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Ljubljana, Slovenia

Abstract

In this paper we present an efficient algorithm for tracking multiple players during
indoor sports matches. A sports match can be considered as a semi-controlled envi-
ronment for which a set of closed-world assumptions regarding the visual as well as
the dynamical properties of the players and the court can be derived. These assump-
tions are then used in the context of particle filtering to arrive at a computationally
fast, closed-world, multi-player tracker. The proposed tracker is based on multiple,
single-player trackers, which are combined using a closed-world assumption about
the interactions among players. With regard to the visual properties, the robustness
of the tracker is achieved by deriving a novel sports-domain-specific likelihood func-
tion and employing a novel background-elimination scheme. The restrictions on the
player’s dynamics are enforced by employing a novel form of local smoothing. This
smoothing renders the tracking more robust and reduces the computational com-
plexity of the tracker. We evaluated the proposed closed-world, multi-player tracker
on a challenging data set. In comparison with several similar trackers that did not
utilize all of the closed-world assumptions, the proposed tracker produced better
estimates of position and prediction as well as reducing the number of failures.
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1 Introduction

Researchers have been studying the different aspects of human motion during
athletic event for many years. Since the mid-1920s researchers like Hill [24] and
later Keller [32] developed dynamic models of athletes that were used to pre-
dict the world records for linear races, such as the 100-meter sprint. As tech-
nology progressed, high-accuracy measurement devices were developed that
allowed researchers to study the bio-mechanical properties of athlete’s body
[46]. While these devices were able to capture local features of the human body,
i.e., the positions of the extremities, they were not appropriate for studying
the athlete’s performance on a larger scale. In particular, sports experts were
interested in obtaining the positions of the players during a sports match.
This would enable them to perform a tactical analysis of particular players or
whole teams. Thus the early research in this field involved recording a sports
match with a video camera and required many hours of tedious manual input
to obtain only a small number of players’ positions. However, even these crude
approaches allowed researchers like Erdmann [18], and Ali and Farrally [3] to
obtain valuable information about the load on soccer players during a match.
The further development of specialized systems that could semi-automatically
track the players throughout an entire match allowed sports experts to make
a more in-depth tactical analysis. For example, by using a system that was
specifically designed to track players in a squash match [42], Vučkovič et al.
[55] were able to determine the behavioral features that distinguished the loser
from the winner solely on the basis of positional data. However, the ability to
obtain the trajectories of the players during a sports match is not only interest-
ing to sports theorists. Coaches can also use this information to individualize
the physical training plans of their athletes and plan the offencive/defencive
strategies to achieve the best performance. Thus, the cornerstone of the var-
ious analyses that are interesting to sports experts is the ability to track the
players on the court. In this paper we describe a tracking system, general
enough to be applied to a variety of indoor team sports, that would allow the
tracking of all or only a selection of the players during a match.

1.1 Related work

Many researchers from the field of computer vision have studied the problem
of detecting and tracking people using visual data. This has given rise to a
body of literature, of which surveys can be found in the work of Aggarval and
Cai [1], Gavrila [21] and Gabriel et al. [20]. Here we give only a limited review
of the work relevant to the problem of tracking players in sports match.

The approaches to tracking players in sports usually involve observing the
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court with a single or multiple cameras. In some applications the cameras
are static [41, 42, 36, 31, 58, 29, 19, 51], while other applications [26, 50, 38,
12, 39, 14, 10, 35] use a single pan-tilt-zoom camera. Most of the approaches
apply a preprocessing step to eliminate the background and thus reduce the
background clutter 1 in the images. These approaches are usually followed
by morphological operations to filter out the noise and extract the image
regions that possibly represent the players. An early approach to background
elimination, introduced by Intille and Bobick [26], was based on differencing
consecutive images in order to extract the moving players from the court.
However, since this approach was designed to detect the changes in a sequence
of consecutive images, it was not appropriate for the cases when players were
standing still. As an alternative, Seo et al. [50] proposed a histogram-based
approach, which was later adopted by many authors [50, 38, 31, 12] for tracking
during a soccer match. The weakness of this approach was that it assumed a
color-homogeneity of the court. Thus, it was not appropriate for indoor sports
where the court often has advertisements in various colors. For this reason,
several authors have applied more elaborate statistical models of the court
[42, 36, 58, 19, 51] in order to be able to extract the players.

The efficiency of tracking depends a great deal on the cues that are used to en-
code the visual properties of the players. The early approaches [26, 50] utilized
color templates, which were extracted at the estimated position of the player
in one frame and used to localize the same player in the next frame. To make
the visual representations more robust, Perš and Kovačič [41] decoupled the
shape information from the color. They encoded the player’s shape by utiliz-
ing 14 binary Walsh-function-like kernels, while the player’s color was encoded
using his average color. To capitalize on the shape information, Needham [36]
encoded the shapes of the soccer players using a set of five pre-learned multi-
resolution kernels. A similar approach was adopted by Lu and Little [35], who
used a pre-learned set of dense grids of histograms of oriented gradients [15]
to track hockey players and recognize their actions. An interesting attempt to
develop a generic detector for hockey players was made by Okuma et al. [39].
They used a cascade of weak classifiers that were trained on a large number
of manually extracted raw color patches containing the players. Ok et al. [38]
noted that the player can usually be described by two colors: the color of the
shirt and the color of the shorts. Therefore, they divided each player into two
separate regions and then encoded each region by the mean value of the color
within that region. The class of visual representations that can be viewed as
a generalization of this approach is the color histograms [52]. They have been
successfully applied in many tracking applications in sports [39, 12, 43] as well

1 The term background clutter is used throughout this paper to refer to the back-
ground pixels that do not belong to a particular player. For example, when the
player’s texture is very similar to the texture of the court, we say the background
clutter is severe.
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as in the more general applications of visual tracking [40, 37, 54, 13]. Recently,
Birchfield and Rangarajan [7] proposed a class of color histograms that also
integrates the spatial information of the target’s color.

Measurements based on visual data are known to be inherently ambiguous.
Therefore, some researchers [29, 31, 58, 50] enforce a spatial continuity of the
players’ positions on the court by using the Kalman filter [30]. However, the
assumptions that the Kalman filter imposes on the measurement process and
the target’s dynamics are usually too unrealistic for visual tracking and so
result in a degraded performance. For this reason, many authors [10, 39, 38,
12, 36, 10] employ particle filters [4] instead. While these methods result in a
more robust tracking than when using the Kalman filter, they usually increase
the computational complexity [31].

A non-trivial task when tracking multiple players is maintaining the correct
identities of the players throughout the match. In the estimation theory, a
classical approach to tracking multiple targets involves a detection step fol-
lowed by the target-to-measurement association. In addition to the Nearest
Neighbor (NN) filter, techniques such as the Joint Probabilistic Data Associ-
ation Filter (JPDAF) are common solutions to the association problem [23].
The applications of sports tracking based on the NN and JPDAF approaches
can be found in [58, 29, 10] and [31], respectively. Some earlier applications
of the JPDAF in the context of computer vision can be found in [45, 49].
The weakness of these approaches is that they involve an explicit detection
and exhaustive enumeration of the associations, which leads to an NP-hard
problem. Some attempts to reduce the complexity of the association problem
include gating [58, 29, 10] and treating the associations as random variables
which can then be assigned via sampling [25].

