different, with program rephrasing the program is turned into another

program in the same language. Refactoring is essentially rephrasing the program, while

compilation translates the code to a lower level language.
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· Refactoring. Probably, the most well-known source-to-source program transforma-

tion is refactoring [22]. Refactoring does not change the language of the program,

it rephrases the code in the very same language, without affecting the meaning,

the semantics of the code. Refactoring requires as extensive syntactic and semantic

analysis as a compiler does.

Erlang
refactoring

// Erlang

· Compilation. If the abstraction level of the input and the output language is sig-

nificantly different (usually from higher-level to lower-level), we say that the

translation implements compilation. During compilation, we associate elements

of the higher-level language with (series of) elements of the lower-level language;

this association bridges the abstraction gap between the two languages.

Erlang
compilation

// bytecode

· Translation We define translation as a process that differs from compilation in a

sense that even though the languages in question are different, the abstraction

gap between them is very small or does not even exist. We will typically use

this term for referring to the process of compiling an extended language back

to the base language (also called pre-compilation). In our specific setting, the

Erlang programming language extended by syntactic sugars and tailored language

elements will be translated back to Erlang.

Extended
Erlang

translation // Erlang

Architecture for pre-compilation

A refactoring system is designed to transform programs inside a language. It has to be

tailored to be used for translation, but definitely it is feasible. Figure 5.1 indicates that

the architecture of a refactoring system and that of a compiler are pretty similar, both

perform the following essential tasks of language processors:

· Input handler : opens the source file and reads the character sequence

· Lexical analyser : converts the series of characters into a series of tokens

· Preprocessor : performs transformations on the token stream

· Syntactic analyser : turns the series of tokens into a syntax tree

· Semantic analyser : reveals properties and relations among syntax tree elements

· Graph transformation: performs transformations on the (extended) syntax tree

· Output handler : prints the internal representation into textual form
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Just like in the compiler, in refactoring, source handling is about loading code into

a character sequence. The source code analysis steps are basically the same. There are

two main differences: 1) the graph transformation in the compiler is done on the syntax

tree, while in the refactoring system the semantic program graph is manipulated, and 2)

output handling in the compiler is much more complicated and results in an optimised

assembly code, while in refactoring it is basically a simple pretty-printing algorithm.

The reason why refactoring does not function as a compiler is that the language

of the input and the output is the same. If we raised the abstraction level of the input

language or lowered the abstraction level of the output language, we would get a compiler.

Similarly, if the languages were different but of the same abstraction level, it would yield

a translator. Pre-compilation is just a case of translation, where the output language is a

subset of the input language, which is easily implemented by refactoring. Basically, in

order to use a refactoring system as a pre-compiler, all we need is to do is prepare the

system to accept and handle the extended language, and to ensure that the programs

outputted are always elements of the reduced language.

Refactoring Compilation

Erlang text

lexical analysis

��

Erlang text

lexical analysis

��
Token stream

preprocessing
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Token stream
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Figure 5.1: Refactoring versus compilation
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How do we define the extended language?

Programming languages are defined in terms of three main components: syntax, se-

mantics and pragmatics. From the theoretical point of view, the first two are the most

relevant. Syntax determines the set of programs that have a clear meaning in the language

(technically, these can be compiled and run). Dynamic semantics determines the meaning,

the run-time behaviour of the syntactically-valid, well-formed programs. Usually, pro-

gramming language semantics is only described informally, the behaviour may depend

on the applied compiler and run-time system, but formal definition of semantics is also

possible via operational, denotational and axiomatic methods.

When specifying and implementing language features, both syntax and semantics

have to be considered. We need to make sure the extended language is accepted by the

system, as well as the new language elements have a well-defined semantics. The refac-

toring system has to be tailored to understand the new language features syntactically,

build the corresponding representation, and it has to be able to translate them by means

of refactoring-like transformations to the original language of the system.

