
fakultät
statistik

Multi-objective Analysis of Machine Learning Algorithms

Using Model-based Optimization Techniques

Dissertation

by

M.Sc. Data Science

DANIEL HORN

in partial fulfillment of

the requirements for the degree of

Doktor der Naturwissenschaften

Submitted: Dortmund, January 2019

Primary referee: Prof. Dr. Claus Weihs

Secondary referee: JProf. Dr. Andreas Groll

Commission chairperson: Prof. Dr. Jörg Rahnenführer

Assessor: Dr. Michel Lang

Day of the oral examination: 20th February 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/188581311?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Preambel

This dissertation summarizes my work during the last five years, from October 2013 to December

2018 and covers all of my publications originating from this period. Since it is cumulative, only

brief summaries of the contributed articles are given. Exhaustive results are mostly omitted and

the original articles are referred instead. This text arranges the publications into the big picture

and gives introductions to their respective research fields, starting from the absolute basics. For

more in-depth details I recommend to read the respective articles themselves. Apart from the

introduction and the conclusion, each chapter of this work concludes with a section on the con-

tributed material. After a simple enumeration of the contributed papers and software libraries, a

short description on how they arose follows.

Since this dissertation covers the fields of optimization, machine learning and algorithm se-

lection, it was not possible to use a consistent notation throughout all chapters. Notation is only

locally valid and can change when advancing to another research field. However, I tried to use

some letters consistently during the entire work. X always corresponds to an influential parame-

ter, while Y corresponds to a target variable and f to the functional connection between X and Y .

Variations of these are used to describe the observations and parameter spaces. Table 1 gives an

overview to this notation and can be used as an look-up table.

This work would not have been possible without the help of many people. At first, I want to

thank Prof. Claus Weihs. I still remember this afternoon in January in 2013. I was about to start

working on my master thesis and just made up my mind that I would like to stay at the university

afterwards as an Ph.D. student. After his lecture in the course classification methods, I told him

X (i) i-th influential parameter Y/Y (i) (i-th) target variable

X parameter space Y objective space

X (i) space of the i-th parameter Y (i) space of the i-th objective

xxx observation vector y/yyy corresponding target value(s)

xxx j optional numbering of xxx y j/yyy j optional numbering of y/yyy

x(i) observation of the i-th parameter y(i) observation of the i-th objective

f : X → Y functional relation of the X (i) and Y f̂ estimator / model for f

Table 1: Notation used consistently through the entire work.
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ii PREAMBEL

about my decision and asked if I could start working at his chair. He just answered with the

counterquestion: "Okay, when would you like to start?", and afterwards I was employed. Claus

Weihs had trust in my competence and gave me the opportunity to follow my own ideas from the

first day on. I am very grateful for this.

At second, I want to thank Bernd Bischl. Although Claus Weihs is the official supervisor of

my dissertation, Bernd surely was my mentor, at least during its first years. Most of the things I

have learned during the last year of my master’s degree and in the first years of my graduation, I

have learned from or because of Bernd. Since he left to Munich halfway through my graduation, it

was complicated to continue the good collaboration in the subsequent years. Nevertheless, without

Bernd many of the contributed work would not have been possible.

Moreover, I have to thank all remaining co-authors of my contributed publications. Tobias

Wagner, especially for introducing me to many people in the multi-objective optimization com-

munity. Aydın Demircioğlu and Tobias Glasmacher for their support in the project SVMs for large

data sets. Jakob Richter, Jakob Bossek, Janek Thomas and Michel Lang as the remaining members

of the ������ team. Martin Zaefferer for his work on hierarchical Kriging kernel, who had a hard

time remotivating me after some first frustrating results. My student workers Karin Schork and

Rosa Pink, who supported me in many ways. Swetlana Herbrandt and Nadja Bauer, as well as the

remaining members of the chair for computational statistics, for all the informative discussions

during the last five years. Andreas Groll, for agreeing to co-review this dissertation.

A special thank has to go to Rosa Pink, once again, for proof reading this text. I cannot count

the hours we spend on discussing single sentences, even words, until this work was finally finished.

Additional thanks go to Claus Weihs, Andreas Groll, Michael Kirchhoff, Jennifer Neuhaus-Stern,

Marie-Louise Vosteen and Steffen Maletz for finding many mistakes and giving helpful comments.

And, at last, my biggest thank has to go to TU Dortmund university’s faculty of statistics and

all the countless students and colleagues I met during the last ten years. You made this place a

home and yourselves a family for me.



Contents

1 Introduction 1

2 Optimization 3
2.1 Example: Support Vector Machines 5

2.2 Sequential model-based optimization 7

2.3 Multi-objective optimization 10

2.4 Contributed publications 12

3 Hyperparameter Tuning 15
3.1 The machine learning process 16

3.2 Example: Hyperparameter tuning of an SVM 18

3.3 Tuning in mixed and hierarchical parameter spaces 21

3.4 Tuning as a Stochastic Optimization Problem 24

3.5 Contributed publications 25

4 Multi-objective selection of algorithm portfolios 27
4.1 Example: Comparing different SVM solvers for large data sets 28

4.2 Selection of portfolios for single data sets 31

4.3 Validating MOSAP rules 32

4.4 Analyzing multiple data sets 34

4.5 Contributed publications 38

5 Conclusion and Future Work 39

Literature 41

iii



List of abbreviations

BFGS Optimization algorithm named after its authors initials

BVM Ball Vector Machine, an approximative SVM solver

CMA-ES Covariance Matrix Adaption Evolutionary Strategy

CVM Core Vector Machine, an approximative SVM solver

DoE Design of Experiments

EGO Efficient Global Optimization algorithm, the first SMBO algorithm

EI Expected Improvement, an infill criterion for SMBO

ES Evolutionary Strategy, an optimization strategy

HV Hypervolume, a multi-objective performance indicator

LASVM An approximative SVM solver

LCB Lower Confidence Bound, an infill criterion for SMBO

LHS Latin Hypercube Sampling, a special DoE technique

LLSVM Low-rank Linearized SVM, an approximative SVM solver

MBMO Model-Based Multi-objective Optimization

MMCE Mean Missclassification Error, a performance measure for classification

MOES Multi-Objective Evolutionary Strategy

MOP Multi-objective Optimization Problem

MSE Mean Squared Error, a performance measure for regression

NFL No Free Lunch theorem

OP Optimization Problem

ParEGO Pareto EGO, an MBMO strategy

RF Random Forest, a machine learning method

RS Random Search, the simplest optimization algorithm

SMBO Sequential Model-Based Optimization, an optimization strategy

SMO Sequential Minimal Optimization, the exact SVM solver

SMS-EGO S-Metrix Selection EGO, an MBMO strategy

SVM Support Vector Machine, a machine learning method

SVMperf An approximative SVM solver
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Chapter 1

Introduction

Data is the sword of the 21st century, those who wield it the samurai.

– Jonathan Rosenberg, former Senior Vice President of Products at Google

This and many other quotes can be heard these days when talking about data and data science.

Data is called the oil or even the soil of the 21st century, data science the sexiest job. Many com-

panies have distinct data science departments and some companies like Google or Facebook make

billions of dollars every year, mainly based on their ability to process large datasets. Nowadays,

to collect, analyze and learn from large amounts of data is both a challenge and an opportunity.

At the same time, data science has a relatively young history. The term itself goes back around

forty years and has started to be more frequently used in the last decade. Study courses on data

science aren’t sprouting more than two or three years ago. However, data has been collected for

much longer. The Romans and even earlier cultures performed population censuses and mea-

sured other related information, the probably most popular data collection is even mentioned in

the Christmas story. Although it has not been called data science, data has been analyzed ever

since. At the beginning of the 20th century, the term statistic arose for this scientific field and its

mathematical foundations were laid. Data, however, was scarce, and statistic is often focused on

making the best out of only a few observations. Today, in the age of the world wide web with

companies like Google and Facebook, data is produced at a rapid pace. Ten years ago, in 2008,

Google alone processed estimated 20 peta bytes of data per day.1 Hence, data science often suffers

from an abundance of available data, rendering most classic statistical methods inappropriate or

even inapplicable. Nevertheless, both fields rely on the same foundation: on data.

Most data sets consist of two types of variables. First, there is a set called target variables,

here denoted with Y . These are the variables one wants to gain new knowledge about. Examples

are the quality of a product, the risk of an accident happening or the (monetary) profit. Often, only

a single target variable is considered, however, in some situations it is necessary to investigate

multiple ones. Second, there is a set called the independent variables, here denoted with X . These

1������������	
���
�		������������������������������������������������, 09/18/2018
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2 INTRODUCTION

variables can be any other property of the unit of observation, as for example the height and the

sex of a person, or some diagnostic measures of a workpiece. Moreover, X variables are assumed

to have an influence on the Y variables: If the value of an X variable is changed, it is expected that

also the value of the target variables changes, i.e. some kind of relationship X → Y is assumed.

Although data science and statistics are all about data, it is neither the X nor the Y variables

one is mostly interested in. Instead, it is the arrow in-between those variables: To understand the

relationship between the dependent and the target variables. Typical questions are:

• Interpretation: If a certain X variable is changed, how will it affect the Y variables?

• Prediction: Given values of the X variables, what values will the Y variables take?

• Optimization: Which values of the X variables will result in optimal values of the Y variables?

Finding good answers to these questions often requires a deep understanding of both, the X and

the Y variables, as well as of the underlying data generating process.

Most times, these questions demand an important intermediate step: To find a good model

describing the relationship between X and Y , also known as model selection. Here, not only an

adequate model class has to be found, but also its hyperparameters have to be set. Hence, finding

a good model is not only an intermediate step in most data analyses, it is also a data analysis itself,

where the target variable is defined as the quality of the model and the dependent variables are the

choice of the model class and its subsequent hyperparameters. Many data science problems imply

solving this internal optimization problem, the optimization of the model quality. Therefore, the

main focus of this work lays on optimization. It is organized as follows:

The second chapter gives an introduction into the topic of optimization. At first, an overview

over different disciplines within the topic is given and the training of a support vector machine is

presented as an exemplary task. Afterwards, the sequential model-based optimization approach

for expensive problems and its extensions for multi-objective optimization problems are presented.

The third chapter focuses on hyperparameter tuning as a special optimization problem. At first,

an introduction to machine learning and the general machine learning scheme is given. Again, the

SVM is used as an example, here for tuning its hyperparameters, both in a single- and a multi-

objective setting. Tuning as an optimization problem can have difficult properties. It can be both

expensive and stochastic, and the parameter space can include mixed and hierarchical parameters.

The chapter continues with adapting sequential model-based optimization for these properties.

The fourth chapter discusses algorithm selection. This special data science task deals with the

choice of the best algorithm for solving a given problem. Here, Y is the available algorithm, while

X variables include performances of the algorithms on various problems. This work addresses

a multi-objective context. In contrast to the single-objective case, here not only a single but a

whole set of optimal algorithms has to be selected with respect to multiple contradicting perfor-

mance measures. Once again, the SVM is used as an application: Approximate SVM solvers are

compared with respect to the objectives training time and missclassification error.



Chapter 2

Optimization

Optimization problems (OPs) occur in many – if not all – practical data analyses. In technical

processes it may be the quality of the produced objects, in biometrics the efficacy of a drug, or

model qualities in general statistic applications. No matter how diverse these situations are in their

details, they do not differ in their main components. All of them feature some kind of process,

which is controlled by several parameters. Given a parameter setting, i.e. a specific value for each

parameter, the process can be executed and some sort of performance value is returned. The goal is

to find parameter settings that result in best performances. This procedure is called optimization,

the best setting, corresponding to an optimal performance, is called the optimum.

