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A B S T R A C T

Cattle manure compost (CMC) combined with chemical fertilizer (CF) was applied to a wheat–maize
rotation field, in Eastern China, to assess soil physical and chemical properties, biological activity and land
productivity. Indicators of organic matter, carbon storage and sequestration, bulk density, water content,
total N content and earthworm population from topsoil (0–20 cm) were quantified. This consecutive
study (2009–2014) was carried out on the base of the same total N, P, K application rate (375.0 kg
N ha�1 yr�1, 92.4 kg P2O5ha�1 yr�1 and 316.3 kg K2O ha�1 yr�1) in each treatment that was fertilized. Six
treatments were designed as: (1) CK, without any fertilizer; (2) NPK, 100% CF; (3) NPKM1, 25% CMC
combined with 75% CF; (4) NPKM2, 50% CMC combined with 50% CF; (5) NPKM3, 75% CMC combined
with 25% CF; and (6) CM, 100% CMC. The results demonstrated that organic matter, water content, total N
content and earthworm density from topsoil were significantly and positively (P � 0.01) related to CMC
input, with significantly negative correlation being observed between soil bulk density and CMC input.
The average annual yield of the wheat–maize rotation system significantly increased (P � 0.05) in NPK,
NPKM1, NPKM2, NPKM3, and CM compared with CK, with the highest yield being obtained from NPKM1.
Applying merely CF not only led to the lower SOM, water content and total N content, but also resulted in
negative effects on earthworm activity, while CMC alleviated such negative effects. Our finding may help
to increase food supply by improving soil conditions with organic fertilizer compost application.
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1. Introduction

Soil organic matter (SOM) content is generally regarded as one
of the key indicators of soil quality (Riley et al., 2008). Maintaining
adequate amount of SOM is particularly important for sustaining
the productivity of an agro-ecosystem (Lal et al., 1999; Carter,
2002; Ding et al., 2012). Numerous studies have found strong
correlations among soil structure, soil aggregate stability and SOM
content (Darwish et al., 1995; Haynes and Naidu, 1998). For
instance, some studies have shown that increase in SOM improves
* Corresponding author. Fax: +8610 6259 0815.
E-mail address: jgm@ibcas.ac.cn (G. Jiang).
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http://dx.doi.org/10.1016/j.still.2015.10.010
0167-1987/ã 2015 Elsevier B.V. All rights reserved.
soil's aggregation, total porosity, hydraulic conductivity, water-
holding capacity, resistance to water and wind erosion, and lowers
bulk density and the degree of compaction (Celik et al., 2004; Leroy
et al., 2008). Otherwise, a decline in SOM content increased soil
compaction which has a negative impact on root growth through
reducing the supply of water and nutrients (Martinez and Zinck,
2004; Celik et al., 2010). Bulk density is largely related with soil
compaction, which alters the air-soil and water-soil interactions
then further affects microbiological activity, nutrient uptake and
water retention (Abu-Hamdeh, 2003; Martinez and Zinck, 2004).
Soil organic matter retains water and helps soil particles to bind
and resist against soil compaction (Celik et al., 2010). Preserving an
adequate amount of SOM stabilizes soil structure which makes the
soil more resistant to degradation (Thomas et al., 1996). Excess use
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Fig. 1. The daily precipitation from 1 October, 2013 to 9 October, 2014 in the study
area, Jiang Jiazhuang Village, Pingyi County, Eastern China.
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of chemical fertilizers, however, has resulted in a significant
depletion of SOM and serious water and soil pollution (Liu et al.,
2003a,b; Minuto et al., 2006; Zhao et al., 2006; Li et al., 2007; Ju
et al., 2009; Zhen et al., 2014). Serious losses of SOM have
deteriorated soil quality and crop productivity, which has spurred
scientist to explore ways to restore SOM (Liu et al., 2010; Ding et al.,
2011). Studies have shown that maintaining SOM at optimum level
can be achieved by fertilization practices (Zebarth et al., 1999; Wu
et al., 2004; Yang et al., 2005; Blair et al., 2006; Verma and Sharma,
2007; Purakayastha et al., 2008; Gong et al., 2009). However,
perhaps as cost saving measure, more and more chemicals have
been added to soils, which would further degrade soil quality.
Researchers therefore urgently needed to continue investigating
management practices that can reduce soil degradation.

