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Abstract: Salmonellosis remains one of the most frequent foodborne zoonosis, constituting a
worldwide major public health concern. The most frequent sources of human infections are food
products of animal origin, being pork meat one of the most relevant. Currently, particular pig food
production well-adapted and persistent Salmonella enterica serotypes (e.g., Salmonella Typhimurium,
Salmonella 1,4,[5],12:i:-, Salmonella Derby and Salmonella Rissen) are frequently reported associated
with human infections in diverse industrialized countries. The dissemination of those
clinically-relevant Salmonella serotypes/clones has been related to the intensification of pig production
chain and to an increase in the international trade of pigs and pork meat. Those changes that
occurred over the years along the food chain may act as food chain drivers leading to new problems
and challenges, compromising the successful control of Salmonella. Among those, the emergence
of antibiotic resistance in non-typhoidal Salmonella associated with antimicrobials use in the
pig production chain is of special concern for public health. The transmission of pig-related
multidrug-resistant Salmonella serotypes, clones and/or genetic elements carrying clinically-relevant
antibiotic resistance genes, frequently associated with metal tolerance genes, from pigs and pork
meat to humans, has been reported and highlights the contribution of different drivers to the
antibiotic resistance burden. Gathered data strengthen the need for global mandatory interventions
and strategies for effective Salmonella control and surveillance across the pig production chain.
The purpose of this review was to provide an overview of the role of pig and pork meat in human
salmonellosis at a global scale, highlighting the main factors contributing to the persistence and
dissemination of clinically-relevant pig-related Salmonella serotypes and clones.

Keywords: Salmonella; pig production; pork meat; foodborne transmission; antimicrobial resistance;
clones; S. Typhimurium; S. 1,4,[5],12:i:-; S. Derby; S. Rissen

1. Introduction

Salmonella enterica infections are a worldwide major public health concern, specifically
human salmonellosis caused by non-typhoidal Salmonella (NTS) [1,2]. Salmonellosis is typically
characterized by a self-limiting gastroenteritis syndrome, with diarrhea as its the main symptom;
however, fever, vomiting and abdominal pain can also occur [1,2]. Despite being uncommon,
more severe invasive Salmonella infections, as bacteraemia and/or other extra-intestinal infections,
can occur and affect particular high-risk groups (infants, young children, older people or
immunocompromised patients) [1,2]. In these cases, the use of antimicrobial agents is required, being
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of concern the emergence of Salmonella resistant to antibiotics, especially those considered by the
World Health Organization (WHO) as “highest priority critically important antimicrobials” such as
fluoroquinolones and extended-spectrum cephalosporins that can compromise the effective treatment
of infections [1–3].

In industrialized countries, the main reservoir of NTS is the gastrointestinal tract of warm-blooded
animals, in particular food-producing animals, which lead to foodstuffs contamination [1,2].
Therefore, the ingestion of contaminated food, particularly foods of animal origin, is recognized
as the most relevant source of transmission of NTS to humans, with a high global impact in human
health [2]. NTS causes an estimated 93.8 million cases of human illnesses and 155.000 deaths each year
worldwide [1,2]. In the United States of America (USA), the 2015 report from the Centers for Disease
Control and Prevention (CDC) showed that Salmonella was the second foodborne pathogen responsible
for outbreaks (34%), being the first associated with outbreak illnesses (39%), hospitalizations (64%) and
deaths (60%) [4]. Additionally, the European Food Safety Authority (EFSA) reported that salmonellosis
has been the second most common zoonosis (91,662 confirmed salmonellosis cases in 2017) and the most
frequent cause of foodborne outbreaks (24,4% of all cases in 2017) in the European Union (EU), in spite
of a decreasing number of cases since 2008, with a stabilizing trend between the years 2013–2017 [5].
Salmonellosis has been mostly associated with the consumption of poultry products, including eggs
and egg products, at a global level [2,5–10]. However, pork meat has been considered one of the major
food products of animal origin responsible for Salmonella transmission to humans in diverse countries,
including industrialized ones [2,11–13]. In the EU, pork meat has been a common source of human
salmonellosis cases (varying from 2% to 13%), after eggs and egg products [5–8]. Additionally, in the
USA (2015 data), pork meat was the second source attributed to Salmonella outbreaks (5%) and the
meat product mostly associated with the largest number of illnesses (16%), hospitalizations (2%) and
deaths (11%) [4].

Although different serotypes have been associated with salmonellosis, the major ones
responsible for human infections in diverse industrialized countries include Salmonella Enteritidis,
Salmonella Typhimurium and its monophasic variant—Salmonella 1,4,[5],12:i:- [4,5,14–17]. At a global
level, S. Enteritidis is commonly associated with poultry and products thereof, being considered
a poultry-related serotype [2,5,9]. In contrast, S. Typhimurium has a wider host range, including
pigs [1,2,5,6]. Nevertheless, in the last decades, a changing trend in Salmonella serotypes associated with
foodborne salmonellosis has been observed, with the worldwide expansion of previously less common
serotypes (e.g., S. 1,4,[5],12:i:-, Salmonella Derby and Salmonella Rissen). Those are currently well-known
serotypes associated with pig production chain and frequently multidrug-resistant [5,6,11,16,18–28].

In the EU, the successful implementation of mandatory Salmonella control programmes along
poultry/egg production chain was responsible for the reduction of the prevalence of Salmonella
serotypes considered relevant for public health, particularly S. Enteritidis [5,6,29]. In contrast to
poultry production, where Salmonella control programmes are harmonized, for pig production each
EU member state applies a specific national monitoring programme [5,6,13]. In addition, the intensive
food production/farming and increased globalization of food supply (live animals and foodstuffs),
with pork meat being one of the most consumed and traded meat products (pork exports increased in
value by 18.2% from 2015 to 2016) [30,31], may trigger new problems regarding salmonellosis control.
This review will provide evidence of the relevant role of pig production and pork meat in salmonellosis
on a global scale.

2. Non-Typhoidal Salmonella in Pigs and Pig Production Chain

The colonization of pig populations with NTS is frequent and normally results in asymptomatic
healthy carriers. This pig colonization can occur throughout all stages of pig production chain
by horizontal (through external agents in the environment, e.g., rodents, birds, people, trucks,
pets, other foodstuffs) and vertical transmission (e.g., from sow to piglet and from pig to pig at
herd to slaughter). Additionally, a designated circular transmission (combination of vertical and
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horizontal transmission), which is a permanent cycle of contamination on a farm (e.g., environmental
contamination through pig shedding and pig contamination through farm environment) can also
determine pig colonization [11,13,32–34]. The presence of Salmonella in those healthy pig carriers
(e.g., tonsils, gut and gut-associated lymphoid tissue) is suggested to be the main risk factor for the
spread and transmission of these bacteria across pig production chain to humans: in pre-harvest
(holding period of pig on the farm), in the harvest stage (during slaughter and further processing
of meat carcasses) and in the post-harvest stage (during final preparation of pork meat and
products thereof) [11,13,32,33,35,36].

