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ABSTRACT 

This paper provides an overview of membrane emulsification routes for fabrication of 

structured microparticles with tailored properties for specific applications. Direct (bottom-up) 

and premix (top-down) membrane emulsification processes are discussed including 

operational, formulation and membrane factors that control the droplet size and droplet 

generation regimes. A special emphasis was put on different methods of controlled shear 

generation on membrane surface, such as cross flow on the membrane surface, swirl flow, 

forward and backward flow pulsations in the continuous phase and membrane oscillations and 

rotations. Droplets produced by membrane emulsification can be used for synthesis of 

particles with versatile morphology (solid and hollow, matrix and core/shell, spherical and 

non-spherical, porous and coherent, composite and homogeneous), which can be surface 

functionalised and coated or loaded with macromolecules, nanoparticles, quantum dots, drugs, 

phase change materials and high molecular weight gases to achieve controlled/targeted drug 

release and impart special optical, chemical, electrical, acoustic, thermal and magnetic 

properties. The template emulsions including metal-in-oil, solid-in-oil-in-water, oil-in-oil, 

multilayer, and Pickering emulsions can be produced with high encapsulation efficiency of 

encapsulated materials and narrow size distribution and transformed into structured particles 

using a variety of different processes, such as polymerisation (suspension, mini-emulsion, 

interfacial and in-situ), ionic gelation, chemical crosslinking, melt solidification, internal 

phase separation, layer-by-layer electrostatic deposition, particle self-assembly, complex 

coacervation, spray drying, sol-gel processing, and molecular imprinting. Particles fabricated 

from droplets produced by membrane emulsification include nanoclusters, colloidosomes, 

carbon aerogel particles, nanoshells, polymeric (molecularly imprinted, hypercrosslinked, 

Janus and core/shell) particles, solder metal powders and inorganic particles. Membrane 
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emulsification devices operate under constant temperature due to low shear rates on the 

membrane surface, which range from (1−10) × 103 s−1 in a direct process to (1−10) × 104 s−1 

in a premix process.  
 

Keywords: Membrane Emulsification; Polymeric microsphere; Microgel; Janus Particle; 

Core/Shell Particle, Colloidosome. 

 

1. Membrane emulsification 

 

Membrane emulsification (ME) involves preparation of emulsions by pressing a pure 

dispersed phase or pre-emulsified mixture of the dispersed and continuous phase through a 

microporous membrane under controlled injection rate and shear conditions. In direct 

membrane emulsification (DME), one liquid (a dispersed phase) is injected through a 

microporous membrane into another immiscible liquid (the continuous phase) (Nakashima et 

al., 1991; 2000), which leads to the formation of droplets at the membrane/continuous phase 

interface (Figure 1a). In premix membrane emulsification (PME) (Figure 1b), a pre-emulsion 

is pressed through the membrane (Suzuki et al., 1996) or a packed bed of uniform particles 

(van der Zwan et al., 2008; Yasuda et al., 2010; Laouini et al., 2014), which leads to 

homogenisation of existing coarse droplets. If the transmembrane pressure is lower than the 

capillary pressure, the pressure force acting on a droplet will not be able to squeeze the 

droplet through a pore, which will lead to the separation of the pre-emulsion into a droplet-

free continuous phase and concentrated emulsion (Koltuniewicz et al., 1995; Park et al., 1998). 

Hydrophobic membranes are needed to produce water-in-oil (W/O) (Cheng et al., 2008; Jing 

et al., 2006) and oil-in-water-in-oil (O/W/O) (Wei et al., 2013) emulsions and hydrophilic 

membranes are required to prepare oil-in-water (O/W) and water-in-oil-in-water (W/O/W) 

(Vladisavljević et al., 2014) emulsions. The advantages of PME over DME are in smaller 

droplet sizes and higher transmembrane fluxes that can be achieved for any given pore size 

and higher dispersed phase content that can be obtained (up to 60 vol% in simple PME and up 

to 90 vol% in PME with phase inversion (Suzuki et al., 1999)). On the other hand, PME gives 

broader particle size distribution with a more severe membrane fouling and operates at higher 

transmembrane pressures. The main limitations of ME for industrial scale production are in 

low emulsion throughputs and membrane fouling (Piacentini et al., 2014). In order to produce 

1 m3 h−1 of a 30% emulsion with a droplet size of 5−10 µm, the required membrane area in 

shear-based DME is 5−60 m2 (Schroën et al., 2015). 
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1.1 Comparison of membrane and conventional emulsification 

 

Compared to high-shear rotor-stator mixers, high-pressure valve homogenizers, ultrasonic and 

static mixers, ME devices operate under constant temperature due to mild shear conditions, 

keeping heat and shear- sensitive ingredients intact and providing high encapsulation yields of 

multiple emulsions (Surh et al., 2007; Vladisavljević and Williams, 2008; Dragosavac et al., 

2012). Conventional homogenisation devices apply high specific energy inputs to disrupt 

droplets (Karbstein and Schubert, 1995), which leads to an increase in the temperature of an 

emulsion, because a significant amount of the mechanical energy is converted into heat due to 

viscous dissipation (McClements, 2005). In DME, shear rate on the membrane surface is 

(1−10) × 103 s−1 but uniform droplets can be produced even without any shearing, simply by 

spontaneous droplet formation through Laplace pressure differences (Kukizaki, 2009; 

Kukizaki and Goto, 2009; Kosvintsev et al., 2008; Maan et al., 2011). In PME, the shear rate 

inside the pores of SPG membrane is (1−10) × 104 s−1. As a comparison, a shear rate in high-

shear in-line mixers and colloid mills is about 105 s−1 and can exceed 107 s−1 in 

microfluidizers. In PME, the energy input per unit volume is 0.05−5 kJ dm-3, which is 1−2 

orders of magnitude smaller than in high-pressure valve homogenizers (3−20 kJ dm-3).  

 

In conventional emulsification devices energy input is not spatially uniform. For example, in 

rotor-stator devices, shear forces are high in close proximity to a rotor and low in “dead 

zones”, leading to droplet size polydispersity. In most ME systems (e.g. cross-flow), shear 

stress is uniformly distributed over the membrane surface and localised to the membrane wall 

rather than the entire bulk volume of the fluid. A Computational Fluid Dynamics (CFD) 

analysis has shown that in an azimuthally oscillating membrane emulsification system, shear 

rate becomes negligible at radial distances from the membrane surface of just 0.5 mm 

although the shear rate could be 1400 s−1 at the membrane surface (Silva et al., 2015). Due to 

controlled localised shear and geometrically-mediated drop formation, the droplet size can be 

precisely controlled over a wide range and a narrow droplet size distribution can be achieved. 

Membrane devices can be integrated with downstream processing to achieve a simultaneous 

drop generation and chemical/biochemical conversion or physicochemical transformation in 

the formed droplets. The examples include integration of ME with liquid-liquid extraction 

(Chen et al., 2004, Xu et al., 2005), biphasic enzymatic transformation (Li and Sakaki, 2008; 
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Mazzei et al., 2010), pervaporation (Chang and Hatton, 2012), and complex coacervation 

(Piacentini et al., 2013).  

 

2. Membranes for preparation of emulsions and particles  

 

Membranes used for preparation of emulsions should have the following properties: (i) 

uniform pore size distribution with a wide range of available mean pore sizes to obtain 

uniform droplets with tuneable sizes; (ii) low hydrodynamic resistance; (iii) high mechanical 

strength and thermal and chemical resistance; (iv) high tolerance to organic solvents used in 

product formulation to suit different applications; (v) ease of surface modification and 

functionalization to modify their wettability, charge, permeability, etc; (vi) ability to keep 

constant wettability in contact with the dispersed and continuous phase; (vii) low fabrication 

costs per unit membrane area. In this section only membranes most commonly used in 

membrane dispersion processes will be discussed.  

 

2.1 SPG membrane 

 

Shirasu Porous Glass (SPG) meets the majority of the above criteria and it is the most widely 

used microporous membrane used for emulsification. Advantages of SPG membrane over 

microengineered membranes are in higher porosity, more versatile surface chemistry that can 

be implemented, a broader range of commercially available mean pore sizes, and lower 

fabrication costs. For a constant fraction of active pores, the higher the membrane porosity, 

the lower the dispersed phase velocity in the pores at any dispersed phase flow rate, and the 

higher the likelihood that the dripping regime will persist in DME. However, high membrane 

porosity can promote droplet-droplet interactions on the membrane surface, such as steric 

hindrance of droplets forming simultaneously, which can compromise droplet size uniformity 

(Abrahamse et al., 2002).  

 

2.1.1 Fabrication of SPG membrane 

 

SPG membrane is fabricated from Na2O–CaO–Al2O3–B2O3–SiO2 or Na2O–CaO–MgO–

Al2O3–B2O3–SiO2 type mother glass through phase separation by spinodal decomposition 

(Nakashima and Kuroki, 1981; Nakashima and Shimizu, 1986; Kukizaki and Nakashima, 

2004). The mother glass is prepared by mixing and melting raw materials (Shirasu, limestone, 
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boric acid and soda ash) at 1300−1400 °C. Typical mixing ratio of raw materials is shown in 

Table 1. MgO and ZrO2 can be added to mother glass to adjust the rate and temperature of 

phase separation and glass resistance to alkali. Shirasu is a volcanic ash sediment which 

contains 72−77 wt% SiO2, 10−15 wt% Al2O3, and small amounts of other inorganic oxides 

(Table 2). Molten mother glass is shaped into tubes or discs, cooled to 650−760 °C and then 

kept at that temperature for a period of several hours to several days. The thermal treatment 

causes a homogeneous melt to separate into an acid-insoluble (Al2O3–SiO2 rich) phase and 

acid-soluble (CaO–B2O3 rich) phase. The phase-separated glass is then immersed into a 

hydrochloric acid solution to dissolve CaO–B2O3 rich phase, which results in the formation of 

porous skeleton whose composition is given in Table 2. 

 

The phase diagram in Figure 2 depicts the process of cooling homogeneous glass from the 

initial temperature 1T , which lies above the upper critical solution temperature, UCST, where 

all components are miscible in all proportions, to the phase separation temperature, 2T , which 

lies between the spinodal curve and the glass transition temperature, gT . The mother glass 

with a composition of 1x  is separated into two immiscible phases with compositions of sx  

and ix . The mass ratio of acid-soluble to acid-insoluble phase can be estimated by the lever 

rule: )/()(/ siis xxxxxx −−= 11 . The mean pore diameter pd  of SPG membrane can be 

controlled by the time t  and temperature 2T  of the heat treatment process (Kukizaki, 2010): 

)]2/(exp[)/(4 2
2/12/1 RTEtmVKd ampp −=         (1) 

where K is a constant depending on the composition of mother glass, aE = 400−600 kJ mol−1 

is the activation energy for spinodal decomposition (Nakashima, 2002; Kukizaki, 2010), R = 

8314 kJ kmol-1 K-1 is the universal gas constant, and mp mV /  is the total pore volume per unit 

mass of dry membrane. At constant temperature, the mean pore size of SPG membrane is 

proportional to the square root of the heating time, whereas a logarithm of the mean pore size 

decreases linearly with 2/1 T  for a constant heating time. It means that small pores can be 

obtained by phase separation at low temperatures (but above gT ) for a short time. 

 

A porosity of SPG membrane corresponds to the volume fraction sφ  of acid-soluble phase in 

phase-separated glass and is normally from 0.50 to 0.60 (Vladisavljević et al., 2005). If sφ  is 
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outside that range, separation can takes place by the nucleation and growth mechanism, which 

leads to the formation of discrete spherical particles of one phase embedded in a continuous 

matrix of the other (Figure 2). This morphology is undesirable in membrane fabrication.    

 

2.1.2 Properties of SPG membrane 

 

SPG membrane is available from SPG Technology Ltd (Sadowara, Japan) with a mean pore 

size ranging from 0.040 to 40 µm (Table 3). The membrane has a uniform internal 

microstructure, as confirmed by X-ray microtomography (Vladisavljević et al., 2007), 

characterised by interconnected cylindrical pores with a tortuosity factor of ξ ≈ 1.3. The 

number of pores per unit cross-sectional area is given by (Vladisavljević et al., 2005): 
2/56.0/ pm dAN =            (2) 

where mAN /  and pd  are in m−2 and m, respectively. The hydraulic resistance of isotropic 

SPG membrane is given by (Vladisavljević et al., 2005): 

)/(32 22 εδξ pmm δR =             (3) 

where mδ  is the membrane thickness and ε is the membrane porosity. The hydraulic 

resistance of isotropic SPG membrane is high (Table 3), due to its thickness of 400−1000 µm, 

but can be reduced by one order of magnitude if the membrane is fabricated with anisotropic 

structure (Kukizaki and Goto, 2007b).  

 

A comparison of chemical composition of SPG and common porous glasses is shown in Table 

2. SPG is more stable in water and alkaline solutions than Porous Vycor Glass, because it 

contains less SiO2 and more Al2O3. However, the durability of both membranes at high pH is 

limited, due to attack of hydroxide ions on siloxane (Si-O-Si) bonds: 

≡Si−O−Si≡ + OH− → ≡Si−O− + ≡Si−OH  

Alkaline durability of SPG can be improved by incorporating 3 mol% of ZrO2 into the mother 

glass, which results in to the formation of stable Zr−O−Si bonds in the silicate network 

(Kukizaki, 2010). The compressive strength of SPG of 200−280 MPa is much higher than that 

of a porous alumina or zirconia of the same porosity (Nakashima et al., 1992), because SPG is 

made up of a continuous glass skeleton with very few defects, while porous alumina or 

zirconia is composed of skeletal grains joined together discontinuously via grain boundaries.  
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2.1.3 Surface modification of SPG membrane 

 

The surface of SPG membrane can be hydrophobised by chemical reaction with organosilane 

compounds, such as chlorosilanes (Kukizaki and Wada, 2008) or physical coating with 

silicone resin (Vladisavljević et al., 2005). Monochlorosilanes such as trimethylchlorosilane 

(TMS) and octadecyldimethylchlorosilane (ODS) are suitable agents for hydrophobisation 

because they contain only one reactive chlorine atom, which means that no polymerisation 

between silane molecules can occur while they react with a silanol group on the glass surface 

(Figure 3a) (Kai et al., 2006). The longer the length of the carbon chain in an organosilane 

compound, more hydrophobic the membrane surface becomes (Kukizaki and Wada, 2008). 

The membrane hydrophobicity can be enhanced by depositing silica nanoparticles onto the 

surface of SPG membrane prior to treatment with TMS (Meng et al., 2013). The surface of 

SPG membrane can also be made with thermoresponsive hydrophilic-hydrophobic properties 

by depositing silica nanoparticles containing poly(N-isopropylacrylamide) (PNIPAM) 

brushes grafted on their surface (Meng et al., 2010). The porosity and hydraulic resistance of 

SPG membrane can be modified over a wide range by synthesising dextran macromolecules 

within the pores via in-situ enzymatic reaction between dextransucrase and sucrose (Kawakita 

et al., 2009; Seto et al., 2011). A reversible change in the hydraulic resistance of dextran-

loaded SPG membrane is a consequence of reversible extension and shrinkage of solvent-

responsive dextran chains inside the pores initiated by washing the membrane with water or 

organic solvent, respectively.  

 

The surface of untreated SPG surface has a negative zeta potential between −15 and −45 mV 

within a pH range of 2−8, due to dissociation of silanol groups (≡Si-OH  ≡SiO− + H+) 

(Kukizaki, 2009b). A positive charge on the membrane surface can be induced by treating the 

membrane with amino trialkoxysilanes, such as (3-aminopropyl)-trimethoxysilane (APTMS) 

and (3-aminopropyl)-triethoxysilane (APTES) (Figure 3b). Amino trialkoxysilanes undergo 

hydrolysis in aqueous solution resulting in the formation of silanol groups, which can be then 

condensed with a silanol group on the SPG surface to form stable siloxane bonds (Si–O–Si).  

 

2.2 Microengineered membranes 

 

Microengineered membranes are microfiltration membranes with a controlled pore geometry 

and spatial arrangement manufactured by semiconductor fabrication methods (Brans et al., 
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2006; Wagdare et al., 2010). Microengineered membranes are used in ME to achieve high 

transmembrane fluxes at low transmembrane pressures, due to its very low thickness, 

typically 1−100 µm. These membranes have rectilinear pores with very low internal surface 

area, so they are less prone to fouling by emulsion ingredients than highly tortuous and porous 

SPG membranes. It is especially important in PME, where whole emulsion, rather than a pure 

dispersed phase, is pressed through the membrane. Typical microsieves used in ME are nickel 

microengineered membranes manufactured using UV-LIGA process (Nazir et al., 2011; 

Schadler and Windhab, 2006; Egidi et al., 2008), silicon nitride Aquamarijn microsieves 

fabricated by reactive ion etching (RIE) (van Rijn et al., 1997), stainless steel membranes 

fabricated by pulsed laser drilling (Dowding et al., 2001; Vladisavljević and Williams, 2006; 

Geerken et al., 2008) or end-milling (Kobayashi et al., 2008), and microchannel arrays 

fabricated in single crystal silicon by Deep Reactive Ion Etching (DRIE) (Kobayashi et al, 

2003) or in PMMA by X-ray lithography and wet etching (Kobayashi et al., 2008b). The 

fabrication of microengineered membranes for ME is described by Vladisavljević et al. 

(2012). 

 

2.2.1 Surface modification of microengineered membranes 

 

Silicon membranes can be made hydrophilic via plasma oxidation in a plasma cleaner 

(Holzapfel et al., 2013). Silicon nitride and nickel membranes can be rendered hydrophilic by 

coating their surface with a thin layer of silicon oxide using plasma-enhanced chemical 

vapour deposition (PECVD) (Holzapfel et al., 2013). PECVD can also be used to decrease the 

pore size, while keeping the circular pore shape (Schadler and Windhab, 2006). Nickel 

membrane can also be made hydrophilic by treatment with polyalkyleneoxide modified 

heptamethyltrisiloxane (Pan et al., 2012). Silicon nitride membranes can be hydrophobised by 

coating their surface with alkyltrichlorosilanes using chemical vapour deposition (Geerken et 

al., 2007).  

 

3. Emulsification using SPG membrane  

 

SPG membrane was widely used in DME (Vladisavljević et al., 2004; Vladisavljević and 

Schubert, 2002) and PME (Vladisavljević et al., 2004b; 2006; 2006b). Two main designs of 

membrane modules for DME are: (i) cross-flow systems with a tubular SPG membrane, 
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which can be up to 500 mm long; (ii) SPG micro kits with a short SPG membrane tube (7−15 

mm) immersed in a stirred continuous phase.  

 

3.1 Cross-flow systems 

 

Cross-flow systems can be operated batchwise (with emulsion recirculation) or continuously 

(without any recirculation of the product emulsion). The volume fraction dφ  of the dispersed 

phase in a continuous cross-flow DME is given by: 

1)/(
1

+
=

dc
d QQ

φ         (4) 

The dispersed phase flow rate dQ  must be much smaller than cQ  to generate sufficient shear 

on the membrane surface. Therefore, in a continuous system 0→dφ  and simple cross-flow 

DME must be operated batchwise to achieve a reasonably high dφ .  

 

In a batch cross-flow DME system, a continuous phase liquid circulates from a storage tank 

through the bore of the membrane tube, and back to the storage tank (Figure 4). A dispersed 

phase-forming liquid stored in a pressure vessel is fed to the outside of the membrane tube 

and penetrates through the pores under the driving pressure of 1.1−5 times the capillary 

pressure (Vladisavljević and Schubert, 2003a). The system is operated until a desired volume 

fraction of the dispersed phase is reached in the product emulsion:  

 
cd

d
d VtQ

tQ
+

=φ         (5) 

where t  is the operation time and cV  is the volume of the continuous phase in the system. dφ  

can be further increased up to 0.75 by vacuum evaporation of the formed emulsion (Matos et 

al., 2015). Recirculation of emulsion at high flow rate can lead to secondary droplet breakup. 

Two methods have been used to decrease flow rate of the continuous phase in the 

recirculation loop, while keeping the same shear stress on the membrane surface: insertion of 

static turbulence promoters into the membrane tube (Koris et al., 2011) and generation of 

back-and-forward pulsations in the cross flow (Piacentini et al., 2013b).  

 

Transmembrane flux in cross-flow DME can be increased by 1−2 orders of magnitude (from 

10−3−10−1 to 10−1−100 m3 m−2 h−1) and the process can be run continuously by introducing the 
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continuous phase into a SPG tube tangentially. It generates spiral streamlines in the axial 

direction known as the swirl flow that effectively remove droplets from the membrane surface 

at high transmembrane fluxes (Shimoda et al., 2011). In swirl-flow DME, dφ  can reach 0.4 in 

a single pass of the continuous phase through the membrane tube.  