It is well documented that earthworm can maintain and improve
soil fertility, soil structure and aggregate stability, nutrient cycling as
well as plant productivity (Edwards and Lofty, 1977; Clements et al.,
1991; Marinissen, 1994; Smetak et al., 2007; Riley et al., 2008). The
experimentally induced absence of earthworms in grassland was
found to increase soil bulk density and shear strength, greatly reduce
SOM, pH, soil moisture and initial infiltration rate (Clements et al.,
1991). Mineral fertilizers may have positive effects on earthworms
by increasing the amount of plant biomass, thereby increasing their
food supply (Edwards and Lofty, 1982). But the soil pH must be
regulated to avoid negative effects of acidifying fertilizers (Ma et al.,
1990). Organic fertilizers, such as animal manure, can also provide
food for and increase the biomass of earthworms (Andersen, 1979).
For instance, organic cropping systems have displayed higher
earthworm biomass and density than conventional ones (Mäder
et al., 2002). However, less is known how the long termapplication of
organicmanurecombinedwithchemical fertilizer(CF)will affect the
soil biodiversity.

Usage of organic materials, such as sewage sludge, crop residues,
compost and poultry manure, are well known to be beneficial
practices in soil restoration (Tejada and Gonzales, 2008; Tejada et al.,
2008). A long-term fertilizer experiment in paddy soil derived from
barren land in subtropical China showed that applying CF in
combination with farmyard manure increased SOM content more
significantly than using CF alone (Li et al., 2010). However, organic
inputs at normal level (2–4.5 Mg ha�1) in Northeastern China did not
yield remarkable effects on restoring SOM level (Li et al., 2002).
Although some found higher level of organic inputs could lead to a
corresponding increase in soil carbon sequestration, they only
evaluated the effects of organic fertilizer on soil properties at
different rates or focused on adding organic fertilizer on the basis of
CFapplication rates. On one hand, they did not consider the nutrients
(N, P, K) in organic fertilizer, and the fact that the total nutrients were
not the same among treatments. On the other hand, not all chemical
fertilizers were fully utilized. As excess use of CFalone has resulted in
numerous negative effects, it is necessary to find the suitable
application rates of organic materials mixed with CF.

Organic fertilizers release nutrients over time. On the basis of
the same level nutrients (N, P, K), we want to know the effects of
increased organic fertilizer combined with decreased CF on yield,
soil characteristics and biological activity. Although earthworm
activity is considered to be a biological indicator of soil quality
(Doran and Zeiss, 2000), information is limited on the impact of
using a mix of inorganic and organic fertilizers as treatments. We
therefore hypothesized that utilizing a mix of inorganic and
organic fertilizer could improve the soil quality, make the soil
suitable for earthworms to live and achieve high crop yield in the
long term. So in the present study, our objectives were to: (1)
assess crop yield; (2) evaluate the changes in topsoil carbon storage
and sequestration, and bulk density under different organic
fertilization application rates; and (3) assess the effects of
increased organic fertilizer combined with decreased CF at various
rates on earthworm activity. We hope the findings from this
experiment can help to increase food supply while reducing
possible chemical fertilization pollutions through organic fertilizer
compost application.