In fact, diverse studies aiming to detect Salmonella in the pig production chain, including pigs and
pork meat, have been performed in high or low-income countries with diverse results. In the EU, data
from the last EFSA reports revealed Salmonella-positive samples in fresh pork meat (2.4%-2016 and
1.6%-2017) and products thereof (1.9%-2016), with an overall Salmonella prevalence in pigs of 6.7% at
the herd (ranging from 0%-63% between the different member states, 2016) and of 3.5% (2016) and
12.7% (2017) at slaughter [5,6]. A noteworthy, high prevalence of Salmonella in fecal samples (30.5%),
rectal swabs (24%) and carcass swabs (9.6%) of slaughter pigs was reported by a United Kingdom (UK)
study [37]. In contrast, other EU countries (Finland, Sweden and Norway), with special guarantees
concerning Salmonella on pig carcasses (according to Regulation (EC) No 853/2004) reported a lower
incidence of Salmonella in pig carcasses samples (0.02%) [6,38]. With the objective to establish the
main targets for Salmonella reduction in breeding herds of pigs (in line with the Regulation (EC)
No 2160/2003) [29], a baseline survey was performed in EU (2008) due to the lack of information about
Salmonella control in holdings of breeding pig [32]. In this survey, high levels of Salmonella-positive
holdings with breeding pigs (31.8%) and breeding holdings (28.7%) were observed. These data have
shown that breeding pigs may be a relevant source of Salmonella dissemination along the pig production
chain (e.g., to slaughter pigs through trade and movement of live animals and contamination of holding,
transport, lairage and slaughter facilities), leading to pork meat contamination and consequently to
human infections [32]. In fact, high levels of Salmonella contamination occurred in slaughterhouses by
diverse routes (e.g., pork meat carcasses cross-contamination, slaughter environment and equipment,
meat handlers), as reported in diverse studies [11,13,39]. Another EU survey based on the analysis
of quantitative microbiological risk assessment of Salmonella in slaughter and breeder pigs showed
that an 80–90% reduction of Salmonella prevalence in lymph nodes should result in a comparable
reduction in the number of human cases attributable to pork meat products [40]. Consequently, several
interventions have been proposed in order to prevent or reduce Salmonella contamination, persistence
and dissemination across pig production (at farm and slaughterhouse). These included the use of
uncontaminated feed, isolation of newly purchased animals before introducing them into herd, regular
veterinary checks, vaccination, prevention of environmental contamination at the farm, transport,
lairage and slaughter, implementation of high standards of hygiene (cleaning and disinfection) and the
promising alternative approach bacteriophage use [11,13,32,34,40,41]. Starting 2006, in all EU member
states, the report of data regarding Salmonella monitoring and surveillance became mandatory under
the Commission Regulation (EC) No 2073/2005 on microbiological criteria in foodstuffs, including for
Salmonella in pig carcasses at dressing and before chilling stage. Furthermore, competent authorities
must verify the correct implementation of the process hygiene criteria for Salmonella on pig carcasses
by food business operators and, if it is not complied, business operators might implement corrective
actions (e.g., improvements of hygiene slaughter, biosecurity measures in the farms and revision of
process controls) with the specific instructions of authorities [42]. In 2014, legislation was revised,
with Regulation (EC) No 217/2014 proposing the reduction of Salmonella acceptable number in pig
carcasses, from “c = 5 out of n = 50”—10% to “c = 3 out of n = 50”—6% (n-number of units comprising
the sample; c- detection number of samples with Salmonella), in order to strengthen the process hygiene
criterion [43].

In the USA, another high-income country, data from 2015 showed a remarkable higher
prevalence of Salmonella in pig fecal samples (50%-sows and 35%-market swine) than in other
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animal samples (25%-chickens, 9%-turkeys, 22%-dairy and 8%-beef) [44]. Moreover, in developing
countries (some with an expansion of food-animal industry), Salmonella was detected
at high levels in pig samples (animal, carcasses and meat), ranging from 17–39% in
South America [45,46], to 14–40% in Africa [47,48] and 29–100% in Asia [49,50]. Those high levels
possibly reflect the different pig production practices and the absence of control measures.
Overall, these data point out the need of implementing effective global measures for Salmonella
control, highlighting the need for its detection at all stages of pig production chain, including in
primary production [13,32,33]. This is particularly urgent in developing countries, which currently
seem to present a severely underserved monitoring surveillance program [51].

3. Major Pig-Related Salmonella Serotypes Associated with Human Infections

In recent years, Salmonella transmission from pigs to humans through the pork food chain has
been evidenced, namely through the study of serotypes prevalence in different matrices as well as
food-borne outbreaks associated with consumption of pork products.

Worldwide data concerning the prevalence of Salmonella serotypes in humans, pigs and
products thereof have contributed to establishing their epidemiological correlation, with particular
serotypes overlapping between humans, pig and pork meat [6–8,14,16,17,52–54]. For instance,
in EU, an association between Salmonella serotypes causing human infections and those occurring
in pig and pork meat was observed (Figure 1), reinforcing the major role of pork meat in the
transmission of Salmonella to humans. The most frequent serotypes in pig and pork meat have
been S. Typhimurium (pig: 54.7%-2014, 56.9%-2015, 29.5%-2016 and 20.6%-2017; pork meat:
27.8%-2014, 23%-2015, 30.7%-2016 and 27%-2017), S. 1,4,[5],12:i:- (pig: 8.4%-2014, 8.6%-2015, 34.1%-2016
and 37.4%-2017; pork meat: 18%-2014, 22.3%-2015, 24.3%-2016 and 22%-2017), and S. Derby
(pigs: 17.5%-2014, 13.7%-2015 and 19.2%-2016; pork meat: 24.4%-2014, 22.9%-2015 and 17%-2016) [5–8].
These three serotypes are also among the major ones associated with human salmonellosis (second-,
third- and fifth-ranked, respectively, in 2014-2016) [6–8]. From the 2008 EU baseline survey, S. Derby
was the most frequent serotype found in both breeding (29.6%) and production holdings (28.5%)
and S. Typhimurium was the second most detected (breeding holdings-25.4% and production
holdings-20.1%) [32]. It is also of note the emergence of S. Rissen in pig sources (pigs: 1.5%-2014,
2.8%-2015 and 1.2%-2016; pork meat: 4.9%-2014, 5.1%-2015 and 5.9%-2016) in the EU (the fifth most
common serotype since 2014 in pig sources) in spite of its low association with human infections
(Figure 1) [6–8]. The EU baseline survey reported a high incidence of S. Rissen in breeding and
production holdings, particularly in Portugal (40% and 22.4%, respectively) and Spain (25% and
29.7%, respectively), being the first or second most frequently reported serotype in those settings [32,33].
In fact, in Portugal, S. Rissen was the fourth most frequently serotype detected in human clinical isolates
between 2002 and 2016 [55,56]. Although S. Enteritidis (number one in human infections) is typically
associated with eggs and poultry meat, it is important to point out that in the last years, in the EU
this serotype was also common in both pig and pork meat samples (varying from 1% and 3.5%) [5–8].
Moreover, Salmonella Infantis, another typically poultry-related serotype causing human infections
(top 4), was detected in pigs and particularly in pork meat (varying from 3.9% to 8.8%) [5–8].
Therewithal, both S. Enteritidis and S. Infantis serotypes have been recovered from pigs/pork and
products thereof in other non-EU regions and associated with human salmonellosis [57–61].
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Figure 1. Distribution of the major serotypes of non-typhoidal Salmonella associated with human
cases (salmonellosis), pig and pig meat in EU, 2014 to 2016 [6–8]. S. Rissen was included for being
one of the five most frequent Salmonella serotypes recovered from pig meat and pig animal in EU,
2014 to 2016 [6–8]. The percentages were calculated based on the total number of serotyped isolates
(represented by the numbers in brackets) per human salmonellosis cases, pig meat or pig animal.