5.2.2 Extensions and transformations on different levels

Let us enumerate how the refactoring system accepts and translates the extended language

for pre-compilation. We will see that the fact that our refactoring system was designed to

be easily adjustable and extensible absolutely fits the approach of extending the language

it handles. Figure 5.2 shows an overview of the translation process.
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Figure 5.2: The translation process (Erlang’ is the extended language)

Lexical layer Ð extending the scanner

The refactoring system allows for easy definition of additional token classes by specifying

a token name and a regular expression for them. Nevertheless, there is a rich set of

symbols accepted by base Erlang, thus in most cases there is no need to extend the lexical

layer.
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Lexical layer Ð transforming the token stream

The text, after being tokenized by the lexical analyser, goes through the (macro) pre-

processor. In ordinary code analysis, it is the preprocessor’s responsibility to handle

and interpret compiler directives in the code. Specifically in Erlang, the preprocessor

tracks macro definitions, expands macro applications and, of course, performs header file

inclusion and conditional compilation. In the refactoring system, files (either modules

or headers) loaded into the tool are always preprocessed [37], therefore this is the first

point where we are allowed to put some customisation into the process.

The implementation of the preprocessor is basically the inspection of the token stream

and substitution of those segments that match the format of a compiler directive. Worth

mentioning that in the refactoring framework, unlike in the compiler, both the original

tokens and the expanded form is stored in order to support fine-grained analysis and

precise transformation of code; however, these so-called virtual tokens do not affect our

ambitions related to language extensions.

Fortunately enough, it is easy to put additional łfiltersž (replacement algorithms) on

the token stream, modifying the tokens and therefore the input of the syntactic analyser.

This can be utilised for turning syntactically invalid code to syntactically valid (according

to the grammar of ours), which can be useful if the desired language change would need

too complex modifications in the parser.

Example 5.2.1. By using a transformation on the lexical layer, we made bare words

available as function and operator names in Erlang.

added to(X, Y) -> X + Y. => ’added to’(X, Y) -> X + Y.

Our additional preprocessing on the token stream looked for subsequent atom constants

preceding an opening parenthesis Ð in Erlang, this can only happen with function

definitions and function calls1, so we canmerge those identifiers into one quoted identifier,

making the token stream compatible with the syntax.

Example 5.2.2. Another example could be the increment syntax added to the language.

f(X) -> X += 10, g(X). => f(X) -> X = X + 10, g(X).

In this case, the transformation takes the variable name, the plus sign, as well as the equal

sign, and turns it into a proper match expression (used as an assignment). Note that in

order to make + = a single operator, it has to be added as a new token.

1In later versions of Erlang, type declarations introduced similar syntax, though.
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Syntactic layer Ð extending the parser

Tailoring and introducing language elements is most likely implementable on the syntactic

level. For instance, simple syntactic sugars can be added in the parser, and then translated

back to the base language as a transformation on the abstract syntax tree.

The refactoring system has its own formal specification of the Erlang language, which

merges concrete and abstract syntax, making itself easily extensible. Adding a syntactic

construct into the language is as easy as phrasing it in concrete syntax and determining

its attributes in the abstract syntax.

ECall -> #expr{type=application}

( esub->Exp800 esub->EArgList )

EArgList -> #expr{type=arglist}

( ’(’ [esub->Expr {’,’ esub->Expr}] ’)’ )

Production rules of the context-free grammar, unlike in yacc [33] and its variants, are

given in Extended Backus-Naur Form: we do not need to write recursive rules to express

the concept of indefinite repetition, rather, repeated symbols are enclosed in curly brackets.

Optionality is expressed by putting symbols in square brackets. We followed a similar

notation in our generator grammar language in Section 3.3.

The right hand side of a rule starts with a record definition, which identifies the

constructor and additional attributes to abstract syntax. RHS symbols are labelled by an

atom each, this serves as a label for connecting them to their parent node in the syntax

tree (edge labels of terminal symbols are determined by the annotation of their parent

node). Worth noticing that the parentheses in apostrophes are terminal symbols, as

opposed to those parentheses that encompass right hand side symbols in rules.

Example 5.2.3. This example shows the syntactic rules that have been added to the

parser in order to support user-defined operators. We extend the ECall and the EMulOp

categories, to enable usage of both prefix and infix user-defined operators without any

parentheses.

