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Supervisory control technology is widely used to improve product quality inmineral grinding process (MGP). To
ensure safety, new supervisory control method needs to be fully tested before practical application. However,
conducting tests in a running process is costly andmay put the process equipment in danger, which necessitates
extensive simulations to ensure the stability and performance of supervisory controllers. Comparing with the
field based test, the numerical simulation is more economic and safer. However, numerical simulations cannot
capture all aspects of controlled object, such as sensors, actuators, process, control systems themselves and signal
transmissions, which are important to evaluate the control performances. To solve this problem, this paper pre-
sents a novel hardware-in-the-loop simulation (HILS) platform for the supervisory control ofMGP. By integrating
a supervisory control system, a basic loop control system, a virtual actuator and sensor system, and a virtual plant
system in to a coherent whole, the HILS platform provides a full-scope simulation environment for the supervi-
sory control. The supervisory control system and the basic loop control system adopt real control systems. The
detailed process dynamics are modeled and visualized by the virtual plant system. Further, as an interface
between the physical controllers and virtual plant, the virtual actuator and sensor system is used to realize the
signal conversion and to simulate the dynamics and faults of the actuators and sensors using data acquisition
(DAQ) hardware and configuration software. Effectiveness of platform is demonstrated with a case study,
where an intelligent supervisory control method for a typical one stage MGP is tested.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

As a crucial component of the beneficiation process, mineral grind-
ing process (MGP) is used to grind the run-of-mine ore into suitable
particle size such that the valuable mineral constituent can be exposed
to be recovered in the subsequent classification process [1,2]. In the
past, the process control research of the MGP was focused on the basic
loop control methods to ensure the process variables follow their
setpoints in a stable operation. In order to realize the basic loop control
method easily, distributed control systems are widely used.

Long term production practice, however, shows that it is difficult to
obtain the desired production only using the basic loop controller. This
is because that the inappropriate control loop setpoints will make the
MGP work under a non-optimized economic status, thereby leading to
high cost and low quality of products. Therefore, a high-performance
process control system should ensure that not only process variables
can follow their setpoints stably, but also these setpoints are suitable for
the optimal process operation. For this reason, a hierarchical approach
d Electrical Engineering, China
ina.
as shown in Fig. 1 is proposed in [3]. In this framework, a supervisory
control system is installed on top of the basic loop control to optimize
the control loop setpoints online. The development of a new supervisory
control system usually needs to undergo intensive experiments until the
control performance meets with the technical requirements.

Experiment in an industrial environment is effective, direct but ex-
pensive and often unsafe. Hence, the alternative approach of modeling
and simulation is cheap, quick and conclusive. The modeling of mineral
process has been discussed for many years [4–7], but the simulation
doesn't play a role until personal computers became available in about
mid-1980s [8]. The first generation of simulation uses steady state
models to offer the best and cheapest way to handle the difficult
problems of flowsheet design and optimization. In this period, because
of the success of simulation it is also necessary to have a reservoir of
professional skills and models, some commercial simulators, such as
JKSimMet and USIM Pac, have thus been developed to provide well
technical supports [9]. By 1990s, new requirements for high-capacity
and high-quality have led mineral processing industry to be concerned
with the operation process control and optimization, which requires
themodeling of the dynamic relationship between theprocess variables
and themanipulated variables. Hence, a number of researchers began to
study the dynamicmodeling and simulation [10–14]. Today, there have
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Fig. 1. Hierarchical control strategy for the MGP.

Fig. 2. Flowsheet of grinding process.
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been commercially available dynamic simulators widely used in this
field, such as MetSim and SysCAD.

The above simulators have been used to test the software simulated
control system. This is the so-called numerical simulation. But the draw-
backs of numerical simulation are that they cannot capture the whole
grinding system including sensors, actuators, process, control systems
themselves and signal transmissions [6,15], and neither do these pack-
ages provide a control algorithm programming environment similar to
the real control system. This leads to unconvincing results of numerical
simulation because programming and testing of the controller are still
necessary in practical application.

The gap between the numerical simulation and the actual applica-
tion had persisted for years until the use of hardware-in-the-loop simu-
lation (HILS) [16–24]. By combining the simulated systemwith physical
hardware, the HILS realizes a full-scope simulation of integrated control
system including sensors, actuators, real control units and so forth,
which is difficult to achieve solely by the numerical simulator. The
HILS has been as an effective verification and validation tool for control-
ler to be applied in many industrial fields. A HILS platform is developed
in [16] to verify and validate the safety of nuclear control systems. In
[17], a HILS platform consisting of a simulated power system and a
real hardware propulsion motor set is proposed to research the perfor-
mance of electrical ship power system. A HILS platform performed in
[18] is used to assess the high-integrity embedded automotive control
systems. In recent years, the applications of HILS platform in robotics
and automotive systems have been discussed in [19,20] and [21–24], re-
spectively. These applications illustrate the HILS can effectively reduce
the risk of accidents at various stages of development: design, imple-
mentation, testing, operation, and maintenance stages. For the MGP,
the improper loop setpoints will result in the unsatisfying product as
well as some faults such asmill overload or underload faults. If the faults
cannot be eliminated in time, theywill cause damage to devices or even
cause suspension of the operation. A HILS platform is thus required for
the design and test of the supervisory controller. To our knowledge,
however, such platform has not been reported.

