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a b s t r a c t

This work attempts to provide insight into the problem of executing discrete event simu-
lation in a distributed fashion. The article serves as the state of the art in Parallel Discrete-
Event Simulation (PDES) by surveying existing algorithms and analyzing the merits and
drawbacks of various techniques. We discuss the main characteristics of existing synchro-
nization methods for parallel and distributed discrete event simulation. The two major cat-
egories of synchronization protocols, namely conservative and optimistic, are introduced
and various approaches within each category are presented. We also present the latest
efforts towards PDES on emerging platforms such as heterogeneous multicore processors,
Web services, as well as Grid and Cloud environment.
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1. Parallel discrete-event simulation

With the computing power and advanced software available today, modeling and simulation has become a cost-effective
tool for detailed analysis of a broad array of natural and artificial systems. Parallel and distributed simulation is widely ac-
cepted as the technology of choice to speed up large-scale discrete-event simulation and to promote reusability and inter-
operability of simulation components. Parallel Discrete-Event Simulation (PDES) has received increasing interest as
simulations become more time consuming and geographically distributed. A rich literature has already been developed in
the last three decades, taking advantage of the increasing availability of highly parallel and distributed computing platforms.
It has been several years since the last survey by Perumalla [5] and a refreshed review of the latest developments would be
needed for us to ponder new research initiatives, especially on emerging platforms such as many-core processors, Internet-
scale simulation environments, and cloud-based virtualized infrastructures.

In parallel and distributed simulations, the entire simulation task is divided into a set of smaller subtasks with each exe-
cuted on a different processor or node. Hence, the simulation system is viewed as a collection of concurrent processes, each
modeling a different part of the physical system and executing on a dedicated processor in a sequential fashion. These pro-
cesses communicate with each other by exchanging time-stamped event messages. An event refers to an update to simula-
tion system state at a specific simulation time instant. Throughout the simulation, events arrive at destination processes, and
depending on the delivery ordering system of the simulation, they are processed differently. The two commonly used order-
ings are (1) receive-order and (2) timestamp-order. With the first type, events are delivered to the destination processes
when they arrive at the destination. On the other hand, with the timestamp-order, events are delivered in non-decreasing
order of their timestamp, requiring runtime checks and buffering to ensure such ordering.
. All rights reserved.
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Fig. 1. Causality error scenario.
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In discrete-event simulation, the operation of a system is represented as an ordered sequence of events, where each event
occurs at an instant in time. A Parallel Discrete-Event Simulation (PDES) consists of Logical Processes (LPs) acting as the sim-
ulation entities, which do not share any state variables, and interact with each other merely through exchanging time-
stamped event messages [1]. Each LP maintains a clock to advance its simulation time, coordinate the events’ delivery, and
assign a timestamp to those events it sends out to other LPs. In general, each LP is mapped to a physical processor of a parallel
computing system, but if the number of LPs exceeds the number of available processors, multiple LPs are mapped to a single
physical processor. The LPs that are allocated on the same processor typically maintain a single Future Event List (FEL) to sche-
dule event execution in a sequential manner. The major challenge in PDES is being able to produce exactly the same results as
in a sequential execution of the simulation program. This requires a precise and accurate synchronization of all the LPs in the
system since data and computation distribution may result in different errors related to the concurrent processing of the sim-
ulation messages. Synchronization among these LPs is violated when one of the LPs receives an out of order event. An event is
said to be out of order, if it is received in the past (i.e. the arrival time of the event is older than the current clock time of the
recipient LP). Such violation is referred to as causality error. Fig. 1 exemplifies a causality error where two LPs, each with one
event in its input queue, process their events simultaneously. When LP1 executes event e1 (whose timestamp is 1), it gener-
ates and sends a new event message e2 to LP2 (with a timestamp of 2). However, at this time, LP2 has already processed e6 and
advanced its local clock to 6. Consequently, the arrival of e2 at LP2 violates causality, and an error occurs.

To ensure correct synchronization, a PDES system must satisfy the following necessary and sufficient condition, termed as
the Local Causality Constraint by Fujimoto [2].

Local Causality Constraint: A discrete-event simulation, consisting of LPs that interact exclusively by exchanging timestamped
messages obeys the local causality constraint if and only if each LP processes events in non-decreasing timestamp order.

To satisfy the local causality constraint, different synchronization techniques have been proposed for PDES systems which
generally fall into two major classes of synchronization: conservative, which strictly avoid causality violations; and optimistic,
which allow violations and recover from them. In the past three decades, numerous approaches have been proposed by dif-
ferent researchers in this field. A number of surveys can be found in the literature which summarize both conservative and
optimistic techniques [1–5]. This paper reviews the classical and recent efforts in the field of parallel and distributed syn-
chronization mechanisms. The paper is organized as follows. Section 2 introduces the conservative synchronization method
by classifying different conservative techniques into four categories: deadlock avoidance, deadlock detection and recovery,
synchronous operation, and conservative time windows. It also surveys a variety of conservative protocols, comparing them
with one another, and presenting various extensions to some of the researches in the area. Section 3 covers the optimistic
synchronization method by introducing the key concepts and techniques proposed in the past three decades, with an
emphasis on essential topics such as memory management, cascaded rollback, event management, and dynamic process
migration. Section 4 discusses recent efforts toward PDES on emerging platforms such as Web services, clouds, and heter-
ogeneous multicore processors. Section 5 presents some of the popular PDES environments followed by a summary of hybrid
synchronization techniques. Section 6 concludes the paper with a discussion on future research directions.
2. Conservative synchronization algorithms

As discussed in the previous section, conservative synchronization algorithms strictly avoid any occurrence of causality
errors. To do so, the LP is blocked from further processing of events until it can make sure that the next event in its local
Future Event List has timestamp smaller than the arrival time of any event that might be arriving at the LP in future. The
main issue of any conservative parallel simulator is determining if it is safe for a processor to execute the next event. To deal
with this issue, several techniques have been proposed which are further classified into four categories: methods with dead-
lock avoidance, deadlock detection and recovery, synchronous operation, and conservative time windows.
2.1. Synchronous operation

The first techniques developed for solving these problems proposed different centralized and decentralized mechanisms
for implementing global clocks, and they used synchronous operations for the parallel discrete-event simulations. In [6] the
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authors proposed a centralized mechanism with one dedicated processor controlling a global clock (which represents the
global virtual time of the simulation). Under that scheme, all the LPs’ local clocks are kept at the same value at every point
in real time, and the simulation proceeds according to this global clock, which is advanced based on the minimum timestamp
of all possible next events. Peacock et al. [7] introduced the distributed implementation of such a global clock, which was
used by [8] on a hierarchical LP structure to determine the minimum next event time. The min-reduction operation [9] used
a hierarchical LP organization. In this method, the minimum timestamp is moved to the root of a process tree, and it is then
propagated down the tree. The Distributed Snapshot Algorithm [10,11] proposed a method to avoid the bottleneck of a cen-
tralized global clock coordinator by enabling the processes to record their own states and the states of the communication
channels. In this way, the set of process and channel states recorded conform a global system state.

Three efficient algorithms for global snapshots in large distributed systems are presented in [12,13]. The proposed algo-
rithms (a grid-based, a tree-based, and a centralized) overcome the issue of scalability of other existing global snapshot algo-
rithms. Experiments showed that the proposed mechanisms significantly reduce the message and space complexity of a
global snapshot.

In general, synchronous protocols decompose the simulation into two phases: (1) processing safe events, (2) performing
global computations to determine such events. Unlike the detection and recovery methods that will be discussed in the fol-
lowing sections, synchronous mechanisms are deadlock-free. However, they continuously suspend and restart the simula-
tion. In contrast, a major disadvantage of detection and recovery method is that during the period leading up to a
deadlock, the execution may be largely sequential, leading to limited speedup.

2.2. Deadlock avoidance

The first asynchronous parallel simulation protocol was a conservative technique developed independently by Chandy
and Misra [14], and Bryant [15]. In the CMB Chandy–Misra–Bryant (CMB) algorithm, LPs are assumed to be connected stat-
ically via directional links. LPs communicate through timestamped messages, also called event messages, which are transmit-
ted from one LP to another, in non-decreasing timestamp order. This guarantees that the timestamp of the last message
received on an incoming link is a lower bound of any future event messages that will be received later. At each LP, there
is a queue associated with each incoming link that is used to store incoming messages in FIFO order. Each link has its
own clock which is equal to the timestamp of the first message in the queue (if there is one), or the timestamp of the last
received message (if the queue is empty). The LP repeatedly selects the queue with the smallest clock and, if the queue is not
empty, processes the first message available. If the queue is otherwise empty, the LP blocks until a message arrives at the
queue, which updates its clock value of the incoming link. Afterwards, the LP selects a new queue with the smallest clock
and the procedure is repeated.

