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Abstract 

Ultraviolet-B (UV-B) radiation is a major cause of skin cancer resulting in an array of 

events including oxidative damage, DNA damage and inflammation. The keratinocytes 

and skin macrophages play a pivotal role in inflammation and are known to release a 

wide range of cytokines in response to UV-B and/or other toxicants such as 

lipopolysaccharide (LPS). The chronic release of the cytokines, if not controlled, may be 

detrimental leading to a variety of skin diseases including cancer. Rooibos is well known 

for its health benefits which include anti-inflammatory effects that are attributed to the 

anti-oxidant properties of the flavonoids. In the current study the aqueous and methanol 

extracts of unfermented and fermented rooibos were compared in terms of their 

polyphenol and flavanol content, while their antioxidant properties were assessed in the 

FRAP and ABTS assays. The methanol extract of unfermented (MUF) rooibos, which 

contained the highest levels of total polyphenols and flavanol content as well as the 

monomeric flavonoids, exhibited the strongest antioxidant properties when compared to 

its aqueous counterpart (AUF). The fermented rooibos methanol and aqueous (MF and 

AF) extracts exhibited similar but weaker responses compared to the unfermented 

extracts. The MUF extract was further fractionated by column chromatography utilising an 

XAD-4 resin resulting in five major fractions with different polarity. The major rooibos 

flavonoids were enriched in fractions X-3 and X-4, which also exhibited the highest 

antioxidant activity although it was similar to the MUF extract. The most polar fractions, X-

1 and X-2, contained less flavonoids and exhibited a weaker antioxidant activity. 

The anti-inflammatory effects of the rooibos extracts and column fractions were 

investigated in the UV-B/HaCaT inflammation model monitoring interleukin 1α (IL-1α) 

production and cell viability indices. In the absence of UV-B exposure the methanol 

extracts and the flavonoid-enriched fractions, X3 and X-4, increased IL-1α with a 

decrease in cell viability and increase in apoptosis, suggestive of a pro-inflammatory 

effect. The most polar fraction X-1 drastically decreased cell viability and apoptosis while 

IL-1α was increased, which may be attributed to necrotic cell death and a subsequent 

pro-inflammatory stimulation via an autocrine feedback pathway. A similar effect was 

noticed with the non-polar fraction X-5, however without adversely affecting the cell 

growth parameters suggestive of a direct pro-inflammatory effect. The aqueous extracts 

and the polar fraction X-2 had the opposite effect by decreasing IL-1α with minor effects 
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on cell viability and apoptosis at low concentrations, suggesting an anti-inflammatory 

effect. In the presence of UV-B all the extracts and most of the column fractions resulted 

in a decrease in IL-1α accumulation in comparison to the control, with the methanol 

unfermented extract and flavonoid enriched fractions being the most active. A further 

decrease in cell viability and apoptosis was also observed at the higher concentrations. 

Therefore, rooibos may aid the removal of IL-1α indirectly presumably by inducing cell 

death although a critical balance appear to exist in the type of cell death, e.g. via 

apoptosis by which IL-1α is removed or via necrosis where the cytokine is released.  

The anti-inflammatory effects of the rooibos extracts and column fractions were also 

monitored in LPS-induced THP-1 derived macrophages monitoring the release of TNF-α. 

All the extracts decreased TNF-α release with minor effects on the cell growth 

parameters. The aqueous fermented extract and the most polar fraction, X-1 were the 

most active in decreasing TNF-α and fraction X-2 the exhibited the lowest activity at the 

highest concentrations. The flavonoid enriched column fractions, X-3 and X-4 as well as 

the non-polar X-5 column fractions reduced the excretion of TNF-α, although cell viability 

was decreased and apoptosis was increased at higher concentrations. The 

LPS/macrophage inflammatory model seems to be more resistant to the pro-oxidant 

effects of the rooibos flavonoids and therefore provides an ideal model to further 

characterise the anti-inflammatory properties of rooibos. In the UV-B/HaCaT inflammatory 

model the rooibos-enriched flavonoid extracts seem to remove cytokines through inducing 

apoptotic cell death thereby indirectly inhibiting inflammation. However, depending on the 

concentration levels, it could also stimulate inflammation under certain conditions by 

exhibiting pro-oxidant effects, presumably via iron interactive mechanisms. The anti-

inflammatory effects of the more polar rooibos constituents, presumably the tannin-like 

proanthocyanidins and/or the non-flavonoid constituents of rooibos, exhibiting a lower 

antioxidant potency, should be further investigated utilising the UV-B/HaCaT keratinocyte 

inflammatory model. In this regard, the further characterization of fermented rooibos is of 

interest as the flavonoid enriched MUF and column fractions seems to mask the anti-

inflammatory effects due to adverse effects on cell growth indices. The modulation of 

different cells signalling pathways associated with inflammation need to be characterized 

to better define the chemopreventive properties of rooibos. 
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Uitreksel 

Ultraviolet B (UV-B) blootstelling is een van die vernaamste oorsake van velkanker en 

veroorsaak ‘n reeks van veranderings op sellulêre vlak wat insluit effekte soos 

oksidatiewe skade, DNS beskadiging en inflammasie. Die keratinosiete en makrofage in 

the vel speel ‘n belangrike role gedurende inflammasie en skei verskillende sitokienes af 

wanneer die selle blootgestel word aan UV-B insluitende toksiese stowwe soos 

lipopolisakkariedes (LPS). Die ongekontroleerde en kroniese uitskeiding van die 

sitokienes kan baie nadelig wees en lei tot verskillende velsiektes in sluitende kanker.  

Rooibos is bekend vir ‘n verskeidenheid van gesondheids voordele wat onder andere 

anti-inflammatoriese effekte insluit wat gekoppel word aan die antioksidant eienskappe 

van die flavonoïede. In die huidige studie is die totale polifenole en flavanol inhoud van 

water en methanol ekstrakte van onderskeidelik groen en geoksideerde rooibos vergelyk, 

terwyl the antioksidant eienskappe geëvalueerwas met behulp van die FRAP en ABTS 

toetse. Verder is die anti-inflammasie van rooibos ondersoek in die UV-B/HaCaT en die 

LPS/makrofaag inflammatoriese sel modelle. Die methanol ekstrak afkomstig van groen 

rooibos (MUF), het die hoogste antioksidant aktiwiteitg ehad met ‘n ooreenkomtige hoë 

vlak van totale polifenole, flavanole, die monomeriese flavonole wanneer dit met die water 

ekstrak (AUF)vergelyk word. Die water en methanol ekstrakte van die ge-oksideerde 

rooibos het ‘n laer aktiwiteit wanneer bogenoemde parameters en antioksidant aktiwiteit 

ter sprake kom. Die MUF ekstrak was verder gefraksioneer met behulp van kolom-

chromatografie met XAD-2 as matriks en fraksies met verskillende polariteite is verkry. 

Die belangrikste rooibos flavonoïede was gekonsentreer in die X-3 en X-4 fraksies wat 

ook die hoogste antioksidant eienskappe gehad het, alhoewel dit ooreensstem met die 

MUF ekstrak. Die mees polêre fraksies, X-1 en X-2 bevat minder polifenole en was 

geassossieer met ‘n lae antioksidant aktiwiteit.  

Die anti-inflammatoriese eienskappe van die rooibos ekstrakte en kolom fraksies was 

getoets in ‘n UV-B/HaCaT keratinosiet inflammasie model waartydens die opeenhoping 

van interleukin 1 alfa (IL-1α) en sel lewensvatbaarheid getoets is. In die afwesigheid van 

UV-B lig het die methanol ekstrakte en die flavonoïed verrykte kolom fraksies X-3 en X-4, 

IL-1α opeenhoping verhoog. Die verhoogte akkumulasie het gepaard gegaan met ‘n 

verlaging in sel lewensvatbaarheid en‘n verhoging in apoptose (seldood) wat dui op ‘n 

pro-inflammatoriese effek.  Die mees polêre fraksie, X-1 het die sel se oorlewing en 
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apoptose betekenisvol verlaag terwyl IL-1 akkumulasie verhoog was. Hierdie verhoging 

in IL- 1 kan moontlik verband hou met ‘n gepaardgaande sel nekrose, IL- 1 uitskeiding 

en die aktiveering van ‘n outokriene pro-inflammatoriese terugvoer meganismes. ‘n 

Soortgelyke effek is waargeneem met die mees nie-polêre fraksieX-5, maar sonder ‘n 

verlies in die lewensvatbaarheid en apoptose wat ‘n pro-inflammatoriese effek aandui.  

Die water ekstrakte and die polêre fraksie X-2 het egter IL-1α verlaag met minimale 

effekte op die groei van die selle wat dui op ‘n anti-inflammatoriese reaksie. In die 

teenwoordigheid van UV-B het al die ekstrakte en kolom fraksies, IL-1α verlaag met die 

methanol en flavonoïed verrykte ekstrakte die mees effektiefste. Die IL-1α verlaging was 

verder geassosieer met ‘n verdere daling in beide die sel lewensvatbaarheid en die 

induksie van apoptose. Dit kom voor as of rooibos IL-1α verlaag deur selle te verwyder 

met behulp van seldood, alhoewel daar ‘n kritieke balans bestaan wat sal bepaal watter 

tipe geinduseer word, byvoorbeeld die induksie van apoptose waartydens IL-1α verwyder 

word of deur nekrose waartydens dit vrygestel word. By hoë konsentrasies en dalende 

ATP vlakke word induksie van apoptose verhoed en gevolglik vind nekrose plaas wat 

inflammasie verder kan stimuleer. Hierdie pro-inflammatoriese effekte moet dus verhoed 

word. 

Die anti-inflammatoriese effek van rooibos ekstrakte en kolom fraksies was ook 

geëvalueer in die LPS-geinduseerde THP-1 makrofaag inflammatoriese model metTNF-α 

uitskeiding as eindpunt. Al die rooibos ekstrakte het TNF-α verlaag sonder om ‘n 

noemenswaardige effek te hê op sel lewens vatbaarheid en die induksie van apoptose.  

Die water ekstrak en die mees polêre kolom fraksie (X-1) was opmerklik die aktiefste by 

die hoogste konsentrasies terwyl fraksie X-2 die kleinste effek gehad het. Die flavonoied 

verrykte fraksies X3 and X-4 asook die mees nie-polêrefraksie (X-5) het ook die TNF-α 

uitskeiding verminder wat gepaarde gegaan het met die induksie van apoptose by die 

hoogste konsentrasies. Omdat daar minimale effekte op die lewensvatbaarheid van die 

makrofage by lae konsentrasies verkry is, kandie effek van die water ekstrakte en die 

meer polêre kolom fraksies aan ‘n tipiese anti-inflammatoriese effek toe geskryf word. Die 

LPS/makrofaag model is baie meer weerstandbiedend teenoor die pro-oksidatiewe 

effekte van die rooibos flavonoiede en is ‘n ideale model om die anti-inflammatoriese 

eienskappe van rooibos verder te ondersoek. In teenstelling hiermee het rooibos ‘n 

indirekte anti-inflammatoriese effek in die UV-B/HaCaT inflammatoriese model gehad 
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deur die induksie van apoptose en die verwydering van IL-1α. Afhangende van die 

konsentrasie vlakke kan dit ook nekrotiese sel dood veroorsaak vanwee die pro-oksidant 

effekte van die rooibos flavonoiede met moontlike bydra en die rol van yster wat vrygestel 

word. Dit lei tot ‘n verdere verhoging van die inflammatoriese reaksie in the model 

vanwee‘n outomatiese terugvoer meganisme.  Die anti-inflammatories effekte van die 

meer polêre rooibos verbindings behoort verder ondersoek te word in die UV-B/HaCaT 

keratinosiet inflammatoriese model, veral om die moontlike rol van die tannien-agtige 

proanthosianidiniene en ander nie-flavonoïed verbindings te evalueer. In die geval sal die 

aandag gevestig moet word op die geoksideerde rooibos omdat die flavonoïede-verrykte 

methanol en kolom fraksies die anti-inflammatoriese effek verberg as gevolg van hul 

sitotoksiese effekte. Verder moet die effek van rooibos op die modulering van verskillende 

sel boodskap stimuli ten opsigte van die induksie van inflammasie beter gedefinieer word 

ten einde die kankerwerende eienskappe van rooibos verder te ondersoek. 
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LTs: Leukotrints 

MAPK: Mitogen activated protein kinase 
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MeOH: Methanol 

MF: Methanol fermented 

MUF: Methanol unfermented 
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1.2. General introduction 

The wavelength of ultraviolet (UV) radiation ranges from 200 nm to 400 nm and is 

further divided into three sub-regions i.e. UV-A (320-400 nm), UV-B (280-320 nm) and 

UV-C (200-280 nm) (de Gruijl, 1999). The electromagnetic rays reaching the earth 

consists mostly of UV-A and some UV-B (295-320 nm) wavelengths as all the UV-C 

wavelengths and much of the UV-B wavelengths (280-295 nm) are absorbed by the 

ozone layer (Rochette et al., 2003). With respect to skin carcinogenesis, the effects of 

UV-B are limited to the epidermis as the wavelength is not long enough to penetrate to 

deeper layers (de Gruijl, 1999). Hence most skin cancers arise from keratinocytes, 

which are the predominant cells of the epidermis (de Gruijl et al., 2001; Soehnge et al., 

1997). 

Skin cancers can either be of melanoma or non-melanoma and the latter can be of 

squamous or basal cell origin. The most common type of skin cancer, basal cell 

carcinoma (BCC), accounts for up to 80 % of all non-melanoma skin cancers (NMSK), 

with tumors that are slow growing, locally invasive and that rarely metastasize (Gordon, 

2013; Ogden & Telfer, 2009). Untreated actinic keratosis (AK) are precursors for 

squamous cell carcinoma (SCC), which is the second most common form of skin cancer 

resulting from a lifetime cumulative or chronic exposure to UV radiation (Gordon, 2013; 

Lacy & Alwan, 2013; Ogden & Telfer, 2009). Cutaneous malignant melanoma (CMM) is 

a malignant tumor origination from melanocytes, it is the least common of all skin 

tumors, accounting for about 4 % of the total number of skin cancers, but the most 

dangerous as it can metastasis rapidly accounting for about 75% of deaths (Jerant et 

al., 2000; Ogden & Telfer, 2009). 

UV-B may lead to tumor development through various mechanisms including DNA 

damage, oxidative stress and the onset of chronic inflammation (Ichihashi et al., 2003). 

Conjugated double bonds absorb ultraviolet radiation and this increases greatly in ring 

structures and therefore DNA is highly susceptible to absorbing UV-B (de Gruijl, 1999). 

Inflammation in the skin is a key determinant of skin carcinogenesis and is associated 

with the production of various inflammatory mediators such as leukocyte infiltration, 

release of pro-inflammatory cytokines and expression of inflammatory genes (Suter et 
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al., 2009). Cytokines play a key role in local immune and inflammation responses, which 

can be either pro-inflammatory such as interleukin-1-alpha (IL-1α), interleukin-1-beta 

(IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α) 

or anti-inflammatory such as IL-10 (Santangelo et al., 2007). Uncontrolled DNA 

damage, oxidative stress and inflammatory responses may produce cells with the ability 

to escape cell cycle check points and an inability to undergo apoptosis, resulting in 

uncontrolled proliferation and tumor development. 

Macrophages play an important role in innate immune inflammatory responses as they 

are involved in the phagocytosis of microbes that escaped the neutrophils, present 

antigens to T-helper cells and release a variety of cytokines to initiate inflammation 

(Fujiwara & Kobayashi, 2005). Macrophages are generated in bone marrow and reach 

all body tissues through the blood at the onset of inflammation. Chronic activation of 

macrophage function has been linked to inflammatory diseases and cancer. There are 

different types of macrophages depending on the form of activation, which can be 

classical resulting in M1 macrophages or alternate resulting in M2 macrophages 

(Mosser, 2003). The activation of M1 macrophages occurs via LPS and/or interferon 

stimulation and this type macrophages is regarded as pro-inflammatory, while M2 

macrophages are regarded as anti-inflammatory since they are activated by cytokines 

such as TNF-α. 

Chronic activation of macrophage function has been linked to inflammatory diseases 

and cancer. The strong link between inflammation and cancer provides a target for the 

development of anti-inflammatory drugs. However, synthetic drugs currently on the 

market such as etanercept, ifliximab and thalidomide exert adverse side effects on the 

cell thus the development of safe anti-inflammatory compounds has been the focus in 

the field of drug discovery (Kristina et al., 2010). As already established, polyphenols 

have various health benefits including anti-inflammatory action, which has been 

attributed in most part to their antioxidant properties (Fraga et al., 2010). The anti-

inflammatory activity of polyphenols is thought to involve interaction with pro-

inflammatory enzymes cyclooxynases (COX), lipooxygenase (LOX) and inducible nitric 

oxide syntheses (iNOS) (Williams et al., 2004). The modulation of signaling molecules 
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involved in inflammation such as tyrosine kinases and the nuclear factor kappa beta 

(NFκB), to mention a few, has been reported in the anti-inflammatory activity of 

polyphenols (Yoon & Baek, 2005). 

Rooibos (Aspalathus linearis), a South African herbal tea, has a chemical composition 

rich in flavonoids, which are known to exhibit powerful antioxidant properties involving 

free radical scavenging, metal chelating and singlet oxygen quenching (Dai & Mumper, 

2010; Symonowicz & Kolanek, 2012). The herbal tea has been reported to exhibit 

health protective properties which include decreasing the damage to the central nervous 

system in rats by reducing lipid peroxidation through suppressing the accumulation of 

lipid peroxides (Inanami et al., 1995). The antioxidant activity of rooibos has been 

associated with its major flavonoids, aspalathin and northtofagin, which are abundant in 

green rooibos but are decreased during fermentation (Joubert et al., 2008). For 

example, a rooibos hot water extract, prepared from fermented and unfermented plant 

material, showed a clear decrease in antioxidant activity of rooibos as a result of 

fermentation associated with decreased total polyphenol (TP) levels (Joubert et al., 

2008). In another study a strong correlation between the aspalathin content of green 

rooibos and antioxidant activity in the ABTS assay has been reported (Schulz et al, 

2003). The evidence of in vitro (Joubert et al., 2005) and in vivo (Marnerwick et al., 

2010) antioxidant activity of rooibos suggests potential protective effects and warrants 

further investigations into the association between the antioxidant properties and 

disease prevention. 

Rooibos has been reported to exhibit anti-cancer properties in vivo, which was 

associated with its phenolic composition. One such report indicated that unfermented 

and fermented rooibos inhibits methylbenzylnitrosamine (MBN)-induced eosophageal 

squamous cell carcinogenesis in rats (Sissing et al., 2011). In another study, 

ethanol/acetone (E/A) soluble fractions prepared from methanol extracts of processed 

and unprocessed rooibos inhibited skin tumor development in mice, which was 

dependant on differences in the flavanol/proanthocyanidin and flavonol/flavone 

composition (Marnewick et al., 2005). However, the challenges of metabolism, bio-

availability and contrasting effects on various signaling molecules have produced great 
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controversy regarding the beneficial health effects of polyphenols (Manach & Donovan, 

2004). 

The current study will focus on the anti-inflammatory effects of rooibos using previously 

developed UV-B/HaCaT (Magcwebeba et al.,2012) and lipopolysaccharide (LPS)/TPH-

1 derived macrophage inflammatory models (Keet et al., 2015) with IL-1α and TNF-α as 

biomarkers of inflammation, respectively. The chemical composition and antioxidant 

properties of unfermented and fermented rooibos extracts, using methanol and distilled 

water, are presented in chapter 3. In addition, details on the XAD-4 column 

chromatography fractionation of the unfermented methanol extract and the subsequent 

chemical characterization and antioxidant evaluation of the fractions are summarized. 

The activity of the extracts and the fractions in a UV-B/HaCaT inflammatory model will 

be presented in chapter 4, where the effect of the extracts on cell viability, apoptosis 

and the inflammation biomarker, IL-1α, are investigated. In chapter 5, the modulating 

effects on inflammation of the rooibos extracts and XAD-4 fractions in the LPS/THP-1 

derived macrophage inflammatory model with TNF-α as biomarker will be presented. 

Chapter 6 includes a critical evaluation of the underlying mechanisms likely to be 

involved in the anti- and/or pro-inflammatory effects of the different rooibos extracts 

and/or fractions as well as future projections regarding the chemo preventive properties 

of rooibos flavonoids against skin carcinogenesis. 
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2.1. The skin 

2.1.1. Structure 

The skin is the largest organ in the human body accounting for approximately 16 % of 

the total body weight (Venus et al, 2010). In morphology, the skin is very complex 

comprising various tissue types arranged in three layers namely, epidermis, dermis and 

the hypodermis (Kanitakis, 2002); the epidermis and dermis are separated by the 

basement membrane zone (Fig 2.1). The skin’s main function is to protect against 

physical and chemical stresses from the external environment as well as having more 

specialized functions such as sensory, thermoregulation and host defence (Xu et al, 

2008). 

 

 

Figure 2.5. Structure of the skin showing the different layers (Adapted from N'Da, 2014) 
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2.1.1.1. Epidermis 

The epidermis is the outermost layer of the skin and the first line of contact with the 

external environment (Ramose-Silva & Jacques, 2012). Therefore it serves to provide 

physical, chemical, biological and adaptive immunologic barriers, which protect the skin 

from external threats (Baroni et al., 2012; Lee et al., 2006). The epidermis is made up of 

terminally differentiated stratified squamous epithelium tissue that renews itself 

continuously (Venus et al., 2010). This skin layer is further divided into five sub-layers 

arranged from inner most to outermost i.e. the stratum basale, stratum spinosum, 

stratum granulosum, stratum lucidum and stratum corneum (Venus et al., 2010). 

Keratinocytes constitute the majority (90-95%) of cells in the epidermal sub layers 

(Baroni et al., 2012) and undergo a specific differentiation process, which results in 

flattened, enucleate cells called corneocytes (Lee et al., 2006). The keratinocytes vary 

in morphology according to which epidermal layer they are found in. For instance basal 

layer keratinocytes are columnar possessing a large nucleus; the spinosum layer 

keratinocytes on the other hand are polygonal, larger and have a vesicular nucleus, 

while granular layer keratinocytes are flattened and corneum layer keratinocytes are 

fully differentiated into corneocytes, which appear highly flattened and eventually shed 

from the skin (Baroni et al., 2012). The remaining 5 % of epidermal cells are non-

keratinocyte cells, the langerhans cells, melanocytes and merkel cells. 

Langerhans cells 

Langerhans cells, the most important cells for the immune barrier function of the 

epidermis, are derived from bone marrow cells and have a dendritic appearance 

(Baroniet al., 2012). These cells are found in their immature state on the mucosal 

epithelia lining the ocular, oral, and vaginal surfaces and in the skin (Poulin et al., 2007). 

Langerhans cells are mobile, migrating to the dermal lymphatics and to paracortical 

areas of draining lymph nodes where they present antigens to T-cells (Venus et al., 

2011). 

Melanocytes 

Melanocytes are somatic cells found in the neural crest which originate from precursor 

cells, melanoblasts (Tolleson, 2005; Yamaguchi et al., 2007), and are abundant in the 
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skin and hair follicles (Tolleson, 2005). In the skin, melanocytes form a close 

association with keratinocytes via their dendrites, enabling the transfer of melanin into 

the keratinocytes in order to determine skin colour and help protect against the 

damaging effects of ultraviolet radiation (Tsatmali et al., 2002). Melanin production is 

known to involve the enzymatic activity of tyrosinase in two reactions. Firstly, the 

hydroxylation of a monophenol and secondly, the conversion of an o-diphenol to the 

corresponding o-quinone. o-Quinone undergoes several reactions to eventually form 

melanin (Baroni et al., 2012; Plonka et al., 2009). The key function of melanin is to 

protect the skin against ultra violet radiation (UV-R) (Passeron et al., 2007). 

Merkel cells 

The origin of merkel cells is clouded by great controversy as they have characteristics of 

both epidermal and neuroendocrine cells (Lucarz & Brand, 2007). Merkel cells are 

found on the basal layer of the epidermis and in the outer root sheath of hair follicles 

(Boulais & Misery, 2007). They are oval shaped with a diameter of 10-15 µm. The cells 

are clustered in touch sensitive zones of glabrous and hairy skin (Van Keymeulen et al., 

2009). In addition, merkel cells synthesize neuropeptides inside dense core 

neurosecretory granules, which are primarily located near low threshold sensory 

neurons (Misery & Boulais, 2008). The complexes between merkel cells and sensory 

neurons is termed the merkel cell-neurite complex (Boulais & Misery, 2007) and 

contains slowly adapting mechanoreceptors, which mediates slowly adapting responses 

to touch (Boulais & Misery, 2007; Lumpkin & Caterina, 2007). 

2.1.1.2. Basement membrane zone 

The cutaneous basement membrane zone (BMZ) also known as the dermal epidermal 

junction is a combination of epidermal basal keratinocytes and the dermal fibroblasts. It 

comprises an intricate network of macromolecules that link keratin fibres of the basal 

keratinocytes with collagen fibres of the dermis (Kanitakis, 2002). This structure forms 

an adhesion complex between two distinct cellular compartments, the dermis and the 

epidermis and also provides support for proliferation, migration and differentiation of 

cells (Burgeson & Christiano, 1997; Powell, 2006). The BMZ is important in the 
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transmission of extracellular signals and growth factors and in the formation of a 

permeability barrier (Hashmi & Marinkovich, 2011).  

The BMZ inhibits passage of molecules between the structures it separates based on 

size and charge. However, melanocytes and langerhans cells or lymphocytes and 

tumour cells are allowed to pass through (Burgeson & Christiano, 1997). 

Morphologically, the BMZ has four distinct layers i.e. the cell membrane consisting of 

hemidesmosomes, the lamina lucida, which is an electron lucent space, the 

osminophilic lamina densa, and the sub-basal lamina filamentous zone (Hashmi & 

Marinkovich, 2011). One unique feature of the cutaneous BMZ is the presence of an 

anchoring complex comprising the hemidesmosomes, anchoring filaments and the 

anchoring fibrils (Burgeson & Christiano, 1997). This complex serves as a continuous 

link between basal keratinocyte and the dermal components (McMillan et al., 2003). 

2.1.1.3. Dermis 

The dermis is an elastic connective tissue layer, which separates the epidermis and 

subcutaneous tissues of the skin. It serves to protect the epidermis through providing 

structural and nutritional support (Kanitakis, 2002 & Powell, 2006). The thickness of the 

dermis varies depending on the site in which it is found, for example, the dermis on the 

palms will be thicker than that on more sensitive or delicate skin, like the eye lids and 

lips (Kanitakis, 2002). Structurally the dermis is divided into two layers, the 

‘upper’papillary dermis and the ‘lower’reticular dermis (Tobin, 2006). The dermis 

possesses interstitial (collagen fibres, elastic tissue and ground substance) and cellular 

components such as fibroblasts, mast cells, plasma cells, dermal dendritic cells and 

histiocytes, as well as blood vessels, lymphatic channels and sensory nerves (Lai-

Cheong & McGrath, 2009). Collagen constitutes more than 70 % of the dermis 

interstitial components, while the fibroblasts, which are responsible for the synthesis 

and renewal of extracellular matrix, is the pre-dominant cell type in the dermis (Baroni et 

al., 2012; Lai-Cheong & McGrath, 2009). 
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2.1.1.4. Hypodermis  

The hypodermis is the innermost and thickest layer of the skin. It enclosesinto and is 

attached to the dermis by collagen and elastin fibres. This layer is mainly composed of 

adipocyte cells, which specialize in accumulating and storing fats. Adipocytes are 

grouped together in lobules separated by connective tissue (Kanitakis, 2002). 

Adipocytes are arranged in primary and secondary lobules, the morphology of which 

varies somewhat according to the sex and the body region considered. There are two 

different types of adipocytes known in mammals i.e. white adipocytes, which store 

energy as triglycerides and release it according to the organism’s needs, and brown 

adipocytes, which dissipate energy as heat (Himms-Hagen, 1990 & Klaus et al., 1991). 

The fats contained in the adipocytes can be re-directed into the circulation through the 

veins, during exercise or starvation, and are then transformed into energy (Norgan, 

1997). The hypodermis therefore acts as an energy reserve and also passively 

participates in thermoregulation since fat is a heat insulator. 

 

2.1.2. Skin cancer 

The development of cancer is considered to be a result of disturbances in cell signalling 

pathways controlling the growth of cells such as proliferation, differentiation and 

apoptosis, to mention a few (de Gruijl et al, 2001). These disturbances may be in 

response to the synthesis of dysfunctional proteins or damaged genes resulting in 

miscoding during gene expression, hindering translation (de Gruijl, 1999). Failure of 

normal growth controls and check points may lead to uncontrollable growth of cells that 

subsequently develop into tumours (Cooper, 2000; de Gruijl et al., 2001b & Soehnge et 

al., 1997). Tumours may remain benign for prolonged periods of time and not become 

malignant and metastasize (Cooper, 2000). The process of skin carcinogenesis, like 

any other cancer, is divided into three steps namely, initiation, promotion and 

progression (Klaunig & Kamendulis, 2004). 
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2.1.2.1. Initiation 

Initiation involves damage to DNA, either directly from genotoxic agents or indirectly 

from epigenetic agents (Klaunig & Kamendulis, 2004). The most potent cause of skin 

cancer is UV-R, which results in multiple biochemical events such as DNA damage, 

oxidative stress and inflammation, to be discussed in detail in section 2.1.5, that lead to 

carcinogenesis (Sarasin, 1999). Initiation is an irreversible process and the extent of 

damage is dependent of the dose of the carcinogen (Klaunig & Kamendulis, 2004). 

2.1.2.2. Promotion 

Continual exposure of initiated cells to tumour promoters may lead to clonal expansion 

where a specific mutation has a selective advantage for the cell, which ultimately grows 

rapidly resulting in the tumour genotype becoming dominant (Cooper, 2000). In addition, 

initiated cells may respond differently to cell signalling molecules and this often results 

in mutated cells escaping cell cycle check points, thereby continuing to divide 

uncontrollably (de Gruijl et al., 2001b). Promotion is a reversible stage dependant on the 

presence of a tumour promoter (Klaunig & Kamendulis, 2004). 