4. Dissemination of Pig-Associated Salmonella Serotypes and Clones

Besides worldwide data concerning Salmonella serotypes prevalence in humans and pig sources,
the contribution of pork meat for human salmonellosis has been also evidenced throughout the
spread of certain pig-associated strains and clones. Several examples of outbreaks associated with
pig-related Salmonella serotypes have been described involving diverse countries (Table 1). For instance,
S. 1,4,[5],12:i:- strains causing human infections, including some particular major clones, were identified
in diverse European countries and associated with the consumption of different pork products (Table 1).
Moreover, since 2015, several notifications were reported by the Rapid Alert System for Food and
Feed (RASFF) due to the presence of Salmonella in pork products from several European countries,
including alerts of suspected multi-country foodborne outbreaks (e.g., S. Typhimurium ST19 in
Denmark associated with chilled sliced salami from Spain) (Table 1). This scenario alerts for the
relevant role of pig/pork meat international trade on the dissemination of clinically-relevant pig-related
Salmonella serotypes/clones, highlighting the need for global effective surveillance and detection
programmes at all stages of pig production [11,13].

Regarding S. Typhimurium, diverse examples of pork products-related outbreaks have been
reported in the last years, highlighting the importance of this serotype in the pig production
chain (Table 1). Moreover, during the last decade, S. Typhimurium has been associated with
clinically-relevant multi-drug resistant (MDR) clones, being of note the globally disseminated
S. Typhimurium DT104 phagetype clone/sequence type (ST by MLST) 19, already reported associated
with pig production [25,62–66]. In the same way, MDR S. Typhimurium OXA-30-producing/ST19
associated with swine production samples was also reported in Portugal and other European
countries [63,67–69]. More recently, S. Typhimurium European clone/ST34 with a MDR-profile
(ASSuT; Ampicillin-A, Streptomycin-S, sulphonamides-Su and Tetracycline-T) and Pulsed-Field Gel
Eletrophoresis (PFGE)-types similar to S. 1,4,[5],12:i:- European clone, were reported in Europe,
particularly among piggeries, abattoirs, pork meat as well as human infections [24,62,65,70].

In the EU, S. 1,4,[5],12:i:- is considered an emergent serotype that causes human
infections [71–73], with a remarkable increase in the incidence in pig and pork, surpassing even in the
last years S. Typhimurium [5–8]. In fact, recent European surveys have demonstrated a high prevalence
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of S. 1,4,[5],12:i:- in pigs, carcass and environmental samples (14% to 43%) [19,74]. Furthermore, several
studies have already demonstrated the same clonal relatedness between S. 1,4,[5],12:i:- isolates from
human clinical and pigs and/or products thereof [19,24,62,72,75], which evidence that pigs are the
main animal reservoir of this emerging serotype in European countries [6,24,62,72]. Interestingly,
a remarkable increase of this serotype in human clinical cases was observed in Portugal, from third-
(4.5%, between 2000 and 2012) [55] to first-ranked serotype (36.6%, in 2014 to 2016) [56], surpassing
S. Enteritidis and S. Typhimurium. In addition to S. Typhimurium, S. 1,4,[5],12:i:- was, in recent
years, the other major serotype responsible for large outbreaks associated with diverse pork products
(Table 1). Moreover, two predominant MDR clones of S. 1,4,[5],12:i:-, the European clone/ST34 and
the Spanish clone/ST19, have been recognized as responsible for most human infections through
pork products. The European clone, frequently belonging to DT120 and DT193 phage types has
been circulating in several regions of Europe [70,71,76,77] and more recently in America [78,79],
Asia [18] and even Australia [28]. Meanwhile, the Spanish clone, with most of the isolates belonging
to DT104/U302 phage types, was originally identified in Spain and further reported since 2002 in
the Iberian Peninsula [24,62,80–82]. The maintenance and dissemination of these MDR clones in
Europe could be explained by common pig breeding lines and by the intense commercial trade of
pigs and products thereof between countries [33]. Additionally, a third less frequent MDR clone of
S. 1,4,[5],12:i:-, Southern-European clone/ST19, was reported in Portugal [24,82] and sporadically in
Italy and Spain [83].

S. Derby and S. Rissen have been other predominant serotypes in both pig and pork
meat in Europe [6–8], and in USA [84], despite being less implicated in human salmonellosis.
Nevertheless, S. Derby has been reported at global level with identical MDR (mainly SSuT) and/or
PFGE profiles in isolates from human clinical cases, pigs and products thereof, demonstrating their
potential role in human infections [19,20,52,62,63,65,85–88]. In Southern European countries, S. Rissen
is considered a clinically-relevant serotype, being frequently detected the same strains in humans, pigs
and products thereof [19,21,22,25,27,62,65,89,90]. Moreover, S. Rissen strains detected among humans
and across pig production chain, particularly belonging to the successful MDR clone ST469, have been
reported in geographic distant countries [16,19,21,22,27,62,63,65,89,90]. In particular, the circulation of
a specific MDR (ASSuTTm, Trimethoprim-Tm) S. Rissen clone between the Iberian countries can be
explained by the intensive trade of pigs and products thereof [21]. Additionally, some S. Rissen isolates
recovered from human, pig and pork isolates in Denmark showed similar PFGE profiles with isolates
from imported pigs or pork meat from Spain and Germany, as well as with isolates from human clinical
cases of people who travelled to Thailand [27] (Table 1). These data enhance the contribution of live
animals and international food trade to the spread of this S. Rissen clone, besides human travel to
developing countries.
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Table 1. Salmonella outbreaks linked to pork meat products (2004–2018).