Since an LP may block on an empty link, deadlocks may occur in the case of a waiting cycle. The CMB mechanism avoids
deadlocks by introducing the notion of null messages, which are for synchronization purposes only and do not represent real
activities in the model. A null message is a promise about the earliest message that will arrive in the future. When an LP
receives such a null message, it advances the clock value associated with the link, and, if possible, it progresses by processing
events that are waiting in other queues. If processing is not possible, it propagates the time carried by the null message and
other time advancements to its successors by sending out more null messages through its outgoing links. The essential part
of this mechanism is determining the null message timestamp. This lookahead value defines the degree to which LPs can look
ahead and predict future events.

Since each incoming link defines the lower bound for the next unprocessed event, a good measure for the lookahead value
can be the minimum among all incoming links’ clocks plus the LP service time. In fact, the lookahead represents a lower
bound on the timestamp of the next outgoing message. Every time the LP finishes processing an event, it sends a null mes-
sage on each of its outgoing links to report this bound. When an LP receives a null message, it calculates a new bound based
on the information it receives and passes it to its neighbors, and so on. The lookahead can also be determined by the pro-
grammer statically. It has been shown that the larger the lookahead, the better is the performance of the algorithm [5,16].

The conventional null-message approach to resolving the deadlock problem in conservative simulation may lead to a live-
lock if lookahead cannot be guaranteed. Livelock can occur if the cycle lookahead sums to zero. A number of solutions have
been proposed to resolve deadlock and livelock problems. For instance, a priority assignment method was proposed in [18]
resolving the deadlock problem. With such a scheme, a higher priority is given to the execution of departure event whenever
a departure time is equal to a null message indicator. Using this priority scheme in the event scheduling, a process will pro-
ceed with the simulation instead of keep sending null messages to other processes.

In order to increase the set of safe events, a global reduction computation can be used to derive a Lower Bound on the Time-
stamp (LBTS) among the events that can be received by a LP in the future (i.e., the minimum timestamp of the next future
event in the entire simulation system). With such information, each LP can safely process any pending events with a time-
stamp smaller than the LBTS value [4,53]. One of the challenges of time synchronization protocols is the transient message
problem [2]. A transient message is a message that has been sent but not yet received by the intended recipient. Fig. 2 illus-
trates the transient message problem.

Transient messages are a problem if asynchronous message sends are allowed; that is, the sender is permitted to continue
execution after sending a message to another processor without waiting for an acknowledgment from the recipient of the
message. The LBTS protocol deals with transient messages by defining the LBTS to be the minimum timestamp on any



Fig. 2. Transient message problem. PA needs to take into account the transient message (with timestamp 10) coming from PB, which is received after a later
message (with timestamp 15) had arrived from PB.

S. Jafer et al. / Simulation Modelling Practice and Theory 30 (2013) 54–73 57
outgoing message that can possibly be received in the future. Another solution to transient message issue is using message
counters, where each processor maintains two local counters indicating (1) the number of messages it has sent, and (2) the
number of messages it has received. A system is said to be transient message-free if (1) all of the processors have reached a
point where no more new messages are produced, and (2) the sum of all of the send counters across all of the processors is
equal to the sum of the receive counters across all of the processors.
2.2.1. Variations of CMB
The CMB algorithm can produce many null messages, degrading the performance of the simulation. Since its original

implementation, numerous approaches have been proposed aiming at reducing the number of null messages. Here, some
of the variations on the CMB approach that deal with this issue are presented.

The SRADS (Shared Resource Algorithm for Distributed Simulation) protocol by Reynolds [17] was the first on-demand
null message-based method designed primarily for deterministic models where potential message arrival times are predict-
able. In SRADS, when a receiving link with the smallest timestamp runs out of messages to process, which indicates a process
is about to block, a request next message is sent only to the link at the sending side of the link. This, however, introduces per-
formance limitations since the time taken to receive a null message by request is doubled due to request transmission and
send transmission. Another on-demand null message technique is the demand-driven null message protocol [19], which
avoids the aggressive distribution of null messages by enforcing LPs to send null messages only when they are asked to.
All synchronization messages are of fixed size and independent of the number of processors.

Misra [20] and Peacock et al. [21] also revisited the CMB mechanism by imposing the idea of sending null messages on
demand rather than after each event. Nicol and Reynolds [22] used a variation of this approach for distributed simulations
with shared resources. Su and Seitz [23] investigated a family of variants of the basic CMB algorithm to speedup gate-level
simulations on an Intel iPSC computer. They focused on reducing the volume of null messages by deferring sending outputs
and packing the information into fewer messages.

Other approaches to null message generation, including generation after a time-out and generation using stimulus nulls
were introduced in [24]. The purpose of the null message after a time-out algorithm is to reduce the system overhead of
processing null messages by reducing the actual number of null messages transmitted between LPs. The null messages
are transmitted only after a specified amount of real clock time, the time-out value. It was shown that when the time-out
value increases, fewer null messages are generated, thus reducing overhead. In contrast to the null message with time-
out algorithm, the stimulus null variation added, rather than eliminated, null messages. Stimulus null messages are gener-
ated and transmitted after the execution of a given number of internal events, specified as a ratio between the events and the
stimulus nulls. These nulls are in addition to any nulls normally generated, and they give the receiving LPs an earlier indi-
cation of time progression (when compared to the original CMB null message algorithm). Consequently, there is a greater
potential to execute the simulation faster.

Although demand-driven protocols reduce the amount of null message distribution, in return, the delay associated with
receiving null messages increases because two messages are required. The carrier-null message algorithm introduced by Cai
and Turner [25] reduces the number of CMB null messages and it increases the lookahead ability by exploring the simulation
network topology. A carrier-null message includes extra information, in particular, the message route. This carrier informa-
tion is a record of all LPs visited by the carrier-null message since its creation. This information allows individual LPs to ad-
vance their simulation clocks while keeping the null message traffic low. The carrier-null message scheme only supports
simulations with certain communication graphs such as those with nested cycles. Wood and Turner [26] extended the car-
rier-null message approach by proposing a generalized carrier-null method to support arbitrary graphs. In [27] the null mes-
sage cancellation protocol was investigated, and the impact of the cancellation of spare null messages was examined. Under
this protocol, a null message is discarded before being receipt if it is overrun by a message with a larger timestamp. The
empirical results showed how the impact of null message cancellation is affected by the lookahead of the LP. Porras et al.
[28] improved the CMB algorithm by using null message cancellation, simulation loop optimization, and multicasting tech-
niques. Their algorithm, named Simloop reduces the number of null messages and improves the execution of messages by
allowing simulation of multiple messages instead of a single message.
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Naroska and Schwiegelshohn’s Critical Process First (CPF) algorithm [29] is also a non-blocking CMB-based technique that
is especially well-suited for simulating complex VLSI designs with many logical processes. The algorithm avoids deadlock by
repeatedly sending lookahead information about critical processes to other nodes. A process is called critical if it directly af-
fects one or more processes residing on another node. In order to reduce communication overhead, the CPF technique assigns
execution priority to the events which may influence critical processes. Higher performance was reported with CPF algo-
rithm compared to deadlock avoidance approaches without priority handling.

The CMB-SMP (Shared memory Multiprocessors) protocol [29], is another extension to CMB asynchronous simulation
protocol. It is an efficient protocol that is customized for shared memory multiprocessor systems. To improve performance,
simulation objects are partitioned to form LPs with the objective of achieving load balancing and maximum lookahead (be-
tween LPs). These LPs are then mapped to the processor and stay at the same processor throughout the simulation. However,
this particular approach does not guarantee good performance, especially when the model exhibits dynamic behavior. The
dynamic nature of the model makes load estimation difficult and in turn restricts the performance of the parallel simulation.

The Critical Channel Traversing (CCT) algorithm [30] extended the CMB algorithm with the addition of rules that determine
when to schedule an LP for event execution. CCT attempts to schedule the LPs with the largest number of events that are
ready to execute. This is accomplished through identifying critical channels. The CCT algorithm was implemented along with
a simulation kernel called TasKit, designed for high performance simulation on small to medium sized shared memory multi-
processors. The algorithm provides multi-level scheduling by allowing scheduling large grains of computation even in very
low granularity models. In [31], two new versions of the CCT algorithm were presented. The first one, called simple sender
side CCT, differs from the original in the elimination of busy waiting. Consequently, it avoids the performance problems that
can be caused by busy waiting. The second algorithm, called receive side CCT, uses a different strategy for updating channel
clocks and scheduling objects connected to critical channels. Receive side CCT reported better scaling with respect to the
connectivity of the model, but at the cost of additional overhead for low connectivity models.

Boukerche and Das [32] proposed a null message algorithm that reduced the overhead of null messages using load bal-
ancing. The synchronization protocol is a variation of CMB null messages combined with a load-balancing algorithm that
assumes no compile time knowledge about the workload parameters. The algorithm is based on a process migration mech-
anism, and the notion of the CPU-queue length, which indicates the workload at each processor. In addition, they presented
two variations of the algorithm: a centralized, and a multi-level hierarchical method.

Other null message reduction algorithms that have been proposed use a generic mathematical model to approximate the
optimal values of the parameters that are directly involved in the performance of a time management algorithm [33].
Thomas et al. [34] proposed another null message reduction algorithm based on grouping and status retrieval by determining
an optimum value of the lookahead.