2.1.2.3. Progression 

Continuous exposure to a tumour promoter further damages the cell’s DNA leading to 

additional cellular and molecular events that ultimately transforms a benign tumour into 

a malignant phenotype (Cooper, 2000). Once progression begins it is irreversible, 

involving genetic instability and disruption of chromosome integrity (Klaunig & 

Kamendulis, 2004). 

 

2.1.3. Skin cancer types 

It has already been established that exposure to the ultraviolet–B (UV-B) wavelength 

(280-320 nm) of sunlight results in the development of skin cancer (Sarasin, 1999). 

However, although UV-R is a genotoxic agent, it does not penetrate the skin any deeper 

than the epidermis, which is located on the upper surface of the skin; therefore most 
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skin cancers arise from the cells of the epidermis (de Gruijl et al., 2001b; Soehnge et 

al., 1997). Only the major skin cancer types will be discussed. 

2.1.3.1. Melanoma 

Cutaneous malignant melanoma 

Cutaneous malignant melanoma (CMM) is a malignant tumour of melanocytes (Ogden 

& Telfer, 2009). CMM are the least common of all skin tumours, accounting for about 4 

% of the total skin cancers, but the most dangerous as they can metastasise rapidly 

accounting for about 75 % of deaths associated with skin cancer (Jerant et al., 2000). 

Melanoma malignancies are divided into four subtypes according to clinic-pathological 

grounds (MacKie, 2006) namely; superficial spreading, nodular, acral and lentigo. The 

superficial spreading melanoma is the most common and in clinical features it is similar 

to the nodular melanoma. About 2-8 % of melanomas are amelanotic (without melanin, 

no pigmentation) making these very difficult to diagnose (Gordon, 2013). Due to the 

vast variety in the clinical features, the ABCDE rule has been developed, which outlines 

the expected clinical features and warning signals for most melanomas (Gordon, 2013). 

The “A” is for the asymmetry of the of the mole (is one half bigger than the other), “B” is 

for the border of the mole (are they blurred or ragged?), the “C” is for colour (does the 

mole have an uneven colour, a mixture of brown and black), the “D” is for diameter (is 

the mole larger than 6mm) and “E” is for the evolution, enlargement or elevation of the 

lesion. 

2.1.3.2. Non-melanomma 

Squamous cell carcinoma 

Squamous cell carcinoma (SCC) is the cancer of the squamous layer (stratum 

spinosum) of the epidermis (Lacy & Alwan, 2013) and in most cases, SCC develops as 

a result of untreated actinic keratosis (AK), a precursor of SCC. It is the second most 

common type of skin cancer accounting for about 16 % of skin cancers and results from 

a lifetime cumulative or chronic exposure to UV radiation (Gordon, 2013; Ogden & 

Telfer, 2009). Other factors that may predispose individuals to the development of SCC 

include ionizing radiation, chronic exposure to industrial carcinogens, post transplant 
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immune suppression, chronic wounds and human papilloma virus infection. SCC is 

locally invasive causing tissue destruction and is characterized by the ability to 

metastasize via lymphatic or haematogenous spread (Gordon, 2013; Ogden & Telfer, 

2009). These types of malignancies occur mainly on sun exposed parts of the body i.e. 

face, back of hands and neck. 

Basal cell carcinoma 

Basal cell carcinoma (BCC) originates in the basal layer of the epidermis (stratum 

basale) and is the most common skin cancer type constituting 80 % of all non 

melanoma skin cancer (NMSK). Unlike SCC, basal cell carcinoma does not have 

premalignant lesions (Gordon, 2013; Ogden & Telfer, 2009). This type of tumour is 

characterized by slow growth, is locally invasive and rarely metastasize. The most 

potent predisposing factor for BCC is chronic UV exposure (de Gruijl et al., 2001b). 

There are six different subtypes of BCC i.e. nodular (most common), pigmented, cystic, 

sclerosing (most difficult to treat), superficial and nevoid (Jerant et al., 2000). 

 

2.1.4. Skin cancer incidence 

When investigating the incidence of skin cancer it is important to note that although 

there is an overall rise in total number of reported cases, the incident rates vary 

amongst the different skin cancer types. Non-melanoma skin cancer, which includes 

BCC and SCC, are the most reported skin cancer types (Jerant et al., 2000). However, 

CMM has been reported to have the highest mortality rate (Giblin & Thomas, 2007) 

accounting for approximately 75 % of deaths associated with skin cancer (Jerant et al., 

2000). Although NMSC is associated with old age, CMM has been reported to peak 

between the ages of 20-45. Skin cancer incidence has been on the rise since the 1970s 

when it was considered a rare disease with approximately 6 cases of mortality per 100 

000 reported cases in the United States (Garbe & Leiter, 2009). In three decades, the 

mortality rates grew by three fold from 6 to 18 per 100 000 cases in the United States 

and this trend was also observed in Central Europe. However, in Australia and New 

Zealand incident rates are said to be the highest at 30-60 per 100 000 inhabitants per 
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year (Leiter & Garbe, 2008). This is due to the correlation between CMM incidence and 

geographical location in terms of the proximity to the equator of the earth (Garbe & 

Leiter, 2009). Changing societal activities, which include more sun exposure and the 

depletion of the ozone layer causing more UV rays to penetrate the atmosphere, are the 

main causes of the increase in skin cancer incidence for the last four decades (Jerant et 

al., 2000). Education regarding the risk of sun exposure is therefore an alternative 

method to manage the rise in skin cancer incidence, specifically, CMM which is most 

likely to result in death. 

 

2.1.5. Role of Ultraviolet radiation in skin carcinogenesis 

Ultraviolet radiation forms part of the electromagnetic spectrum of sunlight and can 

initiate a cascade of complex events that lead to skin carcinogenesis, specifically by 

affecting initiation and promotion (Sarasin, 1999). Such events include DNA damage 

leading to mutations in genes that control the cell cycle and promote tumour 

development (Mouret et al., 2006). Other events include the induction of gene 

expression through signal transduction pathways that may contribute to tumour 

promotion, and suppression of immune response, which induces tolerance to antigens 

(Ichihashi et al., 2003; Sarasin, 1999; Xu & Fisher, 2005). Sunlight consists of 

electromagnetic radiation of various wavelengths that is divided into three main regions 

namely, ultraviolet, visible light and infrared (Soehnge et al., 1997). Ultraviolet radiation 

(200-400 nm) is further divided into three sub-regions i.e. UV-A (320-400 nm), UV-B 

(280-320 nm) and UV-C (200-280 nm) (de Gruijl, 1999). UV-C and most of the UV-B 

spectrum (280-295 nm) are absorbed by the ozone layer; therefore the UV that reaches 

the earth consists mostly of UV-A and some UV-B (295-320 nm) (Rochette et al., 2003). 

UV-B is considered to be the most carcinogenic and its effects are limited to the 

epidermis (de Gruijl, 1999). The effects of each component of UV-R on the skin are 

dependent on the depth of penetration and the energy it carries (Clydesdale et al., 

2001). For instance, UV-A has longer wavelengths and thus carries less energy and 

UV-B has shorter wavelengths and therefore caries more energy. 
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2.1.5.1. DNA damage 

Conjugated bonds can absorb ultraviolet light and this absorption increases greatly in 

ring structures. Ultraviolet light can directly or indirectly cause damage to organic 

molecules including DNA depending on the wavelength of the photo incident (de Gruijl, 

1999 & Mouret et al., 2006). UV-B is directly absorbed by DNA, resulting in the 

transformation of adjacent pyrimidine bases to the highly genotoxic dipyrimidine photo 

products i.e cyclobutane pyrimidine dimers and pyrimidine-pyrimidome photo products 

(Fitch et al., 2003; Ichihashi et al., 2003). On the other hand, UV-A has a much lower 

phototoxic effect as DNA is not a chromophore for UV-A and therefore does not absorb 

UV-A. However, UV-A indirectly causes damage to DNA through absorption by non-

DNA chromophores resulting in oxidative stress, which subsequently damages DNA 

(Ichihashi et al., 2003; Rochette et al., 2003). Although the pyrimidine dimer is the most 

carcinogenic it is important to note that UV-R also causes a wide range of other forms of 

damage to DNA such as protein-DNA crosslinks, oxidative base damage and single 

strand breaks. However, these can also be caused by other factors and cannot be 

attributed solely to UV induced damage (de Gruijl, 1999). Nevertheless, the pyrimidine 

dimers result in point mutations that are uniquely UV-B induced such as C→T and 

CC→TT from CT and CC dimers. These occur as a result of the “A” rule which states 

that DNA polymerase inserts and an “A” wherever there is an un-instructional lesion 

(Ichihashi et al., 2003; Melnikova & Ananthaswamy, 2005). This is further supported by 

the frequent recovery of these point mutations on UV-induced skin cancer cells 

(Ichihashi et al., 2003). In the case of the TT dimer the A inserted results in a A→T 

mutation, which repairs the original lesion; the TT dimer is therefore not highly 

mutagenic. 

Cells have in place repair mechanisms to avoid UV-induced skin cancers or 

tumorigenesis, such as nucleotide excision repair (NER), which is concerned with 

repairing most of the UV-induced DNA damage such as bulky chemical adducts 

(Ichihashi et al., 2003). The NER process consist of five steps requiring at least 30 gene 

products i.e. the recognition of the DNA lesion, single strand incision at the flanking free 

sides of the lesion, excision of a single stranded DNA nucleotide, DNA repair synthesis 
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to replace the excised DNA lesion and ligation of the remaining single stranded nick 

(Aboussekhra et al., 1995). The process is subdivided into two pathways, the 

transcription-coupled repair (TCR), which repairs the transcribed DNA from the 

damaged strand, and genomic excision repair (GER), which repairs the damaged 

nucleotide strand. The importance of NER in skin cancer prevention is supported by the 

increased incidence of skin cancer on sun exposed areas in xeroderma pigmentosum 

(XP) patients, which are defective in NER (Fitch et al., 2003; Ichihashi et al., 2003; 

Sarasin, 1999). 

There are two types of genes that are frequently affected by UV-B damage and these 

include the tumour suppressor genes (e.g. p53) and oncogenes (e.g. ras). These genes 

are crucial for cell cycle control, maintenance of gene integrity, proliferation and 

differentiation and mutations may result in transformation of cells and subsequent 

tumour development. The p53 genes code for a transcription factor (TF) protein, which 

is involved in DNA repair through two pathways i.e. cell cycle arrest to allow time for 

repair of damaged DNA or NER and GER. Chronic UV-B exposure leads to signature 

mutations on the p53 gene, which disables the TF’s ability to induce cell cycle arrest, 

DNA repair and apoptosis. Subsequently, the mutated cells gain clonal expansion 

advantage leading to uncontrolled proliferation with the mutations and subsequent 

tumorigenesis. Mutations on the p53 gene are an indication of the early stages of 

cancer initiation and have been identified in UV-induced cancers. In addition, mutated 

p53 is reported as the most common mutation present in skin cancers with point 

mutations found on pre-tumour lesions such as keratoacanthomas and actinic keratosis 

(Sarasin, 1999). Other events such as activation of oncogenes or inactivation of other 

tumour suppressor genes are needed for the progression of cancer (Melnikova & 

Ananthaswamy, 2005).  

2.1.5.2. Oxidative stress 

Various reports have linked reactive oxygen species (ROS) to age related diseases 

including cancer (Kovacic & Jacintho, 2001). Reactive oxygen species can be produced 

by endogenous and exogenous sources related to mitochondrial activity, inflammatory 

related cell activation, cytochrome P450 cycle and peroxisomes. Oxidative metabolism 
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in the mitochondria converts 4-5 % of molecular oxygen to the superoxide radical 

through single electron reduction, which can be subsequently converted to hydrogen 

peroxide through the activity of superoxide dismutase (Barber & Harris, 1994). In the 

presence of metal ions, specifically iron, hydrogen peroxide can generate the highly 

reactive hydroxyl radical through the Fenton reaction (Betteridge, 2000). Activated 

inflammatory cells, neutrophils, eosinophils and macrophages release oxygen radicals 

(O2
-), hydrogen peroxide (H2O2) and nitric oxide (NO2) during respiratory burst. During 

the formation of peroxisomes by the activity of peroxisome proliferators H2O2 escapes, 

and together with the former radicals, these shift the redox balance towards oxidative 

stress (Rao & Reddy, 1991). The cytochrome (CYP) cycle can result in the release of 

ROS through the uncoupling of certain CYP450 enzymes, i.e. CYP450 2E1 as well as 

metabolism of phenobarbital by CYP450 2B (Parke & Sapota, 1996; Rice et al., 1994). 

Environmental carcinogens such as UV-R, chlorinated compounds, metal ions, 

barbiturates, phorbol esters and peroxisome proliferating compounds form part of the 

exogenous factors that generate ROS in cells (Klaunig et al., 1997; Rice-Evans & 

Burdon, 1993). Under normal physiological conditions the cells oxidant to antioxidant 

ratio is kept in balance by the cell’s endogenous antioxidant defence mechanisms, a 

shift in this balance towards more oxidants will result in oxidative stress and damage to 

macro-molecules (Sies, 1985). Antioxidant defence mechanism of cells can be 

enzymatic including superoxide dismutase (SOD), glutathione peroxidase (GPx) and 

catalase (CAT) or non-enzymatic via the involvement of vitamins E, C, β-carotene, 

glutathione and co-enzyme Q (Abuja & Albertini, 2001; Betteridge, 2000). Superoxide 

dismutase and GPx are located in the cytosol and mitochondria with the former being 

involved in reduction of superoxide to form hydrogen peroxide and water, while the 

latter removes hydrogen peroxide. 

The cell’s antioxidant mechanisms are controlled by the redox state of the cell and there 

are four major redox systems namely, NADP/NADPH, thioredoxin, glutaredoxin and 

glutathione, which is the most important in maintaining redox balance due to its high 

levels (Schafer & Buettner, 2001).Glutathione is present in oxidized (GSH) and reduced 

(GSSG) form. The oxidized form is 10-100 fold more than the reduced form thus even 

small changes in GSH will result in significant shift in the GSH/GSSG ratio and therefore 
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redox balance (Schafer & Buettner, 2001). The GSH/GSSG ratio has been implicated in 

signal transduction and cell cycle control and should be closely regulated (Herrlich & 

Böhmer, 2000). There are various factors involved in regulating the GSH/GSSG ratio 

such as glutathione disulphide or glutathione reductase and by removing excess GSSG 

or increasing glutathione reductase activity, the latter can maintain a good GSH/GSSG 

ratio even under oxidative stress conditions (Schafer & Buettner, 2001). A decrease in 

GSH concentration has been linked to an induction in mitochondria dependant 

apoptosis. This has been validated by the block in apoptosis induction following 

restored GSH concentration (Ghibelli et al., 1995; Ghibelli et al., 1999). 

Reactive oxygen species can directly form DNA lesions such as double or single strand 

breaks, purine, pyrimidine or deoxyribose modifications and DNA cross-links. Many 

types of ROS can form oxidized DNA bases, however the hydroxyl radical needs to be 

generated in close vicinity of the nucleus in order to oxidize DNA (Sies, 1985). In 

contrast, hydrogen peroxide and peroxy nitrite are less reactive and therefore easily 

diffuse into cells and are more likely to oxidize DNA bases (Radi, 1998). Interestingly, 

activated macrophages readily release superoxide and nitric oxide, which can react to 

form peroxy nitrite. This may subsequently oxidize DNA, explaining the association 

between inflammation and mutations leading to carcinogenesis (Marnett, 2000). The 

most common oxidative DNA adduct is the 8-hydroxydeoxy guanosine (OH-8dG), which 

results in G-T transversions that occur widely on mutated oncogenes and tumour 

suppressor genes (Hussain & Harris, 1998; Moriya, 1993). 

2.1.5.3. Inflammation 

Inflammation is a physiological response, involving both innate and adaptive immunity, 

following exposure to various insults such as tissue injury, microbial pathogen infection, 

chemical toxins or ultraviolet light radiation. The process of inflammation is very 

complex involving signalling cascades, activation of transcription factors, increase in 

inflammatory enzymes, release of various oxidants and pro-inflammatory molecules 

(Bengmark, 2004). Acute inflammation is short term, self-limiting and is meant to be 

therapeutic to the host organism; whereas an excessive, prolonged inflammatory 

response can lead to chronic inflammation. The latter involves the generation of various 
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oxidants, i.e. superoxide anion, hydroxyl radical, hydrogen peroxide and nitric oxide by 

inflammatory cells, which can damage normal tissue resulting in induction of signalling 

molecules and enzymes leading to the development of degenerative diseases such as 

neurological diseases, metabolic disorder, cardiovascular disease and cancer 

(Santangelo et al., 2007). 

The initial stages of inflammation involve leukocyte infiltration, release of pro 

inflammatory cytokines and expression of inflammatory genes. Activation of 

inflammation occurs as a result of recognitions of pathogen associated molecular 

patterns (PAMPs) by pattern recognition receptors (PRRs) e.g. toll like receptors (TLR) 

and nucleotide binding oligomerization domain-like (NOD-like) receptors, (NLRs) (Chen 

et al., 2007; Gordon, 2013; Li et al., 2010, Miller & Modlin, 2007). The stimulus is then 

carried into the cell through activation of signalling molecules and enzymes that bring 

about the inflammatory response. Cytokines play a key role in local immune and 

inflammation responses in cells (Santangelo et al., 2007). Various cytokines are 

involved in the inflammatory response which are either pro- (interleukin 1β. 6, 8 and 

TNF-α) or anti-inflammatory (IL-10). The balance between pro- and anti-inflammatory 

cytokines should be tightly regulated in order to prevent the development of chronic 

inflammation (Santangelo et al., 2007). Specific cytokines are released by different cells 

of the skin layers and there are some that are suggested to be key role players in the 

inflammation process. These are the pro-inflammatory cytokines, interleukin 1 alpha (IL-

1α), tumour necrosis factor alpha (TNF-α) and IL-6. Other pro-inflammatory cytokines 

include IL-17, IL-12 and IL-23. The process of inflammation related cancer involves the 

stimulation of chemotactic cytokines followed by the recruitment of mast cells resulting 

in the activation of pro-inflammatory cytokines such as IL-1, TNF-α and chemokines. 

The next step is the recruitment of monocytes differentiating into macrophages. The use 

of anti-inflammatory compounds has been reported to protect against various tumours, 

which validates the role of chronic inflammation in cancer development (Gerhäuser et 

al., 2003; Lin & Karin, 2007; Naugler & Karin, 2008). Of importance in this connection is 

the involvement of transcription factors, cytokines such as IL-1, TNF-α and IL-6, 

chemokines and leukocyte infiltration. 
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The transcription factor (TF), nuclear factor kappa B (NFκB), is amongst the key role 

players in inflammation related cancer as it is involved in the expression of various pro-

inflammatory cytokines. NFκB is activated by a variety of pro-inflammatory cytokines 

and results in the activation of anti-apoptotic genes as well as increasing angiogenesis 

(Karin & Greten, 2005; Naugler & Karin, 2008). Specifically, continual phosphorylation 

of the NFκB subunits and factors involved in its activation is required for the 

oncogenicity. In addition, the aberrant regulation of this TF has been reported in most 

cancers (Naugler & Karin, 2008). Another factor STAT3, which is also an important 

factor along with NFκB, is thought to be closely related to the link between inflammation 

and cancer (Grivennikov & Karin, 2010). Specific pro-inflammatory cytokines have been 

reported to play important roles in cancer development i.e. TNF-α mutant mice were 

reported to be protected against the development of skin carcinogenesis (Arnott et al., 

2003; Moore et al., 1999). TNF-α has also been linked to increased tumour growth and 

invasion as well as increasing leukocyte recruitment which all favour tumorigenesis. 

Another cytokine with a key role in inflammation, IL-1α has also been linked to 

carcinogenesis (Gabay et al., 2010). 

The most predominant cells of the epidermis, keratinocytes, were reported to increase 

their expression of IL-1α after exposure to UV-B (Kupper et al., 1987). Keratinocytes are 

known to constitutively produce IL-1α, which is only released upon cell rupture during 

disease states or severe stress (Ansel et al., 1988; Sauder et al, 1982; Schmitt et al., 

1985; Wood, 1996). IL-1α production in response to UV-B was shown to be highly 

dependent on the UV-B dose resulting in differential expressions indicating the 

activation of a cascade of signalling molecules (Chung et al., 1996). UV-B is known to 

induce IL-1α expression through its ability to induce c-jun and c-fos, which encodes 

proteins involved in the AP-1 complex formation, activating NFκB or by inducing the 

synthesis and release of various cytokines such as IL-1α, TNF-α and IL-6, which may in 

turn stimulate IL-1α production via an autocrine regulatory pathway (Devary et al., 1991 

& Luo et al., 2004). 

Macrophages play an important role in the onset of inflammation and have three main 

functions namely phagocytosis of apoptotic bodies of neutrophils and the remaining 
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microbes, presenting the microbes to T-helper cells and the release of cytokines 

(Fujiwara & Kobayashi, 2005). There are two types of macrophages depending on their 

metabolism, M1 or M2 (Mosser, 2003). The former can be activated by LPS and results 

in a pro-inflammatory response, whereas the latter is activated by cytokines resulting in 

an anti-inflammatory response (Mosser, 2003). LPS activates the innate immunity and 

inflammation through toll like receptor (TLR) signalling, specifically TLR4, which 

subsequently induces gene expression via the activation of signalling pathways 

including MAPK, which subsequently activates nuclear factor kappa B (NFκB) (Akira, 

2003; Wright, 1999). Two proteins are responsible for the recognition of LPS by host 

organisms and these are the LPS binding protein (LBP) and CD14; the latter serves as 

a membrane receptor for the LPS-LBP complex (Pugin et al., 1993). LPS activated 

microphages (M1) can result in pro-oxidant effects as well as sequestering intracellular 

iron as a mechanism to withhold iron from invading pathogens (Cairo et al., 2011). 

Various anti-inflammatory studies on macrophages by different natural products have 

suggested that these products inhibit the expression of inflammatory mediators through 

inhibiting key steps in the activation on NFκB. For example, iNOS expressed in LPS or 

cytokine activated raw 264.7 macrophages was found to be inhibited by quercetin 

(Hämäläinen et al., 2007), while treatment of raw 264.7 macrophages with 

ferulaldehyde, a phenolic degradation end product, decreased the phosphorylation of 

MAPK enzymes and therefore decreased the expression of NFκB regulated genes 

(Tucsek et al., 2011). 

 

2.2. Polyphenols 

2.2.1. Origin and biosynthesis  

Phytochemicals are a group of non-nutritive compounds produced by plants, which 

possess various protective and/or health benefit properties (Arts & Hollman, 2005). One 

of the largest group of phytochemicals, the polyphenols, are secondary plant 

metabolites which are essential to plants and which display diverse biological functions 

namely, antioxidant, anti-microbial, antiviral and anti-inflammatory properties (Ignat, et 

al,  2011). Polyphenols are widely distributed and can be found naturally occurring in 
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plant based foods such as fruits, vegetables and beverages (teas, fruit juices and wine) 

(Archivio et al., 2007). In addition, polyphenols can be found in the by-products of 

agricultural and industrial processes, which include remainders of juice and wine 

making (berry skins), olive mill waste waters, olive leaves from the olive industry, peel 

and seed residues from the citrus industry as well as peels of several fruits (Ignat et al., 

2011). 

Plants produce primary metabolites for normal growth and survival namely, 

carbohydrates, amino acids and proteins, from these, secondary metabolites are 

derived. It is thought that the role of secondary metabolites is to defend against 

pathogens and to protect plants against various stressors i.e. UV radiation (Korkina et 

al., 2008). The biosynthesis of polyphenols therefore includes the processing of a 

primary metabolite through various methylation, hydroxylation and glycosylation 

pathways. More specifically, polyphenols are derived from metabolites of the shikimic 

acid pathway. Shikimic acid undergoes metabolic transformation yielding indol, 

tryptophan, phenylalanine and tyrosine; phenylalanine is catalytically de-aminated by 

phenylalanine ammonia lyase (PAL) forming cinnamic acid and its derivatives i.e. 

hydroxycinnamic acid, 4-coumaric acid and 4-coumaroyl-CoA (Quideau et al., 2011). 

Cinnamic acid and its close derivatives form phenolic acids, which are simple 

polyphenols; these are further transformed through catalytic reactions to form the more 

complex secondary polyphenols i.e. flavanoids and isoflavanoids, stillbenoids, 

coumarines, tannins, suberins and Lignans (Korkina et al., 2009). 

 

2.2.2. Structure and classification 

The core structure of polyphenols comprises aromatic rings with one or more hydroxyl 

groups (Ignat et al., 2011). This can range from simple to very complex structures 

depending of the number of aromatic rings as well the structural elements that bind the 

rings together. Polyphenols can be classified into three main groups: flavonoids, non-

flavonoids and phenolic acids (Câmara et al., 2013). To date there are over 8000 

identified polyphenols, 4000 of those are flavonoids and represent the largest group of 
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polyphenols and also the most studied (Câmara et al., 2013). Flavonoids are of simple 

phenolic nature since they have a small molecular weight with a structure including two 

aromatic rings, rings A and B, joined by a 3-carbon hydrocyclic ring C (Fig 2.2) (Ignat et 

al., 2011). The biosynthesis of the flavonoid core can be traced to the deamination 

reaction of phenylalanine by PAL, which results in the production of rings B and C. 

Synthesis of ring A occurs from three condensation reactions of three malonyl-CoA 

units (Tsao, 2010). The classification of flavanoids is dependent on the substitutions on 

the heterocyclic ring C that binds rings A and B, while differing substitutions in rings A 

and B results in different molecules within each sub-class. Flavonoids can be further 

divided into eight sub-classes namely, flavones, isoflavones, flavanones, flavonols, 

flavanols, flavanonols, and chalcones. Of these, flavones and flavanols are the most 

structurally diverse and widely occurring. 

 

Figure 2.2. The basic structures of flavonoids and sub-classes. (Adapted from Tsao, 2010) 
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2.2.3. Chemical properties and biological activity 

The oxidation-reduction potential (ORP) of the molecule can be used as a measure of 

ease with which a molecule can transfer or accept electrons to/from another molecule, 

which is referred to as the electron transfer potential of a molecule. ORP is measured in 

volts or milli volts (mV);in the standard ORP table the values range from highest to 

lowest ORP (-0.667 to +0.867V). Compounds with very low ORP equals a high electron 

transfer potential and molecules with high ORP equals low electron transfer potential 

and are therefore likely to accept electrons from other molecules. Some polyphenols 

possess very low ORP (Eo 0.25 – Eo 0.75 volts) and are therefore likely to donate 1𝑒− 

easily to compounds with higher ORP (Han et al., 2012; Nijveldt et al., 2001). 

2.2.3.1. Antioxidant action 

Radical scavenging 

Free radicals are produced from enzymatic and non-enzymatic reactions in biological 

systems and have both beneficial and deleterious effects (Valko et al., 2006). Generally, 

free radicals are identified as atoms or molecules with one or more unpaired electrons 

in orbitals. The free radicals are extremely unstable, therefore highly reactive species 

and can be found as anionic, cationic or neutral forms. Furthermore, reactions involving 

free radicals are usually branched chain reactions, which can be deleterious to 

biological structures (Bergendi et al., 1999). An example of such a reaction is that of 

lipid peroxidation which comprises of six reactions (Fig 2.3) (Fraga et al., 2010). 

 

𝐿𝐻 → 𝐿•           (1) 

𝐿• +  𝑂2 → 𝐿𝑂𝑂•          (2) 

𝐿𝑂𝑂• + 𝐿𝐻 → 𝐿𝑂𝑂𝐻 + 𝐿•         (3) 

𝐿• + 𝐿• → 𝑛𝑜𝑛𝑟𝑎𝑑𝑖𝑐𝑎𝑙𝑝𝑟𝑜𝑑𝑢𝑐𝑡        (4) 

𝐿𝑂𝑂• + 𝐿𝑂𝑂• → 𝑛𝑜𝑛𝑟𝑎𝑑𝑖𝑐𝑎𝑙𝑝𝑟𝑜𝑑𝑢𝑐𝑡       (5) 

𝐿• + 𝐿𝑂𝑂• → 𝑛𝑜𝑛𝑟𝑎𝑑𝑖𝑐𝑎𝑙𝑝𝑟𝑜𝑑𝑢𝑐𝑡        (6) 

Figure 2.3. Branched chain reaction during lipid peroxidation. (Adapted from Fraga et al., 
2010) 
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Therefore scavenging the radical produced in reaction 1, 2 and 3 would either prevent 

or retard the chain reaction. In biological systems redox reactions involve a pair 

consisting of a strong reducing agent (molecule with high electron transfer potential) 

and a weak oxidizing agent (molecule which will readily accept electrons from another 

molecule) or vice versa. In the case of polyphenols and free radicals, the free radical 

can act as a relatively strong oxidizing agent that can accept an electron or more from 

the polyphenol/s present. Therefore the ability of polyphenols to donate electrons to 

other molecules forms the basis for its free radical scavenging characteristic, which 

subsequently breaks the chain reactions that could possibly be harmful to biological 

structures (Korkina et al., 2009). 

Metal chelating action 

Specific coordination sites in the core structure of flavonoids allow for complexes to 

form between flavonoids and metal ions and this process is called metal chelating. 

These coordination sites are between the 5-hydroxy and 4-carbonyl group, and the 3-

hydroxy and 4-carbonyl group in the A-ring and between the 3’, 4’-hydroxy group in the 

B-ring (Symonowicz & Kolanek, 2012). Studies have shown that the newly formed 

flavonoid-metal complexes have higher radical scavenging ability (Kostyuk et al., 2001). 

However, it is important to note that formation of a complex between a metal and a 

flavonoid does not automatically render higher antioxidant activity, rather, the resulting 

electron transfer potential or ORP of the complex will determine its activity (Fraga et al., 

2010).  