Another way to tackle the problem of tracking multiple targets is to con-
catenate the states of all the targets into a single joint-state. This makes it
possible to apply particle-filtering techniques developed for single-target track-
ing [40, 36]. By introducing an additional variable that indicated the number
of targets to the joint-state, the authors of BraMBLe [28] were able to track
a varying number of visually similar targets. This approach was adopted by
Czyz et al. [14] to track the soccer players of the same team. The weakness
of the joint-state particle filters is that a poor estimate of a single target may
degrade the entire estimation. For this reason, the number of particles needs
to be increased, which may render the tracker computationally inefficient for
more than three or four targets [33]. Recently, some efficient schemes based on
Markov Chain Monte Carlo approaches have been proposed [59, 33] to solve
this problem. Vermaak et al. [54] formulated the problem of tracking visually
identical targets as the problem of maintaining the multi-modality of the es-
timated posterior distribution of the target states. This approach was later
applied by Okuma et al. [39] and Cai et al. [10] to track players in a hockey
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match.

A simple solution when the number of targets is known is to track each target
with a separate tracker. This approach reduces the size of the state-space and
allows the tracking of a specific target without the need to track all of the other
targets as well, thus reducing the computational complexity of the tracker.
However, this approach is rather naive, since the target with the highest score
will often hijack the trackers of the nearby targets [33]. Solutions based on the
histogram back-projection technique [50], occlusion alarm probability principle
[38] and template-based methods [12] were proposed in the literature to cope
with the problem of hijacking.

Some alternative approaches to tracking multiple interacting players in sports
involve detecting all the players on the court and forming a graph structure
among the detections. The problem of tracking is then posed as the task of
finding the optimal path through the graph [19, 43, 51]. These approaches,
however, rely on the explicit detection of all the players on the court using
background-subtraction techniques. Since background-subtraction techniques
are usually based on strong assumptions about the color of the players and the
court, these approaches are constrained to a narrow subset of applications.

1.2 Our approach

In this paper we address the problem of tracking multiple interacting tar-
gets in indoor sports such as basketball, European handball, and squash. We
present a novel system for tracking players using a static bird’s eye view. The
sporting event is regarded as a semi-controlled environment for which cer-
tain properties are known. In turn, these properties are used to construct a
computationally efficient and robust sports-domain-specific tracker capable of
tracking multiple players. The a-priori knowledge of the semi-controlled envi-
ronment is formulated in the context of Intille and Bobick’s [26] closed worlds
as a set of closed-world assumptions. In order to cope with the uncertainties
in the visual data, the proposed tracker is based on a statistical framework of
particle filters [4].

Our original contribution is four fold. The first contribution is the derivation
of the visual likelihood function for the particle filter. This likelihood func-
tion is estimated using a large amount of real-world data and reflects the
dynamic visual properties of the players during a sports match. The second
contribution is the approach to the dynamic estimation of the threshold for
the background elimination. This allows simple models of the background to
be used. The third contribution is the local-smoothing approach, which helps
when modelling the inertia of the players. This allows robust tracking even

5



with a moderate number of particles, thus reducing the computational com-
plexity of the tracker. The final contribution of this paper is the concept of
managing multiple targets by jointly inferring the closed worlds of all the
players using Voronoi partitioning. This makes it possible to track each player
with a separate tracker and even further reduces the computational complexity
of the multi-player tracker. We demonstrate the robustness of the proposed,
closed-world, multi-player tracker using experiments that track a single player
and multiple players.

The remainder of the paper is organized as follows. In Section 2.1 we present a
set of closed-world assumptions that apply to tracking a single player in indoor
sports. Section 2.2 describes the engine of the tracker. Section 2.3 deals with
the visual properties of the players and shows how these are used for the
tracking. We discuss the player’s dynamical properties in Section 2.4, where
the local smoothing scheme is presented. In Section 2.5 we augment the set
of closed-world assumptions with an additional assumption, and present the
closed-world, multi-player tracking scheme. Experiments with the proposed
tracker are discussed in Section 3 and, finally, in Section 4 some conclusions
are drawn.

2 Theoretical background

2.1 Closed world

Treating a sporting event as a semi-controlled environment is a concept that
was originally introduced by Intille and Bobick [26] under the name closed
world (CW). The main premise of this concept is that for a given region in
space and time a specific context is adequate to explain that region. In our
case the context is the following set of CW assumptions:

• (CW1) The camera overlooking the court is static and positioned such that
its optical axis is approximately perpendicular to the floor (Fig. 1).
• (CW2) The court is bounded, and its model can be calculated.
• (CW3) The players’ textures can vary during the game; however, they are

known at the beginning.
• (CW4) A player cannot change his/her position completely arbitrarily due

to the effects of inertia.

To make the situation clear, the relative position of the camera and an image
of the court are shown in Fig. 1.
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camera

Fig. 1. The camera is placed above the court with its optical axis approximately
perpendicular to the court (left). An image of a handball match obtained by the
camera (right).

The four closed-world assumptions described above together with an addi-
tional assumption, which will be presented later, form the contextual basis
on which a sports-domain-specific tracker will be presented in the following
sections. First, however, we present the algorithmic basis of our tracker.

2.2 Particle filtering

In recent years, particle filters have been shown to provide an efficient means
of visual tracking in various situations. Since their first appearance in the
vision community [27] they have quickly increased their popularity by proving
to provide a robust way of handling the uncertainties usually present in visual
data. For these reasons we used a particle filter as the engine of our tracker.
We provide here only the basic concept and notations, and refer the interested
reader to [22, 27, 16, 4, 11] for more details.

Let xt−1 denote the state (e.g., the position and size) of a tracked object at
time-step t− 1, let yt−1 be an observation at t− 1, and let y1:t−1 denote the
set of all the observations up to t − 1. From a Bayesian point of view, all of
the interesting information about the target’s state xt−1 is embodied by its
posterior p(xt−1|y1:t−1). The aim of tracking is then to recursively estimate
this posterior as new observations yt arrive. This process is characterized by
two steps: prediction (1) and update (2).

p(xt|y1:t−1) =
∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (1)

p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1) (2)

The recursion (1,2) for the posterior in its simplest form thus requires a speci-
fication of a dynamical model describing the state evolution p(xt|xt−1), and a
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model that evaluates the likelihood of any state given the observation p(yt|xt).