 

3.2 SPG micro kits 

 

Cross-flow systems are easy to scale up and offer constant shear on the membrane surface 

which is independent of the volume of the continuous phase in the system. However, the 

volume of the continuous phase in the system must be at least several hundred millilitres. SPG 

micro kits shown in Figure 5 require only 8−50 mL of the continuous phase per single batch, 

which is useful for expensive clinical preparations (Higashi and Setoguchi, 2000). In the 

external pressure micro kit (Figure 5a), the continuous phase is placed in a stirred beaker and 

the dispersed phase is injected through membrane tube from outside to inside. Membrane tube 

serves as a draft tube, which results in more effective circulation of the continuous phase than 

in the internal pressure micro kit shown in Figure 5c.  

 

A typical SPG membrane rig for PME is shown in Figure 5b. A pressurised pre-mix from a 

pressure vessel is pressed through the membrane tube from outside to inside under the 

pressure difference ranging from several bars (for a 10-µm membrane) to more than 10 bar 

(for 1-µm membrane) and up to 50 bar for the membrane with sub-micron pore sizes. The 

product emulsion flows from the membrane tube under gravity and is collected in a beaker 

placed beneath the module. To further reduce the droplet size and improve the droplet size 

uniformity, the product emulsion can be pressed repeatedly through the same membrane 

(Vladisavljević et al., 2004b; 2006; 2006b). Repeated membrane homogenisation was 

invented by Olson et al. (1979) and used for homogenisation of lipid vesicles by track-etch 

polycarbonate filters. 

 

4. Emulsification using microengineered membranes  

 

Microengineered membranes have been widely used in ME in the past two decades. They can 

be fabricated with circular pores (Kosvintsev et al., 2005), slotted (rectangular and squared) 

pores (Kobayashi et al., 2005; Nazir et al., 2013), asymmetric slotted/circular pores 
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(Kobayashi et al., 2005b), and micro-chimneys (Geerken, 2006). Rectangular pores with an 

aspect ratio of at least 3 enable a spontaneous drop generation due to a Laplace instability and 

are more convenient in DME than square or circular pores (Kobayashi et al., 2004; 2009; van 

Dijke et al., 2010). Asymmetric pores have circular channels on the upstream (bottom) side of 

the membrane and rectangular channels on the downstream (top) side (Kobayashi et al., 

2005b; Vladisavljević et al., 2008; 2011). Asymmetric geometry is useful when the dispersed 

phase viscosity is low (1 mPa s or less), e.g. when the dispersed phase is water or volatile 

hydrocarbons (Kobayashi et al., 2005; 2009b).  

 

A shear on the membrane surface can be generated using paddle stirrer placed above the 

membrane surface, like in the Micropore Dispersion Cell (Kosvintsev et al., 2005), but other 

ME systems with microengineered membrane have been also developed, such as cross flow 

(Abrahamse et al., 2002), pulsed cross flow (Holdich et al., 2013), rotating membrane 

(Vladisavljević and Williams, 2006; Aryanti et al., 2006) and oscillating membrane (Holdich 

et al., 2010). In an oscillating ME system, tubular membrane can oscillate tangentially 

clockwise and counter-clockwise (Silva et al. 2015) or radially upward and downward 

(Holdich et al., 2010), with frequencies from 10 to 90 Hz. 

 

In a continuous DME device, cross flow velocity must be very low in order to achieve 

reasonably high dispersed phase content, which means that shear on the membrane surface 

must be controlled by alternative methods. The surface shear can be decoupled from the cross 

flow by rotating or vibrating the membrane within a static continuous phase (Holdich et al., 

2010; Zeng et al., 2013; Gomaa et al., 2014; Vladisavljević and Williams, 2006) or 

introducing forward and backward flow pulsations in cross flow (Holdich et al., 2013). The 

advantages of pulsed cross flow over rotating or vibrating membrane are: (i) liquid pulsations 

require less energy than membrane oscillations or rotations because liquids are less dense than 

solids and have a lower inertia; (ii) the energy consumption to maintain pulsed flow is 

independent on membrane area, whereas energy input to maintain membrane vibrations or 

rotations is in proportion with membrane dimensions, and (iii) pulsed cross flow can be 

extended to a baffled reactor, connected in series to the membrane module, to achieve 

simultaneous drop generation and reaction in the produced emulsion (Piacentini et al., 2013).  
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PME was successfully carried out using microengineered nickel membranes with rectangular 

(Nazir et al., 2011), squared (Nazir et al., 2013) and circular (Santos et al., 2015) pores. The 

experimental set-up is very similar to that for SPG PME shown in Figure 5b.  

 

5. Control over droplet size in DME 

 

The droplet size distribution in DME depends on numerous factors, that can be divided into 

membrane parameters (surface wettability and charge, porosity, pore size distribution, pore 

morphology and spatial arrangement), formulation parameters (viscosity of the dispersed and 

continuous phase, the type and concentration of surfactants and additives) and process 

parameters (shear stress on the membrane surface and transmembrane flux) (Joscelyne and 

Trägårdh, 2000). The analytical and computational models for prediction of droplet size in 

DME can be found elsewhere (Spyropoulos et al., 2014; Rayner et al., 2004).  

 

5.1 Effect of transmembrane pressure and flux  

 

The minimum transmembrane pressure for driving the dispersed phase through the pores is 

known as the capillary pressure, capP , and is given by the Young-Laplace equation:  

p

wo
cap d

P
θγ cos4

=            (6) 

where woγ  is the equilibrium interfacial tension between the dispersed and continuous phase, 

θ  is the contact angle formed by the dispersed phase at the three-phase boundary where the 

continuous phase, the dispersed phase and the membrane meet together (Figure 6). A 

hydrophilic membrane (θ < 90°) is used for production of O/W emulsion, and thus capP > 0 

and aqo PP > , i.e. at zero flux the oil phase has a higher pressure than the aqueous phase. A 

hydrophobic membrane (θ > 90°) is used for production of W/O emulsion, and thus capP < 0 

and aqo PP < , i.e. the aqueous phase pressure should be higher than the oil phase pressure by 

at least capP  to drive the water phase through the membrane.  

 

Two mechanisms of drop formation are observed in DME: (a) shear-controlled detachment as 

a result of shear stress on the membrane surface and (b) spontaneous droplet detachment 

(Sugiura et al., 2002). A shear-controlled detachment dominates for membranes with circular 
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pores (Kosvintsev et al., 2005), while spontaneous detachment occurs for membranes with 

pronounced non-circular pores, such as SPG membrane and microengineered membranes 

with slotted pores. In a shear-controlled droplet formation process, bigger droplets are formed 

at higher transmembrane flux (line 1 in Figure 7), which can be explained by the fact that the 

detachment of a droplet from the membrane surface is not instantaneous but requires a finite 

time, the necking time. During the necking time an additional amount of the dispersed phase 

will flow into a forming droplet causing the droplet size to increase in proportion to the flow 

rate of the dispersed phase (van der Graaf et al., 2006). At high fluxes, the push-off force due 

to droplet-droplet interactions on the membrane surface assists in the droplet detachment 

process, causing a plateau region to occur on a dd  vs. J  plot at high fluxes (Egidi et al., 

2009).  

 

Spontaneous droplet detachment can take place under two droplet formation regimes 

determined by the capillary number of the dispersed phase: woddUCa γη /= , where dU  is the 

velocity of the dispersed phase within a pore and dη  is the viscosity of the dispersed phase. 

The dripping regime prevails at low fluxes ( crCaCa < ). In this regime, the interfacial tension 

dominates inertial and drag forces (Sugiura et al., 2002) and the droplet size is almost 

independent on transmembrane flux or shear stress (line 2 in Figure 7). At high 

transmembrane fluxes and dU  values ( crCaCa > ), droplets grow to a large size ( 10/ >pd dd

) before being detached from the membrane surface, which is known as the continuous 

outflow regime (Kobayashi et al., 2003). In this regime, the inertial force dominates the 

interfacial tension force and the droplet size strongly depends on transmembrane flux. The 

transmembrane flux at which the transition occurs is independent on the pore size (Kobayashi 

et al., 2011) and increases with decreasing the viscosity of the dispersed phase (Vladisavljević 

et al., 2011). At high shear on the membrane surface and high dispersed phase flow rates, a 

growing droplet is significantly distorted in the direction of shear force and forms a neck 

parallel to the membrane surface, which is stretched until if collapses and releases a droplet 

(Van der Graaf et al., 2005), which is known as the jetting regime. DME must be conducted 

in the dripping regime, since the emulsions produced in the continuous outflow and jetting 

regimes are polydisperse, due to random nature of the pinch-off process. The transition from 

dripping to continuous outflow/jetting does not occur simultaneously for all the pores, leading 

to bimodal particle size distribution of the droplets as a result of droplets being formed under 

different regimes at the same time.  
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5.2 Effect of pore size and shear stress on the membrane surface 

 

For spontaneous droplet formation, a linear correlation between the mean droplet size and the 

mean pore size exists in the dripping regime: pd dKd '=  (line 3 in Figure 7), where 'K  = 

2.8−3.5 for SPG membrane (Kukizaki and Goto, 2009; 2007c; Nakashima et al., 1991; 

Vladisavljević et al., 2006). Even in the absence of any shear on the membrane surface, 'K  

was found to be 3.3 for 1% Tween-80 stabilised O/W emulsions produced using SPG 

membrane (Kukizaki and Goto, 2009). For slotted pores: phd DKd ,1 '= , where phD ,  is the 

hydraulic pore diameter and '1K ≈3.  

 

In a shear-controlled droplet formation process at low transmembrane flux, the mean droplet 

size is determined by the balance between the shear force exerted on the forming droplet by 

the continuous phase, Fd and the capillary force, Fca (Kosvintsev et al., 2005):  

wopca dF γp=        (7) 

2229 pddwd r)/d(dF −= pτ         (8)      

where pr  is the pore radius and wτ  is the shear stress on the membrane surface. The droplet 

pinch-off occurs when dca FF = :  

w

wppwpw
d

rrr
d

τ

γτττ

3

481218 2224422 ++
=          (9) 

The mean drop diameter decreases with increasing shear stress on the membrane surface and 

tends to the pore diameter at very high shear stresses.  

 

As a conclusion, uniform droplets can be produced only in dripping regime, which prevails at 

low transmembrane fluxes. For droplet formation by spontaneous droplet detachment, the 

droplet size in the dripping regime is proportional to the pore size. For shear-controlled 

droplet formation, the droplet size is no longer proportional to the pore size and is generally 

determined by the balance between the shear force acting on the growing droplet, inertial 

force originating from the dispersed phase flow and the interfacial tension force. In this case, 

the size of resultant droplets increases with increasing transmembrane flux and pore size and 

decreases with increasing shear stress on the membrane surface and interfacial tension.  



 15 

 

5.3 Effect of surfactant 

 

The effect of kinetics of adsorption of surfactant at oil-aqueous interface during DME on the 

droplet size has been investigated by Schröder et al. (1998), Van der Graaf et al. (2004), and 

Rayner et al. (2005). The faster the surfactant molecules adsorb to the newly formed interface, 

the smaller the droplet size becomes. Surfactant molecules must not bind to the membrane 

surface by Van der Waals or electrostatic interactions, because the dispersed phase will spread 

over the membrane surface, which will lead to uncontrolled droplet generation. For negatively 

charged SPG membrane, it means that cationic surfactants, e.g. alkyltrimethylammonium salts 

such as cetyltrimethyl-ammonium bromide (CTAB) must not be used, since they lead to 

polydispersed O/W emulsions with 20/ >pd dd  (Nakashima et al., 1993). The use of 

zwitterionic surfactants must also be avoided, even when they carry a net negative charge 

(Surh et al., 2008). To produce cationic droplets using SPG membrane, the membrane must be 

pre-treated with amino trialkoxysilanes to become positively charged (Figure 3b) or the 

charge of anionic droplets must be altered after ME by displacing anionic surfactants with 

cationic ones (Vladisavljević and McClements, 2010).  

  

6. Control over droplet size in PME 

 

The mean droplet size in PME depends on the pore size of the membrane, transmembrane 

flux, number of passes through the membrane, viscosity of the continuous and dispersed 

phase and interfacial tension (Nazir et al., 2010). The mean droplet size is a non-linear 

function of the mean pore size (line 5 in Figure 7):  
n

pd dKd )("=       (10) 

where n < 1. The droplet to pore size ratio ( pd dd / ) decreases with the mean pore size and 

ranges from 1 to 1.5 for SPG membrane with pd = 5−20 µm for the wall shear stress inside 

the pores of 200 Pa (Vladisavljević et al., 2006). The critical pressure in PME is given by 

(Park et al., 2001): 

1
411222

2

2366

−+

−×−+
=
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]a)a/arccos(a/a[Pcap

γ      (11) 
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where ppm dda /=  and pmd  is the mean droplet size in a pre-mix. If a » 1, the capillary 

pressure is given by Eq. (6). In PME, the optimum transmembrane pressure is 10−50 times 

larger than capP  (Vladisavljević et al., 2004b). The mean droplet size decreases with 

increasing the wall shear stress inside the pores, given by: 

 )d/(J pep,w eξητ 8=          (12) 

where eη  is the viscosity of emulsion inside the pores. In PME, smaller droplets are produced 

at higher transmembrane fluxes, due to higher shear stresses generated inside the pores, as 

shown by line 4 in Figure 7. The droplet size can be additionally reduced by passing emulsion 

several times through the membrane (Vladisavljević et al., 2004b; Laouini et al., 2014). 

 

7. Integration of membrane emulsification and solid/semi-solid particle fabrication 

 

From the early 1990s, membrane emulsification was used for the preparation of O/W or W/O 

emulsions with a narrow particle size distribution and controlled mean particle size 

(Nakashima et al., 1991). Membrane emulsification technology has since been extended to the 

production of multiple emulsions, such as solid-in-oil-in-water (S/O/W) (Kukizaki, 2009c), 

oil-in-water-in-oil (O/W/O) (Wei et al., 2013; Cho et al., 2005) and water-in-oil-in-water 

(W/O/W) (Surh et al., 2007), nano- and micro-emulsions (Koga et al., 2010; Oh et al., 2011; 

Laouini et al., 2012; Choi et al., 2012; Pradhan et al., 2013; Oh et al., 2013), multilayer 

emulsions (Vladisavljević and McClements, 2010; Gudipati et al., 2010; Nazir et al., 2012), 

microbubbles (Kukizaki and Goto, 2007), nanobubbles (Kukizaki and Goto, 2006), micro- 

and nano-particles (Vladisavljević and Williams, 2005; 2010), and nanovesicles (liposomes 

and niosomes) (Hwang et al., 2011; Pham et al., 2012). The examples of particles fabricated 

by solidification of droplets produced using SPG membrane are given in Table 4. 

 

7.1 Integration of membrane emulsification and crosslinking of gel-forming polymers 

 

Hydrogels are three-dimensional networks composed of cross-linked hydrophilic polymers. 

Hydrogels are insoluble in water but can absorb and hold large amount of water due to their 

hydrophilic character (Hoare and Kohane, 2008). Microgels are spherical hydrogel 

microparticles which can be produced by injecting an aqueous solution of gel forming 

monomers or pre-formed polymers through hydrophobic membrane (Mi et al., 2015). A 3D 

network can be formed by chemical crosslinking of monomers through condensation 
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polymerisation (e.g. polyamide) and free radical polymerisation (e.g. polyacrylate), but 

physical crosslinking is more common and can involve heating (heat-set gels such as whey 

protein gel), cooling (cold-setting gels such as agarose and gelatine) or electrostatic 

interaction (ionotropic gelation). In ionotropic gelation, gel-forming polymer must contain 

charged functional groups, such as amino groups of chitosan or carboxylic group of alginate, 

which can interact with oppositely charged divalent or polyvalent crosslinkers. The main 

strategies used for physical crosslinking of droplets produced by ME are shown in Figure 8. 

 

7.1.1 Internal gelation 

In the internal gelation method (Figure 8a), the dispersed phase contains a gel-forming 

polymer and a crosslinking agent in a nondissociated (inactive) form (e.g. CaCO3 particles 

instead of Ca2+). Solid beads are formed by adding a species (e.g. H+) that diffuses into the 

droplets and triggers the release of a crosslinking agent in its active form. In the case of 

CaCO3/H+/alginate system, the released Ca2+ ions bind to the L-guluronate residues of 

alginate, crosslinking the polymer and causing the droplets to gel. The H+ ions can be added 

by dropping glacial acetic acid into the resultant W/O emulsion under stirring, as shown in 

Table 5A. The size of CaCO3 particles should be about 10 times smaller than the pore size of 

the membrane to prevent pore blockage. A 10-μm microengineered membrane was blocked 

when the size of CaCO3 particles suspended in the oil phase phase was 2.3 μm, but no 

blockage was observed when a 20-μm membrane was used (Hanga and Holdich, 2014). For SPG 

membrane, blockage is more likely due to tortuous and interconnected pore structure. Another 

disadvantage of internal gelation is that Ca2+ could be non-uniformly distributed in the 

dispersed phase, due to grains of nondissolved CaCO3 in the beads (Ogończyk et al., 2011). 

 

Gelation of alginate with Ca2+ is a reversible process and the Ca-alginate beads can be 

solubilised in an aqueous solution containing monovalent ions due to exchange of Ca2+ with 

non-cross-linkable monovalent ions. Irreversible alginate gel can be synthesised using 

alginate with phenol moieties, which can be crosslinked via oxidative C-C and C-O coupling 

with hydrogen peroxide (Sakai et al., 2007).  

 

7.1.2 External gelation 

In the external gelation method (Figure 8b and Table 5B), the aqueous phase droplets contain 

only a polymer or a mixture of polymers and the crosslinking agent is added once the W/O 

emulsion is formed. The dispersed phase also contains encapsulants, such as microbial cells, 
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if they need to be entrapped into a hydrogel matrix (Choi et al., 2014). Typical crosslinking 

agents are Ca2+ for alginate beads, glutaraldehyde (GA) and tripolyphosphate (TPP) for 

chitosan beads and GA for haemoglobin-albumin microspheres. In the case of calcium 

alginate and chitosan/TPP beads, cross-linking involves electrostatic interactions, but in the 

case of GA cross-linked polymers, the gelling occurs due to covalent bonding between amino 

groups of the polymer and aldehyde groups of GA and formation of a Schiff-base type bond. 

In order to maintain the original droplet size distribution after cross-linking, toluene saturated 

with GA was used for cross-linking reaction, rather than aqueous GA solution (Wang et al., 

2005). The oil phase used in the external gelation was usually a mixture of oil-soluble 

surfactant and low-viscosity organic solvent, such as isooctane, kerosene or 7:5 (v/v) 

paraffin/petroleum ether mixture.  

 

7.1.3 Gel formation by cooling 

Polymers like gelatine and agarose can form hydrogels upon cooling from their aqueous 

solutions. The gel formation is due to coil-to-helix transition: coil → helix → gel (Viebke et 

al., 1994). The first step in this process is the transition of polymer from a random coil to 

helix confirmation and the second step is association and branching of these helices into a 3D 

network. This method was used to produce agarose beads by emulsifying agarose solution 

using SPG membrane at 55−70 °C, followed by cooling the resultant W/O emulsion (Figure 

8c and Table 5C). In ME using SPG membrane, the mean size of agarose beads was found to 

be proportional to the mean pore size of SPG membrane: 

pbead ndd =            (13) 

In DME, n = 3 for =pd 5−20 µm (Zhou et al., 2007) and n = 3.6−3.7 for =pd 23−30 µm 

(Zhao et al., 2014). In PME, n = 0.49 for =pd 6−19 µm (Zhou et al., 2009). No difference in 

size was found between agarose droplets and produced beads. The droplets were much more 

uniform when low-viscosity mixture of liquid paraffin and petroleum ether oil (7:5 v/v) was 

used as the continuous phase liquid than high-viscosity oils such as pure paraffin oil and 

vegetable oil (Zhou et al., 2007).  

 

7.1.4 Gel formation by droplet merging (coalescence) 

In this method (Figure 8d), microgels are formed by mixing two W/O emulsions: emulsion 1 

containing droplets of the polymer solution and emulsion 2 containing droplets of the cross-

linking agent. The crosslinking mechanism involves merging two droplets (1 and 2) and 
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mixing of their contents, which triggers a crosslinking reaction within the fused droplet. 