There have been varied efforts trying to improve the lookahead computation. For example, in [35] the authors presented a
method where the compiler automatically extracted information about the lookahead present in the application. The lock-
free algorithm [36] is another conservative scheduling technique implemented for shared-memory multiprocessor machines,
which uses fetch&add operations to avoid the inefficiencies associated with using locks. The authors show that compared
with lock-based scheduling algorithms, the lock-free algorithm exhibits better performance when the number of logical pro-
cesses assigned to each processor is small or when the workload becomes significant. However, due to the overhead spent for
extra bookkeeping, only modest performance gain is achieved for a large number of logical processes. Solcany and Safarik
[37] presented a user-transparent conservative parallel simulator that allows users to build simulation models with look-
ahead transparently. To do so, they analyze the conditions for cumulating the lookahead of entities inside the same LP,
and using this information they derived a mechanism to calculate such cumulated lookahead based on the Dijkstra’s shortest
path first algorithm. Chung and Kyung [38] proposed a scheme for the prediction of the software execution path in order to
extend the lookahead computation for parallel multiprocessor simulation. They used templates for predicting the program
execution path, which are generated by software analysis. Then, a processor model obtains the lookahead by evaluating the
templates at simulation time. The proposed method aggressively extends the lookahead of null messages by executing the
path prediction of the software application dynamically.

Other studies have devised and compared variants to the CMB algorithm by evaluating the performance of the algorithms
for inefficiencies and overhead. Curry et al. [51] studied the performance of systems using a sequential Centralized Event List
(CEL) and compared the results with those of CMB. In their experiments, the performance of a CMB-based system was com-
pared with three CEL implementations namely the heap, splay tree, and calendar queue for a particular workload model. The
results showed that both the number of instructions executed and the cache behavior have significant impact on the perfor-
mance, and the superior cache performance was able to make up for a larger number of instructions executed. The perfor-
mance of a CEL-based parallel discrete-event simulator was studied using a benchmark called DEVStone [187] that generates
a suite of models with varied structure and behavior automatically. Park et al. [39] compared the performance and scalability
of a lazy null message algorithm with global reduction approaches. They suggested that, for scenarios simulating scaled net-
work models with constant number of input and output channels per LP, the lazy null message algorithm offers better sca-
lability than efficient global reduction based synchronous protocols. Bagrodia and Takai [40] studied the performance of
three diverse conservative algorithms implemented in Maisie: a synchronous algorithm (conditional event), an asynchro-
nous algorithm (with null messages), and a hybrid algorithm (ANM – Accelerated Null Message) that combines features from
the preceding algorithms. Maisie models were developed for standard queuing network benchmarks, and various configu-
rations of the model such as model connectivity, computation granularity, load balance, and lookahead were executed using
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the three different algorithms. Song et al. [41] discussed an empirical study of conservative scheduling by examining several
heuristics that help in identifying critical events. They presented a performance study comparing several scheduling algo-
rithms based on an LP’s next event timestamp, safe time, or local simulation clock. In [43], a performance evaluation of a
CMB protocol was investigated. They analyzed the performance and behavior of each logical process, and showed that, in
the same simulation, different LPs can show different performance. The analyses were performed by adding software mon-
itors to the simulation code. The monitors computed some metrics whose values were used to estimate the performance of
each logical process in execution time. Jafer and Wainer [42] proposed a variation of the CMB algorithm, called, Global Look-
ahead Management (GLM) protocol for calculating a global lookahead. The GLM protocol which borrows the idea of safe pro-
cessing intervals from the conservative time window algorithm and maintains global synchronization in a fashion similar to
the distributed snapshot technique. Under the GLM scheme, a central lookahead manager exists on LP0 which is in charge of
receiving every LP’s lookahead, identifying the global minimum lookahead of the system, and broadcasting it via null mes-
sages to all LPs. The simulation is divided into cycles of two phases: Parallel phase and Broadcast phase. This implies that the
LPs are no longer required to send their lookahead information directly to each other; rather, they send their lookahead via
null messages to the LM. Liu and Li [180] examine a parallel processing method for simulations of large-scale networks using
a hybrid model. Their method benefits from the observation that the time it takes to propagate fluid characteristics along the
path taken by the traffic flows has a lower bound equal to the minimum link delay computed using the ordinary differential
equations (ODEs). Thus, better lookahead can be achieved compared to that of the corresponding discrete-event packet-ori-
ented model.
2.3. Deadlock detection and recovery

Another approach for conservative synchronization is to allow deadlocks to occur, and to provide a mechanism to detect
and recover from them. This approach eliminates the use of null messages and the overhead associated with their commu-
nication traffic. Deadlock is broken by allowing to processing the event with the smallest timestamp. Chandy and Misra [44]
proposed an asynchronous distributed simulation approach via a sequence of parallel computations. Their approach did not
use a global clock nor did they use a single process to drive the simulation. Rather, to avoid bottlenecks, they use a special
process, called the controller, which synchronizes the LPs when the simulation deadlocks. Under that scheme, the simulation
is divided into a sequence of computations: the parallel phase and the phase interface. The controller is only responsible for
detecting the termination of one phase and initiating the next one.

One approach to determine safe events is to perform a set of distributed computations across all the LPs. The Critical Path
Analysis algorithm (CPA) [44,45] generates an acyclic event-dependency graph by tracing the events in the simulation. The
critical path is calculated as the longest event path in the event graph, and its related time is considered as the lower bound
on the execution time of the simulation. Srinivasan and Reynolds [46] mention that the conservatism of the CPA is relaxed in
the sense that it only considers the dependency among events, requiring each LP to know exactly what the next event is, and
when does it arrive. This is not ideal since events in a parallel simulation are unpredictable at runtime. The State Causality
Analysis algorithm (SCA) [46,47] overcomes the limitation of CPA by focusing on the dependency of the logical process states,
rather than on unpredictable events. This technique takes into consideration the effect of many algorithm independent fac-
tors, such as lookahead, I/O overhead, physical transfer delay, processor speed, and event distribution.

Groselj and Tropper [48] proposed the time-of-next-event (TNE) algorithm for situations where multiple LPs reside on a
single processor. TNE relies upon a shortest-path algorithm and increases parallelism by computing the largest lower bound
of all LPs independently on every processor. The advantage of this approach is that it does not rely on message passing to
distribute the lookahead information; rather, the algorithm is executed on each LP independently. A deadlock recovery algo-
rithm is used to resolve inter-process deadlocks. Boukerche and Tropper [49] presented an extension to TNE, namely SGTNE
(Semi Global TNE), whose goal was to exploit lookahead information from both the local and the neighbor LPs (unlike TNE
where only LPs within a process are used to unblock an LP). Consequently, SGTNE outperforms TNE, as it allows a higher
degree of parallelism as well as avoiding inter-process deadlocks.
2.4. Conservative time windows

Lubachevsky [52] was the first to introduce the idea of a moving time window to determine the set of safe events that can
be executed in parallel. Using this approach, a lower edge is defined for the window, based on the minimum timestamp of all
the unprocessed events, and a window size. Any event whose timestamp is within the window size is eligible for processing.
Although this mechanism eliminates the overhead associated to the search for safe events, an important success factor is the
window size. A small window size would decrease parallelism while a large window size would result as if there was no time
window at all. An appropriate window size can be obtained either from the programmer, the compiler, or at runtime by
monitoring the simulation [1]. The Moving Time Windows (MTW) protocol [53] is a relaxed version of Lubachevsky’s ap-
proach where global windows are adjusted dynamically and the events within a window are assumed to be parallel. When
an event with a timestamp earlier than the LP’s clock is received, an anomaly occurs. Ayani and Rajaei [54] show that better
parallelism can be achieved using the Conservative Time Window (CTW), where the global ceiling of the window is elimi-
nated, and allowing different windows to have different sizes.
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Lemeire and Dirkx [55] proposed a hybrid synchronization technique that combined the asynchronous CMB algorithm
with CTW to maximize the lookahead capabilities of a model by using lookahead accumulation. The algorithm exploits max-
imum performance by accumulating lookahead information, and computing it using the global lookahead of the multipro-
cess (LPs residing on a processor). Lin et al. [56] presented a method called micro-synchronization to exploit the parallelism
inside each LP. Unlike the methods of lookahead accumulation [55] and local time warp [57], this technique keeps the tra-
ditional use of lookahead among LPs unchanged, while imposing a relaxed sequential event scheduling inside each LP, which
can statistically increase the lookahead.
2.5. Other conservative protocols

Numerous conservative protocols have been proposed, and some of them are presented here. Several of these protocols
were defined as a combination of synchronous approaches with event-driven clock progression. The idea is to divide the
computation into cycles, in which one first determines the safe events, and then processes all those events. Ayani [58] used
the concept of distance between LPs to determine the safe events. Under this scheme, the distance gives the minimum time it
takes for an event in one LP to directly or indirectly affect another LP (similar to a shortest-path algorithm). This draws a
bound on when should an LP expect an event from its neighbors. Prior to Ayani’s work, Lubachevsky proposed the
bounded-lag algorithm [52] which also took advantage of the propagation delay between LPs to exploit lookahead [59].
The algorithm used a time interval (called the time lag) in order to compute a set of LPs that can affect a given LP within
the lag interval.

