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Abstract: A Solar Tower Aided Coal-fired Power (STACP) system utilizes a solar tower coupled to a

conventional coal-fired power system to reduce pollutants, greenhouse gas emissions and the investment

of solar energy facilities. This paper examines three different schemes for integrating solar energy into a

conventional boiler. For each scheme, an energy and exergy analysis of a 600 MWe supercritical coal-

fired power system is combined with 53 MWth of solar energy in both a fuel saving mode and a power

boosting mode. The results show that, for all these integration schemes, the boiler’s efficiency and

system’s efficiency are reduced. However, the standard coal consumption rate is lower in comparison to

conventional power plants and the standard coal consumption rate in the fuel saving mode is lower than

in the power boosting mode for all three schemes. Comprehensively considering both the standard coal

consumption rate and efficiency, the scheme that uses solar energy to heat superheated steam and

subcooled feed-water is the best integration option. Compared with a coal-fired only system, the saved

standard coal consumption rate of the above mentioned scheme in fuel saving mode and power boosting
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mode can reach up to 11.15 g/kWh and 11.11 g/kWh, respectively. Exergy analysis shows, for STACP

system, exergy losses of boiler and solar field contribute over 88% of whole system’s exergy loss.

Keywords: solar tower power system, coal-fired power system, fuel saving mode, power boosting mode,

exergy analysis

1. Introduction

Air pollution and global warming have been posing a serious threat to human health and the

environment, which is mainly caused by the use of fossil fuel. In China, over 70% of the electrical

demand is met by coal-fired power generation stations[1, 2], which contributes a large proportion of

greenhouse gas and pollution emissions. In this matter, the Chinese government has taken effective

emergency measures in order to address these problems. One way to deal with this situation is to exploit

renewable energy to replace coal-fired power generation. Of all the renewable energy, concentrated solar

power, which can be built in large scale, is a promising technology that can meet the power demand for

China. However, at present, the solar-only thermal power plant still cannot be built at such a large scale

because the cost is extremely high and the annual global efficiency is low. Because the steam cycle of

solar thermal power plant is similar to that of a coal-fired power plant, integrating solar thermal energy

into coal-fired power plant, also known as solar aided coal-fired power (SACP) system, is not only to

reduce greenhouse gas emissions but also to reduce the investment in solar energy facilities.

A SACP system was first studied by Zoschak and Wu in 1975[3]. Seven possible methods of

integrating solar energy to a coal-fired power system were proposed and analyzed. Results show that

combing solar energy with the evaporation and superheating is the most preferred method due to the high

utilization of solar energy, and using solar energy to preheat feed-water is also a favorable method.

However, in the most recent studies related to SACP systems, solar energy is used to preheat feed-



water[4-8], and the focus is mainly on evaluating different integration schemes, operation modes and its

thermal and economic performances. For the system integration aspect, Hu et al. used solar energy to

replace the extracted steam to heat the feed-water. Results showed that the higher the temperature aided

heat source is, the more beneficial the system can be[9]. Yang et al. considered a 200 MWe coal-fired

unit as an example and explored four different integration schemes in fuel saving mode and power

boosting mode. In power boosting mode, the system can generate additional power while consuming the

same amount of fuel[10]. In terms of operation modes, Qin et al. proposed four possible SACP system

configurations and three operation strategies. Therefore, an SACP system with twelve potential

‘‘configuration-operation” combinations was investigated [11]. They studied the impact of the two

different operation strategies for non-displaced feed-water heaters on the plant’s performance. The results

indicated that a plant with a constant temperature strategy is generally better than one operating with a

constant mass flow rate strategy[12]. Recently, they proposed a mixed operation mode, in which the

SACP system can be operated at a series of time intervals and, in each time interval, the system operated

in either power boosting or fuel saving mode. The results showed that the annual profitability of such a

mixed operation mode could be up to 12.1% higher than that of a single operation mode[13]. In the area

of thermal performance of a SACP system, Hou et al. investigated the performance of a SACP system at

the design point under various load conditions and the performance in fuel saving mode under different

solar radiation conditions [14, 15]. Huang et al. discussed the influences of power station capacities and

sizes of solar field on the performance of the SACP system[16]. Adibhatla et al. conducted exergy and

thermo-economic analyses on a 500 MWe SACP plant. The exergy analysis showed that the solar field

and boiler have the two highest exergy destruction ratios (78.90% and 56.52%) and the thermo-economic

analysis showed that the product cost rate of the generator was 19.1 USD/kJ [17]. Li et al. studied the



performance of the SACP system based on the all-condition mechanism model of the SACP system[1].