Mathematically, the underlying process can be described by a function f : X → R, where

X = X (1)×X (2)× ...×X (d) denotes the set of all feasible parameter settings. For a specific

parameter setting xxx = [x(1),x(2), . . . , x(d)]T ∈ X , where x(i) ∈ X (i) is the value of parameter X (i),

the associated fitness value is denoted by f (xxx). Since maximizing f is equivalent to minimizing

− f , only minimization problems are considered here. The (global) minimum of f is defined as

the set of all solutions fulfilling

min
xxx∈X

f (xxx) := {xxx ∈ X |� x̃̃x̃x ∈ X : f (x̃̃x̃x)< f (xxx)}.

The class of all OPs contains an incredible amount of rather distinct problems. Therefore, the

existence of a global optimization strategy, working quite well for every OP, is pretty unlikely. An

algorithm that performs reasonably well for many OPs is the most simple one: random search.

Random search (RS) iteratively draws uniformly distributed settings from X and evaluates them

with f until some kind of termination criterion is reached, usually a predefined budget. Finally the

setting with minimal target value is considered as the optimum.

It has actually been proven by Wolpert and Macready (1997) that all optimization algorithms

have the same expected performance as random search if the OP is chosen uniformly from all

possible OPs. This behavior is known as the no free lunch theorem (NFL). However, it is a merely

theoretic result and, in practice, algorithms do perform better than RS. Random search’s most

important advantage is also a huge disadvantage: It incorporates (almost) no application specific

knowledge. Hence, if meta-information about a specific subclass of OPs is available, a reasonable

3



4 OPTIMIZATION

algorithm using this information should give better results than RS. This is not in contradiction

with the NFL, since now the OP is not chosen from a uniform distribution of all possible OPs, but

comes from a smaller subclass.

One example is the subclass of purely continuous OPs. In this subclass, the parameter space

X (i) of each parameter X (i) is given by an interval
[
x(i)le f t ; x(i)right

]
. If it can also be assumed that f

is convex and if the analytical form of its derivative is known, Quasi-Newton algorithms and espe-

cially the BFGS method (simultaneously published by Broyden, Fletcher, Goldfarb and Shanno in

1970) have shown to be very effective.1 Another example is the pure discrete setting. Here, each

parameter Xi can only take a finite number of different values. If the cardinality of X is small

enough, every parameter setting can be evaluated with f and, consequently, the global optimum

of f will be found.

In both examples, X is described by so-called box-constraints and no further restrictions

are given. Such OPs are called unconstrained. Though, in many practical applications further

restrictions on X do exist. For example, X can be confined by constraint functions g and h.

A setting xxx is only feasible if both g(xxx) ≥ 0 and h(xxx) = 0 hold. In section 2.1 an exemplary

constraint OP is presented. As a second example, hierarchical parameter structures can exist. A

hierarchical parameter X (i) is only active (i.e., has an influence on f ) if other parameters fulfill

certain conditions. Instances of such OPs are given in chapter 3. Further restrictions on X may

be possible, but are not investigated here.

In the first example subclass, some major information on the structure of f is given: f is

convex. However, in many practical OPs the structure of f is mostly unknown, aside from the pa-

rameter space X . This class of OPs is referred to as blackbox OPs. It can be further distinguished

between pure continuous settings, where all parameters are continuous, and mixed settings, where

both continuous and discrete parameter do exist. Both, continuous and mixed blackbox OPs are

addressed later in this work.

State-of-the-art approaches for solving continuous blackbox OPs include evolutionary strate-

gies2 (ESs). Especially the Covariance Matrix Adaption ES (CMA-ES) by Hansen et al. (2003)

shows on-top performances in many ongoing benchmarks, for example in the blackbox optimiza-

tion benchmarks by Hansen et al. (2016). However, ESs require (hundreds of) thousands of func-

tion evaluations until they converge towards the global optimum. This is infeasible for many

applications due to possible high costs of single evaluations. Here, the term cost mostly refers to

the time a single evaluation takes, but can also be interpreted in other application dependent ways

as its monetary costs. Such OPs are referred to as expensive OPs.

In recent years, a class of algorithms for solving expensive OPs has been developed. Based

on the efficient global optimization (EGO) procedure by Jones et al. (1998), their main idea is

1See, e.g., Weihs et al. (2013) for an introduction to Quasi-Newton methods.

2See, e.g., Yu and Gen (2015) for an introduction to evolutionary strategies.



EXAMPLE: SUPPORT VECTOR MACHINES 5

to replace f by an inexpensive surrogate function f̂ . In order to estimate f̂ , some evaluations

have to be performed with f itself. These so called sequential model-based optimization (SMBO)

approaches iterate between evaluating f and optimizing f̂ . Parts of this work are focused on

extending the general SMBO approach for some special applications.

This chapter continues by introducing the training of support vector machines (SVMs) as a

specific class of OPs as well as a dedicated specialized optimization algorithm. Subsequently, the

SMBO approach is explained in its details. For some OPs, not only a single but multiple objectives

have to be optimized mutually. These multi-objective OPs are introduced in the last section, along

with related extensions for the SMBO procedure.

2.1 Example: Support Vector Machines

The Support Vector Machine (SVM) (Cortes and Vapnik, 1995) is a binary classification method.

For n observations (xxxT
1 , ...,xxx

T
n )

T of d continuous parameters and a binary label yi ∈ Y =: {−1,1}
for each observation, the SVM estimates the true, unknown relationship f : X → Y . In its most

simple form, the so-called linear hard-margin SVM assumes linearly separable classes. Thus, f is

modeled by

f̂ (xxx) = sign(βββ Txxx−β0),

with βββ ∈ Rd and β0 ∈ R such that yi · (βββ Txxxi − β0) ≥ 1 holds for all observations and βββ Txxxi −β0

equals −1 and +1 for at least one observation. The line βββ Txxxi−β0 = 0 is called decision boundary.

Since there is an infinite amount of feasible vectors (β0,βββ ), the SVM uses an additional optimality

criterion: the size of the so-called margin. It is defined as the distance between the two hyperplanes

βββ Txxx−β0 =±1. As known from linear algebra, this distance is given by 2
||βββ ||2 , whose maximization

is equivalent to the easier minimization of 1
2
||βββ ||22. Hence, training a linear hard-margin SVM

means solving the optimization problem

min
β∈Rd

1

2
||βββ ||22

subject to yi · (βββ Txxxi −β0)≥ 1 ∀i = 1, ...,n.

The assumption of linear separable classes is rather unrealistic. Therefore, the soft-margin

SVM allows some observations xxxi to lie inside the margin, i.e. yi · (βββ Txxx−β0) ∈ [0;1), or even on

the wrong side of the decision boundary, i.e. yi · (βββ Txxx−β0) < 0. Figure 2.1 shows an exemplary

data situation, including five observations violating the margin. The former hard constraints are

softened by introducing so-called slack variables ξi and the OP is be extended to optimizing both

the size of the margin and the sum of the slack variables. A hyperparameter C is introduced to
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Figure 2.1 Example classification problem for classes -1 and 1. The solid line corresponds to the decision
boundary, the dashed lines visualize the margin.

control the trade-off between those two objectives, resulting in the optimization problem

min
β∈Rd

1

2
||βββ ||22 +C

n

∑
i=1

ξi

subject to yi(βββ Txxxi −β0)≥ 1−ξi ∀i = 1, ...,n.

The assumption of a linear decision boundary between the two classes is also quite naive. To

handle classification problems with non-linear decision boundaries, the SVM utilizes the so-called

kernel-trick: By applying a function Ψ the parameters are transformed into a higher-dimensional

feature space, in which the classes are more likely to be linearly separable. Finally, the OP of the

non-linear SVM can be formulated as

min
β∈Rd

1

2
||βββ ||22 +C

n

∑
i=1

ξi

subject to yi(βββ T Ψ(xxxi)−β0)≥ 1−ξi ∀i = 1, ...,n.

According to Bottou and Lin (2007), this so-called primal OP is a quadratic, convex OP and

can be solved with appropriate standard algorithms. However, some information on the structure

of the OP is available and should be utilized. At first, the Karush-Kuhn-Tucker conditions (Kuhn
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and Tucker, 1951) can be used to formulate the so-called dual OP

max
α∈Rn

n

∑
i=1

αi − 1

2

n

∑
i=1

n

∑
j=1

αiα jyiy jΨ(xxxi)
T Ψ(xxx j) (2.1)

subject to
n

∑
i=1

yiαi = 0 and 0 ≤ αi ≤C ∀ i ∈ {1, . . . ,n}.

This OP does no longer depend on the true coordinates Ψ(xxx) of the observations in the higher-

dimensional feature space, but only on the results of the scalar products Ψ(xxxi)
T Ψ(xxx j) =: k(xxxi,xxx j).

Hence, instead of defining and computing Ψ explicitly, it is implicitly given by the kernel func-

tion k that maps two observations xxx1 and xxx2 to a real number, the scalar product. In order to

define a proper kernel, k must be a proper inner product.3 In particular, the kernel matrix KKK with

KKKi, j := k(xxxi,xxx j) must be positive semi-definite. A kernel enjoying most popularity is the radial

basis function (RBF) kernel, defined by

k(RBF)(xxx1,xxx2) := exp

(
−||xxx1 −xxx2||2

2γ2

)
,

where γ is an additional kernel hyperparameter.

The dual OP is typically solved using the sequential minimal optimization (SMO) algorithm

by Platt (1998), among others it is implemented in the C�� library LIBSVM (Chang and Lin,

2011). SMO refers to the strategy of analytically solving minimally sized sub-problems that allow

for feasible update steps. Utilizing some additional performance enhancing techniques, the SMO

algorithm is able to solve equation (2.1) with high precision. However, its runtime scales up to

cubic with the data size (Bottou and Lin, 2007) and is therefore not suitable for large data sets.

This problem is further addressed in chapter 4. The choice of the hyperparamter C, the kernel and

its parameters is postponed to chapter 3.

2.2 Sequential model-based optimization

Sequential model-based optimization describes a class of algorithms developed for solving expen-

sive optimization problems. It is a modular framework and can thus be customized for a variety of

different tasks. Based on Bischl et al. (2017c), it consists of the following six main steps.

Step (1): Sample an initial design, containing ninit parameter settings xxx j ∈ X and evaluate it

with f to yield outcomes y j = f (xxx j), j = 1, . . . ,ninit. Set n = ninit.

Step (2): Fit a surrogate model f̂ to the current design respecting tuples (y j,xxx j) , j = 1, ...,n.

Step (3): Optimize an infill criterion to propose l new parameter settings xxxn+ j, j = 1, . . . , l.

Step (4): Evaluate the proposed settings and add tuples (yn+ j,xxxn+ j), j = 1, . . . , l to the design.

3See Young (1990) for an introduction to inner product spaces.
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Step (5): If the termination criterion is not fulfilled, set n = n+ l and proceed with step 2.

Step (6): If the termination criterion is met, return the best evaluated parameter setting.

This general description is also illustrated in Figure 2.2. It omits most details, since each step

can be instantiated in many different ways. Therefore, each step is explained more in-depth in the

next paragraphs. As it is the first representative of his kind, the original implementations of the

Efficient Global Optimization procedure by Jones et al. (1998) for continuous unconstrained OPs

are highlighted.

(1) Initial Design The initial design is the starting point of the SMBO procedure. It is sampled

from X , evaluated with f and used to fit the initial surrogate model. Any design of experiment

(DoE) technique can be used here, reaching from pure random sampling towards D-optimal de-

signs.4 However, most SMBO implementations rely on Latin hypercube sampling (LHS) as EGO

does (Stein, 1987).

Recent studies have shown that the choice of the DoE techniques does not have a significant

influence on the quality of the optimization result (Steponavičė et al., 2016). Even optimization

results using pure random sampling are indistinguishable from results with more advanced DoEs.