Motivated by this issue, this paper focuses on providing a full-scope
HILS platform for the design and test of the supervisory control system
of theMGP. The proposed platform consists of a supervisory control sys-
tem, a basic loop control system, a virtual actuator and sensor system,
and a virtual plant system. The simulated grinding process (i.e., virtual
plant) is linked with the real control systems (i.e., supervisory control
system and basic loop control system) through the virtual actuator
and sensor system, so that the whole platform can be operated similar
to the real system. The major contributions of this work include the
following aspects:

• A HILS architecture approaching to industrial grinding system is pro-
posed by integrating actual control system and simulated actuators,
sensors and grinding process.

• A virtual actuator and sensor system is developed not only to bridge
the simulated grinding process and the actual control system under
test, but also to simulate the equipment dynamics and faults.
• A configurable software for supervisory control is developed to assist
thedesign anddevelopment of a newlydeveloped supervisory control
algorithm for a MGP.

• A flexible modular based simulation environment for the MGP is
proposed, where a 3-D visualization component is used to visualize
the grinding process vividly.

The paper proceeds as follows. In Section 2, the MGP and its control
situation are introduced. The structure, hardware, software and
communication protocols of the developed HILS platform are presented
in Section 3. An intelligent supervisory control method is designed and
tested using the HILS platform in Section 4. Concluding remarks are
drawn in the final section.

2. Description of mineral grinding process control

2.1. Process description

The MGP usually consists of a great mill and grader as shown in
Fig. 2. The mill is a metal cylinder rotating around its axis at a fixed
speed with heavy media inside. Owing to the combined effect of
knocking, chipping, and tumbling caused by grinding media, the lump
ore is crushed to fine particles. According to the different grinding
media, the mill can be categorized based on the grinding media, such
as the steel balls and steel rods. The grader is a classification unit used
to filter particles grinded from mill and transfer the coarse particles to
the mill for regrinding. The overflow slurry with finer particles, as
product, is transported to the subsequent procedure. The grader usually
employs hydro-cyclone or spiral classifier.

2.2. Control situation

Inmost grindingprocess operations, the important production index
is product particle size (PPS) (% b 74 μm), which is the key metric
indicating the grinding product quality. Due to the fact that undersized
and oversized PPS are both unfavorable for the subsequent separation
process and those situationsmay even cause negative economic impact
on the whole plant, the control objective is to maintain the PPS within
specified range. To realize the above objective, some control loops
have to be deployed to ensure the relevant process variables stable, as
the PPS is sensitive to some key process variables.

Today, the distributed control systems (DCS) or programmable logic
controller (PLC) are deployed in almost all of the control loops in the
grinding process. Unfortunately, production practice indicates that the
plant still often operates under a non-optimized economic status,
thereby producing low quality product in high-energy production. The
reason is that “with respect to the economic performance of a MGP
plant, the controller performance is most probably not as important as
the right selection of the setpoints” [1]. In practice, these loop setpoints
are normally regulated by on-site operators. For the operators, however,
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Fig. 4. Structure of industrial system.
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it is nearly impossible to adjust loop setpoints timely and accurately in
the presence of frequent fluctuations of ore properties (such as ore
hardness and particle size).

Consequently, it would be useful to supervise the loop control sys-
tem with an optimizer that may change the operating setpoints during
process operation. Until now, there have been some attempts on solving
this supervisory control problem. These begin with some model-based
control and optimization methods, such as real-time optimization
(RTO) [25], model predictive control (MPC) [2,26–28] and adaptive
decoupled control [29,30]. But, these methods are hard to be applied
in practical MGPs, as accurate modeling is difficult to achieve or the
established models do not accurately describe the actual dynamic pro-
cesses. Recently, intelligent technologies (i.e., rule based reasoning
(RBR) [31], fuzzy logic [32], case based reasoning (CBR) [33], neural
network [34], and reinforcement learning [35]) are used or integrated
together to realize the supervisory control for the practical MGP.

3. Architecture of HILS platform

Designs of supervisory control based on intelligent technologies rely
heavily on the experiments and historical operating data. Different pro-
cesses need diverse supervisory control structures or algorithms. There
is no unified and effective methodology for the supervisory control. In
fact, the dynamics of actual plants, to a large extent, differ from each
other indeed. This indicates that the experiment-based verification
should be adopted to validate and improve the supervisory control
system for a new process.

To avoid high-cost and high-risk test of the control system in real in-
dustrial plants, a HILS platform consisting of four systems (i.e., a supervi-
sory control system, an embedded PLC-based basic loop control system, a
virtual actuator and sensor system, and a virtual plant system) is pro-
posed as shown in Fig. 3. According to the industrial grinding system
whose structure is illustrated in Fig. 4, the four components are integrat-
ed together via a set of complex communication network to provide a
distributed simulation environment similar to the real industrial system.

Different from the numerical simulation that cannot capture all
aspects of a grinding process, the HILS supports full-scope simulation,
as all the devices and process in actual industrial system are reproduced
by similar hardware or simulated by software components. In the HILS
platform, the structure and network of the control system under testing
are the same with industrial control system. The real plant is represent-
ed by the virtual plant, which simulates all the dynamics of grinding
Fig. 3. Structure of HILS platform.
operation. The control system is connected to virtual plant by the virtual
actuators and sensors system in such ways the verification of control
system can be carried out.

For the proposed HILS platform as shown in Fig. 3, the data flow is
shown in Fig. 5, which briefly described as follows.

• According to the desired PPS r⁎, a set of loop setpoints y⁎ are generated
by the supervisory control system and downloaded to basic loop con-
trol system via Ethernet.

• Tomaintain the process variables y follow their setpoints y⁎, the control
inputs u are turned rapidly by the loop controller first, and then trans-
ferred to the virtual actuator and sensor system via electric cables.