In our implementation we use the well-known Condensation algorithm [27],
which is, in essence, a boot-strap particle filter [22]. The posterior at the time-

step t − 1 is estimated by a finite Monte Carlo set of states x
(i)
t−1 and their

respective weights w
(i)
t−1

p(xt−1|y1:t−1) ≈ {x(i)
t−1, w

(i)
t−1}Ni=1, (3)

such that all the weights in the particle set sum to one. At time-step t, the
particles are resampled according to their weights in order to obtain an un-
weighted representation of the posterior p(xt−1|y1:t−1) ≈ {x̃(i)

t−1,
1
N
}Ni=1. Next,

they are propagated according to the dynamical model p(xt|x̃(i)
t−1), to ob-

tain a representation of the prediction p(xt|y1:t−1) ≈ {x(i)
t−1,

1
N
}Ni=1. Finally,

a weight is assigned to each particle according to the likelihood function,
w

(i)
t ∝ p(yt|x(i)

t ). All the weights are normalized to sum to one, and the
posterior of the time-step t is approximated by a new weighted particle set
p(xt|y1:t) ≈ {x(i)

t , w
(i)
t }Ni=1. The current state x̂t of the target can then be esti-

mated as the minimum mean-square error (MMSE) estimate over the posterior
p(xt|y1:t)

x̂t =
∑N

i=1
x

(i)
t w

(i)
t . (4)

2.3 Modelling the visual properties

Our goal is to obtain the positions of the players during a sports match solely
by observing their visual properties. In this section we discuss how these visual
properties are modelled and used for the tracking in our application.

2.3.1 Color histograms

The part of the player that is almost always seen by the camera is the player’s
torso, which is fairly elliptical; for example, see Fig. 2. For this reason we model
each player with an elliptical region and encode the player’s color properties
with the color histogram [37] sampled inside that region. The state of the
tracked player xt is parameterized by an ellipse xt = (xt, yt, at, bt) with its
center at (xt, yt), and with parameters at and bt denoting the width and the
height, respectively.

When constructing the color histogram it is beneficial to assign higher weights
to the pixels that are closer to the center of the ellipse and lower weights to
those farther away. This can help achieve some robustness, since the pixels that
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Fig. 2. The images show the players from different sports on the court. The dominant
part of the player that is seen by the camera is the player’s torso, which can be
approximated with an ellipse (white).

are closer to the center are less likely to be affected by the clutter stemming
from the background pixels or nearby players. Furthermore, if some a-priori
knowledge of which pixels are not likely to belong to the player is available, it
should be used in the construction of the histogram, i.e., those pixels should
be ignored. An elegant way of discarding the pixels that do not belong to the
player is to use a mask function, which assigns a prior weight of zero to those
pixels that are not likely to have been generated by the player and a weight
of one to all the other pixels.

Let E = (x, y, a, b) be an elliptical region at some state xt = (x, y, a, b). The
RGB color histogram with B = 8 × 8 × 8 bins hx = {hi}Bi=1, sampled within
the ellipse E, is then defined as

hi = fh

∑

u∈E

K(u)M(u)δi(b(u)), (5)

where u = (x, y) denotes a pixel within the elliptical region E. δi(·) is the
Kronecker delta function positioned at histogram bin i, and b(u) ∈ {1...B}
denotes the histogram bin index associated with the color of a pixel at location
u. K(·) is an Epanechnikov weighting kernel, as in [13, 37], positioned at the
center of the ellipse, M(u) is the a-priori binary mask function, and fh is a
normalizing constant such that

∑B
i=1 hi = 1. The mask function M(u) can

in general be composed of several mask functions. Indeed, in our application
we define M(u) as an intersection of two mask functions MD(u) and MV (u),
which will be described in the following sections.

According to CW2, the background image can be modelled, thus we define
the measure of the presence that evaluates whether a player with a predefined
reference histogram ht is present at some state xt as

D(hA,ht;hB) = β−1ρ(hA,ht;hB), (6)

where hA and hB are histograms sampled at the state xt on the current and
the precalculated background image, respectively. β is the portion of the pixels
within the elliptical region of xt that are assigned to the foreground by the
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(a)

(b) (c)

Fig. 3. The histogram of a basketball player was sampled within the ellipse (a). A
non-normalized distance ̺(hA,ht) is shown in (b) with respect to different positions.
The result for the proposed normalized-distance measure ρ(hA,ht;hB) is shown in
(c). For better visualization, one minus the distance measures are shown. The correct
position of the player is depicted by a white arrow and a circle in each image. Notice
how the mode corresponding to the selected player is more pronounced with respect
to the background clutter when the normalized distance is used.

mask function M(u). ρ(hA,ht;hB) is the normalized distance between hA and
ht, given the background histogram hB, defined as

ρ(hA,ht;hB) =
̺(hA,ht)

√

̺(hB,ht)2 + ̺(hA,ht)2
, (7)

where ̺(h1,h2) = 1−∑

i

√
h1ih2i is the Hellinger distance [48].

Note that the normalization term in (7) incorporates the distance between the
reference color model and the background color. Such a normalization aids
tracking when the player’s color is similar to that of the background. In these
situations the measure (7) favors those regions for which the reference-color
model is closer to the color in the current image than to the background color.
This effectively attenuates the background clutter and forces particles closer
to the target. An example of the normalized and non-normalized distance
measure is shown in Fig. 3.
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2.3.2 The likelihood function

In order to carry out the update step (2) of the particle filter, the probability
density function (pdf) of the presence measure (6) needs to be known. Due to
the lack of a rigorous physical background with which the analytical form of
this pdf could be derived, an experimental approach was chosen instead.

In order to estimate the pdf of (6), the values of the presence measures typ-
ical for players during a match were recorded. According to Bon et al. [8, 9]
approximately forty percent of a player’s motion in sports like handball, bas-
ketball and soccer can be classified as running and the other sixty, as walking
or standing. For this reason we selected several sequences containing players
from indoor sports; see Fig. 4a for examples. These players were tracked using
a simple tracker from the literature [37] and by manual marking. This enabled
us to obtain approximately 115,000 values of the measure (6). Forty percent
of the recorded values corresponded to the fast-moving players, while sixty
percent corresponded to the players that were moving slowly or standing still.
These values are visualized using the histogram in Fig. 4b.

To identify the best model for the gathered data, a model selection was carried
out using the Akaike information criterion (AIC) [2] among four models of
the probability density functions: exponential, gamma, inverse gamma and
zero-mean gaussian. The test with the AIC showed that the gamma function
explained the data significantly better than the other functions. For this reason
the probability density function of measure (6) was chosen in the form of

p(yt|xt) ∝ D(hA,ht;hB)γ1−1e
−D(hA,ht;hB)

γ2 . (8)

The parameters γ1 and γ2 were estimated from the data using the maximum-
likelihood approach. The estimated values were γ1 = 1.769 and γ2 = 0.066.

Note that the gamma distribution assigns small probability values to those
values of the measure (6) that are very close to zero. At first glance this may
not seem reasonable for the purposes of object localization; however, if we
observe a running player in two consecutive time-steps, it is more likely that
the player’s appearance will change within these two time-steps than stay
the same. This is an inherent property of the player’s visual dynamics that
follows directly from assumption CW3 and is thus implicitly captured by the
likelihood function (8).
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D(hA,ht;hB)

(a) (b)

Fig. 4. The left-hand image shows some of the players that were used to estimate the
empirical probability density function of measure (6). The right-hand image shows
this function in the form of a histogram, and overlaid is the maximum-likelihood
fitted gamma probability distribution model.