2. Materials and methods

2.1. Experimental site

The field experiment was conducted at the Eco-farm Research
Station of Shandong Agricultural University, based in Pingyi
County, Shandong Province, Eastern China (35�2602100N,
117�5001100E). It was initiated on 25 September, 2009. The study
area experiences a typical temperate and monsoonal climate, with
the mean annual rainfall being 770 mm and average annual
temperature 13.2 �C. The daily rainfall from 1 October, 2013 to
9 October, 2014 was listed in Fig. 1. The soil is Alfisols, according to
the soil taxonomy (IUSS Working Group WRB, 2014). The main
cropping system is winter wheat (Triticum aestiviumL.)—summer
maize (Zea maysL.) rotation. Winter wheat grows from early
October to early June of the following year and summer maize from
middle June to early October. At the beginning of the experiment,
the topsoil (0–20 cm) had a pH of 6.12 (soil:water = 1:2.5) and
contained 7.40 g C kg�1 soil and 0.74 g N kg�1 soil. The soil bulk
density was 1.43 g cm�3.

2.2. Preparation of cattle manure compost

Cattle manure was obtained from the nearby Hongyi Organic
Farm, in Jiang Jiazhuang Village of Pingyi County. It was shaped into
cuboids with width 1.5 m, height 0.5 m, with moisture content of
70%. The compost was covered with plastic film, stirred and mixed
every 20 days. After 90 days, the resulting cattle manure compost
(CMC) was applied into the fields before sowing. The manure
compost contained organic matter 40.61%, total nitrogen (N) 2.11%,
total phosphorus (P2O5) 0.52%, total potassium (K2O) 1.78% and had
moisture content of 68.9%.

2.3. Experimental design

The treatments were arranged as: (1) CK, without any fertilizer;
(2) NPK, 100% chemical fertilizer (CF); (3) NPKM1, 25% CMC
combined with 75% CF; (4) NPKM2, 50% CMC combined with 50%
CF; (5) NPKM3, 75% CMC combined with 25% CF; (6) CM,100% CMC.
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Except CK, the remainder five treatments had the same total N, P
and K application rate of 375.0 kg N ha�1 yr�1, 92.4 kg P2O5ha�1

yr�1 and 316.3 kg K2O ha�1 yr�1. However, parts of N, P and K
application were from different sources, e.g., urea (N = 46.4%) as the
chemical N source; superphosphate (P2O5 = 12%) as the chemical P
source; potassium sulphate (K2O = 51%) as the chemical K source.
The application rates of CMC and CF in the different treatments are
listed in Table 1.

All the treatments were arranged in a randomized complete
block design with three replicates (plot size 2.4 m � 16 m). Winter
wheat was seeded between 15 and 20 October, and harvested
around 5 June. Then summer maize was seeded 7 d later, four rows
per plot being seeded. After harvest, all above-ground crop
residues were removed from the field. It is historically common
that CMC was homogenously spread out on the soil surface only
after summer maize harvest; therefore all plots were ridged by
rotary tillage before winter wheat seeding. There was no tillage
before summer maize seeding in the experimental area.

2.4. Sampling

At wheat maturity, three replications of total plants in a
quadrate area (2.4 m � 1 m) were selected randomly for measuring
wheat grain yield in each plot. When maize was harvested, three
replications of 15 consecutive plants in the second row were
selected randomly for estimating corn grain yield.

Soil samples were collected from surface layers (0–20 cm soil
depth) of each plot on 7 October, 2014. Five random subsamples in
the same plot were pooled together, placed in polyethylene bags,
and transported to the laboratory immediately. In the laboratory,
all visible roots, cattle manure and plant fragments were removed.
The composite samples were passed through a 2-mm sieve. The
sample was air-dried and ground to pass a 0.25-mm sieve for total
organic carbon and total nitrogen analysis.

Earthworm population was quantified on 13 June and 9 October,
2014 with three replications being done. Earthworms were hand-
sorted from three soil cubes (30 cm � 30 cm � 20 cm depth) at each
plot then the density and fresh biomass of earthworms were
recorded.