The conditional event protocol [60] categorized events into two types: definite, and conditional. Definite events are sched-
uled locally, while conditional events require communication among all LPs to determine the earliest conditional event glob-
ally (which is then converted into a definite event). Nicol [61] used a similar idea based on synchronization barriers and
introducing time windows with the restriction that all events within a window are safe to process. Similar to the conditional
event approach, global computations are conducted to determine the time of next synchronization point.

Nicol and Liu [62] proposed a composition strategy by combining the synchronous barrier synchronization (global) with
channel scanning (local) synchronization protocols to allow tailoring the synchronization mechanism to the model being
simulated. Their attempt to combining synchronous and asynchronous approaches allows using one method in part of
the model where the other method is weak. Using this approach, the effect of high connectivity is limited by making most
of a node’s channels synchronous. On the other hand, by making channels with low lookahead asynchronous, the effect of
unusually low lookahead is limited.

The success of all the conservative synchronization algorithms presented in this section largely depends upon the ability
to predict the future, in terms of the lookahead or LBTS [1]. In order to achieve acceptable performance, this, in turn, requires
an effective use of application-specific information such as the topological structure of the network of LPs, the characteristics
of the communication network, and the underlying model behavior. A side effect of this requirement is that a seemingly
minor changes to the model could affect the simulation performance dramatically, hindering the robustness of the applica-
tion [2]. Perhaps the most prominent drawback of conservative approaches is that they often cannot fully exploit the poten-
tial parallelism available in a simulation, especially when the estimated lookahead or LBTS values are overly pessimistic and
when global synchronizations are performed too frequently in the synchronous execution mode. The optimistic synchroni-
zation algorithms introduced in the following sections do not have any of these problems. Nonetheless, when the application
characteristics are favorable, conservative approaches can reduce the execution time significantly with moderate memory
consumption (see, e.g., [63,64,38]).
3. Optimistic synchronization algorithms

Jefferson’s Time Warp (TW) mechanism [65] was the first and remains the best known optimistic synchronization pro-
tocol. A TW simulation uses virtual time to model the passage of time in a simulation, and it is driven by a set of Time Warp
Logical Processes (TWLPs), each of which has its own Local Virtual Time (LVT) and processes events autonomously without
explicit synchronization. TWLPs differ from ordinary LPs, such as those used in sequential and conservative simulations, in
the way in which the states and events are managed. Specifically, an ordinary LP maintains only one copy of its state (i.e., its
current state), which is updated repeatedly during the event execution. Furthermore, an ordinary LP does not need to keep a
record of past input and output events, allowing the events to be reclaimed immediately after execution. In contrast, each
TWLP needs to manage a history of its past events (both input and output) and states. This includes three data structures: an
input queue that contains input events that are recently arrived from the other TWLPs (sorted in receive timestamp order),
an output queue that holds anti-messages that are negative copies of the recently sent output events (sorted in send time-
stamp order), and a state queue that stores the recent states of the TWLP. As will be discussed shortly, the historical data
saved in these queues cannot be discarded until it is guaranteed that no event with a smaller timestamp can ever be received
by any TWLP in the system. Hence, in a TW simulation, the events and states are considered as persistent in the sense that
they continue to exist in the queues for a while after having been processed or updated by the TWLPs.

A causality error in these algorithms is manifested by the arrival of an event with a timestamp (i.e., receive time) that is
less than the LVT of the receiving TWLP. Such an event is called a straggler event. TWLP recovers from the causality error by



S. Jafer et al. / Simulation Modelling Practice and Theory 30 (2013) 54–73 61
undoing the effects caused by those events processed speculatively during the previous computation. This recovery operation
is known as rollback, during which the state of the TWLP is restored to the one that was saved just prior to the virtual time as
indicated by the straggler’s timestamp.

Since false messages (i.e., those generated during the speculative event processing) may have spread to other TWLPs, they
must be cancelled as well. Cancellation of false messages is achieved by sending the anti-messages previously stored in the
output queues. When an anti-message encounters its positive counterpart in a TWLP’s input queue, they annihilate each
other immediately, thus cancelling the positive one. If the false message has already been processed before the arrival of
the anti-message, the destination TWLP is also rolled back, leading to further propagation of anti-messages in the system.
The rollbacks caused by straggler events are referred to as primary rollbacks, while those triggered by anti-messages are
known as secondary rollbacks. The timestamp of the straggler or anti-message is commonly called rollback time. The roll-
back-handling algorithms constitute the local control mechanism of the TW protocol.

The TW protocol also includes a global control mechanism that requires a distributed computation involving all of the
TWLPs in the simulation system to handle such global issues as memory management, I/O operations, and termination detec-
tion. A key concept behind the global control mechanism is the Global Virtual Time (GVT), which is defined as follows [1].

Definition: Global Virtual Time at wall clock time T (GVTT) during the execution of a TW simulation is defined as the minimum
timestamp among all unprocessed and partially processed messages and anti-messages in the system at wall clock time T.

It has been shown that GVT never decreases, even though the LVTs can be reset frequently during rollbacks [65]. That is,
any TWLP will never receive an event with a smaller timestamp than the current GVT. Moreover, the GVT deals with tran-
sient messages in the same fashion as in the conservative LBTS protocol (see Section 2.5). Therefore, all but the last events
and states saved before the GVT can be discarded safely through a procedure known as fossil collection to free up the memory
occupied by these historical data. In addition, I/O operations scheduled before the GVT can also be committed irrevocably.
Note that the global control mechanism must estimate GVT and perform fossil collection every so often to reduce the pos-
sibility of memory stalls, where the simulation cannot complete because of memory exhaustion. Since the GVT estimation
incurs a significant overhead in terms of processor time and network bandwidth, a trade-off between TW execution effi-
ciency and memory space usage needs to be sought in choosing the frequency of GVT computation [65].

Fujimoto summarized a few advantages of optimistic synchronization algorithms over conservative techniques [50]. First,
optimistic algorithms can generally exploit higher degrees of parallelism, while conservative techniques tend to force a
sequential execution when it is not necessary, especially for models that exhibit relatively small lookahead values. Secondly,
unlike conservative techniques, optimistic algorithms are less reliant on application-specific information for correct execu-
tion, even though execution efficiency can be improved if such information is available. Thirdly, since events are processed in
a non-blocking manner, optimistic algorithms do not suffer from the deadlock problem as asynchronous conservative algo-
rithms do. On the other hand, the persistent storage of historical data and the possibility of cascaded rollbacks in optimistic
simulations could result in performance degradation to a certain extent. In a recent study, Carothers and Perumalla com-
pared the relative performance of conservative and optimistic PDES on a Blue Gene/L supercomputer using up to 16,384 pro-
cessor cores [66]. Through quantitative evaluation of different factors (such as lookahead, event timestamp distribution, and
processor core counts), this study demonstrated that conservative execution can attain better performance for models with
large lookahead on up to 8192 cores, whereas optimistic execution prevails in cases with lower lookahead and on larger
number of cores, indicating better resilience to model lookahead values and scalability with increasing number of
processors.

The TW protocol has been employed in many real-world applications, achieving significant speedups in simulations of
communication networks [67], battlefield scenarios [68], biological phenomena [69], and computer systems [70].

In order to reduce operational overhead and improve the performance of TW-based optimistic simulations, a wide variety
of techniques and optimization strategies have been proposed. While these results are very encouraging, several challenging
issues remain to be resolved to meet the ever-increasing demands and performance requirements in large-scale TW simu-
lation of complex systems. This section evaluates some of the most relevant previous contributions made towards this goal,
with an emphasis on memory management, cascaded rollback, event management, and dynamic process migration in TW
simulations.

3.1. Memory management

It is well known that TW-based optimistic parallel simulation requires more memory space to execute efficiently than an
equivalent sequential simulation [71]. This additional memory space requirement stems mainly from the need for saving
historical input/output events and states in the persistent queues during a simulation. Different memory-conserving tech-
niques have been proposed to reduce memory consumption in TW simulations. One challenge, though, is to maintain
high-performance TW execution without undue overhead even when the system memory is tight.

3.1.1. Fossil collection algorithms
Fossil collection is one way to reduce the possibility of memory stalls in TW simulations. To achieve efficient fossil col-

lection, different approaches have been attempted. For instance, Young et al. proposed an optimistic fossil collection tech-
nique that allows each TWLP to make its own fossil collection decisions based on locally predicted information without
estimating the GVT globally [74]. Introducing optimism to fossil collection comes with a risk in that a TWLP may later be
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rolled back to a previous state that has already been reclaimed in the speculative fossil collection. To make this technique
feasible, a recovery mechanism is used to reconstruct the erroneously reclaimed historical data. The recovery mechanism
employs a distributed algorithm to create consistent checkpoints during a simulation, saving the states of all processes
and inter-process communication channels. While this technique can reduce the cost of GVT computation, it entails extra
overhead for risk prediction and fossil recovery. Young et al. demonstrated that the optimistic fossil collection could achieve
a comparable performance with the GVT-based algorithms [75].