2.3.3 The background mask function

While color histograms are powerful color cues for tracking textured objects,
they can fail when the object is moving on a similarly textured background.
This is usually due to their inability to capture the spatial relations in the tex-
ture, and the fact that they are always sub-sampled in order to increase their
robustness. There is, however, still some useful information left in the current
and the background image – the difference between the two. By thresholding
this difference image with some appropriate threshold κt, we can construct
a mask image, that filters out those pixels that are likely to belong to the
background. Since, in general, the illumination of the court is non-uniform in
space and time, and since the visual properties among the players vary, the
threshold has to be estimated dynamically for each player.

Let x̂t denote the estimated state of a player at time-step t. Let hA and hB

be the histograms sampled at that state on the current image A(·) and the
background image B(·), respectively. If the similarity between the player’s
visual model and the background is large enough (̺(hA,hB) < ̺thresh), then
the mask in the next time-step is generated. To approximate the threshold
κt+1 for the next time-step, first a mask is calculated by thresholding the
difference between the current and the background image

MD(u) =











1 ; ‖A(u)−B(u)‖ ≥ κt+1

0 ; otherwise
. (9)
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A threshold value that assigns some predefined percentage η0 of the pixels
within the ellipse of the current state to the background is chosen as the
approximation of κt+1. If the mask is not generated in the next time-step
(̺(hA,hB) ≥ ̺thresh), then MD(u) = 1 in (9) for all pixels u.

The parameters η0 and ̺thresh were estimated empirically by manually se-
lecting players on a heavily cluttered background. Their values were set to
η0 = 25% and ̺thresh = 0.8, respectively.

2.3.4 Adaptation of the visual model

As the player moves across the court, his/her texture varies due to the non-
uniform lighting conditions, influences of the background, and variations of
the player’s pose (CW3). Therefore, the color model, i.e., the player’s current
reference histogram ht, has to be able to adapt to these changes. In addition,
if the current state of the player is likely to have been falsely estimated, then
the reference histogram should be updated by a very small amount, or not at
all. Otherwise, it should be adapted by some larger amount.

Let x̂t be the estimated state of a player at the current time-step. The his-
tograms hA and hB are sampled at that state on the current and the back-
ground image, respectively. The adaptation equation then follows a simple
auto-regressive form

ht = αthA + (1− αt)ht−1, (10)

where ht−1 is the reference histogram from the previous time-step. The in-
tensity of the adaptation is defined with respect to the normalized distance
between (7) hA and ht−1 as

αt = Ωmax · (1.0− ρ(hA,ht−1;hB)), (11)

where Ωmax denotes the maximal adaptation. Again, this parameter was esti-
mated by means of a controlled experiment, and was set to Ωmax = 0.05.

2.4 Modelling the target dynamics

Most of the time during a match the player’s aim is to act in an unpredictable
fashion in order to confuse the opponent. This implies that the dynamics could
be modelled by a random-walk model [47] as p(xt|xt−1) = N (xt;xt−1, Λt),
where N (·; ·, ·) denotes the normal distribution with mean xt−1 and a diagonal
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covariance matrix

Λt = diag(σ2
xy, σ

2
xy, σ

2
ab, σ

2
ab). (12)

Note that the variances in Λt determine the amount by which the player’s
state is expected to change between consecutive time-steps and depend on the
size of the player in the current image. We account for this relation by writing

σxy = Ht−1 · αxy , σab = Ht−1 · αab, (13)

where Ht−1 =
√

a2
t−1 + b2

t−1 is a measure of the size of the elipse of the player’s

previous state xt−1. The equations in (13) require some reasonable estimates
for αxy and αab, and we derive these next.

Based on the findings of Bon et al. [9] who refer to Kotzamanidis [34], Erd-
mann [18] and Bangsbo [5] regarding the dynamics of handball/soccer players,
we estimated the highest velocity of a player as vmax = 8.0m/s. At a frame rate
of 25frames/s we can say vmax = 0.32m/frame. During tracking, the player
is usually determined by an ellipse that is approximately the size of his/her
shoulders, which is estimated to be Ht ≈ 0.4m. Assuming a Gaussian form of
the velocity distribution, the highest velocity can be estimated as three stan-
dard deviations. Thus, vmax = 3σxy/frame, and the parameter for σxy in (13)
is then αxy = 0.32

3·0.4

.
= 1

4
. This means that the expected change in the position

of the ellipse’s center within two consecutive time steps is approximately one
fourth of the ellipse’s size.

The changes in the shape of the player’s ellipse occur mainly due to the player
leaning forward or to one side. Thus we can assume that within two consec-
utive time-steps the size along each axis can change, at most, by 15 percent.
Following a similar line of thought, the parameter for σab can be estimated as
αab = 0.05.

The intention of a player might indeed be to move in such a way as to ap-
pear unpredictable to the opponent. However, the motion itself is not entirely
unpredictable, since it is constrained by the player’s task and physical limi-
tations, which enforce a sort of inertia on the motion (CW4). We therefore
define the state evolution model to be

p(xt|xt−1) = N (xt;xt−1 + dt, Λt), (14)

where dt is a time-step constant drift modelling the influence of the inertia.
Note that the model (14) uses the noise Λt (12), which was derived with
a random-walk assumption. In reality, the effective noise of (14) should be
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smaller, since a part of the random-walk noise is absorbed in the drift dt.
Nevertheless, we use (12), since it presents an upper bound on the true noise
of (14). Later, in the experiments section, we will show that even when an
overestimated noise is used, the proposed dynamic model performs favorably
in comparison to a widely used dynamic model. Next, we describe the method
for estimating the drift dt in (14).

2.4.1 Local smoothing

In order to satisfactorily estimate the drift dt at time-step t, a reliable esti-
mation of the past few states is needed. Since we are using a particle filter
to recursively estimate the posterior of the target in time, the variance of the
estimated state will usually depend on the number of particles used and the
strategy by which the particles are propagated. For example, in order to cope
with the sudden changes in motion, the common strategy is to increase the
variance of the noise in the dynamic model. This, however, results in many
particles having low values which contribute very little to the final estimation
of the current state. The logical solution then is to increase the number of par-
ticles and/or use a clever strategy to concentrate the particles in the regions
with high probability. Such strategies might be the application of an auxiliary-
variable particle filter [44] or perhaps the methods of local likelihood sampling
[53], to name just two. Even though any one of the above methods is likely
to result in efficient tracking, they all introduce an additional computational
complexity, which slows down the tracking. We propose here an alternative
approach, where during each time-step the current state estimated from the
particle filter is smoothed according to a locally-in-time learned conservative
dynamic model. This model assumes that the player is not likely to change
his/her velocity abruptly.

Let ot−T :t−1 = {ok}t−1
k=t−T denote a sequence of the T past smoothed states of

the tracked target. Let πt−T :t−1 = {πk}t−1
k=t−T denote the set of their weights

and let vk = (ok − ok−1) denote the shift between two consecutive smoothed
states. We define a discrete local shift distribution based on the past smoothed
states as

p(v|ot−T :t−1) =
t−1
∑

k=t−T

δ(vk − v)Gk(t), (15)

where δ(·) is the dirac-delta function. The weights Gk(t) are defined as

Gk(t) = c0π
(k)π(k−1)e

− 1
2

(k−t+1)2

σ2
o . (16)

The first term c0 in the above equation is the normalizing constant ensuring
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that
∑t−1

k=t−T Gk(t) = 1. The second and third terms reflect the likelihood of
the states o(k) and o(k−1) used to calculate the shift vk, and the last term is a
Gaussian that assigns higher a-priori weights to the more recent shifts. Note
that, the Gaussian form was used for the last term exclusively to attenuate
the importance of the older shifts in the distribution (15). In general, however,
other forms that exhibit similar behavior (e.g., an exponential function) could
have been used.