ECall ->

#expr{type=application, role=noparen} ( esub->EOperator esub->ExpMax)

#expr{type=application} ( esub->Exp800 esub->EArgList)

EOperator ->

#expr{type=atom, value<-’operator’, role=operator} (’operator’)

EMulOp ->

#expr{type=infix_expr, value=’/’ } (esub->Exp500 ’/’ esub->Exp600)

| #expr{type=infix_expr, value=’*’ } (esub->Exp500 ’*’ esub->Exp600)

...

| #expr{type=infix_expr, value<-’operator’, role=operator }

(esub->Exp500 ’operator’ esub->Exp600)
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This modification, along with the previously mentioned token manipulation (Exam-

ple 5.2.1), will let us write the following expression in our extended Erlang language and

get parsed.

f() -> 1 added to 2.

Note that it is the responsibility of the forthcoming transformations to transform this

extended syntax back to bare Erlang.

Syntactic layer Ð transforming the syntax tree

By extending the parser of the accepted language, we only manage to make the extended

language consumable for the refactoring tool, but no transformation is done yet. We need

to add some syntax tree transformations in order to translate the new syntax back to bare

Erlang, either to implement the translation entirely, or just to ensure the syntax tree be

compatible with the Erlang abstract syntax used by the semantic analysers. Steps of this

latter kind are very important, since the static semantic analysers are syntax-directed

and only work on syntax trees of a fixed schema. If the extended language has a different

abstract syntax, it has to be put in order, otherwise semantic analyses will not be able to

understand and annotate the tree.

Tree and graph transformations are implemented very similarly, by building on the

query and the tree construction libraries (in purely syntactic transformations, semantic

queries are not enabled). The nodes to be transformed are selected by graph queries, the

replacement is done with the same toolkit. The skeleton of a simple graph transformation

is shown in the following snippet: query the node you would like to transform, query all

information required to perform the action, then construct the new subtree based on the

information gathered, and finally, replace the old subtree with the new one.

Node = query( ... ),

[Child1, Child2 | _] = query( Node, ... ),

NewNode = construct( ... Child1 ... Child2 ...),

replace(Node, NewNode)

There can be multiple syntax tree transformations which may contribute to the

implementation of several language extensions, and they are executed one after the other,

like a pipeline. Note that the order does matter in case if the forms of syntax subtrees

affected by different transformations may overlap. Syntax tree transformations cannot

rely on semantic information (context-dependent properties), so complex transformations

should be postponed to the next phase.

Example 5.2.4. Let us quote a snippet from the transformation implemented for user-

defined operators. It transforms the previously introduced syntactic elements (see Exam-

ple 5.2.3) such that prefix operator applications are turned into proper function appli-

cations, while binary operators used in infix notation are re-parsed according to their
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precedences and associativity rules (these are specified by directives in the extended

syntax, in a similar fashion as they are denoted in Haskell).

transform(Expr, #expr{type=application, role=noparen}) ->

[Name, Arg] = ?ESG:path(Expr, [esub]),

New = ?Syn:construct({app, copy(Name), [copy(Arg)]}),

replace(Expr, New),

?ESG:finalize(),

children(New);

transform(Expr, #expr{}) ->

[{Link, Parent}] = ?Syn:parent(Expr),

case {?ESG:data(Parent), ?ESG:data(Expr)} of

{#expr{type=infix_expr}, _} ->

children(Expr);

{_, #expr{type=infix_expr, value = Op}} when Op /= ’:’ ->

I = ?ESG:index(Parent, Link, Expr),

?ESG:remove(Parent, Link, Expr),

Seq = flatten(Expr),

{ok, NewExpr} = analyse(Seq),

?ESG:insert(Parent, {Link, I}, NewExpr),

?ESG:finalize(),

children(NewExpr);

{_, #expr{}} ->

children(Expr)

end;

In the above snippet, you can observe how the syntax tree elements are deconstructed

and then reconstructed according to the desired change. The manipulation is done on

the abstract syntax directly, but the functions path, construct, insert and replace simplify

tree queries and edits.

The re-parsing logic is done in the functions flatten and analyse, which first take a

sub-expression and flatten it like all operators had the same precedence and associativity,

and re-analyse the expression according to the precedence and associativity properties

found in the directives afterwards.