Serotype Country(ies) 2 Source Year(s) No. of 3 Reference

(Subtyping features/molecular markers, when available) 1 Cases Death(s)

Typhimurium
(DT104A) Italy Pork salami 2004 63 0 [91]

(DT12) Denmark Pork products 2005 26 0 [92]
(MLVA-type 3-12-4-13-2) Denmark, Norway, Sweden Danish pork meat/minced meat 2008 37/10/4 4/0/0 [93]

(DT193; MLVA-type 3-14-12-NA-211) Denmark Pork salami 2010 20 NS [94]
(DT120; MLVA-type 3-11-14-NA-211) Denmark Imported smoked pork tenderloin 2011 22 0 [95]

(DT193) Spain Dried pork sausage 2011 8 0 [96]
Australia Barbecued pork 2010 4 NS [97]
Australia Pork spit roast 2011 5 NS [97]
Australia Cooked pork hock 2014 4 NS [97]
Australia Pork dish 2015 10 NS [97]

(ST19) Denmark 4 Spanish salami 2017 NS NS [98]
Sweden Spanish salami 2017 NS NS [98]

1,4,[5],12:i:-
(DT193; PFGE-type STYMXB.0131; ASSuT) Luxemburg Pork meat 2006 133 1 [99]

(MLVA-Type 3-13-15-NA-211) France Dried pork sausage 2010 69 0 [100]
(PFGE-type XTYM-159;

MLVA-type 3-13-9-NA-211; ASSuT) France Dried pork sausage 2011 337 0 [101]

(PFGE-type STYMXB.0131/
STYMXB.0083; MLVA-type 3-13-9-NA-211; ASSuT) Italy Pork salami 2012–2015 NS NS [102]

(DT138; PFGE-type XbaI.0005/
STYMXB.0083; BlnI.00X; ASSuT) Spain Pork chorizo 2014 6 0 [103]

(DT138) Spain Dried pork sausage 2011 38 0 [96]
USA Pork meat 2015 188 0 [60]

Sweden 4 Italian chilled truffle salami 2018 NS NS [98]

Derby
Spain Dried pork sausage 2011 3 0 [96]

(PT53; ST682) Germany Raw fermented pork 2013–2014 145 0 [104]

Rissen
(PFGE-type TEEX01.0017.DK) Denmark 4 Imported pork products 2000–2005 NS NS [27]

Bovismorbificans
(PT24) Germany Pork minced meat 2004–2005 525 1 [105]

(ST142) The Netherlands, Belgium,
France Pork ham products 2016-2017 54/NS/NS 0/NS/NS [106]

Give Germany Minced pork meat 2004 115 1 [107]

Goldcoast
(PFGE-type SCG Xba3) Hungary Pork 2009–2010 44 0 [108]

Italy Pork salami 2009–2010 79 0 [109]

Infantis
(PFGE-type EPI-type) Denmark Pork meat 1992–1993 >500 0 [110]

(ST32) Italy Pork meat—porchetta 2011 23 0 [111]
(PT29; PFGE-type XB27) Germany Raw pork 2013 267 0 [112]

Australia Pork rools 2013 2 NS [61]
USA Pork meat 2015 5 0 [60]

Manhattan France Pork products 2005–2006 69 0 [113]
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Table 1. Cont.

Serotype Country(ies) 2 Source Year(s) No. of 3 Reference

(Subtyping features/molecular markers, when available) 1 Cases Death(s)

Muenchen
Germany Raw pork 2013 203 0 [114]
Germany Raw pork 2014 247 0 [114]

Ohio
(PFGE-type BlnI-A) Belgium Pork meat 2005 6o 0 [115]

1 Antimicrobial compounds: A, ampicillin; S, streptomycin; Su, sulphonamide compounds; T, tetracycline. DT/PT, Phage type; MLVA, Multiple Locus Variable-number Tandem
Repeat Analysis; NA, designates a locus that is not present; PFGE, Pulsed-field Gel Electrophoresis; ST, Sequence type. 2 Only outbreaks in USA, EU and Australia are shown.
3 Estimated number of cases only when outbreaks were reported. 4 Suspected outbreaks.
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The enhanced ability to colonize food animals and to persist along the food chain of pig-related
Salmonella serotypes and clones associated with human infections is a topic of great concern [26,64,65].
Specific adaptive features, such as colonization/virulence determinants, have been pointed out as an
advantage for the maintenance and spread of these serotypes/clones in diverse environments and
hosts (pig/human) [116]. Recent studies have found the presence of several virulence genes, associated
with an enhanced adaptation to the food-animal host, in S. Typhimurium [116,117], in specific clones
of S. 1,4,[5],12:i:- strains circulating in Europe [72,73,80,118] and in S. Rissen, including in isolates
belonging to the ST469 [119,120]. Those virulence genes encode for proteins that improve colonization
(e.g., clpB), adhesion (e.g., csgA, fimA/C, pefA, stbD, marT), intestinal invasion (e.g., invA, invE, spvC),
survival in host tissues (e.g., sopA, avrA, sseI, mig5) and biofilm formation (e.g., bss) [83,117,119,121,122].
Interestingly, S. Typhimurium DT193 and S. 1,4,[5],12:i:- were associated with long-term survival in pig
faeces comparing with other serotypes (S. Derby and S. Bredeney), due to their increased adaptation to
acid fecal pH and organic acid supplementation of feed [123]. Additionally, a UK study demonstrated
that SPI-23 present in S. Derby strains, which contain genes (e.g., potR) that encode Type III effector
proteins, contributes for the host intestinal cells invasion in pigs [124]. More recently, the presence of
this SPI-23 was also reported in French pork isolates of S. Derby ST39 and ST40, helping to explain the
host pig specificity of those epidemic strains [125].

Moreover, those emergent pig-related Salmonella serotypes/clones were usually enriched with
antimicrobial resistance genes, in most cases located in the mobile genetic elements that also carry
virulence genes. For example, resistance plasmids of S. 1,4,[5],12:i:- isolates (from pigs and humans)
circulating in Europe, carry several virulence genes, namely spvC±mig5 genes in IncA/C and IncR
plasmids, associated with the Spanish and Southern European clones, respectively [83]. Furthermore,
several genes associated with tolerance to metals and/or biocides (e.g., copper), widely used in
food-animal production, were found in pig-related Salmonella serotypes/clones (e.g., S. Rissen
MDR clone, European clone of S. 1,4,[5],12:i:- and S. Typhimurium), which might also be an
additional advantage for their maintenance and spread in the food production environment and
hosts (pig/human) [25,126,127].

5. Antimicrobial Resistance in Salmonella and the Pork Linkage

Antibiotic resistance is considered by several relevant public health entities one of the major
threats to human health and a relevant concern for food safety, particularly if involves pathogenic
bacteria transmitted to humans through food-chain [3,26]. The emergence and spread of Salmonella
isolates presenting resistance to several antibiotics, especially to “Highest Priority Critically Important
Antimicrobials” (fluoroquinolones and 3rd and higher generations cephalosporins) [3], is of concern
since they are crucial to the successful treatment of NTS invasive infections [1,2]. The adverse
consequences of resistance to critically important antibiotics in humans include an increase in the
severity of infections and in the frequency of treatment failures, as well as the requirement of last-line
antibiotics use (e.g., carbapenems, colistin) [3,26].