The current drift dt is then estimated as the expected value over the local
shift distribution

dt = 〈v〉p(v|ot−T :t−1), (17)

where 〈·〉p(v|ot−T :t−1) denotes the expectation operator over p(v|ot−T :t−1).

The number of the smoothed states used in (15) is set to T = 3σo for practical
applications, since the a-priori weights of all the older states are negligible.
Assuming that a player cannot radically change his/her velocity within one
half of a second, a value for the parameter σo is chosen to comply with this
time frame. Since all our test sequences were recorded at a frame rate of 25
frames per second, we have chosen this parameter to be σo = 4.3. Thus in our
application only T = 13 past smoothed states are considered.

The smoothed state is calculated as follows. At time-step t, the approximation
to the distribution p(xt|y1:t) becomes available from the particle filter, and a
MMSE estimate (4) x̂t of the state is calculated. This estimate is then fused
with the prediction of the smoothed states õt = ot−1 + dt according to their
likelihoods wx̂t

= p(yt|x̂t) and wõt
= p(yt|õt), respectively, as

ot =
õt · wõt

+ x̂t · wx̂t

wõt
+ wx̂t

. (18)

Finally, the corresponding weight of the new smoothed state ot is evaluated
using the likelihood function πt = p(yt|ot).

The evolution of the local shift distribution with respect to the player’s motion
is illustrated in Fig. 5. The first image (Fig. 5a) shows a squash player standing
still. The samples of the local shift distribution spread around his center,
indicating no preferable direction. As the player begins to move towards the
center of the court (Fig. 5b), the samples gather around the direction of travel.
In Fig. 5c, when the player suddenly stops, the samples spread around his
center and as he begins to move towards the upper right-hand corner (Fig. 5d),
the samples again gather in that direction.
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frame 2995 frame 3031

(a) (b)

frame 3047 frame 3056

(c) (d)

Fig. 5. Figures (a-d) show a tracked player during a squash match. The current
smoothed state is depicted by an ellipse superimposed on the player and the arrow
indicates the current drift (dt). The local shift distribution is represented by the
dots on the circle of the player’s enlarged image. The size of each dot represents
the corresponding weight Gk(t). For a better visualization, only the angular shift
distribution is shown here, i.e., the p(v|ot−T :t−1) integrated over the radius.

2.5 Closed-world multi-player tracking scheme

The closed-world assumption about the camera position (CW1) postulates
that the players are viewed from above. Since one player cannot be located
on top of another during a regular match, we can assume that it is unlikely to
observe a complete occlusion at any time. This then forms a new closed-world
assumption:

• (CW5) At a given time-step, two players cannot occupy the same position.

For now, let us assume that at a given time-step the true positions {(j)s}Np

j=1 of
all Np players are known. From the assumptions CW1 and CW5 it follows that
the entire image can be partitioned into non-overlapping regions, such that
each region contains only one player. One way to achieve such a partitioning
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is to construct a Voronoi diagram [17] which is completely defined by the set

of points/seeds S = {(j)s}Np

j=1. The Voronoi diagram generates a set of Np

pairwise-disjoint convex partitions Vt = {(j)V}Np

j=1, such that each partition
contains exactly one seed. For every point in the particular partition the closest
seed is then the one encapsulated by that partition. An example of the Voronoi
diagram among Np = 7 seeds corresponding to the positions of the seven
players (Fig. 6a) is shown in Fig. 6b.

s1

s2 s3

s4
s5

s6

s7

(a) (b) (c)

Fig. 6. Seven players of a handball match are shown on the court (a) and the centers
of all the players with the corresponding Voronoi partitioning are shown in (b). The
mask function (6)MV (u) corresponding to the sixth partition (6)

V is shown in (c).
The white depicts the area that is seen through the mask, while the black indicates
the occluded area.

Let Xt denote the joint-state, i.e., the concatenation of the states of all the

players Xt
∆
={(j)xt}Np

j=1. The aim of tracking multiple players is then to estimate
the joint-state posterior p(Xt|y1:t) through time. If the current partitioning
Vt is known, then the players’ states become conditionally independent, given
the partitioning. Thus the posterior conditioned on Vt factors across all the
players as

p(Xt|y1:t,Vt) =
Np
∏

j=1

p((j)xt|y1:t,Vt), (19)

where p((j)xt|y1:t,Vt) is the posterior of the j-th player conditioned on the
partitioning Vt. This implies that once the partitioning is known, each player
can be tracked by a single-player tracker confined to the corresponding par-
tition. The restriction of the j-th tracker to its partition (j)V can be easily
achieved by using an additional mask function (j)MV (u), defined as

(j)MV (u) =











1 ; u ∈ (j)V

0 ; otherwise
, (20)
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where u is a pixel contained by the region (j)V. The mask function (j)M(u) in
(5) for the j-th player is then defined as an intersection of the mask functions
(j)MD(·) (9) and (j)MV (·)

(j)M(u) = (j)MD(u) ∩ (j)MV (u). (21)

The superscript (j)(·) in (21) emphasizes that all the masks are player-dependent.
An example of the mask function (6)MV for the sixth player from Fig. 6b is
shown in Fig. 6c.

In reality, prior to the tracking iteration, the true positions of the players are
not known. The posterior of the joint-states thus involves an integration over
all the possible Voronoi configurations

p(Xt|y1:t) =
∫

Vt

p(Vt|y1:t)
Np
∏

j=1

p((j)xt|y1:t,Vt). (22)

This integral could in principle be approximated via a Monte Carlo integration;
however, due to the complexity of the problem at hand, this may lead to a
computational load that would be too large for practical applications. As an
alternative, we propose a sub-optimal solution where prior to the tracking
iteration the partitioning Vt is estimated and used to carry out the tracking
recursions for each player independently and in a sequential manner:
Initially, the Voronoi partitioning is estimated via smoothed predictions

(j)õt = (j)ot−1 + (j)dt, (23)

where (j)ot−1 and (j)dt are the smoothed estimate of the state (18) and the
drift (17), respectively, of the j-th player from the previous time-step. We
assume that the smoothed states with the larger weights πt−1 (Section 2.4.1)
are more likely to have been properly estimated in the previous time-step
than those with the smaller weights. Therefore, the player with the largest
weight πt−1 is chosen and the single-player tracking iteration is carried out
for that player using the initially estimated Voronoi partitioning. The current
smoothed state of the player is then calculated and used to update the Voronoi
partitioning. Next, the player with the second-largest weight πt−1 is selected
and the procedure is repeated until all the single-player trackers are processed.
A summary of the proposed, closed-world, multi-player tracker is given in
Fig. 7.

