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Abstract 

Global efforts to combat climate change, reduce greenhouse gas emissions and 

increase energy security has led to renewed interest in the use of biofuels as an 

alternative to fossil fuels.  Therefore, it has become increasingly important to 

understand the effects that the use of biofuel has on the performance and 

emissions of internal combustion engines.  The subject of this report is the 

development of a small diesel engine test bench employing an electric 

dynamometer.  The purpose of the project is to establish an engine testing 

platform which can be used to test small quantities of biofuel, as well as to expand 

the testing capabilities of the Biofuel Test Facility at Stellenbosch University.  In 

this report, a review of the literature surrounding various aspects of engine 

performance testing and engine indicating testing is presented.  In addition, 

literature research regarding the different types of dynamometers available is also 

presented.  A thorough evaluation of the various dynamometer options is 

performed and a suitable electric dynamometer system is selected for the 

development of the test bench.  Further aspects surrounding the development of 

the test bench covered in this report include integrating the dynamometer with a 

small test bench employing a single-cylinder, compression-ignition engine, 

designing a driveshaft to couple the dynamometer to the test engine, as well as 

instrumenting the test bench.  In addition, this report also details the 

instrumentation of the test engine with a fibre-optic pressure transducer to 

measure in-cylinder pressure data, as well as the development of software which 

is used to measure and record all engine indicating data.  The obtained engine 

indicating data is then used to construct a zero-dimensional, single-zone heat 

release model.  Calibration of the dynamometer system is performed and it is 

concluded that the dynamometer’s signal output exhibits excellent repeatability 

and displays very little hysteresis.  Engine tests are also performed during which it 

is found that the developed test bench produces accurate and repeatable results, 

both during engine performance testing and engine indicating testing.  It is also 

concluded that the test setup is sensitive enough to detect small changes in engine 

performance and engine particulate emissions when switching from petroleum 

diesel to B10 biodiesel.   
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Opsomming 

Globale pogings om klimaatsverandering te bestry, vrystelling van 

kweekhuisgasse te verminder en energie sekuriteit te verhoog, het gelei tot 

hernude belangstelling in die gebruik van biobrandstowwe as 'n alternatief vir 

fossielbrandstowwe.  Gevolglik het dit al hoe belangriker geword om die effek 

wat die gebruik van biobrandstof op die werkverrigting en uitlaatgasse van 

binnebrandenjins het te verstaan. Die onderwerp van hierdie verslag is die 

ontwikkeling van 'n klein dieselenjin toetsbank wat gebruik maak van 'n elektriese 

enjin rem.  Die doel van hierdie projek is om 'n enjin toets platform te ontwikkel 

wat gebruik kan word om klein hoeveelhede biobrandstof te toets, asook om die 

toets vermoë van die Biobrandstof Toetsfasiliteit by die Universiteit van 

Stellenbosch uit te brei.  Hierdie verslag verskaf ‘n oorsig van die literatuur wat 

handel oor die verskeie aspekte van enjin prestasietoetsing, sowel as oor die 

meting van druk binne die silinder van ‘n enjin.  Daarbenewens word 

literatuurnavorsing oor verskillende tipes enjin remme ook aangebied.  'n 

Deeglike evaluering van die verskillende enjin rem opsies word gedoen en die 

mees geskikte elektriese enjin rem stelsel word gekies vir implementering met die 

toetsbank.  Addisionele aspekte rakende die ontwikkeling van die toets bank wat 

in hierdie verslag aangespreek word sluit in die integrasie van die enjin rem met 

‘n beskikbare klein toets bank wat gebruik maak van ‘n enkel-silinder, 

kompressie-ontstekingsenjin, die ontwerp van 'n dryfas om die enjin rem aan die 

toets enjin te koppel, sowel as die instrumenting van die toets bank.  Verder word 

besonderhede ook verskaf rondom die instrumentering van die toets enjin met 'n 

optiese-vesel druk sensor om gevolglik die druk binne die enjin silinder te meet.  

Die ontwikkeling van die sagteware, wat gebruik word om hierdie gemete druk 

waardes te stoor, word ook bespreek.  Die druk waardes gemeet binne die silinder 

van die enjin word dan gebruik om 'n nul-dimensionele, enkel-area numeriese 

model te ontwikkel wat beskryf hoe hitte binne die enjin vrygestel word.  

Kalibrasie van die enjin rem stelsel word uitgevoer waartydens daar gevind word 

dat die uittree sein vanaf die enjin rem uitstekende herhaalbaarheid en baie min 

histerese toon.  Enjin toetse word ook uitgevoer waartydens daar bevind word dat 

die ontwikkelde toets bank baie akkurate en herhaalbare resultate oplewer tydens 

beide die enjin prestasie toetse sowel as tydens die meet van die silinder druk.  

Daar word ook tot die gevolgtrekking gekom dat die toets opstelling sensitief 

genoeg is om klein veranderinge in enjin werkverrigting en enjin uitlaatgasse te 

identifiseer, wanneer daar vanaf petroleum diesel na B10 biodiesel oorgeskakel 

word. 
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1 

 

1 Introduction 

The constant increase in the global demand for fossil fuels (BP Statistical Review 

of World Energy, 2016), coupled with the continued depletion of limited fossil 

fuel reserves, continues to emphasise the need to find alternative fuel resources.  

This has sparked renewed interest in the use of biofuels, such as biodiesel, as an 

alternative to fossil fuels (Huang et al. 2012).   

Additional factors such as the global efforts to combat climate change reduce 

greenhouse gas emissions and increase energy security (EPA, 2015) has renewed 

interest in the use of biofuels.  This has led to Congress in the United States 

implementing programs such as the Renewable Fuel Standard program, which 

mandates that, per annum, a minimum volume of biofuel must be blended into all 

transportation fuel sold in the United States.  The amount of biofuel introduced in 

this manner is to be increased each year as stipulated by the annual percentage 

standards published by the United States Environmental Protection Agency (EPA, 

2015).   