The common practice of antibiotic use in intensive food-animal production has been considered
the main driver for the selection and transmission of antibiotic-resistant foodborne bacteria, including
Salmonella, to humans [1,26,128–132]. This scenario is aggravated particularly in pig production,
which has been associated with a higher antimicrobial consumption, compared with other animal-food
production systems, at global level [133], including in the EU [134]. In 2010, the annual average of
antimicrobial consumption per kilogram of animal produced was 172 mg·kg−1 in pigs, higher than the
148 mg·kg−1 and 45 mg·kg−1 consumption in chicken and cattle, respectively [133]. Although there is
still controversy about the contribution of food-animal reservoirs and food vehicles in the transmission
of antibiotic-resistant bacteria with an impact in human health, there is accumulating evidence linking
the pig production with antimicrobial resistance in NTS that will be discussed in the next sections.
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5.1. Association between Antibiotic Use in Pig Production and Resistance in Salmonella

The first evidence of this linkage is the association between the amount and pattern of
antimicrobial agents used in the pig production and the occurrence of resistant NTS in pigs, pork
meat and/or humans. One illustrative case in pig production includes a study showing that
the administration of tetracycline to pigs colonized with tetracycline-resistant S. Typhimurium
DT104 was associated with higher pig shedding of this resistant strain compared with untreated
pigs [135]. Other study reported that enrofloxacin, used for treatment of pigs, induced the selection
of S. Typhimurium with decreased susceptibility to ciprofloxacin [136]. Furthermore, a Danish
surveillance study performed after the ban of antibiotics as growth promoters showed higher levels
of tetracycline resistance in S. Typhimurium isolates recovered from pig and human clinical cases,
potentially caused by an increased usage of tetracycline in pigs [137].

5.2. Correlation of Antimicrobial Resistance Rates between Salmonella from Pigs and Humans

The correlation between antibiotic resistance rates among Salmonella from pigs, pork meat and
humans obtained from systematic surveillance data evidences the impact of pig production practices
on NTS antibiotic resistance. The 2016 EFSA report showed a high prevalence of MDR Salmonella
in humans (29.3%), pigs (58.7%) and pork meat (40.4%), including the most used antibiotics in pig
production (tetracyclines, penicillin’s, sulphonamides and colistin) [26,134]. In fact, high levels of
resistance to A-27.8%, Su-32.4% and T-28.1% and MDR-29.3% were observed in Salmonella from human
isolates, as well as from pigs (A-45.3%; Su-52.6%; T-53.5%; MDR-43.9%) and pork meat (A-44.7%;
Su-48.5%; T-49.1%; MDR-40.4%). Furthermore, the ASuT phenotype was the most frequent MDR
profile observed in pig and pork meat (82.3% and 80%, respectively), with the majority of the isolates
belonging to the pig-related serotype S. 1,4,[5],12:i:- (66.4%-pig and 69.6%-pork meat) [26]. Indeed, high
levels of MDR were observed in pig-related serotypes, namely S. 1,4,[5],12:i:- (MDR = 81.1%-humans;
82.3%-pigs; 73.8%-pork meat), S. Typhimurium (44.4%-humans; 52.4%-pigs; 54.5%-pork meat),
S. Derby (23.8%-humans; 20.3%-pigs; 10.4%-pork meat) and S. Rissen (33.3%-pigs; 52.8%-pork meat).
Additionally, this report highlights that those pig-related serotypes were the major contributors to the
observed prevalence of resistance in Salmonella in both pig and pork meat samples. From 2014 to 2015
MDR in humans increased more than 10% in both S. Typhimurium and S. 1,4,[5],12:i:- serotypes [26].
In the USA, data from the National Antimicrobial Resistance Monitoring System (NARMS) showed
an increase of the ASSuT phenotype in S. 1,4,[5],12:i:- from human (from 43% in 2014 to 60% in 2015),
and swine isolates (65% in 2015) [138].

Data about MDR phenotypes are of concern due to the possible role of diverse antibiotics in
the co-selection of Salmonella strains resistant to clinically-relevant ones, such as fluoroquinolones
(e.g., ciprofloxacin-Cp), extended-spectrum cephalosporins (e.g., ceftazidime-Caz, cefotaxime-Ctx)
and colistin (Col) [3,26,131,134]. In the last EU report, relatively low levels of Salmonella resistance to
Cp (13,3%), Caz (0.9%), Ctx (0.9%), and Col (11.4%) were observed [26,139]. Moreover, the highest
levels of Col resistance in humans (excluding the S. Enteritidis serotype which presents intrinsic
resistance) were more common in the pig-related serotypes S. 1,4,[5],12:i:- (2.4%) and S. Typhimurium
(1.5%) [26,139]. Additionally, data from 2015 in USA revealed low levels of decreased susceptibility to
Cp (5.8%) among humans, being the highest levels detected in retail pork samples (5.3%) comparing
with other retail meat (0% in poultry and beef) [140], which suggest an important contribution of pig
production chain to the human disease burden.

In contrast, high rates of antibiotic resistance were reported among humans and pig/pork
products in middle-income countries. For instance, high rates of Salmonella with resistance to Cp
(15–48%), ceftriaxone-Cro (38%) and Col (36%) were observed in humans [141–143]. High levels of
resistance to clinically-relevant antibiotics were also observed in pigs or pork meat, in particular
resistance to Cp (10–49.4%) [144–146] and Col (7–21%) [142,147], being in most cases higher
than those detected in poultry samples (Cp-0–29%, Col-3.8%) [142,144,146]. Moreover, different
Chinese studies reported higher rates of acquired Col resistance mechanisms (Mobile Colistin
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Resistance—MCR) in pigs (10–14.8%) than in poultry samples (0.8–7.5%) [148–150]. Indeed, it was
already suggested that pig production has the highest impact on colistin resistance in humans
because of its extensive use in this system contrasting with other food-producing animals [151,152].
Overall, the high incidence of resistance to clinically-relevant antibiotics observed in Salmonella
from pig production highlights the potential role of pork products in its spread and may be the
consequence of the high, inappropriate or uncontrolled use of antibiotics in farming practices
in middle-income countries [133,143,147,150,153,154]. In fact, it was estimated that the global
consumption of antimicrobials in livestock will increase by 67% between 2010 and 2030, with an
expected increase in pigs of 124%, particularly in Asia, in order to respond to the increasing demand
of pork meat, one of the most consumed and traded meat products [30,133,155]. Hence, international
trade of live pigs (piglets, weaner, grower or breeder pigs) and pork meat can contribute for the
worldwide spread of antibiotic-resistant Salmonella, with a consequent impact on human health.

5.3. Transmission of Antimicrobial Resistant Salmonella from Pork Meat to Humans

The presence of the same mobile genetic elements carrying clinically-relevant antibiotic
resistance genes and/or antibiotic-resistant Salmonella serotypes/clones in pig and human isolates
is an additional evidence of transmission of antimicrobial resistant Salmonella from pork meat to
humans. In the last decades, clinically-relevant antibiotic resistance genes such as those coding for
extended-spectrum β-lactamases (ESBLs), acquired AmpC β-lactamases (qAmpC), plasmid-mediated
quinolone resistance (PMQR) and more recently plasmid-mediated colistin resistance (MCR), have
been globally reported in a wide range of Salmonella serotypes associated with pig and pork products
(Table 2). Additionally, some examples that illustrate the linkage and transmission of MDR Salmonella
from pigs/pork products to humans are shown in Table 2. For instance, as examples of strains/clones
shared between pork and human were S. Typhimurium with blaCTX-M-1, blaCMY-2 or oqxAB±aac(6′)-Ib-cr,
Salmonella Virchow with blaCTX-M-15, and S. Typhimurium, S. 1,4,[5],12:i:- or S. Bovismorbificans
carrying mcr-1 gene (Table 2).