Hong et al. demonstrated the performance behaviors of a 330 MWe SACP plant under off-design

conditions by applying the derived expressions of the conversion of solar energy into power[18]. From

the economic aspect, Wu et al. explored the annual economic performance of the SACP system under

different tracking modes, aperture areas, and storage capacities[19]. Adibhatla et al. used an energy,

exergy, economic and environmental (4E) method to analyze the SACP system[20]. Wang et al.

optimized the solar multiple for a SACP system from the technical and economic aspects, the results

showed that the efficiencies in the region of 13–20% can be achieved and the reduction in the levelized

cost of electricity was in the region of 0.7–1.1 ￥/kWh [21]. Various ways of evaluating SACP systems

have been used. Zhai et al. evaluated the SACP system using a life cycle assessment method[22]. Peng

et al. evaluated the system using an energy-utilization diagram methodology[23]. Zhai et al. proposed an

evaluation method named solar contribution evaluation method, based on the second law of

thermodynamics and exergy balance, and distinguished the difference of exergy efficiency between solar

and coal in the SACP system[24]. Hou et al. proposed a new evaluation method of solar contribution in

a SACP system based on exergy analysis[25].

In combining solar energy with the evaporation and superheating areas, due to the high temperature

of steam/water in the boiler, solar tower technology is an ideal option to consider. Zhang et al. proposed

two schemes of the solar tower aided coal-fired power (STACP) system, where the standard coal

consumption rate could be reduced by more than 17 g/kWh and a flue gas bypass was introduced to avoid

high thermal stress across its support frame[26]. In their following work, the annual performance of the

two schemes with thermal energy storage, using a single-tank thermocline technology, were investigated.

Results showed that the solar power efficiency was around 16-20%[27]. Zhu et al. applied exergy and



advanced exergetic analysis methods to a STACP system and found maximum exergy loss occurs in the

boiler (53.5%), followed by the solar field (26%)[28]. Then, they studied the annual performance of a

STACP system and found that the annual average coal consumption rate of STACP system is 27.3 g/kWh

lower than that of coal-fired power system and the annual average CO2 emission rate of STACP system

is reduced by 10.1% compared with that of coal-fired power system[29].

There has been much researches regarding solar energy integration to preheat feed-water, and

limited efforts have been made on integrating solar energy with evaporation and super-heating. Because

of the temperatures involved and the need to improve the cycle efficiency, the temperatures available

from a solar tower system are more suitable to utilize with evaporators and super-heaters in a

conventional boiler system. In this paper, three different schemes for integrating solar energy into a boiler

are proposed under either a fuel saving mode or a power boosting mode with same solar energy input. In

scheme 1, solar energy is used to heat part of the superheat steam. In scheme 2, solar energy is used to

heat part of the feed-water and superheat steam. In scheme 3, solar energy is used to heat part of the feed-

water, superheat and reheat steam. Both fuel saving and power boosting modes share the same system

configuration, and the only difference between these two operation modes is the coal consumption input.

In the fuel saving mode the overall power output is kept constant, and coal input to the power system is

reduced when solar energy is available. In the power boosting mode, additional power is produced, and

coal input to the power system is constant when solar energy is available. A total of 6 cases are studied

in this paper and the following abbreviations are used to refer to each: scheme 1 in fuel saving mode

(FS1), scheme 1 in power boosting mode (PB1), scheme 2 in fuel saving mode (FS2), scheme 2 in power

boosting mode (PB2), scheme 3 in fuel saving mode (FS3), and scheme 3 in power boosting mode (PB3).

This study has three main novel features in comparison to our own studies [28]: (1) The boiler model is



established in detail instead of treating it as a “black box”. (2) The performances of the three different

integration schemes under both fuel saving mode and power boosting mode are investigated and

compared from both energy and exergy aspects. (3) Sankey diagrams are incorporated to analyze and

compare the exergy performance between coal-fired power system, FS2 and PB2.

2. System description

2.1 Solar tower aided coal-fired power system

Fig. 1 shows a schematic of the STACP system, which contains the solar field and the coal-fired

power plant. The solar field is composed of many heliostats, a solar tower, a columnar receiver, and a

heat exchanger. In the solar field, solar energy is reflected onto a receiver that is at the top of the tower

by the heliostats. Molten salt passes through the receiver to absorb the solar energy and the thermal

energy of the molten salt is then transferred to the steam/water cycle in separate heat exchangers. The

molten salt used in this study is a mixture of 60wt % NaNO3 and 40wt % KNO3. The thermal properties

of the molten salt are a function of temperature as follows[30]:

ρ = 2263.72 − 0.636T (1)

c� = 1396.02 + 0.172T (2)

λ = 0.391 + 0.00019T (3)

Where, ρ is density of molten salt, kg/m3; �� is specific heat of molten salt at constant pressure, J/(kg

K); λ is thermal conductivity of molten salt, W/(m K); T is the temperature of molten salt, K.