However, a stochastic nature of the coalescence process inevitably leads to the formation of 

polydisperse beads even if the original emulsions are monodisperse (Sugiura et al., 2005). 

Alginate beads were created by mixing together alginate and CaCl2 emulsion droplets and 

chitosan beads were obtained by fusing acidic chitosan drops and sodium hydroxide drops. In 

the latter case, the gelling was a result of precipitation of chitosan in a basic environment 

formed within the merged droplets (Table 5D). Emulsion 1 must be prepared by ME and 

emulsion 2 can be prepared by ultrasonication or ME. Hybrid chitosan/alginate beads were 

formed by merging a chitosan and alginate droplet and subsequent electrostatic interaction 

between a polycation (chitosan) and polyanion (alginate) within the combined droplet. 

 

Hollow chitosan beads were fabricated using the following procedure (Figure 8 e): (i) alginate 

beads were prepared by mixing together two W/O emulsions containing sodium alginate and 

CaCl2 droplets; (ii) the produced alginate beads were coated with chitosan solution by mixing 

the resultant alginate beads with a W/O emulsion containing chitosan droplets; (iii) chitosan 

layer deposited onto the surface of alginate beads was crosslinked by mixing chitosan-coated 

alginate beads with the W/O emulsion containing tripolyphosphate in the aqueous phase 

droplets. Polyphosphate has twofold action: it is a crosslinker for chitosan and Ca2+ catcher 

for calcium alginate gel, which results in the dissolution of alginate core and formation of 

hollow chitosan particles.  

 

7.1.5 Gel formation by heating 

Chitosan beads were fabricated by reverse thermal gelation of the droplets containing 

quaternized chitosan and glycerol-2-phosphate (GP) (Table 5E). The gelation occurred at 

∼37°C due to hydrophobic interactions between chitosan chains that are not possible at room 

temperature due to protective hydration of the chains in the presence of GP (Wu et al., 2008).  

 

W/O/W emulsions containing gelled water droplets were obtained by a three-stage process 

shown in Figure 9: (i) formation of W/O emulsion with submicron aqueous droplets by high-

pressure homogenisation; (ii) thermal gelation of whey proteins within the aqueous droplets at 

80°C; (iii) preparation of W/O/W emulsion by mixing the W/O emulsion with gelled water 

droplets and an external aqueous phase and homogenising this course emulsion by PME (Surh 

et al., 2007). The thermal gelation of whey protein isolate is a two-step process consisting of 

unfolding protein molecules and covalent cross-linking of unfolded protein chains, due to 
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formation of disulphide (S-S) bonds. The prepared W/O/W emulsion has improved stability 

and controlled release properties.  

 

7.2 Integration of membrane emulsification and melt solidification 

 

Membrane emulsification / melt solidification process involves ME above the melting point 

mT  of the dispersed phase followed by cooling the emulsion below the melting point. This 

approach was used for fabrication of solid lipid particles for oral drug delivery (Kukizaki, 

2009c), low-melting-point metal particles for soldering microcomponents in microelectronics 

(Torigoe et al., 2011) and thermochromic liquid crystal particles for digital particle tracking 

thermography/velocimetry (Segura et al., 2013). Solid lipid microparticles are particles 

formed from lipids that are solid at room temperature, such as saturated fatty acids (palmitic 

acid, stearic acid and behenic acid) and mono-, di-, and triesters of glycerol and polyethylene 

glycol (PEG) (Table 6). The melting point of these lipids lies between 44 and 65 °C and ME 

must be carried out at the temperature which is at least 5°C higher than the melting point of 

the lipid to prevent membrane fouling.  

 

Three different template emulsions used for fabrication of solid lipid particles using ME are 

O/W, W/O/W and S/O/W (Table 6). The O/W melt dispersion method was used to produce 

solid lipid microcarriers for encapsulation of lipophilic active ingredients (LAIs), such as 

vitamin E (Laouini et al., 2014). LAI is first dissolved in a hot melted lipid and the solution is 

premixed with a hot aqueous surfactant solution and passed through the membrane multiple 

times (Figure 10). The produced O/W emulsion is rapidly cooled to the room temperature to 

solidify the dispersed lipid phase.  

 

The W/O/W melt dispersion method was used to produce solid lipid microcarriers for 

encapsulation of hydrophilic active ingredients (HAIs), such as vitamin B12. Following oral 

administration, HAI gradually releases from the carriers in the small intestine due to 

degradation of the solid lipid matrix by lipase. Kukizaki and Goto (2007c) developed a two-

stage DME process to prepare first a W/O and then W/O/W emulsion using SPG membrane 

with a pore size of 0.3 and less than 1 μm, respectively (Figure 11). The droplet to pore size 

ratio was 3.3−3.4 in both cases. Finally, the W/O/W emulsion was cooled down to crystallise 
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the lipid phase and convert the W/O/W emulsion into W/S/W dispersion. W/S microparticles 

were obtained by filtration of the W/S/W dispersion.  

 

W/S microparticles contain a considerable amount of water (up to 40 wt%), because water 

droplets within the carrier remain intact after crystallisation of the oil phase. To improve 

microbiological stability of the solid lipid particles, the inner water was removed from the 

W/O emulsion by vacuum evaporation at 60°C to obtain a dispersion of HAI nanoparticles in 

the lipid melt (Figure 12) (Kukizaki and Goto, 2009). The presence of PGPR in the oil phase 

inhibited droplet coalescence and particle aggregation during vacuum dehydration, so the 

final size of PGPR-coated HAI nanoparticles in the S/O dispersion was 130 nm. This S/O 

dispersion was then dispersed in the aqueous surfactant solution by PME to form a hot S/O/W 

emulsion. The ratio of the mean size of microcarriers to the mean pore size was 1−1.5 

(Kukizaki and Goto, 2009). Finally, the S/O/W emulsion was cooled to room temperature to 

obtain solid lipid microparticles with embedded nanoparticles of HAI.  

 

7.3 Integration of membrane emulsification and spray drying 

 

Ramakrishnan et al. (2013) produced fish oil microcapsules coated with maltodextrin by 

spray drying fish oil-in-water emulsions. Fish O/W emulsions stabilised with 2 wt% Tween 

20, 1−10 wt% WPI or 1−10 wt% WPH were prepared by PME using nylon or nitrocellulose 

mixed esters (MCE) membrane. The emulsions were mixed with a wall material 

(maltodextrin) in 1:1 or 1:3 (oil to maltodextrin) mass ratio and spray dried. The oil 

encapsulation efficiency was higher when the emulsion was prepared by PME than using 

Ultra-Turrax®. Berendsen et al. (2015) prepared microcapsules containing procyanidin-rich 

extracts from W/O/W emulsions stabilised with WPI-polysaccharide soluble complexes using 

PME with SPG membrane. Before spray drying, W/O/W emulsions were mixed with 

maltodextrin in 1:3 (oil to maltodextrin) ratio. The highest encapsulation efficiency was 

achieved using multiple emulsion droplets stabilised with WPI-CMC complex. 

 

7.4 Integration of membrane emulsification and organic solvent removal from droplets 

 

Membrane emulsification was combined with solvent removal to produce synthetic 

biodegradable polymeric particles (Ito et al., 2011), nanoclusters (Chang and Hatton, 2012), 
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liquid-core/polymer-shell particles (Sawalha et al., 2008), Janus particles (Chang and Hatton, 

2012), hemispherical particles (Yamashita et al., 2012), and quantum dot barcodes (Wang et 

al., 2013). The strategy used for solvent removal from the droplets was evaporation at room 

temperature, fast diffusion into large amount of water (Ito et al., 2011; Imbrogno et al., 2014; 

2015) and pervaporation through polypropylene hollow fibers (Chang and Hatton, 2012).  

 

7.4.1 Solvent removal from single emulsions  

A. Synthetic biodegradable polymeric particles loaded with hydrophobic actives 

Coherent particles were prepared by emulsifying an organic polymer solution in an aqueous 

surfactant solution by ME, followed by organic solvent removal from the oil phase (Figure 

13a). Typical polymers used in the process are polylactide (PLA), poly(lactide-co-glycolic 

acid) (PLGA) and polylactide-co-poly(ethylene glycol) (PELA) and a volatile organic solvent 

was mainly ethyl acetate or dichloromethane (DCM) (Table 7A). In the absence of swelling, 

the diameter partd  of a particle formed after complete solvent removal from a droplet with an 

initial diameter of dd  can be calculated from the equation (Vladisavljević et al., 2012b):  

dpoldpartpolpart dxd 3/1)]/))(1/([( rrε−=       (14) 

where polx  is the mass fraction of polymer in the dispersed phase, polρ  is the polymer density, 

partε  is the particle porosity, and dρ  is the density of the dispersed phase. In repeated premix 

SPG ME, the particle size can be more than 10 times smaller than the membrane pore size 

(Table 7A), whereas in direct SPG ME, the particle size is typically larger than the membrane 

pore size. In order to produce PLGA particles with 100% yield by PME, the minimum pore 

size of SPG membrane has to be 0.5 μm (Ito et al., 2011). When the pore size of SPG 

membrane was reduced from 0.5 to 0.26 μm, no change in particle size was observed, but the 

yield of PLGA particles was very low due to pore clogging by the polymer (Ito et al., 2011). 

 

Drug-loaded biodegradable particles were prepared by adding hydrophobic drugs such as 

rifampicin (Doan et al., 2011), haloperidol (Meyer et al., 2010) and paclitaxel (Wang et al., 

2015) to the oil phase prior to ME. The drug loading, encapsulation efficiency and release 

profile are dependent on the polymer hydrophobicity. The highest loading and encapsulation 

efficiency of paclitaxel (PTX) was achieved with PLGA (5.2% and 70.5% respectively), 

followed by PLA (4.3% and 64.3%) and PELA (3.4%, 56.7%), which was attributed to the 

highest hydrophilicity of PLGA (Wang et al., 2015). During formation of PLGA particles, 
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PTX precipitates faster than PLGA forming nanoparticles that migrate towards the interior of 

the particle due to their high hydrophobicity. With further solvent evaporation, PLGA 

precipitates and forms a protective polymer layer around drug nanoparticles. On the other 

hand, PLA precipitates faster than PTX and the formed polymer network prevents the 

migration of PTX within the particle. As a result, the drug was uniformly distributed within 

PLA particles and less effectively encapsulated (Wang et al., 2015). 

  

The encapsulation efficiency of rifampicin in PLGA particles produced by DME was 

50−67 % regardless of the particle size (Ito and Makino, 2004). For parenteral depot systems, 

the optimum particle diameter is 10−50 µm (Veldhuis et al., 2009). The particles smaller than 

10 µm can easily be cleared from the injection site by phagocytosis and the particles larger 

than 50 µm require needles larger than 27 gauge, which may cause significant patient 

discomfort. PLGA particles within that size range can be produced by DME using both SPG 

and microsieve membranes (Gasparini et al., 2008; Veldhuis et al., 2009). The particle size of 

dry powder aerosols for pulmonary drug delivery should be less than 5 µm, and the particle 

size less than 2 µm is preferable for alveolar deposition (Bao and Zhao, 2010). PLGA 

particles smaller than 0.2 µm can be produced by PME with SPG membrane (Ito et al., 2011).  

 

B. Liquid-core/polymer-shell particles 

Liquid-core/polymer-shell particles were produced by combining PME to form O/W emulsion 

and solvent evaporation to induce phase separation within the oil droplets and formation of 

core/shell structure (Sawalha et al., 2008). As shown in Figure 13b, internal phase separation 

starts with the removal of volatile solvent from the drops containing a mixture of polymer, 

such as PLA, a volatile water-immiscible good solvent for the polymer such as DCM, and 

non-volatile water-immiscible non-solvent (‘oil’ e.g., a C6−C20 hydrocarbon). As solvent 

gradually evaporates, the drop shrinks and becomes increasingly more enriched in polymer 

and non-solvent. When the drop composition reaches the binodal boundary, the phase 

separation occurs within the drop (‘the internal phase separation’), leading to the formation of 

tiny droplets of polymer-enriched phase (which are rich in solvent and polymer) dispersed in 

a polymer-poor phase (mainly consisting of non-solvent). As the polymer is more hydrophilic 

than the non-solvent, polymer-enriched droplets migrate within the drop to the interface with 

the aqueous phase, where they fuse and spread to engulf the oil droplet (Loxley and Vincent, 

1998). Further solvent removal causes the polymer to precipitate in the shell, forming a 
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coherent solid envelope around the oil. This method was used to prepare dodecane-

core/PLLA-shell particles using a mixture of PLLA, DCM and dodecane as a dispersed phase 

(Sawalha et al., 2008) and hexadecane-core/Eudragit-shell particles starting from the 

droplets composed of Eudragit FS 30D, hexadecane, and DCM (Table 7B) (Wagdare, 2011).  

 

The presence of 25−30 wt% alcohol in the continuous phase during evaporation of DCM 

increases the rate of solvent removal from the droplets, as DCM is more soluble in alcohol-

water mixtures than in pure water (Sawalha et al., 2008). As a result, the polymer solidifies 

more quickly and smaller and more uniform PLLA particles can be obtained. At higher 

alcohol concentrations in the continuous phase (>50% for methanol, >45% for ethanol and 

>35% for 2-propanol), DCM is completely miscible in the continuous phase, which results in 

nanoprecipitation of PLLA after mixing the two phases and formation of PLLA nanoparticles.  

 

C. Janus particles and non-spherical particles 

Polymeric Janus particles were formed using the method shown in Figure 13c, where an oil 

phase containing a 1:1 mixture of polymer 1 and polymer 2 (PMMA and P(St-co-BIEM) or 

PS and P(MMA-co-CMS), respectively) dissolved in toluene was emulsified using SPG 

membrane (Table 7C), which was then followed by solvent evaporation (Yamashita et al., 

2008; Ahmad et al., 2008). Bifacial morphology is favoured when S1 < 0, S2 < 0, and S3 < 0, 

where S1, S2, and S3 are the spreading coefficients for polymer 1 rich phase, polymer 2 rich 

phase, and continuous phase, respectively. In the absence of interactions between the phases, 

spreading coefficients are given by: 

)( 1312231 γγγ +−=S           (15) 

)( 2312132 γγγ +−=S           (16) 

)( 2313123 γγγ +−=S           (17) 

When S1 < 0, S2 > 0, and S3 < 0, the particles adopt a core/shell morphology with polymer 1 as 

a core and polymer 2 as a shell, and when S1 > 0, S2 < 0, and S3 < 0, polymer 1 will appear as 

a core and polymer 2 as a shell. 

 

Hemispherical microparticles were produced by the cleavage of Janus PMMA/P(St-co-BIEM) 

particles in 9/1 (v/v) acetone/water solution for 5 s. The particle cleavage is a result of stress 

which occurs at the boundary between the two polymers due to uneven swelling of PMMA 

and P(St-co-BIEM) in the presence of acetone (Yamashita et al., 2008). In addition, the 
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polymer swelling weakens cohesive intermolecular forces between the two polymers due to 

reduced entanglement between PMMA and P(St-co-BIEM) chains at the interface. When the 

interfacial stresses caused by uneven swelling of the two hemispheres overcome cohesive 

forces between them, Janus particles split into two hemispheres, as shown in Figure 13c. 

 
 “Mushroom-like” PMMA/P(St-co-BIEM)-g-PDM Janus particles with pH-responsive PDM 

half-shells were fabricated by surface-initiated atom transfer radical polymerization (ATPR) 

of 2-(dimethylamino)ethylmethacrylate (DM) using spherical PMMA/P(St-co-BIEM) Janus 

particles with bromine end groups at one side of the surface as macroinitiator (Tanaka et al., 

2010) (Figure 13c).  

 

D. Composite core/shell particles 

Composite PLGA particles coated with 50 nm-silica nanoparticles were fabricated by DME 

combined with solvent evaporation and layer-by-layer (LbL) electrostatic deposition (Ito et al., 

2010). Due to the presence of terminal carboxyl groups on their surface, PLGA particles are 

negatively charged in aqueous solutions and can be coated with positively charged polymers 

and particles. The LbL electrostatic deposition involved adsorption of polycation 

poly(allylamine hydrochloride) (PAH) onto the surface of negatively charged PLGA particles, 

followed by deposition of negatively charged silica nanoparticles on the surface of positively 

charged PAH/PLGA composite particles (Figure 13d).  

 

Composite PLGA particles coated with poly(ethyl 2-cyanoacrylate) (PE2CA) were prepared 

by DME combined with interfacial polymerisation and solvent evaporation (Lee et al., 2009). 

The dispersed phase composed of PLGA, ethyl 2-cyanoacrylate monomer, doxorubicin, and 

DCM (Table 7D) permeated through SPG membrane and the monomer was rapidly 

polymerized in contact with a continuous phase due to catalytic action of hydroxyl anions. 

After solvent evaporation, PE2CA formed a polymer shell around PLGA (Figure 13e), which 

enabled to reduce the initial burst release of doxorubicin from the particles.  

 

7.4.2 Solvent removal from W/O/W or S/O/W emulsion  

 

A. Ultrasound contrast agents 

Ultrasound contrast agents (UCAs) are gas-filled capsules with a mean diameter of 2−5 μm 

composed of a gas core and biodegradable lipid, protein or polymer shell. They can be 
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injected into the blood flow to increase the backscattered signal from blood when insonified 

by ultrasound waves in Contrast Enhanced Power Doppler Sonography (Cosgrove, 2006). 

Targeted UCAs are UCAs containing adhesion ligands incorporated into their external surface, 

which allows binding to a specific cell type (Klibanov, 2007). Targeted UCAs can be retained 

on the endothelium at the site of pathology and used for molecular imaging or ultrasound-

triggered targeted drug release (Böhmer et al., 2009). UCA particles were fabricated by 

combining two-step emulsification process (ultrasonication to obtain a primary W1/O 

emulsion and ME to form a multiple W1/O/W2 emulsion) and solvent evaporation to solidify 

the droplets (Figure 14a and Table 8A). Ammonium bicarbonate can be added as a porogen in 

the internal water phase W1 to enhance pore formation during solvent evaporation as a result 

of release of gas bubbles: NH4HCO3 ↔ NH3 + H2O + CO2. The washed hardened particles 

were coated with mannitol and polysorbate to improve their biocompatibility, freeze dried to 

remove water from the core and loaded with a suitable high-molecular-weight gas, such as 

C3F8, C4F10 or SF6 to improve their echogenicity. SEM images revealed that the prepared 

particles had core/shell morphology rather than matrix structure due to coalescence of internal 

voids during processing (Hou et al., 2009; Liu et al., 2014). 

 

B. Synthetic biodegradable polymeric particles loaded with hydrophilic actives 

 

Synthetic biodegradable polymeric particles have important applications in controlled 

delivery of hydrophilic protein/peptide drugs (Wang et al., 2015b). Biodegradable polymeric 

particles loaded with hydrophilic actives can be prepared by double emulsion-solvent 

evaporation method. The process starts with the preparation of W1/O emulsion containing a 

hydrophilic active dissolved in the inner water phase (W1) by ultrasonic or high-shear 

homogenisation. Ultrasonication results in smaller droplets which are more uniformly 

distributed in a polymer matrix after solvent evaporation (Qi et al., 2014). The second step is 

the formation of W1/O/W2 emulsion by dispersing the W1/O emulsion in the outer water 

phase (W2) through a membrane (Table 8B). The encapsulation efficiency, loading capacity 

and release rate of the encapsulated proteins (insulin, BSA, antigens) depends on the 

hydrophobicity and amphiphilicity of the polymer matrix (Wu et al., 2015). The release rate 

of insulin from insulin-loaded PLA particles was very slow (less than 20% after 70 days) due 

to hydrophobicity and slow degradation rate of PLA, but it was much faster using PLA/PLGA 

blends instead of pure PLA (Liu et al., 2006). The encapsulation efficiency and loading 

capacity of biodegradable polymeric particles can be significantly improved by incorporating 
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an amphiphilic polymer in the polymer matrix. For example, the encapsulation efficiency of 

BSA-loaded PLGA particles prepared by PME was improved from 64 to 91 % by adding 

phospholipids to the oil phase, which was attributed to the formation of protective lipid 

barriers at the W1/O and O/W2 interfaces upon solvent evaporation, preventing BSA from 

diffusing out of the particles (Ma et al., 2014). Similarly, the encapsulation efficiency of 

hepatitis B surface antigen in PLA particles was improved from 61 to 90% by replacing PLA 

with PLA-mPEG diblock copolymer, which was attributed to the stabilizing effect of the 

amphiphilic copolymer whose hydrophilic PEG segments were oriented towards the aqueous 

phase and hydrophobic PLA segments towards the interior of the particle (Wei et al., 2008). 