It just seems to be important for the initial design to completely cover X . If the design is too

small, the fit of the initial model may be poor, it may even be impossible to fit the model. If

the size of the initial design is too large, the remaining budget may be too small to sufficiently

optimize f . Common recommendations for ninit reach from 5d to 10d +1 parameter settings.

(2) The Surrogate model The surrogate model f̂ is refitted in each iteration and represents the

current state of knowledge about f . Since f̂ is cheap to evaluate, it can be extensively scanned in

order to find promising points for real evaluations with f . Every regression model class can be

used as the surrogate, including simple linear models, random forests or neuronal nets5. However,

using linear models as surrogates results in poor optimization performance (Weihs et al., 2017).

(1)

Create initial

Design

(2)

Fit surrogate

model

(5)

Termination?

(6)

Return

best setting

(3)

Propose new

setting(s)

(4)

Update Design

yesno

Figure 2.2: Sketch of the SMBO approach.

4See e.g. Montgomery (2006) for an introduction to design of experiments.

5See, e.g. Hastie et al. (2009) for an overview on regression model classes.
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Common model class choices for f̂ are Gaussian processes (and, especially, Kriging models) as in

EGO or radial basis functions (Powell, 1992).

The choice of the model class (and its hyperparameters) is not easy, since typically no a-priori

knowledge on the structure of f is available. Therefore, modern approaches include a model

selection step. Here, multiple models from different classes (possibly including hyperparameter

tunings) are fitted in each iteration and the best model is chosen. Bagheri et al. (2016) include

a model selection step into an SMBO approach for solving constraint OPs. However, model

selection can be time consuming, and, in extreme cases, more expensive than evaluating f itself.

(3a) Infill criterion The infill criterion is defined on the output of the surrogate model. It mea-

sures the potential of parameter settings for evaluation with f itself, balancing exploitation and

exploration. This is usually achieved by combining posterior mean μ(xxx) and posterior standard

deviation s(xxx) in a well-balanced single formula. Both μ(xxx) and s(xxx) are estimated by f̂ . Assum-

ing that f̂ is somewhat spatial in the sense that higher values of s(xxx) indicate regions of the search

space where no design points have been evaluated yet and / or the structure of f has not been well

learned, parameter settings with low μ(xxx) and high s(xxx) are most promising.

Arguably the most popular choice is the expected improvement EI(xxx) = E(I(xxx)), where the

random variable I(xxx) = max(ymin − μ(xxx),0) defines the potential improvement for a parameter

setting xxx over the currently best observed function value ymin. It was originally published by

Mockus et al. (1978), its first uses in the context of SMBO go back to the EGO procedure (Jones

et al., 1998). If μ(xxx) follows a normal distribution, as it does in the case of Kriging as the surrogate

model, EI(xxx) can be expressed analytically in closed form as

EI(xxx) = (ymin −μ(xxx))Φ
(

ymin −μ(xxx)
s(xxx)

)
+ s(xxx)φ

(
ymin −μ(xxx)

s(xxx)

)
,

where Φ and φ are the probability and density function of the standard normal distribution, re-

spectively. A simpler approach to balance μ(xxx) and s(xxx) is given by the lower confidence bound

LCB(xxx,λ ) = μ(xxx)−λ · s(xxx),

where λ > 0 is a constant that controls the exploration versus exploitation trade-off. Weihs et al.

(2017) show, that EI and LCB reach comparable optimization results .

(3b) Optimization of the infill criterion New parameter settings are proposed by optimizing the

chosen infill criterion over X . A single evaluation of the infill criterion is cheap, since it is based

on cheap predictions with the surrogate model. Hence, a large number of different parameter

settings can be investigated in order to find the most promising one. Since the infill optimization

is just an intermediate step in the SMBO procedure, finding a quite good instead of the most

promising parameter setting is sufficient. Therefore, any blackbox optimizer can be used here and
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its choice should not have a significant impact on the global optimization result. Typical choices

are ESs or branch-and-bound algorithms (Land and Doig, 1960) as in the original EGO procedure.

Contrary to proposing the single best parameter setting found through infill optimization, mod-

ern approaches try to find l > 1 settings per iteration. This is usually achieved by adapting the infill

optimization step, Bischl et al. (2014) for example use an multi-objective infill optimization in-

stead. Another option is to optimize l infill criteria in parallel and to propose each optimal point.

(4) Update In this intermediate step, the proposed points are evaluated with f . If more than

one point is proposed (l > 1), these evaluations should be made simultaneously in order to de-

crease evaluation time. Especially in computer simulation, the usage of multiple CPUs for parallel

evaluations can speed up optimization by an idealized factor up to the number of used CPUs.

Afterwards the evaluated tuples are added to the current design.

(5) Termination SMBO implementations typically terminate when a given budget on time or

number of function evaluations is exceeded. This behavior is poor, since no convergence guarantee

can be given. Both early-stopping (the global optimum is not yet reached) and late-stopping (the

global optimum was reached some iterations before) can occur. However, SMBO is motivated

by practical applications that have prescribed budgets. If these budgets are exceeded, it is often

not possible to continue the optimization, even in the case of early-stopping. Still, early-stopping

should at least be detected and reported, and late-stopping is an issue that should be addressed.

Finding useful termination criteria that prevent both early and late stopping is still a research

question, some ideas have been published by Huang et al. (2006) and Weihs et al. (2017).

(6) Return Finally, an optimization result has to be returned. Typically, this is the parameter

setting with the lowest observed function value. There are some other options available, such as

fitting a final model and returning the best predicted setting, but they are not used frequently.

2.3 Multi-objective optimization

In some situations it is not sufficient to optimize a single objective. Examples may be technical

processes, where not only quality, but also monetary costs have to be examined. In case of the

soft-margin SVM, the size of the margin and the sum of the slack variables have to be considered.

Instead of optimizing them simultaneously, the SVM reduces this biobjective OP into a single-

objective one by summation of the objectives and introduces a hyperparameter C to balance them.

OPs like these with multiple objective functions ( f1, ..., fm) =: fff , fff : X → Rm, are called

multi-objective OPs (MOPs). In general, the objectives are contradicting, and best achievable

trade-offs are sought. Hence, in contrast to single-objective OPs, the optimum of a MOP is a set

containing all parameter settings with optimal trade-offs.

A parameter setting xxx ∈ X is said to be better as (also called to dominate) a setting xxx′ ∈ X if
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xxx is at least as good as xxx′ in all objectives and strictly better in at least one objective:

xxx ≺ xxx′ ⇔∀i ∈ {1, ...,m} : fi(xxx)≤ fi(xxx′)

∧∃ ∈ {1, ...,m} j : f j(xxx)< f j(xxx′).

This relation defines a partial order on X , allowing incomparable parameters. It is sufficiently

strong for a definition of optimality: a solution xxx is called Pareto optimal if and only if it is not

dominated by any other solution xxx′. The set
{

f (xxx)
∣∣xxx ∈ X is Pareto optimal

}
of all non-dominated

solutions is called Pareto front and is approximated in multi-objective optimization.6

MOPs are typically solved using evolutionary strategies. Since ESs are set-based optimizers,

they can easily be extended to approximate Pareto fronts. Many multi-objective ESs (MOES) have

been published in recent years, but they can not overcome the main disadvantage of their single-

objective counterparts: A high number of function evaluations is required to reach the global

optimum. Thus, MOESs are inappropriate for solving expensive MOPs. As in the single-objective

case, the objective functions can be replaced by surrogate models. Several different approaches on

extending the SMBO procedure towards MOPs, called model-based multi-objective optimization

(MBMO) algorithms, have been proposed. Two of them are presented here, full taxonomies can

be found in Horn et al. (2015) and Deb et al. (2017).

The first algorithm, ParEGO (Knowles, 2006), belongs to the class of scalarization-based

MBMO algorithms. In each iteration, the m objectives are scalarized to a single one before the

model is fitted. For scalarization, ParEGO uses the augmented Tschebyscheff norm

κ(xxx) = max
j=1,...,d

{
w j · ( f j(xxx)− iii j)

}
+ρ

d

∑
j=1

w j · ( f j(xxx)− iii j). (2.2)

Here, iii :=

(
min
xxx∈R

f1(xxx), ...,min
xxx∈R

fd(xxx)
)

is the ideal point, www with ∑m
j=1 w j = 1 is a weight vector

controlling the trade-off between the objectives and ρ is a small, positive constant, typically set

to 0.05. Afterwards, the general SMBO procedure is used in its original EGO instantiation to

optimize the scalarized objectives. In order to generate optimal points along the entire Pareto front,

ParEGO samples the weight vector anew in each iteration. In Horn et al. (2015), two extensions

for the standard ParEGO algorithm are presented.

First, it is proposed to exchange the EI with the LCB infill criterion, since experiments based

on artificial test functions show a clear advantage of LCB over EI. However, a newly discovered

6See e.g. Ehrgott (2013) for an extensive introduction to multi-objective optimization.
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implementation bug leaves doubt on the bad performance of the EI.7 Nevertheless, the LCB shows

comparable results to other MBMO approaches and therefore offers a reasonable alternative.

Second, a multi-point extension for ParEGO is suggested. The original algorithm proposes

only a single new point in each SMBO iteration. Horn et al. (2015) suggested to sample c · l

different weight vectors per iteration. Afterwards, the most similar vectors are eliminated until

only l remain. Hence, the selected weights cover the weight space in an almost uniform way. In

their experiments, Horn et al. (2015) set c = 5. The approach showed top performance compared

to other multi-point approaches, even exceeding the performance of original ParEGO with l = 1.

The second MBMO algorithm, SMS-EGO (Ponweiser et al., 2008), belongs to the class of

direct indicator based algorithms. It fits individual models for each objective in step (2) of the

general SMBO approach. Afterwards, in contrast to single-objective SMBO, the infill criterion

is based on those m > 1 models. It measures the contribution of new parameter settings to the

current approximation of the Pareto front using the hypervolume indicator (Zitzler et al., 2003).

Consequently, the infill criterion still returns a single continuous value, and the standard SMBO

procedure for proposing new points can be applied. SMS-EGO shows top performances among

other MBMO algorithms in the experiments by Horn et al. (2015).

Just like for ParEGO, Horn et al. (2015) present a multi-point variant of SMS-EGO. Here,

the concept of simulated evaluations is used: The first parameter setting xxxn+1 is proposed in the

standard way by optimizing the SMS-EGO infill criterion. Afterwards, xxxn+1 is not immediately

evaluated with the objective function, but its LCB value is added to the current design. Without

refitting the surrogate model, a second setting xxxn+2 is proposed by optimizing the infill criterion

again. xxxn+2 differs from xxxn+1, since the infill criterion of SMS-EGO is based on the Pareto front

of the current design including LCB(xxxn+1,λ ). By adding the LCB value it is ensured that the

proposed points are not too close to each other. This procedure iterates until l points have been

proposed. After evaluating all l settings, the LCB values are replaced with the corresponding

objective function values. The experiments in Horn et al. (2015) show that this variant performs

slightly worse than the original SMS-EGO algorithm. However, being able to evaluate l points in

parallel can speed up the optimization enough to justify this small deterioration.

2.4 Contributed publications

D. Horn, T. Wagner, D. Biermann, C. Weihs, and B. Bischl. Model-Based Multi-objective Op-

timization: Taxonomy, Multi-Point Proposal, Toolbox and Benchmark. In International Con-

ference on Evolutionary Multi-Criterion Optimization, pages 64–78. Springer, 2015.