A conventional 600 MWe ultra-supercritical coal-fired power plant is considered in this paper and

the thermal parameters of the main steam and reheat steam are 566/24.2 and 566/3.6 (℃/MPa), 

respectively. In the coal-fired power plant, the unsaturated feed-water from the condenser enters the

boiler after going through the condensate pump, four low pressure heaters (H5, H6, H7, and H8), a



deaerator, feed-water pump and three high pressure heaters (H1, H2, and H3). Then the feed-water

absorbs heat in the boiler and becomes superheat steam. The outlet superheat steam from the boiler is

transported to the high pressure turbine (HP) to produce power. The steam from the HP goes into the

boiler to be reheated in order to improve its work capacity. Then the reheat steam is transported to the

intermediate pressure turbine (IP) and low pressure turbine (LP) to produce power. Finally exhaust steam

is condensed in the condenser.

Generator

Solar Tower

Sun

Heliostat Field

Boiler

Solar field Coal-fired power plant

Receiver

Heat exchanger

Fig.1 The diagram of solar tower aided coal-fired power system

2.2 Physical models of different integrating schemes

Fig. 2 shows main components for the three integrating schemes. Feed-water from the high pressure

heaters first goes to the economizer (ECO), and then to the water wall from the bottom of the boiler. In

this the feed-water partially turns into steam due to radiative heat absorption from the flame in the furnace.

Then steam/water mixture enters to the steam separator (SEP), where the steam is separated and passes

through the first platen super-heater (FPS), the second platen super-heater (SPS) and the final super-

heater (FS) to the HP. In order to maintain temperature of the main steam, there are two attemperators

before the SPS and FS. The cold reheat steam from the HP passes through a low-temperature re-heater



(LR) and a high-temperature re-heater (HR) to the IP.

In scheme 1, due to the instability of SEP and the complexity of the enclosure wall super-heater and

the roof wall super-heater, part of steam is extracted from the inlet of the FPS. Then, the extracted steam

from the boiler is transported to the Molten Salt Heat Exchanger (MSHE) to heat up to 566 ℃, because 

the temperature of the main steam is 566 ℃. Finally, the extracted steam is mixed with the superheat 

steam from the FS to form the main steam that is sent to HP. In scheme 1, only the superheating part of

the boiler is integrated with the solar energy. In fact, it is the evaporation part of the boiler that makes up

the largest proportion of thermal load. Therefore, in scheme 2, part of subcooled feed-water is extracted

from the ECO instead and the extracted working fluid is mixed with the superheat steam after being

heated in MSHE. Different from Scheme 1, the working fluid extracted in Scheme 2 is subcooled feed-

water. Therefore, the heat exchanger must include both the evaporation and superheating parts. In scheme

3, re-heaters in the boiler are taken into consideration, so the working fluid extracted is divided into two

parts. The first part is the same as in scheme 2, the other part is that part of the reheat steam that is heated

by the heat exchanger in the solar field instead of the LR and HR in the boiler. The inputs and outputs of

these three schemes are represented as A, B and C in Fig. 2, respectively.
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Flame centre

LR
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Fig.2 Physical models of different integrating schemes of the solar energy and boiler

Notes: FS1 and PB1: Steam is extracted from the inlet of the FPS and is sent back to HP (green line);

FS2 and PB2: Water is extracted from the outlet of the ECO and is sent back to HP (purple line); FS3

and PB3: Water is extracted from the outlet of the ECO and is sent back to HP. Reheat steam is

extracted from the inlet of the LR and is sent back to IP (orange line).

3. Methodology

3.1 Energy and exergy analysis

In this study, mass, energy and exergy balances are used to analyze the STACP system. The energy

and exergy analysis of the whole STACP system can be carried out by combining the analysis of each

subsystem. To simplify the calculations, some important assumptions in the analysis are considered:

(a) The system operates at a steady-state with a constant direct normal irradiance (DNI).

(b) Pressure drop and heat losses in pipelines are not considered.

(c) The ambient temperature is 25 ℃ and the ambient pressure is 1 atm. 

For certain equipment, the energy balance and exergy balance can be presented as follows:

E���� = E���� − E���� (4)

Ex���� = Ex���� − Ex���� (5)

Where, E���� is the obtained energy, MW; E���� is the disbursed energy of an equipment, MW; E����

is the energy loss, MW; Ex���� is the obtained exergy, MW; Ex���� is the disbursed exergy of an

equipment, MW; Ex���� is the exergy loss, MW.

The exergy at a specific state can be obtained by:

Ex = 10−3m ∙ ex = 10−3m[h − h� − T�(s − s�)] (6)

Where, m is the mass flow rate of the fluid, kg/s; ex is the specific exergy, kJ/kg; h and h0 are the specific



enthalpy at a specific state and ambient state, kJ/kg; T� is the ambient temperature, K; s and s0 are the

specific entropy at a specific state and ambient state, kJ /(kg K).