• Through the signal conversion and actuator simulation in the virtual
actuator and sensor system, the control inputs u are converted to ~u
that will be transferred to virtual plant via Ethernet.
Fig. 5. Information flow of HILS platform.
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Table 1
Main notation.

Name Description

r⁎ Desired product particle size
r Actual product particle size
~r Simulated product particle size
y⁎ Control loop setpoint
y Actual control loop output
~y Simulated control loop output
u Actual control loop input
~u Simulated control loop input
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• In the control of ~u, the virtual plant system generates the control loop
outputs ~y and the PPS ~r first, and then feeds them back to the virtual
actuator and sensor system via Ethernet.

• Consider that each feedback signal needs to be detected by a sensor, ~y
and ~r will undergo sensor simulation and signal conversion in succes-
sion in virtual actuator and sensor system.

• The signals y and r are collected by the basic loop control system to up-
date u. Meanwhile, these signals are transferred to the supervisory con-
trol system.

• When the supervisory control system receives the feedback signals, it
will recalculate the loop setpoints y⁎, and send them to the basic loop
control system. Such that, a closed-loop control cycle is completed.

Table 1 lists the notations used in the Fig. 5.
4. Implementation of HILS platform

4.1. Virtual plant system

Dynamic simulation is crucial for the design and testing of a control
system. To reconstruct the grinding operation process in HILS platform,
a 3-D simulation software for virtual plant is developed and resides on a
computer. The software provides three components i.e., modeling com-
ponent, 3-D visualization component and communication component.
The modeling component is employed to establish the simulation
models of the grinding process; the 3-D visualization component is
used to construct the process operation to screen; and the data
exchange between the above two components is achieved by the com-
munication component. The functional units used in each component as
well as their relation are shown in Fig. 6. A brief description is given
here, but for more details refer to our early work [36,37].
Fig. 6. Structure diagram of 3-D simulation software.
4.1.1. Modeling component
Since MGP involves very complex phenomena, it is common to

divide a whole MGP into several units, where each unit represents an
operation subprocess. Different modeling technologies can be used
according to the subprocess features. Finally the whole MGP can be as-
sembled by connecting these unit units. The above modeling approach
makes the modeling easier for users to configure a simulation scenario,
since the addition and deletion of units do not necessarily change the
simulation strategy. In addition, material flow can be easily seen from
the unit's relationship.

For the above reason, the modeling component adopts a modular-
based building approach. Each unit model can be developed in terms
of customized block written in computer code first, and then encapsu-
lated in a unit module by using a Modeler. The encapsulated models
are stored in a Model Library. Further, the Modeler provides a drag-
and-drop type of interface for definition of connectivity of the unit
models. The variables involved in the connectivity definition are divided
into two kinds, namely local variables and remote variables. The local
variables that are only used in model solving, whiles the remote vari-
ables are employed for not only model solving but also remote data
communication with the virtual actuator and sensor system. All of
these variables are created by a Variable Library. After the model is
established, the model simulation is performed using a Solver, which
provides basic numeric routines. During the simulation process, the
Solverwill update the model variables to a Numeral Viewer, which con-
tains various pop-up windows where users can change the settings of
the models and view the simulation results by means of tables and
trends. In this way, the simulations of diverse plants with different
model parameters can be carried out.

For convenience, themodels of typical operation units (such asmills,
spiral classifier, hydro-cyclone) have been encapsulated in the Model
Library.

Traditionally, the grinding process are modeled with either mecha-
nism technique or data-driven technique. But, these two kinds of
techniques have obvious inherent advantages and disadvantages. If
used alone unsatisfactory results are often obtained [3]. Therefore, we
adopts a hybrid modeling technique which could obtain better and
more reliable performance by integrating the above two kinds of tech-
niques. Specifically, each grinding operation unit ismodeledwithmech-
anism technique first, and then the data-driven technique is adopted to
estimate themodel parameters based on the real-time data. In this way,
it is not only partly compensate the unmodeled dynamics but alsomake
models adjust adaptively according to diverse operation conditions,
thereby having the simulation cover the entire real process.

For themill, its mechanismmodelingmethods can be traced back to
1840s, and extensive research work was carried out so far. According to
different modeling principle, the mill can be described by different
mathematical models, such as energy consumption model [38], matrix
model [39], kinetics model [40] and population balance model [41].
Since the energy consumptionmodel andmatrixmodel belong to static
models, and kinetics model refers only to batch grinding process, they
cannot be used to simulate the continuous grinding dynamics. The
most widely applied dynamic simulation model is the population bal-
ance model, which is used with the energy-specific or empirical selec-
tion function. But, population balance model is usually not in full
agreement with the real process in its entire operating range because
of the overlooked variation of the selection function in different opera-
tion conditions. To improve the simulation performance, on the basis of
the population balance model, a TSK (Takagi–Sugeno–Kang) neuron-
fuzzy network is adopted to estimate the model parameters using the
comprehensive data collected in plants over a long period covering a
wide range of ore types and operating conditions. Those details can be
referred in [37].

For the hydrocyclone, its dynamics can be neglected as the response
of equipment is virtually instantaneous [7]. Currently, most
hydrocyclone models are based on the equilibrium orbit theory, the
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residence time theory or the turbulent two-phase flow theory. In this
system, the model of hydrocyclone is derived from the empirical
model of Lynch and Rao [42], which includes some mass balance equa-
tions, a classification efficiency function, a corrected cut-size function
and a sharpness of classification function. Themodel parameters are de-
termined through a Radial Basis Function Neural Network (RBFNN)
which is trained with the actual data collected from the plant [37].