7A corrected version of the experiments is available in Bischl et al. (2017c), however, the comparison of the

different infill criteria is omitted there.
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C. Weihs, S. Herbrandt, N. Bauer, K. Friedrichs, and D. Horn. Efficient global optimization:

Motivation, variations and applications. Archives of Data Science, Series A (Online First), 2

(1):3–28, 2017.

B. Bischl, J. Richter, J. Bossek, D. Horn, J. Thomas, and M. Lang. mlrMBO: A modular

framework for model-based optimization of expensive black-box functions. arXiv preprint

arXiv:1703.03373, 2017c.

B. Bischl, M. Lang, J. Bossek, D. Horn, J. Richter, and D. Surmann. BBmisc: Miscellaneous

Helper Functions for B. Bischl, 2017b. URL ����������	
����
�������
����������

������. R package version 1.11.

B. Bischl, M. Lang, J. Bossek, D. Horn, J. Richter, and P. Kerschke. ParamHelpers: Helpers for

Parameters in Black-Box Optimization, Tuning and Machine Learning, 2017a. URL ������

����	
����
�������
������������
�������
�. R package version 1.10.

Since this chapter presents the fundamentals of my dissertation, the majority of its content is

not my own work, but taken from original literature. Only the taxonomy of the MBMO algorithms

and their batch proposals have been developed by Bernd Bischl, Tobias Wagner and myself. The

results were presented at the 8th International Conference on Evolutionary Multi-Criterion Op-

timization 2015 in Guimarães, Portugal and the corresponding paper has been published in the

associated conference volume (Horn et al., 2015). Moreover, in Weihs et al. (2017) some results

regarding the usage of linear models as surrogates as well as a comparison between the EI and the

LCB criterion have been contributed by myself.

In my first years as a Ph.D. student, I participated in the development of the ��
��� software.

��
��� is an �-package (R Core Team, 2018) that implements the general SMBO approach. It is

currently available on CRAN in version 1.1.1, maintained by Jakob Richter. ��
��� allows the

instantiation of most SMBO steps in many different ways. In particular, ��
��� is based on the

��
 package (Bischl et al., 2016) and, therefore, any regression model available in ��
 can be used

as surrogate. ��
��� also offers implementations of the MBMO algorithms ParEGO, SMS-EGO,

ε-EGO (Wagner, 2013) and MSPOT (Zaefferer et al., 2013), integrated into the package mainly by

myself. Furthermore, the package offers many user-friendly features like a decent error handling

and parallel function evaluations in whose development and implementation I was involved. The

development of ��
��� resulted in a paper available on arXiv (Bischl et al., 2017c).

��
��� uses some helper packages. I am co-author of two of them: ��
�������
� (Bischl

et al., 2017b) and ������ (Bischl et al., 2017a). ������ provides many small functions that

make � programming a little bit more comfortable. ��
�������
� solves two issues: First, it

implements a data structure that describes the parameter set of an objective function. Second,

it implements a data structure that can trace an optimization process. It can contain all made

function evaluations including a lot of additional information. Together with my student worker

Karin Schork, I worked on the visualization of optimization processes: ��
�������
� is capable

of plotting every stage of arbitrary OPs. An example optimization is visualized in Figure 2.3.
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Figure 2.3 Optimization path of the ZDT1 function (Zitzler et al., 2000) optimized with SMS-EGO. The top
left plot shows all evaluated parameter settings in the parameter space. Red points correspond to settings
evaluated during the initial design, blue points to settings evaluated during the sequential optimization, the
green point to the recently evaluated setting. The blue lines are contour lines of the used Kriging model for
the first objective. The top right plot shows the evaluated settings in the objective space, using the same
colors as the top left plot. The intensity of the points in the upper plots corresponds to the iteration they were
proposed in. The bottom plots show the time course. Here, dob is short for date of birth and is equivalent
to the iteration of the optimization. In the bottom left plot, the value of each parameter in each iteration is
shown, in the bottom right plot the value of each objective in each iteration.



Chapter 3

Hyperparameter Tuning

As in optimization, in machine learning (ML) a function f is analyzed that describes the relation-

ship between a set of parameters {X (1), ...,X (d)} and a target variable Y . In optimization, Y is

continuous, f : X → R is known (or, at least, can be computed) and the goal is to find parameter

settings corresponding to the smallest values of Y . Contrary, in ML, Y can be both continuous or

discrete, f is unknown and the goal is to find a good model f̂ approximating f . For this purpose,

observations of {X (1), ...,X (d)} and corresponding values of Y are required. An example can be

found in the SMBO procedure: In each iteration the true target function f is approximated by a

surrogate model f̂ , which is estimated using already evaluated parameter settings.

Another example is introduced in section 2.1. The SVM is able to model the relationship

between continuous parameters X (i) and a binary target variable. Prior to fitting an SVM model,

some hyperparameters have to be set. This applies to the parameter C and the kernel parameter γ
if the RBF kernel is used. Depending on the choice of those hyperparameters, the goodness (or

performance) of the resulting model can vary greatly. Moreover, the performance of hyperparam-

eter settings highly depends on the particular data and cannot be estimated a-priori. The process

of finding good hyperparameter settings is called hyperparameter tuning.

Hyperparameter tuning is not an SVM-specific problem. In fact, most model classes have

multiple hyperparameters influencing their model’s performances. For many of them, default

settings that will often attain high performing models are available. However, hyperparameter

tuning is required if model performance has to be maximized. For some classes like the SVM, a

good hyperparameter setting is obligatory in order to obtain a reasonable model.

This chapter continues with an introduction to machine learning and hyperparameter tuning. It

will eventually turn out that tuning is just a special optimization problem and thus, algorithms from

chapter 2 can be used. If the number of observations is large, tuning is an expensive OP and the

SMBO procedure should be applied. The following section returns to the SVM and presents both

exemplary single- and multi-objective hyperparameter tunings solved with SMBO algorithms.

Hyperparameter tuning can be easily extended in a way that the standard SMBO procedure is no

longer applicable. The two remaining sections consider two extensions and show how to incorpo-

rate them in the SMBO procedure: mixed parameter spaces and stochastic optimization.

15
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3.1 The machine learning process

Machine learning is an extensive topic covering a lot of different applications. Each of them

comes with a different background, history, theory, model classes and much more. However, the

general course of action is the same for all of them. It is visualized in Figure 3.1, motivated by

the workflow of the ��� �-package (Bischl et al., 2016). More details on machine learning and

machine learning algorithms are given by Hastie et al. (2009).

The central aspect of each ML problem is the underlying data set. It consists of n observations

(xxxT
1 , ...,xxx

T
n )

T =: XXX of d variables X (1), . . . ,X (d), also called parameters or features. As in chapter

2, X (i) denotes the set of all possible values of X (i) and X := X (1)×X (2)× ...×X (d). The

parameters are assumed to have an influence on (typically) a single target variable Y with possible

values Y . In contrast to chapter 2, Y is not limited to be continuous (Y ⊂ R), but can also

be discrete, as in case of the SVM (Y = {−1,+1}). Often, observations (y1, ...,yn) =: yyy of Y

are available. This case is referred to as supervised learning. If no values of Y are given, the

problem is called unsupervised. Depending on supervision and the type of Y , ML problems can

be categorized into the subclasses regression, classification and cluster analysis (see table 3.1).

No matter which subclass a specific ML problem belongs to, the goal of an ML algorithm

(also called learner) is to approximate f : X → Y by a model function f̂ . The calculation of a

specific model is called training. Naturally, the goal is not to find any model, but rather to find the

best one (or at least one that is good enough). Therefore the model performance, describing the

goodness of the model, has to be quantified. Typically, the prediction performance of a learner is

of interest, i.e., the model’s ability to predict the outcome y j for an observation xxx j not present in

the data set. Therefore a set of new observations, which are not used for training the model, and

data

training set test set

learner model prediction

performance

measure

performance

optimize

Figure 3.1: Sketch of the machine learning workflow.
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Y is continuous Y is discrete

Y is available regression classification

Y is not available - cluster analysis

Table 3.1: Different subclasses of ML problems, depending on the form of the target variable Y .

corresponding realizations of Y are required. They are typically generated through a resampling

procedure. The original data {XXX ,yyy} is repeatedly split into training set {XXX (train),yyy(train)} and test

sets{XXX (test),yyy(test)}, containing n(train) and n(test) observations respectively.

Hence, a typical ML procedure runs through the following steps (c.f. Figure 3.1):

1. Calculate training and test sets.

2. For each training set: Train the chosen learner on {XXX (train),yyy(train)} and get model f̂ .

3. Predict with each f̂ on the corresponding XXX (test) to get estimates of the outcomes ŷyy(test).

4. Evaluate the performance measure using the true and the predicted outcomes yyy(test) and ŷyy(test).

5. If the performance is not satisfying, go back to step 2.

Training and test sets First, the training and test sets have to be selected via resampling. Typical

resampling procedures include holdout, crossvalidation, bootstrapping and subsampling. All of

them have in common that a random subset of the data is chosen as training set and the remaining

observations are used as test set. This is repeated until the required number of resampling iterations

is reached. The methods only differ in how the random subset is chosen: Bootstrapping performs

random sampling with replacement, subsampling without. Holdout is equivalent to subsampling

with only a single training set. In a k-fold crossvalidation, each observation is guaranteed to be in

exactly k− 1 training sets and in one test set. Moreover, in some applications it is be necessary

to include additional domain specific knowledge. For instance, if data of k different months is

available, it might be necessary to use the data of k−1 months for training and the last month for

testing or to use stratification so that each month is equally often present in each training set.

Training and prediction Second, the chosen learner is applied to all training sets and the learner

returns a model f̂ for each training set. The SVM, for example, trains its model parameters by

optimizing the margin size. Afterwards, f̂ is used to predict the outcome of all observations on the

corresponding test set: ŷ(test)
i = f̂

(
xxx(test)

i

)
, i = 1, ...,n(test).

Performance Finally, the vector of predicted outcomes ŷyy(test) :=
(

ŷ(test)
1 , ..., ŷ(test)

n(test)

)
has to be

compared with the vector of true outcomes yyy(test). Therefore a performance function mapping

those two vectors to a single, real value has to be defined. Depending on the subclass of the ML

problem, typical measures are the mean squared error (MSE) for regression

MSE(ŷyy(test),yyy(test)) =
1

n(test)

n(test)

∑
i=1

(
ŷ(test)

i − y(test)
i

)2
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and the mean misclassification error (MMCE) for classification

MMCE(ŷyy(test),yyy(test)) =
1

n(test)

n(test)

∑
i=1

�{
ŷ(test)

i 
=y(test)
i

},

where � denotes the indicator function. In this manner, a performance measure is calculated

for each training set. The global performance of the model then is given by the average of the

performance measures over all resampling iterations.

Optimization Combining all prior steps, a process f (tune) is defined that maps a learner with an

associated hyperarameter setting to a single real number representing the learner’s performance.

Hence, an order can be defined on the models with respect to their performances. By repeating the

previous three steps with different learners or hyperparameter settings, it can be searched for the

best one. This process is called hyperparameter tuning and can actually be interpreted as an OP

with target function f (tune) and parameters X (i) corresponding to the hyperparameters.

Optimal hyperparameters can now be found using standard optimization algorithms. For in-

stance, in the case of an SVM, the performance can be optimized with respect to the hyperpa-

rameters C and γ . Since the OP has just two continuous parameters, it can be solved using all

algorithms for continuous OPs from chapter 2 like random search or the BFGS method. How-

ever, since estimating the performance of a model can take quite some time for larger data sets,

specialized algorithms for expensive OPs like the SMBO approach should be used.

In a more complex setting, X (1) can be a discrete parameter describing the choice of the learner.