In principle, the sequential recursing through single-player trackers described
above could be repeated a few times in order to arrive at a better estimation
of the current partitioning Vt. This would then lead to better estimates of
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• Calculate the background image, e.g., pixel-wise by means of a me-
dian filter along the temporal axis.
• Initialize the tracker by selecting the players. (e.g. manually)
• For t = 1, 2, 3 ... do:
(1) Sort the players into descending order in terms of the weights πt−1

of their corresponding smoothed states ot−1.
(2) Initialize all the seeds with the predicted states (23): S =

{sj}Np

j=1; sj ← (j)õt

(3) For j = 1 : Np

(a) Construct a set of Voronoi partitions Vt = {(j)V}Np

j=1 using
the set of current seeds S.

(b) Construct the Voronoi mask (j)MV (u) via (20) and calculate
the single-player mask function (j)M(u) from (21).

(c) Run the conventional Condensation iteration (Section 2.2)
using the dynamic model from (14) with the drift (j)dt.

(d) Calculate the current smoothed state (j)ot (18) and the cor-
responding weight (j)πt.

(e) Sample the histogram at (j)ot and adapt the model to that
histogram as in Sect. 2.3.4.

(f) If needed, estimate the threshold for the mask function
(j)MD(u) in the next time-step (Section 2.3.3).

(g) Update the j-th Voronoi seed with the smoothed average
state:sj ← (j)ot.

(4) End For j

Fig. 7. Closed-world multi-player tracking algorithm.

the single-player posteriors. However, in our experience, a single iteration is
sufficient to achieve satisfactory results.

3 Experimental study and results

Two sets of experiments were designed to evaluate two different aspects of the
proposed multi-player tracker from Fig. 7. The first set of experiments, which
is described in Section 3.1, involved tracking a single player. This set was used
to evaluate the tracking capabilities of the proposed multi-player tracker in
situations when the players do not interact.

The second set of experiments involved tracking multiple players, and was
used to evaluate how the closed-world constraint CW5 influences the tracking
capabilities of the proposed multi-player tracker when the players do interact.
The latter set of experiments and their results are reported in Section 3.2.
The videos demonstrating the results of the experiments are available online
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Fig. 8. The left-hand image shows seven players and the path used in the first
experiment. The right-hand image shows a goal-keeper in front of the goal (indicated
by an arrow) from the second experiment. The goalkeeper is barely distinguishable
from the background due to the significant background clutter.

at http://vision.fe.uni-lj.si/Research/trackp/articles/cviu06mk.

3.1 Experiments with a single player

Two experiments were carried out involving the tracking of a single player.
The first experiment was designed to quantify the effect of local smoothing
(Section 2.4.1) in the proposed closed-world tracker from Fig. 7. We denote
this tracker by CWls. This experiment included seven players of different
colors sprinting on a path drawn on the court (Fig. 8a) while performing
sharp turns. The average visual size of each player was approximately 10× 10
pixels. Each player was manually tracked thirty times and the average of the
thirty trajectories obtained for each player was taken as the ground truth. In
this way approximately 273 ground-truth positions pt = (xt, yt) per player
were obtained.

The CWls tracker was compared to a tracker that did not employ smoothing
and where the adaptation and the background-subtraction steps (e) and (f)
in Fig. 7 were carried out directly on the MMSE estimate (4). This tracker
employed a discrete-time random-walk model for the ellipse size with a stan-
dard deviation of 5% of the current size, and a discrete-time nearly con-
stant velocity (NCV) dynamic model [47] for the position. The variances
of the NCV noise were learned from the ground-truth data and were set to
σẋ = σẏ = 1pixel/frame. We denote this tracker by CWncv. The ellipse width
and height in both trackers were constrained to lie within the interval of [8,12]
pixels.

All seven players from Fig. 8a were tracked R = 30 times with each tracker.
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A standard one-sided hypothesis testing [6] was applied to determine whether
CWls had superior performance to the CWncv. The performance of the track-
ers in the r-th repetition was defined in terms of the root-mean-square (RMS)
error as

C(r) ∆
=

1

7

7
∑

k=1

(
1

T

T
∑

t=1

‖(k)pt − (k)p̂
(r)
t ‖2)

1
2 . (24)

In (24) (k)pt denotes the ground-truth position at time-step t for the k-th

player, (k)p̂
(r)
t is the corresponding estimated position and ‖ · ‖ is the l2 norm.

At each repetition, a sample performance difference

∆(r) = C(r)
ncv − C

(r)
ls (25)

was calculated. The terms C
(r)
ls and C(r)

ncv were the cost values (24) of CWls

and CWncv, respectively.

In our case the null hypothesis H0 was that CWls is not superior to CWncv.
For each tracker we calculated the sample performance difference mean ∆̄ =
1
R

∑R
r=1 ∆(r) and its standard error σ∆̄ =

√

1
R2

∑R
r=1 (∆(r) − ∆̄)2. The null hy-

pothesis was then tested against an alternative hypothesis H1, that CWls is
superior to CWncv, using the statistic ∆̄

σ∆̄
. Usually, the alternative hypothesis

is accepted at a significance level of α if ∆̄
σ∆̄

> µα, where µα represents a point

on the standard Gaussian distribution corresponding to the upper-tail proba-
bility of α. In our experiments we used α = 0.05, which is common practice
in hypothesis testing.

The results of the hypothesis testing on position and prediction with respect to
a different number of particles in the particle filter are shown in Table 1. The
second and third column in Table 1 show the test statistic ∆̄

σ∆̄
. In all cases the

test statistic is greater than µ0.05 = 1.645. Thus we can accept the hypothesis
that the tracker CWls is superior to CWncv when it comes to estimating the
position and the prediction at the α = 0.05 level. Note that when 100 particles
were used the improvement of CWls over CWncv in estimating the prediction
was large enough to be accepted at the α = 0.05 level. However, it was not
large enough to be accepted at the α = 0.025 level (µ0.025 = 1.960). In all the
other cases the improvement of CWls over CWncv could have been accepted
even at levels lower than α = 0.01 (µ0.01 = 3.090).

To further illustrate the performance of the trackers the RMS errors (24) were
averaged over all thirty repetitions for each tracker. Figure 9 shows the results
when the number of particles used in the particle filter is varied. Using only 25
particles, the CWls achieved similar average RMS errors for position (Fig. 9a)
and prediction (Fig. 9b) as the CWncv with 75 particles and outperformed
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Table 1
Results for the comparison of CWls and CWncv from 30 runs using the test statistic
∆̄
σ∆̄

no. particles Position ( ∆̄
σ∆̄

) Prediction ( ∆̄
σ∆̄

)

25 17.134 16.907

50 9.416 8.337

75 6.991 4.836

100 5.081 1.955

the CWncv even when the number of particles in both trackers was increased.
An important point to note here is that the CWls outperformed the CWncv

even though the noise of the CWncv was estimated from the test data, while
the noise used in the CWls was over estimated (see Sect. 2.4). This implies
powerful generalization capabilities when using local smoothing in the closed-
world tracking.