Semantic layer Ð semantic graph

Unlike in syntactic transformations, manipulation of the semantic graph allows us to rely

on the semantic properties and relations uncovered by the various semantic analysers

(e.g. we can query data-flow and binding information, or potential side-effects). Context-

dependent language features can only be implemented at this level, so semantic graph

transformations are the point where we are supposed to do actual translation of complex

language extensions. Just like before, the manipulation of the graph is realised by graph

queries and tree transformations.
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Example 5.2.5. As an example to semantic transformations, consider the portable func-

tion use case, where the closure has to be coupled with all its dependencies. This needs

semantic analysis of bindings, which helps us determine all the functions that a closure

may refer to; in the semantic program graph this information is available right after

semantic analysis has been done.

f(X) -> fun(X) -> g(X) end, ...

g(X) -> ...

When transforming the SPG of the above piece of program, simple graph queries can be

employed to figure out that the function g is a dependency of the closure defined in f .

5.2.3 Implementing semantics as a transformation

Language extensions should precisely define the syntax and semantics of the features to

be added. The implementation of these features, i.e. the translation (or pre-compilation) is

realised as a series of conditional graph transformations in the refactoring system, which

can also be understood as a series of context-sensitive conditional tree transformations.

Remark. We define these with algorithms manipulating the representation, but observe

that these transformations could well be expressed with the transformation language

presented in the previous chapter. We did not use the transformation language in this

project, because it was designed and developed years later.

Essentially, what we do is adding sugars to the language, meaning the semantics of

the new language features have to be expressible in the original language, determining

a translation semantics for the new elements. Nevertheless, the features we add are

łsemanticž or łcontext-sensitivež sugars. The following sections present case studies that

show the capabilities of the method.

Example 5.2.6. Let us consider a simple example of adding increment syntax (same as

seen in Example 5.2.2). Looking at it as a transformation pattern, we could conclude with

the following translation semantics:

S[[⟨variable⟩+=⟨expression⟩]] = [[⟨variable⟩ = ⟨variable⟩+ ⟨expression⟩]]

Or expressed in our transformation language:

V += E

---------

V = V + E

WHEN var(V)

Apparently, the definition of the rewriting (and therefore the translation semantics)

is more complex if the context is involved.
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Static semantics

Since the transformation is conditional, there may be cases when it is not applicable. In

case of refactoring, on such a falsified condition we would conclude that the refactor-

ing cannot be executed in a behaviour-preserving manner. In the setting of language

extensions, transformation conditions not met signal static semantic errors.

Take as example the user-defined operators. Operator symbols are always accepted

by the lexical and syntactic analysers in the tailored refactoring system, yet if their

precedence and associativity is not declared, the translation process needs to report a

static semantic error indicating that expressions cannot be translated to the core language.

That is, before the real compilation of the translated code, the pre-compiler can detect

compilation errors, too.

5.3 Adding user-defined operators to Erlang

The first case study we implemented with our language extension method was adding

user-defined operators to Erlang. In this section, we explain in detail the addition of

binary operator declarations and their applicability.

The parser grammar of the refactoring system only required the definition of a

new token consisting of special symbols, and a new derivation rule that allows infix

expressions to be composed with a special operator (see Example 5.2.3). Declarations

of the operators are given in terms of ordinary module attributes, where the argument

depicts the name and the priority of the new operator symbol.

The translation is implemented as a syntax tree transformation. It looks for infix

expressions, flattens them entirely, and then performs operator precedence analysis on

the entire corresponding subtree, but according to the precedence and associativity rules

defined at the beginning of the transformed file (see Example 5.2.4). The above example

of the extended language is translated to the following base Erlang code.

Example 5.3.1. The following code snippet is written in Erlang extended with user-

defined operators. We add two operator symbols, !! for accessing a list element by its

index, and >-< as the list merge operator. Both operators are declared to be left-associative

and are of priority 2 and 3, respectively.

-module(operator).

-infixl({ !! , 2 }).

-infixl({ >-< , 3 }).

f(N) -> [1,2,3] >-< [3,4,5] !! N.

!! (L, I ) -> lists:nth(I, L).

>-<(L1, L2) -> lists:merge(L1, L2).
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The translation process consumes both the operator declarations and the function defini-

tions. When reaching the definition of function f , it flattens and re-analyses the infix

expression so that the evaluation order is disambiguated based on the relative precedence

of the operators (merge binds tighter than indexing). The infix syntax is replaced by

ordinary function calls, and the operator declarations are dropped from the final result.

-module(operator).

f(N) -> ’!!’(’>-<’([1,2,3], [3,4,5]), N).