 

Figure 2.4. Metal (Me+) binding sites of flavonoids (Adapted from Kurek-Górecka et al., 

2013) 
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Interacting with antioxidant enzymes and membranes 

In addition, flavonoids also bind specifically to enzymes, competing for the active sites 

with the natural ligand (Fraga et al 2010). Some of the antioxidant enzymes affected by 

flavonoids include oxido-reductases, lipoxygenases, nitric oxide synthase, xanthine 

oxidase and NADPH-oxidase, which all produce nitrogen and oxygen intermediates. 

Therefore, inhibition of these enzymes contributes to the antioxidant activity of 

polyphenols (Korkina et al 2009). Polyphenols can also interact with cell membranes 

and for this function the hydroxyl group is most important for the interaction. However, 

too many hydroxyl groups will increase the hydrophilicity of the flavonoids and 

subsequently decrease chances of interacting with membranes. Structural dimensions 

of flavonoids also increase their chances of inserting into the lipid bilayer resulting in 

structural changes that modify association with membrane enzymes and ligand-receptor 

interaction thereby modifying signal transduction. Flavonoids have also been known to 

prevent the passage of free radicals when embed into cell membrane and also 

neutralize lipid soluble radicals that can lead to lipid oxidation (Fraga et al 2010). 

 

2.3. Rooibos  

2.3.1. Origin and development of rooibos industry 

Rooibos is produced from the plant Aspalathus linearis which belongs to the genus 

Aspalathus consisting of more than 270 species most of which are endemic to the Cape 

floristic region. A. linearis is a shrub like leguminous bush originating from the 

Cederberg Mountains in the Western Cape of South Africa. In 1772 Carl Thunburga a 

botanist, visited Africa and reported that the indigenous khoi people were using a 

rooibos plant to make a beverage (Joubert & Schulz, 2006). It was only at the beginning 

of the 20th century, 1904 when Benjamin Ginsberg also observed this phenomena and 

bought the rooibos plant from the khoi and started marketing the tea. In 1930 P. Le Fras 

Nortier, a medical practitioner and nature lover of Clanwilliam recognized the 

agricultural value of rooibos through his experiments together with local farmers, O. 

Berg and H. Rion. These first experiments and the participation of other farmers in the 

Clanwilliam area laid foundation for the rooibos industry (Joubert & De Beer, 2011). 
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Initially different species of Aspalathus, all naturally occurring in the Cederberg area, 

were used for making rooibos tea but nowadays only types from A. linearis are 

commonly used for tea production (Joubert & De Beer, 2011). During the Second World 

War rooibos tea demand increased drastically due to the shortage of oriental tea and 

this was a major boost for the rooibos industry leading to the establishment of the 

Clanwilliam tea co-operative company to improve marketing conditions. However, after 

the Second World War the rooibos market declined and collapsed by 1953-4 leading to 

the establishment of the rooibos tea control board in 1954 in order to regulate marketing 

of the herbal tea and price stabilization. The board was abolished on 1stOctober 1993 

leading to the establishment of the South African Rooibos Council in 2005 to coordinate 

activities relating to rooibos tea marketing research and development as well as natural 

resource management. 

The rooibos industry has grown tremendously over the past five decades with just 524 

tons of tea sold locally per year in 1955 to over 4000 tons by 1993 and 750 tons 

exported per year in 1955 to 5633 tons exported per year by 2010. Germany is the 

major international market which started importing the tea from South Africa in 1961; by 

2003 exports to Germany peaked by 73 %. Exports to the United States of America 

increased by 5 fold from 67 tons to 346 tons of tea per year in a period of 10 years. 

Exports to the United Kingdom increased by 10 fold over the same period from 75 tons 

to 772 tons. The rooibos industry comprised 12 % of the total tea market share in 1984 

and this value had almost doubled by 2010 to 23 %. 

 

2.3.2. Cultivation 

Although cultivation of rooibos was initiated in the early 1930s, it was only after World 

War Two that commercial cultivation of rooibos took off. Cultivation takes place mainly 

in the Cedarberg mountain region but can also occur at places as far as Darling and 

Nieuwoudtville. Planting of seedlings of about 100 mm-150 mm in height occurs in the 

winter months resulting in 8000-10000 plants per hectare (Joubert & Schulz, 2006). The 

rooibos plant grows in deep, well drained, sandy soil with well nodulated roots that 
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enable fixing of element nitrogen from soil water (Nolte, 1968). Branching is stimulated 

eight months later by topping the plant to about 30 cm .The first harvest can occur 18 

months after planting, between the hot summer months and early autumn with full 

production only reached after three years (Joubert et al., 2008). Harvest is initiated by 

toping the whole bush to an average length of 45 cm as the active growth of the plant 

should not exceed 50 cm or the result will be a tea with poor quality (Joubert et al., 

2008). Flowers are avoided during harvest as they also negatively affect the quality of 

the tea product (Joubert et al., 2008; Joubert & Schulz, 2006). After harvest the 

branches are bound in bundles to be transported to the processing yard or fermentation 

heaps. 

 

2.3.3. Processing 

Manufacturing of rooibos produces two forms, the traditional/fermented form and the 

green/unfermented form of rooibos. Most common in the market is the traditional 

rooibos, which has been on the market since the initiation of the rooibos industry. Green 

rooibos has been newly introduced to the market, with the first production only in 2001, 

as a result of an increased market for a tea with higher antioxidant value (De Beer et 

al.,2002). Processing of traditional rooibos involves extensive oxidation, resulting in 

leaves with a red-brown like colour and sweet, honey-like aroma. Oxidation is initiated 

by shredding the tea shoots to about 3-4 mm. The shreds are placed in fermentation 

heaps and bruised, followed by addition of water, which facilitates the extraction of 

polyphenols from the plant which are later absorbed; these are thought to be 

responsible for the characteristic colour of traditional rooibos (Joubert & De Beer, 2011; 

Joubert et al., 2008). Fermentation is allowed to occur over-night with the average time 

usually between 12 and 14 hrs; thereafter shreds are spread thinly and allowed to dry in 

the sun throughout the day. Certain factors may affect fermentation time namely, the 

presence of young growth, the age of the bush and the cultivation area (Joubert, 1994). 

There are various stages of fermentation, which can be identified by the aroma of the 

shreds; the different aromas include hay-like or grassy, sweet apple or caramel like and 

sour. The sour like aroma is indicative of over fermentation (Joubert & Schulz, 2006). 
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Oxidation inside the heaps requires adequate aeration and this is accomplished through 

turning the heap over a few time during fermentation; inadequate aeration results in a 

tea product with low quality (Joubert et al., 2008). Shreds may also be brushed to 

remove lumps during the drying process and when drying is completed the tea is sieved 

and steam pasteurized before packaging to remove any microbial species that may be 

present. 

 

 

Figure 6.5. Difference in colour between fermented and unfermented rooibos (Adapted from 
Cape point press, 1 August 2012, Rooibos tea) 

 

Fermentation of rooibos usually results in a tea with less phenolic content as most of the 

polyphenolic compounds are oxidized (this will be discussed in more detail in 

subsequent sections) green rooibos undergoes minimal oxidation in order to retain the 

phenolic content (Erickson, 2003). Minimizing oxidation can be achieved by either 

inactivating enzymes responsible for the oxidation by means of a steaming process or 

drying the shoots at lower temperatures and air humidity to critical moisture before 

shredding. 

 

2.3.4. Phenolic composition 

Rooibos is well known as a caffeine free herbal tea and although previously reported to 

contain low tannin levels, ca 50 % of the hot water soluble solids are tannin like 

substances (Joubert et al., 2008). Unique to rooibos are the dihydrochalcone glucosides 
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aspalanin (cyclic) and aspalathin (c-c linked) (Koeppen & Roux, 1966; Shimamura et al., 

2006) as well as the dehydroxy dihydrochacone glucoside, nothofagin, which has only 

been identified in the heartwood of Nothofagus fusa (Hillis & Inoue, 1967). Other 

rooibos flavonoids comprise of the flavones (orientin, isoorientin, vitexin, isovitexin, 

luteolin, luteolin-7-O-glycosideand chrysoeriol), flavanones (dihydro-isoorientin and 

dihydro-orientin, heiphlorin) and flavonols (hyperoside, quercetin, quercetin-3-

robinobioside, rutin and iso-quecertrin) (Ferreira et al., 1995.; Koeppen et al., 1962; 

Marais et al., 2000; Rabe et al., 1994; Shimamura et al., 2006). Fermentation of rooibos 

causes substantial quantitative changes to its phenolic composition such as the drastic 

decrease in aspalathin levels; less than 7 % is left in the fermented rooibos due to 

oxidation to the flavonone analogues, dihydro-isoorientin and dihydro-orientin (Bramati 

et al., 2003; Joubert, 1996; Marais et al., 2000). During the breakdown of 

aspalathindiastereomeric mixtures of dihydro-isoorientin and dihydro-orientin are formed 

as the major and minor products, respectively, with the highest concentrations of 

orientin and isoorientin occurring after six hours (Krafczyk & Glomb, 2008). The 

flavones (orientin, isoorientin , vitexin, isovitexin) and flavanones (dihydro-isoorientin 

and dihydro-orientin, heiphlorin) are also degraded during fermentation but to a lesser 

extent than the dihydrochalcones (Marais et al., 1998). Rooibos also contains additional 

flavonoids which are not affected by fermentation such as the phenolic acids, caffeic 

acid, ferulic acid, p-coumaric acid, p-hydroxybenzoic acid, vanillic acid and proto 

catechuric acid have also been identified in rooibos (Rabe et al., 1994). The decrease in 

the major flavonoids following fermentation results in lower antioxidant levels. It has 

been found that the addition of fungal hydrolyzing enzymes in green rooibos prior to 

fermentation results in a semi-fermented plant material with increased antioxidant levels 

(Pengilly et al., 2008). 

 

2.3.5 Metabolism of flavonoids on the skin 

The skin contains physical, biological and chemical barriers in order to protect the body 

from the external environment and this limits the permeability of certain compounds. 

Specifically, the stratum corneum forms stacks of lipid bilayes that are rich in fibrous 
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proteins such as keratins, ceramides, cholesterol, and free fatty acids which prevent 

penetration of hydrophilic compounds (Elias, 2005). The structure of polyphenols 

ranges from simple to very complex compounds and need assistance to penetrate the 

physical barrier of the skin and for their transdermal delivery (Korkina et al., 2008). Skin 

penetration of polyphenols can be induced by coupling them to liposomes or lipogels 

(Casagrande et al., 2007; Cevc, 2004; Sinico et al., 2008), electrically through 

iontophoresis or skin permeation enhancers (Fang et al., 2006; Touitou, 2002). The 

polyphenols can then be distributed equally across all skin layers or concentrated in one 

depending on the specific polyphenol (Marti-Mestres et al., 2007). The distribution of 

polyphenols on skin layers has been validated by the topical application of EGCG as a 

transdermal gel on SKH-1 mice which resulted in its fast penetration through all skin 

layers but later the compound was mostly concentrated in the epidermal layer at three 

times more than was found in the dermal layer (Yang et al., 2007). 

Oral administration has been preferred over topical application due to the easier 

absorption of polyphenols through the intestine compared to the cutaneous skin and 

their low stability due to possible auto oxidation by atmospheric oxygen (Akagawa et al., 

2003; Kostyuk & Potapovich, 1989; Laughton et al., 1989; Sang et al., 2007). However, 

topical application has been reported to be most beneficial for protection against the 

effects UV radiation as oral administration raises questions about the number of 

transporters and metabolic obstacles involved in their delivery from the gastro-intestinal 

tract to cutaneous skin (Myriam et al., 2006). Beside the role of the stratum corneum as 

the most critical structure for epidermal barrier function there is increasing evidence 

indicating that enzymatic and non-enzymatic compounds on cutaneous skin are able to 

react with low molecular weight compounds and facilitate their metabolism on the skin 

(Elias, 2005). Foreign compounds such as topically applied dermatological drugs, skin 

care products as well as compounds arising from contact with plants and/or toxins may 

be activated or inactivated by xenobiotic metabolizing enzymes of the skin resulting in 

health or adverse effects (Korkina et al., 2008). The skin contains a variety of phase I 

and phase II metabolizing enzymes that are distributed differently across the layers of 

the skin; most abundant in the keratinocyte (Elias, 2005). Some of these enzymes may 

interact with polyphenols thus facilitating their metabolism after cutaneous absorption. 
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Phase I enzymes are involved in the oxidation and reduction of small molecular weight 

foreign compounds on the skin after penetration and cytochrome P450 enzymes (CYP) 

comprise the first class of these enzymes. The CYP1A1, CYP2B6/7, CYP2E1 and 

CYP3A5 are few enzymes shown to be present in mammalian skin (Swanson, 2004). 

Interestingly, the CYP1 family enzymes have been reported to interact with various 

carcinogens including UV-B as they were induced in keratinocytes and HaCaT cell 

cultures exposed to UV-B (Katiyar et al., 2000; Villard et al., 2002; Wei, Rannug, & 

Rannug, 1999). Therefore, CYP1 enzymes (CYP1A1 and 1B1) up-regulated or 

activated in response to UV-B could enhance the bio-activation of environmental 

carcinogens leading to adverse photo-reactions on the skin that could result in 

carcinogenesis (Katiyar et al., 2000). Flavonoid compounds that can inhibit CYP1 

enzymes have been reported to exhibit protective effects on the skin. Synthetic and 

plant phenols have been reported to inhibit CYP1 enzymes which reduced the content 

of carcinogenic compounds in the skin by inhibiting aryl hydrocarbon hydroxylase (Das, 

Khan, Asokan, Bickers, & Mukhtar, 1987). A second class of phase I enzymes has been 

identified on the skin that can metabolize polyphenols namely the peroxidises (Strohm & 

Kulkarni, 1986). This enzyme class oxidizes polyphenols to quinine or phenoxyl radicals 

that can interfere with the structure and/or function of a number of biological molecules 

and modify their function. The third class of phase I enzymes important for the 

metabolism of polyphenols on the skin is the lipooxygenases. These are non-heme iron 

containing enzymes found in both plants and animals. Three isoforms have been 

characterized in animal cells and include 5-LOX in leukocytes, 12-LOX in monocytes 

and platelets and 15-LOX reticulocytes during their maturation to erythrocytes. In the 

skin the 15-LOX is expressed as two isoforms 15-LOX1 and 15-LOX2 and play a critical 

role in barrier permeability properties. The plant derived phenolic acid (urushiol) has 

been reported to be polymerized under oxidative conditions by LOXs in soybean (Brash 

et al., 2007). 

Phase two enzymes are detoxification enzymes involved in the protection against 

endogenous toxins and xenobiotics. Two classes of phase II enzymes have been 

identified in cutaneous skin which interacts with polyphenols (Wilkinson & Clapper, 

Stellenbosch University  https://scholar.sun.ac.za



 
 

37 
 

1997). These are the glutathione-S-transferase (GST) and UDP-glucuronyl transferase 

(UGT). (See section 2.3.6 for more details). 

 

2.3.6 Bioactivity and anti-carcinogenic properties flavonoids 

Flavonoids have been identified to exhibit protective effects in cancerous cells by 

inducing apoptosis and inhibiting proliferation through their interaction with phase I 

(CYP450) and phase II enzymes (GST,UGT) (Walle et al., 2001). The interaction of 

flavonoids and CYPs can be either through stimulating the biosynthesis of some CYPs, 

modulating the activities of certain CYP enzymes and the flavoniods can also be 

metabolized by several CYPs. Specifically, the CYP1 enzymes are involved in activation 

of carcinogens such as UV-B, benzo[a]pyrene, aflatoxin B1 and 7,12-

dimethybenze[a]anthracene (DMBA) and flavonoids have been shown to reduce the 

activation of these CYPs (Omiecinski et al, 1999). Quercetin which is found in small 

amounts in rooibos has been reported to exhibit antagonist activity to the aryl 

hydrocarbon receptor (Ahr), a ligand activated transcription factor involved in activation 

of the CYP1 family enzymes. This subsequently prevents cancer by inhibiting activities 

of several drug metabolising enzymes (Kang et al, 1999). 

Polyphenols are also known to interact with phase II enzymes specifically UGT and 

GST which protect the cells against endogenous and exogenous carcinomas through 

glucuronidation and nucleophillic addition of glutathione to a variety of carcinogens 

(Fisher et al., 2001). The majority of green tea polyphenols have been found to have 

alleviating effects on phase II enzymes by inducing mutagen activated protein kinases 

through antioxidant response elements (Yu et al., 1997). The most active green tea 

polyphenol EGCG was found to increase apoptosis and cell cycle arrest in human 

epidermoid carcinoma cells A431 (Ahmad et al., 1997). Furthermore, EGCG has also 

been found to suppress proliferation by binding the epidermal growth factor (Liang et al., 

1997). More evidence for green tea anti-proliferative capacity was found with EGCG 

exhibiting the highest activity in inhibiting MCF-7 breast cancer cells, HT-29 colon 

cancer cells and UACC-375 melanoma cells (Valcic et al., 1996). 
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Rooibos tea was initially popular for its ability to alleviate allergies, insomnia and anti-

depressant properties. Scientist from Japan and South African were the first to 

investigate the biological properties of rooibos scientifically leading to the discovery of a 

long list of protective effects (Inanami et al., 1995; Ito et al., 1991; Komatsu, Kator et al., 

1994; Sasaki et al, 1993; Yoshikawa et al., 1990). The chemical composition of rooibos 

is rich in flavonoids which are known to exhibit powerful antioxidant activities involving 

free radical scavenging, metal chelating and singlet oxygen quenching as well as 

enzyme activity inhibition mechanism. Studies have reported on the antioxidant activity 

of rooibos extracts, one such study discovered that aqueous extracts of rooibos 

scavenge the O2•-, •OH radicals when using electron spin resonance spectrometry 

(Yoshikawa et al., 1990). In another study rooibos hot water extract from fermented and 

unfermented plant material using the ABTS and FRAP assays found that the was a 

clear decrease in antioxidant activity of rooibos as a result of fermentation as a result of 

the decreased TP levels (Joubert et al., 2008). Furthermore, a strong correlation 

between the aspalathin content of green rooibos and antioxidant activity from the ABTS 

assays has been reported (Schulz et al, 2003). In addition, the aspalathin content in 

green rooibos also correlated with the pro-oxidant activity of rooibos but that correlation 

was not observed with the TP content (Galati & O’Brien, 2004). Rooibos was found to 

have protective properties as is decreased the damage to the central nervous system 

by decreasing lower levels of TBARS and suppressed accumulation of lipid peroxides in 

rats following chronic administration of traditional rooibos. The herbal tea was found to 

enhance the activity of phase II enzymes and thereby protecting against adverse effects 

of oxidative damage. 

 

2.3.7 Anti-inflammatory activity of flavonoids and their chemoprevention 
properties 

The link between chronic inflammation and cancer provides a target for the 

development of anti-inflammatory drugs (Karin et al., 2004). However, synthetic drugs 

already on the market exert other adverse side effects thus the development of safe 

anti-inflammatory compounds has been the focus of research into the field of drug 
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discovery (Tweedie et al., 2007). As already established, polyphenols have various 

benefits including anti-inflammation. The anti-inflammatory activity of polyphenols is 

thought to involve interaction with pro-inflammatory enzymes such as cyclo-oxynases 

(COX), lipo-oxygenase (LOX) and inducible nitric oxide synthase (iNOS) as well as 

enhancement of the activity of peroxisome proliferators (Williams et al., 2004). 

Polyphenols may also inhibit the activity of phospholipase kinases, tyrosine kinases and 

the nuclear factor kappa beta (Yoon & Baek, 2005) as well as enhance the activity of 

phase II enzymes i.e. GST and UGT (Kim et al., 2004). Polyphenols have been found to 

inhibit the activity of phospholipase A2 (PA2), COX and LOX thereby reducing the 

release of AA, PGs and LTs which have anti-inflammatory implications (Aviram & 

Fuhrman, 1998; Baumann, Bruchhausen, & Wurm, 1980; Laughton, Evans, Moroney, 

Hoult, & Halliwell, 1991; Welton et al., 1986; Yoon & Baek, 2005). The arachidonic acid 

(AA) pathway involves the release of AA from membrane phosphoslipids through the 

activity of PA2. AA can be metabolized by COX to prostaglandins (PGs) and thromboxa 

A2 or by lipooxygenase into hydropeoxyeicosatetransnoic acids (HpETEs), hydroxyl 

eicosatetransnoic acid (HETEs) and leukotrints (LTs).  

Some of the green tea polyphenols, pro-delphidin B-4 3’-O-gallate, and pro-delphidin B2 

3,3’ di-O-gallate suppressed mRNA and protein expression of COX-2 and ultimately 

blocking PGE2 release in LPS stimulate Raw 264.7 macrophages (Hou et al., 2007;). 

Other green tea flavonoids including epigallocatechin (EGC), gallocatechin, 

epicatechingallate (GCEG), catechingallate (CG), epigallocatechingallate (EGCG) also 

exhibit inhibitory effects on the activities of COX-1/2 in different human and mouse cell 

lines (Hong et al, 2001; Kundu et al., 2003; Seeram et al, 2003; Gerhäuser et al., 2003). 

Another enzyme reported to be inhibited by polyphenols is iNOS which is involved in 

producing nitric oxide from L-arganine. The NOS enzyme family consist of three 

isoforms the endothelial (eNOS), neouronal (nNOS) and the inducible (iNOS). The latter 

is only expressed in response to inflammatory stimuli thus further escalating the 

inflammatory condition through the release of NO. iNOS expressed in LPS or cytokine 

activated RAW 264.7 macrophages was found to be inhibited by quercetin (Chen et al., 

2001). The nuclear factor kappa-B (NFκB) is a transcription factor (TF) involved in 
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immune, inflammatory, apoptotic, proliferative responses and more. This TF is 

stimulated by various sources and binds on promoter regions of many genes that code 

for cytokines (TNF-α, IL-6, IL-1β), inducible enzymes (COX-2, iNOS). These molecules 

are involved in proliferation, angiogenesis, adhesion and tumour invasion and are 

therefore key role players in the process of carcinogenesis (Santangelo et al., 2007).  

The activation process for NFκB is a multistep process requiring the activation of other 

factors such as induction of specific IκB kinases which phosphorylate IκB. 

Phosphorylated IκB leads to rapid ubiquination and subsequent degradation of IκB in 

the proteasome; degradation of IκB releases NFκB in the cytosol, resulting in rapid 

translocation to the nucleus where it binds to specific NFκB recognition elements in the 

promoter region of target genes (Epstein et al., 1997). The cascade of events involved 

in the activation of NFκB serves as a target for possible inhibition in studies aimed at 

controlling inflammatory diseases including cancer (Karin et al., 2004). Polyphenols 

have been found to inhibit NFκB at multiple steps in its activation pathway. The main 

flavonoid in green tea was reported to reduce the degradation of IκB which blocks the 

release of NFκB in the cytosol and the expression of the iNOS promoter in LPS 

activated macrophages (Lin & Lin, 1997). 

 

2.3.8 Controversy of polyphenols 

Various studies have suggested the ability of polyphenols to protect against deleterious 

diseases including cancer (Curtis et al., 2004; Kuriyama et al., 2006; Lambert et al., 

2005; Surh, 2003). The beneficial effects of polyphenols in most part have been 

attributed to their antioxidant properties (Lambert & Yang, 2003; Sang et al, 2005). 

These antioxidant effects can either be direct where the polyphenols act as radical 

scavengers or indirect where they can induce the activities of various antioxidants inside 

the cell (Dinkova-Kostova & Talalay, 2008). Nonetheless, polyphenols are known to 

have a very low plasma bioavailability, less than 1 μM in subjects consuming high doses 

of supplements, therefore it is not clear how the in vitro antioxidant effects are relevant 

in vivo (Manach & Donovan, 2004). Studies in vitro  have shown the biological effects of 
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the major green tea polyphenol, EGCG, used concentrations far above those found in 

plasma (10-100 fold) thus questioning the relevance of these results.(Yang et al., 2008; 

Ju, Lu et al., 2007; Yang et al., 2006). In the direct antioxidant reactions polyphenols are 

consumed in the reaction and therefore continual replenishment is needed implying that 

these reactions are almost impossible considering the level of polyphenols in plasma 

(Yang et al., 2007). In addition, many other antioxidants (in the cell) are present at much 

higher levels than the polyphenols. For example vitamin C averages at 50 μM, vitamin E 

ranges from 20-30 μM (Lee et al., 1997; Ness et al., 1999), albumin and urate are 

normally above several hundred μM (Dieber-Rotheneder et al., 1991; Wen et al., 1996). 

These are therefore more likely to interact with antioxidants than the polyphenols with 

very low bioavailability in serum.  

The ability of polyphenols specifically green tea polyphenols to act as anti-oxidants have 

long been reported to be the underlying causes of their health benefits (Lambert & Elias, 

2010). However, the recent reports on the pro-oxidant effects of the tea polyphenols 

raise some concerns (Joubert et al., 2005). High levels of polyphenols are required for 

these pro-oxidant reactions to occur ,however, there is little evidence showing that 

these effects actually happen in vivo due to lack of careful dose response studies (Hou 

et al., 2006; Lambert et al., 2010). It is not known at what point the effects of 

polyphenols shift from being beneficial to being detrimental to the cell. The green tea 

polyphenol, EGCG, has been shown to have pro-oxidant effects which, at high doses 

have been reported to be deleterious (Galati et al, 2006; Isbrucker et al, 2006). For 

instance, 10-20 mg/kg per day of tea based dietary supplements resulted in herpatoxity 

(Bonkovsky, 2006). Furthermore, oral administration of the green tea polyphenol, 

teavigo, containing 90 % EGCG, to beagle dogs resulted in a dose depended toxicity 

accompanied by vomiting, diarrhea, liver necrosis and death (Isbrucker et al., 2006).  

Polyphenols have also been reported to have diverse effects on signalling pathways at 

different concentrations. NFκB is a TF known to regulate the expression of genes 

involved in cellular differentiation, proliferation, apoptosis, oxidative response, 

inflammation and immune response. Chronic activation of NFκB has been implicated in 

many diseases including cancer (Karin, 2006; Karin & Greten, 2005). This TF has been 
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reported to be induced by oxidative stress and therefore inhibited by various 

antioxidants including polyphenols (Wadsworth, 1999). Therefore, the relevance of the 

antioxidant effects of polyphenols is limited as they have various other effects on NFκB. 

No correlation was found between the antioxidant effects of 34 dietary plants and their 

ability to inhibit LPS induced NFκB activation (Paur et al, 2008).  

 

Summary 

Polyphenols have been suggested to poses various beneficial effects including the 

ability to act as anticancer agents. This ability has been attributed in most part to its 

antioxidant function. However, the challenges of metabolism, bio-availability and 

contrasting effects of various signalling molecules have rendered great controversy in 

the beneficial effects of polyphenols. Further, evidence has also emerged of the toxicity 

of polyphenols at high concentrations which are required to fulfil their role as radical 

scavengers. It is therefore more likely for polyphenols to acts as antioxidants through 

activating antioxidant enzymes in the cells. Therefore, clear effects of different 

polyphenols need to be investigated with the consideration of their plasma levels and 

their individual biological activities.  
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Abstract 

Rooibos, a South African herbal tea, has been reported to contain a number of 

polyphenols, specifically flavonoids, known to exhibit antioxidant effects that are thought 

to form the basis of their health beneficial effects in vivo. The aim of the current study 

was to compare the chemical composition evaluated by HPLC analyses, and 

antioxidant activities utilising the 2, 2’-Azino-bis (3-ethylbenzo-thiazoline-6-sulfonic acid) 

diammonium salt (ABTS) and the ferric reducing antioxidant power (FRAP) assays of 

methanol and aqueous extracts of unfermented and fermented rooibos. The methanol 

extract of unfermented (MUF) rooibos, containing the highest levels of total polyphenols 

and flavanols, exhibited the highest antioxidant activity. In contrast the aqueous extracts 

of both unfermented (AUF) and fermented (AF) rooibos exhibited a far lower anti-

oxidant potency, presumably associated with the extraction of the more polymeric 

tanning-like flavanol/proanthocyanidin type of compounds. Column fractionation of the 

MUF extract yielded five fractions of decreasing polarity with the most polar fractions, X-

1 and X-2, containing the lowest levels of polyphenols and antioxidant activity. Most of 

the rooibos polyphenols were enriched in fractions X-3 and X-4 exhibiting the highest 

antioxidant activities. Methanol extraction was more effective in extracting the major 

rooibos polyphenols, aspalathin and nothofagin, and fractionation of the unfermented 

extract confirmed that these flavonoids are associated with high antioxidant properties. 

The selective extraction and recovering of specific bioactive polyphenols can be 

effected by utilising different extraction solvent systems likely to have important 

implications when focussing on specific biological properties of interest. 
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3.1 Introduction 

Polyphenols are secondary plant metabolites with diverse biological functions namely 

antioxidant, antimicrobial, antiviral and anti-inflammatory activity (Ignat et.al, 2011). 

These compounds are widely distributed and occur naturally in plant based foods such 

as fruits, vegetables and beverages, including teas, fruit juices and wine (Manach et al., 

2004). Polyphenols are divided into different classes i.e. flavonoids, non-flavonoids and 

neo-flavonoids according to their chemical structure (Vladimir-Knežević et al., 2012) 

with flavonoids being the largest class and most widely studied (Ignat et al., 2011). The 

potential beneficial effects of flavonoids in vivo have been attributed to their strong in 

vitro antioxidant properties (Kovacic & Jacintho, 2001). As various reports link oxidative 

stress to chronic diseases, including cancer, the protective effects of tea (Camellia 

sinensis) against these diseases have been extensively reported (Arts & Hollman, 2005; 

Manach et al., 2005; Vauzour et al., 2010). In this regard, the South African herbal teas 

gained vast popularity due to their health benefits, which are attributed to their high 

flavonoid content (Joubert et al., 2008; Joubert et al., 2009). In vitro and in vivo 

antioxidant activity of rooibos suggests potential protective effects in disease and 

warrants further investigations into the role of these antioxidant properties for disease 

prevention or treatment.  