3.2 Model development

3.2.1 Heliostat model

Heliostat field consists of many independently controlled heliostats, which can reflect the sun rays

to the receiver at the top of the solar tower. The thermal energy reflected to the receiver can be calculated

as:

E��� = E����� ∙ η��� (7)

Where, E��� is the solar energy reflected by the heliostats, MW; η��� is the heliostat efficiency,

which is set to 58.71% in this study[31]; E����� is the solar energy falling on the heliostats, MW, and

can be calculated by:

E����� = A��� ∙ DNI 10
�⁄ (8)

Where, ���� is the total mirror area of the heliostat field, m2, which is set to 1.45×105; DNI is direct

normal irradiance, W/m2, which is set to 700.

The energy balance and exergy balance can be expressed as:

E����� = E��� + E���,���� (9)

Ex����� = Ex��� + Ex���,���� (10)

Where, E���,���� is the energy loss caused by the heliostat field, MW; Ex����� is the exergy falling on

the heliostats, MW; Ex��� is the exergy reflected by the heliostats, MW; Ex���,���� is the exergy loss

caused by the heliostat field, MW.

Ex����� and Ex��� can be obtained by:

Ex����� = E����� ∙ (1 − T� T�����⁄ ) (11)



Ex��� = E��� ∙ (1 − T� T�����⁄ ) (12)

Where, T����� is the apparent sun temperature as an exergy source and taken to be 4500 K[32].

3.2.2 Receiver model

The receiver is located at the top of the solar tower. The working temperature of the molten salt used

in this study can be suitable up to 600 ℃[33], and, in this study, the temperature of molten salt out of the 

receiver is set at 580 ℃. The energy balance and exergy balance for the receiver are as follows: 

E��� = E��� − E���,���� = E��� ∙ η��� (13)

Ex��� = Ex��� − Ex���,���� (14)

Where, E��� is energy absorbed by the molten salt in the receiver, MW; E���,���� is the energy loss in

the receiver, MW; η��� is the receiver efficiency and is set to 89.16% [31]. Ex��� is exergy absorbed

by the molten salt in the receiver, MW; Ex���,���� is the exergy loss in the receiver, MW. The useful

energy and exergy absorbed by the molten salt can be calculated by:

E��� = 10−3m�����h����,��� − h����,��� (15)

Ex��� = 10−3m�����ex����,��� − ex����,��� (16)

Where, m���� is the mass flow rate of molten salt passing through the receiver, kg/s; h����,�� and

h����,��� are the specific enthalpy of molten salt in/out of the receiver, kJ/ kg; ex����,�� and ex����,��� are

the specific exergy of molten salt in/out of the receiver, kJ/ kg, which can be calculated by Eq. (6).

3.2.3 Molten salt heat exchanger model

In the molten salt heat exchanger, the temperature of steam/water will increase by absorbing the

energy released by the molten salt. The energy balance and exergy balance of the molten salt heat

exchanger can be expressed as:

E�� = E��� = 10−3m���h��,��� − h��,��� (17)



Ex�� = Ex��� − Ex��,���� = 10−3m���ex��,��� − ex��,��� (18)

Where, E�� is the energy released by the molten salt, MW; m�� is the mass flow rate of molten salt,

kg/s; h��,�� and h��,��� are the specific enthalpy of molten salt in/out of heat exchanger respectively,

kJ/ kg. Ex�� is the exergy released by the molten salt, MW; Ex��,���� is the exergy loss in the heat

exchanger, MW; ex��,�� and ex��,��� are the specific exergy of molten salt in/out of heat exchanger

respectively, kJ/ kg.

The energy and exergy absorbed by working fluid can be obtained by:

E�� = E�� = 10−3m���h��,��� − h��,��� (19)

Ex�� = Ex�� = 10−3m����h��,��� − h��,���− T��s��,��� − s��,���� (20)

Where, E�� is the energy transferred to the working fluid, MW; m�� is the mass flow rate of working

fluid, kg/s; h��,�� and h��,��� are the specific enthalpy of molten salt in/out of heat exchanger

respectively, kJ/ kg. Ex�� is the exergy transferred to the working fluid, MW; s��,�� and s��,��� are the

specific entropy of molten salt in/out of heat exchanger respectively, kJ/(kg K).

3.2.4 Boiler model

The boiler model is calculated based on the method that was proposed by the former Soviet Union

in 1973 and was modified in China in 1998[34]. The logical flow diagram of this calculation is shown in

Fig.3 and the properties of the bituminous coal from Guizhou province are shown in Table 1.