In South Africa, a Biofuels Industrial Strategy was also submitted to Cabinet in 

2007.  This strategy’s aim was to achieve a 2 % biofuel penetration level into all 

liquid based fuel sold in the country (Biofuels Industrial Strategy of the Republic 

of South Africa, 2007).  With steps being taken both locally and internationally to 

promote the use of biofuel, it has become increasing important to study the effects 

that the use of biofuel has on the performance and emissions of internal 

combustion (IC) engines. 

The Department of Process Engineering at Stellenbosch University already has 

the capability to produce their own biofuel, but only in small quantities at a time.  

However, prior to this project, Stellenbosch University’s Biofuel Test Facility did 

not have a test setup which could operate on such small quantities of fuel and 

could therefore not test the biofuel.  There was thus a need to develop a small 

diesel engine test bench capable of performing fuel-to-fuel evaluations on these 

small quantities of fuel.  The addition of a small diesel engine test setup would 

also significantly expand the testing capability of the entire test facility. The 

purpose of this project was thus to develop such a small diesel engine test bench 

employing a suitable dynamometer system.  

The objectives for this project were the following: 

 Research and select a suitable dynamometer system (with consideration of 

future research requirements) for the small diesel engine test bench being 

developed. 

 Integrate the selected dynamometer system with an existing test bench in 

Stellenbosch University’s Biofuel Test Facility. 

 Instrument the test bench to measure engine performance, as well as 

monitor various engine operating parameters. 

 Instrument the test engine and develop the required software to enable 

engine indicating testing to be performed.  
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 Commission the test setup and validate that the test setup is capable of 

producing accurate and repeatable results. 

2 Literature Study 

During the initial stages of the project, a preliminary literature study was 

performed.  This was done in order to determine what research have already been 

conducted using small capacity compression-ignition engines for biofuel testing.  

The literature study was then continued to research the various types of 

dynamometer options available in order to identify a suitable dynamometer 

system for the test bench being developed.  Throughout the duration of the project 

various aspects surrounding engine testing hardware, engine performance testing 

and engine indicating testing were researched.  Research was also performed 

regarding combustion analysis of a compression-ignition engine, as well as the 

development of a heat release model using in-cylinder pressure data.   

2.1 Engine testing 

The primary aim of engine testing is to measure and compare engine performance 

at different states of tune.  Furthermore, engine testing is also used to compare the 

performance of different engines when subjected to the same test conditions 

(Atkins, 2009).  Due to the automotive industry’s constant commitment towards 

product development, engine manufacturers continually perform rigorous engine 

testing, as part of their research and development programmes (Dynamometer 

Engine Testing, 2011).  Whenever engine developers implement new engine 

technology, an appropriate type of engine test is used to verify the performance of 

the modified engine or engine components.  The newly developed technology can 

therefore be tested prior to it being mass produced (a benefit of engine testing 

which greatly reduces the cost of engine development) (Engine Testing Overview, 

[S.a.]).  As opposed to road testing, engine testing quantifies and isolates engine 

performance parameters from vehicle performance.  This enables engine 

developers to determine exactly what engine modifications lead to improved 

engine performance, resulting in considerable less testing time (Why You Need an 

Engine Dynamometer, [S.a.]).      

Some form of engine testing almost always forms part of the engine 

manufacturing process, where engine testing is primarily implemented in the form 

of either a hot or a cold test.  A cold test is normally performed on a near 

complete engine and employs a cold test rig situated within the assembly line.  

The purpose of the cold test is to confirm the satisfactory performance of a 

specific subassembly of the complete engine.  A hot test, on the other hand, is 

generally performed within an engine production test cell and on a complete 

engine.  Here, the aim of the test is to establish (in the shortest amount of time 

possible) if the engine is complete and runs (Martyr & Plint, 2007).   

Apart from the types of engine testing mentioned above, there are numerous other 

applications of engine testing.  Some of the most common types of engine testing 
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performed include: durability testing, engine performance testing, fuel and 

lubrication testing, engine emissions testing and exhaust system testing 

(Atkins, 2009).   

2.2 Engine test facilities  

Complicated engine test procedures require the strict control of various 

parameters such as temperatures, pressures, flow rates, etc.  In order to conduct 

these engine tests, a very sophisticated facility is required that houses the 

advanced testing equipment and instrumentation required to measure engine 

performance.  However, in general, these engine test facilities vary considerably 

in performance, size and power rating (Martyr & Plint, 2007).   

In addition to the instrumentation employed in the engine test facility, the facility 

must also house the support services and utilities required by the instrumentation.  

The support services aid in ensuring that the instrumentation performs as expected 

and that reliable data can be obtained.  Typical support services required in the 

test facility are proper ventilation, cooling water, conditioning systems for fuel, 

water and exhaust gases, an exhaust gas extraction system and a fuel supply 

system.  Although the aforementioned services are vital to ensure proper operation 

of the test facility, one of the most important aspects of an engine test facility is 

ensuring that the proper safety measures are employed.  From a safety point of 

view, additional items such as: emergency lighting and power, a fire suppression 

system, fire alarms, fire extinguishers, appropriate warning lights and a safe fuel 

storage area should also be provided by the test facility (Atkins, 2009).  

Employing the appropriate safety measures are of particular importance when it 

comes to the handling and storage of biofuels.  Biodiesel and biodiesel blends, for 

example, tend to be hydrophilic.  This leads to the corrosion of fuel lines and 

storage tanks, due to the condensation of the water contained in the fuel.  

Furthermore, when biodiesel blends are stored in bulk or in drums for extended 

periods of time, the additional water absorbed by the fuel leads to increased 

microbial growth in heated fuel tanks.  These growths then form soft masses that 

plug the filters in the fuel system (Martyr & Plint, 2007).  

2.3 Engine test benches 

The piece of equipment most central to the engine test facility, as well as to the 

engine testing procedure itself, is the engine test bench.  The primary function of 

the test bench being to facilitate the mounting of the unit under test, as well as to 

support all other equipment required to perform the relevant tests.  Generally, the 

design of the test bench varies according to the type of engine test being 

performed.     