Rooibos contains a number of flavonoids including the two unique antioxidants the 

dihydrochalcone-C-glucosides, aspalathin and nothofagin, (Snijman et al., 2009). Other 

phenolic compounds in rooibos include the flavones, orientin, isoorientin, vitexin and 

isovitexin as well as the flavonols, rutin and isoquercitrin, to mention a few (Joubert & 

De Beer., 2012). The herbal tea has been extensively used as a value added product in 

foods, beverages and cosmetics mainly due to its antioxidant properties. Several 

studies have linked the antioxidant activities of rooibos with its polyphenol content e.g 

the aspalathin content in rooibos was found to correlate with antioxidant properties 

(Schulz et al., 2003). During fermentation, enzymatic oxidation of the phenolic 

compounds occurs leading to degradation of the major flavonoids in rooibos, such as 

aspalathin and nothofagin, which coincided with a reduction in antioxidant properties 

(Joubert et al., 2004). Aspalathin and nothofagin constitutes up to 11 % and 2 % of the 

Stellenbosch University  https://scholar.sun.ac.za



Chapter 3 

69 
 

soluble solids in unfermented rooibos, respectively, while fermentation decreases the by 

10 to 20 fold (Joubert, 1996). 

This aim of the current study was to investigate (i) the antioxidant properties of extracts 

of fermented and unfermented rooibos using two different extraction solvents i.e. 

methanol and water and (ii) to further fractionate the methanol extract of unfermented 

rooibos by column chromatography utilising a XAD-4 reverse phase matrix. Detailed 

chemical analyses and assessment of the antioxidant properties were conducted using 

the different extracts and column fractions. 

 

3.2 Materials and methods 

3.2.1 Chemicals 

Amberlite XAD-4 was obtained from Sigma-Aldrich, St Louis, USA. Thin later 

chromatography plates (TLC silica gel 60 F254) were obtained from Merck KGaA, 

Darmstadt, Germany. Methanol CHROMASOLV (HPLC grade), gallic acid, (+)-catechin 

hydrate, p-anisaldehyde and hexane were purchased from Sigma-Aldrich (St Louis, 

USA). Anhydrous sodium carbonate, folin-Ciocalteu reagent, anhydrous sodium 

acetate, glacial acetic acid, and hydrochloric acid were obtained from Merck Chemicals 

(KGaA, Darmstadt, Germany). 2,4,6-Tri (2-pyridyl)-s-trazine (TPTZ), (±) 6-Hydroxy-

2,5,7,8-tetramethylchromane-2-carboxylic acid (trolox), 4-dimethylamino 

cinnamaldehyde (DAC), potassium peroxodisulfate, 2,2'-Azino-bis (3-ethylbenzo-

thiazoline-6-sulfonic acid) diammonium salt (ABTS) were purchased from Sigma-Aldrich 

(St Louis, USA). 

 

3.2.2 Preparation of extracts 

Fermented and unfermented rooibos plant material (Aspalathus linearis) were 

purchased from Rooibos Ltd, Clanwilliam, South Africa. 
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3.2.2.1 Methanol extraction 

Fermented and unfermented finely ground dried plant material (50 g) was stirred in 

chloroform (300 ml) for 24 hrs to remove lipophilic constituents such as chlorophyll. The 

plant material was vacuum filtered through a Whatman No 4 filter paper using a 

Buchner funnel. This step was repeated twice (3 times in total) and the chloroform 

filtrate discarded. The residual plant material was extracted by blending with a polytron 

(Kinematica, Lasec, SA) in methanol (300 ml) for five minutes between 10 000 -13 000 

rpm. The mixture was vacuum filtered through a Whatman No 4 filter paper using a 

Buchner funnel. This step was repeated twice (3 times in total). All filtrates were 

collected, combined and filtered through a Whatman No 1filter paper. The methanol was 

evaporated using a rotary evaporator (Rotavapor® R II, BUCHI, Flawil, Switzerland) at 

40 °C in vacuo. The dried extracts were weighed to calculate the yield, transferred to 50 

ml amber bottles and stored in a desiccator at room temperature. The methanol extract 

was prepared in duplicate (extraction 1 and extraction 2). 

3.2.2.2 Aqueous extraction 

The fermented and unfermented plant material, (50 g) was steeped in boiled de-ionised 

water (500 ml) for 30 min. Extracts were filtered through a single layer of cheese cloth 

and subsequently vacuum filtered through a Whatman No 4 and a Whatman No 1 filter 

paper utilising a Buchner funnel. The final filtrate was transferred into a one litre round 

bottomed flask and frozen in a methanol bath for 30 min. The extract was freeze dried in 

the dark using an Alpha I-6 freeze dryer (Christ Gefriertrocknungsanlagen, Ostetrode, 

Germany). The extraction yield was determined and the samples transferred into 50 ml 

amber bottles and stored in a desiccator at room temperature. Two independent 

extractions were conducted (extraction 1 and extraction 2). 

 

3.2.3 Column fractionation of the unfermented Methanol extract 

3.2.3.1 Extract preparation 

Unfermented rooibos plant material, 500 g, was extracted with methanol (MeOH) as 

described in section 3.2.2.1 by using 3 l of CHCl3 and MeOH, respectively. The 

Stellenbosch University  https://scholar.sun.ac.za



Chapter 3 

71 
 

chloroform (CHCl3) extraction was conducted by stirring the mixture using a magnetic 

stirrer in a glass beaker (5 l), while the methanol extraction step was conducted by 

blending the plant material in a polytron. The filtrate from the methanol extraction was 

dried and stored in a desiccator at 4 C until use. 

3.2.3.2 XAD-4 column chromatography  

Amberlite XAD-4 matrix was rinsed extensively with distilled water until free of chloride 

ions using 1 % AgNO3/1N HNO3 solution to test wash water for the presence of chloride 

ions. The XAD-4 matrix was regenerated by successively stirring the matrix in 4 l of 

hexane, acetonitrile and methanol overnight, respectively. The matrix was filtered and 

allowed to dry in between each solvent exchange. The XAD-4 matrix was re-suspended 

in 15 % methanol and packed in a glass column (75x1180 mm). The methanol 

unfermented (MUF) extract (20 g) was dissolved in 50 ml of 15 % MeOH: H2O (v/v) and 

quantitatively applied to the column. Elution was with a stepwise gradient of decreasing 

polarity as shown below (Table 3.1) at a flow rate of approximately 20 ml/min. A pre-

fraction of 500 ml was collected followed by 250 ml fractions during the stepwise 

increase of the MeOH with MeOH:CHCl3 (1:1 v/v; 1.5) as the final eluting solvent. The 

column fractionation of the MeOH extract was conducted in duplicate, with duplicates 

assigned as fractionations F1 and F2. 

3.2.3.3 Thin layer chromatography 

Thin layer chromatography (TLC) was used to analyse the column fractions in order to 

determine the presence of aspalathin and nothofagin, the major flavonoids of rooibos. 

The samples were spotted (20 l) and the TLC plate, which was developed using a 

running solvent containing chloroform:methanol:aceticacid:distilled water (55:36:1:8 

v/v/v/v). The plates were viewed under ultraviolet light (312 nm) followed by spraying 

with methanol:sulphuricacid:aceticacid:p-anisaldehyde 85:5:10:0.5 (v/v/v/v) solution and 

plates heated at 120 °C for 15 min for colour development. Fractions containing 

compounds with similar Rf values were combined, yielding five main fractions consisting 

of two pre-aspalathin fractions (X-1 and X-2), the major aspalathin fraction (X-3), 

aspalathin/nothofagin fraction (X-4) and a post aspalathin and nothofagin fraction (X-5). 

Fractions were dried in vacuo using a rotary evaporator (40 C), weighed (Table 3.5) 
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and stored in sealed round bottom flasks at 4 °C. Dried fractions (30 mg) were dissolved 

in methanol and spotted on TLC plates for the final comparison. 

 

Table 3.1 Stepwise increase of the Methanol (%) utilised for the XAD-4 
fractionation of unfermented rooibos Methanol extract 

Abbreviation: MeOH-methanol, CHCl3–chloroform. 

 

3.2.4 Chemical characterisation of extracts/fractions  

3.2.4.1 HPLC analyses 

HPLC analysis was kindly conducted by the Agricultural Research Council, 

Stellenbosch, South Africa, using the method as described by Beelders et al. (2012). 

Quantification of aspalathin, nothofagin, orientin, isoorientin, vitexin, isovitexin, 

hyperoside, isoquercitrin, rutin, quercetin-3-O-robinobioside, phenylpyruvic acid-2-O-

glucoside (PPAG), and luteolin-7-O-glucoside in rooibos extracts were conducted using 

authentic standards. Quantification of aspalathin, nothofagin and PPAG was monitored 

at 288 nm while the other flavonoids were monitored at 350 nm. Quercetin-3-O-

robinobioside was quantified as rutin equivalents due to unavailability of an authentic 

standard. 

3.2.4.2 Total polyphenol determination 

Total polyphenols (TP) of extracts and column fractions were quantified based on the 

Folin-Ciocalteu reagent method (Singleton & Rossi, 1965). The extracts were diluted to 

Solvent composition 
Volume (ml) 

15 % MeOH* 2000 

25 % MeOH 2000 

50 % MeOH 5000 

75 % MeOH 4500 

100 % MeOH 2000 

MeOH:CH3Cl3 (1:1 v/v) 1500 
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0.15 and 0.25 mg/ml, while the fractions were diluted to 0.15, 0.2 and 0.3 mg/ml. The 

Folin-Ciocalteu reagent (100 μl, diluted 5 times) was prepared in distilled water and 

Na2CO3 (7.5 % w/v) to a final volume of 1l. Gallic acid stock solution (1 mg/ml) was 

prepared in distilled water and diluted to a concentration range of 10, 20, 40, 60, 80 and 

100 µg/ml to generate a standard curve. Folin-Ciocalteu reagent (100 μl), Na2CO3 (80 

μl), and the standards and/or samples (20 μl) were added to the microtiter plate in 

duplicate and incubated for 2 hrs at 30 °C. Absorbance was determined 

spectrophotometrically at 765 nm using a Biotek Synergy HT microplate reader 

(Winooski, Vermont, USA) and TP expressed as mg gallic acid equivalents (GAE)/g of 

the extract and/or column fractions. 

3.2.4.3 Flavanol/proanthocyanidin (FLAVA) determination  

The FLAVA content of extracts and XAD-4 column fractions was determined using the 

4-Dimethylaminocinnamaldehyde (DAC) assay based on the method by Mc Murrough 

and McDowell (1978). The extracts were diluted with distilled water to concentrations of 

0.4 and 0.5 mg/ml and the column fractions to 0.3, 0.4 and 0.5 mg/ml. 4-

Dimethylaminocinnamaldehyde (DAC) reagent was prepared fresh daily in HCl (40 m 

M):MeOH (1:3 v/v) at a concentration of 0.5 mg/ml. The standard, (+) catechin, stock 

solution (0.5 mg/ml) was prepared in methanol and diluted to 2, 5, 10, 15, 20, and 25 

µg/ml with distilled water to generate a standard curve. Standards and/or samples (35 

μl) were pipetted into a 96 well plate in duplicate and incubated with DAC reagent (175 

μl) for 2 min at 37 °C. The absorbance of the samples was determined at 640 nm with 

the Biotek Synergy HT microplate reader (Winooski, Vermont, USA). The flavanol 

concentration was expressed as mg (+) catechin equivalents (CE)/g extract and/or 

column fraction.  

 

3.2.5 Antioxidant assays 

All antioxidant assays were performed on a Biotek Synergy HT microplate reader 

(Winooski, Vermont, USA). Stock solutions of 1 mg/ml extracts and column fractions 

were prepared in distilled water and stored at 4 °C for no longer than 4 days. 
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3.2.5.1 Ferric reducing antioxidant power (FRAP) assay 

The FRAP activity of the extracts and column fractions was determined according to the 

method of Benzie & Stein (1996). Extracts were diluted to 0.15 and 0.25 mg/ml and the 

column fractions to 0.3, 0.4 and 0.5 mg/ml. Acetate buffer (300 mM, pH3.6) was 

prepared by adding 3.1g of sodium acetate and 16ml of glacial acetic acid into 1l 

distilled water and the buffer stored at 4 °C for no longer than 3 months. The FRAP 

reagent was prepared by adding 10 ml of 10 mM TPTZ in 40 mM HCl, 10 ml of 20 mM 

FeCl3 in distilled water and 100 ml of the acetate buffer just before use and kept in the 

dark. A standard curve was generated by using a 5 mM stock of (±)-6-hydroxy-2, 5, 7, 

8-tetramethylchromane-2-carboxylic acid (Trolox) dissolved in ethanol and diluted to 

different concentrations (50, 100, 200, 300, 400 and 500 µM). The FRAP reagent (180 

µl) was added to 20 µl of trolox standard and rooibos samples, incubated at 37 °C for 

four min and the absorbance determined at 592 nm. FRAP was expressed as mmol 

trolox equivalents (TE)/g of extract and/or column fraction. The FRAP determination 

was repeated once.  

3.2.5.2 2, 2’-Azino-bis (3-ethylbenzo-thiazoline-6-sulfonic acid) diammonium 
salt (ABTS) assay 

The ABTS radical scavenging activity of the extracts and column fractions was 

determined according to the method of Re et al (1999). The extracts were diluted to 

concentrations ranging between 0.15 and 0.25 mg/ml and the column fractions to 0.05, 

0.1 and 0.15 mg/ml. The ABTS reagent, dissolved in deionised water to yield a 7 mM 

solution, was prepared 12-16 hrs before use and diluted to yield an absorbance 

between 0.68 and 0.72 before use. Trolox stock solution (1 mM) was prepared to 

generate a standard curve with a concentration series of 50, 100, 150, 200, 250 and 

300 µM. The ABTS reagent (180 μl) was added to standards and rooibos samples (20 

µl) and incubated at 30 °C for 4 min and the absorbance determined at 734 nm. The 

percentage inhibition for the standards was calculated by using the blank as 100 % and 

radical scavenging expressed as mmol TE/ g of extract and/or column fraction. 
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3.2.6 Statistical analysis 

Comparisons between extraction solvents and fermentation type of rooibos extracts 

were analysed by the 2X2 factorial model using the two-way ANOVA and deemed 

significant when p<0.05. For the column fractions, t-test analysis was used to compare 

variations between the first and the second fractionation. Statistical differences between 

the column fractions and the methanol unfermented extract were investigated using a 

one-way ANOVA with the GLM procedure also at p<0.05. 

 

3.3 Results 

3.3.1 Solvent extraction and yields 

Methanol extraction of the unfermented (MUF) rooibos plant material resulted in a two-

fold higher soluble solid recovery compared to the fermented (MF) plant material (Table 

3.2). However, recovery from the aqueous extraction of both the unfermented (AUF) 

fermented (AF) rooibos plant material was comparable and similar to the MUF extract. 

 

Table 3.2 Soluble solid recoveries during extraction of fermented and 
unfermented rooibos with water and methanol. 

 Soluble solids(g)/50 g plant material* 

 1st extraction 2nd extraction Average 

MeOH/unfermented (MUF) 6.8 6.2 6.5±0.42 

MeOH/fermented (MF) 3.4 2.8 3.1±0.42 

Aqueous/unfermented (AUF) 7.4 6.7 7.0±0.49 

Aqueous/Fermented (AF) 6.7 6.7 6.7±0.00 

*The extraction was repeated twice and values shown represent the extract yield from 50 g 
starting plant material. Abbreviations: MeOH–methanol 
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3.3.2 Chemical analysis: rooibos extracts 

HPLC analysis: Aspalathin and nothofagin were more abundant in the unfermented 

rooibos extracts, while isoorientin and orientin were the most abundant polyphenols in 

the fermented extracts (Table 3.3). The MUF and MF rooibos extracts contained 

comparable amounts of luteolin, rutin and isoquercitrin. Higher amounts of hyperoside 

and quecertin-3-O-robinobioside were recovered in the MF extracts. Fermentation 

resulted in a 10-fold decrease in the aspalathin and nothofagin levels in the methanol 

extracts. This resulted in a concomitant 2-fold increase in the levels of the oxidised 

products of aspalathin, orientin and isoorientin, and of nothofagin, vitexin and isovitexin. 

In the aqueous extracts, fermentation resulted in a 20 to 15 fold lower levels of 

aspalathin and nothofagin while the levels of the oxidised products were similar. 

Methanol extraction was more efficient in recovering monomeric polyphenol compounds 

compared to aqueous extraction as it contained higher amounts of all the compounds 

detected as lower levels of the rooibos flavonoids were detected in the aqueous extracts  

Total polyphenol (TP) content: Both MUF (p<0.0001) and AUF (p=0.0017) extracts 

contained significantly higher TP levels when compared to their fermented counterparts 

(Table 3.4). Methanol extraction of unfermented plant material was significantly more 

efficient in extracting TP when compared to Aq (p<0.0001), while no difference in TP 

content was noticed between the Aq and MeOH extracts of the fermented plant 

material. 

FLAVA content: Both MUF AUF rooibos extracts contained significantly (p<0.0001) 

higher levels of FLAVA compared to the corresponding fermented rooibos extracts 

(Table 3.4). Methanol extraction of unfermented plant material was significantly more 

efficient in extracting FLAVA constituents when compared to the aqueous extraction 

(p<0.0001), while no significant difference was noticed between the AF and MF 

extracts. 
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Table 3.3 Concentration of monomeric compounds in fermented and unfermented 
rooibos extracts prepared with methanol and water. 

Flavonoid 

classes 

Flavonoid 

(g/100g extract) 

MUF MF AUF AF 

Dihydrochalcones Aspalathin 11.21±0.69 0.98±0.02 9.04±0.11 0.46±0.01 

 Nothofagin 1.99±0.08 0.19±0.00 1.4±0.03 0.10±0.00 

Flavones Isoorientin 1.48±0.03 3.13±0.05 0.89±0.03 1.05±0.02 

 Orientin 1.10±0.02 2.30±0.02 0.73±0.03 0.97±0.03 

 Vitexin 0.19±0.00 0.48±0.01 0.12±0.00 0.17±0.01 

 Isovitexin 0.27±0.00 0.60±0.01 0.16±0.00 0.18±0.00 

 Luteolin 0.24±0.00 0.25±0.02 Nd 0.03±0.00 

Flavonols Rutin 0.44±0.00 0.43±0.01 0.37±0.01 0.23±0.00 

 Isoquecitrin 0.41±0.01 0.48±0.00 0.27±0.01 0.18±0.00 

 Hyperoside 0.36±0.01 0.58±0.01 0.23±0.01 0.21±0.00 

 Quecertin-3-O-
robinobioside 

1.00±0.02 1.66±0.03 0.83±0.00 0.89±0.01 

 PPAG 0.43±0.00 0.71±0.01 0.47±0.00 0.54±0.01 

 Ferrulic Acid nd 0.11±0.00 Nd 0.06±0.00 

Values represent means ± standard deviation of duplicate determinations. Abbreviations: 
MUF-methanol unfermented, MF-methanol fermented, AUF–aqueous unfermented, AF–
aqueous fermented. PPAG-phenylpyruvic acid-2-O-glucoside 

 

3.3.3. Antioxidant properties 

FRAP assay: Both MUF (p<0.0001) and AUF (p<0.0001) extracts exhibited 

significantly higher antioxidant activity compared to the fermented rooibos extracts 

(Table 3.4). The MUF extract displayed significantly higher (p<0.0001) antioxidant 

activity when compared to the AUF extract. However, no difference in antioxidant 

activity was noticed between the MF and AF extracts. 

ABTS assay: The radical scavenging activity of the MUF (p<0.0001) and AUF 

(p=0.001) extracts were significantly higher when compared to their fermented 

counterparts (Table 3.6). The MUF extract exhibited significantly (p=0.0178) higher 
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radical scavenging activity compared to the AUF, while no difference in antioxidant 

activity was noticed between the MF and AF rooibos extracts.  

 

Table 3.4 Polyphenol content and antioxidant activity of rooibos extracts from 

unfermented and fermented plant material. 

  Unfermented Fermented 

TP 

(mg GAE/g extract) 

MeOH 344.1±21.7A
a 244.7±15.6A

b 

Aqueous 285.9±10.4B
a
 258.7±12.4A

b 

    

FLAVA 

(mg CE per g extract) 

MeOH 34.3±6.3A
a 8.6±1.9A

b 

Aqueous 22.5±2.0B
a 10.7±1.9A

b 

    

FRAP 

(mmol TE/g extract) 

MeOH 2.18±0.16A
a 1.27±0.08A

b 

Aqueous 1.65±0.16B
a 1.31±0.09A

b 

    

ABTS 

(mmol TE/g extract) 

MeOH 1.93±0.38A
a 1.03±0.10A

b 

Aqueous 1.63±0.23B
a 1.19±0.13A

b 

    

Values represent means ± standard deviations of duplicate determinations from two different 
experiments. Comparisons between extracts were analysed by the 2X2 factorial model using the 
GLM procedure and significant differenced indicated by p<0.05. Different letters indicate p<0.05, 
Subscript capital letters indicate difference between extraction type (MeOH vs Aqueous) and 
superscript (small caps) indicates difference between extract type (fermented vs unfermented). 
Abbreviations: TP - Total polyphenols, FRAP-Ferric reducing antioxidant power assay, ABTS-2, 
2’-Azino-bis (3-ethylbenzo-thiazoline-6-sulfonic acid) diammonium salt assay; FLAVA – 
flavanol/proanthocyanidin; CE = (+) catechol equivalents, MeOH – methanol, TE – Trolox 
equivalents 
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3.3.4 XAD-4 column fractionation of the unfermented MeOH extract and fraction 
yields 

The MUF extract, containing the highest levels of polyphenols (Table 3.3, Table 3.4) 

and antioxidant activity (Table 3.4), was selected to be fractionation by chromatography 

on an XAD-4 column. The collected fractions were also chemically characterised by 

HPLC, and TP and FLAVA content as well as antioxidant properties were determined. 

Thin layer chromatography analysis of the 60 fractions collected from the XAD-4 column 

resulted in combination of fractions 1-6 (X-1), 7-21 (X-2), 22-36 (X-3) and 37-60 (X-4) 

and the remainder fraction (X-5) from the MeOH:CHCl3 (1:1) elution (Table 3.5). Group 

separation during the stepwise increase in the methanol content resulted in fractions 

containing the major groups of non-flavonoid (X-1 to X-2) and flavonoid constituents (X-

3 to X-5) of rooibos. Both column fractionations (F1 and F2) provided similar group 

separations, although the second fractionation showed low levels of aspalathin in 

fraction X-1 (Fig 3.1). 

 

Figure 3.7. TLC profile of the different fraction form XAD-4 chromatography showing 
the different compounds found on each fraction. Dried fractions (30 mg) 
were dissolved in methanol (100μl) and spotted on TLC plates and 
developed for two hrs. 
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Overall the two fractionations resulted in a high recovery of over 85 % of the original 

MUF extract (20 g) although a lower recovery was obtained during the second column 

fractionation (F2). Fraction X-5 had the lowest yield while fractions X-2 and X-4 gave the 

highest yield from both fractions. An approximate 50 % lower yield was obtained for 

fraction X-1 during the second (F2) column fractionation (Table 3.5). 

 

Table 3.5 Fraction yield (g) of the XAD-4 fractionation of the MUF rooibos extract (g). 

Solvent 
Combined 

fractions** 
Fraction F1 F2 

15 % (MeOH/H20) 
Pre-fraction 

(500 ml) + 1-6 
X-1 4.0 2.4 

25-50 % (MeOH/H20 7-21 X-2 5.2 5.2 

50 – 75 % (MeOH/H20) 22-36 X-3 3.2 2.8 

75-100 % (MeOH/H20) 37-60 X-4 5.9 5.7 

MeOH:MeOH/CHCl3(1:1) 
61+ 

(2l) 
X-5 1.2 1.0 

Total   19.5 17.1 

%Recovery*   97.5 85.5 

Abbreviations: X-XAD-4 fractions (250 ml), F1-1st fractionation, F2-2nd fractionation. *Fraction 
recovery was expressed as a percentage of 20 g MeOH extract applied to the column. **Combination 
of the fractions was slightly different during the 2nd fractionation.  

 

3.3.4.1 Chemical characterisation of XAD-4 column fractions 

HPLC analysis (Table 3.6): None of the known rooibos flavonoids found in the MUF 

extract were detected in fractions X-1 and X-2 from the first fractionation (F1), which 

contained the more polar constituents. However, low levels of all the flavonoids, were 

detected in fraction X-1 and to some extend in fraction X-2 from the second fractionation 

(F2), which could be related to weak column equilibration prior to the fractionation of the 
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MUF extract. The major rooibos flavonoids detected in the MUF extract were enriched 

in fraction X-3 and X-4, with aspalathin, orientin and isoorientin detected in equal 

amounts in both fractions while nothofagin was more concentrated in fraction X-4. 

Vitexin and isovitexin, oxidised products of nothofagin and luteolin, rutin, hyperoxide, 

isoquecetrin and quercitrin-3-O-robinobioside were enriched in fraction X-4. 

Fractionation F2 provided similar results with respect to the distribution of these rooibos 

flavonoids in X-3 and X-4. Fraction X-5, which contained the least polar constituents, 

had far less rooibos flavonoids with F2 yielding slightly higher flavonoid levels. 

Total Polyphenol content (Table 3.7): Fractions X-1 and X-5 of F1 contained similar 

levels of polyphenols, which were significantly lower than the MUF extract. Fraction X-2 

contained the lowest TP levels, while the polyphenols were enriched (P<0.05) in 

fractions X-3 and X-4. Significantly (p<0.05) higher TP levels were detected in X-1 when 

compared to the MUF extract during F2, which as mentioned above, is related to 

inadequate column equilibration. Fraction X-2 again exhibited the lowest TP levels in F2 

with fraction X-5 containing similar levels of TP to fraction X-5 of F1. The TP levels were 

again enriched in fraction X-3 and X-4 for F2 with fractions X-3 containing the highest 

TP levels (P<0.05).  

FLAVA content: Fractions X-1 and X-4 from F1 contained comparable FLAVA 

levels, which were significantly lower than the MUF extract. The lowest FLAVA levels 

were detected in the X-2 and X-5, while fraction X-3 contained similar levels when 

compared to the MUF extract. During the F2, fraction X-1 contained significantly higher 

FLAVA levels than the MUF extract. A similar trend is noticed for fractions X-2 and X-5, 

containing the lowest FLAVA levels although it was significantly higher than the 

corresponding fractions from F1. Fractions X-3 and X-4 from F2 contained similar 

FLAVA levels when compared to the MUF extract. 
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Table 3.6 Concentrations of monomeric compounds in fractions from an XAD-4 column chromatography of the 
Methanol unfermented extract  

Flavonoid classes 
Flavonoids 

(g/100g extract/fraction) 
MUF 

X-1 X-2 X-3 X-4 X-5 

F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 

Dihydrochalcones 

Aspalathin 14.1 Nd 3.39 0.09 0.33 30.59 29.64 27.95 31.83 1.49 2.23 

Nothofagin 1.89 Nd 0.40 nd nd 1.55 1.40 5.06 5.19 0.74 1.87 

Flavones 

Orientin 1.31 Nd 0.72 nd 0.07 2.76 2.41 2.61 2.92 0.35 0.47 

Isoorientin 1.75 Nd 1.07 nd 0.07 3.36 2.62 3.68 4.09 0.41 0.70 

Vitexin 0.25 Nd 0.10 nd nd 0.34 0.28 0.59 0.65 2.13 0.20 

Isovitexin 0.33 Nd 0.17 nd nd 0.24 0.17 0.85 0.81 0.45 0.78 

Luteolin 0.30 Nd 0.18 nd nd 0.23 0.16 0.81 0.79 0.51 0.66 

Flavonols 

Rutin 0.51 Nd 0.42 nd nd 0.57 0.44 1.20 1.13 0.52 0.90 

Hyperoxide 0.41 Nd 0.21 nd nd 0.32 0.25 1.04 1.00 0.54 1.00 

Isoquecetrin 0.51 Nd 0.24 nd nd 0.35 0.25 1.32 1.28 0.62 1.18 

Quecertin-3-O-
robinobioside 

1.15 Nd 1.03 nd nd 0.87 0.66 2.82 2.37 2.13 3.42 

 PPAG 0.51 Nd 0.17 0.10 0.39 nd 1.10 1.19 0.79 0.50 0.14 

Values in a column are from two different XAD-4 fractionation runs (F1 and F2). Abbreviations: MUF-methanol unfermented, X1 to X5 –
XAD-4 column fractions. PPAG -phenylpyruvic acid-2-O-glucoside 
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3.3.5 Antioxidant activity of the XAD-4 fractions 

FRAP assay: With the F1, fractions X-1 and X-5 exhibited similar and significantly 

lower than the MUF extract iron reducing activities with fraction X-2 showing the lowest 

antioxidant activity (Table 3.7). The highest antioxidant activity in F1 was obtained in 

fraction X-3 followed by X-4 both of which did not differ significantly from the MUF 

extract. F-2 provided similar results except for fraction X-1 and X-3, which exhibited an 

increased FRAP activity in relation to F1 and X-5, which exhibited a lower FRAP 

activity. No enrichment of the FRAP activity of the MUF extract was achieved. 

ABTS assay: In contrast to the FRAP assays, fractions X-1, X-3 and X-4 from F-1 

exhibited the highest activity and did not differ significantly from each other and from the 

MUF extract. Fractions X-2 and X-5 exhibited comparable and significantly lower 

(P<0.05) radical scavenging activity compared to MUF. No significant difference 

(P<0.05) in the antioxidant activity was noticed between the fractions X-3, X-4 and MUF 

from F2, while the activity of fraction X-1 was significantly lower than the MUF extract 

(P<0.05). Fraction X-2 from F2 exhibited the lowest activity while fraction X-5 was also 

significantly (P<0.05) lower than the MUF extract. 