’!!’ (L, I ) -> lists:nth(I, L).

’>-<’(L1, L2) -> lists:merge(L1, L2).

It is worth mentioning that the translation also takes care of the operator definitions:

the operator symbols are enclosed in apostrophes in order to make them legal function

names in Erlang.

We note that the method could be used to redefine the semantics of built-in operators,

although the current implementation is not prepared for that case. Nevertheless, it is

absolutely possible to identify if an Erlang operator is being redefined by the transforma-

tion, and the re-parsing process can map (transform) the built-in operator to the function

giving new semantics to the symbol.

Bare words operators. As mentioned already in Example 5.2.1, with simple manipu-

lation of the token stream, we can enable the use of operators composed of bare words.

With this, we can achieve a cool feature which provides even more readable and well-

embedded domain specific code: by combining operator names and variable names, one

can compose expressions looking like sentences. The only extra transformation here is

adding a step to the standard pre-processing phase.

Example 5.3.2. Another example of custom operators in Erlang is demonstrated with

bare words. We introduce two operator symbols, shows and added to (this latter one

consists of two atom literals).

-module(atom_operator).

-infixl({ shows , 3 }).

-infixl({ added to , 4 }).

f(A, B) -> standard_io shows A added to B.

added to (A, B) -> A + B.

shows (D, A) -> io:format(D, "~p~n", [A]).

The transformation is very similar to the previous example, but in addition, the translation

makes sure that the operator composed of multiple words is handled as one single operator

symbol.
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-module(atom_operator).

f(A, B) -> shows(standard_io, ’added to’(A, B)).

’added to’ (A, B) -> A+ B.

shows (D, A) -> io:format(D, "~p~n", [A]).

Implementation. Essentially, in the transformation process, infix expressions com-

posed with user-defined operators are turned into function calls, and the operator names

are put in quotes in order to turn them into legal atom literals.

You can see that this way we can embed simple domain specific languages, which

in turn can rely on the well-known features of Erlang. On the other hand, note that

since Erlang is dynamically typed, the embedded language will be dynamically typed

as well, unless one implements domain specific concepts and their constraints on the

transformation level rather than as special operators. For more details on how we

implemented a work-flow DSL with special operators in Erlang, we refer to our paper [39].

5.4 Implementing code migration in Erlang

The real strength of using the refactoring framework for implementing translations shows

off when dealing with a concept like portable functions (code migration). This requires

the transformation to be aware of semantic dependencies among functions, variables and

type declarations.

In Erlang, functions are first-class objects, can be stored in variables, can be arguments

or return values of other, higher-order functions. Anonymous functions can be defined

inside normal functions, and therefore create closures by referring to names bound in

their function context. Function closures in Erlang behave similarly to those in most

mainstream programming languages: the lexical variable scope along with a reference to

the function code gives the denotation of the closure.

Function closures provide a simple solution to passing code or computation around

in the program, while the free variables of the closure are taken from the location where

the closure has been created. One can even send a function closure over the network by

using standard Erlang message passing, without any errors or warnings. However, on the

receiving node of the network, the function reference stored in the closure object is very

probably invalid and causes a run-time exception. Practically, function closures cannot

be sent between nodes of the network in Erlang. On the other hand, code migration is an

essential feature of distributed computing.

Example 5.4.1 (Sending a standard closure to another network node). The following

example outlines the limitations of standard closures in Erlang. We cannot send functions

over the network from one node to another, because function references on one node are

not likely to be valid on other nodes.
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-module(sender). % running on node 1

main() -> receiver ! fun() -> "computations" end. % sending a closure

main() -> remote_receiver ! fun() -> "computations" end.

When the function is sent from one process to another process running at the same node,

no error or exception happens, because processes at a node share the same function

reference table.

-module(receiver). % running on node 1

main() -> receive F -> F() end. % "computations"

However, if the receiver process is at a remote node (say, node 2), the application of the

function reference results in an error, as the reference is invalid at the remote node.

-module(remote_receiver). % running on node 2

main() -> receive F -> F() end. % causes run-time error

Example 5.4.2 (Dependencies). Function closures may refer to variables, functions,

types etc. When sending them over the network as data, we need to make sure that all

the dependencies are handled properly and will be available at the receiving side. What

are the dependencies we need to track?

f(X) ->

Y = g(X),

F = fun!(X) -> h(X)*Y end,

self() ! F,

receive

Fun -> io:format("~p", [!Fun(X)])

end.