General-purpose automotive engine test cells often employ a common tee-slotted 

bedplate design, which offers maximum flexibility in that it allows both the 

position of the dynamometer and the engine to be adjusted.  When performing hot 
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and cold tests in an engine production environment, the primary concern is that 

the test bench used must permit fast engine changeovers.  Such a test bench only 

needs to offer limited flexibility in terms of the mounting arrangements that it 

supports.  For research and development purposes, it is also often required that the 

test bench makes special provision for the mounting of additional equipment also 

included in the test procedure.  One such example is powertrain testing where the 

engine is tested along with its directly mounted transmission 

(Martyr & Plint, 2007).   

In addition to the above, the test bench must also be able to withstand the forces 

imposed upon it by the equipment that it supports.  This includes the static forces, 

due to the weight of the equipment, as well as any dynamic forces generated 

during the engine test procedure.  This requirement generally leads to test benches 

being very strong and rigidly designed.  Provision must, however, still be made 

for the test bench to be able to absorb as much engine vibration as possible.  This 

is of particular importance when measurements are taken using instrumentation 

that is mounted directly to the test bench, since any vibration present at the 

measurement position will show up as noise in the measured data.  Special 

provisions must therefore be made to ensure that the measurement equipment is 

isolated from excessive vibration.  Generally, this can be accomplished by 

mounting either the engine, or the measurement equipment, on anti-vibration 

mountings.   

Furthermore, the test bench must also employ the necessary safety measures in 

order to allow the engine testing procedure to be performed safely.  All 

components of the test setup that pose risk of injury should be covered by a safety 

enclosure or clearly marked with a warning sign if it is not possible to enclose it.  

Apart from preventing accessibility to the danger zone, these safety covers must 

also be strong enough to contain the mechanical components of the tests setup in 

the event that a catastrophic failure should occur during the testing procedure.   

2.4 Dynamometers and torque measurement 

Second to the engine being tested, the dynamometer can be considered the most 

important piece of equipment used in the engine testing procedure.  The function 

of the dynamometer is to resist and measure the torque generated by the prime 

mover to which it is connected.  Ideally, the dynamometer should be able to 

impose variable loading on the engine, while the engine is operated over its entire 

speed and torque range (Atkins, 2009).  Furthermore, the accuracy with which the 

dynamometer measures both the speed and torque of the engine being tested is 

vital to all other derived measurements made during the engine testing procedure 

(Martyr & Plint, 2007).  In order to obtain satisfactory results, an appropriate 

dynamometer must thus be selected that best suits the type of engine testing to be 

performed.   
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2.4.1 Dynamometer classification 

The two main types of dynamometers used in engine testing are engine 

dynamometers and chassis dynamometers.  An engine dynamometer connects to 

the crankshaft (or flywheel) of an engine (by means of a driveshaft) and measures 

the torque developed by the engine alone.  A chassis dynamometer, on the other 

hand, consists of rollers that are driven by the wheels of the vehicle being tested 

and consequently measures the torque available at the wheels of the vehicle 

(Shaw, [S.a.]).  The discussion which follows will focus on the various types of 

engine dynamometers encountered most often in practice.  

An engine dynamometer can be classified as either being an active or a passive 

dynamometer.  A dynamometer that is only capable of absorbing power is known 

as an absorption or passive dynamometer.  Dynamometers can, however, also be 

used to measure the amount of power required to operate a driven machine.  Such 

a dynamometer, capable of both absorbing power as well as driving a machine, is 

known as a universal or active dynamometer (Dynamometer Review, [S.a.]).  The 

various types of dynamometer can be distinguished from each other, based on the 

way in which they absorb the torque that is applied to them.  Even though there 

are a wide variety of engine dynamometers in use today, the majority of these 

engine dynamometers can be classified according to two main categories, namely: 

hydraulic dynamometers and electric dynamometers.     

2.4.2 Hydraulic dynamometers 

Hydraulic dynamometers have the capability to absorb very large amounts of 

power as well as to absorb power at very high speeds.  The design of the hydraulic 

dynamometer (also referred to as a water-brake dynamometer) consists of a rotor 

(attached to a rotating driveshaft) into which semi-elliptical pockets have been 

machined.  Similar pockets have also been machined into the watertight casing 

within which the rotor rotates and together these pockets form elliptical 

receptacles.  The pockets in the rotor, as well as those in the casing of the 

dynamometer, are separated from each other with radial vanes, which are set at an 

angle to the shaft of the rotor (Martyr & Plint, 2007).  The rotor shaft is supported 

by bearings that are located in the dynamometer casing, which in turn is carried 

by trunnion bearings.  This means that the casing of the dynamometer is free to 

rotate about the same axis as the rotor shaft (Atkins, 2009). 

During operation, the rotor shaft is connected to the crankshaft of the engine and 

the casing of the dynamometer is filled with water.  As the rotor rotates in the 

water filled casing of the dynamometer, water is discharged from the rotor 

pockets into the pockets in the dynamometer’s casing.  From here, the water is 

returned at reduced speed to again enter the pockets in the rotor.  It is this shearing 

of the water that leads to a resistance of rotation of the rotor, which in turn, causes 

the dynamometer casing to experience a torque reaction.  This torque reaction 

causes the dynamometer casing to pivot on its trunnion bearings (Atkins, 2009).  

The torque reaction experienced by the dynamometer can then be calculated by 

attaching a lever arm of known length to the dynamometer’s casing and 
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measuring the force at the end of this lever arm.  Apart from offering resistance to 

rotation, a second important function of the water flowing through the 

dynamometer is that it carries away the heat that is generated during the 

dissipation of energy within the dynamometer, therefore preventing the 

dynamometer from overheating (Atkins, 2009).  

2.4.3 Electric dynamometers   

Although there are still situations which justify the use of a hydraulic 

dynamometer, in general, the complex and accurate control required in modern 

day engine testing, often exceeds the capability of the hydraulic dynamometer.  

Consequently, most hydraulic dynamometers have been replaced by electric 

dynamometers, which are capable of offering far superior control (Atkins, 2009).  