The most prevalent genes coding for resistance to extended-spectrum cephalosporins were those
coding for CTX-M enzymes (e.g., CTX-M-1, CTX-M-14, CTX-M-15) followed by qAmpC CMY-2,
both reported in pigs/pork products and humans, and increasingly associated with pig-related
serotypes (e.g., S. Typhimurium and S. 1,4,[5],12:i:-) (Table 2) [131,156]. Plasmid-mediated quinolone
resistance (PMQR) mechanisms have been also widely reported in diverse NTS serotypes from both
pig/pork products and human isolates [156–158]. The most frequent PMQR were QNR proteins
(e.g., QnrB19, QnrS1/S2) found in diverse regions and serotypes (Table 2). Also the aminoglycoside
acetyltransferase AAC(6′)-Ib-cr, commonly associated with the efflux pump OqxAB, was widely
reported among relevant pig-related NTS serotypes (S. Typhimurium, S. Derby and S. Rissen),
particularly in Asian countries (Table 2). Finally, pig/pork seems to be an important vehicle of
NTS carrying the emergent plasmid-mediated colistin resistance mechanism, (mostly MCR-1) (Table 2),
also predominantly in pig-related NTS serotypes causing human infections [75,153,156,159].

All these data demonstrate that pig/pork products might be an important vehicle for the
transmission and dissemination of NTS carrying acquired clinically-relevant resistance genes to
humans through the food chain. The most frequent and clinically-relevant antibiotic resistance
genes and their associated genetic elements (such as specific plasmids) reported in pigs/pork
products were also found in NTS human isolates (Table 2). In fact, transmission of the most
commonly reported genes in both sources has been associated with several epidemic plasmid families,
such as IncN (blaCTX-M-1, -27, -65), IncFIB (blaCTX-M-14, -27, -65, blaCMY-2), IncA/C (blaCTX-M-27, blaCMY-2),
IncI1 (blaCTX-M-1, blaCMY-2), IncHI2 (blaCTX-M-1, -14, -15, oqxAB±aac(6′)-Ib-cr, mcr-1), IncI2 or IncX4 (mcr-1)
(Table 2) [131,153,156,157]. More worrying is the presence, in the same Salmonella strains, of different
clinically-relevant antibiotic resistance genes (e.g., mcr-1+blaCTX-M-1, mcr-1+oqxAB+aac(6′)-Ib-cr)
co-located in the same genetic elements [150,160] (Table 2), worsening the possibility of clinical
treatment failure of invasive NTS infections.
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The acquisition of resistance mechanisms to antibiotics commonly used in food-animal production
(e.g., ampicillin, sulphonamides, tetracyclines) is also relevant for their potential role in the co-selection
of pig-related MDR Salmonella clones in pig production and further transmission to humans.
Several studies have provided evidence of successful transmission of MDR Salmonella clones from
diverse serotypes from pork to humans [19,20,23,24,161,162]. For example, we recently reported mcr-1
located on epidemic plasmids (IncX4 and IncHI2) in clinically-relevant MDR S. 1,4,[5],12:i:-/ST34 [159].
Additionally, in China, diverse studies reported the clonal spread of mcr-1+oqxAB+aac(6′)-Ib-cr in
S. Typhimurium/ST34 in pigs presenting resistance to multiple antibiotics (e.g., A, S, Su, T) [149,150].
Moreover, some of these successful clones presented acquired metal tolerance genes, an additional
feature that might be contributing for the survival and persistence of these strains in metal
contaminated environments, such as the pig production setting [25,126,127,163]. For example, sil±pco
genes encoding for copper/silver tolerance were often found in the emergent European clone of
S. 1,4,[5],12:i:- and S. Typhimurium, as well as S. Rissen/ST469 MDR clone [25,126,127]. In fact,
copper is one of the most used metal compounds in pig setting (e.g., as supplements in animal feed),
suggesting that in these environments higher selective pressures could contribute for the co-selection
of MDR NTS clones [25,126,127,159,163–165], with consequences for food safety and human health.

The data presented here show that pig production setting can be a relevant reservoir of successful
and worldwide emergent MDR pig-related Salmonella serotypes/clones, enriched with different
adaptive features (e.g., metal/biocides tolerance genes) besides genes conferring resistance to critical
antibiotics, which might spread to humans through the food chain. Moreover, the increasing trend of
intensive pig production systems and the globalization of pork products pose a major challenge for
the spread of antimicrobial resistance in zoonotic bacteria such as NTS, with a consequent impact on
human health. Therefore, it is crucial to restrain the use of antimicrobial agents in pig production and to
improve biosecurity measures (e.g., high standards of hygiene, regular veterinary checks, vaccination),
aiming to minimize selection and spread of MDR clones along all stages of pig production chain.
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Table 2. Salmonella serotypes/clones carrying clinically-relevant antibiotic resistance genes recovered from pig and products thereof.

Serotype Clinically Relevant Gene(s) 1

(no. isolates)
Source

Human
Concomitant
Presence 2

Country/year(s) Antibiotic Resistance Phenotype 3 Gene Location
(PL-Inc Group/Chr) Reference

Typhimurium blaTEM-52 (n = 2) Pigs Belgium/2009 NR NR [166]
blaCTX-M-1 (n = 1) Pork meat Germany/2007 K-N-S-Su-T-Tm-Sxt PL-N [167]
blaCTX-M-14+blaSHV-1+oqxAB+
aac(6′)-Ib-cr (n = 2) Pigs Yes China/2014 NS PL-FIB, N [168]

blaCTX-M-27+blaSHV-1+ oqxAB+
aac(6′)-Ib-cr (n = 1) Pig China/2014 NS PL-P [168]

blaCTX-M-27+qnrB+oqxAB+
aac(6′)-Ib-cr (n = 1) Pig China/2014 NS PL-NT [168]

blaCTX-M-55+qnrA+qnrB (n = 4) Pigs China/2016 A-(Cp-E-F-L-Na-N-T) NR [58]
blaCTX-M-65+oqxAB (n = 1) Pig China/2014 NS PL-FIB [168]
blaCMY-2 (n = 52) Pork Colombia/UN A-T NR [169]

Pork and pig Yes Mexico/2002–2005 C-S-Su-T-(G-K-Na-Sxt) NR [170]
Pigs Mexico/NR A-Caz-Ctx-Fox-T-(G) NR [46]
Pigs USA/2007 A-C-Cro-Fox-G-K-S-Su-Sxt-T-Ti PL-A/C, FIB, I1 [171]
Pigs Belgium/2009 NR NR [166]

Diarrheic pigs South
Korea/2011–2012 A-Cef-C-F-Fox-G-Na-Sxt-T-Ti PL-A/C, FIB [172]

qnrS1+oqxAB+aac(6′)-Ib-cr (n = 4) Pork China/2012–2013 A-C-Cp-G-K-Na-O-S-Su-T NR [173]
oqxAB (n = 3) Pigs China/2010 A-C-F-Na-O-Su-T-(G) PL-F [174]

Pork China/2012–2013 A-C-Cp-K-Na-O-S-Su-T-(G) NR [173]
oqxAB+aac(6′)-Ib-cr (n = 6) Pigs China/2008–2010 A-Na-O-Sxt-T-(C-Cp-F-G) PL-HI2 [174]