A fossil identification mechanism, proposed by Chetlur and Wilsey [76], also attempts to reclaim fossil data without the
need for GVT estimation. This mechanism uses an extended timestamp structure, known as plausible total clock, to record
the causal relation between events. Based on this causal information, a TWLP may be able to reclaim certain historical data
beyond the current GVT value, thus releasing more memory. However, this approach incurs an additional communication
overhead for transferring extra causal information associated with events. Moreover, it assumes a static TWLP interconnec-
tion topology with certain characteristics.

Vee and Hsu [77] proposed an enhanced fossil collector, referred to as PAL, which can reduce the cost of fossil collection
by prioritizing the TWLPs based on the amount of fossil data they have (thus allowing for more efficient retrieval of fossil
data from the TWLPs). The algorithm also concentrates all committed events in a shared data structure so that the memory
buffers can be reused later in event-saving operations (thus reducing memory allocation and deallocation overhead).

Memory management using fossil collection alone has two main drawbacks. First, fossil collection still constitutes a sig-
nificant overhead in large-scale simulations because the operation needs to handle a large number of TWLPs and a great
amount of fossil data that are usually scattered across the entire simulation system. Secondly, even frequent fossil collection
cannot guarantee the absence of memory stalls if the GVT does not advance sufficiently fast, especially when the simulation
needs to execute a large number of simultaneous events at each virtual time.

3.1.2. Memory stall recovery algorithms
Different approaches aimed to recover from memory stalls in TW simulations have been explored, resulting in the devel-

opment of techniques such as cancelback [71], artificial rollback [72], and pruneback [73]. Both cancelback and artificial roll-
back require a global pool of memory to be shared by all of the TWLPs in the system. All memory requests are granted from
the pool, and the memory released is returned to the pool. They differ in how to deal with situations when the pool runs out
of memory. Under the cancelback mechanism, some future pending events are returned to their original senders, forcing the
sender TWLPs to roll back and release memory. With artificial rollback, the TWLPs with the greatest LVTs (i.e., the most
aggressive ones) are rolled back artificially, releasing memory in the process. The need for a common memory pool, none-
theless, makes these two approaches best suited for shared-memory architectures. On the other hand, the pruneback mech-
anism does allow for recovery from memory stalls on distributed-memory multiprocessors. Instead of using rollback as the
means to memory reclamation, the pruneback mechanism releases the memory occupied by past states in the state queues,
producing an effect that is similar to infrequent state-saving strategies. This technique thus incurs a cost similar to infre-
quent state saving as well. That is, a TWLP may have to roll back further in the past than is necessary, and resume forward
event processing from there (an action called coast forward in the PDES literature). In addition, the pruneback mechanism
targets only past states, while the memory used by past input/output events remains unaffected. All these techniques
attempt to recover from memory stalls at the expense of a time penalty, which can be very high in certain circumstances.

3.1.3. Checkpointing algorithms
Instead of trying to recover from memory stalls, an alternative approach is to save fewer historical data in the first place.

To this end, different checkpointing algorithms have been proposed to reduce state-saving overhead. Some of them, known
as infrequent state-saving or periodic state-saving techniques, focus on reducing the number of states saved in a simulation
(see, e.g., [78]) Others, known as incremental state-saving techniques, try to reduce the amount of data that need to be saved
in each state (see, e.g., [79]). There are also techniques that multiplex different state-saving mechanisms to improve perfor-
mance (see, e.g., [80]). While these techniques can reduce the state-saving overhead, they increase the computational cost in
one form or another. For instance, infrequent state saving requires an extra coast-forward operation with a higher rollback
overhead, while incremental state saving needs to keep track of the changes made to individual state variables with an in-
creased event-processing overhead. Moreover, incremental state saving can improve simulation performance only when a
small portion of the state data is subject to modification during each event execution, making it mainly suitable for simu-
lations such as digital logic circuits [79].

3.1.4. Other memory conserving techniques
Other techniques have also been investigated to reduce memory consumption. A relatively new technique for conserving

memory in optimistic parallel simulation is called reverse computation [81], which allows the LPs to restore their states by
computing the inverse operations for each event being rolled back. It has been shown that reverse computation can achieve a
significant performance improvement in such simulations as queuing network models [81], personal communication service
networks [82], and physical systems [83]. This technique, however, usually requires annotation and manipulation of the
source code at the individual statement level, making it difficult to modify model logic. Although this issue can be alleviated
by using advanced code transformation and compilation tools to generate reverse code automatically, certain destructive
operations (which result in the loss of data) might not be perfectly reversible (e.g., certain bit-wise and floating-point
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operations) [84], thus limiting the applicability of the technique. Furthermore, reverse computation potentially increases the
computational cost during rollbacks, especially when a large number of events need to be processed reversely at the LPs. In a
case study, Perumalla and Seal [183] analyze rollback in a massively parallel optimistic execution of epidemic outbreak by
combining reverse computation with a small amount of incremental state saving, achieving a speedup of over 5500 and
other runtime performance metrics.

The event reconstruction technique proposed by Li and Tropper [85] intends to reduce the overhead associated with event
saving. Based on the observation that the size of events can be very large in some cases, they suggested a method for recon-
struction of both input and output events by comparing the differences between adjacent states saved in the state queues.
Significant performance gain has been reported for VLSI simulations, yet it is recognized that this method works well only in
a certain class of simulations with fine event granularity and small state size.

In [86], the authors proposed a user-controlled state-saving mechanism that allows for efficient and flexible checkpoint-
ing at runtime. With this mechanism, a TWLP can make its own state-saving decisions on an event-by-event basis using
application-level knowledge. A specific type of user-controlled state-saving, referred to as the Message Type-based State-Sav-
ing (MTSS) strategy, was implemented in the PCD++ simulator, so that a TWLP saves its state only for a certain type of events
in DEVS (Discrete Event System Specification) based simulations. This approach reduces memory consumption and state-
saving overhead, while avoiding the need for coast-forward operations during rollbacks. Unlike other infrequent state-saving
techniques, no performance penalty is incurred as the result of saving fewer states. The MTSS strategy was further optimized
in the Lightweight Time Warp protocol [87], which takes advantage of the specific computational properties of DEVS sim-
ulation to improve performance [88,177].

3.2. Cascaded rollback

Rollback propagation can have a significant impact on the performance of optimistic PDES systems. As mentioned earlier,
two types of rollbacks may occur in a TW simulation, namely primary rollbacks and secondary rollbacks. An optimistic syn-
chronization protocol is said to be aggressive if primary rollbacks are allowed, while the protocol is considered to allow risk if
secondary rollbacks are possible. The TW protocol is aggressive and allows risk. In general, both the rollback width (i.e., how
many TWLPs are involved in a rollback propagation) and rollback depth (i.e., how many events are unprocessed by a TWLP
during a rollback) cannot be bounded easily. Without care, this can lead to uncontrolled rollback behavior commonly known
as domino effect, which jeopardizes the stability and scalability of the entire system. A major cause of the domino effect lies in
the need for cancellation of many false messages during secondary rollbacks, which give rise to cascaded rollback where a
large number of TWLPs are involved in the propagation [1].

3.2.1. Optimism control mechanisms
One approach to rollback reduction is through optimism control, which tries to regulate overly optimistic execution. The

Moving Time Window (MTW) algorithm, which puts a bound on the difference in the LVTs of the TWLPs, is an early example
of this approach [53]. Many other techniques for optimism control have been developed over the last two decades. Examples
include the Breathing Time Warp protocol [89], the Global Progress Window algorithm [90], the Elastic Time algorithm [91],
and the Switch Time Warp mechanism [92]. Likewise, varied flow-control and learning based algorithms have been defined
(see, e.g., [93,94]).

In addition, different adaptive algorithms have been used to improve simulation performance by adjusting specific con-
trol parameters dynamically at runtime to influence the degree of optimism (see, e.g., [95,96]).

The basic idea behind all these optimism-limiting techniques is to improve event temporal locality in a TW simulation so
that most of the events processed concurrently have relatively close timestamps. In doing so, these techniques sacrifice the
degree of parallelism to a certain degree. Moreover, these techniques often rely on knowledge of certain aspects of the global
simulation state in order to tune the control parameters, incurring an extra overhead for information collection and analysis
during the simulation.

3.2.2. Event cancellation algorithms
Rollback efficiency can also be improved using different cancellation mechanisms. The original TW protocol adopts an

aggressive cancellation scheme that sends anti-messages immediately when a TWLP is rolled back. The lazy cancellation
mechanism, originally proposed by Gafni [97] and subsequently analyzed by Lin and Lazowska [98], is one of the first at-
tempts to reduce the communication overhead of event cancellation. With this mechanism, the sending of anti-messages
at a TWLP is suspended until its necessity has been verified when events are reprocessed after a rollback. However, cancel-
lation of false messages may be delayed as a result; and additional computation and memory space is required to realize the
lazy cancellation algorithms.