Following is a description of some of the most common electric dynamometers 

used to perform engine testing. 

2.4.3.1 Dry gap eddy-current dynamometers 

In general, eddy-current dynamometers are very robust machines, capable of 

employing significant braking torque at low rotational speeds (Martyr & Plint, 

2007).  These dynamometers counter the torque generated by the engine under 

test, by employing the principle of electromagnetic induction to develop a counter 

torque, which is used to apply a load to the engine.  The eddy-current machine 

consists of a high permeability steel rotor, which rotates with very fine clearances 

between steel loss plates.  The casing of the dynamometer encapsulates coils that, 

when supplied with current, generates a magnetic field within the dynamometer’s 

casing (Martyr & Plint, 2007).   

During the engine testing procedure, the test engine is coupled to the 

dynamometer shaft which incorporates the steel rotor of the dynamometer.  As the 

rotor of the dynamometer rotates within the dynamometer’s casing, it cuts the 

magnetic field set up by the coils inside the casing.  This causes a variation in the 

distribution of magnetic flux within the loss plates, which in turn leads to eddy-

currents being generated within these loss plates.  These circulating eddy-currents 

generate their own magnetic field, which opposes the original magnetic field 

within the dynamometer.  This leads to the development of a counter torque 

within the dynamometer, which offers resistance to rotation of the dynamometer’s 

rotor disk.  Power is dissipated in the form of electrical resistive losses and the 

energy is then transferred in the form of heat to cooling water that circulates 

through passages in the loss plates (Martyr & Plint, 2007).  The strength of the 

magnetic field within the dynamometer (and hence the amount of torque applied 

to the engine) can be controlled by altering the amount of current supplied to coils 

within the dynamometer casing (Killedar, 2012).  With the casing of the eddy-

current dynamometer also being trunnion-mounted, torque can be measured using 

the same principle as was described above for the hydraulic dynamometer.   
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2.4.3.2 Direct current (DC) dynamometers 

A DC electric dynamometer is essentially a DC electric motor that operates as a 

generator when it is absorbing power from the engine being tested.  In order to use 

a DC electric motor as a dynamometer, a suitable drive unit (essentially a thyristor 

based dc-ac-dc converter) is required to control the amount of torque applied to 

the test engine.  DC dynamometers are typically very robust machines, which are 

easy to control, but have high inertia and limited maximum operating speeds 

(Martyr & Plint, 2007).   

During the engine testing procedure, the dynamometer absorbs the shaft power 

generated by the test engine and converts the power into electrical energy. In large 

test setups, that are operated more continuously, this electrical energy can be fed 

back into the electrical grid, acting as a source of revenue for the dynamometer 

operator (Atkins, 2009).  In small dynamometer setups, the amount of power 

generated is typically too small and does not justify the expense of installing the 

additional hardware required to feed the power back into the electrical grid.      

Therefore, in smaller test setups, the electrical energy generated is simply fed to a 

load bank where it is dissipated in the form of heat (Killedar, 2012).  This heat is 

then transferred to the cooling medium (most often air) that is used to cool the 

load bank.   

A distinct advantage that DC dynamometers have over both hydraulic and eddy-

current dynamometers is that apart from being able to load the test engine, they 

also have the capability to both start and motor the test engine.  Motoring the 

engine involves using the dynamometer to drive the engine at a certain operating 

speed while the engine’s fuel supply is cut off (thus no combustion is taking 

place).  Measuring the amount of torque applied to the engine during the motoring 

test, enables the operator to determine the friction losses associated with the 

engine when operated at the test speed.   

The method that is employed to measure the torque absorbed by a DC 

dynamometer largely depends on the way in which the electric motor is physically 

integrated with the test bench.  Here there are several options available depending 

on the existing hardware and the complexity of the test bench design.  The torque 

measurement options associated with DC dynamometers are discussed in section 

2.4.3.3, along with those of the AC dynamometer. 

2.4.3.3 Alternating current (AC) dynamometers 

An alternative option to the DC dynamometer is to use an AC electric motor to act 

as the dynamometer.  These dynamometer systems consist of an AC electric 

motor (most often an induction motor with a squirrel-cage rotor design) and an 

AC variable speed drive (VSD) that is used to control the dynamometer.  These 

drive units almost exclusively employ insulated gate bipolar transistor technology 

to vary the frequency of the voltage supplied to the dynamometer.  This in turn 

controls the operating speed of the dynamometer.  Similar to the DC 

dynamometer setup, the power absorbed from the test engine can either be fed 
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back into the electrical grid or it can be dissipated in an appropriately sized load 

bank (Martyr & Plint, 2007). 

Compared to a DC dynamometer of equivalent size and power rating, an AC 

dynamometer with a squirrel cage rotor has much lower inertia.  Due to this lower 

inertia, AC dynamometers are capable of faster rates of speed change, making 

them the preferred choice when it comes to transient testing.  Furthermore, AC 

dynamometers are very robust and due to being based on the design of an AC 

electric motor, these dynamometers require very little maintenance 

(Killedar, 2012).  Similar to DC machines, AC dynamometers also have the 

ability to both start and motor the test engine.   

The torque measurement options for both DC and AC dynamometers are the 

same.  Both DC and AC dynamometers can be trunnion-mounted and the torque 

then calculated by attaching a lever arm of known length to the dynamometer 

casing and measuring the force that is exerted at the end of this lever arm (as was 

described for the hydraulic dynamometer).  However, if an electric motor is to be 

adapted to function as a dynamometer, quite a substantial amount of redesign to 

the electric motor may be required before it can be trunnion-mounted to the test 

bench (Martyr & Plint, 2007).  In order to use the electric motor as a 

dynamometer, provision must also be made for the attachment of the lever- and 

calibration arms to the motor.   