Moreover, particles formed from amphiphilic polymers gave a lower initial rapid release of 

incorporated hydrophilic actives, known as the burst effect. For example, PELA particles 

prepared by PME showed lower burst effect and more constant release of recombinant human 

growth hormone than PLA and PLGA particles, due to the more stable interface in the 

presence of amphiphilic PELA polymer (Wei et al., 2011). BSA-loaded PLHMGA particles 

prepared by cross-flow DME system using a microsieve membrane provided a continuous 

release of fluorescently labelled BSA at the site of administration over a period of 3 weeks 

after subcapsular renal injection (Kazazi-Hyseni et al., 2015).  

 

C. Composite polymeric particles 

Magnetic polymeric particles were fabricated by in-situ magnetization of internal water phase 

in W1/O/W2 emulsion prepared by a two-stage emulsification involving ultrasonication and 

PME. A multiple emulsion that was used as a template was composed of FeCl2/FeCl3 aqueous 

solution as the W1 phase and a mixture of polymer, volatile organic solvent and surfactant as 

the oil phase (Table 8D and Figure 14b). In-situ coprecipitation of Fe2+ and Fe3+ ions within 

the inner droplets was initiated by adding ammonium hydroxide to the external water phase 

resulting in the diffusion of OH- from W2 through O into W1: Fe2+ + 2Fe3+ + 8OH- → Fe3O4 + 

4H2O. Finally, the magnetized droplets were solidified by evaporation of DCM from the oil 

phase (Yang et al., 2010). Magnetic polymeric particles can also be prepared by dispersing 

pre-fabricated magnetite nanoparticles in the oil phase prior to ME (Omi et al., 2001).  

 

Quantum dot (QD) loaded polymeric microparticles (QD barcodes) were prepared by 

emulsifying a mixture of hydrophobic QDs, pre-formed polymer (PSMA or PS) and organic 

solvent (toluene or DCM) in an aqueous surfactant solution through SPG membrane (Wang et 

al., 2013; Han et al., 2015) (Table 8E). The emulsification step was followed by solvent 
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evaporation and surface functionalization of the particles in order to generate carboxyl groups, 

which are suitable for covalently immobilisation of antibodies. QD loaded PS particles 

stabilised by SDS were functionalised by exposing the negatively charged particle surface 

sequentially to PAH polycations and PAA polyanions (Figure 14c). After deposition of PAA, 

different antibodies can be covalently attached onto the particles via an EDC/NHS-mediated 

amidation reaction. Wang et al. (2013) generated a barcode library consisted of 12 barcodes 

using only one type of QDs through the combination of four intensity levels and three size 

levels. Different intensity levels were obtained using various concentrations of QDs in the oil 

phase prior to ME, while different size levels were achieved using SPG membranes with 

different pore sizes.  

 

D. Nanoclusters 

The main difference in the formulation of emulsion for production of nanoclusters and 

composite polymeric particles is that in the former case the oil phase does not contain any 

dissolved polymer, so that after solvent evaporation nanoparticles self-assemble into 3D 

aggregates, while in the latter case after solvent evaporation nanoparticles become embedded 

within the polymer matrix. Silica-coated nanoclusters with a mean size of 50−350 nm 

composed of magnetite nanoparticles were prepared by emulsifying a mixture of magnetite 

nanoparticles (∼10 nm) and hexane in an aqueous surfactant solution by ME, followed by 

pervaporation of hexane from nanoparticle-laden hexane droplets (Chang and Hatton, 2012). 

A silica layer was built-up on the surface of nanoclusters by ammonia-catalysed hydrolysis 

and condensation of TEOS (Figure 14d). The silica coating provides silanol groups for 

surface functionalization of nanoclusters with various organic ligands.  

 

7.4.3 Solvent removal from O/O emulsion  

 

Piacentini et al. (2013c) prepared porous polyethersulfone (PES) particles by DME and 

subsequent nonsolvent-induced phase separation in the formed oil-in-oil (O/O) emulsion. The 

O/O emulsion composed of a mixture of polymer (PES) and solvent (N,N-dimethylformamide, 

DMF) as a dispersed phase and a mixture of liquid paraffin, antisolvent (dodecane or 

isooctane) and oil-soluble surfactant as a continuous phase was prepared in the Dispersion 

Cell using a hydrophobic microengineered membrane. The displacement of solvent by 

nonsolvent immediately after droplet formation led to polymer precipitation inside the 

droplets and phase separation of initially homogeneous polymer solution into polymer-rich 
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and polymer-poor regions (Figure 15). The process is similar to the preparation of asymmetric 

polymeric membranes by the Loeb-Sourirajan phase inversion method (Strathmann and Kock, 

1977). In this process, a casting solution composed of a polymer/solvent mixture is immersed 

into the nonsolvent coagulation bath. The displacement of solvent by antisolvent causes phase 

separation in the casting solution resulting in the formation of a porous polymer film. 

 

7.5 Integration of membrane emulsification and suspension polymerisation 

 

Suspension polymerisation is a process in which polymer is formed within monomer or 

monomer-solvent droplets, which are dispersed in a continuous phase that is a nonsolvent for 

both the monomer and the formed polymer (Slomkowski et al., 2011). The process differs 

from emulsion polymerisation in two main aspects: 1) the polymerisation initiator is located 

in the dispersed phase; 2) synthesised polymer particles have a diameter greater than 1 µm, 

whereas in emulsion polymerisation the particle size is typically about 0.1 µm. The ME-

suspension polymerisation (MESP) method was used to prepare polymer particles with 

tuneable size, shape, internal morphology, and porosity (Omi et al., 1994). Suspension 

polymerisation was performed within O/W (Ma et al., 2003), W/O (Hu et al., 2011) or 

W/O/W emulsion prepared by ME (Ma et al., 2004) and was combined with droplet swelling 

method to synthesise particles from hydrophilic monomers (Omi et al., 1997; Vladisavljević 

and Williams, 2005).  

 

7.5.1 Permanently porous particles 

 

Permanently porous particles can find applications as ion-exchangers, adsorbents, packing in 

chromatography columns, hydrogen storage materials, and catalyst or enzyme supports. They 

have been fabricated by the MESP method using porogenic solvents to induce phase 

separation (Lee et al., 2010; Zhou et al., 2011; Sun et al., 2005). A binding selectivity of 

prepared porous particles toward specific analytes can be enhanced by molecular imprinting 

(Kou et al., 2012). 

 

A. Permanently porous particles prepared using porogenic solvents only 

When the dispersed phase consists only of monomer(s), crosslinker and polymerisation 

initiator, the produced particles are hard glassy transparent beads with very low surface area 

in the dry state of less than 10 m2 g-1 (Sherrington, 1998). These polymeric particles swell in a 
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thermodynamically good solvent and create a porous internal structure which is temporarily 

and disappears when the swollen particles are re-dispersed in a bad solvent. However, when 

the reaction mixture also contains a porogenic solvent at an appropriate level, the produced 

particles are hard but opaque, due to permanently porous structure with a high surface area 

ranging from ∼50 to ∼1000 m2 g-1 (Sherrington, 1998). The presence of porogen is not the 

only condition for creation of porous structure. Polymer particles prepared with insufficient 

amount of crosslinker are essentially nonporous, regardless of the presence of porogen. 

 

Lee et al. (2010) prepared porous poly(styrene-co-divinylbenzene) particles using styrene (St) 

as a monomer, divinylbenzene (DVB) as a crosslinker and hexadecane (HD) as a porogen 

(Table 9A). In this process, polymer chains are initially fully soluble in the dispersed phase, 

but at a certain polymer concentration phase separation occurs and the reaction mixture 

separates into a polymer-rich phase and a porogen-rich phase (Figure 16a). Removal of the 

porogen from phase-separated particles yields porous beads whose total pore volume depends 

on the amount of porogen added in the dispersed phase (Sherrington, 1998). The point at 

which phase separation occurs depends on the nature of porogen, its compatibility with the 

polymer network and the concentration at which it is used. A porogen must be used at a 

concentration that exceeds the amount needed for the maximum swelling of the polymer since 

otherwise all porogen will be immobilised within the polymer network and phase separation 

will not occur. The resulting P(St-co-DVB) beads can exhibit either porous matrix or 

core/shell morphology depending on the amount of hexadecane used. Porous beads with a 

matrix structure shown in Figure 16a were formed when hexadecane was added at 20−30 wt% 

relative to total monomer (Lee et al., 2010). When hexadecane was used at higher 

concentrations (60−65 wt% relative to total monomer), particles with a core/shell morphology 

were formed due to rapid phase separation during polymerisation (Figure 18a) (Lee et al., 

2010). Similar to that, Ma et al. (2003c) observed that a complete engulfing of hexadecane by 

polystyrene or poly(styrene-co-N,N-dimethylaminoethyl methacrylate) [P(St-co-DMAEMA)] 

was progressively easier when the amount of hexadecane in the dispersed phase gradually 

increased from 10 to 50 wt%.  

 

In addition to the relative amount of porogen used, particle morphology can be controlled by 

the nature of the porogen. Hao et al. (2009) prepared porous PDVB particles with different 

morphologies using porogens with different molecular weight and chemical structure at the 
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fixed porogen to monomer mass ratio of 1:1. When a porogen with a poor compatibility with 

the polymer was used, such as heptane, phase separation occurred at low conversion of 

monomer and the prepared particles had a low surface area with a large proportion of 

macropores (>50 nm). When a porogen with a good compatibility with the polymer was used 

(e.g. toluene), phase separation occurred at much higher conversion and the particles had a 

high surface area with a majority of the pores in the micropore (<2 nm) and mesopore (20−50 

nm) region. When a porogen had very poor compatibility with PDVB (e.g. hexadecane and 

liquid paraffin), phase separation rapidly occurred resulting in a porogen-core/polymer-shell 

particle morphology.  

 

B. Hypercrosslinked particles 

Surface area of porous polymer particles can be increased by post-polymerisation crosslinking 

of polymer chains (Urban et al., 2010). Hypercrosslinked P(St-co-DVB) particles with a 

surface area above 1300 m2 g-1 were prepared by the MESP method and subsequent 

crosslinking of polystyrene with chloromethyl methyl ether (Zhou et al., 2011). A two-step 

crosslinking process involved chloromethylation of the benzene rings of polystyrene chains 

(activation step) followed by the Friedel-Crafts alkylation of chloromethylated polystyrene, 

resulting in the formation of methylene bridges between polymer chains (Figure 27b). Porous 

P(St-co-DVB) particles can be rendered hydrophilic by the attachment of hydrophilic 

polymers via Friedel-Crafts acylation (Li et al., 2013).  

 

C. Molecularly imprinted polymer particles 

Molecularly imprinted polymer (MIP) particles are particles synthesised by polymerisation in 

the presence of a template molecule that is extracted afterwards, thus leaving nanocavities in 

the polymer network which are complementary in shape, size and chemical functionality to 

the template molecule (Vasapollo et al., 2011). MIP particles are capable of rebinding the 

original template with high sensitivity and specificity and can be used in targeted drug 

delivery, molecular sensing, and highly selective separation and catalytic processes. Kou et al. 

(2012) fabricated submicron molecularly imprinted P(MAA-co-EGDMA) particles by PME 

using chloramphenicol (CAP) as a template, methacrylic acid (MAA) as a functional 

monomer, ethylene glycol dimethacrylate (EGDMA) as a crosslinker and ethyl acetate as a 

porogen (Figure 17 and Table 9B). The first step was the formation of a complex between 

CAP and MAA in the dispersed phase liquid via self-assembly of monomer molecules around 

the template, followed by emulsification step by PME and polymerisation within the droplets 
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in the presence of a large excess of EGDMA. After polymerisation and phase separation, the 

template and porogen were removed from the polymer by washing with methanol/acetic acid 

solution leaving behind cavities embedded in a porous polymer matrix. The prepared particles 

exhibited high selectivity and adsorption capacity for CAP compared to non-imprinted 

polymer particles prepared under the same conditions, but in the absence of CAP (Kou et al., 

2012). Wolska and Bryjak (2014) fabricated 40-µm size molecularly imprinted P(MMA-co-

EGDMA) particles by DME using bisphenol (BPA) as a template, methyl methacrylate 

(MMA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a crosslinker 

and n-octane as a porogen (Table 19B). The prepared microspheres were used as highly 

selective sorbents for removal of BPA from aqueous solutions.  

 

7.5.2 Liquid-core/polymer-shell and hollow capsules 

 

Liquid-core/polymer-shell capsules were produced by combining ME with one-stage 

suspension polymerisation (Lee et al., 2010; Ma et al., 2003c), two-stage suspension 

polymerisation (Omi et al., 2000), interfacial polymerisation (Chu et al., 2003) or in-situ 

polymerisation (Pan et al., 2012; Liu et al., 2011). The prepared particles were investigated as 

potential candidates for encapsulation of phase change materials (Chaiyasat et al., 2009; 

Rahman et al., 2012) and self-healing agents (Liu et al., 2011). A liquid encapsulated within 

the shell can be evaporated or extracted to produce hollow polymer capsules providing 

excellent light scattering and thermal insulation properties that can be used as coatings, 

pigments, floating drug delivery systems, and catalyst supports (Liu et al., 2010).  

 

A. One-stage suspension polymerisation 

Ma et al. (2003c) prepared HD-core/PSt-shell or HD-core/P(St-co-DMAEMA)-shell particles 

by DME followed by one-stage suspension polymerisation using emulsion formulations given 

in Table 9C. A core/shell morphology with a polymer shell completely engulfing a HD core 

(Figure 18a) is favoured when the spreading coefficients are: 0)( 1312231 <+−= γγγS , 

0)( 2312132 >+−= γγγS , and 0)( 2313123 <+−= γγγS , where 12γ  is the interfacial tension 

between the HD and polymer phase, 13γ  is the interfacial tension between the HD and 

aqueous phase, and 23γ  is the interfacial tension between the polymer and aqueous phase. 

When the monomer conversion was lower, a higher amount of residual monomer was present 

in the HD phase, resulting in a lower 13γ  value and 02 <S , which led to incomplete engulfing 
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of HD and a half-moon particle morphology. The incorporation of hydrophilic DMAEMA 

units in the polymer network decreased the 23γ  value and HD could be encapsulated 

completely even when the monomer conversion was low (Ma et al., 2003c). 

 

B. Two-stage suspension polymerisation 

Omi et al. (2000) prepared core/shell capsules with a heptane/benzene core and poly(MMA-

co-EGDMA-co-2-EHA) shell by two-stage suspension polymerisation. Large seed droplets 

composed of a heptane/benzene (4:1) mixture, the initiator and a hydrophobic monomer (2-

EHA) were prepared using SPG membrane and this emulsion was mixed with a fine emulsion 

composed of the droplets of hydrophilic monomers (MMA and EGDMA), prepared by 

traditional high shear methods. The oil phase of this fine emulsion was absorbed by the seed 

droplets (stage 1) and the swollen droplets were then polymerised (stage 2). The polymer was 

more hydrophilic than the porogen, resulting in phase separation with formation of a HP/Bz 

core and polymer shell (Figure 18b).  

 

7.5.3 Nanoparticle-embedded polymeric microspheres 

 

Nanoparticle-embedded composite polymeric microspheres find numerous applications in 

biomedicine, water treatment and purification, photovoltaic devices, drug delivery, and 

energy storage materials (Srivastava et al., 2014). They can be prepared from preformed 

polymers by ME-solvent evaporation method, as explained in Figure 14b or synthesised 

starting from monomers by the MESP method (Takeda et al., 2009; Zhou et al., 2012; 

Supsakulchai et al., 2003). Takeda et al. (2009) produced acrylate microspheres filled with 

titanium dioxide (TiO2) using SPG ME and subsequent suspension polymerisation (Table 9D). 

A uniform distribution of TiO2 particles in the acrylic monomer with very little agglomeration 

was achieved in a bead mill using a commercial hyperdispersant. The organic phase 

permeated through SPG membrane with a pore size of 2 µm with no pore clogging and almost 

100% yield of TiO2. When TiO2 was dispersed in the organic phase using ultrasonic cleaner, a 

severe membrane clogging was observed due to significant agglomeration of TiO2 in the 

suspension. Zhou et al. (2012) and Zhang et al. (2013) fabricated hypercrosslinked PDVB 

magnetic particles with a surface area above 1000 m2 g-1 by MESP and post-polymerisation 

crosslinking. Fe3O4 nanoparticles with a diameter of 10−15 nm prepared by coprecipitation of 
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ferrous and ferric ions in the presence of oleic acid could be homogeneously dispersed in the 

oil phase and passed through a 5-µm SPG membrane without any pore clogging.  

 

7.6 Integration of membrane emulsification and polymerisation on droplet surface 

 

7.6.1 Interfacial polycondensation 

 

Interfacial polycondensation is characterized by wall formation at the surface of the droplets 

via polycondensation of two monomers, delivered from two different phases. A hydrophobic 

monomer is dissolved in organic solvent and injected through the membrane into an aqueous 

phase. A hydrophilic monomer is added to the aqueous phase and polymerization proceeds at 

the surfaces of the organic phase droplets. Chu et al. (2002) prepared termosensitive capsules 

with a porous PA shell and PNIPAM chains grafted on the surface of the pores to act as 

stimuli-responsive gates (Figure 19a). A starting O/W emulsion was prepared by injecting a 

mixture of TDS (hydrophobic monomer), benzene and xylene into an aqueous solution of 

PVA and SDS using SPG membrane (Table 10A). A buffer solution containing EDA 

monomer was then added to the emulsion and core-shell capsules were formed by interfacial 

polymerisation (Chu et al., 2002). The release rate of both NaCl and vitamin B12 from the 

prepared capsules was slow at 25 °C and fast at 40 °C, since the expended PNIPAM chains 

blocked the diffusion at low temperatures, while the collapsed chains opened the pore space 

for drug release at high temperatures. A positive thermoresponse (i.e., higher release rate at 

higher temperature) was attributed to low graft density of PNIPAM chains in the pores (small 

number of grafted chains per unit pore area).  

 

7.6.2 In-situ polymerisation 

 

In ISP (in-situ polymerisation), no reactants are included in the dispersed phase and the 

polymerization occurs exclusively in the continuous phase and on the continuous phase side 

of the interface, rather than on both sides of the interface, as is the case in interfacial 

polymerisation. Pan et al. (2012) prepared melamine-formaldehyde (MA-FA) capsules with a 

shell thickness of ∼400 nm by emulsifying oil-based industrial precursor in an aqueous 

solution of monomers (FA and MA) in the Dispersion Cell using a microengineered nickel 

membrane, followed by ISP at 65°C (Table 10B and 19b). The prepared capsules were more 
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uniform that the capsules prepared using the same emulsion formulation in a high shear mixer. 

Liu et al. (2011) prepared melamine-urea-formaldehyde (MUF) core-shell capsules by 

emulsifying ENB-based self-healing agent in an aqueous solution of SDS and PVA, followed 

by mixing the emulsion with an aqueous solution of urea and MA-FA prepolymer and 

subsequent ISP at 86°C. The prepared capsules can be incorporated into a polymeric host 

material with the aim of releasing ENB monomer upon crack formation that can repair the 

crack and therefore autonomously heal the material. The self-healing process is based on ring-

opening metathesis polymerisation caused by the capsule rupture (Wu et al., 2008b).  

 

7.7 Integration of membrane emulsification and mini-emulsion polymerisation 

 

In conventional emulsion polymerisation, micellar and homogenous nucleation dominate over 

droplet nucleation because the monomer droplets are large, which makes them ineffective in 

competing with monomer-swollen micelles for water-borne free radicals (Schork et al., 2005). 

In mini-emulsion polymerisation, polymer particles are predominantly formed by entry of free 

radicals from the aqueous phase into monomer droplets, because they are typically less than 

0.5 µm in diameter. Small droplets not only compete effectively for radicals with micelles, 

but also cause the micelles to dissociate by providing a large interfacial area that must be 

occupied by surfactant molecules. Kong et al. (2010; 2013) fabricated porous silica 

nanocapsules loaded with Fe3O4 nanoparticles and camptothecin by combining mini-emulsion 

polymerisation, ME, and sol-gel processing. Nanodroplets with a mean diameter of 120 nm 

composed of 10-nm magnetite nanoparticles dispersed in octane were prepared by sonication 

and this miniemulsion was mixed with another emulsion made up of 4-µm styrene droplets 

prepared by SPG DME. After mixing, styrene from the large droplets diffused through the 

aqueous phase into nanodroplets until a swelling equilibrium was established.  