Overall the highest antioxidant activity across both column fractionations was 

associated with fractions X-3 and X-4 for both FRAP and ABTS assays while no 

enrichment of the antioxidant activity was obtained. 
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Table 3.7 Chemical characterization and antioxidant activity of XAD-4 fractions from a methanol unfermented extract 
 MUF X-1 X-2 X-3 X-4 X-5 

F-1 F-2 F-1 F-2 F-1 F-2 F-1 F-2 F-1 F-2 

TP 

(mg GAE/g extract) 

178.9 

(8.8)cC 

99.9 

(4.7)*
d 

230.8 

(21.2)*B 

30.7 

(4.8)f 

40.2 

(7.8)E 

257.3 

(9.6)*
a 

278.5 

(11.4)*A 

213.2 

(5.5)b 

224.3 

(34.7)B 

80.9 

(3.3)e 

89.7 

(11.5)D 

Flavanol 

(mg CE/g extract 

35.6 

(7.6)aB 

18.9 

(3.4)*
b 

55.0 

(4.0)*A 

0.8 

(0.3)*
c 

2.0 

(0.6)*C 

38.2 

(1.7)a 

38.1 

(4.2)B 

15.0 

(2.6)*
b 

29.1 

(0.5)*B 

1.4 

(0.5)*
c 

5.9 

(0.5)*C 

FRAP 

(mmol TE/g extract) 

2.23 

(0.35)bAB 

0.93 

(0.07)*c 

1.67 

(0.21)*B 

0.21 

(0.03)d 

0.24 

(0.02) C  

2.41 

(0.34)*
a 

3.22 

(0.17)*A  

2.17 

(0.48)b 

2.47 

(0.10)AB 

0.86 

(0.04)*
c  

0.75 

(0.04)*C 

ABTS 

(mmol TE/g extract) 

2.80 

(0.32)aA 

2.26 

(0.49)a 

1.93 

(0.26)B 

0.25 

(0.01)*
b 

0.23 

(0.01)*C 

2.94 

(0.51)a 

2.93 

(0.19)A 

2.72 

(0.47)a 

2.8 

(0.46)A 

0.79 

(0.12)b 

1.01 

(0.19)D 

The values represent duplicates from two different experiments. Subscript – ONE WAY ANOVA testing differences between means of all 

the fractions from F1 including the MUF extract. Uppercase- ONE WAY ANOVA testing differences between means of all the fractions from 

F2 including the MUF extract. Means that do not differ significantly are indicated by the same letter and if letters differ then means are 

significantly different. *Indicates significant differences (P<0.05) between fractionation 1 and 2. Abbreviations: MUF-methanol unfermented, 

X-XAD fraction, TP-Total polyphenols DAC -4-Dimethylaminocinnamaldehyde, FRAP-Ferric reducing antioxidant power assay, ABTS-2, 2’-

Azino-bis (3-ethylbenzo-thiazoline-6-sulfonic acid) diammonium salt assay, F1 – fractionation 1, F2- fractionation 2, GAE – gallic acid 

equivalent, CE – catechin equivalent, TE – Trolox equivalent. 
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3.4 Discussion 

The use of herbal teas has received increased attention due to their proposed health 

benefits associated with their antioxidant properties (Joubert et al., 2009; Joubert & De 

Beer, 2011). As a result, rooibos has developed from being consumed as a household 

beverage to preparation of extracts as a value added product for use in foods, dietary 

supplements, and in pharmaceutical and cosmetic products (Joubert & De Beer, 2011). 

Rooibos tea is known for its low tannin levels, although it has been reported that 50 % 

of the hot water extract soluble solids is tannin-like substances (Joubert et al., 2008). 

The main constituents consist of proanthocyanidin type of heteropolymers, containing 

(+)-catechin and (−)-epicatechin chain extending units and (+)-catechin as terminal unit 

(Marais et al., 1998). Of the monomeric polyphenolic constituents, rooibos is known to 

contain the unique dihydrochalcones, aspalathin and nothofagin (Joubert, 1996; Joubert 

& De Beer, 2012). Other flavonoids present in rooibos include the flavones, orientin, 

isoorientin, vitexin, isovitexin, luteolin, the flavonols, rutin, isoquercitrin, quecertin, 

hyperoside, luteolin-7-O-glucoside and the flavanol, catechin (Ferreira et al., 1995.; 

Koeppen et al., 1962; Marais et al., 2000; Rabe et al., 1994; Shimamura et al., 2006).  

The chemical structures of some of these rooibos flavonoids are illustrated in Fig 3.2. 

The bioactive polyphenolic compounds can be selectively extracted with different 

organic solvents (Perva-Uzunalić et al., 2006) and the polarity of the extraction solvent 

is important in determining the yield of the recovered soluble solids (Franco et al., 

2008). Other factors influencing the yield and efficiency of extraction include the 

extraction time and temperature as well as chemical and physical characteristics of the 

sample (Dai & Mumper, 2010). Solvents commonly used in extracting polyphenols 

include methanol, ethanol, ethyl acetate, acetonitrile and water (Franco et al., 2008). 

Methanol is found to be a more efficient extraction solvent for simple, low molecular 

weight polyphenols, while more polar solvents, like water, are more efficient in 

extracting the more complex polyphenols (Franco et al., 2008; Metivier et al., 1980). In 

support of this, major polyphenols from leaves of persimmon (Diospyros kaki), which 

were mainly proanthocyanidins, were found to be water soluble (Kayoko et al., 2010) 
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while extraction of polyphenols and proanthocyanidins from pomegranate’s peel was 

found to be more effective with water as the extraction solvent (Wissam et al., 2012). 

Results obtained from the current study are in accordance with literature in that 

methanol extraction is more efficient in extracting major monomeric flavonoids from the 

rooibos plant material. This was evident as the methanol extracts, both MUF and MF, 

contained more polyphenols compared to the aqueous extracts, AUF and AF, according 

to the HPLC, TP and FLAVA analyses. However, the extraction yield from the 

fermented plant material was about 50 % lower compared to the unfermented plant 

material when using methanol as the extraction solvent. The low yield is likely as a 

result of the oxidation of monomeric flavonoids as well as other rooibos constituents. In 

support of this suspicion, aspalathin and nothofagin were reduced by approximately 10-

fold, with a concomitant increase in the oxidised products including orientin, isoorientin, 

vitexin and isovitexin after fermentation. In contrast, aqueous extraction resulted in 

similar yields from both the fermented and unfermented plant material. The fermented 

rooibos plant material is known to contain more complex flavonoids as a result of the 

oxidation, which are likely to be more soluble in water as mentioned above. Therefore, 

the aqueous solvent seems to more effectively extract these complex polyphenols as 

the AF extract contained slightly higher TP and FLAVA (flavanol/proantocynidins) levels 

compared to the MF extract. This data is in accordance with reports that polyphenols of 

the proanthocyanidin type are more water soluble as mentioned above (Kayoko et al., 

2010).  

Extracts prepared from the unfermented rooibos exhibited significantly higher 

antioxidant activity in both the ABTS and FRAP assays compared to the corresponding 

fermented extracts due to the far higher levels of the rooibos flavonoids. As expected 

the antioxidant levels of rooibos extracts were reduced during fermentation, which is in 

agreement with studies indicating that a decrease in TP content of fermented rooibos is 

associated with a reduction in radical scavenging properties (Standley et al., 2001; 

Joubert et al., 2004). 

. 

Stellenbosch University  https://scholar.sun.ac.za



Chapter 3 

87 
 

 

Figure 3.8 Chemical structures of major flavonoids of rooibos (Adapted from Snijman, 2007) 
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The reduction in antioxidant activity is related to the oxidation of aspalathin and 

nothofagin, as mentioned above and the formation of their oxidised flavones 

constituents. It has been shown that these oxidised compounds exhibit reduced 

antioxidant activity in the ABTS and lipid peroxidation assays (Snijman et al, 2009). 

Therefore, solvent selection for the extraction of rooibos polyphenols and the recovery 

of optimal antioxidant activity seems to be critical in providing the desired outcome of 

extracts. Depending on the specific outcome needed, a specific solvent system can be 

selected, e.g. extraction of rooibos with a less polar solvents, such as ethyl acetate, 

increased the antioxidant potency of the extract, although the recovery of polyphenols 

was much lower (Joubert et al., 2004). Our study, however, suggests that for optimal 

recovery of polyphenols (TP and FLAVA) and increased antioxidant activity (FRAP and 

ABTS) methanol should be used for extraction. A specific solvent system should 

therefore be selected to obtain an extract for investigating a specific biological effect as 

in certain biological systems high antioxidant potency would not be of value 

In order to further identify the most active flavonoid and/or flavonoid combinations in the 

rooibos extract, chromatographic fractionation of the unfermented rooibos methanol 

extract was conducted using an XAD-4 resin. Column chromatography utilising specific 

matrixes has been reported to be an effective method of separating polyphenols with 

the XAD resins generally used for the adsorption of organic compounds, specifically for 

hydrophobic compounds up to MW 20000 (Ku & Lee, 2000). Amberlite XAD-2, and 

XAD-4, are macro-reticular, hydrophobic and poly-aromatic resins and have been 

widely used for the separation of low molecular weight compounds. XAD was reported 

to be more efficient in adsorbing organic compounds compared to silica gels, alumina 

and activated carbon columns due to their wide range of pore structures and 

physiochemical characteristics, chemical stability as well as high selectivity for aromatic 

solutes (Li et al., 2001). Flavonoids adsorb to the resin through van de Waals forces, 

which is dependent on the pH of the elution solvent, number of benzene rings and the 

functional groups on the benzene ring (Ku & Lee, 2000). The main aim of the current 

study was to separate the major flavonoid and/or non-flavonoid constituents utilising a 

solvent eluting system of aqueous and methanol stepwise gradient and to characterise 

these in terms of their polyphenol content as well as antioxidant properties.  
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Five fractions of decreasing polarity were collected with major rooibos flavonoids 

enriched in fractions X-3 and X-4, which also exhibited the highest antioxidant activities. 

These fractions were collected during fractionation when using the 50 to 100 % 

methanol:aqueous eluting solvent. The more polar fractions (X-1 and X-2), eluting in the 

15 to 50 % aqueous:Methanol solvent, contained low levels of polyphenols. The most 

non-polar fraction, X-5, collected during the MeOH:CHCl3 (1:1 vol/vol) elution step, 

contained low TP and flavanol levels and also exhibited weak anti-oxidant activity. F-2, 

however, provided different results from that of F1 for fraction X-1, when considering the 

TP and flavanol constituents, presumably due to weak column equilibration. This 

became evident from the HPLC analyses of fraction X-1 as low levels of all the rooibos 

flavonoids were detected suggesting possible sample spill-over into the solvent front 

peak.  

The antioxidant activity of the 5 fractions (X-1 – X-5) was consistent with the chemical 

analysis with fractions X-3 and X-4, which contained the bulk of the rooibos flavonoids, 

exhibiting the highest activity. Fractions X-1 (F1) and X-2 (F1 and F2), containing almost 

no flavonoids, exhibited the lowest antioxidant activity, while X-5 (F1 and F2) exhibited 

the second lowest antioxidant activity. It appears that the antioxidant activity of rooibos 

is mainly dependant on the dihydrochalcones and their oxidation flavones and flavonol 

products. The FLAVA content does not seem to be associated with anti-oxidant 

response as the high FLAVA content of fraction X-1 (F2) does not result in high 

antioxidant activity. This became apparent as X-1 (F-2) exhibited a weaker activity than 

fractions X-3 and X-4 in both the FRAP and ABTS assays (Table 3.7). This has 

interesting implications for the biological activities of FLAVA and the interaction with iron 

as will be discussed in the subsequent chapters in the current thesis. Of interest was 

that the iron reduction power (FRAP) of fraction X-3 from F2 was significantly higher 

when compared to X-4 while the radical scavenging activity (ABTS) was similar. Thus 

the high nothofagin content of fraction X-4 seems to decrease the iron reducing capacity 

of the fraction, presumably due to the lack of the catechol group on the B-ring (Fig 3.2) 

known to be important in the iron chelating properties of rooibos flavonoids (Snijman et 

al., 2009). Aspalathin and nothofagin have been shown to exhibit similar ABTS 

scavenging properties while the iron chelating properties differed vastly when 
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considering the inhibition of iron induced microsomal lipid peroxidation (Snijman et al., 

2009).  

In summary, methanol appears to be a more efficient extraction solvent than water for 

rooibos unfermented plant material to obtain extracts with a high yield of rooibos 

flavonoids with a maximum antioxidant capacity. Although, fractionation of the MUF 

extract resulted in enrichment of the dihydrochalcones content and TP levels in fractions 

X-3 and X-4, the FLAVA content and antioxidant activity was similar to the original MUF 

extract. This would imply that specific combinations of polyphenols are required to 

sustain a specific antioxidant response. The antioxidant properties of rooibos however 

are thought to be important when considering the health benefits such as anti-

inflammatory activity. Therefore, the differential antioxidant activity of the rooibos 

extracts and XAD-4 fractions could be valuable in assessing specific biological 

properties e.g. the anti-inflammatory and possible anti-carcinogenic properties of 

rooibos. 
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Abstract 

Rooibos (Aspalathus linearis), a South African herbal tea known to contain 

numerous polyphenols, specifically the flavonoids, known to exhibit anti-inflammatory 

properties in vivo. In the current study the anti- and pro-inflammatory effects of 

methanol and aqueous fermented (MF and AF) and unfermented (MUF and AUF) 

rooibos extracts and flavonoid and non-flavonoid enriched column fractions of the 

MUF extract were monitored in a UV-B/HaCaT keratinocyte inflammatory model 

utilising IL-1α and cell survival indices as endpoints. In the absence of UV-B the 

methanol extracts were the most active in increasing IL-1α production reflecting a 

pro-inflammatory effect, which was associated with a decrease in cell viability and an 

increase in apoptosis at the highest concentrations. In contrast, the aqueous extracts 

decreased IL-1α production at all concentrations with a similar but weaker effect on 

the cell growth parameters at the higher concentrations. The MUF extract and 

flavonoid-enriched column fractions X-3 and X-4 and the more non-polar fraction X-

5, showed similar effects regarding the induction of IL-1α and a decrease in cell 

growth parameters at the highest concentrations. The non-flavonoid fraction X-1 also 

increased IL-1α associated with a drastic decrease in both cell viability and 

apoptosis, presumably due to the induction of cell necrosis. Fraction X-2 resulted in 

a decrease in IL-1α at high concentrations only slightly affected cell viability and 

induction in apoptosis suggesting an anti-inflammatory effect. In the presence of UV-

B all the rooibos extracts decreased IL-1α production with a further decrease in the 

cell growth parameters with the MUF extract exhibiting the highest activity. Both 

MUF and AUF extracts also decrease apoptosis at the highest concentration again 

suggesting the induction of cell necrosis. The MF and AF extracts decrease IL-1 in 

the absence of any effect on cell viability and apoptosis at low concentrations 

suggesting a direct anti-inflammatory effect. Of the column fractions, X-1, X-3 and X-

4 decreased both IL-1α and apoptosis with a dramatic decrease in cell viability 

simulating the effect of the MUF and AUF. In contrast fraction X-5 mimicked the pro-

inflammatory effect obtained in the absence of UV-B irradiation although both cell 

viability and apoptosis decreased. Fraction X-2 seems not exhibited any effect on IL-

1αand/or apoptosis although cell viability was slightly decreased at the highest 

concentrations. Flavonoids are known to exhibit pro-oxidant effects at high 

concentrations which could be enhanced in the presence of UV-B leading to a 
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decrease in cell survival indices by enhancing apoptosis and presumably cell 

necrosis, the latter which could further enhance inflammation. Critical dose response 

effects  therefore seem to exist whereby rooibos flavonoid and non-flavonoid 

constituents exhibit either anti- or pro-inflammatory effects in the absence and 

presence of UV-B irradiation which complicate the utilisation of polyphenol-enriched 

extracts as a chemopreventive tool in UV-B-induced skin carcinogenesis. 
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4.1. Introduction 

Skin damage occurs in response to various stimuli such as bacteria, fungi, chemical 

irritants or exposure to ultraviolet radiation (Suter et al., 2009). The latter is the most 

common cause of skin damage and can initiate a cascade of complex events that 

lead to skin carcinogenesis (Sarasin, 1999). Such events include oxidative stress, 

DNA damage, an inability to initiate apoptosis and inflammation (Mouret et al., 2006). 

Inflammation in the skin encompasses the stimulation of various inflammatory 

mediators such as release of pro-inflammatory cytokines, expression of inflammatory 

genes and leukocyte infiltration. Cytokines play a key role in local immune and 

inflammation responses in cells and the balance between pro- and anti-inflammatory 

cytokines should be tightly regulated in order to prevent the development of chronic 

inflammation (Santangelo et al., 2007). Specific cytokines are released by different 

skin cells with the pro-inflammatory cytokines, interleukin 1 alpha (IL-1α), tumor 

necrosis factor alpha (TNF-α) and IL-6, as key role players in inflammation. In the 

keratinocytes, IL-1α is constitutively produced and is retained inside the cell. The 

cytokine is only released during disease states making it a good measure of the 

extent of damage to the cell (Luo et al., 2004). During apoptosis, however IL-1α is 

retained in the nuclei and subsequently degraded without affecting inflammation 

(Cohen et al., 2010). 

Acute inflammation is short term, self-limiting and is anticipated to be therapeutic to 

the host organism; whereas an excessive, prolonged inflammatory response can 

lead to chronic inflammation. The latter involves the generation of various oxidants, 

i.e. superoxide anions, hydroxyl radicals, hydrogen peroxide and nitric oxide by 

inflammatory cells, which damage normal tissue resulting in induction of signalling 

molecules and enzymes leading to the development of degenerative diseases i.e. 

neurological diseases, metabolic disorders, cardiovascular disease and cancer 

(Santangelo et al., 2007). The strong association between chronic inflammation and 

cancer has resulted in the investigation of anti-inflammatory drugs as a possible tool 

in chemoprevention. The focus has been on the development of anti-inflammatory 

drugs from naturally occurring compounds such as the flavonoids found in plants 

since synthetic anti-inflammatory drugs currently utilised exert other adverse side 

effects (Kristina et al, 2010). 
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The anti-inflammatory activity of polyphenols is thought to inactivate the transcription 

of pro-inflammatory enzymes such as cyclooxygenases (COX), lipooxygenase (LOX) 

and inducible nitric oxide syntheses (iNOS) as well as to enhance the activity of 

peroxisome proliferators (Williams et al., 2004). Polyphenols may also inhibit the 

activity of phospholipase kinases, tyrosine kinases and the nuclear factor kappa beta 

(Yoon & Baek, 2005). In addition, polyphenols have been found to inhibit the activity 

of phospholipase A2 (PLA2), COX and LOX thereby reducing the release of 

arachidonic acid (AA) and subsequently its eicosanoid products, prostaglandins 

(PGs) and leukotrienes (LTs), which have anti-inflammatory implications (Aviram & 

Fuhrman., 1998; Baumann et al., 1980; Laughton et al., 1991; Weltonet al., 1986; 

Yoon & Baek, 2005). 

The South African herbal tea, rooibos, is known to exhibit antioxidant and anti-

inflammatory effects associated with its polyphenol content (Joubert et al., 2008). 

The anti-cancer properties of rooibos have been reported to include the inhibition of 

methyl-benzyl-nitrosamine (MBN)-induced oesophageal squamous cell 

carcinogenesis in rats as well as modulating skin tumor promotion in a 

dimethylbenzanthracene initiated and phorbol ester cancer promotion mouse skin 

carcinogenesis model, implying disruption of growth regulatory parameters in pre-

cancerous lesions (Marnewick et al., 2005; Sissing et al., 2011). However, at present 

very little is known about the anti-inflammatory effects of rooibos and the role in 

modulating skin carcinogenesis.  

The current investigation initiated studies on the anti-inflammatory effects of rooibos 

in post exposure UV-B/HaCaT keratinocyte cell model (Magcwebeba et al., 2012) 

using IL-1α as biomarker for inflammation. The modulation of IL-1α accumulation by 

methanol and aqueous extracts of fermented and unfermented rooibos as well as 

flavonoid and non-flavonoid enriched fractions, prepared from the unfermented 

methanol rooibos extract, were investigated. In addition, cell viability and apoptosis 

were evaluated. 
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4.2. Materials and methods 

4.2.1. Chemicals and reagents 

RPMI-1640, Dulbecco’s phosphate buffered saline (DPBS), L-glutamine, trypsin-

versene (EDTA), Hank’s buffered salt solution (HBSS) and heat inactivated fetal 

bovine serum (FBS) were obtained from Lonza (Braine-l’Alleud, Belgium). Human 

recombinant IL-1α ELISA kit was purchased from R&D systems (Minneapolis, USA). 

CellTiter-Glo luminescent cell viability and caspase-3/7 assay kits were purchased 

from Promega (Madison, USA). Triton X-100 for membrane research was obtained 

from Roche (Indianapolis, USA).  

 

4.2.2. Plant material, preparation of extracts and column fractionation 

Unfermented and fermented rooibos plant material was purchased from Rooibos Ltd 

(Clanwilliam, South Africa). Extracts were prepared as described in chapter 3; briefly, 

methanol extracts were prepared by stirring plant material first in chloroform for 24 

hrs and filtering; this step was repeated two times. The residual plant material was 

homogenised in methanol using a polytron and filtering, this step was also repeated 

two times. The resulting filtrate was evaporated at 40 °C using a rotary evaporator. 

The aqueous extracts were prepared by steeping the plant material in boiled water 

for 30 min, filtered and the resulting filtrate freeze dried. All the extracts were stored 

desiccated in amber bottles at room temperature. 

The methanol unfermented (MUF) extract was fractionated by column 

chromatography using XAD-4 amberlite resin. Briefly, the column was prepared in 15 

% methanol and the extract applied in 15 % methanol. The column was eluted using 

a step wise gradient of decreasing polarity as described in chapter 3 and fractions 

were pooled following thin layer chromatography analysis, concentrated by 

evaporation in vacuo at 40 ºC and stored at 4 C. 
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4.2.3. Cell maintenance 

Immortalized keratinocytes, HaCaT cells, were a gift from the Department of Human 

Biology at the University of Cape Town, South Africa. The HaCaT cell model is a 

spontaneously transformed immortal keratinocyte cell line from adult human skin 

which is commonly used in research related to skin keratinocytes. The cells have a 

high capacity to differentiate and proliferate in vitro. The cells were grown in RPMI-

1640 supplemented with 10 % FBS and 2 mM L-Glutamine and cultured for 24 hrs at 

37 °C in 5 % CO2/95 % air. Cells were detached with trypsin-EDTA and seeded at a 

density of 180 000 cells/well in clear 24 well plates (cytokine and caspase-3/7 

determinations) or 30000 cells/well in solid white 96 well plates for cell viability. 

 

4.2.4. Experimental conditions 

4.2.4.1. UV-B irradiation 

Prior to UV-B irradiation, the culture medium was removed and DPBS (100 µl) added 

to 96 well plates and for 24 well plates (600 µl) prior to UV-B irradiation. Non 

irradiated plates were washed with the same volume of DPBS. A UV crosslinker 

(UVitek Limited, Aberdeen, UK) fitted with six 8 watt UV tubes emitting an average 

wavelength of 312 nm (Vilberlourmat, Marne La Vallée, France) was used for 

irradiation at 80 mj/cm2 24 hrs after seeding. 

4.2.4.2. Treatment with extracts and/or column fractions 

Stock solutions of tea extracts and column fractions were prepared in RPMI-1640 

supplemented with 0.5 % FBS, 2 mM L-GLUT to a concentration of 2 mg/ml with 

final DMSO concentration of 0.5 % and filtered using Minisart syringe filters 

(Sartorius Stedim Biotech GmbH, Goettingen, Germany). These stock solutions were 

diluted to obtain rooibos concentrations varying between 0.025 mg/ml to 0.8 mg/ml 

to obtain specific dose response effects. After irradiation, DPBS was removed and 

the cells were incubated with the extracts and/or column fraction containing culture 

medium for an additional 24 hrs.  
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4.2.5. Experimental end points 

4.2.5.1. Cell viability assay 

Cell viability was determined in 96 well plates using a CellTitre-Glo Luminescent kit 

to monitor ATP content according to the manufacturer’s instructions. After incubation 

with extracts or column fractions, 100 µl of the ATP reagent was added to the wells 

containing 100 µl medium with cells. The plate was then shaken for 2 min and 

incubated at room temperature for 10 min. Luminescence was measured using a 

Veritas microtitre luminometer (Promega, Madison, USA) and the luminescence 

signal determined as relative light units (RLU) and expressed as percentage of the 

negative control (cell not exposed to UV-B and containing no treatments). 

%  ATP change = 
RLU [treated cells]

RLU [control]
𝑋 100 

 

4.2.5.2. Intracellular IL-1α determination 

Intracellular IL-1α was determined in 24 well plates with cell seeded at a density of 

180 000 cells/well. Cells were washed with 600 µl DPBS and lysed with 600 µl of 0.5 

% Triton X-100 in phosphate buffered saline (pH 7.4) along with one freeze-thawing-

shaking cycle to facilitate lyses. Cell lysates were stored at -80 ºC until analysed. IL-

1α was quantified using a human recombinant IL-1α ELISA kit according to the 

manufactures instructions. A standard curve was generated using human 

recombinant IL-1α prepared in 1 % BSA in DPBS (w/v) using concentrations ranging 

from 7.8 to 500 pg/ml. Absorbance was measured at 450 nm using the Biotek 

Synergy HT microplate reader (Winooski, Vermont, USA). Data were analysed using 

the standard curve generated from Gen5™ Data Analysis Software (version 2 for 

Windows). Intracellular IL-1α was expressed as pg/ml of cell lysate and as the fold 

increase of the untreated control (samples not irradiated). The following formula was 

used: 

IL-1α Fold Increase=
 IL-1α (sample)

 IL-1α (control)
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4.2.5.3. Caspase-3/7 assay 

Caspase 3/7 activity was determined in 24 well plates. The cells were washed with 

600 µl DPBS and lysed with 600 µl of 0.5 % Triton X-100 in phosphate buffered 

saline (pH 7.4) along with one freeze-thawing-shaking cycle to facilitate lyses. Cell 

lysates were stored at -80 °C until analysed. Activity of caspase-3/7 was determined 

using the caspase-Glo 3/7 assay according to the manufactures instructions. The 

assay is based on the cleavage of a luminogenic caspase-3/7 substrate generating a 

“glow-type” luminescent signal. Luminescence is proportional to the amount of 

caspase activity present. Lysates were assayed in white 96 well microtitre plates and 

the assay substrate was added at a ratio of 1:1 and incubated for 30 min. 

Luminescence was determined using the Veritas microtitre plate luminometer 

(Promega, Madison, USA) and the luminescence signal was measured in relative 

light units (RLU). Induction of apoptosis was expressed as fold increase of the 

samples not exposed to UV-B. 

Fold Increase=
RLU [treated cells (+UV)]

RLU [treated cells (-UV)]
 

 

4.2.6. Statistical analysis 

This data was analysed using a 1-way ANOVA where there were 6 levels and the 

post hoc Tukey’s Studentized Range Test was used for multiple pairwise 

comparisons between the means of the different levels. For the 1-way ANOVA’s 

where only two levels were present, Student’s t-test was used. Statistical 

significance was considered at p < 0.05. 

 

4.3. Results 

The modulating effects of the different rooibos extracts (MUF, MF, AUF and AF) and 

XAD-4 column fractions (X-1 – X-5) on intracellular accumulation of IL-1α were 

compared in relation to their effects on cell viability and the induction of apoptosis. 

Comparisons of the treatments were conducted separately in the absence or 

presence of irradiation as well as between the UV-B untreated and treated samples. 
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4.3.1. Modulation of cell viability, IL-1α and apoptosis by aqueous and 
methanol extracts 

Effects in the absence of UV-B exposure 

(i) Modulation of cell viability 

The methanol unfermented (MUF), aqueous unfermented (AUF) and aqueous 

fermented (AF) rooibos extracts resulted in a significant (p<0.05) decrease in cell 

viability (ATP production) with clear dose response effects. No significant differences 

were observed between the extracts at the highest concentration. In contrast, a far 

weaker dose response effect was noticed from treatment with the methanol 

fermented (MF) extract at similar extract concentrations (Table 4.1). 

(ii) Modulation of IL-1α accumulation 

The MUF and MF extracts significantly (P<0.05) increased IL-1α (pg/ml) production 

at the highest concentrations exhibiting a pro-inflammatory effect with the MUF the 

most active (Table 4.1). In contrast, treatment with aqueous extracts significantly 

(P<0.05) decreased the IL-1α production in an inverse dose dependant manner 

when compared to the control exhibiting anti-inflammatory effects, with the two 

lowest concentrations of the AUF and AF extracts exhibiting the highest effect. 

(iii) Modulation of apoptosis 

At the highest concentration all the extracts significantly (P<0.05) increased 

apoptosis in comparison to the control, with the MUF extract exhibiting the biggest 

effect (P<0.05) and the MF extract only slightly increasing apoptosis (Table 4.1). The 

AUF extract exhibited a similar activity when compared to the AF extract at the 

highest concentration. 

Effects in the presence of UV-B exposure 

(i) Modulation of cell viability 

Cell viability was significantly decreased in HaCaT cells exposed to UV-B (Fig 4.1a 

and Fig 4.1d). When compared to the effects of the extracts in the absence of UV-B 

exposure, the MUF(Fig 4.1a), MF (Fig 4.1b) and AUF (Fig 4.2a) extracts further 

enhanced the reduction in cell viability caused by UV-B in a dose response manner. 

The AF extract however, exhibited similar effects in cell viability in the absence and 

presence of UV-B except at the highest concentrations (Fig 4.2b).  
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When comparing the effects of the rooibos extracts in the presence of UV-B, the 

MUF extract was the most active in reducing cell viability when compared MF, AUF 

and AF extracts (Table 4.1). The AUF was significantly more active than the AF 

extract at the highest concentration.  