An alternative mounting arrangement is to use an inline torque transducer to 

measure the torque applied to the engine.  These inline torque transducers are 

installed as part of the driveshaft connecting the dynamometer to the engine and 

therefore require accurate alignment of the engine and dynamometer during 

installation.  In cases were an inline torque transducer is employed, the foot mount 

of the electric motor can be used to fix the motor to the test bench.  The use of an 

inline torque transducer thus eliminates the substantial amount of design and 

fabrication work required to trunnion mount the electric motor.  However, these 

transducers are far more expensive than a normal load cell, which can be used for 

torque measurement when a trunnion-mounted arrangement is used.   

2.4.4 Coupling the dynamometer to the engine 

In order to measure the power generated by the test engine, the dynamometer 

must be coupled to the engine using a driveshaft.  There are various means of 

accomplishing this task, depending on the dynamic characteristics of the engine-

dynamometer setup being used.  The selection of the appropriate shaft and 

couplings used to make up the driveshaft is, however, by no means an easy 

undertaking.  Incorrect choice of the driveshaft components or incorrect system 

design may give rise to a number of problems (Martyr & Plint, 2007).   

One of the problems commonly associated with poor driveshaft design, is the 

occurrence of torsional oscillations during the engine testing procedure.  These 

torsional oscillations are excited by the variation in engine torque, which in turn is 

a product of the variation in the in-cylinder pressure, between different engine 
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cycles.  As a simple approximation, the engine-dynamometer system may be 

modelled as two rotating masses coupled with a flexible shaft.  Such a system is 

inherently prone to torsional oscillations, with the two masses being capable of 

vibrating 180 degrees out of phase, about a node located somewhere along the 

shaft connecting the two masses (Martyr & Plint, 2007).  If an undamped system 

such as this is excited by a constant torque (𝑇𝑒𝑥), and at a constant frequency (𝑓), 

then the relationship between the amplitude of the resulting oscillation (∅) and the 

frequency ratio (
𝑓

𝑓𝑐
), would be as is shown in Figure 1 below 

(Martyr & Plint, 2007).   

    

 

Figure 1: Relationship between amplitude and frequency ratio 

(Source: Martyr & Plint, 2007)  

 

From Figure 1 it can be seen that at low frequencies, the combined amplitude of 

the two masses equals the static deflection of the shaft under the influence of the 

exciting torque.  That is ∅0 = 
𝑇𝑒𝑥

𝐶𝑠
, where 𝐶𝑠 is the shaft stiffness.  As the 

excitation frequency increases, the amplitude of the oscillation also increases until 

𝑓 = 𝑓𝑐, where the amplitude becomes theoretically infinite and the shaft fails 

catastrophically.  Beyond this point, the amplitude of oscillations decreases with 

increasing frequency (Martyr & Plint, 2007).      

The figure also shows the behaviour of a damped system.  Figure 1 shows that for 

a damped system, the value of the ratio 𝐻 = 
∅

∅0
 (referred to as the dynamic 

amplifier) increases with an increase in frequency to reach some maximum, but 

finite, value at the critical frequency of the drive system (as opposed to becoming 

theoretically infinite as for the undamped case).  Furthermore, for excitation 
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frequencies higher than the critical frequency of the system, the amplitude of the 

torsional oscillations decreases with an increase in frequency. 

Consequently, the driveshaft coupling the dynamometer to the engine must be 

designed such that it has an appropriate stiffness (𝐶𝑠) to ensure that the critical 

frequency of the shaft lies outside the normal operating range of the engine being 

tested.  In addition, the shaft must also have an adequate amount of damping to 

allow the engine to be run through the critical speed, if it is required, without it 

resulting in unsatisfactory torsional oscillations that may lead to failure of the 

entire driveline (Martyr & Plint, 2007). 

Both the main bearing on the engine side, as well as the bearing supporting the 

dynamometer shaft, have overhanging weight limits, that should not be exceeded.  

Special effort must therefore be made to design the driveshaft flanges, on the 

engine and dynamometer side, as well as the torsional coupling, as light as 

possible.  In addition, care must also be taken to ensure accurate alignment of the 

engine and dynamometer, in order to avoid generating out of balance forces that 

place unnecessary stress on the engine and dynamometer shaft (Atkins, 2009).   

In general, cardan shafts with a universal joint at each end of the shaft are the 

preferred type of shaft used in most engine testing applications.  These shafts are 

deliberately installed with a small degree of misalignment to prevent brinelling of 

the needle roller bearings in the universal joints (Atkins, 2009).  Furthermore, it is 

very important that the shaft be installed such that the yokes of the intermediate 

shaft lie in the same plane.  This is required in order to avoid inducing any 

torsional oscillations (Martyr & Plint, 2007).  In applications where a driveshaft 

other than a cardan shaft is used, it is vital that the engine and dynamometer be 

aligned as accurately as possible.  It should, however, be kept in mind that the 

engine mountings will move and settle during the early stages of testing and the 

alignment of the test setup should therefore be checked regularly during the first 

few days of testing (Atkins, 2009). 

2.5 Combustion in direct-injection, CI engines 

The combustion process in a direct-injection (DI), compression-ignition engine 

starts towards the end of the compression stroke when the fuel-injection system 

injects fuel at high pressure into the cylinder of the engine (Heywood, 1988) (Van 

Basshuysen & Schäfer, 2004).  The fuel enters the cylinder at high speed through 

either a single, or multiple orifices in the injector nozzle.  The fuel atomises into 

small droplets and penetrates further into the combustion chamber 

(Heywood, 1988).  The liquid fuel then vaporises, mixes with the turbulent air in 

the cylinder (which is at a high temperature and pressure), after which the 

required chemical reactions take place in order to form a mixture that is ready to 

auto-ignite (Baranescu & Challen, 1999).  Portions of the fuel and air mixture 

then auto-ignites due to the temperature and pressure of the air in the cylinder 

being above the fuel’s auto-ignition point (Heywood, 1988).  
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The aforementioned processes occur during the short delay period (typically 

lasting a few crank angle degrees) between start of injection and start of 

combustion (Heywood, 1988).  This time lapse between the start of fuel being 

injected into the cylinder and the start of ignition is referred to as the ignition 

delay period.  After spontaneous ignition of the air-fuel mixture occurs, initial 

combustion proceeds rapidly due to the build-up of prepared air-fuel mixture that 

was formed during the ignition delay period.  This uncontrolled combustion 

continues until all of the already prepared air-fuel mixture has been burned.  This 

is known as the pre-mixed combustion phase (Baranescu & Challen, 1999).  