2.5. Chemical analysis

Total soil organic carbon (SOC) was determined following
dichromate oxidation procedure. Multiplying the SOC by
1.72 resulted in the SOM content (Nelson and Sommers, 1982).
SOC storage at the 0–20 cm depth was calculated from horizon
thickness and soil bulk density. The amount of sequestered organic
carbon in 0–20 cm soil depth was determined after deducting the
carbon storage that had occurred just before the start of the
Table 1
Experiment design and application rates of organic manure and chemical fertilizer in 

Treatments Winter wheat 

Cattle manure compost
(kg ha�1)(dry weight)

Chemical fertilizer (kg ha�1) 

Urea Superphosphate P

CK 0 0 0 0
NPK 0 484.9 385.1 3
NPKM1 4443 363.7 288.8 2
NPKM2 8886 242.5 192.5 1
NPKM3 13329 121.2 96.3 7
CM 17773 0 0 0

CK, without any nutrient; NPK, 100% chemical fertilizer; NPKM1, 25% cattle manure com
combined with 50% chemical fertilizer; NPKM3, 75% cattle manure compost combined
experiment. Total nitrogen was determined by the Kjeldahl
Method (Bremner and Mulvaney, 1982).

Bulk density was determined on undisturbed soil samples using
a steel cylinder of 100 cm3 volume (5 cm in diameter, and 5.1 cm in
height) for soil depths of both 0–10 cm and 10–20 cm separately.
The bulk density was calculated by dividing the weight of the dried
soil by the volume of the soil (Blake and Hartge, 1986).

Ten grams soil from 0–10 cm and 10–20 cm layers were sampled
to be oven-dried at 105 �C for 48 h to measure the soil water
content on 11 June and 9 October, 2014 when were close to the
sowing date for summer maize and winter wheat, respectively, and
there was no rainfall during the previous two weeks. As adequate
amount of soil water content is important for seed germination, if
the soil water content was lower, pipe irrigation was practically
applied. The pH was measured in a 1:2.5 (w/v) soil/water
suspension using a digital pH meter (PB-10, Sartorius, Germany).

2.6. Statistical analysis

Statistical analysis was performed using the software SPSS 17.0.
All data were analyzed using one-way analysis of variance
(ANOVA) and the least significance difference (LSD) test was used
to establish if the differences in the treatments were significant at
P � 0.05 level. Figures were generated using Sigmaplot 10.0 (Systat
Software Inc.).

3. Results and discussion

3.1. Soil organic matter, average annual yield, soil organic carbon
storage and sequestration

The 5-year application of cattle manure compost (CMC)
combined with chemical fertilizer (CF) at various rates had
statistically significant effect on SOM content as well as SOC
content (Table 2). Compared with CK, SOM in all the plots fertilized
with CMC has been increased (P � 0.05) by 28%, 46%, 74%, and 87%
at 0–20 cm soil depth, with the greatest SOM content being noted
in soil fertilized with CMC alone. CF had no statistically significant
effect (P > 0.05) on SOM accumulation (Table 2).

The average annual yield of the wheat–maize rotation system
significantly increased (P � 0.05) in NPK, NPKM1, NPKM2, NPKM3,
and CMC compared with CK, but showed no significant differences
among the five treatments of inorganic fertilizer and CMC mixture.
Nevertheless, the highest yield occurred in the plots fertilized with
25% CMC combined with75% CF (Table 2).

Different treatments also displayed significant influences on
both soil organic carbon storage and sequestration. Organic carbon
storage in the top soil (0-20 cm) was found to be significantly
higher in NPKM1, NPKM2, NPKM3, and CM than that in CK and NPK
(P � 0.05). Both soil organic carbon storage and sequestration were
different treatments.

Summer maize

Chemical fertilizer (kg ha�1)

otassium sulphate Urea Superphosphate Potassium sulphate

 0 0 0
10.1 323.3 385.1 310.1
32.6 242.5 288.8 232.6
55.1 161.6 192.5 155.1
7.5 80.8 96.3 77.5
 0 0 0

post combined with 75% chemical fertilizer; NPKM2, 50% cattle manure compost
 with 25% of chemical fertilizer; CM, 100% cattle manure compost.