For the spiral classifier, its model is similar to the hydrocyclone
model [43]. But the classification efficiency function becomes more
complex because of mixture effects [44]. Besides, a time delay is added
in its recycle output because the particles sinking to the bottom need
time to be transported to the upper end of the spiral classifier by
metal spiral slices. Similar to the hydrocyclonemodel, its model param-
eters are also evaluated by using RBFNN.

4.1.2. 3-D visualization component
Themodeling component canmake it easy for users to graphically de-

velop the flowsheet models of complex processes. But when it is used to
train new operators, it may be ineffective, since the flowsheetmodel can-
not visually and directly display the operation condition of the equip-
ment. Consequently, the 3-D visualization component is developed.

In this component, the 3-D visualizationmodels for operation unites
are created first using the commercial package MultiGen Creator. And
then a VTree-based visualization engine is employed to fulfill the visual
simulation of plant. Furthermore, the engine provides an interface for
the communication component to read and write its data from and to
the modeling component.

4.1.3. Communication component
This component is a data transmission channel between the model-

ing component and 3-D visualization component. Since OPC (Ole for
Process Control) [45] can facilitate integration and communication
among heterogeneous networks, it has been served as an interoperabil-
ity standard for the industry control. In our platform, an OPC server is
developed and available for both the modeling component and 3-D
visualization component with individual OPC client. Such that, when
the data in any OPC client change, OPC server will immediately detect
it and update the data on the server correspondingly. Then, the OPC
server will send the updated data to the other OPC clients. In this way,
the data exchange is performed effectively.
Fig. 7. Structure of the configurable
4.2. Supervisory control system

The virtual plant system lays a significant foundation for control sys-
tem design and testing. Currently, the commercial off-the-shelf (COTS)
control software packages (i.e., Aspen Plus Optimizer, Profit Optimizer,
DMCplus, DeltaV Predict/Pro, etc.) are referred tomodel-basedmethods
(i.e., RTO,MPC, etc.). But inmineral industry, the actual processes are al-
ways difficult to be modeled mathematically. Hence, the above COTS
packages are difficult to be applied. To solve the problem of the
setpoints optimization, it is necessary to adopt data-driven or intelligent
control methods. Due to the fact that the idea of data-driven or intelli-
gent controller design is to formulate the controller strategy and then
specify each part of the controller [3], the easiest way for controller
development is to develop algorithm unit individually first and then
to connect them according to the control strategy, thereby building a
whole controller. Hence, a modular-based configuration software is in
urgent need. To our best knowledge, however, such software has not
been reported so far.

Motivated by this, a configurable software is developed. This paper
only focuses on the framework of the software and gives a brief descrip-
tion of the main modules. The technologies used in the modules, how-
ever, will not be elaborated too much here for limit of space. The Fig. 7
shows the main modules developed in this software and their relation.

Supervisory controller is essentially a logical assembly of different
algorithm units, the abundance, availability and extendibility of the
algorithm units are thus key for the system usability. For this reason,
an Algorithm Library is developed to provide a number of basic algo-
rithms units for controller configuration. In the Algorithm Library, the
basic units are classified and saved in different toolboxes: a) sources
toolbox providing several signals such as sine signal; b) I/O toolbox
providing input/output function blocks (FBs); c) basic math toolbox
providing canonical mathematical operation FBs such as add, subtract,
multiply and divide; d) control toolbox providing some data processing
algorithms for control.

In the control toolbox, several standard control algorithms, such as
PID, fuzzy logical, MPC, have been developed as basic units. This greatly
make the building of controller easier. But when it is coming to a novel
controllermade up of non-standard complex algorithms, such as case or
rule based reasoning, it still be a hard work as it is difficult if not impos-
sible to realize those complex algorithms by reusing the basic units.
software of supervisory control.

Image of Fig. 7
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Therefore, the system provides a user-defined toolbox for extending the
functionality of the algorithmunits by adding routines. The routines can
be developed directly using MATLAB platform according to algorithms,
or encapsulated as dynamic link library (DLL) files using C++. To
achieve the purpose of the reuse of algorithm resources, the user-
defined algorithm units are allowed to be embedded in Algorithm
Library.

When starting up the controller, the Controller Builderwill call a Com-
putational Engine to execute the FBs one by one according to data flow,
meanwhile the Variables Librarywill update the data for Process Monitor,
Data Analysis and Data Alarm. Process Monitor can monitor the process
operation situations in the supervisory control system. The Data Analysis
provides control performance statistics and data visualization for user to
judge the effectiveness of the supervisory control algorithms. Data Alarm
is used to detect the abnormal variableswhose values exceed the normal
operating range, and also give users a piece of warning message to do
corresponding responses. With regard to abnormal variable, it is usually
caused by either control algorithms or sensors faults. This is because that
improper control algorithms maybe generate a set of incorrect loop
setpoints out of the normal operating ranges. In the condition of sensor
faults such as interruption and short-circuit, the measured data will al-
ways become zero or less than zero, as output of sensor will be less
than the minimum of industrial standard signal (standard range is
often 4 ~ 20 mA or 1–5 V). Therefore, the Data Alarm, to a certain extent,
can diagnosis some faults in control algorithms or sensors by detecting
the abnormal variables, therebywarning the operators to switch the con-
troller ormanually set the loop setpoints to keep the grinding process op-
eration safe and successive. Thewarningmessagewill be recorded into a
Log Database for analysis.