Let, for example, X (1) = {���, �����	
����
}. If X (1) takes the value ���, an SVM model

is fitted, for �����	
����
 a random forest (RF, Breiman (2001)) is chosen. The optimizer can

vary the model class, in order to automatically determine the best one. This idea might sound

promising, but is difficult to put into practice, because the underlying OP is hard to solve. Since

X (1) is discrete and most model classes contain continuous hyperparameter, the OP is very likely to

have a mixed parameter space. Moreover, the hyperparameters of a specific learner only influence

the performance if that learner is chosen and therefore X includes hierarchical parameters. Hence,

an algorithm for solving an expensive OP with mixed and hierarchical parameters is required.

3.2 Example: Hyperparameter tuning of an SVM

As mentioned in the prior sections, the hyperparameters C and γ of an SVM can be set via param-

eter tuning. This section presents an exemplary hyperparameter tuning on the eeg-eye-state data

set. For SVM training, the implementation of the SMO algorithm from the ������ library (Chang

and Lin, 2011) is used, available in � via the package ����� (Meyer et al., 2017).

The data set is taken from the OpenML web service (Vanschoren et al., 2013) and was orig-

inally published in the UCI machine learning repository. (Dheeru and Karra Taniskidou, 2017)
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It contains 14 features measured with the EEG method, describing brain activities of the test per-

sons1. The investigation target is to identify whether the eyes of the test person were opened (6723

persons) or closed (8357 persons) during the measurement. Although it is not a really large data

set (14980 observations in total), it is already large enough to point out the limits of SVMs.

Now, a performance measure and a resampling procedure have to be selected. Since no ad-

ditional information is available, the default performance measure seems adequate and hence the

MMCE is used. To reduce the experiment’s runtime, a 3-fold crossvalidation is applied for resam-

pling. Moreover, parameter spaces for C and γ have to be defined. Both parameters can take any

positive real number. Since the order of magnitudes is known to be more important than the value

itself, both parameters are varied on the exponential scale 2[−15,15]. Hence, while C and γ are used

for training, the optimizer gets log2(C) and log2(γ) as parameters.

At last, an optimization algorithm has to be chosen. Here, the results of two optimizers are

compared: Grid search as the probably most prominent tuning algorithm for SVMs, and EGO as

the standard SMBO approach. Each algorithm is given a budget of 49 performance measurements

(≡ function evaluations). Hence, grid search can evaluate a 7 × 7 grid. The initial design of

the SMBO approach consists of 8 points, leaving 41 evaluations for the sequential optimization.

The tuning is performed using the ���–package (internally using ������), all remaining tuning

parameters are set to ��� defaults, which can be looked up in the ��� manual.

The results of the tunings are displayed in Figure 3.2. Obviously, the grid search wastes

a lot of its budget for hyperparameter settings with high MMCEs, while the SMBO procedure

focuses most of its function evaluations on regions with top performances. Both optimizers return

hyperparameter settings with comparable MMCEs, slightly favoring the SMBO approach (grid

search: 0.0923, SMBO: 0.0909). However, after only 17 of its 41 iterations SMBO finds a setting

with an MMCE of 0.0917, which is already better than the final grid search MMCE.

In this example, a single fit of an SVM model took between 10 and 300 seconds (median: 30

seconds).2 Taking the three crossvalidation folds and the 49 iterations into account, each tuning

spend more than two hours on SVM training. This is still an acceptable time for parameter tuning.

However, the eeg-eye-state data set consists of less than 15000 observations. Both, the training

time of a single SVM and the sequential computation time of the parameter tuning will quickly

increase for larger data sets. Tuning algorithms can be sped up using parallel computing. In

particular, the grid search can evaluate all 49 hyperparameter settings simultaneously. Thus, the

real elapsed time can be much less than the sequential computation time.

Since many data sets include at least some redundant information, random subsets are likely to

capture the data sets main essence. A simple trick to reduce training time is to train the learner on

1See, e.g., Teplan (2002) for explanations on EEG measurements.

2The experiments were run on an Intel(R) Core(TM) i5-4460 @ 3.20GHz with 8 GB RAM using � 3.5.0 on

Windows 7 Enterprise.
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Figure 3.2 Results of the single-objective tuning. The background shows the target function’s landscape.
Since the true landscape is unknown, it is interpolated with a Kriging model based on the 49 evaluations of
grid search.

such a subset (downsampling). Hereby, each training data set XXX (train) is shuffled at first. For each

performance assessment, the model is trained on the first λ · ntrain observations of XXX (train), where

λ ∈ (0,1] is the downsampling rate. The performance itself is still measured on the entire test data

sets XXX (test). The smaller λ , the faster the training will be. However, a smaller subset is also more

likely to result in a worse MMCE. The effect of downsampling can be studied by multi-objective

parameter tuning: In addition to the MMCE, the duration of a single SVM training is minimized

as a second objective. λ is considered as an additional hyperparameter and is tuned together with

SVM parameters C and γ . The parameter spaces of C and γ are again set to 2[−15,15], while for λ
the space 2[−7,0] is used. Again, two tuning approaches are compared: Grid search and ParEGO as

a standard SMBO variant. In order to compensate the additional hyperparameter λ , the budget is

increased to 125 evaluations. All remaining settings are left at their ��� defaults.

Figure 3.3 shows the resulting Pareto fronts of both tunings. ParEGO reaches a clearly better

approximation of the Pareto front, it finds both more and better points than grid search. The most

outstanding part of the fronts may be the cluster of points with an MMCE of 0.45. This MMCE

equates to the ratio of the majority class in the eeg-eye-state data set. Since the SVM falls back to

predicting the majority class if parametrized poorly, many settings end up with that error.

The best found hyperparameter settings by ParEGO have MMCEs reaching down to 0.065,

even better than the best settings from the single-objective tunings. Apparently, the increased bud-

get does not just compensate for the additional parameter but also improves the optimization result.

Moreover, since only 42% of the data are used to achieve this top performance, the training time
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(b) SMBO

Figure 3.3 Results from the multi-objective tunings for MMCE vs. training time, Pareto optimal points are
marked in red.

is decreased to only 1.5 seconds. Further reductions of training data lead to further improvements

in training time, but come with the cost of higher MMCEs.

3.3 Tuning in mixed and hierarchical parameter spaces

In the previous section the standard SMBO procedure was used, since all considered hyperparam-

eters were continuous. However, many ML algorithms have discrete hyperparameters. Further, if

the learner itself is considered as an additional hyperparameter, also hierarchical parameters are

present. Both discrete and hierarchical parameters can not be handled by the standard SMBO

procedure. Horn and Bischl (2016) explain how it can be extended towards such mixed and hier-

archical parameter spaces. This is achieved by adapting each individual SMBO step.

(1) Initial Design In most SMBO algorithms, LHS is used as initial design, which is defined

for continuous parameter spaces only. Horn and Bischl (2016) propose an alternative based on a

thinning approach: First, a pure random design with size c · ninit , c � 1, is sampled. Afterwards,

pairwise distances between all design points are calculated and one of the two points with minimal

distance is removed from the design repeatedly until the design is reduced to size ninit . Thus it

is ensured that no two points are too close to each other and the complete parameter space is

covered. The approach leaves open the choice of an appropriate distance measure. For mixed and

hierarchical parameter spaces, the Gower distance (Gower, 1971) may be used.

(2) The surrogate model Most SMBO approaches use Kriging or RBF models. Both model

classes presume the parameter space to be continuous and, thus, they are not applicable here.
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However, since any regression model can be picked as surrogate, they can be replaced by a more

suitable one. Hutter et al. (2011) propose to use random forests, Horn and Bischl (2016) adopt

this idea. RFs are a model class with many practical properties: They allow both continuous and

discrete parameters and, given enough data, can model any functional relationship. Moreover,

they often result in high-performance models even without hyperparameter tuning.

The handling of the hierarchical parameter space is a different matter. Even if the ith parameter

of a setting xxx is inactive, a value xxxi is still available, although it does not have an influence on the

objective function. Hence, the missing information has to be encoded in some way. Horn and

Bischl (2016) propose to treat these values as missings. Although an RF can fit a model on this

missing values, a simple imputation technique should be applied to increase performance. Missing

values of a continuous parameter X (i) are imputed with x(i)right + 2 ·
(

x(i)le f t − x(i)right

)
, i.e. a value

outside its parameter space
[
x(i)le f t ; x(i)right

]
, for discrete features a new level is introduced. Since

the trees of the RF perform splits based on single variables, it can split the data into active and

inactive settings in a single node of each tree. Thereby it is ensured that the RF can still recognize

and utilize the missing-information in the data.

(3b) Infill optimization In each SMBO iteration, the infill criterion has to be optimized. Since

it is defined on the same parameter space as the target function, the optimizer has to operate on

both mixed and hierarchical parameters. Since the evaluation of the infill criterion is cheap, it can

be evaluated with a large number of different parameter settings. Therefore, even RS is a suitable

alternative here. Horn and Bischl (2016) describe an enhanced version called focus search. It

performs multiple RS iterations and, in between the iterations, shrinks the parameter space around

currently found optima.

(3a, 4 – 6) Infill criteria, Update, Termination, Return None of these three steps is affected by

the parameter space and, thus, no adaption is needed.

Horn and Bischl (2016) survey whether these adaptions result in a reasonable SMBO variant.

In their experiments, the performance measures false-positive rate and false-negative rate are op-

timized simultaneously on nine different binary classification data sets, i.e. a ROC like curve is

estimated.3 The multi-objective tuning is performed over three different model classes (RF, SVM

and regularized logistic regression), where the choice of the model is a tuning hyperparameter

itself. Moreover, weighting the positive class is allowed via weight-hyperparameter ω . Hereby

each observation of the positive class is given the weight ω . For ω → ∞, all observations will

be classified in the positive class and therefore the false-positive rate will eventually be 1, while

the false-negative rate will be 0, and vice versa for ω → 0. Hence, a trade-off between the two

objectives can be achieved using ω . The resulting parameter space is shown in Figure 3.4. The

adapted SMBO variant outperformed a baseline on nearly all considered data sets.

3More details on performance measures are given by Hastie et al. (2009).
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Figure 3.4 Joint parameter space of the multi-objective tuning experiment with the three learners random
forest, SVM and L2 regularized logistic regression . Circles denote variables, rectangles denote values of
continuous and discrete parameters, arrows denote the hierarchic structure. Here n denotes the number of
observations, d the number of features in the respective data set.

It is questionable how safe the results by Horn and Bischl (2016) are, since the proposed

method is only compared with a baseline. However, up to today no other multi-objective op-

timization methods for expensive OPs with mixed and hierarchical parameter spaces have been

published. Certainly, this topic is not fully exploited yet and improvements are still necessary.

The choice of the surrogate model class appears to be most crucial. RFs do not seem to be

the best choice. Especially for continuous parameter spaces, RFs are missing some important

properties compared to Kriging models. First, Kriging’s uncertainty estimator has a spatial inter-

pretation: It is zero for all training observations and it increases with an increasing distance to the

nearest training observation. Hence, the uncertainty can guide the optimization towards parameter

regions that have not been exploited yet. RFs do not provide such an uncertainty estimator. Some

kind of uncertainty can be simulated via bagging (Breiman, 1996). However, such estimators lack

the spatial interpretation. Second, since RF models consist of trees, their models are always step

functions. Obviously, step functions are not as suitable in guiding the SMBO procedure as smooth

functions. This could be avoided by using extremely randomized trees (Geurts et al., 2006), how-

ever, no experiments on belonging optimization performances have been published yet.

Because of RF’s disadvantages, it might prove promising to reconsider Kriging models. Some

approaches exist that extend Kriging toward more complex parameter spaces. Since Kriging is

a kernelized method, only the kernel and its underlying distance function have to be changed.