 

The polymerisation was initiated by adding potassium peroxydisulfate (KPS), a water-soluble 

initiator, in the mixed emulsion and involved the following stages (Figure 20a): (i) Formation 

of free radicals in the aqueous phase by thermal dissociation of KPS: −
•

− → 2
4

2
82 2SOOS . These 

radicals are too hydrophilic to enter the droplets; (ii) polymerisation of styrene in the aqueous 

phase resulting in oligomers of increasing molecular weight and hydrophobicity: 
−
•

−
• →+ 2

4
2
4 SOMSOnM n ; (iii) Entry of oligoradicals into monomer-swollen nanodroplets, 

once their chain becomes sufficiently long. The probability for styrene droplets to be 
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nucleated is very low, because they are large compared to the size of nanodroplets, and hence 

their interfacial area is orders of magnitude smaller than that of the magnetite nanodroplets. 

The role of ME was to form uniform micron-sized styrene droplets without submicron-sized 

droplet fraction, so as to avoid nucleation of styrene droplets and formation of magnetite-free 

polymer particles. Therefore, in this process styrene droplets act only as monomer reservoirs 

and nanodroplets are nucleation sites where polymerisation occurs.  

 

The further processing of magnetic polymer nanoparticles involved the following stages 

(Figure 20b): (i) formation of hydrophilic porous silica shell around the nanoparticles by the 

Stöber method based on the addition of TEOS and ammonia to the particle suspension; (ii) 

removal of polystyrene core by burning off the polymer at 400−500 °C; (iii) loading hollow 

nanocapsules with camptothecin, a hydrophobic anticancer drug that can be trapped inside the 

capsules due to surface repulsion from the hydrophilic shell. The drug release was triggered 

by remotely applying magnetic field which caused heat generation inside magnetite 

nanoparticles and increased drug diffusivity (Kong et al., 2013).  

 

7.8 Integration of membrane emulsification and sol-gel polycondensation  

 

Carbon gel is a porous carbon material that can be synthesized by aqueous polycondensation 

of phenolic substances with formaldehyde and subsequent drying and pyrolysis in an inert 

atmosphere (Al-Muhtaseb and Ritter, 2003; El-Khatat and Al-Muhtaseb, 2011). Yamamoto et 

al. (2008) fabricated carbon cryogel microspheres using direct SPG ME (Figure 21). The first 

step was the polymerisation of resorcinol (R) with formaldehyde (F) in water at room 

temperature in the presence of sodium carbonate as a catalyst. After 24 h, RF polymer chains 

were formed in the solution, tangling up into RF nanoparticles (~ 100 nm in diameter). The 

resulting solution (hydrosol) was injected through a hydrophobic SPG membrane to form 

aqueous droplets of the hydrosol in cyclohexane or cyclooctane. The emulsion was then cured 

in a sealed vial at 298−353 °C until the RF nanoparticles (nanoclusters) were cross-linked 

together to form a 3D network across the solution, resulting in a hydrogel. The gel particles 

were then washed with tert-butanol to exchange internal water held in the pores with tert-

butanol in order to reduce shrinkage and cracking of the gel during drying. The organic gel 

particles were then dried under vacuum at room temperature or freeze dried and finally 

carbonized (pyrolyzed) in nitrogen at 1000°C to form porous carbon cryogel particles. Using 
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SPG membrane with a pore diameter ranging from 1 to 10 µm, it was possible to prepare 

carbon cryogel particles with a mean diameter between 1 and 12 µm (Yamamoto et al., 2008).  

Due to their high surface area, electrical conductivity, and chemical inertness, carbon aerogel 

particles are promising materials for catalytic applications (Moreno-Castilla and Maldonado-

Hódar, 2005) and hydrogen and electrical energy storage (Biener et al., 2011).  

 

Dragosavac et al. (2012b) prepared silica gel particles from sodium silicate by a DME-based 

sol-gel process in the Dispersion Cell. First, an acidified sodium silicate solution at pH 3.5 

was injected through a microengineered nickel membrane into kerosene in the presence of oil-

soluble surfactant. The resulting W/O emulsion was stirred at room temperature until the 

aqueous phase droplets turned into hydrogel particles by polycondensation of silicic acid. The 

hydrogel silica particles were washed with acetone, dried at room temperature and calcinated 

at 550°C to form porous silica gel particles with a surface area of 360−750 m2 g−1. It was 

possible to control the particle size over a wide range from 30 to 70 µm by the rate of stirring 

during ME. The particles were functionalised with 3-aminopropyltrimethoxysilane and used 

for chemisorption of copper (II) from aqueous solutions (Dragosavac et al., 2012c). 

 

7.9 Integration of membrane emulsification and complex coacervation 

 

Complex coacervation is a process during which two oppositely charged macromolecules 

react through associative electrostatic interactions to form a polymer-rich phase (coacervate) 

that is deposited around oil droplets forming a shell. Typical macromolecules used in the 

process are proteins derived from animal sources (gelatine, whey proteins, silk fibroin) and 

vegetables (soy and pea proteins), and polysaccharides such as gum arabic, pectin, chitosan, 

agar, alginate, carrageenan and sodium carboxymethyl cellulose (Xiao et al., 2014). Kage et al. 

(1997) encapsulated kerosene droplets by gelatine/acacia complex coacervation using SPG 

ME. Piacentini et al. (2013) prepared fish gelatine/gum arabic complex coacervates using the 

following steps (Figure 22): (i) Dispersion of oil in an aqueous solution of two mixed 

polymers (gelatine and gum arabic) using DME at a pH ≈ 5.4, which is above the isoelectric 

point (pI) of gelatine of 4.8; (ii) Complex coacervation as a result of electrostatic interactions 

between positively charged gelatine and anionic gum arabic caused by lowering the emulsion 

pH to 2.7−4.5; (iii) Shell formation due to deposition of the coacervates around the oil 

droplets; (iv) shell hardening triggered by the addition of a crosslinking agent (glytaradehyde). 
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The capsule size was varied over a wide range from 40 to 240 µm by controlling the shear 

stress on the membrane surface and the process was continuously operated using a pulsed 

cross flow ME system (Piacentini et al., 2013). The process can be used for encapsulation of 

flavours and essential oils in food, cosmetic, pharmaceutical and textile industries (Xiao et al., 

2014).  

 

7.10 Integration of membrane emulsification and interfacial layer-by-layer electrostatic 

deposition 

 

Multilayer oil-in-water (M-O/W) emulsions are O/W emulsions consisting of oil droplets 

coated with multiple layers of emulsifier and/or biopolymer molecules (McClements, 2015; 

McClements et al., 2007). The surface charge, permeability to different species, digestibility, 

responsiveness to external triggers, and wettability of interfacial layers can be controlled to 

create M-O/W emulsions suitable for encapsulation and controlled release of bioactives 

(McClements et al., 2007) and coating applications (Nazir et al. 2012). M-O/W emulsions 

exhibit improved stability against lipid oxidation and environmental stresses, such as pH and 

ionic strength, heat treatment and freeze-thawing treatment (Gudipati et al., 2010).  

 

M-O/W emulsions can be prepared by electrostatic LbL deposition of polyions onto the 

surface of oil droplets produced by ME. First, a “primary” emulsion is prepared containing oil 

droplets stabilised by charged emulsifier or biopolymer (Table 11). An oppositely charged 

polyelectrolyte is then added to the primary emulsion to form a “secondary” emulsion 

consisting of oil droplets coated by a two-layer interfacial membrane. This procedure can be 

repeated to form oil droplets coated by three or more interfacial layers. Gudipati et al. (2010) 

prepared a three-layer interfacial membrane around fish oil droplets consisting of negatively 

charged citric acid esters of mono- and diglycerides as a primary layer, cationic chitosan as a 

secondary layer, and anionic alginate as a tertiary layer (Figure 23a). The positively charged 

secondary emulsion (+56.3 mV) was more stable to transition metal-promoted lipid oxidation 

compared to negatively charged primary (−45.1 mV) and tertiary emulsions (−24.8 mV), 

which was attributed to electrostatic repulsion of positively charged transition metal ions from 

the droplet surface. However, lipid digestibility of M-O/W emulsions was progressively 

reduced as the number of coated layers increased (Gudipati et al., 2010). Nazir et al. (2012) 

prepared M-O/W emulsions suitable for applications in hair care products, consisted of silicon 

oil droplets coated with six interfacial layers. The multilayer coating was created by alternate 
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deposition of positively charged chitosan derivative (HTCC) and negatively charged alginate 

or positively charged quaternary ammonium compound (DDMAC) and glycerol.  

 

The process flexibility is significantly improved by the fact that the charge of primary 

droplets can be modified after emulsification using the surfactant displacement technique. If 

the primary droplets are stabilised by non-ionic surfactant, it is often useful to increase the 

droplet charge by displacing the original surfactant with another charged surfactant. For 

example, non-ionic Tween 20 surfactant was displaced by SDS in order to deposit positively 

charged chitosan chains onto negatively charged surface of modified droplets (Figure 23b).  

 

In order to deposit negatively charged biopolymer (alginate) onto the droplets, the primary 

emulsion must be prepared using a positively charged surfactant, which is a major problem in 

SPG ME, because cationic surfactants are deposited onto the negatively charged surface of 

SPG membrane. In order to overcome this problem, the primary emulsion can be prepared 

using an amphoteric surfactant at pH > pKi so that the surfactant will be negatively charged 

during SPG emulsification. After mixing the prepared emulsion with the anionic biopolymer, 

the pH of the emulsion is lowered to pH < pKi, which changes the net surfactant charge from 

negative to positive so that the biopolymer can be adsorbed to the droplet surfaces through 

electrostatic attraction. This strategy was used to prepare a primary emulsion stabilised by 

beta-lactoglobulin (BLG) at pH 7, which was above the isoelectric point of BLG of 5.2, so 

that the protein was negatively charged and did not interfere with SPG membrane. After the 

primary emulsion was mixed with an aqueous alginate solution, the pH was adjusted to 3.5 to 

change the protein charge and prompt alginate to adsorb on the droplet surfaces (Figure 23c).  

 

7.11 Integration of membrane emulsification and interfacial particle self-assembly 

 

A Pickering or Ramsden emulsion is an emulsion stabilised by colloidal particles adsorbed 

onto the interface between the two liquids (Chevalier and Bolzinger, 2013). The particles 

spontaneously adsorb on the interface, provided that the surface energy between the water and 

oil phase, owγ  exceeds the difference in interfacial tensions between the particle and the water 

phase, pwγ  and between the particle and the oil phase, poγ : popwow γγγ −> . ME is an 

attractive method for the preparation of particle-stabilized emulsions, due to low shear 

environment that prevents desorption of particles from the interface. In addition, shear applied 
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during emulsification process may have a significant impact on the organisation of particles at 

the interface and macroscopic properties and stability of Pickering emulsions (Destribats et 

al., 2013). For example, Pickering emulsions stabilised by soft microgel particles prepared 

under low shear stress environment exhibit a higher stability to flocculation than Pickering 

emulsions prepared under intense shearing. Pickering particles are significantly larger than 

surfactant molecules (100 nm to 20 µm compared to 0.4−5 nm), which leads to slower 

kinetics of adsorption at the interface and higher energy barriers to adsorption and thus, ME 

must be performed at low transmembrane flux to allow enough time for stabilisation of 

growing droplets prior to pinch-off. As long as the particle adsorption time is shorter than the 

droplet formation time it is possible to produce well controlled droplet sizes (Manga et al., 

2012). Yuan et al. (2010) prepared O/W Pickering emulsions composed of ethyl acetate 

solutions stabilised by silica nanoparticles (80 or 800 nm) using a rotating membrane reactor 

with stainless steel membrane and cross-flow ME with a tubular multi-channel ceramic 

membrane. The droplet size was controlled within the range of 1–10 µm in the cross-flow 

system and 150−500 µm in the rotating ME system. Sabouni and Gomaa (2015) prepared 

O/W Pickering emulsions stabilized by metal organic frameworks (MOFs) nanoparticles (200 

or 500 nm) using an oscillatory woven metal microscreen emulsification system.   

 

Colloidosomes are permeable shells composed of colloidal particles that can be fabricated by 

immobilising Pickering particles at the interface and removing the core liquid afterwards 

(Dinsmore et al., 2005). Thompson et al. (2011) prepared sunflower oil-in-water Pickering 

emulsions via stirred-cell membrane emulsification using poly(glycerol monomethacrylate)-

stabilized polystyrene latex particles. Colloidosomes were prepared by dissolving a polymer 

crosslinker (tolylene 2,4-diisocyanate-terminated poly(propylene glycol)) in the oil phase 

prior to injection through the membrane and cross-linking the latex particles from within the 

oil phase (Figure 24a). Sun et al. (2014) prepared Pickering O/W emulsions stabilised by 

poly(N-isopropylacrylamide-co-2-aminoethyl methacrylate hydrochloride) hydrogel particles 

via SPG membrane. The size of the emulsion droplets ranged from 10−50 μm and could be 

precisely controlled by the pore size of the membrane. The hydrogel particles were cross-

linked at the interface by dissolving a natural crosslinking reagent (Genipin) in the oil phase.  

 

Nan et al. (2014b) used premix SPG ME combined with polymer deposition method to 

prepare colloidosomes composed of alginate particles coated by chitosan (Figure 24b). The 
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first step was to dissolve 5 wt% PLGA into ethyl acetate and to inject this organic solution 

through SPG membrane into a suspension of chitosan-coated particles (230 nm). The resultant 

Pickering emulsion was transferred into large amount of water to remove solvent (ethyl 

acetate) and deposit PLGA onto the inner surface of the shell. The obtained colloidosomes 

were used for oral delivery of insulin and showed high drug encapsulation efficiency (up to 

97%). Holdich et al. (2012) used similar method to prepare floating colloidosomes with 

photocatalytic activity using a mixture of cocoa butter and hexane as a dispersed phase and 

TiO2 nanoparticles as Pickering particles.  

 

8. Conclusions 

 

Microporous membranes are increasingly used in lab-scale production of single and multiple 

emulsions including metal-in-oil, solid-in-oil-in-water, oil-in-oil, multilayer, and Pickering 

emulsions. These emulsions can be utilised as templates or precursors for fabrication of 

structured microparticles with a size ranging from tens of nanometres to several hundred 

microns. High encapsulation and loading efficiencies of encapsulated materials can be 

achieved due to mild hydrodynamic conditions.  

 

Droplets generated by membrane emulsification can be transformed into solid particles by 

implementing a variety of different chemical and physicochemical processes after 

emulsification step, such as polymerisation (suspension, mini-emulsion, interfacial, and in-

situ), ionotropic gelation, melt solidification, internal phase separation, layer-by-layer 

electrostatic deposition, particle self-assembly, complex coacervation, spray drying, sol-gel 

processing, pyrolysis, and molecular imprinting.  

 

The examples of particles fabricated from droplets produced by membrane emulsification are 

ultrasound contrast agent and barcode particles for bioimaging and sensing, nanoclusters and 

synthetic biodegradable polymeric particles for biomedical applications, superparamagnetic 

porous nanoshells for remote-controlled drug release, molecularly imprinted and 

hypercrosslinked polymeric particles for advanced separation and catalysis, carbon aerogel 

particles for hydrogen and energy storage, low-melting-point metal particles for 

microsoldering, microgels for cell encapsulation, and liquid crystal particles for digital 

particle tracking. Synthesised particles can have versatile morphology (solid and hollow, 

matrix and core/shell, spherical and non-spherical, porous and coherent, composite and 
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homogeneous) and can be loaded with hydrophilic and hydrophobic actives, quantum dots, 

nanoparticles, phase change materials and high molecular weight gases to achieve controlled 

or triggered release and impart special optical, chemical, electrical, acoustic, thermal and 

magnetic properties.  

 

The advantages of membrane emulsification routes for particle synthesis are in uniform 

particle size that can be controlled over a wide range, low shear environment during droplet 

generation, versatile methods of shear generation on the membrane surface and a wide range 

of membranes with various pore geometries, internal structure, and surface properties. Both 

direct (bottom-up) and premix (top-down) membrane emulsification methods were developed 

offering different production rates, droplet to pore size ratios and droplet size uniformities.  
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Table 1. Typical mixing ratios of raw materials in the production of SPG from Na2O–CaO–

Al2O3–B2O3–SiO2 mother glass (Nakashima, 2002). 

  

 wt%* 

Shirasu 51 

Limestone 23 

Boric acid 22 

Soda ash 4 

  
*MgO (≈5 wt%) and ZrO2 (≈3 wt%) can also be added.  

 

Table 2. Composition of primary glass*, SPG*, and porous Vycor glass and Pyrex glass 

(Nakashima et al., 1992; Nakashima, 2002).  

 
Primary glass 
for SPG, wt% 

SPG 
wt% 

Vycor glass 
wt% 

Pyrex glass 
wt% 

SiO2 49 69 94−99.5 81 

Al2O2 10 13 0−0.5 2 

CaO 17 2 - - 

B2O3 16 7 0.2−6.0 13 

Na2O 5 5 < 0.1 4 

K2O 2 4 - - 

Fe2O3 1 0.4 - - 
 

*Based on the proportions of raw materials given in Table 1.  
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Table 3. Properties of commercial isotropic (symmetric) SPG membrane (Vladisavljević et al., 

2005; Nakashima, 2002; Kukizaki, 2009b; Nakashima et al., 1992).  

Shape Tubes or flat discs 

Thickness, mδ   0.4−1 mm 

Compressive strength 200−280 MPa 

Mean pore diameter, pd  0.04−40 µm 

Porosity, ε 50−60 % 

True density 2000−2500 kg m−3 

Zeta potential at pH=3−10 and CNaCl= 1−100 mol m-3 −15−(−45) mV 

Pore tortuosity, ξ 1.25−1.4 

Number of pores per unit cross-sectional area, mAN /  109−1014 m−2 

Specific pore volume, mp mV /  0.5−0.6 dm3 kg−1 

Hydraulic resistance, mR  108−1012 m−1 
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Table 4. Microparticles fabricated by integration of DME and PME using SPG membrane and 
various secondary reactions/processes. 
 

Product  Example 
Secondary reaction/process 

after DME or PME 
Authors 

Ceramic particles Silica nano- or micro-
particles 

Polymerisation of silicic acids by 
interfacial or internal reaction Kandori et al. (1992) 

Liquid crystal 
particles  

Thermochromic liquid 
crystal particles 

Melt crystallization in O/W 
emulsion Segura et al. (2013) 

Carbon particles Carbon cryogel 
sol–gel polycondensation 
followed by freeze-drying and 
carbonization  

Yamamoto et al. 
(2010) 

Metal particles 

Solder metal 
microparticles 

Solidification of liquid metal in 
M/W or M/O emulsion Torigoe et al. (2011) 

Silver nanoparticles Reduction of silver ions in W/O 
microemulsions Kakazu et al. (2010) 

Solid lipid 
particles 

W/S microcarrier Melt crystallization in W/O/W 
emulsion 

Kukizaki and Goto 
(2007c) 

S/S microcarrier Melt crystallization in S/O/W 
emulsion Kukizaki (2009c) 

Coherent particles Melt crystallization in O/W 
emulsion 

D’oria et al. (2009); Li 
et al. (2011)  

Gel micro- and 
nano-particles 

Ca-alginate  Crosslinking of sodium alginate 
with Ca2+ in W/O emulsion  

Liu et al. (2003) ; You 
et al. (2001) ; 
Akamatsu et al. (2011) 

Chitosan  

Crosslinking of chitosan with 
glutaraldehyde in W/O emulsion 

Wang et al. (2005) ; 
Wei et al. (2010) ; Yue 
et al. (2011) ; 
Akamatsu et al. (2012) 

Crosslinking of chitosan with 
glutaraldehyde in O/W/O 
emulsion 

Wei et al. (2013) 

HTCC/GP Thermal gelation in W/O 
emulsion Wu et al. (2008) 

Alginate/chitosan 
Coalescence of Na-alginate 
droplets with Ca2+ droplets and 
particle coating with chitosan  

Zhang et al. (2011) 

Agarose  Helix-coil transition induced by 
cooling 

Zhou et al. (2007 ; 
2008 ; 2009) 

Protein 
microspheres Albumin  Heat or chemical denaturation of 

albumin in W/O emulsion 

El-Mahdy et al. 
(1998) ; Muramatsu 
and Kondo (1995); 
Muramatsu and 
Nakauchi (1998) 

Composite 
organic-inorganic 
particles 

Polymer particles with 
embedded TiO2/Fe3O4 
nanoparticles or quantum 
dots  

Solvent evaporation from oil 
phase in S/O/W emulsion 

Supsakulchai et al. 
(2002 ; 2002b) ; Omi 
et al. (2001) ; Wang et 
al. (2013) ; Yang et al. 
(2010) ; Zhou et al. 
(2012)  
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Polymeric particles 
coated with silica 
nanoparticles 

Solvent evaporation followed by 
electrostatic layer-by-layer 
deposition 

Ito et al. (2010) 

Coherent 
polymeric micro-
or nano-spheres 

PSt, P(St-co-DVB), P(St-
co-MMA), PUU-VP, etc. 