In the furnace, radiative heat transfer is predominant and the heat transfer proportion by convection

is very small. Therefore, the heat balance equation for the boiler is as follows:

E��� = 10−3φB�VC�T�� − T���,���� = 10−6a��A���σ��T��
� − T�

�� (21)

Where, E��� is the energy absorbed in the furnace, MW; φ is the heat retention factor；B� is the

calculated coal consumption rate, kg/s；VC is the mean net heat capacity rate of the combustion products



per unit, kJ/(kg K); T�� is the adiabatic flame temperature, K; T���,��� is the temperature at the outlet

of the furnace, K; a�� is the system emissivity; A��� is the furnace enclosure wall area, m2; σ� is

Stefan–Boltzmann constant, 5.67×10-8 W/(m2K4); T�� and T� are the average temperatures of the

flame and the furnace wall respectively, K.

The convective heating surfaces refer to all the heating surfaces in the flue pass beyond the furnace

outlet. The radiative heat transfer and convective heat transfer should be considered simultaneously.

The heat balance equations for the convective heating surface are as follows:

E��� =
��∆�

��
(22)

For the gas side:

E��� = φ�h����,�� − h����,��� + ∆αh���� (23)

For the working fluid side:

E��� =
�
������,�������,���

��
− E��� (24)

Where, E��� is the convective heat transferred, kJ/kg; K is the heat transfer coefficient; H is the area

of heating surface, m2; ∆t is the logarithmic mean temperature difference, K; h����,�� and h����,��� are

the specific enthalpy of flue gas in and out of the heater, kJ/kg; ∆α is the air leakage ratio; h��� is the

specific enthalpy of cold air, kJ/kg; h��,�� and h��,��� are the specific enthalpy of steam in and out of

the heater respectively, kJ/kg; E��� is the radiative heat transferred, kJ/kg.

The energy absorbed in the boiler can be expressed as:

E������ = 10���m�(h� − h��) + m���h��,��� − h��,����− E�� (25)

Where, E������ is the thermal energy absorbed by working fluid in the boiler, MW; m� and m�� are

the mass flow rate of the main and reheat steam, kg/s; h� is the specific enthalpy of main steam, kJ/kg;

h�� is the specific enthalpy of feed-water, kJ/kg; h��,�� and h��,��� are the specific enthalpy of steam



in/out of the re-heater respectively, kJ/kg;

Table 1. Properties of the coal

Items Value

Ultimate analysis (%)

Ash 23.72

Moisture 25

Carbon 57.5

Hydrogen 3.11

Nitrogen 0.99

Sulfur 2

Oxygen 2.78

Low heating value (kJ/kg) 21981

Exergy (kJ/kg) 22967
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Fig.3 Calculation logic flow of boiler

Notes: T���: the temperature of the exit flue gas; T������: the temperature of hot air; t���,���: the

outlet temperature of SEP; t���,�� : the inlet temperature of FPS; ∆t���,��� : the temperature

difference between the assumed and calculated outlet temperature of SEP; ∆t���,��: the temperature

difference between the assumed and calculated inlet temperature of FPS; ∆T���: the temperature

difference between the assumed and calculated temperature of the exit flue gas; ∆T������ : the

temperature difference between the assumed and calculated temperature of hot air; δQ������: the

heat difference between the assumed and calculated Q������



3.2.5 Turbine and feed-water preheating system

In this paper, the Matrix Thermal Balance Equation approach is used to calculate the turbine and

feed-water preheating system, as shown in Eq. (26).
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(26)

Where, m�� is mass flow rate of feed-water from deareator, kg/s; m� is mass flow rate of

extraction steam in the ith stage, kg/s; τ� is the specific enthalpy change of feed-water in the ith

heater, kJ/kg; q� is specific enthalpy drop of extraction steam in ith heater, kJ/kg; γ� is specific

enthalpy drop of drain water in the ith heater, kJ/kg.

�, �, � can be obtained as follows:

q� = �
h� − h�,� (i = 1,2,3,5,6,7,8)

h� − h��,� (i = 4)
(27)

τ� = h��,� − h��,���	 (28)

γ� = �
h�,��� − h�,� (i = 2,3,6,7,8)

h�,� − h��,� (i = 4)
(29)

Where, h� is the specific enthalpy of extraction steam for the ith heater, kJ/kg; h��,� is the specific

enthalpy of feed-water at outlet for the ith heater, kJ/kg; h�,� is the specific enthalpy of drain water

in the ith heater, kJ/kg.

In the power boosting operation mode of the STACP system, due to the introduction of solar energy,

the mass flow rates of the main and reheat steam will inevitably be affected. Therefore, variable operating

conditions should be taken into consideration. To simplify the calculation, the improved Flugel formula

is employed in this paper, which is given as[29]:

��

��,�
= �

��
������

�

��,�
� �����,�

� (30)



Where, m� is steam mass flow rate of the ith stage of the turbine under off-design condition, kg/s; m�,�

is steam mass flow rate of the ith stage of the turbine under original design condition, kg/s; p� and p���

are pressure of the ith and (i+1)th stage in turbine after the solar energy is introduced, MPa; p�,� and

p���,� are pressure of the ith and (i+1)th stage of the turbine of original coal-fired power generation unit,

MPa.