Table 2
Organic carbon input from cattle manure compost and changes in soil organic matter after 5 years’ different fertilization treatments and average annual yield of the wheat–
maize rotation system (2010–2014)

Treatments Organic carbon input from cattle manure compost
(kg ha�1 year�1)

Soil organic carbon (%) Soil organic matter (%) Average annual yield (kg ha�1 year�1)

CK 0 0.78 � 0.02 e 1.34 � 0.04 e 6466 � 1079.0 b
NPK 0 0.82 � 0.03 e 1.41 � 0.05 e 13872 � 1076.9 a
NPKM1 1804 0.99 � 0.01 d 1.71 � 0.01 d 14274 � 1555.7 a
NPKM2 3609 1.13 � 0.02 c 1.95 � 0.03 c 13451 � 1125.9 a
NPKM3 5413 1.35 � 0.01 b 2.33 � 0.02 b 12430 � 1469.7 a
CM 7217 1.46 � 0.01 a 2.51 � 0.03 a 11551 � 1508.0 a

CK, without any nutrient; NPK, 100% chemical fertilizer; NPKM1, 25% cattle manure compost combined with 75% chemical fertilizer; NPKM2, 50% cattle manure compost
combined with 50% chemical fertilizer; NPKM3, 75% cattle manure compost combined with 25% of chemical fertilizer; CM, 100% cattle manure compost. Values are reported
as means � standard deviations, n � 3. Different letters within each column show significant differences atP � 0.05.
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found to be considerably higher in the plots fertilized with only
CMC. Although no statistical differences appeared in soil organic
carbon storage and sequestration between NPK and CK, both soil
organic carbon storage and sequestration were slightly higher in
the former treatment (Fig. 2).

Our finding clearly supports the hypothesis that organic
fertilization has positive impacts on SOM, soil organic carbon
storage and sequestration. In this study, the above-ground biomass
was removed from field plots, so there were no crop residues
incorporated into the soil. Thus the input of organic carbon mainly
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Fig. 2. Soil organic carbon storage (A) and sequestration (B) in topsoil (0–20 cm)
after 5 years’ different fertilization treatments. CK, without any fertilizer; NPK, 100%
chemical fertilizer; NPKM1, 25% cattle manure compost combined with 75%
chemical fertilizer; NPKM2, 50% cattle manure compost combined with 50%
chemical fertilizer; NPKM3, 75% cattle manure compost combined with 25% of
chemical fertilizer; CM, 100% cattle manure compost. Values are reported as
means � standard deviations, n = 3. Bars with different letters in the same graph
show significant differences at P � 0.05.
came from root biomass and CMC (Table 2). After 5 years of
fertilizer managements, the SOM in all plots increased. However,
for NPK and CK, the SOM increased slightly, with the former being
higher. A 9-year experiment (2000–2008) indicated that long-term
mineral fertilizer applications slightly increased SOM content in
the same plot, however SOM decreased in plots without fertilizer
application (Celik et al., 2010). It was once reported that carbon
input was significantly increased from root biomass under the N
treatment compared with the CK; however, neither organic carbon
concentration nor carbon storage was significantly changed under
the merely N treatment (Lou et al., 2011). These results indicate
that root biomass as carbon source input does not significantly
affect the changes in the soil organic carbon storage. Nevertheless,
still some argued that significant increases in organic carbon
concentration or storage might also happen under chemical N
fertilization alone management (Verma and Sharma, 2007; Olsson
et al., 2005; Purakayastha et al., 2008). Those differences seem to
mainly depend on the added N rate, the crop residue management
and the tillage regime (Raun et al., 1998; Su et al., 2006).

In our investigation here, significant and positive correlations
were noted between CMC and SOM (Table 3), indicating the carbon
supplementation occurred to soil with the manure compost. CMC
alone or combined with CF significantly increased SOM, which
generally increased before the soil is C-saturated (Table 2 and
Fig. 2). Therefore, organic manure might be the most important
carbon source to restore SOM.