Pork China/2012 A-C-Cp-G-K-Na-O-S-Su-T NR [173]
mcr-1 (n = 13) Pigs Spain/2009–2011 Col PL-NR [175]

Ready-to-eat pork China/2014 C-Cp-Col-F-G-Na-S-Sxt-T PL-HI2 [176]
Pork carcass/
Pork product Portugal/2016 A-Col-S-Su-T-Tp-(C-Cp-Fox) PL-HI2 [177]

Pig Yes Great Britain/NR A-C-Col-Fox-Su-T-Tm-Tyg PL-I2 [178]
mcr-1+blaCTX-M-1 (n = 1) Pig Portugal/2011 A-At-C-Caz-Col-Ctx-Fep-Fox-G-T-Tob PL-HI2 [160]
mcr-1+blaCTX-M-14 (n = 2) Pork China/2015 A-C-Caz- Col-Ctx-Fos-G-Su-T PL-HI2 [179]
mcr-1+oqxAB (n = 17) Pigs China/2013–2014 Cp-Col-F-O-Sxt-T-(A-G-S) PL-HI2-F4:A-:B5 4 [150]
mcr-1+oqxAB+aac(6′)-Ib-cr (n = 4) Pigs China/2008–2009 A-Col-F-G-Na-O-S-Sxt-T-(Cp) PL-I2, HI2 [149]
mcr-1+aac(6′)-Ib-cr (n = 1) Pig China/2008–2009 A-Col-F-G-Na-O-S-Sxt-T PL-I2 [149]

Pigs China/2015 A-Cp-Col-G-(C-Na-Sxt) PL-HI2 [179]

1,4,[5],12:i:- blaCTX-M-1 (n = 15) Pigs UK/2009 A-Ctx-Su-(C) PL-I1-γ [180]

Pigs Germany/2007,
2009–2010 A-At-Cro-Ctx-Cef-Cxm-P-Tc-Ti-(Fep-S) PL-N, I1 [181]

blaCTX-M-14 (n = 1) Pork Portugal/2010 A-C-Ctx-T-Tm NR [182]
blaCTX-M-15+blaSHV-12 (n = 1) Pork Portugal/2011 A-C-Ctx-S-Su NR [182]
blaCTX-M-32 (n = 1) Pork Portugal/2011 A-C-Ctx-G-S-Su-T NR [182]
qnrB19 (n = 1) Pig USA/2014 Cp PL-NR [183]
mcr-1 (n = 24) Pigs Yes Italy/2012–2015 A-Col-S-T-(C-Cp-F) NR [75]

Pork Yes Italy/2013–2015 A-Col-S-T-(C-F) NR [75]
Pork carcass/
Pork meat Yes Portugal/2014–2015 A-Col-S-Su-T-(C-Cp-Tm) PL-X4, HI2 [159]

Slaughterhouse/
Pork sausage Portugal/2015–2016 A-Col-S-Su-T-(Cp-Tm) PL-X4, HI2 [177]

Pork carcass France/2016 Col PL-NR [184]
Pork carcass Belgium/2012 A-Col-S-Su-T PL-X4 [185]

mcr-4 (n = 1) Pig Italy/2014 A-Col-S-Su-T PL-ColE [186]
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Table 2. Cont.

Serotype Clinically Relevant Gene(s) 1

(no. isolates)
Source

Human
Concomitant
Presence 2

Country/year(s) Antibiotic Resistance Phenotype 3 Gene Location
(PL-Inc Group/Chr) Reference

Derby blaCTX-M-1 (n = 3) Pigs Belgium/2009 NR NR [166]
Pork sector France/2014 A-Cef-Ctx-Caz NR [125]

qnrA (n = 2) Pigs China/2016 A NR [58]
qnrB19 (n = 3) Pigs USA/2014 Cp PL-NR [183]

Pork chops USA/2014–2015 Cp PL-NR [183]
qnrB+qnrS1+oqxAB (n = 1) Pork China/2013 A-C-Cp-G-K-Na-O-S-Su-T-(Az) NR [173]
qnB8+qnrS2+oqxAB+
aac(6′)-Ib-cr (n = 1) Pork China/2012 A-C-Cp-G-K-Na-O-S-Su-T NR [173]

qnrS2 (n = 1) Pork chops USA/2014 Cp NR [183]
qnrS2+oqxAB+aac(6′)-Ib-cr (n = 11) Pork China/2012–2013 A-C-Cp-G-K-Na-O-S-Su-T-(Az) NR [173]
oqxAB (n = 3) Pork China/NR C-Na-O-T Chr [187]

Pork China/2013 A-C-Cp-G-K-Na-OLA-S-Su-T NR [173]
mcr-1 (n = 13) Pigs Italy/2012–2015 C-Col-S-Su-Sxt-T NR [75]

Pork sausage France/2013 Col-(A-S-T) PL-P [188]
Pork China/2015 A-C-Col-T PL-X4 [179]

mcr-2 (n = 1) Pork carcass Belgium/2012 C-Col-Su-Tm PL-X4 [185]

Rissen blaCTX-M-1 (n = 1) Pig Belgium/2009 NR NR [166]
blaCTX-M-55 (n = 1) Pork carcass Thailand/2014–2015 A-C-Caz-Ctx-Cpd-G-S-Su-T PL-NR [50]
blaSHV-12 (n = 1) Pig Spain/1999 A-At-Caz-Cef-Ctx-S-Su-T NR [189]
qnrB19 (n = 1) Pig USA/2013 Cp PL-NR [183]
qnrS1 (n = 1) Pig Korea/2012–2013 Cp-Na NR [57]
qnrVC4 (n = 1) Pig Thailand/2007 A-C-Cp-Na-S PL-Q1 [190]
oqxAB (n = 1) Pork China/2013 A-C-Cp-K-Na-O-S-Su-T NR [173]
mcr-1 (n = 3) Pig Spain/2009–2011 Col PL-NR [175]

Pork carcass Portugal/2014–2015 A-C-Col-S-Su-Tm-(T) PL-X4 [159]

Anatum blaCMY-2 (n = 4) Pigs USA/2008-2011 A-Cro-Fox-Su-T-Ti PL-I1-γ [191]
qnrB19 (n = 5) Pigs USA/2014 Cp PL-NR [183]
mcr-1+blaCMY-2 (n = 3) Pigs Taiwan/2013 A-C-Caz-Cp-Col-Ctx-Fox-Na-S-Su-Sxt-T PL-NR [142]

Adelaide qnrB19 (n = 1) Pig USA/2014 Cp PL-NR [183]

Bovismorbificans blaCTX-M-1 (n = 1) Pig UK/2009 A-Ctx-Su PL-I1-γ [180]
mcr-1 (n = 1) Pork Yes Italy/2013-2015 A-C-Cp-Col-S-T NR [75]

Brandenburg qnrB19 (n = 1) Pigs USA/2014 Cp PL-NR [183]

Concord qnrB2 (n = 1) Pig Czech
Republic/NR NR NR [158]