A throttled lazy cancellation scheme has been proposed recently to slow down the spread of potentially incorrect compu-
tation when events are re-evaluated during lazy cancellation operations [99], but only at the expense of increased commu-
nication cost for broadcasting special control messages to block and unblock the TWLPs. This is similar to the mechanism
used in the Wolf Calls protocol originally proposed by Madisetti et al. to contain error propagation in TW simulations
[100]. Furthermore, broadcasting control messages is not without limitations. For one thing, it may block some TWLPs
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unnecessarily. For another, the effectiveness of this mechanism depends on the relative speeds at which erroneous
computation and control messages may spread.

To further reduce the communication overhead of event cancellation, an optimization strategy called early cancellation
can be used to cancel false messages in place in the buffer of a programmable network interface controller [101], which dem-
onstrates the potential of using specialized hardware to improve TW performance, but also limits the utility of the strategy in
TW simulations on general-purpose computing platforms.

Other studies have shown that cancellation performance can be improved by capturing the causal relationship between
events [102]. By exploiting event causal dependency, a proactive cancellation mechanism that can be used to prevent cas-
caded rollbacks was developed [103]. Using a similar strategy, a batch-based cancellation algorithm that allows a TWLP to
recover from a causality error with at most one rollback was proposed [104]. However, this algorithm introduces extra com-
munication overhead for exchanging causal information and rollback histories between TWLPs, as well as additional com-
putation overhead for reclaiming these data during fossil collection.
3.2.3. LP Aggregation techniques
Different LP aggregation techniques have been investigated to mitigate the overhead of event cancellation. One example

is the Local Time Warp protocol proposed by Rajaei et al. [57]. In this protocol, the global simulation space is divided into
several sub-regions referred to as clusters, each of which contains a set of TWLPs. While the TWLPs within a cluster are exe-
cuted optimistically (based on TW), the clusters themselves are synchronized in a conservative fashion, thus preventing false
messages from propagating beyond cluster boundaries. Consequently, cascaded rollbacks and memory stalls need to be han-
dled only locally. However, the Local Time Warp protocol, like many other hybrid approaches that combine both conserva-
tive and optimistic algorithms in a simulation, may suffer from reduced parallelism. Furthermore, it requires careful control
to balance the optimistic local simulation of individual clusters with the global virtual time horizon established by the con-
servative algorithm [105].

The clustered adaptive-risk technique, proposed by Soliman and Elmaghraby [106], is another example that aims to control
the degree of risk in TW simulations. Similar to the Local Time Warp protocol, the TWLPs are grouped into clusters. None-
theless, instead of applying a conservative synchronization protocol at the global level, the technique uses an adaptive algo-
rithm to keep the probability of cross-cluster rollback propagation below a user-defined threshold. This is achieved by tuning
the intervals between the release times of buffered inter-cluster messages based on observed simulation behavior at runtime
(at the cost of additional computation and memory space overheads).

While the above techniques can be used to improve rollback performance, every TWLP in the system is still subject to
rollback operations that are triggered either locally or globally, requiring each TWLP to maintain its persistent event and
state queues, just like in the original TW mechanism.

To enhance the performance of TW-based digital logic simulations, Avril and Tropper [107] introduced a Clustered Time
Warp protocol that uses TW to synchronize clusters of LPs globally, whereas the execution of LPs in each cluster is scheduled
sequentially by a cluster environment. The cluster environment uses a time zone table (to detect changes in virtual time), a
cluster input queue (to receive events from other clusters), and a cluster output queue (to hold anti-messages that might be
sent to other clusters during rollbacks). The rationale behind this approach is that a logic circuit can be partitioned naturally
into different functional units, each of which will then be simulated on a distinct processor. Two types of rollback mecha-
nisms are defined in the protocol, referred to as clustered rollback and local rollback. Under the former mechanism, rollbacks
are handled at the cluster level. When a straggler or anti-message is received by a cluster, all of the LPs included in the cluster
are rolled back together if they have executed an event with a timestamp greater than the rollback time. Although this mech-
anism can reduce memory consumption (since individual LPs do not need to keep anti-messages in their output queues, and
all input events with timestamps greater than the rollback time are discarded during rollbacks), some LPs may be rolled back
unnecessarily. Under the latter mechanism, the cluster environment simply forwards the received straggler or anti-messages
to the destination LPs so that they can make rollback decisions individually. In this case, the LPs must maintain anti-mes-
sages in their output queues; and rollbacks are carried out in the same way as in TW. In the same vein, two checkpointing
mechanisms are defined, including a clustered checkpointing mechanism that saves states for the LPs only when remote
events are received from other clusters, and a local checkpointing mechanism that saves the state for a LP whenever the sim-
ulation time is changed in the time zone table (regardless of whether the time change is caused by a local or remote event).
Since both mechanisms use infrequent state saving, coast-forward operations are required during rollbacks with the asso-
ciated overhead. Using several digital circuit models as benchmarks, different combinations of these rollback and check-
pointing mechanisms have been evaluated quantitatively [108]. The experiments showed that, while memory usage can
be reduced by up to 40% in some cases, the execution time is comparable or even worse than obtained with the original
TW protocol, indicating that a trade-off must be made between execution efficiency and memory conservation.
3.3. Event management

A central issue to be addressed in any discrete-event simulation is event management, which has been studied exten-
sively from different aspects. Here, we highlight previous research related to event set implementation and management
of simultaneous events in TW simulations.
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3.3.1. Event set implementation
The relative performance of different implementations of event set data structures and algorithms has been a topic of re-

search since the early days of discrete-event simulation. The need for handling potential rollbacks in optimistic parallel sim-
ulations makes event management more complex than in a sequential simulation, mainly because past events that have
already been processed remain in the event queues. As a result, efficient insertion and retrieval of both historical and future
events become necessary for the overall simulation performance [109].

Numerous non-trivial data structures have been investigated in the context of TW-based optimistic simulations. Most of
them can be characterized into three broad categories: list structures, tree structures and multi-list structures. Examples of
list structures include the Indexed Lists [110] and the SPEEDES Queue [111]. Tree structures are exemplified by Binary Heaps,
Skew Heap, and Splay Trees [112], while the Lazy Queue [113], the Ladder Queue [114], and the Calendar Queues [115] are
based on multi-list structures.

A primary motivation behind these efforts is to achieve efficient event queue operations as the number of events stored in
the event queues increases in large-scale and fine-grained simulations. While these approaches have proven to be quite use-
ful in improving performance, an attractive alternative solution would be to keep the event queues relatively short through-
out a simulation.

3.3.2. Simultaneous events
The way in which simultaneous events are managed in discrete-event simulation can have serious implications on sim-

ulation correctness, reproducibility, and performance [116]. As noted by Jha and Bagrodia [117], simultaneous events may
occur in a discrete-event simulation for three general reasons. First, the physical system may include many independent
activities. Consequently, when the system is decomposed into a set of LPs, it is convenient to represent the interactions be-
tween different portions of the system as simultaneous events. Secondly, the limited resolution of simulation time can also
lead to events with the same timestamp even though these events are not truly parallel in the physical system. Finally, the
need for modeling activities with zero delay time (or a delay that is negligible compared to the duration of other activities
being modeled) often results in zero-delay LPs that generate output events with the same timestamp as the received input
events.

Many studies have been devoted to ordering of simultaneous events (see, e.g., [118]). Two types of tie-breaking mecha-
nisms are commonly used in discrete-event simulation [117]. One of them, referred to as user-consistent and deterministic,
bundles all of the simultaneous events received by a LP and executes them based on a set of protocol-independent, user-
specified rules. The other, referred to as arbitrary and deterministic, relies on the simulation protocol to choose a well-defined
implicit ordering of the events. Still, some researchers argue that the appropriate way of handling simultaneous events is to
take all possible orderings into account when evaluating the simulation results, rather than forcing the users or the protocols
to choose an ordering that may not always serve well the intention of the simulation [119]. Various approaches have been
taken to implement tie-breaking mechanisms in the context of PDES. Some of them extend the timestamps of event mes-
sages to impose a ranking on the simultaneous events for deterministic execution [120], while others employ the concept
of aging for the same purpose [118].

Although these techniques provide a well-founded basis for handling simultaneous events in PDES, the performance con-
sequence of processing a large number of simultaneous events at each virtual time in a simulation has not yet attracted en-
ough attention from the research community. This performance issue is especially important in large-scale TW simulations.
Without careful design and proper control, the expanded execution of simultaneous events could have a detrimental effect
on TW performance in terms of increased overhead for state saving, rollback, fossil collection, and dynamic process
migration.

3.4. Dynamic process migration

Dynamic load-balancing algorithms typically rely on the runtime system state information to make decisions regarding
the movement of workload from one processor to another during execution. According to Willebeek-Lemair and Reeves
[121], dynamic load balancing can be organized as a procedure with four major components, including (1) processor load
evaluation; (2) load balancing profitability determination; (3) load migration strategy, and (4) load selection strategy. All
of these components have been studied extensively in the PDES literature, leading to the development of a large number
of dynamic load-balancing algorithms. An exhaustive review of these load-balancing algorithms is beyond the scope of this
article (but see, e.g., [121–125] for related work on this topic).

Instead, the following discussion summarizes some of the efforts that aim to facilitate process migration in TW simula-
tions. While dynamic load balancing is concerned primarily with distributing the workload as evenly as possible among the
processors, process migration focuses on the operation of load transfer to achieve a certain load-balancing objective.