3.3 Thermal performance evaluation criteria

The thermal efficiency (η�����) and exergy efficiency (ε�����) are important parameters of the

STACP system and can be expressed as:

η����� =
�

������������
(31)

ε����� =
�

��������������
(32)

Where, P is the net power output of the STACP system, MW; E���� and Ex���� are the thermal energy

and exergy of the coal, MW.

The boiler’s thermal efficiency (η������) and exergy efficiency (ε������) can be calculated as:

η������ =
�������

�����
(33)

ε������ =
��������

������
(34)

Where, Ex������ is the exergy of working fluid absorbed in the boiler, which can be calculated by Eq.

(6).

The standard coal consumption rate can be obtained by:

b� =
�.�×106

�����

�����
(35)

Where, b� is the standard coal consumption rate, g/kWh; LHV� is the low heating value of standard

coal, which is 29271 kJ/kg.

The CO2 emissions can be calculated by:



Em��� =
�.�×106

�������������

���∙�
(36)

Where, Em���
is the CO2 emission, g/kWh; V��� is the volume of CO2 for the combustion of 1 kg

coal, m3/kg [34]; ρ��� is the density of CO2, kg/m3; LHV is the low heating value of the coal used in

this study, kJ/kg.

4. Case study

4.1 Basic data and model validation

In this paper, a 600 MWe coal-fired power plant in China is selected as the reference system and the

boiler, turbine and preheating system models are coded in MATLAB. The design and simulation values

of the boiler are shown in Table 2. The design and simulation values of the turbine and preheating system

are listed in Table 3. From Table 2 and Table 3, a strong agreement can be seen between the simulation

results and the design data, thus, the MATLAB developed model is shown to be reliable enough to use

for further analysis.

Table 2. Comparison between simulation results and design data of boiler

Parameter Units Steam/Water/Air

Inlet Outlet

Fluid typedesign simulation* design simulation*

First Platen Super-heater ℃ 428 429.5 470 470.5 steam

Second Platen Super-heater ℃ 460 461.6 512 509.6 steam

High-temperature Re-heater ℃ 468 469.5 567 567.0 steam

Final Super-heater ℃ 504 505.9 571 571.0 steam

Low-temperature Re-heater ℃ 300 300.0 468 469.5 steam

Economizer ℃ 274 274.0 329 330.9 water

Air Heater ℃ 25 25.0 325 323.0 air

* The data are calculated without any solar energy input.

Table 3. Comparison between simulation results and design data of turbine and preheating system

Parameter Pressure (MPa) Enthalpy (kJ/kg) Flow rate (t/h)

design simulation* design simulation*

Main steam 24.2 3396 3398.8 1677.54 1677.54

Cold reheat steam 4.047 2970.1 2968.5 1400.30 1403.55

Hot reheat steam 3.642 3598.3 3600.0 1400.30 1403.55



1st extraction 5.977 3054.8 3051.8 104.23 105.59

2nd extraction 4.047 2970.1 2968.5 145.79 141.74

3rd extraction 1.774 3376.2 3376.5 60.88 62.00

4th extraction 0.9513 3189.1 3188.8 78.86 79.65

5th extraction 0.372 2974.9 2974.9 82.50 82.17

6th extraction 0.113 2733.8 2734.1 40.64 40.68

7th extraction 0.05577 2621.1 2621.1 54.61 54.68

8th extraction 0.0178 2493.7 2493.7 35.54 36.31

Exhaust steam 0.00588 2361.5 2361.5 973.83 975.24

* The data are calculated without any solar energy input.

4.2 Results and discussion

Based on thermodynamic calculation of the boiler and solar field, the temperature ranges and flow

rates of molten salt and steam/water are show in Table 4. In scheme 1, the temperature range of the

extracted working fluid is from 428 ℃ to 566 ℃. In scheme 2, the temperature range of the extracted 

working fluid is from 331 ℃ to 566 ℃. In scheme 3, the temperature range of the extracted working fluid 

is from 331 ℃ to 566 ℃ for the evaporation/superheating part and from 303 ℃ to 566 ℃ for the reheating 

part.