Hutter and Osborne (2013) present a kernel for mixed and hierarchical parameter spaces, called

the Arc-kernel. Zaefferer and Horn (2018) propose additional kernels and compare them with

the Arc-kernel on a simple artificial test function. Although the results are promising, results for

hyperparameter tuning experiments as well as a comparison with RFs are still missing.



24 HYPERPARAMETER TUNING

3.4 Tuning as a Stochastic Optimization Problem

Up to this section, only deterministic OPs are considered: Evaluating the same parameter setting xxx

multiple times with objective function f results in identical function values. This is an unrealistic

assumption for many practical OPs, where repeated evaluations of the same setting will lead to

differing values due to noise. In such so-called stochastic OPs, f itself cannot be observed. Instead,

only observations of f̃ (xxx) := f (xxx)+ ε(xxx) are available, where ε(xxx) is the observational noise, a

random variable with unknown distribution and expected value 0.

In fact, hyperparameter tuning is a stochastic OP, since the performance of each model is

estimated using a resampling procedure. Evaluating the same setting xxx on different training and

test sets results in varying performance values and ε(xxx) only depends on the choice of these sets.4

In previous sections, hyperparameter tuning is treated as a deterministic OP by using the same,

fixed train and test sets for each performance assessment. Doing so, the same realization of ε(xxx) is

used each time f̃ (xxx) is evaluated and the corresponding fixed version of f̃ is optimized afterwards.

However, the optimum of this new target function is likely to differ from the optimum of f .

f can be estimated from f̃ by using repeated evaluations (re-evaluations) of the same parame-

ter settings. Since ε(xxx) is assumed to have expected value 0, lim
k→∞

1
k ∑k

i=1 f̃ (xxx) = f (xxx) holds and can

be used as and estimator for f (xxx) whose quality increases with k. Naturally, k should be chosen as

large as necessary and as small as possible. This idea is already utilized in resampling procedures:

Performing a k-fold cross validation corresponds to doing k re-evaluations.

Simple approaches use a constant k for each parameter setting. However, especially in the

context of expensive OPs, it could be beneficial to adapt k for different parameter settings to

save unnecessary evaluations. On the one hand, for the worst settings a single evaluation may

be enough to reject them and the remaining evaluations can be omitted. On the other hand, for

the best settings k evaluations may not be enough to detect relevant differences between them

and additional re-evaluations should be made. A simple approach to determine k is to perform

re-evaluations until significant differences with respect to some statistical test can be observed.

Horn et al. (2017b) propose and compare different methods to choose the (individual) numbers

of re-evaluations in a multi-objective model-based setting. Each strategy is allowed to perform a

total number of k · n evaluations. Figure 3.5 visualizes the behavior of all four approaches for

some random data points. The repeated variant uses a constant amount of k re-evaluations for

each parameter setting, just like the standard cross validation does. Doing so, only n different

parameter settings can be investigated. The enlarged variant evaluates every setting just once.

The saved budget is used to examine more distinct parameter settings, so that a total amount of

k · n settings is evaluated. The reinforced variant starts like the enlarged one by evaluating many

settings just once. In order to increase the reliability of the final Pareto front, the last part of the

4Here it is assumed, that a deterministic model class like SVM is used.
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(a) Repeated (b) Enlarged (c) Reinforced (d) Rolling Tide

Figure 3.5 Visualization of the four re-evaluation strategies. Point sizes correspond to the number of re-
evaluations. The true Pareto front is marked by a red line, Pareto optimal points by orange circles.

budget is used to evaluate all settings in the final Pareto set k times. Depending on the size of the

final Pareto front, this strategy evaluates a large amount of rather bad settings just once and a small

amount of promising settings k times. The Rolling Tide variant is based on the Rolling Tide ES by

Fieldsend and Everson (2015). In addition to the newly proposed point, k− 1 promising settings

are re-evaluated in each iteration. In this way, n different parameter settings are investigated during

the optimization and their count of re-evaluations increases with their quality.

Horn et al. (2017b) conduct two series of experiments, one using artificial test functions with

varying noise and one using a real multi-objective tuning setting. The results show no clear winner,

and especially the variance of the noisy target function has a major impact. For small amounts of

noise, the reinforced approach is the best one. For larger amounts, it is beaten by the Rolling

Tide variant. In the tuning experiment, Rolling Tide showed best performances again. Overall,

including the stochasticity into the tuning process seems to be a promising approach. However,

very little work on stochastic expensive multi-objective optimization has been published.
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In the second half of my time as a Ph.D. student, I mainly worked on developing and refining

hyperparameter tuning methods. Thereby I especially focused on the large data application, where

a single model fit can take several minutes, hours or even days and, hence, as few model fits as

possible should be conducted. Although I am mostly interested in the case of multi-objective

tuning, most developed methods can also be applied to the single-objective case.

My work on this topic showed that simple tuning algorithms like RS and grid search are viable

options for large data sets. First, they can work on any parameter space, continuous or mixed,

constrained or unconstrained, having hierarchical parameters or not. Second, both algorithms can

evaluate all their search points in parallel. If a sufficient amount of parallel computation power is

available, this advantage more than makes up for the missing guidance in the optimization process

itself. In Weihs et al. (2017) some of my experiments showing these advantages are published.

If, however, only limited parallel computation power is available, SMBO is superior to RS.

The default SMBO procedure is defined for continuous parameter spaces only. We described in

Horn and Bischl (2016), how the individual SMBO steps can be adapted for mixed and hierarchical

parameter spaces. The paper itself focuses on the multi-objective case, but most of its ideas can

be directly adopted for the single-objective case. For most SMBO steps, the extension to more

advanced parameter spaces is straight forward and, especially, the infill criterion does not have to

be adapted at all. Unfortunately, the most crucial step is also the one that performs worst. The

commonly used Kriging model is defined for continuous parameter spaces only in its original form

and has to be adapted by exchanging its kernel.

External literature proposes to use a regression random forest instead, but using RF as surro-

gate often results in an optimization performance that is only slightly better than random search.

This happens, because RFs are missing some of Kriging’s convenient properties. An alternative is

to extend the Kriging model towards more complicated parameter spaces. Martin Zaefferer and I

recently proposed some variants (Zaefferer and Horn, 2018) and compared them to an approach

by Hutter and Osborne (2013). We limited ourselves to tests on a simple artificial test function.

Real experiments using realistic tuning problems are planed for future work.

In 2016, I took a look at the stochasticity of tuning problems. In Horn et al. (2017b) we in-

corporated and compared noise handling mechanisms in the MBMO procedure. At EMO2017,

I used the proposed algorithm to participate in the Video Games Track of the Black Box Opti-

mization Competition (Loshchilov and Glasmachers, 2018) that featured expensive, stochastic,

multi-objective optimization problems with continuous parameter spaces. I scored the first place,

however, the competition had only two serious participants. In my opinion this shows how little

work on this important topic has been done yet.

In sum, I have developed an optimization algorithm for expensive, stochastic, multi-objective

OPs with mixed and hierarchical parameter spaces, well suited for solving multi-objective param-

eter tuning problems. Unfortunately, it is hard to say how good this algorithm really is, since I am

not aware of any competitor algorithms in this setup.



Chapter 4

Multi-objective selection of algorithm portfolios

For many tasks, a large quantity of different algorithms is available, forcing the user to choose a

suitable one. For example, although the training of an SVM is typically done using SMO, dozens

of alternatives are at hand. Choosing an algorithm with respect to a single performance measure

(e.g. the MMCE for SVMs) is straightforward: After tuning each algorithm’s individual hyperpa-

rameters, the algorithm with optimal performance on an independent test set can be selected.

In numerous situations, additional performance measures are required. For instance, training

time of SMO is considered as a second performance criterion in section 3.2. Although typically

contradicting, both cost and solution quality of an algorithm often have to be optimized simultane-

ously. Contrary to the case with a single criterion, it is ambiguous how to select the best algorithm

with respect to multiple ones. Nevertheless, a (now multi-objective) hyperparameter tuning has to

be performed for each algorithm at first. Afterwards the resulting Pareto fronts can be compared.

Most times there will be no single algorithm covering the complete combined Pareto front, but

a set of algorithms alternating in dominating each other. Consequently, not a single best, but a

portfolio of Pareto optimal algorithms has to be selected. Moreover, a rule is required to specify

which algorithm should be used for a given trade-off between the objectives.

Figure 4.1 shows simulated Pareto fronts of the objectives cost and error. It imitates results

from individual hyperparameter tunings of two algorithms Red and Blue. In the left plot, Red

clearly outperforms Blue along the entire front and should therefore always be selected. In the
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(b) Algorithms take turns in dominating each other.

Figure 4.1: Example situations for multi-objective algorithm selection with artificial data.
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right plot, both Red and Blue take a share of the combined Pareto front: Blue should be used for

solutions with low error, Red if solutions with low cost are desired.

This chapter continues with further investigations on SVMs. In the first section, a multi-

objective comparison of some algorithms for approximate SVM training is presented. The second

section presents a method to select an optimal algorithm portfolio based on single data sets. More-

over, optimal portfolios for single data sets of the SVM comparative study are shown. The third

section presents a validation of the method, the fourth section an extension towards multiple data

sets and final portfolios for the SVM study.

4.1 Example: Comparing different SVM solvers for large data sets

Bottou and Lin (2007) state that exact training of non-linear SVMs via SMO has a runtime com-

plexity between O(n2) and O(n3). Consequently, the SMO algorithm can not be used for large

data sets. Alternative training algorithms apply approximations to the SVM OP in order to speed

up the optimization. In most algorithms, the degree of approximation can be controlled through

hyperparameters, so the user can specify whether he wants a fast or a precise solution.

In practical applications it is unclear which approximating algorithm should be picked. Horn

et al. (2016a) try to answer this with an extensive simulation study. Naturally, only implemen-

tations and not algorithms are compared. The implementation of SMO in the LIBSVM library

(Chang and Lin, 2011) is chosen as baseline. Several well-known implementations of alternative

algorithms are considered, covering a representative set of different approximation techniques:

BVM/CVM: Reformulations of the SVM as enclosing ball problems, solved by specialized

approximate algorithms (Tsang et al., 2005) / (Tsang et al., 2007).

LASVM: An online learning variant of SMO (Bordes et al., 2005).

LLSVM: A low-rank linearization of the SVM solved with LIBLINEAR by Fan et al. (2008)

(Zhang et al., 2012) .

SVMperf: An adaptation of the cutting-plane method to SVM training (Joachims and Yu, 2009).

For each implementation, an independent multi-objective hyperparameter tuning is performed.

Beside the common SVM parameters C and γ with the typical parameter space 2[−15,15], hyperpa-

rameters controlling the approximation degree are tuned for each algorithm (cf. table 4.1). Each

SVM solver Parameters Optimization Spaces

BVM/CVM ε (Accuracy) 2[−13,−1]

LASVM ε (Accuracy), #Epochs 2[−13,−1], 2[0,7]

LIBSVM ε (Accuracy) 2[−13,−1]

LLSVM Matrix rank 2[4,11]

SVMperf ε (Accuracy), #Cutting planes 2[−13,−1], 2[4,11]

Table 4.1: Hyperparameters of the SVM solver including parameter spaces for the tuning.
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model is trained on the first 50% of the available observations, its training time is measured and

the MMCE is estimated on the next 25%. The estimated MMCEs of the Pareto optimal parameter

settings are too optimistic because the settings are optimized to work well on these observations.

In order to get realistic MMCEs, an additional validation step is executed: The models are re-

trained on the first 50% of the data and the last 25% are use used to estimate the performance.1 In

the following, only these validation results are shown.