The use of an agile process migration mechanism is recognized as crucial to efficient dynamic load balancing in parallel
and distributed systems, as it can minimize the communication overhead and the interference with normal system execu-
tion [126]. This is even more important in large-scale TW simulations where a potentially unbounded amount of event and
state data associated with a TWLP must be transferred between processors. An early work, presented by Reiher and Jefferson
[122], employed a phase-based computation model to reduce process migration cost in the Time Warp Operating System. In
this model, the life span of a TWLP is divided into multiple phases, each representing a portion of the execution history of the
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TWLP during a specific interval of virtual time. These phases can be transferred individually across processors as needed in
order to implement a finer-grained load-balancing scheme below the LP granularity. Yet this computation model suffers
from increased overhead for message routing and scheduling during both forward execution and rollbacks because each
TWLP can consist of many small fragments scattered all over the system.

Different dynamic load balancing and process migration algorithms have been investigated in the SPEEDES simulation
framework [124]. These algorithms use a central coordinator to make global load redistribution decisions regularly during
a simulation. If load migration is warranted, each pair of chosen nodes at the LP level then handles the actual load selection
and transfer operations. With the Breathing Time Warp protocol [89], a parallel simulation is executed in a cyclic fashion.
Each simulation cycle starts with a purely optimistic TW execution, but then switches to a risk-free synchronization mode
using the Breathing Time Buckets algorithm [127]. After the risk-free execution stage, a new GVT value is computed, fol-
lowed by the reclamation of historical state and event data. Therefore, the amount of data to be transferred can be minimized
if load migration is carried out at the end of a simulation cycle. This data minimization strategy, however, has two main
drawbacks. First, the conservative risk-free execution might reduce the degree of achievable parallelism in a simulation. Sec-
ondly, the success of this strategy still depends on GVT computation and fossil collection, which, if performed too frequently,
could adversely affect simulation performance.

Based on the Clustered Time Warp concepts, Avril and Tropper [128] developed a dynamic load-balancing algorithm that
transfers all of the TWLPs included in a cluster as a group. Although this approach makes it easier to implement the load-
balancing algorithm since migration decisions are made only for clusters (instead of for individual TWLPs), it reduces the
flexibility of the mechanism and shifts some of the responsibilities to the users, who also need to consider load-balancing
issues when partitioning the model.

In a more recent study, Li and Tropper argued that the event reconstruction technique, originally intended for memory
conservation in Clustered Time Warp, could also be used to facilitate process migration because only the state data associ-
ated with a TWLP need to be transferred [85]. Nonetheless, the study did not indicate whether the proposed migration
scheme would be realized at the cluster level or at the individual LP level. In addition, this migration scheme can be applied
only to models with certain event and state characteristics that motivated the development of the Clustered Time Warp in
the first place.
4. PDES on emerging platforms

4.1. Web-based PDES

Distributed simulation technologies employ multiple distributed processors, connected via communication networks, to
execute the same simulation run over a geographic area correctly [168]. A focal point of distributed simulation software has
been on how to achieve model reuse via interoperation of different simulation components. Indeed, interoperability is the
major function of most existing simulation middleware [168]. Web-services technology is highly leveraged, which has pro-
ven useful in achieving model and simulation interoperability [169]. Web-services (WS) provide general interoperability
standards, enabling deployment of services on a machine and consumed by another via the Web. They fall into two popular
classes: SOAP-based WS and RESTful WS [171].

Web services have emerged rapidly and replaced traditional distributed simulation technologies. For example, the new
HLA [172] standard is extended with a Web-service interface. In recent years, there have been some studies conducted in
the form of surveys of experts from different backgrounds such as the ones described in [173]. Those studies aimed on ana-
lyzing a number of issues concerning the current distributed simulation state-of-the-art and research challenges that must
be resolved with the purpose of advancing these technologies use particularly outside the defense sector.

Distributed simulation has also been used in the grid environment. For example, DEVS/Grid [121] implements a
grid-enabled DEVS simulator following a layered approach. Another grid example is described in vGrid [174], which
divides the model into components that can be grouped together to form a virtual computational unit. SensGrid
[182] is a simulator of systems that integrates sensors and a grid. In particular, it is an extension of the widely
accepted simulation toolkit, GridSim [188], enabling the execution of simulations in a way that users can perform
queries on sensor networks.

Other distributed simulation systems made a use of the JXTA standards [174]. JXTA is an open peer-to-peer (P2P) stan-
dards developed by Sun Microsystems (now acquired by Oracle). In the P2P systems, simulation messages may go through a
number of intermediate machines before reaching their destinations.

SOAP-based Web services (or big Web services) provide a standard means of interoperating between different heteroge-
neous software applications, residing on a range of different platforms mainly for software reuse and sharing. At present, it is
the leading technology for interoperating remote applications (including distributed simulations) across WAN/Internet net-
works. For example, a new WSDL API has been added to the HLA IEEE 1516-2007 standard, allowing HLA-compliant simu-
lations to be connected via the Internet using SOAP-based Web services.

The Representational State Transfer (REST) Web-services [170] provide interoperability by imitating the Web architec-
tural style and principles. Recently, a RESTful Interoperability Simulation Environment (RISE) [179] was introduced allowing
for interoperating heterogeneous simulation models and tools regardless of their underlying technology or algorithms.
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Moreover, RESTful Web-services are gaining increased attention with the advent of Web 2.0 and the concept of mashups
[175]. A mashup groups various services from different providers and presents them as a bundle in order to provide single
integrated service. For example, IBM enterprise mashup solutions [176] aim on integrating Web 2.0 functions as rapid as
possible. Nowadays, RESTful Web-services are supported, in conjunction with SOAP-based Web-services, in leading compa-
nies’ tools such as IBM and Sun Microsystems (e.g. NetBeans IDE). REST has been used in many applications such as IBM
enterprise mashup solutions, Yahoo, Google Maps, Flicker, and Amazon S3.

4.2. PDES in the clouds

Cloud computing has emerged as an attractive paradigm for on-demand provisioning of computational resources to sup-
port a wide spectrum of applications [143]. Virtualization is a key technology used in cloud-enabled data centers for elastic
scaling, fault tolerance, and functional isolation between applications consolidated on a shared physical platform [144].
There are three major cloud service models: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as
a Service (SaaS). Among them, IaaS clouds (e.g., Amazon’s EC2 [145]) allocate raw hardware resources in units of virtual ma-
chines (VMs), giving users the illusion of having their own dedicated servers to deploy whatever applications they need. The
inherent elasticity of IaaS clouds allows users to carry out PDES over a cluster of VMs in a pay-as-you-go fashion without
having to invest heavily in the computing facility and on-going management expenses. Nonetheless, this flexibility comes
with a performance cost. As noted by Fujimoto et al. [146], cloud-based PDES suffers from extra communication delays
due to the virtualization layer that lies in between the simulation program and the underlying hardware. Furthermore,
the interference from the other VMs hosted on the same physical server poses a significant challenge to the parallel simu-
lation, resulting in performance degradation especially when the simulation is synchronized by optimistic protocols. To ad-
dress these issues, the authors proposed the use of the Aurora master/worker architecture, which aggregates many small
messages targeting LPs on different VMs and sends the whole package as one unit to accommodate the high bandwidth,
but relatively high latency interconnect in IaaS clouds. In a following paper [147], the authors went onto propose a Time
Warp Straggler Message Identification Protocol (TW-SMIP) that can adjust the forward execution of LPs dynamically in an
attempt to reduce cascaded rollback in cloud environments. However, the performance of TW-SMIP was evaluated on a tra-
ditional cluster with synthesized variation of background workload, instead of on a real cloud infrastructure.

In addition to the above issues, cloud-based parallel simulation also faces other difficulties. For example, individual VMs
included in a virtual cluster could fail, requiring the simulation program to provide a certain degree of failure resilience at the
application level. To improve load balancing and infrastructure resource utilization, VMs might be migrated to another ser-
ver or suspended temporarily and resumed later by cloud service providers at runtime. More research is needed to achieve
high-performance PDES in such highly dynamic and adaptive environments. For instance, in a recent effort [178] the use of
simulation in the cloud using handheld devices was studied where a dedicated mobile application runs on the client side
while the RISE [179] simulation server is hosted in the Cloud.

4.3. Hardware acceleration

Using special hardware to speed up PDES has been researched for several years. Earlier works employed auxiliary proces-
sors designed specifically to form a Parallel Reduction Network (PRN) in order to accelerate parallel global reduction as char-
acterized by the computation of GVT and LBTS values [148]. Fujimoto et al. presented a rollback chip that implements state
saving and rollback functions for the LPs mapped on each processor in Time Warp optimistic simulations [149]. In [150],
Rosu et al. proposed an architecture for offloading communication-related functionality from the main processor to the net-
work interface coprocessor, exposing such functionality as a Virtual Communication Machine (VCM) to simulation applica-
tions. This architecture enables an LP to calculate GVT based on local data only. Similarly, Noronha and Abu-Ghazaleh
used programmable network interface coprocessors to detect critical messages for prompt handling. In particular, they used
the technique to optimize event cancellation in Time Warp simulations [101]. By exploiting the data transfer capabilities
provided by DMA (Direct Memory Access) engines in Myrinet network switches, Quaglia and Santoro implemented non-
blocking state saving and other simulation operations (such as event list update) in support of optimistic PDES [151]. More
recently, Lynch and Riley presented an on-chip hardware supported global synchronization unit that allows for efficient shar-
ing of global state information among all processors, achieving significant performance gain in network simulations with low
lookahead values [152].