(ii) Modulation of IL-1α accumulation 

Exposure to UV-B significantly increased IL-1α concentration by 3-fold (Fig 4.1b and 

Fig 4.1e). When compared to the effects in the absence of UV-B, the MUF (Fig 4.1c) 

extract significantly (P<0.05) decreased IL-1α in the presence of UV-B at higher 

concentrations. The other extracts, however, showed a significant (P<0.05) increase 

in IL-1α concentration compared to the samples not UV-B irradiated although the 

difference between the (-) UV-B and (+) UV-B effects was lower with the MF (Fig 

4.1d) and AUF (Fig 4.2C) extracts.  

All the rooibos extracts significantly (P<0.05) decreased IL-1α production in UV-B 

treated HaCaT cells (Table 4.1). In the presence of UV-B the MUF extract was more 

active in reducing IL-1α when compared to the MF and AUF, which exhibited similar 

activities. The AF extract exhibited the weakest response with the highest effect at 

the lowest concentration.  

(iii) Modulation of apoptosis 

UV-B exposure significantly (P<0.05) increased apoptosis by 3-fold (Fig 4.1c and Fig 

4.1f). When compared to the effects in the absence of UV-B, the MUF extract (Fig 

4.1e)  significantly decreased apoptosis in the presence of UV-B at the highest 

concentration while the MF extract (Fig 4.1f) increased apoptosis in the presence of 

UV-B at all concentrations. However, the MF extract did not alter the induction of 

apoptosis by UV-B. The AUF (Fig 4.2e) and AF (Fig 4.2f) extracts decreased 

apoptosis at the highest concentrations in the presence of UV-B when compared to 

effects in the absence of UV-B. 

Treatment with the MUF and AUF extracts in the presence of UV-B resulted in a 

significant (P<0.05) decrease in apoptosis at higher concentrations when compared 

to the control (Table 4.1). The MF and AF extracts also significantly (P<0.05) 

decreased apoptosis in the presence of UV-B in a dose dependent manner but to a 

lesser extent. 
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Table 4.1: Modulation of icIL-1α accumulation by the different methanol extracts of rooibos in relation to their effect on cell 
viability (ATP content) and apoptosis. 

  Absence of  UV-B  Presence of UV-B 

 
[extract] 

mg/ml 

ATP production 

% viability 

IL-1α 

(pg/ml) 

IL-1αpg/ml) 

Fold  

Caspase-3/7 

Fold 

l 

l 

l 

l 

ATP 

production 

% viability 

IL-1α 

(pg/ml) 

IL-1α (pg/ml) 

Fold  

Caspase 3/7 

Fold 

Control  100±1.4a 57.7±5.8a 1.00±0.10a 1.01±0.16a l 81.7±7.9a 172.8±16.6a 3.01±0.30a 3.74±0.53a 

MUF 

0.05 96.3±1.5b 59.6±8.0a 1.03±0.15a 1.56±0.23b l 63.9±2.2b 124.4±10.5b 2.08±0.30b 4.00±0.40a 

0.1 88.4±1.9c 65.6±8.4b 1.12±0.16a 1.70±0.08c l 57.2±2.5c 73.9±3.3c 0.92±0.13c 1.87±0.28c 

0.2 67.0±2.0e 100.4±7.4c 1.71±0.16b 4.06±0.23d l 41.3±4.9d 59.3±2.5d 0.51±0.07d 0.46±0.06d 

MF 

0.05 98.3±2.0b 59.8±3.9a 1.02±0.09a 1.13±0.12a l 86.8±3.2a 120.2±17.5b 1.82±0.59b 3.87±0.29a 

0.1 94.8±1.4b 57.0±7.0a 0.97±0.07a 1.17±0.19a l 73.0±3.3e 117.4±14.4b 1.77±0.50b 3.56±0.22a 

0.2 85.6±1.4c 74.1±11.1b 1.28±0.20a 1.44±0.19b l 65.8±3.6b 97.3±13.6b 1.59±0.44b 3.02±0.28b 

 l  

AUF 

0.05 89.9±1.5c 32.8±2.5d 0.56±0.05c 1.43±0.27b l 78.2±3.3a 102.0± 4.0b 2.69±0.41a 3.16±0.36a 

0.1 79.0±1.6d 35.7±5.5d 0.63±0.08c 1.86±0.31b l 71.9±4.1b 105.9±4.0b 2.35±0.01b 2.72±0.22b 

0.2 62.8±1.9f 46.8±3.6e 0.80±0.06a 3.66±0.29d l 57.8±2.1c 94.9±1.4c 1.72±0.13b 1.95±0.78c 

AF 

0.05 82.5±2.2c 36.3±3.6d 0.61±0.04c 1.36±0.26b l 80.7±2.6a 122.2±14.5b 3.60±0.28a 3.31±0.38a 

0.1 69.5±1.3e 39.2±5.7d 0.66±0.11c 1.63±0.10c l 73.9±3.7e 143.5±9.3d 3.15±0.14a 2.93±0.48a 

0.2 59.1±1.2f 46.0±6.3e 0.69±0.02c 2.85±0.58d l 68.4±1.6b 143.2±11.5d 2.70±0.26b 2.13±0.39c 

All values represent means from at least two independent experiments. The % ATP production is calculated using the control in the negative UV as 100%., IL-1α fold 

increase in the negative UV-B is calculated against the control whereas in positive UV-B the IL-1α fold is calculated against the corresponding treatment IL-1α (pg/ml) 

in the non UV-B exposed cells. The same is applicable for tor the caspase-3/7 fold. Subscript: Indicates differences between values in a column, if letters differ then 

the values differs significantly (P<0.05). Abbreviations: icIL-1α- intracellular IL-1α, MUF-methanol unfermented, MF-Methanol fermented, AUF-Aqueous unfermented, 

AF-Aqueous fermented, IL-1α-Interleukin 1-alpha. 
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Figure 4.1 Differences between effects on inflammation and cell growth parameters by the different rooibos extracts in the absence and presence of UV-B. 
(a) MUF-effect on cell viability measured in % ATP content, (b) MUF-modulation of intracellular IL-1α production, (c) MUF-induction of apoptosis, (d) MF-
effect cell viability (e) MF- modulation of intracellular IL-1α production, (f) MF- induction of apoptosis. Capital letter Indicates differences between effects in (-) 
and (+) UV-B, if letters are similar for a specific variable then UV-B radiation had no significant effect. 

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



Chapter 4 

110 
 

 

Figure 4.2 Differences between effects on inflammation and cell growth parameters by the different rooibos extracts in the absence and presence of UV-B. 
(a) AUF-effect on cell viability measured in % ATP content, (b) AUF-modulation of intracellular IL-1α production, (c) AUF-induction of apoptosis, (d) AF-effect 
cell viability (e) AF- modulation of intracellular IL-1α production, (f) AF- induction of apoptosis. Capital letter Indicates differences between effects in (-) and (+) 
UV-B, if letters are similar for a specific variable then UV-B radiation had no significant effect. 
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4.3.2. Modulation of cell viability, IL-1α accumulation and apoptosis by XAD-4 
column fractions of MUF rooibos extract 

Effects in the absence of UV-B exposure 

(i) Modulation of cell viability 

The MUF significantly decreased cell viability at the concentration of 0.2 mg/ml 

(Table 4.2). Fraction X-1 exhibited a similar effect to the MUF at the same 

concentration (0.2 mg/ml) while the other fractions had lower effects when compared 

to the MUF extract. The column fractions decreased cell viability dose dependently 

with fraction X-1 as the most effective at the 3 highest concentrations. Fractions X-3 

and X-4 exhibited a similar effect on cell viability, except at the highest concentration 

where fraction X-3 was more effective. Fraction X-5 was the least effective in 

decreasing cell viability followed by fraction X-2.  

(ii) Modulation of IL-1α accumulation 

The MUF extract significantly (P<0.05) increased IL-1α at a concentration of 0.2 

mg/ml (Table 4.2) and at this concentration was most effective in decreasing IL-1α 

compared to all the fractions except for fraction X-5, which exhibited a similar effect. 

Fractions X-1, X-3 and X-4 also increased IL-1α dose dependently at 0.2mg/ml but to 

a lesser extent. In contrast, fraction X-2 decreased (P<0.05) the IL-1α concentration 

at the two highest concentrations when compared to the treatment control. 

(iii) Modulation of apoptosis 

The MUF extract showed the highest apoptotic response, which was significantly 

higher when compared to the control and to all the fractions at comparative 

concentrations (Table 4.2). Fractions X-3 and X-4 resulted in significantly higher 

apoptosis at all the concentrations in a dose response manner when compared to 

the other fractions. Fractions X-2 and X-5 exhibited a similar but weaker effect in 

inducing apoptosis with a significant (P<0.05) increase at the higher concentrations. 

In contrast, fraction X-1 significantly (P<0.05) decreased apoptosis at high 

concentrations. 
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Table 4.2 Modulation of icIL-1α accumulation in HaCaT cells exposed to UV-B by different XAD-4 fractions from a MUF rooibos 
extract in relation to their effect on cell viability  

 Negative UV-B  Positive UV-B 

  

 
%ATP production IL-1α (pg/ml) IL-1αfold increase 

Caspase-3/7 

fold increase 
 %ATP production IL-1α (pg/ml) IL-1α fold increase 

Caspase-3/7 

fold increase 

 Control 100.0±6.2a 56.5±8.0a 1.00±0.09a 1.00±0.11a  78.3±8.8a 130.1±20.3a 2.12±0.38a 3.35±0.44a 

MUF 

0.05 93.6±3.6a 61.3±2.7a 1.03±0.16a 2.38±0.18b  72.3±5.2a 133.4±16.8a 2.24±0.37a 3.27±0.66a 

0.1 80.1±4.0b 72.5±10.3c 1.20±0.05c 4.67±0.85c  57.7±5.9b 75.5±11.7c 0.89±0.08b 1.48±0.21b 

0.2 52.0±9.7d 130.5±24.6b 2.00±0.07b 5.26±0.72c  25.1±7.4c 42.4±5.1b 0.32±0.04c 1.09±0.11c 

 0.05 76.4±12.6b 41.8±3.8e 0.58±0.04d 1.01±0.13a  71.2±9.5a 128.6±11.8a 3.15±0.39a 3.46±0.19a 

X1 

0.1 70.2±11.4b 41.8±2.3e 0.62±0.05d 1.01±0.03a  62.0±9.9a 102.6±29.4a 3.02±0.36a 3.70±0.60a 

0.2 54.5±7.2d 69.6±0.7e 1.2±0.55a 0.78±0.05a  40.5±5.4b 62.8±10.7c 1.20±0.99b 3.71±0.53a 

0.4 20.7±2.5f 103.3±13.4d 1.84±0.48e 0.63±0.05d  10.9±3.9d 25.0±4.9b 0.26±0.07c 0.47±0.17d 

0.8 6.4±1.8g 186.2±4.1c 2.53±0.56e 0.51±0.07d  3.3±1.3e 23.2±3.3b 0.16±0.08c 0.66±0.16d 

 0.05 90.8±4.0a 57.8±6.8a 1.02±0.12a 1.08±0.19a  73.3±6.0a 122.4±6.3a 1.97±0.08a 2.91±0.24a 

X2 

0.1 90.6±6.2a 61.9±9.6a 1.01±0.15a 1.13±0.20a  71.7±9.0a 127.0±11.8a 2.19 ±0.22a 2.97±0.57a 

0.2 84.2±5.0b 55.0±2.6a 0.95±0.16a 1.47±0.34a  70.5±3.8a 131.5±13.1a 2.43±0.24a 4.15±0.45a 

0.4 80.0±7.3b 36.5±2.8e 0.52±0.04f 1.55±0. 20e  58.9±6.1b 137.4±7.2a 3.64±0.51d 3.71±0.46a 

0.8 65.1±7.6c 30.6±7.9e 0.62±0.11f 1.71±0.50e  57.5±12.1g 119.4±19.0a 2.80±0.79a 3.86±0.51a 

 0.05 82.4±8.3b 66.3±3.6a 1.17±0.16a 1.39±0.28a  67.9±2.0b 142.5±14.1a 2.15±0.25a 4.46±0.76a 

X3 

0.1 80.7±9.2b 62.7±9.2a 1.03±0.11a 1.94±0.64e  61.7±7.8b 135.9±9.3a 2.22±0.36a 3.13±0.43a 

0.2 80.0±3.3b 64.4±7.4a 1.10±0.27a 2.50±0.82e  52.4±2.3b 98.2±15.2f 1.45±0.35b 1.94±0.32b 

0.4 66.0±5.6c 98.6±10.9d 2.07±0.57e 3.20±0.73f  22.4±3.0c 64.2±6.0c 0.61±0.08 0.89±0.08d 

0.8 34.7±7.3e 127.8±12.5b 2.34±0.51e 3.11±0.12f  9.3±1.7d 44.7±8.2b 0.36±0.07c 0.52±0.05e 

 0.05 88.2±11.8b 62.0±4.6a 1.12±0.10a 1.14±0.27a  70.1±4.8a 164.3±23.1a 2.55±0.47a 4.38±0.47a 

X4 

0.1 84.2±10.8b 63.3±6.4a 1.08±0.06a 1.57±0.57a  58.7±6.8b 158.5±11.0a 2.39±0.41a 2.93±0.34a 

0.2 77.0±6.2b 76.0±6.6c 1.28±0.20a 1.83±0.68b  52.1±6.0b 136.5±27.9a 1.82±0.35a 2.08±0.56b 

0.4 66.3±8.6c 81.7±8.0c 1.42±0.40a 3.12±0.23e  25.5±2.3c 101.0±20.7a 1.42±0.37b 1.29±0.21c 

0.8 48.5±8.6 106.8±16.0d 2.11±0.66e 3.04±0.44e  15.2±3.0d 87.5±11.1g 0.84±0.27b 0.92±0.08c 

X5* 

0.025 93.2±6.1a 76.9±1.7c 1.13±0.06a 1.64±0.44e  69.2±9.2a 108.3±21.8a 1.97±0.39a 1.28±0.85b 

0.05 92.4±6.3a 85.5±1.8d 1.27±0.062 1.27±0.04a  68.1±9.4a 123.5±11.4a 1.77±0.45a 1.82±0.83b 

0.1 87.6±8.1a 108.4±12.7d 1.50±0.07e 1.12±0.63a  60.4±3.7b 135.6±7.9a 1.58±0.60a 1.82±0.82b 

0.2 82.8±1.9b 158.7±32.5b 2.24±0.52e 1.48±0.81a  57.2±3.8b 167.2±13.7a 0.97±0.27b 1.70±0.44b 

0.4 82.7±7.1b 198.1±22.9f 3.00±0.30g 2.36±0.13b  59.0±5.7b 246.7±35.9e 1.10±0.36b 2.15±0.81a 

All values represent means from at least two independent experiments. % ATP production is calculated against by setting the (-) UV-B control as 100 %. For the negative UV, IL-1α fold is 
calculated against the IL-1α (pg/ml) control whereas in the IL-1α fold for the positive UV-B is calculated against the IL-1α (pg/ml) for the corresponding treatment dose in the cells not exposed 
to UV-B. The same applies for the Caspase-3/7 fold increase. Subscript: Indicates differences between values in a column, if at least one letter is similar between values then the values do not 

differ significantly. Abbreviations: MUF-methanol unfermented, X–XAD-4 fraction, IL-1α- interleukin-1alpha. Due to the insolubility of factions X-5 a higher concentration could not be evaluated. 
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Effects in the presence of UV-B exposure 

(i) Modulation of cell viability 

UV-B significantly (p<0.05) decreased cell viability in HaCaT cells (Fig 4.2a and Fig 

4.2d). When compared to the effects in the absence of UV-B, the MUF extract (Fig 

4.3a), fractions X-3 (Fig 4.5d) and X-4 (Fig 4.5a) further decreased (p<0.05) cell 

viability. Fractions X-2 (Fig 4.4a) and X-5 (Fig 4.5d) exhibited a similar but reduced 

effect on cell viability when compared to that in the presence of UV-B. Fractions X-1 

(Fig 4.3d), however did not show additional effects on cell viability.  

At similar concentrations, the MUF extract exhibited the highest activity in reducing cell 

viability in the presence of UV-B (Table 4.2). All the fractions also decreased cell 

viability in the presence of UV-B with typical dose response effects, with fraction X-1 

exhibiting the highest activity followed by fractions X-3 and X-4, while X-2 and X-5 

showed the weakest response. 

(ii) Modulation of IL-1α accumulation 

IL-1α production increased significantly (p<0.05) by 3-fold after UV-B exposure (Table 

4.2). When compared to the effect in the absence of UV-B, the MUF extract (Fig 4.3b) 

and fractions X-1 (Fig 4.3e) and X-3 (Fig 4.4e) decreased IL-1α in the presence of UV-

B at high concentrations in a dose dependent manner. Fraction X-4 (Fig 4.5b) did not 

have a further effect on IL-1α in the presence of UV-B at the highest concentration. 

Fractions X-2 (Fig 4.4b) resulted in an increase in IL-1α in the presence of UV-B at all 

concentrations although that effect was comparable to that of the UV-B treated control. 

In contrast, fraction X-5 further increased IL-1α accumulation at all the concentrations 

(Fig 4.5e) in presence of UV-B exposure. 

In the presence of UV-B the MUF extract significantly (P<0.05) decreased IL-1α at 

high concentrations and was the most effective at decreasing IL-1α at the 

concentration of 0.2 mg/ml (Table 4.2). Fractions X-1, X-3 and X-4 also decreased IL-

1α at the concentration of 0.2 mg/ml while fraction X-2 had no effect on IL-1α 

accumulation and X-5 resulted in increased IL-1α at this concentration. When 

considering dose response effects, IL-1α accumulation was significantly reduced in the 

presence of UV-B by fractions X-1, X-3 and X-4 at the highest doses, with X-1 

exhibiting the highest activity.  
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Figure 4.3 Differences between effects on inflammation and cell growth parameters by the MUF rooibos extract and fraction X-1 in the absence and presence of 
UV-B. (a) MUF-effect on cell viability measured in % ATP content, (b) MUF-modulation of intracellular IL-1α production, (c) MUF-induction of apoptosis, (d) 
Fraction X-1-effect cell viability (e) Fraction X-1- modulation of intracellular IL-1α production, (f) Fraction X-1- induction of apoptosis. Capital letter Indicates 
differences between effects in (-) and (+) UV-B, if letters are similar for a specific variable then UV-B radiation had no significant effect. 
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Figure 4.4 Differences between effects on inflammation and cell growth parameters by the different rooibos fractions in the absence and presence of UV-B. (a) 
Fraction X-4-effect on cell viability measured in % ATP content, (b) Fraction X-4-modulation of intracellular IL-1α production, (c) Fraction X-4-induction of 
apoptosis, (d) Fraction X-5-effect cell viability (e) Fraction X-5- modulation of intracellular IL-1α production, (f) Fraction X-5- induction of apoptosis. Capital letter 
Indicates differences between effects in (-) and (+) UV-B, if letters are similar for a specific variable then UV-B radiation had no significant effect. 
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Figure 4.5 Differences between effects on inflammation and cell growth parameters by the different rooibos fractions in the absence and presence of UV-B. (a) 
Fraction X-2-effect on cell viability measured in % ATP content, (b) Fraction X-2-modulation of intracellular IL-1α production, (c) Fraction X-2-induction of 
apoptosis, (d) Fraction X-3-effect cell viability (e) Fraction X-3- modulation of intracellular IL-1α production, (f) Fraction X-3- induction of apoptosis. Capital letter 
Indicates differences between effects in (-) and (+) UV-B, if letters are similar for a specific variable then UV-B radiation had no significant effect. 

. 
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(iii) Modulation of apoptosis 

A significant (p<0.05) 3-fold increase in apoptosis was observed following UV-B 

exposure (Table 4.2). When compared to the effect in the absence of UV-B the MUF 

extract (Fig 4.3c), fractions X-3 (Fig 4.4f) and X-4 (Fig 4.5c) decreased apoptosis in the 

presence of UV-B, at the concentration of 0.2 mg/ml, with MUF exhibiting the highest 

effect. Fraction X-2 increase apoptosis in the presence of UV-B compared to the effect 

in the absence of UV-B at all the concentrations tested (Fig 4.4c) at any of the 

concentrations utilised. Fractions X-1 (Fig 4.3f) and X-5 (Fig 4.5f) did not alter apoptosis 

at any of the concentrations tested when compared to the UV-B untreated cells. 

In the presence of UV-B, the MUF extract significantly decreased apoptosis at high 

concentrations in comparison to the UV-B treated cells control (Table 4.2). At the 

concentration of 0.2 mg/ml fractions X-3, X-4 and X-5 also decreased apoptosis but to a 

lesser extent compared to the MUF extract at this concentration, while fractions X-1 and 

X-2 had no effect of apoptosis compared to the control. When considering dose 

response effects, fractions X-1, X-3, X-4 and X-5 significantly (P<0.05) decreased 

apoptosis at high concentrations with X-1 and X-3 exhibiting the highest effects.  
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4.4. Discussion 

Exposure to UV-B increases the production of the primary cytokines, IL-1α and TNF-α 

in the skin which, in addition to oxidative stress, may result in a cutaneous inflammatory 

response and apoptosis (Xu & Fisher, 2005). The modulation of the production of these 

primary cytokines by naturally occurring plant polyphenols has been suggested to be 

important prevention tools to alleviate inflammation in the skin following UV-B exposure 

(Nicols & Katiyar, 2010). At present very little is known about the protective effects of 

the rooibos flavonoids against UV-B induced skin inflammation. A recent study showed 

that rooibos extracts indirectly exhibited anti-inflammatory properties by removing 

keratinocytes following UV-B exposure through apoptosis (Magcwebeba, 2013). The 

current study further elucidate the possible anti-inflammatory properties of extracts of 

fermented and unfermented rooibos as well as specific flavonoid and non-flavonoid 

enriched fractions. 

In the absence of UV-B exposure, treatment of HaCaT cells with the MUF and MF 

rooibos extracts resulted in an increased IL-1α production suggesting pro-inflammatory 

effects. Of interest is that MUF extract, unlike the MF extract, resulted in a 4-fold 

increase in apoptosis, which was also associated with a decrease in cell viability. Both 

the decreased cell viability and increased apoptosis are presumably due to pro-oxidant 

effects of the rooibos flavonoids which may be responsible for the pro-inflammatory 

effect by the extracts. The MUF extract contained high levels of flavonoids (Chapter 3), 

exhibiting a high antioxidant capacity when compared to the MF extract. Therefore, the 

MUF seems to result in an increased oxidative stress which may be due to 

mitochondrial membrane depolarisation known to be affected by the rooibos flavonoids 

(Magcwebeba, 2013). It has been reported that methanol and aqueous extracts from 

unfermented rooibos exhibited pro-oxidant properties (Joubert et al., 2005), while 

cytotoxicity towards HaCaT cells has also been associated with increased oxidative 

stress (Magcwebeba, 2013). These findings are in agreement with studies utilising the 

green tea polyphenol EGCG reported to exhibit pro-oxidant effects at high doses (Galati 

et al, 2006; Isbrucker et al, 2006). Furthermore, the pro-oxidant effects of polyphenols 

have been suggested to be responsible for an increase in oxidative stress and the 
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potential toxicity in cells (Lambert & Elias, 2010). This increased oxidative environment 

can in turn activate transcriptional mechanisms and signalling pathways involved in 

immune response and inflammation leading to the accumulation of IL-1α. Hence the 

observable pro-inflammatory effects by the methanol extract. The reduced effect of MF 

extract on IL-1α accumulation may be associated with the decrease in the monomeric 

flavonoids and a subsequent decrease in anti-oxidant properties associated with 

fermentation (Chapter 3).  

The AUF and AF extracts like the MUF extract increased apoptosis at the higher 

concentrations which was associated with decreased cell viability, however IL-1α 

production was decreased significantly (P<0.05) at all the concentrations tested. Of 

interest is that the AUF extract contained lower polyphenol levels and exhibited a lower 

antioxidant activity when compared to the MUF (Chapter 3). Hence the lower pro-

oxidant activity by the aqueous extracts as reflected in their reduced effects on cell 

viability. Therefore, the extracts sustain cell viability at lower concentrations possibly 

related to their antioxidant properties, whilst at higher concentrations pro-oxidant effects 

occur resulting in a decrease in cell viability. The lack of overt effects on cell viability 

and apoptosis as observed at the lower concentrations of both AUF and AF extracts 

coupled to a decrease in IL-1α may be indicative of an anti-inflammatory effect. 

However, at higher doses of the AUF and AF extracts, the decrease in IL-1α may be 

associated with the decrease in viable cells and increased apoptosis suggesting an 

indirect anti-inflammatory effect. Therefore, depending on the dose of flavonoids, the 

extracts may exhibit direct or indirect pro-inflammatory effects as in the case of the 

aqueous extracts or pro-inflammatory effects as in the case of the methanol extracts. In 

addition, a critical balance between pro- and anti-oxidant effects seem to exist, which 

will determine either an anti- or pro-inflammatory responses in HaCaT cells. 

UV-B irradiation of HaCaT cells resulted in a 3-fold increase in IL-1α production, which 

was associated with a similar increase in apoptosis and a reduction in cell viability as 

reported previously (Magcwebeba et al., 2012). In the presence of UV-B, treatment with 

the methanol extracts resulted in a dose dependent decrease in IL-1α production 

accompanied by a further decrease in cell viability, while apoptosis was significantly 
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reduced when compared to the control. UV-B is known to result in the generation of free 

radicals which could lead to excessive ROS production providing an environment 

favourable for cell necrosis (Svobodová et al., 2011). This was observed when the cells 

were exposed to the MUF extract at the higher concentration where cell viability was 

reduced by up to 60 %, presumably due to synergistic pro-oxidant effects from the high 

levels of monomeric rooibos flavonoids and that affected by UV-B. Cells need energy 

for the induction of apoptosis, therefore at high extract concentrations and low ATP 

levels a subset of the cell culture population may instead undergo necrotic cell death, 

hence the lower level of apoptosis. The reduction in the intracellular IL-1α may therefore 

reflect cell death though both apoptosis and necrosis. Therefore, the methanol extracts 

seem to have no direct anti-inflammatory effect but rather result in decreased IL-1α 

which may be reflective of the decrease in cell viability.  

Treatment with the aqueous extracts in the presence of UV-B also resulted in a 

decrease in IL-1α production accompanied by a decrease in apoptosis and a decrease 

in cell viability at the highest concentrations. As mentioned above, the decrease in 

apoptosis could result from necrotic cell death. At the lower concentrations, all the 

extracts decreased IL-1α production in the presence of UV-B exposure without affecting 

apoptosis, which was associated with a minimal effect on cell viability suggesting an 

anti-inflammatory effect. A typical dual effect seems to prevail where at higher extract 

concentrations IL-1α is removed by apoptosis and/or cell necrosis based on the 

availability of ATP. It has been reported that depletion of ATP resulted in necrotic cell 

death while apoptosis is induced under ATP-supplying conditions (Cohen et al., 2010). 

However, care needs to be taken as at excessively high extract concentrations, necrotic 

cell death may occur and subsequently enhance IL-1α release thereby exhibiting a pro-

inflammatory effect. The reduction of intracellular IL-1α levels in HaCaT cells exposed to 

cytotoxic doses of ionomycin has been reported (Magcwebeba et al., 2012). Cell 

cytotoxicity could not be assessed under the current experimental conditions due to 

interference of the polyphenols in cytotoxicity assays (Wisman et al., 2008). Alternative 

determination of IL-1α release in the cell culture medium should be monitored in the 

future to assess the role of the extracts on cell necrosis and cytokine release. 
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As the MUF extract exhibited the highest anti-oxidant effects and was the most effective 

in reducing IL-1α following UV-B irradiation it was therefore selected for fractionation. 

The goal for fractionation was to:(i) separate the major rooibos flavonoids from the non-

flavonoid constituents (ii) Determine whether polyphenol enrichment promotes or 

counteracts the stimulation of IL-1α by UV-B compared to the MUF extract (iii) Assess 

whether fractionation of the MUF extract is an applicable approach to further 

characterise the anti-inflammatory effects of rooibos. 

In the absence UV-B irradiation, fractions X-1, X-3, X-4 and X-5 resulted in increased 

IL-1α production at high concentrations similar to the MUF extract, which in the case of 

fractions X-3 and X-4 was accompanied by a decrease in cell viability and an increase 

in apoptosis. In contrast, fraction X-1, decreased apoptosis and cell viability at high 

concentrations. Fractions X-3 and X-4 containing the highest levels of rooibos 

flavonoids may result in pro-oxidant effects leading to ROS production, as mentioned 

above, known to be closely associated with the induction of apoptosis and cytotoxicity 

(Galati et al., 2002). However, fraction X-5, containing lower flavonoid concentrations, 

increased IL-1α in the absence of any effect on cell viability and apoptosis, suggesting a 

clear pro-inflammatory response. As mentioned in the previous section, low ATP levels, 

render cells un-able to undergo apoptosis but rather results in necrotic cell death. An 

increase in cell necrosis is associated with IL-1α release into the extracellular 

environment which, may augment intracellular accumulation of IL-1α in the viable 

HaCaT cells via positive feedback loop (Lee et al., 1991; Cohen et al., 2010). However, 

this aspect should be further investigated under the current experimental conditions as 

mentioned above. Fraction X-2 only marginally affected cell viability and apoptosis but 

decreased IL-1α production at high concentrations, suggesting direct anti-inflammatory 

activity. Based on these results fractionation of the MUF extract successfully separated 

the rooibos flavonoid and non-flavonoids resulting in fractions that exhibited (i) 

cytotoxicity (fraction X-1), (ii) decrease cell viability and increased apoptosis (fractions 

X3, and X-4), (iii) pro-inflammatory (fraction X-5) and (iv) anti-inflammatory (fraction X-2) 

effects in the absence of UV-B irradiation. 
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In the presence of UV-B irradiation, the MUF extract, fractions X-1, X-3 and X-4 

decreased IL-1α production at high concentrations accompanied by a further decrease 

in cell viability and apoptosis. UV-B is known to induce oxidative stress by generating 

ROS (Martinez et al., 2015) and thus the HaCaT cells were probably more susceptible 

to the cytotoxicity of MUF extract and column fractions resulting in a further decrease in 

cell viability and apoptosis. The latter maybe due to an increase in necrotic cell death as 

suggested above. The resultant reduction of UV-B induced IL1α accumulation may 

therefore be as a result of cell removal either by apoptosis, necrosis or a combined 

effect of the two processes. Of interest, fraction X-1 was very toxic and closely 

mimicked the effects of MUF extract despite the absence of the rooibos flavonoids. 