A simple downsampling technique is used as an additional baseline. The downsampling rate

λ ∈ 2[−7,0] is treated as an additional hyperparameter subject to tuning. Hence, two hyperparame-

ter tunings are performed for each algorithm: One with disabled and one with enabled downsam-

pling. The algorithms are compared on several data sets collected from the LIBSVM web page

(Chang and Lin, 2011), in addition some private data sets are used. Each tuning is conducted

using the batch variant of ParEGO with a batch size of 20 and a total budget of 220 performance

assessments. The experiment is implemented using the ������ package and executed on the LiDO

Cluster of TU Dortmund university.

The resulting Pareto fronts on one data set are shown in Figure 4.2, extensive results are

available online (cf. Horn et al. (2016b)). In the results without downsampling (left plot), LIBSVM

is the fastest algorithm reaching top MMCEs. The approximate solvers can accelerate training up

to a factor of 200, but this gain is always bought with higher MMCEs. Especially the Pareto front
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Figure 4.2: Pareto fronts for the multi-objective hyperparameter tuning of the approximative SVM solver.

1Normally, the model should have been retrained on the union of 50% and 25% of the data used in the tuning and

validated on the remaining 25%. However, since the training times on 75% of the data would be incomparable to those

on just 50%, a different approach has been chosen here.
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of SVMperf shows a good trade-off between the two objectives. An adequate portfolio consists of

LIBSVM for high quality solutions and SVMperf for faster solutions.

Although this result is not consistent for all considered data sets, it holds for most of them.

This can be quantified with the Hypervolume indicator (HV, c.f. Zitzler et al. (2003)). For two

objectives, the HV can be interpreted as the area between the Pareto front and a predefined refer-

ence point. Hence, large HV values indicate a high performing Pareto front. Here, the HV is used

to compare three different portfolios: One containing all six algorithms (all), one containing only

LIBSVM and SVMperf (set 1) and one containing LIBSVM, SVMperf and BVM (set 2). Table

4.2 shows the quotients between the HV of all algorithms and the HVs of the smaller portfolios.

On seven out of twelve data sets, the quotient of set 1 is higher than 0.9, hence, LIBSVM and

SVMperf form a sound portfolio. However, the performance is rather poor on some of the remain-

ing data sets. The addition of BVM as a third algorithm yields considerably better results for all

these data sets.

The right plot of Figure 4.2 shows the results with enabled downsampling. Most algorithms

reach clearly better trade-offs between the objectives, but the best trade-offs are now achieved by

LIBSVM itself. This is consistent for most data sets. In Table 4.3 the portfolio consisting of only

LIBSVM is compared to the portfolio containing all six algorithms. On eight out of the twelve data

sets, LIBSVM scores Pareto fronts only slightly worse than the combined fronts of all algorithms

and it fails to build an adequate front only on the spektren data set.

In sum, these results are devastating for all approximate SVM solvers. Each algorithm itself is

able to accelerate SVM training with the cost of a worse model. However, most times the achieved

trade-offs between training time and solution quality are worse than the trade-offs for LIBSVM

combined with a simple downsampling strategy. Hence, an optimal algorithm portfolio could

consist of only LIBSVM. If the data set is too large to be solved in a reasonable amount of time,

downsampling should be applied to decrease the training time.

data set arthrosis aXa cod-rna covtype ijcnn1 mnist

HV(Set 1) / HV(all) 0.998 0.975 0.720 1.000 0.496 0.966

HV(Set 2) / HV(all) 0.998 0.975 0.882 1.000 0.922 0.966

data set poker protein shuttle spektren vehicle wXa

HV(Set 1) / HV(all) 1.000 1.000 0.121 0.044 0.942 0.351

HV(Set 2) / HV(all) 1.000 1.000 0.939 0.940 0.942 0.854

Table 4.2 Hypervolume ratios without downsampling. all: a portfolio containing all six algorithms Set 1:
a portfolio containing libSVM and SVMperf, Set 2: a portfolio containing libSVM, SVMperf amd libBVM.
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data set arthrosis aXa cod-rna covtype ijcnn1 mnist

HV(libSVM) / HV(all) 0.564 0.912 0.977 1.000 0.942 0.957

data set poker protein shuttle spektren vehicle wXa

HV(libSVM) / HV(all) 0.703 0.681 0.961 0.096 0.950 0.992

Table 4.3 Hypervolume ratios with downsampling: all: a portfolio containing all six algorithms libSVM:
a portfolio containing only libSVM.

4.2 Selection of portfolios for single data sets

In the previous sections, only an exploratory analysis of the simulation results has been done.

However, manually looking through tuning results is time consuming and the chosen portfolio is

always biased towards personal views. An automatic method is required to select optimal algo-

rithm portfolios. According to Horn et al. (2017a), the main question for multi-objective selection

of algorithm portfolios (MOSAP) problems can be formulated as:

Choose a portfolio of algorithms as small as possible, with a median Pareto front as close

to the median [combined] Pareto front of all algorithms as possible. Which algorithms should be

selected for the portfolio, and which of them should be used for which trade-off?

In MOSAP problems, k algorithms {A1, . . . ,Ak}=: A are compared over multiple data sets

with respect to multiple performance measures. For each algorithm on each data set an individual

multi-objective hyperparameter tuning has to be performed at first. Due to stochasticity in both

tuning and performance assessment, the tuning should be repeated r > 1 times. A MOSAP method

calculates a decision rule for selecting a suitable algorithm A j ∈ A for each trade-off between the

performance measures. The method proposed by Horn et al. (2017a) is only defined for single

data sets and two arbitrary performance measures. It consists of three steps:

Step 0: Normalization In order to get interpretable results, the objectives are normalized to [0;1]

at first.

Step 1: Remove dominated algorithms Some algorithms do not contribute to the combined

Pareto front at all. These algorithms should be detected and removed at first. Horn et al. (2017a)

propose to remove an algorithm if it does not score at least one non-dominated point in at least

�η ·n� out of n repetitions, where η ∈ [0,1] is a control parameter.

Step 2: Select the best algorithm portfolio Although all remaining algorithms contribute to the

combined Pareto front, some of these contributions may be insignificant. The corresponding algo-

rithms should be removed, since the portfolio aims to be as small as possible. This is a biobjective

problem itself: Select a set of algorithms with minimal size and maximal performance. While the

size of a portfolio can simply be counted, its quality can be measured in different ways. Horn

et al. (2017a) propose to use the HV difference between the examined portfolio and the portfolio
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of all algorithms. In order to respect the r replications, the HV is calculated based on the 50% em-

pirical attainment function (EAF, c.f. López-Ibáñez et al. (2010)). Since the set and, thus, the

power set of algorithms is finite, this OP can be solved by enumerating all combinations: For each

subset of algorithms both size and quality are reported. Afterwards, the best portfolio is selected

by minimizing a scalarization of the objectives, the augmented Tschebyscheff norm. Its weight

vector w controls whether a small or a high performing portfolio is desired.

Step 3: Obtain a concise decision rule. Lastly, the decision rule for the portfolio has to be

computed. It is sufficient to predict the optimal algorithm given only one of the objectives, because

the one objective will always decrease while the other one increases for biobjective Pareto fronts.

This is a classification problem, where the remaining objective is the only feature and the optimal

algorithm the target variable. A standard classification method can be used to produce a decision

rule. Horn et al. (2017a) propose to use a pruned decision tree, where pruning controls the number

of switches between optimal algorithms.

The method is implemented in an �-package available on github2 and is used to analyze the

results from the SVM study. In order to get more reliable results, the tuning is repeated ten times

for four data sets. The MOSAP method is parametrized as follows: η is set to 0.5 in compliance

with the goal of a good median Pareto front. The reference point for calculating the HV is set

to (1,1.5) instead of (1,1) in order to give higher weight to solutions with low MMCEs. The

weight vector w is set to (0.05,0.95), setting a higher weight to the quality of the portfolio without

ignoring its size. The complexity parameter of the pruning is manually tuned to 0.1 in order to

achieve an acceptable amount of switches between optimal algorithms. The selected portfolios

and decision rules are displayed in Figure 4.3.

Although the portfolios with disabled downsampling (c.f. top row of Figure 4.3) differ quite

a lot in their details, some common patterns can be observed: a) If present, LASVM or LIBSVM

is used for solutions with the lowest MMCEs. b) SVMperf tends to take the lion’s share of the

Pareto front. c) If present, LLSVM is used for solutions with low training times. In the bottom

row of Figure 4.3 the respective results with enabled downsampling are shown. Here LIBSVM

dominates three of the four decision rules, while SVMperf gives better results on the protein

data set. However, for this data set the combined Pareto fronts of the rules with and without

downsampling are almost identical. Presumably there is not much redundancy in it and, hence,

downsampling is not profitable.

4.3 Validating MOSAP rules

Although MOSAP should mainly be treated as a descriptive method, some insights on the perfor-

mance of the presented method exist. On this account Horn et al. (2016c) present a simulator for

2������������	
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Figure 4.3: Selected portfolios and decision rules for the SVM solvers on the four data sets.

artificial MOSAP data sets with two objectives x and y. In these data sets the quality of the final

MOSAP rule can be quantified since it is known which algorithm is optimal for which trade-off.

The simulator starts with sampling a true continuous Pareto front for each algorithm. Af-

terwards, discrete approximations of the true Pareto fronts are generated, whereat it is possible

to control the number of discrete approximations (correlating to the number of tuning replica-

tions), the number of observations for each discrete approximation and the sampling procedure. In

Figure 4.4 exemplary data of two discrete approximations with three optimal and one disturbing

algorithm is displayed.

Furthermore, the simulator controls the values of x at which the optimal algorithm switches. In

Figure 4.4, these switches occur at x= 0.33 and x= 0.67. Hence, an oracle function p : [0,1]→ A

is available, giving the optimal algorithm for each value of x. A MOSAP rule can now be inter-

preted as an estimator p̂ for this oracle. The z-value

z(p, p̂) =
1∫

0

�(x){p(x)= p̂(x)}dx

gives the ratio of correct predicted algorithms and can be used as a performance indicator of p̂. In

Figure 4.4 (b), the z-value of the selected portfolio is 0.86. This rather low performance can be

explained by the small number of just two replications.
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Figure 4.4 Exemplary simulated MOSAP data with three optimal and one disturbing algorithm. In plot
(a), the simulated data is shown. The solid lines are identical in both figures and mark the true Pareto
fronts, with split points between the three optimal algorithms at 0.33 and 0.67. The points differ between
the figures and display the discrete approximations of the Pareto front. Plot (b) shows the corresponding
selected portfolio with estimated switches at x = 0.25 and x = 0.61.

Horn et al. (2016c) review the performance of their MOSAP method in a simulation study. For

different parameter settings artificial data sets are generated and the z-value is calculated. Con-

centrating the results, the MOSAP method achieves adequate z-values, indicating that reasonable

decision rules are computed. However, without competitor approaches available, these are just

arguable indications and its true quality remains dubious.

4.4 Analyzing multiple data sets

Understanding the behavior of algorithms on single data sets is of great importance. However,

a portfolio for these data sets is not required, since they have been extensively solved in the un-

derlying hyperparameter tunings. Contrary, a portfolio is needed for data sets not used during its

selection. As portfolios calculated on single data sets will not generalize well, the MOSAP method

has to be extended towards multiple data sets.

Calculating a rule over multiple data sets can be dangerous, since the existence of a global

rule is not guaranteed. In terms of the no free lunch theorem, the existence of a global rule is even

impossible. However, if the considered data sets are similar enough, a joint decision rule may

exist. Therefore, the extended MOSAP method should not only calculate the rule itself but also a

measure indicating its validity within the considered data sets.

The MOSAP method can be adapted by extending each of the three steps from section 4.2

individually. A fourth step is introduced in order to measure whether the decision rule holds for

all data sets.
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Step 1: Remove dominated algorithms For each individual data set it is checked via the standard

method, whether an algorithm would be removed. An algorithm is now removed globally, if the

check is positive on more than ν · r out of r data sets, where ν ∈ [0,1] is a new control parameter.