In the period which follows, the rate of the combustion process slows down, due 

to the combustion speed being limited by the rate at which additional air can be 

entrained into the mixture and a chemically combustible mixture can be formed.  

This phase of the combustion process is known as the diffusion or mixing-

controlled combustion phase (Baranescu & Challen, 1999).  Fuel injection 

continues throughout this combustion phase, until the required amount of fuel has 

been injected into the engine’s cylinder.  As stated by Heywood (1988), 

atomisation, vaporisation, mixing (of the air and fuel) and finally combustion of 

the fuel continues until almost all of the fuel has been burned.  

The combustion phases discussed above are presented in Figure 2 below, which 

shows the combustion phases overlaid on a heat release diagram of a typical DI CI 

engine.  In Figure 2, the rate of heat release is plotted against degrees of crank 

angle rotation, with top dead centre (TDC) occurring at 180 degrees.  In addition 

to the premixed and mixing-controlled combustion phases discussed above, 

Figure 2 also indicates the start of the late combustion phase, which follows the 

mixing-controlled combustion phase.  The late combustion phase indicates heat 

still being released during the early stages of the expansion stroke.  This can be 

attributed to fuel energy that is still present in soot and fuel-rich combustion 

products (Heywood, 1988).    
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Figure 2: Combustion phases in a direct-injection, diesel engine 

(Source: Heywood, 1988)     

 

In order to obtain a short ignition delay, as well as achieve complete combustion 

in the short interval around TDC, rapid mixing of the fuel and air inside the 

combustion chamber is crucial.  Improved air-fuel mixture rates are achieved by 

increasing the amount of air motion (swirl) inside the engine cylinder.  One 

method of achieving the desired air motion is through careful design of the inlet 

ports and by forcing the air into a re-entrant combustion chamber, machined into 

the top of the piston (Heywood, 1988).  Figure 3 shows the piston of a Yanmar 

L100N single-cylinder, compression-ignition engine employing such a re-entrant 

combustion chamber design.  Another method of ensuring a short and 

reproducible ignition delay, is by requiring the fuel to have a certain minimum 

cetane number.  A fuel’s cetane number defines its ignition quality and is 

therefore an indication of the ease with which the fuel will auto-ignite, under a 

prescribed set of conditions (Heywood, 1988). 
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Figure 3: Yanmar L100N engine piston with re-entrant combustion chamber 

(Source: Piston Kit for Yanmar L100 engine, [S.a.]) 

       

2.6 Engine indicating  

Engine indicating refers to the measurement of a number of crank angle-based 

parameters which include: the pressure in the intake and exhaust manifold, 

in-cylinder pressure, as well as the injection line pressure, to name but a few.  

Ever since it was first employed, engine indicating has developed into a highly 

sophisticated analysis tool that is frequently employed to optimise the combustion 

process.  The fact that this technology provides cost effective insight into the 

instantaneous events inside the engine, makes it especially important to engine 

developers (AVL, 2002). 

2.6.1 Types of engine indicating 

Engine indicating can be subdivided into two categories namely: high pressure 

indicating and low pressure indicating.  High pressure indicating refers to the 

measurement of the pressure inside the combustion chamber of an IC engine.  

These measurements are most often performed using piezoelectric pressure 

transducers and can either be conducted over the entire engine cycle or it can also 

only be carried out over a limited crank angle range, depending on the application.  

An important application of high pressure indicating is thermodynamic analysis of 

the measured pressure curves.  This enables calculation of the rate of heat release 

from the chemical energy of the fuel, which in turn allows important conclusions 

to be drawn concerning the combustion process (AVL, 2002).  Heat release 

analysis is discussed further in section 2.7.4 of this document. 

Low pressure indicating refers to the measurement of the crank-angle related 

pressures in the intake manifold and exhaust system of an IC engine.  The data 

obtained from low pressure indicating is one of the base parameters used to 

Stellenbosch University  https://scholar.sun.ac.za



 

14 

 

perform gas exchange analysis (AVL, 2002).  However, in order to perform 

complete gas exchange analysis, it is important that both high and low pressure 

indicating are performed together (Merker et al. 2012).   

2.6.2 The in-cylinder pressure measurement system 

Although initially conducted using mechanical indicators, today an entire 

measurement system is employed to perform engine indicating.  Such a 

measurement system generally consists of a pressure transducer, electronics to 

convert the output from the pressure transducer to a measurable signal, hardware 

that provides some time or angle based reference, data acquisitioning hardware 

and software to record the measured signals and cabling to transmit the measured 

signals between the various equipment. 

2.6.2.1 Pressure transducer 

These days, in-cylinder pressure measurement is most often performed utilizing 

piezoelectric transducers.  Piezoelectric transducers are especially well suited to 

measure dynamic pressure and can only measure quasi-static pressure as opposed 

to purely static pressure (Engine Combustion Analysis, 2012).  These transducers 

measure pressure by employing special piezoelectric materials.  Most often, these 

piezoelectric materials are specially grown crystals, which output a charge 

proportional to the mechanical load or pressure being applied to them.  These 

transducers have excellent dynamic behaviour, high measurement quality, high 

stability and good linearity.  Furthermore, and perhaps most important of all, is 

that the metrological properties of these transducers are largely independent of 

temperature.  This makes them especially well-suited for in-cylinder pressure 

measurement in IC engines (AVL, 2002).  As opposed to the normal piezoelectric 

transducer, a water-cooled piezoelectric transducer can also be used to record the 

in-cylinder pressure.  These transducers are extremely accurate and are used for 

precision measurements.  However, they require constant cooling and therefore 

require that a separate cooling circuit be installed (Merker et al. 2012).   