3.2. Soil bulk density and soil water content

Organic materials have low bulk density and higher porosity, so
the mixing of organic materials with denser mineral fractions of
soils causes a decrease in bulk density (Martin and Stephens, 2001;
Bronick and Lal, 2005). Decrease in bulk density and increase in
SOM with organic fertilizer applications have been also reported in
different soils at different application rates (Zebarth et al., 1999).
However, most of former investigators did not consider the total N,
P, K from the organic manure and inorganic fertilizer uniform
Table 3
Pearson correlations of soil organic matter, soil bulk density, soil water content, soil
total N content and earthworm density with cattle manure compost input after
5 years’ fertilization managements respectively.

Soil layer Correlation coefficient

Soil organic matter 0–20 cm 0.989a

Soil bulk density 0–10 cm �0.939a

10–20 cm �0.965a

Soil water content 0–10 cm 0.840a

10–20 cm 0.870a

Soil total N content 0–20 cm 0.872a

earthworm density 0–20 cm 0.950a

a Correlation is significant at the 0.01 level (2-tailed).
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among treatments. We here conducted the experiment on the base
of the same total N, P, K application rate, thus proved the
functioning of organic manure in decreasing soil bulk density more
clearly.

Different fertilizer managements significantly (P � 0.05) altered
the soil bulk density at either soil depth 0–10 cm or 10–20 cm. The
lowest soil bulk density (1.33 g cm�3) was observed at 0–10 cm
depth with only CMC application, while application of merely CF
had no significant effect on bulk density. The more CMC and less CF
applied, the lower soil bulk density became (Fig. 3). Our findings
confirmed that on the base of the same total N, P, K application rate,
soil bulk density is significantly and inversely related to the
changes in CMC input (Table 3). The effects of organic fertilizers
alone or combined with CF were similar at 10–20 cm depth, except
that CF resulted in statistically (P � 0.05) lower bulk density value
than that of unfertilized soil (Fig. 3), which may be due to higher
root biomass in the well-fertilized soils.

The 5 years fertilization treatments also had varying and
statistically significant effects on soil water content. The water
content in the plots fertilized with CF alone was the lowest at both
soil depths (0–10 cm and 10–20 cm) (Fig. 4). It increased along with
the ratio of CMC input increased, with a series being CM > NPKM3 >
NPKM2 > NPKM1 > NPK. The water content in the plots only
fertilized with CMC was the highest, and significantly differenced
(P � 0.05) with CK and NPK (Fig. 4). Application of CF alone
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Fig. 6. Earthworm density, earthworm biomass and individual weight in the topsoil (0–20 cm) after 5 years’ different fertilization treatments. CK, without any fertilizer; NPK,
100% chemical fertilizer; NPKM1, 25% cattle manure compost combined with 75% chemical fertilizer; NPKM2, 50% cattle manure compost combined with 50% chemical
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decreased the stability of macro-aggregates and moisture reten-
tion capacity (Celik et al., 2004; Liu et al., 2013), however, manure
application could improve the mean weight diameter of aggre-
gates, total porosity and water holding capacity of soils (Rasool
et al., 2008; Karami et al., 2012). Our findings clearly support that
animal manure can well improve soil moisture conditions, as
noteworthy and positive correlations being found between CMC
input and soil water content (P � 0.01) (Table 3).

3.3. Soil total N content

Fertilizer management also showed statistically significant
effect on soil total N content (Fig. 5). Significant and positive
correlation (P � 0.01) was also observed between CMC input and
soil total N content (Table 3). Without any fertilizer such as in the
case of CK, the soil total N decreased by 24% compared to the initial
value in 2009. The soil total N in the plots treated with only CF
slightly decreased by 8%. However, the soil total N in the plots
fertilized with CMC alone or combined with CF increased in
varying degrees (Fig. 5).