4.3. Basic loop control system

The aim of the basic loop controller is to force the control loop out-
puts to track their setpoints downloaded from the supervisory control
system, while maintaining safe process operations. Any control plat-
form supporting OPC protocol could be used in this platform. Industrial
PLC is the best as it could make the HILS platform more close to the ac-
tual system. But, the use of industrial PLCwillmake cost significantly in-
crease. Compared with the industrial PLC, embedded soft PLC (ES-PLC)
has the advent-ages of smaller size, faster computation speed, and
lower price. Therefore, an ES-PLC-based basic loop controller is
employed to make the platform more economical and convenient to
use.

The ES-PLC is composed of two parts i.e. programming system and
running system, which reside in a personal computer (PC) platform
and an embedded hardware platform, respectively. The programming
system is used to develop the controller with the programming
language specified by IEC 61131 standard, to check syntax, to generate
object code, to download the object code to the running system, and
Fig. 8. Structure of the ES-PLC-b
so on. The running system is responsible for parsing the executing the
object code, collecting data and sending control commands via IO inter-
face. Its overall architecture is shown in Fig. 8.

The programming system adopts a development package, namely
MULTIPROG5.35 Express developed by KWSoftware GmbH. It provides
a fully graphic editor with auto routing, a text editor with syntax
highlighting and a variables grid editor. Further, it supports users in ef-
ficient programming in each IEC 61131 language. In addition, it adopts
an open compiler technology namely common intermediate language
(CIL), in this way the user can program in IEC 61131 or execute complex
calculations and object-oriented C++ programming in Microsoft
Visual Studio. The entire program can be translated to object code and
then be executed at high performance in the existing embedded
systems such as ARM, ×86, PowerPC, SH or Cortex [46].

The running system is an embedded system that is developed using
an ARM9 microprocessor (AT91SAM 9263). Its peripherals include
flashmemoryunit, power circuit, boot startup circuit, I/O circuit, isolation
conditioning circuit, and communication peripherals such as internet ac-
cess, serial port and USB port. Further, an industrial standard communi-
cation protocol, namely Modbus, is supported. It is worth noting that
the communication protocol between the supervisory control system
and the basic loop control system is OPC that is different with Modbus.
Therefore, protocol transformation is necessary in this platform.
To solve this problem, a communication management software package
namely KEPSeverEX developed by Kepware Technologies Inc. is adopted.
This software package supports an array of open standards. Through
Modbus protocol, it can create and update OPC items according to the
tags used in the running system. Meanwhile, supervisory control system
can read or write OPC items synchronously or asynchronously via OPC
client. Such that, the communication between the supervisory control
system and basic loop control system is achieved steadily and safely.

4.4. Virtual actuator and sensor system

Although the Ethernet used in the virtual plant system enables mul-
tiple virtual plant systems to perform simultaneously, it is totally differ-
ent from the industrial standard. The issue of communication between
Ethernet signal and standard industrial signal (4–20 mA and 1–5 V) is
thus raised. To enable interfacing between these different signals, an
interface module namely the virtual actuator and sensor system (see
Fig. 9) is developed using an industrial control computer (IPC) with an
Ethernet network card, several signal conditioning cards and data
acquisition (DAQ) cards manufactured by Advantech Co., Ltd.

Using the signal conditioning cards (such as PCLD-880), the industri-
al signals are converted to standard signals available for the DAQ (such
as PCL-1712L and 1727U card, suitable alternatives are those by Agilent
and Omega, or custom micro-controller boards) cards first. After that
the DAQ cards will acquire these standard signals through 20-pin flat
cables. Following acquisition, the signals need to be processed in IPC
ased basic loop controller.

Image of Fig. 8


Fig. 9. Implementation of communication of HILS platform.
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and then sent to the Ethernet card for output. An alternative way is that
Ethernet signal is collected by IPC and then sent to DAQ cards for output
after essential signal processing.

In the signal processing procedure, due to the totally different of
scales of standard industrial and Ethernet signals, the signal conversion
is required. To make the experiment platform more practical, inherent
characteristics of the actuators and sensors (such as dead zone, satura-
tion, time-lag, zero drift and so forth) have to be considered. Further-
more, owing to the fact that the actuators and sensors are often not
working properly in practice because ofmaintenances or faults like sen-
sor interruption, short-circuit, and valve stuck, it is also necessary to
consider the normal and abnormal conditions, which enables the user
can conduct fault diagnosis and fault tolerant control experiments in
this platform. Furthermore, different control strategies can be tested in
the condition of different sensors operating healthily. For instance, if
fresh ore feed rate and adding water flow can be measured normally
it is common to employ feedforward control strategy to control slurry
density, if not the feedback control strategy based on themeasured slur-
ry density is always adopted. To keep the process operation safe and
Fig. 10. Flow chart of min
successive in any condition, the above two control strategies are both
required. Using the virtual actuator and sensor system, the users can
choose the availablemeasured signals by setting the condition of sensor,
and then test the corresponding control strategy.

To realize the above requirements, a HMI configuration software,
namely Rsview32 developed by Rockwell Automation, Inc., is utilized.
Using the build-in VBA programming environment, the signal process-
ing procedure is developed. For the user interface employed for
adjusting data processing parameter, it is conducted by using the
build-in graphical editor. Due to limited space, no more details here.

In the following section, the validation of platform is performed by a
case study about an intelligent supervisory control for a typical MGP.

5. Validation of HILS platform

5.1. Typical MGP

A typical MGP, mainly consists of a feed conveyor, a ball mill and a
spiral classifier, is graphically shown in Fig. 10. The raw material of
eral grinding process.

Image of Fig. 9
Image of Fig. 10


Fig. 11. Structure of optimal control scheme.