One-stage suspension 
polymerization in O/W emulsion 

Yuyama et al. (2000) ; 
Omi et al. (1994) ; 
Nuisin et al. (2000) ; 
Ma et al. (2003) ;  

PSt-PAM composite 
One-stage suspension 
polymerisation in W/O/W 
emulsion 

Ma et al. (2004) 

P(AAm-co-AA) and 
PNaAMPS hydrogel 

One-stage suspension 
polymerisation in W/O emulsion 

Nagashima et al. 
(1998); Hu et al. 
(2011) 

PMMA microspheres 
and large P(St-co-DVB) 
spheres 

Two-stage suspension 
polymerisation in O/W emulsion 

Omi et al. (1995; 
1997) 

PUU, PSt-PMMA,  Solvent evaporation from oil 
phase droplets in O/W emulsion  

Yuyama et al. 
(2000b) ; Ma et al. 
(1999 ; 1999b ; 1999c)  

Synthetic 
biodegradable 
polymer particles 

Coherent PLA and 
PLGA spheres 

Solvent evaporation from oil 
phase droplets in O/W emulsion 

Ito et. (2011); Yue et 
al. (2012); Kanakubo 
et al. (2010) 

PLA or PLGA capsules 
for hydrophilic actives, 
DFB loaded PLA 
capsules 

Solvent evaporation from oil 
phase in W/O/W emulsion 

Liu et al. (2005; 
2005b; Doan et al. 
(2011); Hou et al. 
(2009) 

mPEG-PLA capsules for 
hydrophilic actives 

Solvent extraction from oil phase 
in W/O/W emulsion 

Wei et al. (2008; 
2011) 

Core/shell and 
hollow particles 

P(St-co-DMAEMA), 
P(St-co-DVB), PDVB  

One-stage suspension 
polymerisation and internal 
phase separation in O/W 
emulsion 

Ma et al. (2001; 2002; 
2003b); Lee et al. 
(2010); Hao et al. 
(2009) 

Polymer-supported 
palladium catalyst 

One-stage suspension 
polymerisation, internal phase 
separation and ligand exchange 

Liu et al. (2010; 
2010b) 

P(St-co-DVB-co-MAA) 

Two-stage suspension 
polymerisation and internal 
phase separation in O/W 
emulsion 

Wang et al. (2012) 

ENB-P(M-co-U-co-F) 
core-shell capsules In situ polymerization Liu et al. (2011) 

Chitosan 
Crosslinking of chitosan shell 
onto alginate particles and core 
dissolution 

Akamatsu et al. (2010) 

Molecularly imprinted 
P(MMA-co-EGDMA) 
particles 

Molecular imprinting using CAP 
as a template molecule Kou et al. (2012) 

PGPR-PE2CA core/shell 
particles 

Solvent evaporation followed by 
interfacial polymerization  Lee et al. (2009) 
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Hollow porous silica 
nanocapsules loaded 
with Fe3O4 nanoparticles 

One-stage suspension 
polymerisation, followed by sol-
gel process and calcination 

Kong et al. (2010; 
2012; 2013) 

Thermo-
responsive 
capsules 

Porous PA shells with 
P(NIPAM) gates in the 
pores 

Interfacial polymerisation Chu et al. (2002; 
2003) 

P(NIPAM-co-AA) 
capsules 

Suspension polymerisation in 
W/O emulsion 

Si et al. (2011); Wang 
et al. (2013b) 

Janus particles 

PMMA/P(St-co-BIEM)-
g-PDMAEMA or 
PS/P(MMA-co-CMS)-b- 
PDMAEMA or 
PS/P(MMA-co-CMS)  

Solvent evaporation, followed by 
internal phase separation and 
atom transfer radical 
polymerisation 

Tanaka et al. (2010); 
Ahmad (2008) 

PMMA/P(St-co-BIEM) Solvent evaporation followed by 
internal phase separation 

Yamashita et al. 
(2012) 

Complex 
coacervate 
microcapsules 

gelatin/acacia 
microcapsules 

Complex coacervation in O/W 
emulsion Kage et al. (1997) 

cold water fish 
gelatine/gum Arabic 
microcapsules 

Complex coacervation in O/W 
emulsion Piacentini et al. (2013) 

Non-spherical 
particles 

hemispherical polymeric 
particles  

Cleavage of Janus particles by 
dispersion in acetone-water or 
THF-water solution 

Yamashita et al. 
(2012) 

“Mushroom-like” 
polymeric particles 

Selective polymerisation on one 
half of Janus particle Tanaka et al. (2010) 

3D nanoclusters 
Clusters containing 
silica-encapsulated 
magnetite nanoparticles 

Solvent pervaporation and 
coating of clusters with silica 

Chang and Hatton 
(2012) 
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Table 5. Gel microbeads fabricated by integration of membrane emulsification and physical 

gelation process (DP – dispersed phase, CP – continuous phase, XL – crosslinking agent).  

 
Process Product Emulsion formulation Authors 
A. Internal gelation 

DME, cross-flow 
nickel membrane, 
dp=2.9−5.2 µm  

Calcium alginate beads 
(dpart=44−146 µm) 

DP: 0.5−2% (w/v) sodium alginate and 25 
mM CaCO3 in 0.9 %(w/v) NaCl in water 
CP: 0.5−2% (v/v) Span 80 in paraffin oil 
XL: glacial acetic acid  

Liu et al. 
(2003) 

DME, stirred cell 
nickel 
microengineered 
membrane, dp = 
5−20 μm 

P(NIPAM)-coated alginate 
beads (dpart=55−650 µm) 

DP: 1.5 wt% sodium alginate + 0.5−5 wt% 
CaCO3 in water 
CP: 1% wt Span 80 in Miglyol 840 
XL: glacial acetic acid 

Hanga and 
Holdich 
(2014) 

B. External gelation 

DME, internal 
pressure SPG 
microkit dp=2.9 µm  

Calcium alginate beads (dpart 
=4 µm) loaded with lidocaine 
HCl, 4-acetamidophenol or 
sodium salicylate 

DP: 2 wt% sodium alginate + drug 
(drug:alginate = 0.1−1:1) in water 
CP: 6 vol% Span 80 in isooctane 
XL: aqueous CaCl2 solution 

You et al. 
(2001) 

DME using 
0.5−19.6 µm SPG 
membrane, external 
pressure microkit 

Chitosan beads (dpart =0.4−14 
µm) 

DP: 1−2 wt% chitosan + 1 wt% acetic acid + 
0.9 wt% NaCl in water 
CP: 4 wt% PO-500 in liquid 
paraffin/petroleum ether (7:5, v/v) 
XL: toluene saturated with glutaraldehyde 

Wang et al. 
(2005) 

DME using 
1.1−11.9 µm SPG 
membrane, internal 
pressure microkit 

Chitosan beads (dpart 
=0.75−9.5 µm) 

DP: 1 wt% chitosan + 2 wt% acetic acid in 
water 
CP: 1 wt% TGCR in kerosene 
XL: 25 wt% glutaraldehyde in water 

Akamatsu 
et al. 
(2010b) 

Repeated PME 
using 1.4−9.0 µm 
SPG membrane 

Chitosan beads (dpart 
=0.3−1.85 µm) 

DP: 0.3−1 wt% chitosan + 1 wt% acetic acid 
in water 
CP: 2−8 wt% PO-500 in liquid 
paraffin/petroleum ether (1:2, v/v) 
XL: Toluene saturated by glutaraldehyde 

Lv et al. 
(2009); Ma 
et al. 
(2010) 

DME, internal 
pressure SPG 
microkit dp=3 µm 

Hemoglobin-albumin spheres 
((dpart =3.9−4.9 µm) 

DP: 10% (w/v) bHb + 0−20% (w/v) in PBS 
CP: 1.0 wt% TGCR in kerosene 
XL: 25% (w/v) glutaraldehyde in water 

Lai et al. 
(2015) 

C. Cooling of emulsion to room temperature 

DME using 
4.7−19.6 µm SPG 
membrane, external 
pressure microkit 

Agarose beads (dpart =15−60 
µm) 

DP: 4 wt% agarose + 0.9 wt% NaCl in water 
CP: 1−6 wt% PO-500 in liquid 
paraffin/petroleum ether (7/5, v/v) 
Emulsification temperature: 55−70°C 

Zhou et al. 
(2007) 

DME using 
23.1−29.8 µm SPG 
membrane, stirred 
system with 1-12 
membrane tubes 

Agarose beads (dpart =83−190 
µm, minimum span =0.65) 

DP: 2−10 wt% agarose + 0.9 wt% NaCl in 
water 
CP: 4 wt% PO-500 in liquid 
paraffin/petroleum ether (7/5−12/0, v/v) 
Emulsification temperature: 65°C 

Zhao et al. 
(2014) 
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Repeated PME 
using 10.2 µm SPG 
external pressure 
microkit 

Agarose beads (dpart =5−6 
µm) 

DP: 2−14 wt% agarose + 0.9 wt% NaCl in 
water 
CP: 4 wt% PO-500 in liquid 
paraffin/petroleum ether (7/5, v/v) 
Emulsification temperature: 60°C 

Zhou et al. 
(2008) 

Repeated PME, 
external pressure 
SPG microkit, 
dp=5.7−19 µm or 
PE membrane, dp= 
11.8−25.6 µm  

Agarose beads (dpart =3−9 
µm) 

DP: 10 wt% agarose + 0.9 wt% NaCl in 
water 
CP: 4 wt% PO-500 in liquid 
paraffin/petroleum ether (7/5, v/v) 
Emulsification temperature: 60°C 

Zhou et al. 
(2009) 

D. Mixing two emulsions and droplet merging 

DME using 
1.1−11.9 µm SPG 
membrane, internal 
pressure microkit 

Hybrid chitosan/alginate 
beads (dpart =1−4.4 µm) 

DP1: 1 wt% chitosan + 1 wt% CaCl2 + 2 wt% 
acetic acid in water 
DP2: 2 wt% sodium alginate in water 
CP: 1 wt% TGCR in kerosene 

Akamatsu 
et al. 
(2010b) 

DME using 1.1−5.4 
µm SPG membrane, 
internal pressure 
microkit 

Chitosan beads (dpart 
=0.84−1.5 µm) 

DP1: 1 wt% chitosan + 2 wt% acetic acid in 
water 
DP2: 10 wt% sodium hydroxide in water 
CP: 1 wt% TGCR in kerosene 

Akamatsu 
et al. 
(2010b); 
Park et al. 
(2004) 

DME using 12 µm 
SPG membrane, 
internal pressure 
microkit 

Hollow chitosan beads (dpart 
=2.1−4.4 µm) with very thin 
shell 

DP1: alginate beads coated with chitosan gel 
in water 
DP2: 3 wt% TPP in water 
CP: 3 wt% Span 85 in hexane 

Akamatsu 
et al. 
(2010) 

PME using 1.4, 2.8, 
and 5.2 µm SPG 
membrane 

Alginate particles (dpart 
=300−400, 500−700, and 
1000−1300 nm, resp.) 

DP1: 1 wt% alginate in water 
DP2: 5 mol L−1 CaCl2 in water 
CP: 4 wt% PO-5S in liquid 
paraffin/petroleum ether (1/2, v/v) 

Nan et al. 
(2014) 

E. Thermal gelation 

DME using 
2.8−15.4 µm SPG 
membrane, external 
pressure microkit 

quaternized 
chitosan/glycerophosphate 
(HTCC/GP) beads (dpart 
=7−53 µm) 

DP: 3.5 wt% HTCC + 8wt% GP in 0.1 M 
lactic acid solution 
CP: 1−4 wt% PO-500 in liquid 
paraffin/petroleum ether (7/5, v/v) 

Wu et al. 
(2008) 

PME using 8 µm 
SPG membrane 

W/O/W emulsions with 
gelled inetrnal water droplets 
(dpart =10.5 µm after 5 passes) 

DP: W/O emulsion containing 15 wt% WPI 
in 5 mM phosphate buffer as the dispersed 
and 8% PGPR in corn oil as the oil phase 
CP: 0.5 wt% Tween 20 in 5 mM phosphate 
buffer 

Surh et al. 
(2007) 
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Table 6. Microparticles fabricated by membrane emulsification integrated with solidification 

of melted droplets (DP – dispersed phase, CP – continuous phase).  

 

Process Product Emulsion formulation Authors 

DME, cross-flow 
SPG, dp = 0.2−1 µm  

Gelucire 44/14 (Tm = 44 °C, 
d=50−130 nm) or Compritol 
888 (Tm = 69−74 °C, dpart = 
560−760 nm) particles  

DP: Gelucire 44/14 melt at 65 °C or 
Compritol 888 melt at 80 °C 
CP: 0.125 wt% Tween 20 or 1.26 wt% 
Pluronic F68 in water 
Method: O/W melt dispersion 

D’Oria et 
al. (2009) 

PME, external 
pressure SPG 
microkit, dp = 
5.4−14.8 µm  

Trimyristin particles (Tm= 
56−57°C, dpart =55−650 µm) 
with embedded solid 
nanoparticles 

DP: S/O dispersion at 60 °C (S: vitamin B12 
nanoparticles (d=132 nm), O: 5 wt% PGPR 
in trimyristin melt)  
CP: 1% wt Tween 40 in water 
Method: S/O/W melt dispersion 

Kukizaki 
(2009c) 

DME using 0.3−9.9 
µm SPG membrane 

Tripalmitin particles (Tm= 65 
°C, dpart =3.1–32.8 µm) with 
embedded water droplets 

DP: W/O emulsion at 70 °C (W: 1 wt% 
vitamin B12 + 0.22 % (w/v) NaCl in water, O: 
10 wt% TGCR in tripalmitin melt) 
CP: 1 wt% DGCS + 0.22 % (w/v) NaCl in 
water 
Method: W/O/W melt dispersion 

Kukizaki 
and Goto 
(2007c) 

PME, packed bed of 
glass beads, dbead = 
30−90 µm 

Glyceryl palmitostearate 
(Tm= 56 °C, dpart =1.5−2.1 
µm) particles 

DP: 7 wt% vitamin E in glyceryl 
palmitostearate melt at 65 °C 
CP: 2 wt% Tween 80 in water 
Method: O/W melt dispersion 

Laouini et 
al. (2014) 

DME, external 
pressure SPG 
microkit, dp=5.5 µm 

Termochromic liquid crystal 
particles (Tm= 45−47 °C, dpart 
=16 µm) 

DP: Termochromic liquid crystal melt at 
55°C 
CP: 5 % poloxamer 188 in water 

Segura et 
al. (2013) 

PME, external 
pressure SPG 
microkit, dp = 
5.5−20.2 µm  

Solder particles containing 
4.7% Bi, 22.6% Pb, 8.3% Sn, 
5.3% Cd, and 19.1% In (Tm= 
46.8 °C, dpart =4.8−11.5 µm) 

DP: Alloy melt at 55°C 
CP: 5 wt% TGCR in toluene 
Method: M/O melt dispersion 

Torigoe et 
al. (2011) 

PME, external 
pressure SPG 
microkit, dp =20.2 
µm 

Solder particles containing 
63% Sn and 37% Pb (Tm= 
183 °C, dpart =9.3 µm) 

DP: 63Sn/Pb melt at 200°C 
CP: 5 wt% TGCR in lubricating oil 
Method: M/O melt dispersion 

Torigoe et 
al. (2011) 
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Table 7. Microparticles fabricated by integration of membrane emulsification and solvent 

removal from O/W emulsion (dp – pore diameter, dpart – particle diameter).  

Process Product Emulsion formulation Authors 
A. Coherent particles from biodegradable synthetic polymers 

DME, Dispersion 
cell, metallic 
microengineered 
membrane, dp = 10 
µm 

PCL particles (dpart =15−32 
µm, span=0.51−0.6) 

DP: 8−30 % (w/v) PCL in DCM 
CP: 1 wt% PVA or 2 wt% SDS + 2 wt% 
Tween 80 in water saturated with DCM 

Imbrogno 
et al. 
(2014) 

PME, external 
pressure SPG 
microkit, dp = 0.5−2 
µm 

PLGA particles (dpart 
=0.15−0.30 µm, 
CV=15−30%) 

DP: 10−50 mg mL-1 PLGA in acetone 
CP: 1 wt% PVA 

Ito et al. 
(2011) 

Repeated (n=3) 
PME, external 
pressure SPG 
microkit, dp = 
5.9−19.9 µm  

RIF-loaded PLGA particles 
(dpart =0.64−5.51 µm) 

DP: 3−30 wt% PLGA + 1−3 wt% RIF in EA 
CP: 3% (w/v) PVA + 8.5 vol% EA in water, 
pH = 4 

Doan et al. 
(2011) 

DME, external 
pressure SPG 
microkit, dp = 
0.5−3.6 µm 

RIF-loaded PLGA particles 
(dpart =1.3−9 µm) 

DP: 100 mg mL-1 PLGA + 7.5 mg mL-1 RIF 
in DCM 
CP: 2% (w/v) PVA in water  

Ito and 
Makino 
(2004) 

Repeated (n=5) 
PME, SPG 
microkit, dp = 2.8 
µm  

PLA particles as vaccine 
adjuvants (dpart =820 nm) 

DP: 40 mg mL-1 PLA in DCM 
CP: 1.9 % (w/v) PVA in water 

Zhang et 
al. (2014) 

B. Liquid-core/polymer-shell capsules 
PME (n=1−15), 
glass fiber syringe 
membrane, dp =1 
µm 

DD core/PLLA shell capsules 
(dpart =0.35−5 µm) 

DP: 0.6 wt% PLLA + 9.1 wt% DD in DCM 
CP: 0.3% PVA + (30 wt% MeOH or 30 wt% 
EtOH or 25 wt% PrOH) in water 

Sawalha et 
al. (2008) 

DME, silicon 
nitride microsieve 
membrane, dp =5 
µm 

HD core/Eudragit shell 
capsules (dpart =15−34 µm) 

DP: 2−4 wt% Eudragit FS 30D + 2−15 wt% 
HD in DCM 
CP: 1% SDS in water at pH 5 

Wagdare et 
al. (2011) 

C. Janus particles 

DME, SPG 
membrane, dp = 3.9 
µm 

Janus PMMA/P(St-co-BIEM) 
particles (dpart =4−5 µm) 

DP: 3.8 wt% PMMA + 3.8 wt% /P(St-co-
BIEM) in toluene  
CP: 57.8 mM SDS in water 

Yamashita 
et al. 
(2008) 

DME, SPG 
membrane, dp = 3 
µm 

Janus PS/P(MMA-co-CMS) 
particles (dpart =3−4 µm) 

DP: 3.8 wt% PS + 3.8 wt% P(MMA-co-
CMS) in toluene 
CP: 5 g L-1 SDS in water 

Ahmad et 
al. (2008) 

D. Polymer-core/polymer-shell capsules 
DME, external 
pressure SPG 
microkit, dp = 1.9 
µm, ∆p = 20 kPa 

DOX-loaded PLGA-
core/PE2CA-shell particles 
(dpart =1.4−1.9 µm) 

DP: 0−5 wt% PLGA + 0−5 wt% E2CA + 
0.05 wt% DOX in DCM 
CP: 10 mg mL-1 SDS in water at pH 2.5 

Lee et al. 
(2009) 
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Table 8. Microparticles fabricated by integration of membrane emulsification and solvent 

removal from W1O/W2 or S/O/W emulsion (dp – pore diameter, dpart – particle diameter).  