Step 2: Select the best algorithm portfolio This step remains mostly unchanged, only the quality

of a subset of algorithms has to be redefined: The hypervolume difference is calculated for each

individual data set and the mean difference is used as quality indicator.

Step 3: Obtain a concise decision rule Instead of estimating the decision tree on a single data

set, it is calculated on the union of all r data sets.

Step 4: Measure the validity As validity measure, the accuracy of the decision tree estimated via

r-fold crossvalidation is used. In each fold, the tree is trained on r− 1 data sets and the error is

estimated on the missing one. An accuracy of nearly 1 indicates a rule valid for all data sets, while

lower values indicate heterogeneous data sets.

An updated version of the simulator can be used to validate these extensions. At first, an or-

acle function p, as described in section 4.3, has to be defined. Next, r data set specific oracles

p(i), i ∈ {1, ...,r} are created, which can differ from the global oracle. Last, discrete approxima-

tions are generated for each data set specific oracle. In Table 4.4 nine types of dissimilarities

between p(i) and p are presented. If type 1 is used, p(i) = p holds for all i ∈ {1, ...,r}. Hence, the

MOSAP method should find a decision rule that is valid for all data sets. For types 2–7 different

sorts of noise are added to split points and algorithm order. However, the MOSAP method should

still be able to recognize common patterns. For types 8 and 9 the MOSAP method should detect

that no common decision rule exists, since the data specific rules are completely random.

For all nine types 200 data situations with four optimal and two disturbing algorithms on four

data sets are simulated. For each situation two portfolios are selected: one using weight vector

(0.001,0.999) in order to select a large portfolio of high quality (the solid portfolio) and one using

Type Explanation Probability

1 No changes occur –

2 Normal distributed noise added to split points –

3 Split points are sampled from uniform distribution –

4 One optimal algorithm is not present on the Pareto front 0.5

5 One disturbing algorithm is present on the Pareto front 0.5

6 One optimal and one disturbing algorithm are swapped 0.5

7 Two optimal algorithms are swapped 0.5

8 Algorithm order random –

9 Split points and order random –

Table 4.4 Nine different types how f (i)MOSAP can differ from fMOSAP. For types 4–7, the respective changes
occur with the given probability for each data set.
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weight vector (0.1,0.9) aiming at a portfolio with a good trade-off between quantity and quality

(the balanced portfolio).

Figure 4.5 (a) shows the resulting z-values. For type 1, the solid portfolio nearly reaches best

possible z-values of 1, while the balanced one only scores 0.75. This indicates that only three

out of four optimal algorithms have been selected. However, since the balanced rule tries to trade

off size and quality of the portfolio, it is allowed to omit some algorithms. This confirms that the

MOSAP method can find reasonable decision rules. For types 2 and 4–6 the z-value deteriorates,

but still reaches values close to 1 frequently. Hence, the MOSAP method is able to detect and

deal with the respective noise. The z-values of types 3 and 7 are worse: For type 3 the split points

are blurred so much that they can not be estimated from the data. For type 7, the possibility of

swapping optimal algorithms increases the heterogeneity of the data sets a lot. As a consequence,
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Figure 4.5 Validation results for the extended MOSAP method. (a) Shows the z-values for all nine types (c.f.
Table 4.4) for both the solid portfolio with a maximum number of algorithms and the balanced portfolio
with an acceptable trade off between size and quality, (b) shows the associated accuracy values, (c) shows
accuracy values for type 6 with differing probabilities.
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the solid portfolio often selects three algorithms, while the balanced one selects only two of them.

Although not as good as for the other types, the selected rules still seem to be alright. As intended,

no reasonable decision rules can be selected for types 8 and 9. Their z-values are not better than

0.25, corresponding to randomly guessing one out of four algorithms.

Overall, the MOSAP method is able to select a decision rule if the underlying data sets are

similar enough. Step 4 of the method detects whether the selected rule holds for all considered

data sets. In Figure 4.5 (b), the accuracy values of the simulations are shown. Its spread reaches

from 0.95 for type 1 (p(i) = p is guaranteed) to 0.5 for types 8 and 9 (p(i) random). The other types

score in between, while the more complicated types 3 and 7 are accounted with lower accuracies.

For a more in-depth picture, Figure 4.5 (c) shows a more detailed study on type 6: The probability

p of switching an active with an inactive algorithm, i.e. the amount of heterogeneity in the data, is

varied from 0 to 1. The results of 200 replications show that the estimated accuracy drops while p

increases. Hence, the accuracy measure fulfills its purpose.

Finally, the extended MOSAP method can be applied to analyze the SVM data from section

4.1. In Figure 4.6 portfolios and decision rules with disabled and enabled downsampling are

shown. In both portfolios, LIBSVM is used to achieve solutions with best MMCE values. While

with disabled downsampling, SVMperf and LLSVM are used to trade-off MMCE and runtime,

with enabled downsampling the common Pareto front is be built by LIBSVM nearly alone. For

both portfolios, the parameters of the MOSAP method were manually set in order to achieve

high performing portfolios. Both portfolios seem to be consistent along the considered data sets,

since the achieved accuracies (0.734 and 0.833 respectively) are sufficiently large. Altogether, the

results from section 4.1 are confirmed.
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Figure 4.6 Portfolios and decision rules for the SVM study over all four data sets. Note that the values in
the two graphics can not be compared to each other due to individual normalizations.
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D. Horn, K. Schork, and T. Wagner. Multi-objective selection of algorithm portfolios: Experimen-

tal validation. In International Conference on Parallel Problem Solving from Nature, pages

421–430. Springer International Publishing, 2016c.

My work as a Ph.D. student started with the development and implementation of the SVM

study. It required a lot of technical work by my colleague Aydın Demircioğlu and myself, in-

cluding the installation and debugging of the SVM libraries on the LiDOng cluster. A descrip-

tive analysis of the study’s results was presented at the European Conference on Data Analysis

(ECDA) 2014 in Bremen and published in Advances in Data Analysis and Classification (Horn

et al., 2016a), some preliminary results have been published in Weihs et al. (2016).

However, the purely descriptive analysis of the results was quite dissatisfying. Since neither

we nor any colleague we talked to were aware of any advanced method for further analyses, we

had to develop one by ourselves. In the following months we worked on the development of the

method for multi-objective selection of algorithm portfolios. It was implemented by myself in an

� package and is available on the online platform github. In order to apply the MOSAP method

in the SVM study, another set of experiments was performed, now with less data sets, but ten

replications per data set. Each algorithm was tuned in two different setups: Once with disabled

and once with enabled downsampling. The results of the MOSAP analysis were presented at the

ECDA 2015 in Colchester and published in the Archives of Data Science (Horn et al., 2017a).

At first, MOSAP analyzed each data set on its own. Hence, the resulting algorithm portfolios

were only valid on the respective data set. Since the results on the four data sets showed com-

mon patterns both in the case with and without downsampling, an aggregating MOSAP approach

seemed promising. However, I feared that developing a new method to analyze some data based

on the same data held the danger of overfitting and would not give any new insight. Moreover, I

wanted to have at least some kind of validation of the new method. Therefore, I firstly developed

a simulator for similar data situations (Horn et al., 2016c). Based on such artificial data situations,

I developed the extension of MOSAP towards multiple data sets. The extension itself as well as

its application to the SVM data have been presented at the ECDA 2018 in Paderborn.



Chapter 5

Conclusion and Future Work

This dissertation deals with the research areas optimization and machine learning. However, both

of them are too extensive to be covered by a single person in a single work, and that is not the goal

of this work either. Therefore, this work focuses on interactions between these fields.

On the one hand, most machine learning algorithms rely on optimization techniques. First, the

training of a learner often implies an optimization. This is demonstrated by the SVM, where the

weighted sum of the margin size and the sum of margin violations has to be optimized. Many other

learners internally optimize either a least-squares or a maximum likelihood problem. Second, the

performance of most machine learning algorithms depends on a set of hyper-parameters and an

optimization has to be conducted in order to find the best performing model. Unfortunately, there is

no globally accepted optimization algorithm for hyper-parameter tuning problems, and in practice

naive algorithms like random or grid search are frequently used.

On the other hand, some optimization algorithms rely on machine learning models. They are

called model-based optimization algorithms and are mostly used to solve expensive optimization

problems. During the optimization, the model is iteratively refined and exploited. One of the most

challenging tasks here is the choice of the model class. It has to be applicable to the particular

parameter space of the OP and to be well suited for modeling the function’s landscape.

In this work, special attention is given to the multi-objective case. In contrast to the single-

objective case, where a single best solution is likely to exist, all possible trade-offs between the

objectives have to be considered. Hence, not only a single best, but a set of best solutions exists,

one for each trade-off. Although approaches for solving multi-objective problems differ from

the corresponding approaches for single-objective problems in some parts, other parts can remain

unchanged. This is shown for model-based multi-objective optimization algorithms.

The last third of this work addresses the field of algorithm selection. Here, an offline technique

is used, i.e. the best algorithm is guessed a-priori to applying any algorithm. Again, the work

focuses on the multi-objective case: An algorithm has to be selected with respect to multiple,

conflicting objectives. As with all offline techniques, this selection rule hast to be trained on a set

of available training data sets and can only be applied to new data sets that are similar enough to

those in the training set.

39



40 CONCLUSION AND FUTURE WORK

This dissertation covers a wide range of rather different publications. It starts with a paper on

the general model-based multi-objective optimization approach. Additional papers cover its exten-

sion towards multi-objective tuning problems. Furthermore, a new approach for multi-objective

algorithm selection is presented in a series of papers. As an application, the multi-objective com-

parison of approximate SVM solvers is presented in another publication. Although the dissertation

concludes with this chapter, the corresponding scientific work is certainly not finished and leaves

space for future research projects.

• Model-based optimization is an open research area, and especially the combination of model-

based and multi-objective optimization is relatively young. ParEGO, as its most prominent

representative has been developed only 15 years ago. New algorithms and improvements to old

ones are frequently published and the best algorithm has not been found yet.

• The adaption of the MBMO framework to the special needs of hyperparameter tuning has been

accomplished in Horn and Bischl (2016). However, at the moment it is just a basic framework

that allows future improvements. Moreover, this task is highly related to finding a best MBMO

algorithm. In this context, special focus should be given to multi-point proposals, since tuning

is a task that can easily be parallelized.

• In Horn et al. (2017b) hyperparameter tuning is interpreted as a stochastic optimization problem

and this aspect is included in the MBMO framework. However, the results are quite unsatisfying

and future work on this topic is required. Since very little work has been published even on

the single-objective case, it should be approached at first. Re-evaluation strategies have to be

collected, implemented in ������ and compared to each other. Afterwards, the adaption to the

multi-objective can be reconsidered.

• The development of the MOSAP method is nearly finished and the method itself fulfills its pur-

poses. It can be extended by one additional step: Instead of just proposing an optimal algorithm

for a given trade-off, it could also give a recommendation on the algorithm’s hyperparame-

ters. Apart from that, MOSAP can be used for other applications. One example is the analysis

of benchmark results of optimization algorithms. In this context, the two objectives are the

optimization time and the best found function value.

Some of these projects are running already. The work on improving Kriging kernels for hier-

archical parameter spaces is ongoing and new publications are scheduled for the near future, in-

cluding a contribution to the Genetic and Evolutionary Computation Conference (GECCO) 2019.

Moreover, as the final aspects of the MOSAP method have been developed just recently, a final

publication is planned, hopefully including some new applications. Further work on expanding

���’s and ������’s capabilities in multi-objective hyperparameter tuning is targeted.
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