The aim of the second experiment was to evaluate how the proposed likeli-
hood function and the dynamic background subtraction (Sect. 2.3) influence
the tracking in the presence of background clutter. For this reason, tracker
CWncv was compared to the simpler tracker Tref from [37]. The trackers were
compared in terms of the number of failures encountered while tracking a
goalkeeper in a 733-images-long sequence of a handball match (Fig. 8b). The
difference between Tref and CWncv was that Tref did not make use of the
proposed likelihood function and the dynamic background subtraction. The
number of particles used in this experiment was 25 and the parameters of
the NCV dynamic models were set to the same values as in the previous ex-
periment. The other parameters of Tref were set as in [37]. The goalkeeper
was tracked thirty times with each tracker. On average the tracker CWncv re-
quired only one user intervention per sequence, while the tracker Tref required
approximately 10 interventions to maintain a successful track throughout the
sequence. We thus conclude that the proposed likelihood function and dy-
namic background subtraction increase the performance of the tracking in the
presence of substantial background clutter.

3.2 Experiments with multiple players

To evaluate the effectiveness of the multi-player interaction scheme from Sec-
tion 2.5, the proposed closed-world, multi-player tracker CWls from Fig. 7 was
compared to the so-called naive tracker, which we denote by CWnaive. The
naive tracker was conceptually equal to CWls, with the only difference being
that the Voronoi mask functions (j)MV (20) were always set to unity for all the
players. Thus the tracker CWnaive was essentially a set of closed-world, single-
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Fig. 9. Average RMS errors (denoted by C̄) of position (a) and prediction (b) for
the CWncv (dotted) and CWls (solid) as a function of the number of particles.

player trackers that did not interact according to the closed-world assumption
CW5.

The trackers were compared on two recordings of a handball match and two
recordings of a basketball match. Throughout the rest of this section we will
refer to the handball and the basketball recordings as Handball1, Handball2,
Basketball1 and Basketball2. A typical image from each recording is shown in
Fig. 10.

3.2.1 Description of the recordings

Two teams, each consisting of six players, were tracked in the recordings of the
handball matches (Fig. 10a,b). The players of one team were wearing white
shirts, and the players of the other team were wearing black shirts. The color
of the court was mainly yellow and blue, with a few advertisement stickers on
it. Because of the reflective properties of the material from which the court
was made, and because of the side effects associated with using S-VHS tape
for the video recording, the textures of the players varied significantly across
different parts of the court. For example, white players appeared yellow on the
yellow part of the court and blue on the blue part of the court. The textures
of the black players were less affected by the color of the court.

In the experiments with the basketball matches, two teams, each consisting
of five players, were tracked. In both recordings (Fig. 10c,d) the colors of the
players were not influenced by the background as severely as they were in the
recordings of the handball. Since all four recordings were originally recorded
on an analog VHS recorder prior to digitization, they suffered from an effect
called color bleeding. This resulted in bright colors spreading into the adjacent
darker areas. For example, in Fig. 10a,b, the yellow patch of the court seems
to be shifted to the right by a few pixels. Please see the online version of the
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Fig. 10. Typical images from the four recordings used in the experiments for tracking
multiple players. The first two images (a,b) show the twelve players of a handball
match, while the second two images (c,d) show the ten players of a basketball match.
All the players are depicted by a circle and a numeric label.

paper for the color images. Further information regarding the recordings is
given in Table 2.

Table 2
Data for the recordings used in the experiments with multiple players

recording frame rate number of players length image size

[/s] [frames] [pixels]

Handball1 25 12 950 348×288

Handball2 25 12 1257 348×288

Basketball1 25 10 740 368×288

Basketball2 25 10 305 368×288

3.2.2 Evaluation

The players were initialized manually and tracked throughout the entire record-
ing. When a particular player was lost, the tracker was manually reinitialized
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for that player and the tracking proceeded. The number of particles used for
the tracking was 25 particles per player. In the recordings of the handball, the
widths and heights of the players’ ellipses were constrained to lie within the
interval [6,8] pixels. In the case of the basketball recordings the interval [6,10]
pixels was used. All the players were tracked five times with both trackers,
and for each repetition the number of times the tracker failed was recorded.
The results, averaged over the five repetitions, are shown in Table 3.

Table 3
The results for tracking multiple players with the proposed and the naive multi-

player tracker

average number of failures failure rate per player

[/match] [/min]

recording CWnaive CWls CWnaive CWls

Handball1 34.0 4.0 4.47 0.53

Handball2 41.0 11.0 4.08 1.10

Basketball1 15.0 3.0 3.04 0.61

Basketball2 9.0 0.2 4.43 0.10

The naive tracker is denoted by CWnaive, while the proposed multi-player tracker
is denoted by CWls. The second and the third columns show the average number of
failures encountered by each tracker during the experiment. The last two columns
show the same results recalculated to represent the number of times each tracker is
expected to fail per player during one minute of tracking.

The second and the third column of Table 3 show the average number of fail-
ures encountered by the trackers CWls and CWnaive during the experiment.
These columns show that in all cases the introduction of the last closed-world
assumption (CW5) substantially reduced the number of failures and thus sig-
nificantly improved the tracking. The results of the two columns could not be
compared directly across different recordings because the recordings differed
in their lengths as well as in the number of players. For this reason the results
for each experiment were recalculated into failure rates per player and then
normalized to a time-frame of one minute. These results are shown in the last
two columns of Table 3. From the fourth column we see that the failure rates
were approximately equal for all four experiments with the CWnaive tracker.
While in comparison to CWnaive the proposed multi-player tracker CWls sig-
nificantly reduced the failure rates, there were still some small residual failure
rates present. These varied across the four recordings, as can be seen by com-
paring the results in the last column of Table 3. After a further inspection of
the tracking results, we concluded that the residual failures could be assigned
to one of the following four groups of errors:

(1) Some of the failures arose solely due to a heavily cluttered background,
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and were not caused by interactions among the neighboring players. A
substantial number of the failures in the recording Handball2 could be
attributed to the background clutter. In this match the player with the
identification number 1 (Fig. 10b) could hardly be distinguished from the
background. Some examples are shown in Fig. 11.

(2) Sometimes two similar players came very close to one another and were
switched by the tracker despite the use of Voronoi partitioning. Such
failures occurred only rarely, usually when just before the (near) collision
the position and prediction of at least one of the colliding players was
poorly estimated. An example of the switching of two black players in
the recording Basketball2 is shown in Fig. 12.

(3) Objects that were not tracked caused problems when they were in close
proximity to the visually similar tracked players. One such situation con-
sistently caused failures in the recording Basketball1 when a white player
was moving close to a white referee (see Fig. 13a). This was a typical
problem of tracker-hijacking, discussed in Section 1.1. To demonstrate
how such failures could be prevented, we have tracked the referee from
Fig. 13 and the tracker was able to maintain a correct track of the white
player; results are shown in Fig. 13b.

(4) Sometimes the collision of several players on a cluttered part of the court
resulted in failures of the tracker. This was the case in the recording
Handball2, where three players collided and crossed the goal-area line
(Fig. 14). The situation was especially difficult because this was the place
where the color of the court changed from yellow to blue. Because of the
previously mentioned effect of color bleeding and the court’s reflectance
properties (Section 3.2.1), the players appeared to change their colors very
quickly as they crossed the line. This introduced additional ambiguities
and ultimately caused a failure.