Fraction X-2 only slightly reduced IL-1α production with no effects on apoptosis while 

cell viability was significantly decreased in the absence of UV-B at the highest 

concentrations. However, unlike in the absence of UV-B, a clear anti-inflammatory effect 

was not evident in the presence of UV-B irradiation as IL-1α levels were not changed 

after treatment with fraction X-2. Fraction X-5 further increased the accumulation of IL-

1α with no overt effects on cell viability and a slight increase in apoptosis, indicative of a 

pro-inflammatory effect by the non polar constituents in the fraction. It became evident 

from the above mentioned results that rooibos extracts and the column fractions of the 

MUF extract (X-1, X-3 and X-4) could result in a decrease in intracellular IL-1α 

production in HaCaT cells following UV-B exposure. This decrease could be a result of 

the modulation of cell growth parameters including apoptosis and/or cell necrosis.  

The high cytotoxicity of the MUF extracts and some of the column fractions may result 

in excessive apoptosis and subsequent cell necrosis due to high levels of flavonoids 

thereby indirectly reducing intracellular IL-1α. Therefore, the MUF extract as well as the 

rooibos enriched column fractions X-3 and X-4 did not exhibit clear anti-inflammatory 

effects in the UV-B/HaCaT cell model. However, in the absence of UV-B their high anti-

oxidant levels may be associated with pro-oxidant effects resulting in cell death as 

observed by the increased apoptosis and decreased cell viability. Fraction X-1 which 

contained no flavonoids also exhibited similar effects in relation to IL-1α both in the 

presence and absence of UV-B although it appeared to be more toxic compared to the 

flavonoid enriched fractions. Therefore, further characterisation of this fraction should be 
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considered in order to identify the compounds possibly responsible for the anti-oxidant 

effects and high toxicity. Future studies should also consider the effects of non-flavonoid 

and more complex oligomeric flavonoids of rooibos such as the proanthocyanidin type 

constituents in inhibiting inflammatory response following exposure to UV-B, as the AUF 

and AF rooibos extracts and fraction X-2 exhibited anti-inflammatory effects in the 

absence of excessive cytotoxic effects in the UV-B/HaCaT cell model. Although the 

fractionation of the MUF extract may have enriched the rooibos flavonoids in some 

fractions, these higher levels were not associated with higher activity in the UV-

B/HaCaT model. Therefore, it appears as though there may be synergistic effects in the 

anti-oxidant activity of the rooibos flavonoids thus the use of the while extract is more 

beneficial. In conclusion, the anti-inflammatory properties of rooibos flavonoids and/or 

non-flavonoid constituents depends on the dose and subsequent effects on cell survival 

indices, which are important in futuristic endeavours related to the underlying 

mechanisms involved in the anti-inflammatory and chemopreventive properties of 

rooibos.  
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5. Modulation of lipopolysaccharide-induced tumor necrosis factor 

alpha (TNF-α) in macrophages by different unfermented and 

fermented rooibos extracts and flavonoid and non-flavonoid 

enriched rooibos fractions. 
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Abstract 

TNF-α is one of the primary cytokines to be released by LPS activated macrophages 

and subsequently drives the inflammatory response mediated through various signaling 

pathways. An uncontrolled inflammatory response is known to lead to chronic 

inflammation, which has been implicated in various diseases, including cancer. 

Therefore, development of anti-inflammatory products that can specifically inhibit TNF-α 

release may be beneficial in attenuating inflammatory diseases. The modulation of LPS-

induced TNF-α release by methanol and aqueous extracts from unfermented and 

fermented rooibos plant material and flavonoid and non-flavonoid enriched 

chromatographic fractions of the unfermented rooibos methanol extract were monitored 

in macrophages derived from THP-1 monocytes. The rooibos extracts exhibited no 

overt effects on apoptosis, while cell viability was decreased at the highest 

concentrations tested. TNF-α release was significantly (P<0.05) decreased with the 

methanol extracts exhibiting the highest activity. However, fractionation of the methanol 

extract of unfermented rooibos resulting in enrichment of the major flavonoids in 

fractions X-3 and X-4 resulted in a decrease in cell viability and increased apoptosis, 

likely associated with pro-oxidant effects. Fraction X-1 which contained very low levels 

of rooibos flavonoids was the most effective in decreasing TNF-α followed by the 

flavonoid enriched fractions X-3 and X-4 as well as the non polar fraction, X-5. Fraction 

X-2 was the least effective as it modulated TNF- α only at the highest concentration and 

with no effect on cell growth indices. Since the rooibos extracts decreased TNF-α 

without overtly affecting cell growth indices, the study showed, for the first time that 

rooibos flavonoids may attenuate the LPS-induced inflammatory response in 

macrophages. Underlying mechanism may include the modulation of the oxidative 

status by the rooibos flavonoids which may involve interaction with intracellular iron 

known to be retained during macrophage activation, among other parameters 

associated with the induction of inflammation.  
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5.1. Introduction 

Macrophages, derived from monocytes, are phagocytic cells of the innate immune 

system located in various tissue types including skin (Linton & Fazio, 2003). These cells 

are important mediators of inflammation and are recruited early during the initiation and 

progression of atherosclerosis, one of the main inflammatory diseases. In order to fulfill 

their immune modulatory function, macrophages produce a wide range of cytokines, 

reactive oxygen species and proteases (Linton & Fazio, 2003). Cytokines released by 

macrophages in response to an inflammatory stimuli include tumor necrosis factor-alpha 

(TNF-α), interleukin-1 (IL-1), IL-6, IL-8, and IL-12, which lead to the recruitment of other 

inflammatory cells (Duque & Descoteaux, 2014). Although macrophages are the main 

source of these cytokines, they are also produced by activated lymphocytes, endothelial 

cells, and fibroblasts. TNF-α is one of the first cytokines to be released by activated 

macrophages, effecting vasodilatation and increasing of vascular permeability, thereby 

providing favorable conditions for lymphocyte, neutrophil, and monocyte infiltration 

(Beutler, 1999).  

NF-κB is a transcription factor important in the regulation of inflammatory genes and is 

activated by a wide variety of inflammatory stimuli, including TNF-α, IL-1, 

lipopolysaccharide (LPS) and hydrogen peroxide (H2O2) (Karin, 2006; Karin et al., 2002; 

Karin & Greten, 2005; Naugler & Karin, 2008). Activation occurs as a result of a 

cascade of events following stimulation of cells with pro-inflammatory agents. These 

include the activation of the inhibitor of κB (IκB), the IκB kinase (IKK), which in turn 

phosphorylates and degrades IκB-α. Degradation of IκB-α leads to NF-κB translocation 

to the nucleus and binding to a specific DNA consensus sequence. The transcriptional 

activation of NF-κB regulated genes subsequently results in the onset of inflammation 

(Naugler & Karin, 2008). 

Since TNF-α release is one of the key factors in skin inflammation, the inhibition thereof 

may aid in the prevention of skin cancer as inflammation is one of the major causes of 

squamous cell carcinoma (SCC) (Scott et al., 2003). However, inhibiting the expression 

of TNF-α in TNF-α knockout mice or by using TNF-α inhibition antibodies exhibited 

several potentially serious side effects, hence the need to discover natural and safe 
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inhibitors of TNF-α (Sethi et al., 2009). There have been numerous studies 

demonstrating the modulation of key elements in cellular signal transduction pathways 

by polyphenols resulting in the inhibition of pro-inflammatory mediators through the 

inactivation of NF-κB (García-Mediavilla et al., 2007; Martínez-Flórez et al., 2005; 

Musonda & Chipman, 1998; Ramiro et al., 2005; Umesalma & Sudhandiran, 2010). For 

example, quercetin and other phenolic compounds have been reported to exhibit anti-

inflammatory effects in vitro by attenuating the activation of NF-κB (García-Mediavilla et 

al., 2007; Martínez-Flórez et al., 2005; Musonda & Chipman, 1998; Ramiro et al., 2005). 

However, the detailed molecular mechanism of action of the NF-κB signaling pathway 

during an inflammatory process is still poorly understood. 

The purpose of the current study was to investigate the anti-inflammatory effects of 

rooibos flavonoids in macrophages. The anti-inflammatory properties of different rooibos 

extracts prepared from fermented and unfermented plant material were investigated 

utilizing an LPS-induced inflammatory macrophage model with TNF-α release and the 

modulation of cell viability and apoptosis as endpoints. Subsequently, the potential anti-

inflammatory effects of different flavonoid and non-flavonoid fractions of a methanol 

extract, prepared from unfermented rooibos, were assessed.  

 

5.2. Materials and methods  

5.2.1. Chemicals 

RPMI-1640, Dulbecco’s phosphate buffered saline (DPBS), Ultra-glutamine (UGlut), 

trypsin-versene, Hank’s buffered salt solution (HBSS) and heat inactivated fetal bovine 

serum (FBS) were obtained from Lonza, Braine-l’Alleud, Belgium. Human Recombinant 

TNF-α ELISA kit was purchased from R&D systems, Minneapolis, USA. CellTiter-Glo 

luminescent cell viability and caspase-3/7 assay were purchased from Promega, 

Madison, USA. Triton-x100 for membrane research was obtained from Roche, 

Indianapolis, USA. Phorbol 12-myristate 13-acetate (PMA) and lipopolysaccharides 

(LPS) were purchased from Sigma-Aldrich, St Louis, USA. 
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5.2.2. Plant material and preparation of extracts and XAD-4 column fractions 

Unfermented and fermented rooibos plant material was purchased from Rooibos Ltd, 

Clanwilliam, South Africa. Methanol (MUF and MF) and aqueous (AUF and AF) extracts 

were prepared as described in detail (Section 3.2.2) in Chapter 3. In short, plant 

material was extracted by chloroform and subsequently with methanol and solvents 

evaporated at 40 C. The aqueous extracts were prepared by steeping the plant 

material in boiled water and filtrates freeze dried. All the samples were stored in 

desiccator at room temperature. The MUF extract, prepared as described in section 

3.2.3.1, was fractionated by column chromatography in an XAD-4 amberlite resin, as 

described in Chapter 3, using a stepwise methanol water gradient. Thin layer 

chromatography resulted in combination of fractions with similar non-flavonoid and 

flavonoid constituents yielding five main fractions, which were subsequently dried in 

vacuo at 40 ºC and stored in airtight containers at 4 C. 

 

5.2.3. Cell maintenance 

Human monocytic leukaemia (THP-1) cells were purchased from the European 

collection of cell cultures (ECACC). Cells were grown in RPMI-1640 supplemented with 

10 % fetal bovine serum (FBS) and 2 mM Ultra-Glutamine (U-GLUT) at a density 

between 300 000 and 900 000 cells/ml. Cells were incubated in the presence of 100 

ng/ml of PMA for 72 hrs to stimulate differentiation, subsequently rinsed with 100 µl of 

HBSS and equilibrated for 24 hrs in fresh RPMI supplemented with 0.5% FBS and 2 

mM U-GLUT. For experiments, cells were seeded at a density of 20 000 cells/well in 96 

well microtiter plates for the cell viability assay (solid white plates) as well as TNF-α and 

apoptosis determinations (clear tissue culture plates). 
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5.2.4. Experimental conditions 

5.2.4.1. LPS stimulation and extract and/or column fraction treatments 

LPS (10 ng/ml) was added in the presence of different concentrations of the rooibos 

extracts and/or column fractions to stimulate TNF-α release and monitor the modulating 

effect of the rooibos samples on TNF-α release. Rooibos extracts and the column 

fractions were prepared in RPMI-1640 supplemented with 0.5 % FBS, U-GLUT (2 mM) 

to a concentration of 2 mg/ml and final DMSO concentration of 0.5 %. Samples were 

sterilized using minisart syringe filters (0.2 µm) (Sartorius Stedim Biotech GmbH, 

Goettingen, Germany) prior to conducting the experiment. The extracts and/or column 

fraction preparations were diluted to concentrations ranging from 0.025 mg/ml to 0.8 

mg/ml in the culture medium containing 0.5 % DMSO. Cells treated with the culture 

medium (0.5% DMSO) in the presence of LPS (10 ng/ml) were used as the positive 

control.  

 

5.2.5. Experimental End points 

After 6 hrs of incubation in the presence of 10 ng/ml LPS and the different rooibos 

samples, the supernatant was transferred into different 96 well plates for TNF-α 

determination. The remaining cells were washed with 150 µl of DPBS and stored in 150 µl 

of 0.5 % triton at -80 °C for caspase-3/7 activity determination. Samples were allowed to 

thaw at 37 °C on a heating block and vortexed for 30 sec to facilitate lyses. For the 

determination of cell viability of the extracts and/or column fractions separate plates were 

used. The positive control was used as a bench mark and set at 100 % for ATP production 

and the fold increase of TNF-α and caspase-3/7 activities set at 1.  

5.2.5.1. Cell viability assay 

Cell viability was determined using a CellTitre-Glo luminescent kit to monitor ATP 

content according to the manufacturer’s instructions. After incubation with extracts and 

fractions, 100 µl of the ATP reagent was added to the wells containing 100 µl medium 
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as described in Chapter 4 and the ATP content was determined using the equation 

below.  

% ATP content = 
Relative light units (treatment samples)

Relative light units (+LPS) 
 

 

5.2.5.2. TNF-α assay 

TNF-α was quantified using human recombinant TNF-α ELISA kit according to the 

manufacturer’s instructions. TNF-α standards and cell lysates were prepared (Section 

5.4.2.1) and assayed in duplicate in 96 well ELISA plates. Absorbance was measured at 

450 nm using the biotek synergy HT microplate reader (Winooski, Vermont, USA). Data 

was analysed using the standard curve generated from Gen5™ Data Analysis Software 

(version 2 for Windows). Extracellular TNF-α was expressed as pg/ml of cell lysate and 

as the fold increase compared to the untreated control (-LPS). 

 

 TNF‐α release =
TNF‐α (treatement sample)

TNF‐α (+LPS)
 

 

5.2.5.3. Caspase 3/7 assay 

Caspase 3/7 activity was determined using the Caspase-Glo 3/7 assay as described in 

Chapter 4 with minor modifications. The lysates and the assay substrate were incubated 

for one hour instead of 30 min to obtain optimal luminescence development in the 

macrophages. Induction of apoptosis was expressed as fold increase compared to the 

positive control, i.e. cells exposed to LPS in the absence of the rooibos extracts and/or 

column fractions. 

 

Fold change = 
Relative light units (treatment samples)

Relative light units (+LPS) 
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5.2.6 Statistical analysis 

Details of the statistical analyses performed are described in Chap 4 section 4.2.6 

 

5.3. Results 

5.3.1. LPS modulation of TNF-α and cell viability parameters 

Exposure of THP-1 monocytes to LPS resulted in a 17.3% reduction in cell viability 

following the 6-hrs treatment. The TNF-α release was significantly (P<0.05) increased 

(approximately 7-fold), which was associated with a 2-fold increase in apoptosis (Table 

5.1). 

 

Table 5.1 LPS-induced TNF- accumulation in THP-1 macrophages in relation 
to the effect on cell viability and apoptosis. 

Treatments 

Cell viability TNF-α release 
Caspase-3/7 

activity 

(% ATP 

production) 
(pg/ml) Fold  Fold  

(-) LPS 117.3±9.8A 67.0±13.5A 0.14±0.02A 0.59±0.08A 

(+) LPS 100±9.7B 431.0±53.1B 1.00±0.03B 1.00±0.18B 

(-) LPS represents the cells not exposed to LPS representing the negative control; (+) LPS 
represents cells treated with LPS representing the positive control. The (-) LPS values are 
calculated using the positive control as a bench mark set at 100 % for ATP production with the 
fold increase of TNF-α and caspase-3/7 activities set at 1. 
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Table 5.2 Modulation of TNF- accumulation by different extracts of rooibos in relation to their effect 
on cell viability (% ATP content) in THP-1 macrophages exposed to LPS. 

Extract 
Concentration 

(mg/ml) 

Cell viability TNF-α 
Caspase-3/7 

activity 

% ATP production (pg/ml) Fold  Fold  

100±9.7A 431.0±53.1A 1.00±0.03A 1.00±0.18A 

MUF 

0.05 88.1±9.1B 98.1±13.1B 0.27±0.06C 1.11±0.10A 

0.1 81.4±10.2B 74.1±10.0C 0.21±0.06C 1.15±0.24A 

0.2 67.8±9.5C 73.1±10.8C 0.30±0.05C 1.56±0.66A 

MF 

0.05 92.8±14.0A 72.5±7.9c 0.15±0.02D 1.06±0.05A 

0.1 90.2±12.6A 60.3±16.5C 0.12±0.03D 1.22±0.28A 

0.2 79.6±13.6B 73.4±11.6C 0.16±0.03D 1.13±0.25A 

AUF 

0.05 83.0±11.4B 171.1±13.7D 0.42±0.07B 1.12±0.15A 

0.1 77.8±10.7B 177.2±22.8D 0.47±0.15B 1.24±0.26A 

0.2 69.9±12.2C 145.1±29.1D 0.36±0.08B 1.86±0.89A 

AF 

0.05 92.3±11.5A 254.3±21.6E 0.54±0.09B 1.00±0.27A 

0.1 82.1±5.6B 121.1±16.0F 0.27±0.05C 1.17±0.29A 

0.2 77.9±9.3B 65.4±23.2C 0.16±0.05D 1.02±0.00A 

% ATP production was calculated using the LPS treated cells as a positive control set at 100%. TNF-α and caspase-3/7 fold was 
calculated against the same positive control set to 1. Values with differing letters in a column are significantly different from each 
other, if at least one letter is the same between values then there is no significant difference. Abbreviations: TNF-α-tumor necrosis 
factor alpha; MUF-methanol unfermented; MF-methanol fermented, AUF-aqueous unfermented; AF-aqueous fermented  
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5.3.2. Modulation of TNF-α release and cell growth parameters by rooibos 
extracts 

(i) Effect on cell viability  

The MUF and AUF extracts decreased (P<0.05) cell viability at all the concentrations 

when compared to the LPS treated macrophages (Table 5.2). The MF and AF extracts, 

however only decreased cell viability at the highest and two highest concentrations. 

(ii) Effect on TNF-α release 

Exposure to all the different rooibos extracts resulted in a significant (P<0.05) decrease 

in TNF-α release. The methanol extracts were more effective in decreasing TNF-α 

release when compared to the aqueous extracts, except for the highest concentration of 

the AF extract. Both the MF and AF extracts were more effective (P<0.05) than their 

unfermented counter parts when considering the fold decrease. Of interest is that the 

highest concentration of the AF exhibited a similar fold decrease as the MF extract. 

(iii) Effect on apoptosis induction 

None of the extracts significantly increased apoptosis, although a slight non-significant 

increase was noticed at the highest concentrations for the MUF and AUF extracts. 

 

5.3.3. Modulation of TNF-α release and cell growth parameters by unfermented 
rooibos XAD-4 column fractions (Table 5.3). 

(i) Effect on cell viability  

The MUF extract and fraction X-2 at all concentrations tested had no significant effect 

(p<0.05) on cell viability, while fraction X-1 resulted in a significant decrease in cell 

viability only at the highest concentration (0.8 mg/ml). When compared to the MUF 

extract, fraction X-3 significantly (P<0.0) decreased cell viability at a concentration level 

above 0.4 mg/ml, while fractions X-4 and X-5 decreased cell viability at concentrations 

greater than 0.2 mg/ml. The non-polar fraction X-5 was the most active in reducing cell 

viability and became insoluble in the culture medium at concentrations above 0.4 mg/ml. 
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Table 5.3 Modulation of TNF-α accumulation by the unfermented methanol extract and different column fractions in 
relation to their effect on cell growth parameters in the presence of LPS 

Treatments 
Extract/Fractions 

(mg/ml) 

Cell viability TNF-α Caspase-3/7 activity 

% ATP production pg/ml Fold fold increase 

100,0±6.1A 352.0±44.0A 1.00±0.08A 1,00±0,11A 

MUF 
0.1 97.6±10.9A 295.2±54.9C 0.88±0.16A 1,08±0,19A 
0.2 103.4±5.6A 96.7±16.4E 0.18±0,05D 0,75±0,15B 
0.4 95.2±7.8A <10* - 0,75±0,16B 

X-1 

0.05 110.2±9.4A 280.0±37.2C 0.88±0.15A 1,02±0,11A 
0.1 113.2±10.8A 209.4±51.5C 0.34±0.09C 1,06±0,16A 
0.2 119.8±13.5A 13.7±1.8F - 0,84±0,14A 
0.4 113.5±15.6A <10 - 0,75±0,06B 
0.8 82.3±8.7B <10 - 0,97±0,13A 

X-2 

0.05 93.4±14.4A 426.4±66.8A 1.28±0.31A 1,03±0,13A 
0.1 96.3±11,2A 415.8±47.7A 1.20±0.27A 0.94±0,17A 
0.2 96.2±12.3A 382.5±45.4A 1.19±0.20A 0,94±0,12A 
0.4 97.0±10.6A 306.7±71.8B 0.90±0.19A 0,94±0,18A 
0.8 98.7±14.9A 268.4±46.2C 0.99±0.11A 0,87±0,11A 

X-3 

0.05 98.5±9.8A 372.6±44.4A 1.10±0.22A 0,89±0,17A 
0.1 94.1±6.4BA 341.4±53.5A 1.05±0.24A 0,97±0,13A 
0.2 90.7±7.1A 306.4±37.7B 0.95±0.06A 1,26±0,11C 

0.4 86.4±8,6B 243.4±44.9C 0.79±0.09B 1,38±0,24C 
0.8 82.6±5.7B <10 - 1,40±0,25C 

X-4 

0.05 89.2±16.7A 291.6±74.6A 1.04±0.16A 0,71±0,13B 
0.1 85.5±15,3A 385.8±83.5A 0.91±0.10A 0,96±0,17AB 
0.2 82.3±8.7B 358.0±54.7A 1.16±0.25A 1,01±0,16A 
0.4 76.9±8.8B 245.5±61.5C 0.97±0.15A 1,20±0,13C 
0.8 69,6±6,7C <10 - 2.02±0,54D 

X-5 

0.025 99.1±13.5A 410.2±60.5A 0.92±0.10A 1,03±0,17A 
0.05 97.5±11.4A 343.3±77.1A 1.05±0.16A 1,08±0,23A 
0.1 82.7±6.1B 276.7±36.9IC 0.95±0.09A 1,26±0,24C 
0.2 76.6±9.9B 233.1±42.7C 0.92±0.07A 1,68±0,06D 

0.4** 60.6±7.4C 181.0±37.5 0.98±0.11A 1,71±0,19D 

% ATP production was calculated using the LPS treated cells as a positive control set to 100%. TNF-αandcaspase-3/7 fold was 

calculated against the same positive control set to 1. Values with differing letters in a column are significantly different from each other, if 

at least one letter is the same between values then there is no significant difference. *Not detected. **X-5 was not soluble beyond 0.4 

mg/ml. Abbreviations: MUF-Methanol unfermented rooibos extract, X-XAD-4 fraction, LPS-lipopolysaccharide, TNF-α-tumor necrosis 

factor alpha. 
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(i) Effect on TNF-α release 

The MUF extract was more active in reducing TNF-α than all fractions except X-1 at 

similar dose (0.2mg/ml). Fraction X-1 was the most effective in decreasing TNF-α at all 

concentrations tested, exhibiting a typical dose response effect, while fraction X-2 was 

the least effective in decreasing TNF-α when considering concentrations above 

0.4mg/ml. The MUF extract and fractions X-3 and X-4 decreased TNF-α release beyond 

the detection limit at the highest concentration as well as fraction X-1 at the two highest 

concentrations. 

(ii) Effect on apoptosis induction 

The MUF extract significantly (p<0.05) decreased apoptosis at higher concentrations, 

while fraction X-1 and X-2 had no significant effect. Fractions X-3, X-4 and X-5 

significantly (p<0.05) induced apoptosis at the two highest concentrations. 

 

5.4. Discussion 

The pro-inflammatory effects of TNF-α are mainly manifested through the activity of 

TNF-α receptors, specifically TNF-R1 stimulating the release of other pro-inflammatory 

cytokines such as interleukin-1, (IL-1), interleukin-6 (IL-6), interleukin-8 (IL-8) and 

platelet derived growth factor, to name a few (Köck et al., 1990; Wu & Zhou, 2010). The 

expression of TNF-α, which is predominantly released from LPS activated microphages, 

has been reported to be increased in various diseases and is also implicated in all 

stages of tumor development (Arnott et al., 200). Several studies have reported the 

resistance of TNF-α knockout mice to developing tumors and the inability of cell to 

develop tumors when treated with TNF-α antibody which validates its role in 

tumorigenesis (Arnott et al., 2003; Baer et al., 1998; Moore et al., 1999; Wu & Zhou, 

2010). Therefore, the inhibition of TNF-α expression is essential to block early stages of 

carcinogenesis. 

In the current study, PMA differentiated THP-1 monocytes had a relatively low 

expression of TNF-α, which upon stimulation with LPS for 6 hours resulted in an 

approximately 7-fold increase. This activation of the innate immunity and inflammation is 
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thought to involve toll like receptor (TLR) signaling, specifically TLR4, which 

subsequently induces gene expression via the activation of NFκB (Akira, 2003; Wright, 

1999). There are numerous inhibitors of TNF-α that have been reported for treatment of 

diseases such as inflamed bowel disease, psoriasis and rheumatoid arthritis (Sethi et 

al., 2009). However, these drugs exhibit severe side effects leading to the need to 

develop natural inhibitors of TNF-αthat can be as effective (Sethi et al., 2009). For 

example, resveratrol, an antioxidant component of grape, has been reported to exert 

anti-inflammatory activities in macrophages through its ability to inhibit LPS-induced 

expression of pro-inflammatory markers including TNF-α (Bi et al., 2005). Quercetin, 

found in small quantities in rooibos, has also been reported to decrease LPS-stimulated 

release of TNF-α in raw 264.7 macrophages (Wadsworth & Koop, 1999). In addition, 

another rooibos polyphenol, luteolin was reported to decease serum levels of TNF-α in 

mice treated with  LPS (Kotanidou et al., 2002) and was shown to suppress LPS-

induced expression of various pro-inflammatory mediators, including TNF-α (Chen et 

al., 2007). The above reports on the anti-inflammatory effects of rooibos flavanoids 

highlight the importance of the current study to further elucidate the anti-inflammatory, 

which have been lacking in literature. 

Co-exposure of THP-1 derived macrophages to LPS and rooibos extracts decreased 

TNF-α release accompanied by a slight decrease in cell viability, while apoptosis was 

not affected. The methanol extracts were generally more effective in decreasing TNF-α 

levels compared to the aqueous extracts implying a role of anti-oxidant properties of the 

flavonoid constituents (chapter 3). However, in contrast to the HaCaT cells (Chapter 4) 

the MF extract was more active than the MUF extract at the lowest concentration in the 

absence of any effects on the cell viability parameters. A similar effect was noticed with 

the aqueous extracts with AF exhibiting a higher TNF-α inhibitory activity than the AUF 

at higher concentrations. This suggests that during fermentation of rooibos, the 

oxidation of the major monomeric flavonoid constituents with an associated decrease in 

antioxidant activity may be associated with an increased inhibition of TNF-α release 

inhibitory activity. Due to the absence of apoptosis and with no significant decrease in 

cell viability, when compared to keratinocytes (Chapter 4), all the rooibos extracts (MUF, 
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MF, AUF and AF) seem to exhibit direct anti-inflammatory properties on the 

LPS/microphage inflammatory model. 

Of the XAD-4 fractions, X-1, the most polar fraction, was the most effective in 

decreasing TNF-α release even exceeding the activity of the MUF extract, without 

affecting apoptosis and cell viability. Of interest is that, at the two highest concentrations 

the TNF-α level was reduced below the detection limit. In contrast, fraction X-2 only 

significantly (P<0.05) reduced TNF-α at the 2 highest concentrations. Fractions X-3 and 

X-4 completely inhibited TNF-α release at the highest concentration accompanied by a 

slight decrease in cell viability and a significant increase in apoptosis. Fraction X-5, the 

less polar fraction, exhibited the highest decrease in cell viability and significantly 

(P<0.05) induced apoptosis, while TNF-α release was only decreased at the highest 

concentrations similar to fraction X-2. With respect to the current model, no clear 

relationship seems to exist between the anti-oxidant potency of the rooibos flavonoids 

and anti-inflammatory effects. In this regard the MUF extract and the flavonoid enriched 

rooibos column fractions X-3 and X-4 exhibited the highest antioxidant properties as 

well as contained the bulk of the rooibos flavonoids which include the highly active anti-

oxidant, aspalathin. Fermentation is known to reduce the anti-oxidant and the aspalathin 

levels which provide interesting opportunities to further elucidate the anti-inflammatory 

components of fermented rooibos. 

The high TNF-α inhibitory activity of X-1, the most polar fraction, and the AF extract 

suggests that more polar constituents in rooibos seems to play an important role in the 

proposed anti-inflammatory effects. High levels of non-flavonoid “tannin-like” and 

“sugar-like” compounds in aqueous fermented rooibos have been reported and need to 

be taken into account when evaluating the effects of fraction X-1 and the AF extract 

(Joubert et al., 2008). In the present study the flavonoid-enriched fractions (X-3 and X-

4) were less effective at decreasing TNF-α but more effective at reducing cell viability 

and inducing apoptosis when compared to the MUF extract and fraction X-1 at the same 

concentration levels. It is therefore likely that upon fractionation, the enriched flavonoids 

in the fractions resulted in an increase pro-oxidant effects, which subsequently 

increased the induction of apoptosis and decreased cell viability, masking the direct 
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anti-inflammatory effects of the rooibos MUF extract. Therefore, fractionation separated 

the rooibos flavonoids to groups exhibiting direct anti-inflammatory properties (X-1) and 

indirect anti-inflammatory properties (X-3, X-4 and X-5). 