Dublin mcr-1-like (n = 1) Pig France/NS NS NR [192]

Enteritidis blaCTX-M-15 (n = 2) Pigs Korea/2012-2013 A-Cep-G-Na-N-S-T-Ti PL-HI2 [57]
blaCTX-M-55+qnrA+qnrB (n = 2) Pigs China/2016 A-(Cp-F-Fos-Na-T-Ti) NR [58]
qnrA+qnrB (n = 1) Pig China/2016 A-Cp-F-Na NR [58]
qnrS1/S3 (n = 1) Pig Poland/2008 A-Cp NR [193]

Give blaCMY-2 (n = 1) Pig USA/1998-1999 A-At-C-Caz-Ctx-Fox-G-P-S-Su-T-Tc-Ti PL-NR [194]

Goldcoast qnrS1 (n = 1) Pig Belgium/NR NR NR [158]

Heidelberg blaCMY-2 (n = 3) Pigs Canada/2004 A-Cef-Fox-Ti PL-NR [195]
Pigs USA/1998-1999 A-At-C-Caz-Ctx-Fox-G-P-S-Su-Sxt-T-Tc-Ti PL-NR [194]

mcr-1+oqxAB (n = 1) Pig China/2013-2014 Cp-Col-F-O-S-Sxt PL-HI2-F4:A-:B5 4 [150]

Hinsingen qnrD+aac(6′)-Ib-cr (n = 1) Pig China/2009-2010 Cp-Na PL-NR [196]
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Table 2. Cont.

Serotype Clinically Relevant Gene(s) 1

(no. isolates)
Source

Human
Concomitant
Presence 2

Country/year(s) Antibiotic Resistance Phenotype 3 Gene Location
(PL-Inc Group/Chr) Reference

Indiana blaCTX-M-27+blaSHV-1+oqxAB (n = 2) Pigs China/2014 NS PL-N, P [168]
blaCTX-M-65+blaSHV-1+oqxAB+
aac(6′)-Ib-cr (n = 1) Pig China/2014 NS PL-NT [168]

blaCTX-M-65+oqxAB+
aac(6′)-Ib-cr (n = 7) Pig China/2011 A-C-Caz-Cp-Ctx-G-Na-Sxt-T PL-NR [144]

Pork China/2012 A-Az-C-Cp-Cro-G-K-Na-O-S-Su-T NR [173]
Pig China/2014 NS PL-N [168]

qnrA+oqxA+aac(6′)-Ib-cr (n = 1) Pig China/2009-2010 Cp-O-Na PL-NR [196]
oqxA (n = 2) Pig China/2009-2010 Cp-O-Na PL-NR [196]
aac(6′)-Ib-cr (n = 1) Pig China/2009-2010 Cp-Na PL-NR [196]

Infantis blaCMY-2 (n = 2) Pigs Japan/2007-2008 A-C-Caz-Cef- Fox-S-Su-T PL-NR [59]
blaVIM-1+blaAAC-1 (n = 4) Pigs Germany/2011 A-C-Caz-Cef-CRro-Ctx-Cxm-Fep-Fox-P-S-Su-Tc-Ti-Tm PL-HI2 [197]

Kedougou mcr-4.1 (n = 1) Pig carcass Spain/2016 Col PL-NR [184]

London blaCTX-M-14 (n = 1) Pork Portugal/2012-2013 A-Ctx NR [198]
qnrB19 (n = 1) Pig USA/2014 Cp PL-NR [183]
mcr-1+oqxAB (n = 1) Pig China/2013-2014 A-Cp-Col-F-G-O-S-Sxt PL-HI2-F4:A-:B5 4 [150]

Miami blaCMY-2 (n = 2) Diarrheic piglets India/2014 A-Cfl-Ctx-E-Fix-P NR [199]

Muenchen qnrB19 (n = 8) Pigs USA/2013-2014 Cp PL-NR [183]

Newport mcr-1+blaTEM-135 (n = 5) Pigs China/2015 A-C-Cp- Col-G PL-HI2 [179]

Senftenberg qnrB6+aac(6′)-Ib-cr (n = 1) Pig USA/2013 Cp NR [183]

Virchow blaCTX-M-15 (n = 5) Pigs Yes Korea/2012-2013 A-Cef-G-Na-N-S-T-Ti PL-HI2 [57]

Weltevreden mcr-1 (n = 1) Pork China/2015 Col-T PL-X4 [179]

Salmonella spp. mcr-1 (n = 3) Pigs Italy/2010-2011 NR NR [192]

Antimicrobial abbreviations: A, ampicillin; At, aztreonam; Az, azithromycin; C, chloramphenicol; Caz, ceftazidime; Cpd, cefpodoxime: Cef, cephalotin, Cfl, cephalexin; Cp, ciprofloxacin;
Col, colistin; Cro, ceftriaxone; Ctx, cefotaxime; Cxm, cefuroxime; E, Enrofloxacin; F, florfenicol; Fep, cefepime; Fix, cefixime; Fos, fosfomycin; Fox, cefoxitin; G, gentamicin; K, kanamycin;
L, levofloxacin; N, neomycin; Na, nalidixic acid; O, olaquindox; P, piperacillin; S, streptomycin; Su, sulphonamide compounds; Sxt, trimethoprim/sulfamethoxazole; T, tetracycline;
Tc, ticarcillin; Ti, ceftiofur; Tm, trimethoprim; Tob, tobramycin; Tyg, tigecycline. Chr, chromosome; NS, not specified; NR, not reported; NT, not typable; PL, plasmid. 1 Only references with
full-characterized clinically relevant antibiotic resistance genes were considered. 2 “Yes”, clones or serotypes detected both in pigs/products thereof and humans in the same study.
3 Variable phenotypes were present between curved brackets. 4 IncF replicon sequence typing.
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6. Conclusions

Pork products are among the most frequent foodstuffs implicated in human salmonellosis,
with pig and pork meat reported worldwide as important sources of NTS resistant to clinically-relevant
antibiotics, representing a major threat to the treatment of invasive infections. Furthermore, the high
incidence of resistance to clinically-relevant antibiotics reported in diverse countries together with
the increasing demand for pork meat and the global trade of pig/pork products raised the current
public health concern. Hence, the continuous control and monitoring of Salmonella, particularly
targeting specific MDR pig-related serotypes/clones, along the food chain (from primary production
to consumption) is critical to minimize their introduction in the food-animal production and further
transmission to humans. Therefore, a global integrated surveillance (“One Health” approach),
and the implementation of more effective measures are critically needed, including the improvement
of biosecurity measures at farms (e.g., providing uncontaminated feed, isolation of new
purchased animals, high standards of hygiene, regular veterinary checks, vaccination), during
slaughtering/processing (e.g., prevent external sources of contamination during transport, lairage
and slaughter, cross-contamination with equipment and workers and hygiene practices such as
cleaning and disinfection) and retail/consumer level (e.g., avoiding cross-contamination, using safe
cooking temperature). Surveillance of antibiotic resistance levels in NTS throughout the pig food chain
is crucial to ensure public health, not only through the detection of new food safety risks involving
foodstuffs such as pork meat but also to avoid salmonellosis treatment failures.
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