Fig. 11. Figures show the handball player from Fig. 10b with the identification
number 1, who is hardly distinguishable from the court due to the background
clutter. The player is depicted by a white circle.

As we have pointed out in point (3) above, tracking may fail in situations
where players move close to other visually similar objects that are not tracked.
We have seen in Fig. 13 that in some cases these situations can be resolved
within the proposed tracking framework by tracking those objects as well. We
have thus repeated the experiment with the recording Basketball1 where we
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Fig. 12. Figures show two visually similar players in a basketball match during a
near collision. The players’ true identities are indicated by the numbers in the white
squares. The tracker-estimated states and the corresponding identities are depicted
by white ellipses and the Voronoi partitioning is indicated by a white line separating
the players. Note that before the collision the markers with the same identification
number denote the same players (left). Just before the players pass by one another,
the state of the player with the identification number 2 is badly estimated (middle),
and the tracker switches their identities (right).

(a)

(b)

Fig. 13. Figures show a white player passing by a white referee. The upper row (a)
shows results when only the player is tracked. The location of the player is depicted
by an arrow, while the estimated state is depicted by the ellipse. As the player passes
by the referee (middle) the tracker is hijacked by the referee and the tracking fails
(right). The bottom row (b) shows results when both, the player and the referee,
are tracked and tracking does not fail. The white line between the players depicts
the Voronoi partitioning.

have also tracked the referee that was responsible for the failure described in
Fig. 13. The results for CWls have improved by reducing the number of failures
per experiment by one failure. In our experience, however, sport experts are
usually interested in the teams, or a selection of players, rather than everyone
on the court. We have observed that sports experts usually track a selection
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Fig. 14. Three players from the recording Handball2 are shown as they collide along
the goal-area line. Each player is depicted by a numeric label (1,2 and 3) and an
arrow (left). The players change their color as they cross from the yellow part of
the court to the blue part (middle and right). Please see the online version of the
paper for the color images.

of players at a time. The reason is that switching two players, or improper
tracking of a single player, could have a devastating effect on the subsequent
analysis that sports experts perform. Therefore, situations where a player is
tracked and the referee (or even another player) is not are common in practice.
In those situations, failures like the one described in Fig. 13a can be expected.

In general, the proposed, closed-world, multi-player tracker CWls exhibited a
robust performance and maintained a successful track even through the per-
sistent collisions of several visually similar players. A sequence of three images
from the recording Handball1 (Fig. 15) shows an example, where several play-
ers collide and remain in collision. The tracker CWls successfully tracks all
the players throughout the collision while maintaining their identities.

The trackers used in the experiments were implemented in C++ and tested
on an Intel Pentium 4 personal computer with a 2.6-GHz CPU. A one time-
step iteration for tracking a single player took approximately 7 ms of pro-
cessing time. Since the bottleneck of the algorithm is the construction of the
histograms, the processing time increases with the player’s size. When track-
ing multiple players with CWls, the processing time was proportional to the
number of players plus the time required to construct the Voronoi regions. For
example, a single iteration to track the twelve players of the handball match
with CWnaive took approximately 86 ms, while CWls took approximately 108
ms. This means that approximately 22 ms was spent on the construction of
the Voronoi regions and the corresponding mask functions.

4 Discussion and conclusion

A computationally efficient algorithm for tracking multiple players in indoor
sports was presented in this paper. The effectiveness of the algorithm was
achieved by considering a sporting event as a semi-controlled environment for
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Fig. 15. The top row shows consecutive frames with numbers 681, 699 and 713
from the recording Handball1, where multiple players clashed or moved close to
each other. The tracking result is shown in the bottom row where the Voronoi
partitioning is drawn with black lines and the players are depicted by the ellipses.

which certain closed-world assumptions were derived. These assumptions con-
sidered the camera placement, the visual as well as the dynamic properties
of the players, and the interactions among the players. The parameters con-
cerning the visual properties of the players were estimated using recordings
of real-life sports matches. On the other hand, the parameters of a player’s
dynamic model were estimated by consulting the sports literature. The re-
strictions imposed by the camera placement and the nature of the interactions
among the players allowed the proposed closed-world multi-player tracker to
be formulated as a set of single-player closed-world trackers. These were com-
bined by jointly inferring a set of partitions, such that each partition contained
only one player. This made it possible to track each player using a separate
single-player tracker.

Extensive tests showed that the closed-world assumptions significantly in-
creased the tracking performance. This was observed as a reduction of the
failure rate and an increase in the accuracy of the position and the prediction.
Even when a moderate number of particles was used in the particle filter (i.e.
25 particles), the proposed tracker maintained a satisfactory track. The results
of the experiments with multiple players showed that the tracking performance
increased in terms of a lower failure rate when the closed-world assumption
about the interactions among the players was used.

Our original contribution is four fold. The first contribution is a derivation
of the visual likelihood function for the particle filter, which reflects the dy-
namic visual properties of the players during a sports match. The second
contribution is the approach of the dynamic estimation of the threshold for
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the background elimination, which allows simple models to be used for the
background. The third contribution is the approach of local smoothing, which
helps to model the inertia of the players. This allows robust tracking even with
a moderate number of particles, thus reducing the computational complexity
of the tracker. The final contribution of this paper is the concept of managing
multiple targets by jointly inferring the closed-worlds of all the players. This
in effect allows the tracking of each player with a separate tracker and further
reduces the computational complexity of the multi-player tracker.

Since the proposed tracker is based on a simple particle filter, i.e. the Conden-

sation algorithm, it is expected to improve in performance if a more efficient
particle filter is considered. The tracking could also be made more robust by
using a more sophisticated method for maintaining the background model.
Currently, a single dynamic model is used to describe the player’s motion.
Alternatively, a mixture of models [57] describing different modes of behavior
could be used and perhaps more sports-specific dynamic models could be con-
sidered. For example, a stochastic variant of the model developed by Keller [32]
could be applied. While these extensions are likely to increase the performance,
some of them may also significantly increase the computational complexity of
the tracking. This might render the tracker inappropriate for practical appli-
cations. With time, however, these drawbacks could be compensated for by
advances in the computational power of modern computers.

The multi-player tracker presented in this paper relies solely on one camera
mounted above the court. Such a camera position is geometrically nearly opti-
mal for estimating the position of a player on the court. However, it sometimes
does not provide enough visual data to reliably track the player throughout
the entire match. For example, when the player moves over a texturally very
similar part of the court, the measurements might become ambiguous, and the
tracking can fail. One way to cope with this problem would be to incorporate
a separate detection scheme to automatically re-initialize the tracker once the
player has been lost. Another, conceptually different, solution would be to in-
troduce additional side cameras to increase the amount of visual information.

Currently, color histograms are used to encode the visual properties of the
players. Alternatively, other appearance models, such as the recently intro-
duced SMOGs [56], could be applied. These might increase the tracker’s ca-
pability to discriminate the player from the background. However, replacing
color histograms with another appearance model would require re-estimating
the visual likelihood function. We expect these topics will be the focus of
further research.
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