Process Product Emulsion formulation Authors 
A. Ultrasound contrast agent (UCA) particles 

DME, cross flow 
SPG membrane, 
dp=1.1 µm  

PLA UCA particles (dpart 
=1.99−3.58 μm) 

W1: 2.5 wt% of ammonium bicarbonate in 
water 
O: 2.5 % (w/v) PLA + 1 % (w/v) Span 80 in 
DCM 
W2: 1% PVA (w/v) + 0.5% (w/v) SDS in 
water 

Hou et al. 
(2009) 

PME (n=1−5), SPG 
membrane, dp = 
5.2−7.2 µm 

PLLA, PLGA, PEG-b-PLLA, 
and PEG-b-PLGA UCA 
particles (dpart =2.0−5.2 μm) 

W1: water 
O: 5−12.5 % (w/v) PLLA or PLGA or PEG-
b-PLGA or PEG-b-PLLA in DCM 
W2: 0.1−1% PVA (w/w) in water 

Liu et al. 
(2014) 

B. Synthetic biodegradable polymeric particles loaded with hydrophilic actives 
Repeated (n=3) 
PME, external 
pressure SPG 
microkit, dp = 
5.9−19.9 µm 

PLGA particles loaded with 
RIF & RIF-HPβCD complex 
(dpart =2.08−8.43 µm) 

W1: 18 mg mL−1 RIF + 0.066 M HPβCD in 
50 mM borate buffer, pH 9 
O: 3−30 wt% PLGA + 2 wt% RIF in EA 
W2: 3% (w/v) PVA + 8.5 vol% EA, pH = 4 

Doan et al. 
(2011) 

Repeated (n=5) 
PME, dp = 0.8−30 
µm  

PLGA-lipid particles loaded 
with BSA (dpart =0.1−3 µm)  

W1: 60 mg mL−1 BSA in water 
O: 2% (w/v) lipid-PLGA mixture (0−100 
wt% lipid in mixture) in DCM 
W2: 0.1% (w/v) PVA 

Ma et al. 
(2014) 

Repeated PME 
(n=5), SPG 
membrane, dp = 0.8 
µm, ∆p = 2 MPa 

PLGA-lipid particles loaded 
with ovalbumin (dpart =215 
nm) 

W1: 100 mg mL−1 ovalbumin in water 
O: 2.0% (w/v) lipid/PLGA (1:3) mixture in 
Chl 
W2: 0.1% (w/v) PVA in water 

Ma et al. 
(2014b) 

Repeated PME 
(n=5), SPG 
membrane, dp = 0.8 
µm, ∆p = 2 MPa 

PLGA-lipid particles loaded 
with ovalbumin (dpart =558 
nm, PDI = 0.045) 

W1: 40 mg mL−1 ovalbumin in water 
O: 2.0 wt% HSPC/PLGA (1:2) mixture in 
DCM 
W2: 0.1% (w/v) PVA in water 

Ma et al. 
(2014c) 

PME, external 
pressure SPG 
microkit, dp = 5.2 
µm 

PELA particles loaded with 
HBsAg (dpart =1.1−1.4 µm) 

W1: 1.5 mg mL−1 HBsAg in water 
O: 50 mg mL−1 PELA (PLA–PEG–PLA or 
PLA–mPEG) in EA 
W2: 1% (w/v) PVA + 1% (w/v) NaCl in 
water 

Wei et al. 
(2008) 

DME, cross-flow 
microsieve 
membrane, dp= 20 
µm 

PLGA particles loaded with 
blue dextran (dpart =40−76 
µm) 
 

W1: 50 mg mL−1 blue dextran in water 
O: 10−30 wt% PLGA in DCM 
W2: 2−6% (w/v) PVA + 1.6 % DCM (+ 1 % 
NaCl) in water  

Kazazi-
Hyseni et 
al. (2014) 

PME, SPG 
membrane, dp= 50.2 
μm 

PLGA particles loaded with 
exenatide (dpart =22−23 µm) 

W1: 30 mg mL−1 exenatide in water 
O: 10% (w/v) PLGA in DCM 
W2: 2% (w/v) PVA + 0.5% (w/v) NaCl in 
water 

Qi et al. 
(2014) 

Repeated PME 
(n=8), SPG 
membrane, dp = 2.8 
µm 

PLGA particles loaded with 
ovalbumin (dpart =591 nm, 
PDI=0.17) 

W1: 100 mg mL−1 ovalbumin in water 
O: 50 mg mL−1 PLGA in ethyl acetate 
W2: 1.5% (w/v) PVA + 0.9% (w/v) NaCl in 
water 

Zhang et 
al. (2014b) 
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C. Nanoclusters  

DME, external 
pressure SPG 
microkit, dp = 
0.1−0.3 µm 

Nanoclusters of magnetite 
nanoparticles (dpart =50−350 
nm) 

DP: 3 wt% magnetite nanoparticles (∼10 nm) 
coated with oleic acid + 97 wt% hexane 
CP: 0.1 wt% SDS 

Chang and 
Hatton 
(2012) 

D. Composite polymeric particles prepared from W/O/W emulsion 

PME, SPG 
membrane 

P(St-co-HEMA) particles 
(dpart =10−80 µm) loaded 
with magnetite nanoparticles 

W1: 0.72−1.6 mol L-1 FeCl3·6H2O + 0.36−0.8 
mol L-1 FeCl2·4H2O in water 
O: 0.6 wt% P(St-co-HEMA) + 0.25 wt% 
Span 85 or 0.025−0.11 wt% PO 310 in DCM 
W2: 1% PVA (w/v) + 1% (w/v) Na2SO4 + 
0.2% (w/v) Tween 20 in water 

Yang et al. 
(2010) 

E. Composite polymeric particles prepared from S/O/W emulsion 

DME, external 
pressure SPG 
microkit, dp = 1−4.9 
µm 

PSMA particles (dpart =1−7 
µm) loaded with QDs  

DP: Hydrophobic QDs + 7.2 wt% PSMA in 
toluene 
CP: 0.5 wt% SDS in water 

Wang et al. 
(2013) 

DME, internal 
pressure SPG, dp = 
15 µm  

PS particles (dpart =24 µm) 
loaded with QDs 

DP: 1 mg mL-1 CdSe/ZnS QDs + 10 % (w/v) 
PS in DCM 
CP: 1 wt% SDS in water 

Han et al. 
(2015) 

DME, external 
pressure SPG 
microkit, dp = 
1.4−9.5 µm 

P(St-co-AA), P(St-co-BA) or 
SBR particles particles (dpart 
=6−75 µm) loaded with 
Fe3O4 nanoparticles 

DP: 12−17 wt% Fe3O4 nanoparticles + 3−10 
wt% P(St-co-AA) or 1.3 wt% SBR or 1.3−3 
wt% P(St-co-BA) in toluene  
CP: 1.6 wt% PVA + 0.1 wt% SDS in water 

Omi et al. 
(2001) 
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Table 9. Examples of polymeric particles prepared by integration of membrane emulsification 

and suspension polymerisation (dp – membrane pore diameter, dpart – particle diameter).  

Process Product Emulsion formulation Authors 
A. Permanently porous particles prepared using porogenic solvent 

DME, internal 
pressure SPG 
microkit, dp = 1.6 
µm, ∆p = 28 kPa 

Porous P(St-co-DVB) 
particles (dpart =4.2 µm, 
CV=18−19%) 

DP: 57−62 wt% DVB + 19−21 wt% St + 0.8 
wt% AIBN +16−23 wt% HD 
CP: 10 mg mL-1 PVP + 0.5 mg mL-1 SDS + 
0.5 mg mL-1 HQ in water 

Lee et al. 
(2010) 

DME, external 
pressure SPG 
microkit, dp = 1−10 
µm, ∆p = 6−80 kPa 

Porous P(St-co-DVB) 
particles (dpart =3.5−40 µm, 
CV=13−17%) 

DP: 2.6 wt% DVB + 47.4 wt% St + 49 wt% 
HP +1 wt% BPO 
CP: 2−5 mg mL-1 PVA + 0.1−0.5 mg mL-1 
SDS + 0.2−0.3 mg mL-1 Na2SO4 + 0.2−0.4 
mg mL-1 MB in water 

Zhu et al. 
(2011) 

B. Permanently porous particles prepared by molecular imprinting 

PME (n=5), 
external pressure 
SPG microkit, dp = 
1.4 µm, ∆p = 20 bar 

Imprinted Poly(MAA-co-
EGDMA) particles (dpart 
=0.3−0.8 µm) 

DP: CAP + MAA + EGDMA (1:2:20 molar 
ratio CAP:MAA:EGDMA) + AIBN + EA 
CP: 1.5 wt% PVA in water 

Kou et al. 
(2012) 

DME, Dispersion 
Cell, dp = 20 µm, 
span = 1−1.3 

Imprinted Poly(MMA-co-
EGDMA) particles (dpart =40 
µm) 

DP: 3 wt% BPA + MAA + EGDMA (4:6 
mass ratio MMA:EGDMA) + AIBN + n-
octane 
CP: 1 wt% PVA + 2 wt% NaCl in water 

Wolska et 
al. (2014) 

C. Liquid-core/polymer-shell particles prepared using porogenic solvent 

DME, external 
pressure SPG 
microkit, dp = 1.4 
µm 

HD-core/P(St-co-
DMAEMA)-shell capsules 
(dpart =5.5−7.4 µm, 
CV=8.2−10%) 

DP: 48−87 wt% St + 10−50 wt%HD + 2.2 
wt% DMAEMA + 0.5 wt% ADVN 
CP: 4.4 mg mL-1 + 0.4 mg mL-1 NaNO2 + 0.4 
mg mL-1 Na2SO4 + 0.3 mg mL-1 SDS in water 

Ma et al. 
(2003c) 

DME, external 
pressure SPG 
microkit, dp = 1.4 
µm 

HD-core/PSt-shell capsules 
(dpart =7−7.4 µm, 
CV=6.7−7.1%) 

DP: 50−65 wt% St + 35−50 wt%HD + 0.5 
wt% ADVN 
CP: 4.4 mg mL-1 + 0.4 mg mL-1 Na2SO4 + 0.3 
mg mL-1 SDS in water 

Ma et al. 
(2003c) 

D. Composite particles 

DME, cross-flow 
SPG, dp = 2 µm, ∆p 
= 8 kPa 

Polymer particles loaded with 
15 nm TiO2 nanoparticles 
(dpart ≈10 µm, CV=18%) 

DP: 0.94 wt% TiO2 + 0.75 wt% Solsperse® + 
92 wt% NPGDMA + 5.4 wt% HD + 0.94 
wt% BPO 
CP: 45 wt% PVA + 0.2 wt% SDS in water 

Takeda et 
al. (2009) 
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Table 10. Examples of liquid-core/polymer-shell particles fabricated by integration of 

membrane emulsification and polymerisation on the droplet surface (dp – membrane pore 

diameter, dpart – particle diameter).  

 
Process Product Emulsion formulation Authors 
A. Interfacial polycondensation 

DME, external 
pressure SPG 
microkit, dp = 2.5 
µm, ∆p = 20 bar 

Porous PA capsules with 
PNIPAM chains grafted in 
the pores (dpart =4 µm) 

DP: 1.5 M TDC in benzene/ xylene (2:1 v/v) 
CP: 17.3 mM SDS + 40. 6 mM PVA 

Chu et al. 
(2002) 

B. In situ polymerisation 

Dispersion Cell, 
ringed nickel 
membrane dp = 15 
µm, 1080 rpm  

Industrial precursor-core/FA-
MA shell capsules (dpart =57 
µm, CV=21%, span = 0.68) 

DP: Industrial precursor 
CP: 1.2 wt% FA + 1.2 wt% MA + 0.7 wt% 
PAM-AA-Na in water at pH = 4.3 

Pan et al. 
(2012) 

DME, internal 
pressure SPG 
microkit, dp = 10 
µm, ∆p = 2 kPa 

ENB-core/MUF-shell 
capsules (dpart =46 µm, span 
= 0.71) 

DP: ENB 
CP: 0.3 wt% SDS + 4.5 wt% PVA in water 

Liu et al. 
(2011) 
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Table 11. Preparation of multilayer O/W emulsions by ME and LbL electrostatic deposition. 

A primary emulsion containing droplets coated with ionic surfactant was prepared by ME and 

modified by sequential adsorption of oppositely charged biopolymers (dp – membrane pore 

diameter, ξn – zeta potential of n-layer emulsion droplets; for primary emulsion n = 1).  

 
Process Product Primary emulsion Authors 

PME (n=1−4), SPG 
high-speed kit, dp = 
10 µm, 
∆p=150−200 kPa 

Two-layer sunflower O/W 
emulsion stabilised by WPI-
CMC or WPI-(WPI-CMC) 
 ξ2 = −23 or −28 mV, resp. 

DP: sunflower oil 
CP: 1 wt% WPI in 0.01 M acetic acid at 
pH = 3.8  
φ1=0.2, ξ1 = +54 mV 

Berendsen et 
al. (2014) 

PME, external 
pressure SPG 
microkit, dp = 4 µm 

Two-layer corn O/W 
emulsion (d3,2 = 6.6 µm) 
stabilised by BLG-alginate 
ξ2 = −38 mV 

DP: corn oil 
CP: 5 wt% BLG in 5 mM phosphate 
buffer at pH = 7.0  
φ1=0.2, ξ1 = −32 mV 

Li and 
McClements 
(2014) 

PME, external 
pressure SPG 
microkit, dp = 3 µm 

Two-layer fish O/W 
emulsion (d = 12.9 µm) 
stabilised by SDS-SBCS 
ξ2 = +(60−90) mV 

DP: fish oil 
CP: 0.25% (w/v) SDS at pH = 6 
φ1=0.09, ξ1 = −101 mV 

Chatterjee and 
Judeh (2015) 

PME (n=5), 
external pressure 
SPG microkit, dp = 
8 µm, ∆p = 100 kPa 

Three-layer corn O/W 
emulsion stabilised by Tween 
20-SDS-chitosan 
ξ3 = +43 mV 

DP: corn oil 
CP: 0.5 wt% Tween 20 + 100 mM acetic 
acid + 10 mM NaCl (pH = 3.0) 
φ1=0.2, ξ1 = −12 mV 

Vladisavljević 
and 
McClements 
(2010) 

PME, external 
pressure SPG 
microkit, dp = 8 µm 

Three-layer fish O/W 
emulsion (d4,3 = 5.3−5.7 µm) 
stabilised by Citrem-
chitosan-alginate 
ξ3 = −25 mV 

DP: fish oil 
CP: 0.5 wt% Citrem in 100 mM acetate 
buffer at pH = 3.5 
φ1=0.05, ξ1 = −45 mV 

Gudipati et al. 
(2010) 

DME, SPG 
microkit, dp = 5.3 
µm 

Six-layer silicone O/W 
emulsion (d=15.5 µm) 
stabilised by 3 successive 
HTCC-alginate or DDMAC-
glycerol layers 
ξ6 = −42 or −30 mV, resp 

DP: silicone oil 
CP: 1.5 wt% Brij-35 + 0.5 wt% Triton X-
405 in deionized water 
φ1=0.16, ξ1 = −33 mV 

Nazir et al. 
(2012) 
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Abbrevations and trade names 
 

Chemicals and materials: AA, acrylic acid; AB, antibody; AIBN, 2,2-azobisisobutyronitrile; 

ADVN, N,N’-azobis(2,4-dimethylvaleronitrile); APTES, (3-aminopropyl)-triethoxysilane); 

APTMS, (3-aminopropyl)-trimethoxysilane; bHb bovine hemoglobin; BSA, bovine serum 

albumin; HAPI, Hydrophilic active principle ingredient; API, active principle ingredient; 

BLG, β-lactoglobulin; Bz: benzene; BPA, bisphenol A; BPO, benzoyl peroxide; Brij-35, 

polyoxyethylene (10) lauryl ether; DMAEMA, dimethylaminoethyl methacrylate; CAP, 

chloramphenicol; Chl, cholesterol; CMC, carboxymethyl cellulose; Citrem (DuPont), citric 

acid esters of monoglycerides; CMS, chloromethylstyrene; CTAB, cetyltrimethyl-ammonium 

bromide; DCM, dichloromethane; DD, dodecane; DDMAC, diallyl dimethyl ammonium 

chloride; DFB, decafluorobutane; DGCS, decaglycerin condensed stearic acid ester; DOX, 

doxorubicin, DVB, divinylbenzene; E2CA, ethyl 2-cyanoacrylate; EA, ethyl acetate; EDA, 

ethylenediamine; EDC, ethyl(dimethylaminopropyl) carbodiimide; EGDMA, ethylene glycol 

dimethacrylate; 2-EHA, 2-ethylhexyl acrylate; ENB, 5-ethylidene-2-norbornene; EtOH, 

ethanol; Eudragit FS 30D, poly(methyl acrylate-co-methyl methacrylate-co-methacrylic acid); 

formaldehyde, FA; GP, α-β- glycerophosphate; HAI, hydrophilic active ingredient; HBsAg, 

hepatitis B surface antigen; HD, hexadecane; HP, n-heptane; HPβCD, (2-hydroxypropyl-β-

cyclodextrin; HQ, hydroquinone; HSPC, hydrogenated phosphatidylcholine; HTCC, N-[(2-

hydroxy-3-trimethylammonium) propyl] chitosan chloride; MA, melamine; MAA, 

methacrylic acid; MB, methylene blue; methacrylic acid; MeOH, methanol; MA-FA, 

melamine-formaldehyde; MUF, melamine-urea-formaldehyde; MMA, methyl methacrylate; 

mPEG, poly(monomethoxypoly ethylene glycol); NHS, N-Hydroxysuccinimide; NIPAM, N-

isopropylacrylamide; NPGDMA, neopentyl glycol dimethacrylate; PA, polyamide; PAA, 

poly(acrylic acid); PAH, poly(allylamine hydrochloride); PAM, polyacrylamide; PO-5S, 

hexaglycerol penta oleate; PAM-AA-Na, poly(acrylamide-co-sodium acrylate); PAH, 

poly(allylamine hydrochloride); ODS, octadecyldimethylchlorosilane; PBS, phosphate-

buffered saline; PCL, polycaprolactone; PDM, poly(2-dimethylaminoethyl methacrylate); 

PDVB, polydivinylbenzene; PE2CA, poly(ethyl 2-cyanoacrylate); PEG, poly(ethylene 

glycol); PGPR, polyglycerol polyricinoleate; PLA, polylactic acid or polylactide; PLGA, 

poly(lactic-co-glycolic acid); PLHMGA, poly(lactic-co-hydroxymethyl glycolic acid); PLLA, 

poly(L-lactic acid); P(M-co-U-co-F), PMMA, poly(methyl methacrylate); PNIPAM, poly(N-

isopropylacrylamide); PNaAMPS, poly(sodium 2-(acrylamido)-2-methylpropanesulfonate); 
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PO 310, tetraglycerol pentaoleate; PP, polypropylene; PPC, poly(propylene carbonate); PrOH, 

2-propanol; PS, polystyrene; P(St-co-BIEM), poly(styrene-2-(2-bromoisobutyryloxy)ethyl 

methacrylate; P(St-co-HEMA), poly(styrene-co-2-hydroxyethyl methacrylate); PSMA, 

poly(styrene-co-maleic anhydride); PUU, polyurethaneurea; PVA, polyvinylalcohol; PVP, 

Poly(vinyl pyrrolidone); QD, quantum dot; RF, resorcinol-formaldehyde; RIF, rifampicin; 

Solsperse®, dispersant (Lubrizol); SA, stearic acid; SBCS, N-stearoyl O-butylglyceryl 

chitosan; SDS, sodium dodecyl sulfate; Span 80, sorbitan monooleate; Span 85, Sorbitane 

trioleate; SPG, Shirasu porous glass; St, styrene; SU-8, negative photoresist from Shell 

Chemical; TEOS, tetraethylorthosilicate; TDC, terephthaloyl dichloride; TGCR, tetraglycerol 

condensed ricinoleate; THF, tetrahydrofuran; TMS, trimethylchlorosilane; TPP, 

tripolyphosphate; Triton X-405, octylphenol ethoxylate; Tween 20, polyoxyethylene (20) 

sorbitan monolaurate; Tween 80, Polyoxyethylene (20) sorbitan monooleate; UCA, 

ultrasound contrast agent; VP, vinyl polymer; WPH, whey protein hydrolysate; WPI, whey 

protein isolate.  

 

Emulsions/dispersions: M/O, metal-in-oil; M-O/W, multilayer oil-in-water, M/W, metal-in-

water; O/O, oil-in-oil; O/W, oil-in-water; O/W/O, oil-in-water-in-oil; S/O, solid-in-oil; S/O/W, 

solid-in-oil-in-water; S/S, solid-in-solid; W/O, water-in-oil, W/O/W, water-in-oil-in-water. 

 

Other: ATRP, atom transfer radical polymerisation; CFD, computational fluid dynamics; 

DME, direct membrane emulsification; DRIE, deep reactive ion etching; ISP, in situ 

polymerisation; LIGA, Ger. LIthographie, Galvanoformung, Abformung (lithography, 

electroplating, and moulding), MESP, membrane emulsification-suspension polymerisation; 

PECVD, plasma-enhanced chemical vapor deposition; PME, premix membrane 

emulsification; RIE, reactive ion etching; UCST, upper critical solution temperature. 