Table 4. The operation details of three integration schemes

Items Units Scheme 1 Scheme 2 Scheme 3

Temperature range of molten salt ℃ 460~580 350~580 350~580 335~580

Temperature range of steam/water ℃ 428~566 331~566 331~566 303~566

mass flow rate of molten salt kg/s 287.33 150.83 120.67 28.34

mass flow rate of steam/water kg/s 88.91 27.77 22.21 16.71

Table 5 illustrates that, in fuel saving mode, FS2 has the lowest standard coal consumption rate

(261.28 g/kWh) with a decrease of 11.15 g/kWh compared with coal-fired power system. The saving in

the standard coal consumption rate of FS1 and FS3 are 10.97 g/kWh and 10.91 g/kWh, respectively. In

the power boosting mode, PB2 has the biggest power output (625.5 MWe). Therefore, the standard coal

consumption rate of PB2 is lowest and declines about 11.11 g/kWh compared with a standard coal-fired

power system. From the standard coal consumption rate aspects, the fuel saving mode has demonstrated

better performance than the power boosting mode. Due to the different coal consumption rates of these



different schemes, the environmental performance, in terms of CO2 emissions, has similar characteristics

to the standard coal consumption rate. CO2 emission of a coal-fired power system is 776.11 g/kWh. In

fuel saving mode, FS2 has the lowest CO2 emission (745.55 g/kWh) with a decrease of 30.56 g/kWh

compared with a conventional coal-fired power system. The reduced CO2 emissions of FS1 and FS3 are

30.05 g/kWh and 29.88 g/kWh, respectively. In power boosting mode, the CO2 emission of PB2 is the

lowest and declines by 30.45 g/kWh in comparison with conventional coal-fired power system. The

reduced CO2 emissions of PB1 and PB3 are 28.20 g/kWh and 25.93 g/kWh, respectively. In addition, the

solar share in fuel saving mode is about 7.30% while the power booting mode is only about 7.04%, due

to the larger share of power produced by the coal in the power boosting mode.

Table 5 also shows that the boiler’s efficiencies in the STACP system are lower than those of a

conventional coal-fired power system. This is because the boiler’s working condition deviates from the

design condition after the solar energy is introduced. In addition, for the same integration scheme, the

boiler’s efficiencies in fuel saving mode are higher than those in the power boosting mode. For fuel

saving mode, FS2 has the highest energy efficiency and exergy efficiency. The energy efficiency and

exergy efficiency of FS2 are 93.75% and 49.32%, respectively. FS3 has the lowest energy efficiency and

FS1 has the lowest exergy efficiency. Similar to the fuel saving mode, PB2 has the highest energy

efficiency and exergy efficiency as well. PB3 has the lowest energy efficiency and PB1 has the lowest

exergy efficiency.

In terms of solar field efficiency, for both fuel saving mode and power boosting mode, scheme 2

has the highest energy efficiency and scheme 1 has the highest exergy efficiency. The highest energy

efficiencies of fuel saving and power bosting modes are 52.03% and 51.98%, respectively. The highest

exergy efficiencies of fuel saving and power bosting modes are 33.19% and 33.20%, respectively.



From system’s efficiency point of view, Table 5 demonstrates that the system’s efficiencies of

STACP system are lower than those of coal-fired power plant. The reduction of the overall system

efficiency is due to the introduction of the solar energy and its relative lower efficiency in comparison to

boiler efficiency. For the fuel saving mode, FS2 has the highest energy efficiency and exergy efficiency.

Compared with a coal-fired power system, the energy efficiency and exergy efficiency of FS2 decline

1.54% and 1.16%, respectively. For the power boosting mode, PB2 has the highest energy and exergy

efficiencies. Compared with a coal-fired power system, the energy and exergy efficiencies of PB2 decline

1.42% and 1.05%, respectively. For schemes 1 and 2, power boosting mode has higher efficiencies than

fuel saving mode. However, scheme 3 shows the opposite situation. Considering all of the above results,

scheme 2 is the best integration scheme, this is because the heat exchange process in the furnace, which

causes the biggest loss of all the heat exchange processes in the boiler, is partly replaced by heat exchange

in the solar field.

Table 5. Thermal performance of STACP system

Items Units Coal-fired FS1 FS2 FS3 PB1 PB2 PB3

Power output MW 600.96 600.96 600.96 600.96 623.61 625.50 622.73

Standard coal consumption

rate

g/kW

h

272.43 261.46 261.28 261.52 262.11 261.32 262.48

CO2 emissions

g/kW

h

776.11 746.05 745.55 746.23 747.91 745.66 750.17

Solar share % - 7.30 7.30 7.30 7.04 7.04 7.04

Boiler energy efficiency % 93.97 93.70 93.75 93.67 92.91 93.10 92.80

Boiler exergy efficiency % 49.48 49.15 49.32 49.28 48.74 48.97 48.37

Solar field energy

efficiency % - 51.87 52.03 52.00 51.89 51.98 51.91

Solar field exergy

efficiency % - 33.19 31.23 31.13 33.20 31.25 31.09

Energy efficiency % 44.56 42.99 43.02 42.99 43.01 43.14 42.95

Exergy efficiency % 42.65 41.47 41.49 41.46 41.47 41.60 41.41

4.3 Exergy analysis

Table 6. Exergy analysis of STACP system



Items
Exergy (MW)