Even in this simple example the transformation should discover that the function F

depends on function h (which may in turn depend on other functions that should be

ported as well), and also that the variable Y is freely occurring in the body and thus

requires special care. On the other hand, X is a variable of the closure itself, it does not

belong to the context to be ported.

5.4.1 The portable closure semantics

In order to make function closures portable, we need to implement a closure semantics

that encapsulates the code of the function, not only a node-local reference to it, along with

all the dependencies of the function. We can do this in compilation-time, by constructing

the function closure by taking its syntax tree and coupling it with the well-defined context.

In this setting, context has to be carefully considered, because if the function closure

to be sent refers to other functions or types that are not available at the receiving side,

those have to be regarded as part of the context and sent along.
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Creating a closure

The denotation in our closure semantics is a complex data type that consist of the code

of a module (rather than a single function), the name of the module, and the variable

context of the closure. The module contains the code of the closure, as well as the code

of all its dependencies. The module name is determined by the hash of its code.

Suppose that we have the following closure definition:

fun!(Z) -> X = 1, other_func(X, Y, Z) end

We can create a closure denotation from this, which will define an entire module that can

be loaded to other Erlang run-time systems. The synthesised module can be sent over

the network in binary as a byte-code, or as a bare abstract syntax tree.

The above closure would be mapped to the following tuple when using parsing to

abstract syntax tree as serialisation. As it is apparent, the main function to be called

in the synthesised module is ported_fun, and it inherited the original arguments of the

closure. The variable X was defined in the closure, so it is not ported, variable Y on the

other hand was a free variable, therefore, it is encoded in the closure semantics.

{"-module(’86431211’).

ported_fun(Y) -> fun(Z) -> X = 1, other_func(X, Y, Z) end.

other_func(X, Y, Z) -> ...

",

[Y], ’86431211’}

Using binary encoding, we would pre-compile the synthesised module and send it as

bytecode over the network. The rest of the tuple is not affected.

{binary:encode_unsigned(

20317596335189431643381106338993842114797618779509410959 [...]),

[Y], ’86431211’}

Note that the unsigned number in the last line represents an arbitrarily large binary

string, which is the compiled form of the above source code. The advantage of sending

the binary format is obtaining a kind of obfuscation for the ported code; the disadvantage

is that the run-time system at the receiving side has to use the same set of operation

codes as the sender.

Applying a closure

Closures denoted with the above data type should be able to be executed, therefore we

need to tailor the semantics of closure calls as well. We need to extract the module from

the denotation, compile (if necessary) and load it into the runtime system, and then call

the main function (ported_fun) in them. Loading code into the running Erlang system is

straightforward thanks to the hot code loading capabilities of the runtime system.
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Let us consider the following closure call.

PortedFun(2)

Supposing that PortedFun contains the closure defined above in the binary format, we

would apply it with the following snippet:

( begin

{Binary, Context, ModuleName} = PortedFun,

case code:is_loaded(ModuleName) of

false -> code:load_binary(ModuleName, ModuleName, Binary);
_ -> ok

end,

erlang:apply(ModuleName, ported_fun, Context)

end )(2)

The closure is divided first into the code, context and module name fragments. The code

is loaded into the system, and then the main function is called in the ported module with

the original context. This call results a function that mimics the original closure, and can

be called with the actual parameters on the receiving side. (In the implementation, this

entire task is hidden behind a dedicated de-serialisation function.)

Context dependencies

In order to make sure that the closure shows the very same behaviour everywhere it is

called, we execute a thorough binding analysis and collect the dependencies of the closure

based upon. This includes variable (value) dependencies, function (code) dependencies

and type dependencies.

This is where the refactoring system takes action: this part of the translation is imple-

mented as a semantic graph transformation that can rely on static semantic properties

uncovered by the analysis engine. The implementation of the transformation does not

have to perform binding analysis manually, it only queries the necessary context-sensitive

information.

Variable dependencies. The program model maintained in the refactoring system

allows us to make the following queries: which are the variables visible in the body of the

closure, which of those are bound in its argument list, and which variables come from

the context of the closure.