As heterogeneous chip-multiprocessors continue to gain momentum in the industry [153], there is a growing interest in
tapping their computation capability in parallel simulations. A number of efforts have been made towards PDES on general
purpose Graphical Processing Unit (GPU), which serves as a coprocessor to the CPU and features a massive number of parallel
threads executing the same code in lockstep [154]. Perumalla is among the first to propose a hybrid GPU-based PDES algo-
rithm that performs global synchronous state updates at every discrete event point, demonstrating that the synchronous
stream processing style of GPU computation can speed up discrete-event simulations [155]. To exploit the various forms
of parallelism in high-fidelity network simulations, Xu and Bagrodia presented an architecture to achieve task-level paral-
lelism on CPUs while realizing data-level parallelism on GPUs [156]. In [157], Park and Fishwick proposed an event sched-
uling method that divides the FEL into multiple sub-lists, each of which is processed by an individual thread on GPU.
The minimum timestamp among the future events is derived by a multithreaded parallel reduction. In order to increase
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the number of simultaneous events that can be executed in parallel, a tolerance interval is used to group events with close
timestamps at the expense of an approximation error, trading accuracy for speed. In [181] data-parallel Agent-Based
Modeling implementations (ABM) on GPUs are investigated addressing the scalability issues. Moreover, in [185], the
data-parallel techniques on GPUs are examined to execute very large scale direct simulation Monte Carlo (a computational
method for fluid mechanics simulation), where substantial performance improvements were achieved. An interactive
GPU-based evaluation of large-scale evacuation scenarios were studied in [186], providing a novel, field-based modeling
technique for overcoming sever computational demands of the conventional modeling techniques.

The IBM Cell processor is another example of general purpose heterogeneous chip-multiprocessors that have been used as
the building blocks in supercomputers [158]. A Cell processor combines nine independent cores based on two different
instruction sets and memory subsystems on a single die, including a main two-way hardware multithreading Power Proces-
sor Element (PPE) and eight coprocessors called Synergistic Processing Elements (SPEs) [159]. The PPE is adequate for exe-
cuting control-intensive code using a conventional two-level cache hierarchy, whereas each SPE is optimized to execute
compute-intensive code in a SIMD (Single Instruction, Multiple Data) fashion using a small on-chip local storage. Data shar-
ing between the cores relies on software-managed DMA transfer that requires proper memory address alignment. Since its
introduction, a wide variety of scientific and multimedia applications have been successfully ported to the Cell with signif-
icant performance improvements (see, e.g., [160]). In order to realize the Cell’s potential in PDES applications, Liu and Wainer
proposed a technique that adopts a data-flow oriented strategy to exploit data- and event-level parallelism in a simulation,
combining multi-grained parallelism and different optimizations to accelerate both memory-bound and compute-bound
computational kernels [161]. Promising performance results have been obtained with large-scale discrete-event models
of varied characteristics, showing that the proposed technique can achieve a significant level of scalability under different
simulation workloads. Stream processing is another emerging computational model for conducting complex computations
across multi-source, high-volume, unpredictable dataflows. In a recent effort [184], a platform for parallel and distributed
stream processing system simulation is proposed that provides flexible modeling environment for analyzing stream process-
ing applications.

Reconfigurable hardware, such as large Field Programmable Gate Arrays (FPGAs), exhibits the potential to deliver an order
of magnitude speedup for compute-intensive kernels in scientific applications [162]. Such hardware is being integrated with
general-purpose processors in next-generation reconfigurable supercomputing systems [163]. The use of FPGA has also at-
tracted considerable attention from the PDES community. For example, Beaumont et al. presented the FPGA implementa-
tions of phase-based algorithms for global synchronization barrier and minimum timestamp computation in synchronous
PDES [164]. In [165], Abu-Ghazaleh et al. explored the use of FPGA boards to accelerate Mattern’s GVT algorithm in the SPEE-
DES simulator. A serial all-to-all connector is designed to provide low latency communication channels between the FPGAs,
which keep track of the number of transit messages and broadcast new GVT updates when the transit counters become zero.
In [166], Model and Herbordt proposed a FPGA-based micro-architecture for discrete-event molecular dynamics simulation,
using a pipelined hardware priority queue to achieve efficient event insertion and deletion operations.

Despite these encouraging results, existing PDES techniques on heterogeneous hardware platforms are still not as mature
as those developed for homogeneous multiprocessor systems. Many interesting problems such as high-performance PDES on
supercomputers with diverse heterogeneous hardware configurations warrant further research, possibly through wide adop-
tion of parallel programming standards like OpenCL [167].
5. Parallel and distributed environments

A number of environments have been developed in the past, which provide numerous services to building parallel/dis-
tributed simulation systems by supporting optimistic, conservative, or hybrid synchronization strategies. Examples of such
environments are: YADDES (Yet Another Distributed Discrete Event Simulator) [129], SPEEDES (Synchronous Parallel Envi-
ronment for Emulation and Discrete Event Simulation) [130], WARPED [131], HLA (High-Level Architecture) [132], WarpIV
[133], Parsec (Parallel Simulation Environment for Complex Systems) [139], POSE (Parallel Object-oriented Simulation Envi-
ronment) [140], JAMES II (JAva-based Multipurpose Environment for Simulation) [141], lsik [134], and Unified Framework
[142].

Park and Fujimoto [138] proposed a master/worker paradigm for executing large-scale parallel discrete event simulation
programs over network enabled computational resources. The paradigm adopts a client/server architecture where clients
repeatedly download state vectors of logical processes and associated message data from a server (master), perform simu-
lation computations locally at the client, and then return the results back to the server. The advantages of such approach over
conventional PDES include support for execution over heterogeneous distributed computing platforms, load balancing, effi-
cient execution on shared platforms, easy addition or removal of client machines during execution, simpler fault tolerance,
and improved portability. The Aurora Parallel and Distributed Simulation System (Aurora) [135] is a prototype implementation
of the master/worker paradigm. Several extensions and improvements to Aurora were presented later on including a scalable
version for parallel discrete event simulations on desktop girds [136], an optimistic time management compliant for public-
resource computing infrastructures and desktop grids [137], and a version implemented for metacomputing systems [138].

The lsik and Unified Framework protocols are well-known for their hybrid execution capabilities. The Unified Framework
is a parallel simulation protocol that allows different parts of a system to be simulated using different protocols, allowing
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these protocols to be switched dynamically. Optimistic and conservative features can be combined and interchanged on the
fly among the LPs. For example, optimistic processes can take advantage of features normally associated with the conserva-
tive LPs e.g. exploiting lookahead information and communication topology. Any of these features can be used in conjunction
with a mix of conservative and optimistic LPs too. Similarly, the lsik micro-kernel provides unified system architecture for
incorporating multiple types of simulation processes. Processes employ different synchronization schemes, and can dynam-
ically alter their synchronization mechanism. lsik supports lookahead-based conservative and state saving-based optimistic
execution approaches. Moreover, techniques such as reverse computation-based optimistic execution and aggregation-based
event processing are also supported.

In general, hybrid synchronization techniques provide a single engine that not only supports multiple synchronization
approaches, but also lowers the execution overhead. Hybrid protocols are specifically beneficial for simulating systems
where it is unknown as to which synchronization scheme would perform better a priori.
6. Conclusion and future research directions

We have presented a variety of synchronization approaches used for parallel discrete event simulation, including exam-
ples of the two main classes of synchronization mechanisms, namely conservative, and optimistic. Each of the techniques
was introduced, and the challenges in each class were analyzed. We showed that conservative methods offer good potential
for a certain class of problems. Significant successes have been reported particularly when application-specific knowledge is
applied to maximize the efficiency of the simulation mechanism. On the other hand, the optimistic methods such as Time
Warp and reverse computation offer great general purpose simulation mechanisms, which, when combined with different
optimization techniques, can achieve high-performance parallel simulation with low state-saving and rollback overhead.
The debate of conservative versus optimistic approach remains a challenging question in the field of discrete event simula-
tion and the decision of which technique to use depends not only on the nature of the models being simulated but also on the
architecture of the computing platform in use.

With the rapid advance of emerging computing platforms, we envision that future PDES research would be oriented to-
wards several directions, including new programming models and simulation runtime for implicit exploitation of massive
parallelism offered by the underlying platform while reducing programming effort, optimization techniques for improved
scalability of parallel simulation on the next generation exascale supercomputers, fault tolerance and latency hiding mech-
anisms for efficient parallel/distributed simulation in elastic and open virtual environments at global scale, and new tech-
niques that address the challenges of novel heterogeneous architectures.
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