As an alternative to using a piezoelectric pressure transducer, an Optrand fibre-

optic based pressure transducer can also be used to measure the in-cylinder 

pressure of an IC engine.  The fibre-optic based sensor consists of two core fibres 

which are bonded to a point-source type, light-emitting diode (LED), operating on 

a wavelength of 850 nm (near infrared spectrum).  Near infrared light from the 

LED travels along one of the fibres to illuminate the inner surface of a diaphragm, 

located in the tip of the sensor.  Fibre-optic based transducers measure in-cylinder 

pressure due to the direct effect of the pressure causing a deflection in this 

diaphragm.  This deflection results in a change in the intensity of the reflected 

light which travels back along the second optic fibre until it reaches a light 

detector (photodiode).  Thermal effects are minimised by employing a heat shield 

which is installed in front of the sensor diaphragm (Wlodarczyk, 2012).  Figure 4 

below shows a schematic of the fibre-optic based pressure transducer discussed 

above. 
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Figure 4: Optrand fibre-optic pressure transducer 

(Source: Wlodarczyk, 2012) 

 

The photodiode which measures the reflected light intensity is accompanied by 

circuitry employing Optrand’s patented auto-referencing technique, which is used 

to maintain sensor accuracy at extreme temperatures (AutoPSI Pressure Sensor 

Operating Instructions, 2009).  The auto-referencing technique corrects for both 

sensor drift and sensor gain (which occurs due to changes in the temperature of 

the sensor and signal conditioning electronics) by regulating the intensity of the 

light emitted by the LED (Wlodarczyk et al. 1998).  Finally, fibre-optic based 

sensors are a more cost effective solution (compared to piezoelectric transducers) 

for measuring in-cylinder pressure.  

2.6.2.2 Amplifier 

When employing a piezoelectric pressure measurement system, a charge amplifier 

is required to convert the charge output from the piezoelectric transducer into a 

measurable voltage signal.  This voltage signal is then transmitted, via cabling, to 

the indicating equipment.  Piezoelectric sensors output a very low charge, 

therefore, in order to obtain a good signal to noise ratio, the noise present in the 

measurement chain must be kept as low as possible.  It is for this reason that the 

charge amplifier, as well as the cabling connecting the sensor to the amplifier, 

must have very high insulation values (AVL, 2002).    

In contrast, fibre-optic transducers do not require the use of an additional 

amplifier.  The signal conditioning unit accompanying each sensor provides the 

voltage output directly, which makes for a much simpler and compact 

measurement chain, compared to when piezoelectric transducers are used.  

2.6.2.3 Shaft Encoder 

Irrespective of the pressure transducer used, the in-cylinder pressure measurement 

requires a basis to which the measured pressure values can be referenced.  For this 

Stellenbosch University  https://scholar.sun.ac.za



 

16 

 

purpose, an incremental shaft encoder must be installed on the crankshaft of the 

engine to provide a crank angle-based reference for the measured in-cylinder 

pressure (AVL, 2002).  Due to the significant pressure rise associated with diesel 

engines, it is recommended that the encoder has a resolution of at least 0,25 

degrees, to accurately define the measured in-cylinder pressure trace and to avoid 

aliasing of the measured signal (Zhoa & Ladammatos, 2001) (Goering, 1998).  

Furthermore, when selecting the encoder, it must also be verified that the encoder 

is able to withstand the vibration loads, generated by the test engine, at the 

location where the encoder is to be mounted.    

2.6.2.4 Data acquisitioning system 

The analogue output signal, either from the charge amplifier or the signal 

conditioning unit of the Optrand transducer, needs to be captured, digitized and 

stored by a high-speed data acquisitioning system.  In order to accomplish this, 

the data acquisitioning system should comprise of an analogue to digital converter 

(to digitize the signal) and a high-speed data acquisitioning unit (to capture and 

temporarily store the measured data).  The captured data is then used to calculate 

the indicating parameters, which can be displayed on the engine indicating 

equipment or stored on a computer (AVL, 2002).      

2.6.3 Pressure transducer mounting options 

Pressure transducers are either installed into existing bores in the cylinder head or 

directly into the combustion chamber of the engine (AVL, 2002).  Using an 

existing bore is the preferred method of installation since it is less invasive, 

requires less machining and is less costly compared to other methods of 

performing in-cylinder pressure measurement.  

2.6.3.1 Using an existing bore in the cylinder head 

In diesel engines that have glow plugs the preferred method of installation is by 

inserting an adapter sleeve (that houses a miniature uncooled pressure transducer) 

into the glow plug bore.  Ideally, the transducer should be installed with its 

diaphragm as close as possible to the combustion chamber in order to avoid 

creating an indicating channel.  However, some glow plug bores are so small that 

the adapter has to be recessed in the cylinder head.  In such cases, special 

damping chambers are incorporated in the design of the adapter to reduce the 

noise that results from acoustic resonations (pressure waves propagating 

backwards and forwards along the indicating channel).  This is discussed further 

in section 2.6.3.2.   

Apart from deciding on the position of the pressure transducer in the existing 

bore, it is also extremely important that the size of the adapter is correctly 

matched with the glow plug bore.  The gap between the glow plug bore and the 

installed adapter should be as small as possible in order to minimize the thermal 

load on the transducer.  Furthermore, since glow plugs aid in the cold start 

capability of diesel engines, replacing the glow plug with an adapter (housing a 
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pressure transducer) can lead to poor cold start performance.  However, at normal 

ambient conditions, the start characteristics remain almost unaffected 

(AVL, 2002).      

2.6.3.2 The indicating channel 

When the transducer is not mounted completely flush with the cylinder head 

ceiling, an indicating channel is created.  The addition of such an indicating 

channel causes an increase in the combustion chamber volume and hence a 

reduction in the compression ratio of the engine.  This in turn can affect engine 

behaviour.  In addition, changing pressure levels inside the combustion chamber 

lead to acoustic resonance which has an adverse effect on the measured pressure 

data (Merker et al. 2012).    

Figure 5 shows the results obtained from a spark ignition engine where a 

miniature pressure transducer has been installed as part of the spark plug.  The 

measurements were recorded at three different indicating channel lengths 

(Merker et al. 2012).    