Example 5.4.3. Analysing the following closure, the refactoring system can tell that

variables X , Y and Z are all visible and used in the closure body, yet only Y is free in

the closure Ð this is the variable whose value will be ported as part of the context.

fun!(Z) -> X = f(), X+Y+Z end
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Function dependencies. There is a fine-grained function analysis in the refactoring

system, which connects all function references in the syntax to the semantic function ob-

ject they refer to. This involves connecting function definition sites to function reference

sites, which simplifies function dependency lookup.

Example 5.4.4. Analysing the following closure, the refactoring system can tell that the

closure depends on functions f and g, and also the map function in the lists module. This

latter, on the other hand, is not identified as a dependency to be ported, because it is part

of the standard library in Erlang.

fun!(L) -> g(lists:map(fun f/1, L)) end

The system is even aware of dynamic function calls, which can only be tracked down

by using data-flow analysis combined with function name analysis.

Example 5.4.5. Analysing the following closure, the refactoring system can tell that

the closure depends on the function called foo, even though its name is determined in

the context. Similar, some even more sophisticated dynamic calls and their analysis are

addressed in one of our papers [32].

foo() -> ...

f() -> F = foo, fun!() -> F() end.

Type dependencies. There are type declarations and record definitions in Erlang,

which have to be handled as dependencies, too. The translation is prepared to find the

type dependencies and copy them to the synthesised module.

Example 5.4.6. Analysing the following closure, the refactoring system can tell that the

closure depends on the record type point.

-record(point, {x,y}).

f() -> fun!() -> #point{x=1,y=1} end.

As a result of exploiting the static semantic information extracted and stored in the

refactoring framework, we could fairly easily implement a new, portable, dependency-

aware closure semantics in Erlang. The translation-based solution is not as efficient as

native implementations could be, but this was the first and is still the most advanced

answer to the question of (weak) code mobility in Erlang.
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5.5 Summary

This chapter demonstrated the applicability of a refactoring framework for easy proto-

typing of language extensions via employing translation semantics. Since the refactoring

system implements very similar functionality and components that of a compiler, it is

easily turned into a pre-compiler for an extended language. Building on this idea, we

designed translation for two new language elements in Erlang: user-defined operator

symbols and portable function closures. The former required an expression re-parsing

technique, while the latter was realised by defining a new closure semantics for Erlang

anonymous functions. Worth mentioning that I gave the first implementation of code

migration in Erlang with my method, which is not the best implementation, but it is

lightweight and very effective in terms of dependencies it can handle.

Thesis 3. I have developed the first implementation of custom operators and code migration

in Erlang by employing an Erlang refactoring system as a precompiler for the extended

version of the language. Added language features are given a translation semantics to pure

Erlang by means of refactoring-like program transformations.

Future work

The main limitations I can identify regarding this chapter are related to the second

case study, implementation of code migration. It is apparent that the łpack everything

togetherž approach is not efficient in terms of space and time, there should be a protocol

designed that can be used by the Erlang nodes to negotiate on what dependencies are

available on the receiving side. Only those entities (functions, types) should be sent over

the network that are not available at the other node (or are of different version), and once

transferred, they should not be shared again. This would improve the performance of the

solution a lot.

Potential future work of these results is adding more and more language extensions.

The Erlang Enhancement Proposal list is growing and growing year by year, and it would

be interesting to provide lightweight prototypes for testing whether the proposals make

sense and shall be included in the official language. In the future, I will probably seek

students to implement extensions in the system.
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Summary

The dissertation discussed methods for static and dynamic verification of refactoring, as

well as semantics-driven pre-compilation via program transformations.

Testing, especially property-based testing, provides a widely adaptable verification

technique, supposed that the input domain can be defined by data generators and the

correctness property can effectively be checked. I presented a method that allows for

synthesising data generators from formal grammars expressed in a concise notation, and

I managed to verify Erlang refactoring steps by formalising a subset of Erlang in this

notation and synthesising a generator from it. The method is generalisable, any other

software with a structured input domain can be subject to L-attribute grammar-based

property-based testing.