At the same total N, P, K application rate, when the ratio of cattle
manure compost increased, the soil total N in the topsoil (0–20 cm)
also increased, with the trend being CM > NPKM3 > NPKM2 >
NPKM1 > NPK. When the ratio of CMC input was more than
50%, the soil total N content was significantly greater (P � 0.05)
than those treated with merely CF (Fig. 5), but the average annual
yield in NPK treatment was not significantly greater than these
treatments (Table 2). These results indicated that application of
organic manure alone or combined with CF could increase nitrogen
use efficiency. Our findings are similar with another report lasting
six years in the paddy soil derived from Quaternary red clay in
Hunan Province of Southern China, which reported that applica-
tion of organic manure or organic manure combined with CF could
greatly increase nitrogen use efficiency (Xu et al., 2008). This may
be partially due to a slow release of N from manure (Liu et al., 2013)
and reducing N2O emissions from compost in combined with urea
(Ding et al., 2013).

3.4. Earthworm activity

We found that fertilizer management had statistically impor-
tant effect on earthworm density, earthworm biomass, individual
weight and species (Fig. 6). There was significant and positive
correlation between CMC input and earthworm density (P � 0.01)
(Table 3).

Two main species, Eisenia foetida and Pheretimaguillelmi, were
noted in the plots. Without any fertilizer, there were still some
earthworms in the plots, however, after 5 years CF (375.0 kg
N ha�1 yr�1, 92.4 kg P2O5ha�1 yr�1 and 316.3 kg K2O ha�1 yr�1)
alone application, no earthworms were found in the summer
surveying (13 June, 2014) and only a few big E. foetida appeared in
autumn (9 October, 2014). When the ratio of CMC input increased,
the total earthworm density and total biomass, the density and
biomass of E. foetida increased correspondingly, with the trend
being CM > NPKM3 > NPKM2 > NPKM1 > NPK. The individual
weight of E. foetida was found to increase at first, and then
decrease. The density, biomass and individual weight of P.guillelmi
increased at the beginning, and decreased later on. The density,
biomass and individual weight of P.guillelmi were the greatest in
NPKM3. These trends were almost the same between both
surveying times of June and October (Fig. 6). These results
revealed that CF application alone had negative effects on
earthworms, while CMC alleviated such negative effects, with E.
foetida preferring more manure than P. guillelmi. In CK, earthworm
density and biomass and individual weight on 9 October, 2014 were
much larger than that on 13 June, 2014. This might because the soil
was much wetter during maize growing period (from middle June
to October, 2014) than wheat growing period (from October,
2013 to June, 2014), and the wet soil was better for earthworm to
grow and reproduce.

A study conducted in a high production field in Huantai County,
China’s northern plain, reported that the biomass of the
earthworm decreased with the application of merely CF (Cao
et al., 2004). However, another report found inorganic fertilizers
had positive effect on earthworms, which might be realized by
increasing the amount of plant biomass, thereby increasing their
food supply (Edwards and Lofty, 1982). Decreased CF with
increasing organic fertilizer compost resulted in higher SOM
content which could increase earthworm activity, and in turn,
earthworms increased SOM level by incorporating surface organic
manure into the soil (Hendrix et al., 1992; Lee, 1985). Our study
confirmed these findings (Table 2 and Fig. 6). It therefore
strengthens the importance of organic manure compost applica-
tion in restoring soil quality especially soil biodiversity.

4. Conclusions

On the base of the same total N, P, K application rate, soil organic
matter, soil water content, soil total N content and earthworm
density were significantly and positively (P � 0.01) related to cattle
manure compost (CMC) input, while there was significantly
negative correlation between soil bulk density and CMC input.
The average annual yield remarkably increased in CMC combined
with chemical fertilizer (CF) compared with CK, but showed no
significant differences among fertilizer managements. The highest
yield occurred in the plots fertilized with 25% CMC combined with
75% CF. Applying merely CF not only led to the lower SOM, water
content and total N content, but also had negative effects on
earthworm population, while CMC alleviated such effects.
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