Table 2
Case structure.

Time Case description Case solution

c1 c2 c3 c4 c5 c6 c7 s1 s2 s3

t y1 y2 y3 km kr r⁎ r y1,0⁎ y2,0⁎ y3,0⁎
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this MGP is the undressed ore generated from the crushing procedure,
and the final production is the overflow slurry of spiral classifier. PPS
is thus the particle size of the overflow slurry.

During the operation, the coarse fresh ore is first fed continuously
into the ball mill by the conveyor at a certain speed, together with a cer-
tain amount of inlet mill water. Then, the ball mill is responsible for
grinding the coarse ore to finer sizes. In this grinding process, mill
load and slurry density determine the grinding efficiency, besides the
mill structural parameters such as steel balls and rotation speed. For
those two influencing factors, too high and too low both attenuate the
grinding efficiency. When the mixed ore slurry including both coarser
and finer particles is continuously discharged from themill into the spi-
ral classifier, gravity classification operation begins. Due to the fact that
difference of particles' sedimentation rates is the reason for particle clas-
sification, and the sedimentation rates is essentially influenced by the
slurry density, the classification performance is thus dependent on the
classifier slurry density.

From the above analysis, it can be seen that since the structural pa-
rameters of mill the classifier can be considered as constant within a
certain operating time, the mill load, mill slurry density and classifier
slurry density are key factors for the MGP operation. But the mill load
and mill slurry density are unmeasurable in practice. Fortunately,
they, to a certain extent, can be adjusted by the fresh ore feed rate and
water flow rate of the ball mill, respectively. As a consequence, the
fresh ore feed rate, water flow rate of the ball mill and slurry density
of the spiral classifier are selected as the operational variables yi(i =
1,2,3). To maintain yi(i = 1,2,3) around its setpoint y⁎i(i = 1,2,3),
three control loops are deployed as shown in Fig. 10, where –C and –T
express controller and instrument, respectively, and W–, F–, D– and
E– stand for weighing, flow rate, density and current, respectively.

Since the speed of the ore feed belt is constant, the feeder motor is
unique device to regulate y1. Therefore, frequency of feeder motor u1
(Hz) is selected as manipulated variable of the control loop for y1. It is
well known that water flow is controlled by valve position when
water pressure is constant, the valve position u2 (%) of mill water is
thus selected as manipulated variable of the control loop for y2. For y3,
the manipulated variable is dilution water addition rate q (m3/h), but
q is controlled by valve position of dilution water u3 (%). As a result, a
cascade control loop is adopted as shown in Fig. 10.

5.2. Design and development of controller

5.2.1. Design of intelligent supervisory control
Since the controlled object of the supervisory control is a generalized

object that includes not only the grinding process but also the basic loop
control system, the dynamic behavior of the basic loop control system
will in turn influence the performance of the supervisory control. There-
fore, a satisfying basic loop control system is necessary for the accurate
evaluation of the supervisory control. In contrast with themodeling op-
eration process, it may be easier tomodel the loop processes. Therefore,
the traditional control methods like PID and the advanced control
methods like MPC both can be adopted. But, it is worth noting that the
performance of those control methods highly depends on the accuracy
of system modeling and parameter identification. Thus, for the
multiple-input-multiple-output (MIMO) systemswith strong couplings
like the MGP, it is better to model for different channels by means of
variousmodels according to process characteristics, such as linear trans-
fer function models and nonlinear models.

In this paper, increment PID controllers are developed using the
ES-PLC. To accurately assign the controller parameters, three loop pro-
cesses mentioned in Subsection 5.1 are modeled first in terms of linear
transfer functions, and then parameter adjustments based on Refined
Ziegler-Nichols (R-ZN) are employed using the established models.
The later experiments show that the increment PID controllers can
meet with the technical requirements, such as steady-state error, over-
shot, rise time and so forth.

For the supervisory control system, it is clear that model-based
methods require an accurate mathematical model, which makes them
not suitable for the industrial grinding plant. In our early work [31,32],
some intelligent techniques are employed to achieve the supervisory
control of the MGP. In this work, to evaluate and validate the HILS
platform, an intelligent controller to maintain the PPS within the
desired range (r⁎−0.2%, r⁎ + 0.2%) is developed and tested in this
platform. The controller consists of a case based reasoning (CBR)-
based pre-setting module, a PPS soft-sensor, and two fuzzy adjustors
(main and auxiliary adjustors). Its structure is shown in Fig. 11. Each
part is briefly reviewed as follows (for details see [31,47]).

1. CBR-based loop pre-setting module

This module is referred to as a steady optimal controller that pro-
vides a set of proper pre-setpoints y0⁎ (y1,0⁎, y2,0⁎ and y3,0⁎) according to
the desired PPS r⁎, boundary condition (fresh ore hardness km and size

Image of Fig. 11


Fig. 12. Reasoning flow of the CBR-based loop pre-setting module.
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distribution kr), and the current operating condition (y1, y2, y3 and r).
Based on the historical data, the optimum loop setpoints responding
to the different conditions are extracted to a case. The structure of the
case is shown in Table 2. t stands for the time of case created and stored;
ci, i= 1,2,…7 denote case description features; si, i= 1,2,3 are the case
solutions expressing the optimum loop setpoints. In such case, km and kr
are of enumerative style. Five ordered figures {1,1.5,2,2.5,3} are
employed to demarcate the linguistic variables {bad, relatively bad,me-
dium, relatively good, good} for km and {large, relatively large, medium,
relatively small, small} for kr. In the testing stage, the experiments will
be carried out in the case of variations of km and kr.