While testing is a powerful verification technique and can practically be applied to

check systems of different complexities, it cannot prove the absence of errors. Only formal

verification can prove a refactoring correct, therefore I investigated this verification

option, too. I designed a domain specific formalism in which I can specify program

transformations in an executable and formally verifiable way. The so-called refactoring

language is based on a restricted variant of context-sensitive, strategic term rewriting and

the idea of pre-verified transformation schemes. In this language, I specified a number

of well-known and useful refactoring steps for Erlang. It is to be carefully investigated

what the limits of the expressiveness of this language are.

As a side-effect of the excessive amounts of work with static analysis and program

transformation, I also happened to look at special applications of transformations and

refactoring. In particular, I tailored the refactoring system to function as a semantics-based

pre-compiler for an extended version of Erlang, and I used this method to implement

user-defined operators and portable closure semantics. This latter added a very important

and powerful feature to the language, enabling code migration among Erlang nodes.

The work presented in this document advances how program transformations are

specified, verified and applied for different purposes. I sincerely hope that my results will

influence how refactoring transformations are understood and specified in the future.
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Abstract

Program transformations and refactorings are essential elements in software development.

From the early days of refactoring, tool support has emerged to provide effortless and

trustworthy assistance for quality-improvement, behaviour-preserving transformations of

programs. Both academia and industry have great interest in researching and developing

static analysis based bug detection and trustworthy behaviour-preserving transformations.

Although refactoring tools are getting better day by day, there is room for improvement

both in terms of accuracy and reliability.

This dissertation investigates definition and verification methods for program trans-

formations, which can help us build more extensible, more trustworthy and widely

applied transformations systems. To advance dynamic verification techniques, a novel

notation for L-attribute grammars is introduced, and is given a meaning in terms of

data generator functions, which can be used in various ways in property-based testing.

The document presents a case study, a grammar for Erlang, and its use in testing an

Erlang analysis and transformation system. To address static, formal verification of

transformations, a refactoring programming language is proposed as the specification

formalism for executable and semi-automatically verifiable refactoring definitions. The

language is based on context-sensitive conditional term rewriting, strategy programming

and refactoring schemes. Last but not least, as a special application of graph rewriting

and tool-assisted program transformation, the dissertation discusses implementation of

language pre-compilers in refactoring systems. With this method, a portable closure

semantics was added to the Erlang programming language, enabling code migration.



Kivonat

A programtranszformáció és a refaktorálás alapvető elemei a szoftverfejlesztési folya-

matnak. A refaktorálást a kezdetektől próbálják szoftvereszközökkel támogatni, amelyek

megbízhatóan és hatékonyan valósítják meg a szoftverminőséget javító, a működést nem

érintő programtranszformációkat. A statikus elemzésre alapuló hibakeresés és a refak-

torálási transzformációk az akadémiában és a kutatás-fejlesztésben is nagy érdeklődésre

tartanak számot, ám még ennél is fontosabb a szerepük a nagy bonyolultságú szoftvereket

készítő vállalatoknál. Egyre pontosabbak és megbízhatóbbak a szoftverfejlesztést támo-

gató eszközök, de bőven van még min javítani.

A disszertáció olyan definíciós és verifikációs módszereket tárgyal, amelyekkel meg-

bízhatóbb és szélesebb körben használt programtranszformációs eszközöket tudunk

készíteni. A dolgozat a statikus és a dinamikus verifikációt is érinti. Elsőként egy újszerű,

tömör leíró nyelvet mutat be L-attribútum grammatikákhoz, amelyet tulajdonságalapú

teszteléshez használt véletlenszerű adatgenerátorra képezünk le. Ehhez egy esettanul-

mány társul, amely az Erlang programozási nyelv grammatikáját, majd a teszteléshez

való felhasználását mutatja be. A tesztelés mellett a formális helyességbizonyítás kérdését

is vizsgáljuk, ehhez bevezetünk egy refaktorálások leírására szolgáló nyelvet, amely-

ben végrehajtható és automatikusan bizonyítható specifikációkat tudunk megadni. A

nyelv környezetfüggő és feltételes termátíráson, stratégiákon és úgynevezett refaktorálási

sémákon alapszik. Végül, de nem utolsósorban a programtranszformációk egy speciális

alkalmazása kerül bemutatásra, amikor egy refaktoráló keretrendszert előfordítóként

használunk a feldolgozott programozási nyelv kiterjesztésére. Utóbbi módszerrel könnyen

implementálható az Erlang nyelvben a kódmigráció.
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