         

Symbols 

mA   Cross-sectional area of membrane  

a  Ratio of mean droplet size in pre-mix to mean pore size 

Ca  Capillary number 

phD ,   Hydraulic pore diameter  

dd   Droplet diameter 

pd   Mean pore diameter 
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partd   Particle diameter 

aE   Activation energy for spinodal decomposition 

caF   Capillary force 

dF   Drag force 

J  Transmembrane flux 

K  Proportionality constant in Eq. (1) 

'K , '1K  Proportionality constant between pore diameter and droplet diameter 

"K   Proportionality constant in Eq. (10) 

mm    Mass of dry membrane 

N  Total number of pores in membrane 

n  Exponent in Eq. (10) 

Q  Volume flow rate  

P  Pressure 

capP   Capillary pressure 

R   Universal gas constant (8314 kJ kmol-1 K-1)  

mR   Hydraulic resistance of membrane 

S  Spreading coefficient 

pr   Pore radius 

T  Temperature 

Tm  Melting point 

1T   Initial temperature of mother glass 

2T   Temperature of glass phase separation  

gT   Glass transition temperature 

t  Time 

U  Velocity 

cV   Continuous phase volume 

pV   Total pore volume in membrane 

x  Mass fraction 

ijγ   Interfacial tension between phase i and phase j 

mδ   Membrane thickness 
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ε  Membrane porosity 

partε   Particle porosity 

φ   Volume fraction 

η   Viscosity  

r  Density 

ξ   Pore tortuosity  

θ  Contact angle 

wτ   Shear stress on surface 

 

Subscripts 

c  Continuous phase 

cr  Critical 

d  Dispersed phase 

e  Emulsion 

i  Acid insoluble phase 

o  Oil phase 

aq  Aqueous phase 

p  Pore 

pol  Polymer 

s  Acid soluble phase 

1  Polymer 1 rich phase or porogen rich phase 

2  Polymer 2 rich phase or polymer rich phase 

3  Aqueous phase 
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 Figure captions 

 

Figure 1. Schematic diagram of two principal membrane emulsification processes.  

 

Figure 2. Spinodal decomposition of glass induced by cooling mother glass from an initial 

temperature 1T  to temperature 2T  lying in the spinodal region (within the spinodal line). To 

prevent phase separation via nucleation, a transition from the stable to the spinodal region of 

the phase diagram must proceed quickly or through the upper critical solution temperature 

(UCST).   

 

Figure 3. Chemical modification of SPG surface by treatment with organosilane compounds: 

(a) Hydrophobic treatment with monochlorosilanes (Kai et al., 2006); (b) Introduction of 

amino groups by amino trialkoxysilanes to render the surface positively charged. 

 

Figure 4. A diagram of a typical experimental set-up for cross flow DME using tubular SPG 

membrane. During start-up, valve 1 must be open to remove any trapped air from the module 

(Nakashima et al., 1994).  

 

Figure 5. Commercial membrane emulsification micro kits available by SPG Techology Co., 

Ltd (Sadowara, Japan): (a) External-pressure type for DME; (b) External-pressure type for 

PME; (c) Internal-pressure type for DME. The effective length of membrane tube is 10−15 

mm.  

 

Figure 6. Contact angles through water phase and phase pressures encountered in membrane 

emulsification: (a) Production of O/W emulsion (θ < 90°, wo PP > ); (b) Production of W/O 

emulsion (θ > 90°, wo PP < ). The contact angle θ is the angle measured through the water 

phase, where a water/oil interface meets a membrane surface ( mwγ = interfacial tension 

between membrane wall and water phase, moγ = interfacial tension between membrane wall 

and oil phase, woγ = interfacial tension between water and oil phase). 

      

Figure 7. Mean droplet size, dd  in DME (dashed lines) and PME (solid lines) versus mean 

pore size, pd  and transmembrane flux, J: (1) dd  vs. J  in shear-controlled DME; (2) dd  vs. 
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J  in interfacial-tension driven DME; (3) dd  vs. pd  in interfacial-tension driven DME under 

dripping regime; (4) dd  vs. J  in PME, 5) dd  vs. pd  in PME.   

 

Figure 8. The main strategies used to crosslink droplets produced by ME in order to form 

solid or hollow gel microbeads. 

 

Figure 9. Production of W/O/W emulsions containing biopolymer-gelled water droplets by 

high-pressure homogenisation, thermal gelation within the inner aqueous phase and PME 

(Surh et al., 2007). 

 

Figure 10. Production of solid lipid carrier by integration of PME at mTT >  and crystalisation 

of oil phase in the obtained O/W emulsion at mTT < . 

 

Figure 11. Production of water-in-solid lipid (W/S) carrier by integration of two-stage DME 

at mTT >  and crystalisation of oil phase in the obtained W/O/W emulsion at mTT < . 

 

Figure 12. Production of solid-in-solid lipid (S/S) carrier by PME at mTT >  and crystalisation 

of oil phase in the obtained S/O/W emulsion at mTT < . 

 

Figure 13. Production of particles by membrane emulsification-solvent removal from O/W 

emulsion.  

 

Figure 14. Production of particles by membrane emulsification-solvent evaporation from 

W1/O/W2 or S/O/W emulsion.  

 

Figure 15. Preparation of porous polymer particles by solvent displacement induced phase 

separation (Pacentini et al., 2013c). 

 

Figure 16. Preparation of permenantly porous polymer particles by membrane emulsification 

and subsequent processing: (a) Phase separation using a liquid solvent (porogen); (b) Post-

polymerisation cross-linking (Zhou et al., 2011).  
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Figure 17. Preparation of molecularly imprinted polymer particles by membrane 

emulsification (Kou et al., 2012).  

 

Figure 18. Preparation of liquid-core-polymer-shell particles by membrane emulsification - 

suspension polymerisation.  

 

Figure 19. Preparation of liquid-core-polymer-shell particles by membrane emulsification 

followed by emulsification on the surface of the droplets: (a) interfacial polycondensation (IP) 

(Chu et al., 2002) and (b) in-situ polymerisation (ISP) (Pan et al., 2012).  

 

Figure 20. Preparation of porous silica nanoshells loaded with magnetite nanoparticles and 

hydrophobic drug by membrane emulsification, miniemulsion polymerisation and sol-gel 

processing (Kong et al., 2013). 

 

Figure 21. Preparation of carbon cryogel particles by sol-gel polycondensation of resorcinol 

with formaldehyde, combined with DME, freeze drying and pyrolysis (Yamamoto et al., 

2010).  

 

Figure 22. Preparation of complex coacervates by membrane emulsification (Piacentini et al. 

2013).  

 

Figure 23. Preparation of multilayer oil-in-water (M-O/W) emulsions by membrane 

emulsification: (a) Citrem-chitosan-alginate three-layer emulsion prepared by PME and LbL 

electrostatic deposition (Gudipati et al., 2010); (b) Tween 20-SDS-chitosan two-layer 

emulsion with cationic droplets prepared by PME, surfactant displacement and LbL 

electrostatic deposition (Vladisavljević and McClements, 2010); (c) BLG-alginate two-layer 

emulsion with anionic droplets prepared by PME and LbL electrostatic deposition with step-

wise change in pH after mixing BLG-stabilized emulsion with alginate (Li and McClements, 

2014).   

 

Figure 24. Preparation of colloidosomes by membrane emulsification and subsequent 

processing: (a) Covalent cross-linking (Sun et al., 2014); (b) Internal polymer deposition (Nan 

et al., 2014b).   
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(a) Direct membrane emulsification (DME) (b) Premix membrane emulsification (PME)

Pure dispersed phase Pre-mix
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(a) Internal gelation (b) External gelation

Ca2+

Ca2+

Ca2+

Ca2+
Ca2+

Ca2+

Ca2+

Ca2+

Ca2+

Ca2+

Ca2+
Ca2+

Ca2+

Ca2+

Ca2+ Ca2+= CaCO3 or Ca-EDTA

pH>6.5 pH<6.5

Ca2+

Ca2+

Ca2+

Ca2+
Ca2+

Ca2+

H+

Ca2+

Ca2+ Ca2+

Ca2+

Ca2+
Ca2+

Ca2+

Ca2+ Ca2+

Ca2+

Ca2+
Ca2+

1

2

TPP3- TPP3-
Chitosan

Chitosan shell

Ca-
alginate

(e) Simultaneous core dissolution and shell crosslinking

cooling

(c) Emulsion cooling (d) Droplet coalescence

Ca2+
Ca-

alginate

Agarose 
droplet

Droplet
merging

TPP3- TPP3-



 98 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 
 
 
 
 

PME
Coarse W/O/W 

emulsion

W/O emulsion

W/O/W emulsion
with gelled inner droplets

80°C

W/O
emulsion

W/O
emulsion
with gelled 
droplets

oil

heating

Multiple 
emulsion 
with gelled
inner phase

water 
+WPI

W/O emulsion with 
gelled droplets

stirring

External 
water phase

PME

WPI +water

High-pressure 
homogeniser

Oil phase

heating



 99 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 10  

O/W premix
T > Tm

Aqueous 
phase

Stirring

LAI+ melted 
lipid phase

solid 
lipid

Cooling

O/W carrier

T < Tm

LAI








Filtration

PME

O/W emulsion



 100 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
 
 
 

Figure 11 

W/O emulsion

T > Tm

DME 2

Outer
water phase

HAI + 
water

DME 1

melted 
lipid phase

solid 
lipid

Cooling

Filtration

W/S carrier

W/O/W emulsion

T < Tm

HAI












Melted
lipid



 101 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 12 
 

W/O emulsion

T > Tm

Stirring

Outer
aqueous phase

HAI+water

Ultra Turrax

Melted lipid +PGPR

PME

S/S carrier

S/O/W premix

Cooling

Evaporation

S/O dispersion

S/O/W emulsion

T < Tm
Filtration

Drying

















HAI

solid 
lipid



 102 

 
Figure 13 

polymer
+

solvent

(a) Coherent particle

solvent
removal

polymer

polymer 
+
oil
+ 

solvent

polymer-
rich phase

polymer

oil

(b) Liquid-core/polymer-shell particle

DME or
PME

DME or
PME

polymer-
poor phase

(c) Janus and non-spherical particles

polymer 1
+

polymer 2
+ 

solvent

DME or
PME

polymer 1

polymer 2
polymer 3

stress

polymer
enriched
in solvent

solvent

solvent
solvent

+
+

+ +

+

++

+
+

PLGA
PLGA 

+ 
solvent

solvent

PLGA
PAH +

+

+
PLGA

silica 
NPs

(d) Composite polymer-inorganic core/shell particle

DME

solvent
removal

complete
solvent
removal

(e) Composite polymer-polymer core/shell particle

DME

PLGA
+

monomer
+ 

solvent

PLGA
-rich
phase

Interfacial
polymerisation

polymer

solvent
removal

PLGA

polymer-rich
phase

PMMA
PSt-co-
BIEM



 103 

 
 
 
 
 
 
 
 

Figure 14 

(a) Ultrasound contrast agent (UCA) particle 

coating

polymer
+solvent

water +
porogen

(d) Silica-coated nanoparticle (NP) cluster

solvent
removal TEOS

SiO2

NH4OH

(b) Magnetite polymer particle prepared by in-situ magnetization

NP

co-
precipitation

FeCl2 +FeCl3

polymer
matrix

Fe3O4

solvent
removal

polymer

air

coated
layer

freeze-
drying

polymer 
+ solvent

solvent

polymer

OH-

NH4OH
addition

OH-
OH-

OH-

OH- OH-

Si OR   → Si OH + ROH 

TEOS hydrolysis

Si OR  + Si OR   → Si O 

HOH 

Si
-HOH 

Condensation

PAH

Evaporation
of DCM

QD
polymer 
+ solvent

PAA AB

(c) Quantum-dot (QD) embedded barcode particle

OH-

gas

gas 
loading

Evaporation
of DCM

SDS



 104 

 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

 
Figure 15  

O/O emulsion

Solvent+
polymer

DME

Antisolvent
oil phase

Antisolvent
removal

Porous polymer 
particle









Phase 
separation

antisolvent

anti-
solvent

polymer

pore

solvent 
+ 

polymer





Phase-separated 
particles



 105 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

Figure 16 
 

polymer-
isation

phase
separation

porogen
removal

polymer polymer-
rich phase

porogen-
rich phase

pore

DME

(a) Phase separation

monomer
+ porogen + 
crosslinker

(b) Hypercrosslinking

chloro-
methylation

CH3OCH2Cl

CH3-O-CH2Cl

ZnCl2

alkylation

Cl Cl Cl Cl

ClCH2-CH2Cl

FeCl3



 106 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17 
 

polymer-
isation

phase
separation

template/
porogen
removal

pore

PME

template cavitymonomer
+porogen+
crosslinker

self-
assembly

+ polymer-
isation

template
removal

template
Polymer matrixmonomer

cavity



 107 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18 
 

(a) One-stage suspension polymerisation

polymer-
isation

phase
separation

porogen
removal

polymer polymer-
rich phase

porogen-
rich phase

void

DME

(b) Two-stage suspension polymerisation

monomer
+ porogen + 
crosslinker

DME

High shear
homogeniser swelling

hydrophilic 
monomers

swollen 
droplet

hydrophobic 
monomer + 

porogen

polymer-
isation

phase
separation

polymer-
rich phase

porogen-
rich phase



 108 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19 
 

(a) Interfacial polycondensation (IP) and graft polymerisation (GP) 

DME
IPTDC

+
solvent

EDA PA

solvent

freeze
drying GP

drug 
loading

T=40°CT=25°C

gates 
closing

T=40°C

T=25°C

(b) In situ polymerisation (ISP) 

DME
Oil-based 
industrial
precursor

FA MA

T=65°C

FA-MA

ISP



 109 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20 
 
 

DME

Ultrasound
homogeniser

Styrene (M) + 
co-stabiliser

(a) Mini-emulsion polymerisation

heating
Fe3O4

822 OSK

−
•

−
• →+  4 4 SOMSOnM n

      

OHNH 4

 

   

  
        



 110 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 21 

 
 

curing solvent
exchange

freeze 
drying

RF 
nanoparticle

DME

tert-butanol

pyrolysis

RF
cryogel

carbon
cryogel

RF
hydrogel

carbon 
nanoparticlewater

RF
hydrosol

RF
organogel



 111 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 22 
 

DME
pH<pI

oil oil oil

coacervate
deposition

cross-
linking











complex 
formationpH<pI

pH>pI

+

polyamphoteric
(protein) polyanion

(polysaccharide)

oil



 112 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 23 
 

+ +
+

+
+

-

REPEATED
PME

Citrem-
stabilized
droplet

primary
emulsion

+

++
+

+
+

+

+ +
+
+
+

++ + +

+
++

add 
chitosan

add 
alginate

- -
--

-
- -

-

-

-
-

-

-
--

-
-

-
-
-

- -
-

-

--

--
-

-

-
-
-

-
--

-

-
-

-

(a) Three-layer emulsion

secondary
emulsion

tertiary
emulsion

REPEATED
PME

add SDS 
and dilute

-
-

-

add 
chitosan

+

++
+

- -
--

-
- -

-

-

-
-

-

-
--

-
-

anionic
droplet

+
+
+
+

++
++ + +

+
+

+
+++

cationic
droplet

Tween
stabilized
droplet

primary
emulsion

secondary
emulsion tertiary

emulsion

(b) Two-layer emulsion prepared by surfactant displacement

BLG-
stabilized 
droplet
- -

--
-

- -
-

-

-
-

-

-
--

-
-

-
-
-

- -
-

(c) Two-layer emulsion prepared by two-step mixing 

-

--
-

add 
alginate

- -
--

-
- -

-

-

-
-

-

-
--

-
-

-
-
-

- -
-

--

---
- lower

pH

-
-
-
-
- - - - - -

-
-

-
---

++
+

+
+

+
+

+ +

+ +
+

+

+

+

+

+

--

--

electrostatic 
attraction



 113 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24 

particle 
adsorption

oil+crosslinker

covalent
cross-
linking

ethanol
washing

(a) Colloidosomes prepared by DME and internal cross-linking of Pickering particles

(b) Colloidosomes prepared by PME and polymer deposition onto Pickering particles

particle 
adsorption

dilution
with water washing

PLGA

solvent solvent


	(11)
	(12)
	Li, N. and Sakaki, K. (2008) ‘Performance of an emulsion enzyme membrane reactor combined with premix membrane emulsification for lipase-catalyzed resolution of enantiomers’, J. Membr. Sci., 314: 183(192.
	Li, Y., Fessi, H. and Charcosset, C. (2011) ‘Preparation of indomethacin-loaded lipid particles by membrane emulsification’, Adv. Sci. Lett., 4: 591−595.
	Li, Y. and McClements, D.J. (2014) ‘Modulating lipid droplet intestinal lipolysis by electrostatic complexation with anionic polysaccharides: Influence of cosurfactants’, Food Hydrocolloids, 35: 367(374.
	Liu, X.D., Bao, D.C., Xue, W.M., Xiong, Y., Yu, W.T., Yu, X.J., Ma, X.J. and Yuan, Q. (2003) ‘Preparation of uniform calcium alginate gel beads by membrane emulsification coupled with internal gelation’, J. Appl. Polym. Sci., 87: 848−852.
	Liu, R., Ma, G.H., Meng, F.T. and Su, Z.G. (2005) ‘Preparation of uniform-sized PLA microcapsules by combining Shirasu Porous Glass membrane emulsification technique and multiple emulsion-solvent evaporation method’, J. Controlled Release, 103: 31−43.
	Liu, R., Ma, G.H., Wan, Y.H. and Su, Z.G. (2005b) ‘Influence of process parameters on the size distribution of PLA microcapsules prepared by combining membrane emulsification technique and double emulsion-solvent evaporation method’, Colloids Surf., B...
	Liu, R., Huang, S.S., Wan, Y.H., Ma, G.H. and Su, Z.G. (2006) ‘Preparation of insulin-loaded PLA/PLGA microcapsules by a novel membrane emulsification method and its release in vitro’, Colloids Surf., B, 51: 30(38.
	Liu, Y., Feng, X.J., Bao, D.C., Li, K.X. and Bao, M. (2010) ‘Preparation of microcapsule-supported palladium catalyst using SPG (Shirasu Porous Glass) emulsiﬁcation technique’, Chin. Chem. Lett., 21: 979–982.
	Liu, Y., Feng, X.J., Bao, D.C., Li, K. and Bao, M. (2010b) ‘A new method for the preparation of microcapsule-supported palladium catalyst for Suzuki coupling reaction’, J. Mol. Catal. A: Chem., 323: 16−22.
	Liu, X., Lee, J.K. and Kessler, M.R. (2011) ‘Microencapsulation of self-healing agents with melamine-urea-formaldehyde by the Shirasu porous glass (SPG) emulsification technique’, Macromol. Res., 19: 1056(1061.
	Liu, B., Zhou, X., Yang, F., Shen, H., Wang, S., Zhang, B., Zhi, G. and Wu, D. (2014) ‘Fabrication of uniform sized polylactone microcapsules by premix membrane emulsification for ultrasound imaging’, Polym. Chem., 5: 1693–1701.
	Laouini, A., Fessi, H. and Charcosset, C. (2012) ‘Membrane emulsification: A promising alternative for vitamin E encapsulation within nano-emulsion’, J. Membr. Sci., 423–424: 85(96.
	Laouini, A., Charcosset, C., Fessi, H., Holdich, R.G. and Vladisavljević, G.T. (2013) ‘Preparation of liposomes: a novel application of microengineered membranes: From laboratory scale to large scale’, Colloids Surf. B, 112: 272(278.
	Laouini, A., Charcosset, C., Fessi, H. and Schroen, K. (2014) ‘Use of dynamic membranes for the preparation of vitamin E-loaded lipid particles: An alternative to prevent fouling observed in classical cross-flow emulsification’, Chem. Eng. J., 236: 49...
	Li, Q., Zhang, R., Li, J., Yan, X., Wang, L., Gong, F., Su, Z. and Ma, G. (2013) ‘In situ inhibitor (HCl) removal promoted heterogeneous Friedel–Crafts reaction of polystyrene microsphere with Lewis acids catalysts ‘, J. Mol. Catal. A: Chem., 370: 56−63.
	Loxley, A. and Vincent, B. (1998) ‘Preparation of poly(methylmethacrylate) microcapsule with liquid cores’, J. Colloid Interface Sci., 208: 49(62.

	Figure captions
	Figure 7. Mean droplet size,  in DME (dashed lines) and PME (solid lines) versus mean pore size,  and transmembrane flux, J: (1)  vs.  in shear-controlled DME; (2)  vs.  in interfacial-tension driven DME; (3)  vs.  in interfacial-tension driven DME un...