The interaction of activated macrophages and polyphenolic constituents also need to be 

considered from a different perspective. LPS activated microphages have been reported 

to increase intracellular iron. Apart from antioxidant effects, rooibos flavonoids also are 

known to exhibit iron chelating properties (Snijman et al., 2009) and may interact with 

intracellular iron altering the redox status as well as iron homeostasis in the 

macrophages following LPS activation. These effects could inhibit NFκβ since the 

activation of the latter has been reported to occur at two levels of redox regulation, one 

in the nucleus and the other in the cytoplasm (Toledano & Leonard, 1991, Xiong et al., 

2003). The result would be a subsequent decrease in the transcription of pro-

inflammatory genes. Of interest is that transcription factors such as NFκB and AP-1, 

have been reported to be activated by LPS through various signaling pathways (Lu et 

al., 2008). Redox regulation in the cytoplasm is likely to involve the mitochondria and 

the interactive role of Fe and rooibos flavonoids during inflammation should be further 

explored. 
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General Discussion 

Increased oxidative stress and inflammation have been identified as key events during 

cancer promotion (Federico et al., 2007; Lu et al., 2006; Reuter et al., 2010). 

Inflammation in the skin can be in response to various stimuli i.e. infection by bacteria or 

fungi, chemical irritants or exposure to ultraviolet light (Suter et al., 2009). Chronic 

inflammatory responses involving generation of oxidants such as superoxide anions, 

hydroxyl radicals, hydrogen peroxide and nitric oxide may damage normal tissue 

resulting in induction of signalling molecules and enzymes leading to the development 

of degenerative diseases (Santangelo et al., 2007). These include neurological 

diseases, metabolic disorder, cardiovascular disease and cancer. 

The South African herbal tea, rooibos, has long been reported to exhibit beneficial 

health properties including anti-microbial, anti-diabetic, anti-inflammatory and anti-

carcinogenic effects (Joubert et al., 2008). Studies investigating the anticancer effects of 

rooibos have reported the ability of rooibos to inhibit oesophageal squamous cell 

carcinogenesis in rats as well as skin tumor promotion in mice, implying the disruption 

of growth regulatory parameters in pre-cancerous lesions (Marnewick et al., 2005; 

Sissing et al., 2011; Petrova et al., 2011). However, studies on the anti-inflammatory 

properties of rooibos are limited. 

The aim of the current study was to use in vitro inflammatory models, the UV-B/HaCaT 

(Magcwebeba et al., 2012) and the LPS/Macrophage (Keet, 2015) cell models to 

evaluate the anti-inflammatory properties of rooibos methanol  and aqueous extracts as 

well as flavonoid and non-flavonoid enriched fractions prepared from an unfermented 

methanol extract. 

6.1. Role of extraction solvent on chemical characteristics and antioxidant 

activities  

The total polyphenol (TP) and flavanol (FLAVA) content of methanol and aqueous 

extracts, prepared from unfermented and fermented rooibos, were determined and the 

concentration of the monomeric flavonoids quantified by HPLC. The methanol extract of 
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unfermented rooibos, MUF, containing the highest concentration of monomeric 

polyphenolic compounds, exhibited the highest antioxidant activity in the FRAP and 

ABTS assays.  

The major rooibos flavonoids, predominantly found in the unfermented plant material, 

were mostly recovered in methanol, which is in accordance with the notion that 

polyphenols are more soluble in non polar solvents (Franco et al., 2008; Metivier et al., 

1980). The aqueous extract contained mainly the oxidised flavone products of 

aspalathin and nothofagin and it is also known to contain polymeric tannin-like 

substances. It has been reported that an aqueous fermented rooibos extract consists of 

up to 50 % complex tannin-like substances, compared to the 14% in a methanol extract 

of unfermented rooibos (Joubert et al., 2008). Hence the significant reduction in the TP 

and FLAVA content and anti-oxidant activity were observed in the MF and AF extracts 

with no significant difference between them. It would appear that fermentation slightly 

favours the solubility of the fermented constituents, presumably the tannin-like 

compounds, in an aqueous solvent. The polarity of the extraction solvent therefore, 

determines the nature of the polyphenols extracted and the resultant antioxidant 

properties of the extract. 

In summary the high anti-oxidant properties of rooibos were associated with a high TP 

and FLAVA content as well as high monomeric flavonoids while fermentation resulted in 

a significant decrease in all these parameters. Methanol as a solvent seemed to be 

important in determining the antioxidant properties of the extract in the unfermented 

rooibos. However, the more water soluble non flavonoid constituents in rooibos i.e. 

polymeric tannin-like compounds (Fig 6.1) became more prominent role players in the 

fermented rooibos. In support of this, the presence of several non flavonoid carboxylic 

acids compounds such as the hydroxyl cinnamates or cinnamic acids and 

hydroxybenzoic acid, mainly found in red wine (Cheynier et al., 2006) has been 

previously reported in rooibos (Rabe et al., 1994). In addition, oligosaccharides and 

polysaccharides constituents have also been reported present in rooibos even though 

these compounds have received little research attention and hence have not been fully 

characterised (Nakano et al., 1997). 
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6.2. Structure activity relationships of flavonoids 

Based on the high levels of rooibos monomeric flavonoids and the high antioxidant 

properties, the MUF extract was further fractionated by XAD-4 column chromatography 

using a stepwise methanol/water gradient (Chapter 3). Five fractions of decreasing 

polarity were collected with the major rooibos flavonoids enriched in fractions X-3 and 

X-4 HPLC analysis indicated that aspalathin eluted prior to nothofagin while aspalathin 

and the oxidised products, orientin and iso-orientin, were equally distributed between 

fractions X-3 and X-4 (Fig 6.2). The majority of the oxidised products of nothofagin 

eluted with the parent compound in fraction X-4 together with the rooibos flavonols. The 

flavonoid enriched fractions also exhibited the highest antioxidant activities. The orto 

position of hydroxyl groups in the B ring allows aspalathin to readily form an enol, which 

increases the polarity of aspalathin compared to nothofagin (Rabe et al., 1994) and 

therefore facilitating its elution prior to nothofagin, lacking the catechol arrangement.  

 

Figure 6.1. Chemical structure of condensed tannins consisting of basic catechin moieties 

(Adapted from Schofield et al., 2010) 
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Figure 6.2 Chemical structure of the main rooibos flavonoids and some of their respective 

oxidised products. (Adapted from Snijmanet al., 2009) 

 

Structural features known to play an important role in the antioxidant properties of 

rooibos flavonoids (Fig 6.3A) include the C3’-C4’ dihydroxy configuration (ortho-

dihydroxy functionality) in the B-ring, the C2=C3 double bond and 4-keto group in the C-

ring and the C5-OH group in the A-ring (Dai & Mumper, 2010; Snijman et al., 2009; 

Joubert & Ferreira, 1996). In addition, flavonoids are also known to exhibit metal 

chelation properties as they possess a catechol in the B ring, the C-4 keto group (C-

ring) and the C-5 hydroxy group (A-ring), which are recognised binding sites for metal 

ions (Fig 6.3B). Metal chelating could play a significant role in the relative antioxidant 

potency of the rooibos flavonoids in membrane environments (Snijman et al., 2009). 
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Figure 6.3. (a) Key flavonoid structural requirements for effective radical scavenging (Bors et 

al., 1990). (b). Trace metals (Men+) binding sites in flavonoids (Pietta, 2000) 

 

The potent antioxidant properties of aspalathin has been associated with the 2’, 6’ 

dihydroxy groups (A-ring), keto-enoltautomerisation of the carbonyl and α-methylene 

groups as well as the 3, 4 hydroxyl groups (B ring), which are important for the high 

potency to scavenge free radicals by the dihydrochalcones (Rezk et al., 2002). This 

would explain the high antioxidant properties of fractions X-3 and X-4 containing high 

levels of aspalathin and nothofagin. In addition, the corresponding flavones of 

(a) 

(b) 
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aspalathin, orientin and iso-orientin, as well as the other rooibos flavonoids are less 

effective antioxidants (von Gadowet al., 1997) as they lack the 6´-OH group in the A 

ring, although they retain the 3’,4’ dihydroxy group (B ring) and the C2=C3 double bond 

(C ring) (Table 6.1). The antioxidant activity of the flavones derived from nothofagin, the 

flavones vitexin and isovitexin, was also less active as they lack the 3’-hydroxy on the A 

ring (Krafczyk et al., 2009; Snijman et al., 2009). Hence, fractions containing more 

aspalathin and nothofagin exhibited the highest antioxidant activity compared to the 

more non-polar X-5 containing far less of the rooibos flavonoids. The polar fractions, X-

1 and X-2, contained low levels of the major rooibos flavonoids and are likely to contain 

the more water soluble, non-flavonoid, constituents of rooibos such as the tannin-like 

comounds, hydroxy cinnamates and hydroxy benzoic acid constituents. Although 

rooibos extracts have been reported to exhibit anti-inflammatory activity (Joubert et al., 

2008) it is not known whether the rooibos flavonoid and non-flavonoid constituents are 

involved. Against this background the anti-inflammatory effects of the extracts and XAD-

4 fractions were evaluated in UV-B/HaCaT keratinocyte and the LPS/macrophages cell 

inflammatory models utilising IL-1α accumulation and TNF-α release as endpoints, 

respectively. 

 

6.3. Inhibition of UV-B induced IL-1α in HaCaT cells 

Chronic UV-B exposure is one of the key risk factors predisposing to skin cancer 

development, possibly as a result of prolonged inflammatory responses (Aggarwal & 

Gehlot, 2009). Specific cytokines have been identified as key role players of 

inflammation. These include the pro-inflammatory cytokines interleukin 1 alpha (IL-1α), 

tumor necrosis factor alpha (TNF-α) and IL-6 (Shaikh, 2011). In the keratinocytes, IL-1α 

is constitutively produced and only released during disease states making it a good 

candidate to measure the extent of damage as upon damage the released IL-1α could 

further enhance an inflammatory response leading to chronic inflammation (Luo et al., 

2004).  

 

Stellenbosch University  https://scholar.sun.ac.za



Chapter 5 

154 
 

Table 6.1. Structural differences amongst flavonoids  

 

 Flavonoid 

A C 

B 

7 

8 

6 

5 4 

3 

2 
1 1' 

3' 

4' 

5' 

6' 

2' 

HO 

OH 

O 

Dihydrochalcone  

A 

B 

5' 

3' 1 

3 

4 

5 

6 

2 

HO 

OH 

OH 

R 

4' 

6' 

2' 

O 

 

 

 

 C2=C3 C3 C4C=O C6 C8 
B ring substitution 

Dihydrochalcone       

Aspalathin      3, 4-dihydroxy 

Nothofagin      4-hydroxy 

Flavone       

Luteolin + - + - - 3´, 4´-dihydroxy 

Chrysoeriol + - + - - 4´-hydroxy-3´-methoxy 

Orientin + - + - CG 3´, 4´-dihydroxy 

Isoorientin + - + CG - 3´, 4´-dihydroxy 

Vitexin + - + - CG 4´-hydroxy 

Isovitexin + - + CG - 4´-hydroxy 

Flavanol       

(+)-Catechin - OH - - - 3´, 4´-dihydroxy 

Flavonol       

Quercetin + OH + - - 3´, 4´-dihydroxy 

Isoquercitrin + OG + - - 3´, 4´-dihydroxy 

Hyperoside + OGa + - - 3´, 4´-dihydroxy 

Rutin + ORu + - - 3´, 4´-dihydroxy 

ORu: O-rutinosyl; OG: O-glucopyranosyl; OGa: O-galactosyl; CG/R: C-glucopyranosyl. 

(Adapted from Snijman et al., 2009). 
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In the present study, in the absence of UV-B, the methanol extracts of both fermented 

and unfermented rooibos increased IL-1α, which was accompanied by a decrease in 

cell viability and an increase in apoptosis at the highest concentrations, with the 

unfermented extract (MUF) exhibiting the highest activity. At higher concentrations all 

the fractions, except for X-2, increased IL-1α, which was also associated with 

decreased cell viability and increased apoptosis. This may be regarded as a pro-

inflammatory effect. Treatment with the column fractions indicated that, at an equal 

concentration, the non-polar fraction, X-5, exhibited similar responses to the MUF 

extract as it also significantly increased IL-1α. The polyphenol enriched fractions X-3 

and X-4 also increased IL-1α, although to a far lesser extent. Furthermore, the high 

levels of rooibos flavonoids in the unfermented extracts and the flavonoid enriched 

column fractions, which have high anti-oxidant activity and a major effect on cell 

viability, could mask their effect on the inflammatory response. The high anti-oxidant 

levels in the MUF extract as well as flavonoid enriched fractions may lead to changes in 

the cellular redox resulting in pro-oxidant effects and subsequent induction of apoptosis. 

It appears that the rooibos flavonoids may act as “double edged swords” when 

considering the cellular redox state. The type of flavonoids, with respect to its 

antioxidant potency and the dosage, may be determining factors impacting the balance 

between beneficial or deleterious effects as previously suggested (Bouayed & Bohn, 

2010).  
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Figure 6.4 Schematic diagram illustrating the “double edged sword” concept with respect to 

beneficial antioxidant and anti-inflammatory effects contrasting by the dose 

dependent adverse effects on these parameters (Adapted from Bouayed & Bohn, 

2010) 

 

The MF and AF extracts as well as the polar column fractions were less effective in 

reducing cell viability presumably due to the lower flavonoid content in comparison to 

the fermented extracts and the flavonoid enriched fractions. Specifically, fraction X-2 

closely mimicked the effect of the AUF and AF rooibos extracts as IL-1α was 

significantly reduced and minimal effects on cell viability and apoptosis were observed. 

The decrease in IL-1α by the aqueous extracts and fraction X-2 could be indicative of a 

direct inhibition on IL-1α suggesting an anti-inflammatory effect. Since fraction X-2 is 

non-polar containing low levels of the known rooibos flavonoids (Chapter 3) it possibly 

contains anti-inflammatory compounds similar to those in the aqueous extracts of 
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rooibos. It has been reported that a rooibos aqueous extract increased the anti-OVA 

IgM levels in sera of BALB/c mice in vivo (Ichiyama et al., 2007). This effect has been 

reported to suppress the formation of IL-2 and IFN-γ by T cells (Ichiyama et al., 2007). 

These immunological effects were not associated with the presence of the major 

rooibos flavonoids such as aspalathin, orientin and rutin, but rather with the presence of 

oligosaccharides and polysaccharides, the polar constituents in fermented rooibos. 

Therefore, the involvement of the polar rooibos constituents on inflammatory responses 

should be further investigated. 

Of interest are the effects of fraction X-1 (polar) and X-5 (non-polar) where X-1 

increased IL-1α accompanied by a drastic decrease in cell viability and apoptosis, while 

fraction X-5 also increased IL-1α but with a reduced effect on the cell growth indices. 

Therefore, fraction X-5 seems to contain typical pro-inflammatory constituents, while the 

drastic decrease in cell viability by X-1 may be related to cell necrosis and the release of 

IL-1α into the culture media. The latter could result in stimulation of the cytokine 

production in the remaining viable cells via positive feedback (Ninomiya-Tsuji et al., 

1999; Cohen et al., 2010). It has been reported that, when ATP levels fall below a 

certain level, apoptosis cannot be induced and cell death occurs by necrosis (Leist et 

al., 1997; Nicotera et al., 1998). During necrosis the intracellular cytokines are released 

into the extracellular medium thereby further enhancing the inflammatory response 

through different signally pathways including the stimulation of IL-1α production in the 

remaining viable cells as mentioned above. 

In the presence of UV-B all the rooibos extracts decreased IL-1α production in 

comparison to the control, with the MUF extract exhibiting the highest activity. Cell 

viability was further decreased, while apoptosis was decreased at the higher extract 

concentrations. Since apoptosis was decreased, accompanied by a further decrease in 

cell viability, specifically by the MUF and AUF extracts, the pro-oxidant effects of the 

rooibos flavonoids appear to be enhanced in the presence of UV-B, which is known to 

induce free radicals in cells (Aitken et al., 2007). The observed decrease in IL-1α could 

be a result of the removal of the damaged cells via a combination of excessive 

apoptosis and the additional role of necrotic cell death, which also needs to be 
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considered as mentioned above. The column fractions X-1, X-3 and X-4 all exhibited 

similar effects to the MUF extract in decreasing the concentration and fold of IL-1α at 

the highest concentration. The column fractions X-3 and X-4 further decreased cell 

viability, which is in accordance with the high flavonoid levels and increased anti-oxidant 

levels presumably leading to pro-oxidant effects. Fraction X-1 also had similar effects 

although it contained non-flavonoid constituents, while fraction X-2 decreasedIL-1α 

production only at the highest concentration. This decrease was associated with a 

decrease in cell viability, while apoptosis was not significantly increased. As this fraction 

seems to exhibit anti-inflammatory effects in cells in the absence of UV-B exposure, the 

therapeutic potential should be further explored. Fraction X-5, however, increased IL-1α 

(P<0.05) without a dramatic decrease in cell viability, while apoptosis was decreased 

significantly, once again implying a pro-inflammatory effect as suggested in the absence 

of UV-B irradiation. 

From these results it is evident that rooibos extracts and the XAD-4 fractions, except for 

fraction X-5, decreased intracellular IL-1α production in HaCaT cells following UV-B 

exposure through a further reduction of cell viability. However, a dominating role of 

apoptosis due to an increased pro-oxidant activity of the methanol extracts and XAD-4 

fractions seems to prevail, although the effect of subsequent necrosis tended to become 

more important at higher concentrations. As mentioned above the necrotic release of IL-

1α may augment the inflammatory response. Therefore the effects of the rooibos 

flavonoids and/or non-flavonoid constituents on inflammation depends on the anti-

oxidant properties, polarity indices and dose of the flavonoids, which are important for 

future studies related to the underlying mechanisms involved in the chemo-preventive 

properties of rooibos.  

Schematic diagram of the formation of phenoxy radicals involving quercetin and (-) 

epigallocatechin (EGC) illustrated the potential pro-oxidant intermediates likely to be 

involved in the reduction in cell viability and the induction of apoptosisin the HaCaT 

keratinocytes (Fig 6.5). The antioxidant and possible pro-oxidant properties of 

polyphenols are related to the redox potential of phenoxy radicals with quercetin having 

a very low E7/V (pH = 7) of 0.3, compared to that of 0.43 and 0.57 of EGC and (+)-
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catechin, respectively. The E7/V of the major rooibos flavonoid is not known but a study 

showed that it exhibited a similar IC50 concentration to EGCG and  

 

Figure 6.5 (A) The quercetin radical anion and quercitindianion, (B) one-electron oxidation of 

(-) epigallocathecin (Adapted from Haslam, 1999)  

 

quercetin in the ABTS´ radical scavenging assay, implying a comparable redox potential 

of the phenoxy radical and hence pro-oxidant properties (Snijman et al., 2009). Of 

interest, the phenoxy radical of rooibos flavone, rutin exhibited an E7/V of 0.6 which is 

known to exhibit a far weaker radical scavenging activity than aspalathin in the ABTS 

assay. 

As rooibos is known to inhibit cancer promotion in skin using different carcinogenesis 

models (Marnewick et al., 2005; Petrova et al., 2011), the current study provides 

interesting clues to further elucidate the anti-inflammatory properties of rooibos in the 

quest to develop a pharmaceutical product against skin cancer. Green tea polyphenols 
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have been shown to provide protection against UV-B skin carcinogenesis as oral and 

topical application of polyphenols before UV-B exposure decreased tumour 

development in vivo (Wang et al., 1994). Another study reported an inhibitory effect of 

orally administered black tea; decaffeinated green tea and decaffeinated black tea on 

UV-B induced benign and malignant tumor formation (Wang et al., 1991). With respect 

to the UV-B/HaCaT cell model, the anti-inflammatory effects of other plant phenolic 

extracts cells have also been investigated (Saliou et al., 1999). Wine polyphenols and 

grape wine extracts were reported to exhibit anti-inflammatory effects in HaCaT cells 

exposed to UV-B (Tomaino et al., 2006). These studies strengthened the use of the UV-

B/HaCaT model to further elucidate the effects of rooibos on inflammation. 

 

6.4. Inhibition of LPS stimulated TNF-α in macrophages  

TNF-α is also released by keratinocytes following UV-B exposure, however, the levels 

are far less than those released by macrophages following activation by LPS (Köck et 

al., 1990), which was the motivation behind the use of the LPS/macrophage model in 

his study. Macrophages are key inflammatory cells recruited during the early stages of 

inflammation (Fujiwara & Kobayashi, 2005) and are produced in bone marrow and 

transported through the blood to all tissues upon injury. Upon stimulation by UV-B 

and/or LPS, macrophages contributes to the inflammatory response by producing and 

releasing pro-inflammatory cytokines such as TNF-α and IL-1α (Duque & Descoteaux, 

2014). Most studies identifying TNF-α anti-bodies to modulate the adverse effects of its 

release, have been associated with severe side effects giving rise to a need to develop 

safer alternatives (Sethi et al., 2009). There are a number of plant derived products 

identified that can inhibit TNF-α release and/or expression. Quercetin, found in rooibos 

in small quantities, has been reported to decrease LPS-stimulated release of TNF-α in 

Raw 264.7 macrophages (Wadsworth & Koop, 1999), while In another study, luteolin 

suppressed LPS-induced expression of various pro-inflammatory mediators including 

TNF-α (Chen et al., 2007). 
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In the current study the rooibos extracts decreased TNF-α release in LPS-stimulated 

macrophages without overtly affecting cell viability and apoptosis, with the methanol 

extracts exhibiting the most prominent effects at the lowest concentrations levels tested. 

However, the MUF and AF exhibited the highest inhibitory effect at the highest 

concentration in the absence of apoptosis, which is associated with a direct anti-

inflammatory mechanism. This effect is in contrast to the keratinocytes where cell 

survival parameters also play a determining modulating role, as mentioned above. 

The XAD-4 derived column factions prepared from the MeOH extract of unfermented 

rooibos also decreased TNF-α with the most polar fraction, X-1, exhibiting the highest 

activity. The flavonoid-enriched fractions (X-3 and X-4) in addition slightly decreased 

cell viability and induced apoptosis at high concentrations similar to the MUF extract; 

however, the fractions were less effective in inhibiting TNF-α release. A similar effect 

was noticed with the non-polar fraction X-5 although it was less active, presumably due 

to lower level of rooibos flavonoids. The reduction in cell viability and the marginal 

increase in apoptosis could, as mentioned above, be related to pro-oxidant effects 

induced by the rooibos flavonoids while the non-polar constituents appear to be less 

effective in decreasing in the cell survival indices. In this regard fraction X-1 exhibited 

the highest activity in reducing TNF-α further suggesting that the more polar 

constituents of rooibos exhibited more direct anti-inflammatory properties, implying the 

more complex tannin-like proanthocyanidins or the more water soluble non-flavonoid 

constituents 

 

6.5. The role of nuclear factor kappa B (NF-κB) 

The production of pro-inflammatory cytokines is known to be associated with the 

activation of transcription factors including nuclear factor kappa B (NFκB) and the 

activator protein-1 (AP-1) among others (Karin & Greten, 2005). The expression of the 

TNF-α cytokine in response to LPS by macrophages has been reported to involve NFκB 

activation through toll-type receptors (TLR) signalling. The importance of this 

transcription factor is highlighted, as it is central in the link between inflammation and 
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cancer. Aberrant regulation of NFκB signalling has been reported in many tumours 

(Pikarsky et al., 2004) and the ability of a number of polyphenol compounds to inhibit 

TNF-α have been associated to decreased NFκB activation (Baer et al., 1998). NF-κB 

regulates inflammation and immune responses of host organism as it is involved in the 

expression of about 27 cytokines and chemokines as well as the expression of iNOS 

and COX-2, enzymes that may elevate the inflammatory response (Surh, 2003). 

Cytokines released via NF-κB signalling can also induce its translocation to the nucleus 

serving as a positive feedback regulation on the transcription factor which may further 

elevate the inflammatory response. The transcription factor has been found to be 

constitutively activated in a variety of diseases such as asthma, rheumatoid arthritis and 

inflammatory bowel disease as well as human cancers (Baldwin, 2001; Chen et al., 

1999; Epstein et al., 1997; Tak & Firestein, 2001). Therefore, modulation of NFκB 

activation has been a key target in the development of anti-inflammatory drugs for its 

pivotal role in inflammation regulation. 

The ability of both UV-B and LPS to stimulate cytokine production through the 

involvement of the NFκB serves as a possible model to investigate the direct anti-

inflammatory activity by the rooibos flavonoids. However, the modulation of this 

transcription factor are masked by the major rooibos flavonoids adversely affected the 

cell growth parameters in HaCaT cells at high concentrations, presumably due to pro-

oxidant effects (Fig 6.4). However, the less polar rooibos constituents present in the 

aqueous fermented extract and fraction X-2 (HaCaT) and fraction X-1 (macrophages) 

had minor effects on cell viability and the induction of apoptosis, could therefore be 

involved in the modulation of the down regulation of NFκB and the induction of pro-

inflammatory cytokines. 

 

6.6. The role of iron in the anti-inflammatory activity of polyphenols 

A second mechanism that could be involved in the anti-inflammatory effects of the 

rooibos flavonoids is related to their iron chelating properties. It is known that iron is 

released from ferritin associated with the increased oxidative stress in keratinocytes 
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following UV-B exposure which contribute to ROS production via the Fenton reaction 

thereby enhancing the inflammatory response (Imlay et al., 1988). In macrophages, 

stimulation by LPS retains iron in order to kill the invading pathogens, resulting in a 

change the oxidative status thereby resulting in the inflammatory response. The 

reduction of oxidative stress by sequestering iron would attenuate the inflammatory 

response reactions involving free radicals (Bergendi et al., 1999). 

 

6.7. Tolerance to pro-oxidant effects of polyphenols in HaCaT cells verses THP-1 

macrophages  

The rooibos extracts had no overt effects on cell viability and apoptosis in the 

LPS/macrophage model whilst attenuating TNF-α release with the methanol extracts 

showing highest activity. Macrophages produce a wide variety of free radicals in order 

to kill invading pathogens and are equipped with multiple defence mechanisms against 

these oxidants (Ishii et al., 1999). Therefore, the response of macrophages to treatment 

with the rooibos extracts and/or column fractions is suggestive of the resistance of the 

cells to the pro-oxidant effects of the polyphenol compounds resulting in lower response 

in reduction cell viability and the induction of apoptosis. The HaCaT cells appears to 

more readily undergo  apoptotic cell death, as they are considered to be pre-neoplastic 

cells known to be more sensitive towards suicidal cell death (Schulte-Hermann et al., 

1993). Therefore, the combined effect of UV-B and rooibos flavonoids exhibited adverse 

effects on cell integrity as observed in UV-B/HaCaT inflammatory model in the presence 

of the MUF and AUF as well as the flavonoid enriched rooibos column fractions. It is 

therefore evident, that with increased anti-oxidant levels the polyphenols could result in 

pro-oxidant effects (Fig 6.5) which could result in a reduction in cell viability and even 

into necrotic cell death in more susceptible HaCaT cell model. In comparison to the 

macrophages, the HaCaT cell has less capacity to accommodate oxidative stress and 

subsequently resort to apoptosis and necrotic cell death which masked the inflammatory 

response. 
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6.8. Summary and benefits of current investigation 

The ability of rooibos extracts and column fractions to inhibit the key primary cytokines 

governing inflammation in the LPS/macrophage model is likely to be indicative of their 

anti-cancer properties in skin. In addition, the major rooibos flavonoids were shown to 

exhibit no anti-inflammatory effects in the post UV-B/HaCaT models although protection 

against skin cancer may be accomplished through the induction of cell death. However, 

exposure to excessive levels of the rooibos flavonoids, specifically in the HaCaT model, 

may induce pro-oxidant effects and subsequently increase cell toxicity by reducing cell 

viability, induction of apoptosis and/or necrotic cell death. The current study also 

indicated that no clear relationship exist between the anti-oxidant potency and/or 

hydrophobicity of the rooibos flavonoids and the anti-inflammatory effects as the non-

flavonoid constituents also seem to play an important role. Therefore, effects of rooibos 

on inflammation cannot solely be attributed to the major flavonoids and their anti-oxidant 

properties as the fermented aqueous extract and non-flavonoid column fractions also 

exhibited high anti-inflammatory action in both the HaCaT and macrophage cell models. 

Furthermore, the fractionation of the MUF extract resulted in fractions with enriched 

polyphenols levels but this did not result in higher anti-oxidant activity and/or 

inflammatory response. Thus the use of pure compounds of the major polyphenols may 

not be beneficial as the extract is more active. 

 

6.9. Proposed future studies 

The aqueous extracts from fermented rooibos as well as the more polar column 

fractions inhibited inflammation more efficiently than the more flavonoid containing 

extracts and column fractions. Thus, it seemed that more polar rooibos constituents as 

well as well as the complex flavonoids found in fermented tea also exhibited antioxidant 

activity which resulted in the inhibition of the pro-inflammatory cytokines without adverse 

cytotoxic effects in the cells, especially in the LPS/macrophage inflammatory model. 

Future studies should therefore focus on aqueous extracts of fermented rooibos and the 

polar rooibos column fractions to further characterise their anti-inflammatory potency in 
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the in vitro models. With regards to the unfermented extracts and the flavonoid enriched 

column fractions, high doses exhibited detrimental toxicity in the HaCaT cell which were 

further increased in the presence of UV-B. Therefore, experiments should be conducted 

utilising specific doses to avoid the drastic decrease in cell viability and the presumed 

increase in necrosis. Effects on cellular oxidative status by monitoring the activation if 

transcription factors nrf2, NFB, AP1 among others should also be investigated as the 

induction oxidative stress and inflammation are known to be closely connected to these 

transcription factors. The modulation of these transcription factors could be in essence 

very good biomarkers to select optimal doses to minimise adverse effects related to the 

redox status of cells and to further characterise the underlying anti-inflammatory 

mechanisms of rooibos. 
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