Fig. 12 presents the reasoning flow of CBR-based loop pre-setting
module. It includes case retrieval and matching, case reuse, case evalua-
tion, and case revision and retention (for details see [31]). The case
retrieval andmatching is used to find thematching cases, which are sim-
ilar with the current situation. Applying these matching cases, the case
reuse will generate the current solution. If the case evaluation detects r
exceeds its desired range, it will switch on fuzzy adjustors to compute
the adjusting increments Δy⁎. After that the case revision and retention
will revise the case solution to Δy⁎+ y0⁎, and store this revised case.

2. PPS soft-sensor

In many real plants, since online measurement devices are of
high cost and failure rate, the measurement of PPS always relies
heavily on offline laboratory assay. But the assay is a time-
consuming process in fact. The soft-sensor technique is thus re-
quired to estimate the PPS online if one wants to obtain the satisfy-
ing product throughout.

Soft-sensor focuses on the process of estimation of some system
variable or product quality by using mathematical models and data
acquired from some other available physical sensors. This paper
adopts a hybrid PPS soft-sensor that is composed of a mechanistic
model and a data-driven model to achieve the nonlinear mapping
in Eq. (1).

~r kð Þ ¼ ϕS y1 kð Þ; y2 kð Þ; y3 kð Þ; em kð Þ; ec kð Þ;~r k‐1ð Þ; km; krð Þ ð1Þ
Fig. 13. Structure of fuz
The mechanistic model employs PBM to catch the main dynamics,
and data-driven model uses a random vector functional link network
(RVFLN) with improved robustness to compensate the unmodelled
dynamics. The details can be found in [47]. The PPS soft-sensor is the
foundations of fuzzy adjustors described as follows.

3. Fuzzy adjustors

During the grinding operation, the equipment parameters
(e.g., grinding media and dimensions of metal spirals, etc) always vary
with time. This will make the setpoints drift away from the optimum,
thereby leading to control error of PPS. Hence, two fuzzy adjustors
(one is main adjustor, the other is auxiliary adjustor) are used to
compensate the effects of disturbances caused by these time-varying
parameters through adjusting the setpoints online. Once the PPS is
found to exceed the desirable range, the adjustors will be activated to
realize the following multivariable nonlinear mappings respectively

Δy�M ¼ ϕM Δ~r;u1;u2;u3; km; krð Þ
Δy�A ¼ ϕA Δr;u1;u2;u3; km; krð Þ

�
ð2Þ

whereΔyM⁎=[Δy1,M⁎,Δy2,M⁎,Δy3,M⁎]T; andΔy�A ¼ ½Δy�1;A;Δy�2;A;Δy�3;A�T ;Δ~r
¼ r�−~r is the deviation between the desired PPS and estimated PPS;
Δr=r⁎−r is the deviation between the desired PPS and assaying PPS.

The arithmetic of the auxiliary adjustor is similar to the main adjus-
tor. Due to limited space, only the main adjustor is briefly viewed here,
but for more detailed information please refer to the literature [31]. The
main adjustor, whose structure is illuminated in Fig. 13, includes a fuzzy
inference module, a coordination module and an adaptive module. In
themain adjustor, the fuzzy inferencemodule integrates four tradition-
al fuzzy logic inference mechanisms (i.e., Fof, Fdm, and Fdc) to compute
the scale factor bM1–bM6 for the adjusted increments ΔyM⁎. Consider
that the grinding operation is sensitive to ore properties, the following
adaptivemodule is adopted based on the two adaptive factors km and kr.

Δy�M ¼
Δy�1;M
Δy�2;M
Δy�3;M

2
4

3
5 ¼

bM1 bM2 0
bM3 bM4 0
0 0 bM5

2
4

3
5 km

kr
1

2
4

3
5 ð3Þ

To enhance the production ratewith a satisfactory PPS, the coordina-
tionmodule is used to coordinate each fuzzy logic inferencemechanism
using the following scheme.

• If the PPS isfine, to enhance themill throughput, start the inference Fof
to increase y1, while set bm3–bm5 as zero to keep the former value of y2
and y3.

• If the PPS is coarse, to keep themill throughput, it should start Fdm and
Fdc to adjust y2 and y3 respectively, whereas set bm1 and bm2 as zero to
keep the former value of y1.

• If the PPS is too coarse, the four inference mechanisms will be started
to reduce y1 and adjust y2 as well as y3 accordingly.

5.2.2. Controller development
Using the user-defined toolbox of supervisory control software for

Matlab, each algorithm mentioned above has been developed. The
zy main adjustor.

Image of Fig. 12
Image of Fig. 13


Fig. 14. Snapshot of supervisory control software: (a) Operation interface; (b) Process monitor interface.
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data used in CBR-based loop pre-setting algorithm is realized using
Microsoft Access 2010. Then,we drag and drop the developed algorithm
module form algorithm library one by one. A snapshot of main opera-
tion interface is shown in Fig. 14(a). The controller configuration inter-
face is shown on the top left corner, and some data tables and trends are
displayed on the bottom side and the top right corner respectively to
support the decision making of researchers. The snapshot of process
monitor interface is shown in Fig. 14(b).