Coal-fired FS1 FS2 FS3 PB1 PB2 PB3

Exergy input

Coal 1409.03 1354.47 1353.55 1354.79 1409.03 1409.03 1409.03

Solar - 94.72 94.72 94.72 94.72 94.72 94.72

Sum 1409.03 1449.19 1448.27 1449.51 1503.75 1503.75 1503.75

Exergy destruction

Boiler 711.91 688.78 686.00 687.15 722.32 719.01 721.66

Solar field - 63.29 65.14 65.23 63.28 65.12 65.30

Steam turbine 45.77 45.77 45.77 45.77 42.75 42.54 43.00

Condenser 23.71 23.72 23.71 23.71 24.25 24.29 24.21

Feedwater heaters 12.58 12.58 12.58 12.58 13.35 13.39 13.25

Others 14.10 14.10 14.11 14.11 14.20 13.91 13.59

Sum 808.08 848.24 847.31 848.55 880.14 878.26 881.02

Exergy output

Net power 600.96 600.96 600.96 600.96 623.61 625.50 622.73

Table 6 demonstrates the exergy destruction of key components. The same table shows that the

exergy losses mainly occur in the boiler and solar field, about 88% of total exergy loss. For both two

operation modes, scheme 1 has the highest boiler exergy loss and scheme 2 has the lowest boiler exergy

loss. In terms of the solar field, for both operation modes, scheme 3 has the highest exergy loss and

scheme 1 has the lowest exergy loss. This is because the temperature range of molten salt in scheme 1 is

460~580 ℃, which is higher than that of scheme 3 (350~580 ℃ and 335~580 ℃). In order to further 

analyze exergy destruction of key components, a Sankey diagram is shown for a coal-fired power system,

FS2 and PB2, seen Fig. 4. Fig. 4a shows that, the boiler has the maximum exergy loss (50.52%) in the

coal-fired power system, which means that about 88.09% of exergy destruction occurs in the boiler. In

FS2, the proportion of solar exergy and coal exergy are 6.54% and 93.46%, respectively, as energy

sources of the STACP system. Only about 41.49% of exergy is converted into electricity, while about

58.51% of exergy is lost. The boiler has the maximum exergy destruction (686.0 MW), with the solar

field being the next highest (65.1 MW). Exergy losses of the boiler and the solar field contribute about

88.65% of whole system’s exergy loss. The exergy destruction rates of the turbine, condenser, feedwater



and others are 5.4%, 2.8%, 1.5% and 1.7%, respectively. In PB2, the proportion of solar exergy and coal

exergy are 6.30% and 93.70%, respectively, as energy sources of the STACP system. Only about 41.60%

of exergy is converted into electricity, while about 58.40% of exergy is lost. The boiler has the maximum

exergy destruction (719.0 MW), with the solar field being the next highest (65.1 MW). Exergy losses of

the boiler and solar field contribute about 89.28% of whole system’s exergy loss. The exergy destruction

rates of turbine, condenser, feedwater and others are 4.8%, 2.8%, 1.5% and 1.6%, respectively. It can be

concluded that, for all the three systems, exergy loss mainly happens in the exergy input components

because of the large temperature differences of heat exchange in the solar tower field and boiler.

Fig. 4 Sankey diagrams of the (a) coal-fired power system, (b) FS2 and (c) PB2.

5. Conclusions

In this paper, three new integration schemes of STACP system are proposed. These three schemes



in fuel saving and power boosting mode are analyzed based energy and exergy analysis. The following

conclusions are derived from this study:

(1) The standard coal consumption rate and the efficiencies of boiler and system will decrease when

solar energy is introduced into the boiler.

(2) The standard coal consumption rate of the fuel saving mode is lower than that of the power

boosting mode for all three schemes. Compared with a coal-fired power system, the standard coal

consumption rates of FS2 and PB2 decrease by 11.15 g/kWh and 11.11 g/kWh, respectively.

(3) In fuel saving mode, FS2 has the lowest CO2 emission (745.55 g/kWh) with a decrease of 30.56

g/kWh in comparison with conventional coal-fired power system. In power boosting mode, the CO2

emission of PB2 is lowest and declines by 30.45 g/kWh in comparison with conventional coal-fired

power system.

(4) Considering both the standard coal consumption rate and efficiency, scheme 2 is the best suitable

integration scheme.

(5) For STACP system, the boiler has the highest exergy loss and solar field has the second highest

exergy loss. Exergy losses in the boiler and solar field contribute over 88% of whole system’s exergy

loss.
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