To test the developed controller, the models of ball mill, spiral clas-
sifier, vibratory conveyer and valves need to simulate the whole grind-
ing process besides the relevant actuator and sensormodels that built in
virtual actuator and sensor system. Using the virtual plant software, the
simulation models are established and shown in Fig. 15(a). The project
information, model property, and model library are shown on the left,
bottom, and right side respectively. Furthermore, the virtual reality of
grinding process is built as shown in Fig. 15(b). This part is not
necessary for the testing of the controller, but it is useful for gaining
some insight into the grinding process vividly.
Fig. 15. Snapshot of virtual plant system: (a) modelin
5.3. Testing of controller

In practice, the adjustment of the supervisory controller is unavoid-
able. So the supervisory control software must be reconfigurable. In
this subsection, this feature will be confirmed by modifying the
controller.

Firstly, the PPS soft sensor and the main fuzzy adjustor are removed
from the controller. The supervisory control period is set to the same
with that of the PPS assay. In the virtual plant system, the following
model is established to simulate the assaying process.

r Tð Þ ¼ T2

XT1=T2

k¼1

r T−T1 þ kT2ð Þ
,

T1 ð4Þ

where T1 is the assaying period, and T2 is basic feedback control period.
Eq. (4) indicates that the actual PPS is the statistical value for recent
time. In this study, T1 = 250 s and T2 = 1 s.
g component; (b) 3-D visualization component.
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Fig. 16. Control trends without PPS soft sensor and main fuzzy adjustor: (a) PPS; (b) control loop setpoints and outputs.
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The control trends without PPS soft sensor and main fuzzy adjustor
are shown in Fig. 16. At the beginning of the systemoperation, the initial
pre-setting values for the loop setpoints are obtained, and when
assaying PPS is coming, the compensation value for the loop setpoints
is generated. The Fig. 16 illustrates that the supervisory control system
can (1) collect the process data and assaying PPS from HILS platform,
(2) adjust the loop setpoints according to the updated assaying PPS, de-
sired PPS, control loop outputs, and (3) download the adjusted loop
setpoints to the basic feedback controller. Furthermore, the basic loop
control system can force the control loop outputs to follow the adjusted
setpoints timely using the increment PID method. Furthermore, from
Fig. 16, it can be observed that the virtual actuator and sensor system
aswell as virtual plant system can effectively simulate the whole grind-
ing process and feed the accurate process behaviors back to the basic
feedback control and supervisory control systems.

From the results, one can see that the current supervisory controller
has poor performance. The reason is that the control period T1 is too
large. This cause serious control delay. When the ore property changes,
the PPS will fluctuate accordingly. Unfortunately, this controller cannot
perceive the fluctuation and adjust setpoints until the next assaying
value arrives. It is thus difficult to maintain the PPS within its desired
Fig. 17. Control trends with the PPS soft sensor and main fuzzy
range. This simulation result is consistent with reality, which confirms
the effectiveness of the platform.

If the PPS soft sensor andmain fuzzy adjustor are added to the super-
visory controller, the control performance should be greatly improved.
This experiment is carried out in the HILS platform, and the correspond-
ing experiment result can be found in Fig. 17. From Fig. 17, it can be seen
that the controller provides accurate online estimate of PP. Based on this
estimated PPS, the change of actual PPS can be evaluated in real timeon-
line.Whenever the estimated PPS is outside its desired range, the super-
visory control system will adjust the loop setpoints according to the
error between estimated and desired PPSs. In this case, the control peri-
od is set as the period of PPS soft-sensor, namely 50s. In this way, the
continued control behavior can be realized during the process opera-
tion, and the fluctuation of PPS can be suppressed ahead of the arrival
of assaying PPS. As a result, the actual PPS can be maintained within
its desired range, which demonstrates almost all of the production are
qualified pulp. The result is also consistent with reality.

To further validate the efficacy of the HILS platform, an experiment
that enhances the desired PPS by 1% during the grinding operation is
carried out. In practice, the desired PPS is obtained from a planning
and scheduling system, and it usually varies over time. Hence, this
adjustor: (a) PPS; (b) control loop setpoints and outputs.
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Fig. 18. Control trends when the desired PPS changed: (a) PPS; (b) fresh ore feed rate; (c) water flow rate of the ball mill; (d) slurry density of the spiral classifier.
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experiment is essential to verify the dynamic performance of control
system. The dynamic response of PPS and control loops are shown in
Fig. 18. From it, one can obtain that when the desired PPS has been
changed, the controller can recognize the deviation of PPS at once, and
then adjust the setpoints accordingly. With the help of the basic loop
control system, the actual PPS can be controlled in the vicinity of its
target value again after 7 control periods.

Via the above experiments, the effectiveness of the HILS platform
has been validated. The above mentioned supervisory control scheme
is just one that has been developed and tested by us, and other algo-
rithms for different grinding process also can be implemented and test-
ed in the proposed HILS platform.

6. Conclusion

Motivated by the problem of the design and testing of supervisory
controller of mineral grinding processes, a HILS platform is developed.
The HILS platform can not only provide a full-scope simulation environ-
ment for the MGP by developing the software and hardware of virtual
plant system as well as virtual actuator and sensor system, but also en-
able the design of the supervisory control system by developing the
software and hardware of supervisory controller and embedded soft
PLC (ES-PLC)-based loop controller. The above efforts make the HILS
platform close to the real industrial system, which is not possible in
the currently available COTS simulation packages. A case study about
an intelligent supervisory controlmethod for a typicalMGP is presented
to validate the effectiveness of theHILS platform. The study result shows
that a new supervisory control method can be designed and tested
before practical application with the developed HILS platform, which
is useful for reducing the risk of damage to operating devices, and in-
creasing the rate of qualified production. Though the HILS platform is
intended for the testing of supervisory control algorithms for the MGP,
it can be easily modified to test the supervisory control system for
some other resource-intensive industrial processes.
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