 

 

Figure 5: Effect of indicating channel length on measurement signal 

(Source: Merker et al. 2012) 

 

From Figure 5 it can be seen that significant amounts of vibration occur at longer 

indicating channel lengths.  It is therefore recommended that the length of the 

indicating channel be kept as short as possible.  Moreover, the diameter of the 

indicating channel should also be equal to or larger than the length of the channel 

(AVL, 2002).  The interference frequency largely depends on the state of the gas 

and can therefore not be exactly determined beforehand.  Owing to the uncertainty 

regarding the frequency of the interference, frequency filters (to filter out the 

noise resulting from the acoustic resonations) are also generally not applied to the 

measured data after it has been captured.  This is mainly due to the considerable 
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calculative cost required for such a procedure and in order to avoid further 

distortion of the measured pressure signal (Merker et al. 2012).   

2.6.3.3 Modifying the cylinder head 

Distinction is made between direct installation of the transducer into the cylinder 

head and installations where an adapter sleeve (housing the pressure transducer) is 

installed in the cylinder head.   

When installing the pressure transducer directly into the cylinder head, it is 

recommended that the transducer be installed slightly recessed from the cylinder 

head ceiling.  A distance of 0,5 mm to 1 mm is sufficient to prevent the piston 

from hitting the transducer when deposits have built up on the piston surface 

(AVL, 2002).  Although the aim is to install the transducer as flush as possible 

with the cylinder head ceiling, AVL (2002) has found that there are some 

advantages to installing the transducer at a slightly recessed position with an 

indicating channel that minimises oscillations.  This is particularly applicable in a 

compression-ignition engine where the pressure transducer is subjected to high 

thermal loads.  Special consideration must also be given to the selected measuring 

location of the transducer relative to the combustion chamber.  The measuring 

location has a significant impact on the operating conditions (thermal load, flow 

effects, etc.) that the transducer experiences when in service (AVL, 2002).   

In cases where the measurement channel needs to pass through cooling water 

jackets or oil galleries, an adapter sleeve is required to facilitate the installation of 

the pressure transducer.  This is a more costly procedure compared to a direct 

installation since added machining and skilled workmanship is required to mount 

the adapter sleeve in the cylinder head of the engine.  Normally the adapter sleeve 

will be screwed into the cylinder head using a high temperature resistant bonding 

agent and sealed off from the water channels and oil galleries using O-rings.  As 

an alternative, an elastic bonding agent can be used instead of O-rings.  In such 

cases, however, the gap between the adapter sleeve and the cylinder head should 

be less than 0,05 mm.  After the addition of an adapter sleeve to the cylinder head, 

the sleeve must be checked for leaks before it can be used for measurements.  This 

may be done by submerging the cylinder head in a water bath (AVL, 2002).    

2.7 Combustion analysis  

Once the measured pressure curves have been obtained, it can be used to calculate 

a wide variety of important parameters associated with the in-cylinder 

phenomena.  The results obtained are referred to as indicating parameters, which 

can be subdivided into direct indicating parameters (obtained directly from the 

measured pressure curve data) and indirect indicating parameters (values that, 

apart from the measured pressure curve data, require additional parameters such 

as engine torque, crank gear geometry, etc. for calculation) (AVL, 2002).       
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2.7.1 Referencing and phasing of measured pressure data 

By design the transducers which are used to record in-cylinder pressure, measure 

gauge pressure.  In order to obtain the absolute pressure inside the cylinder, the 

measured pressure trace needs to be referenced to some point in the cycle, where 

an accurate estimate can be made of the absolute in-cylinder pressure (Zhoa & 

Ladammatos, 2001).  Randolph (1990) noted that it is preferable to reference the 

in-cylinder pressure at a point where the cyclic variation of the measured pressure 

is at a minimum.  This occurs when the cyclic transient thermal environment 

inside the combustion chamber has the least effect on the output of the pressure 

transducer. 

There are several techniques available to determine the required shift of the 

measured in-cylinder pressure data, but the most commonly used method is to set 

the in-cylinder pressure at intake bottom dead centre (IBDC) equal to the absolute 

pressure in the intake manifold (also at IBDC) (Lancaster et al. 1975) (Zhoa & 

Ladammatos, 2001).  At this point in the engine cycle, the piston is stationary, the 

cylinder’s exhaust valve is closed, while the partially open intake valve 

experiences little flow and causes very little pressure drop.  Consequently, at this 

instance in time the absolute pressure in the intake manifold can be considered 

representative of the absolute pressure in the cylinder (Lancaster et al. 1975).  The 

process described above of scaling the measured pressure data from a known 

reference pressure point in the cycle, is referred to as “pegging” of the pressure 

trace.  Although pegging can be performed only once for a batch of cycles 

captured, it is preferred that it be performed for every captured cycle.  Pegging 

every recorded cycle eliminates the log-term drift, which is commonly associated 

with piezoelectric transducers (Zhoa & Ladammatos, 2001). 

Apart from pegging the measured pressure data, it is also required to phase the 

measured pressure data relative to the in-cylinder volume.  As proposed by 

Lancaster et al. (1975), this can be accomplished by mechanically setting up the 

incremental encoder so that its trigger coincides with the TDC mark on the 

flywheel of the engine.  However, due to physical constraints in accessing the 

flywheel markings, as well as the potential inaccuracy of the degree markings on 

the flywheel itself, this method is more useful for the initial setup of the 

incremental encoder relative to the piston position.  Final and more accurate 

phasing can then be performed by analysing the pressure data obtained during a 

motoring test (Zhoa & Ladammatos, 2001).  This is explained further in the next 

section.  

2.7.2 Inspecting the pressure data 

Once the pressure data from the first motoring curve has been obtained and before 

proceeding to capture any further large amounts of data, it is advised that the data 

be checked to determine if it is accurate enough for further detailed analysis 

(Lancaster et al. 1975) (Zhoa & Ladammatos, 2001).   
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The first check to be performed is to verify that both the amplitude as well as the 

phasing of the peak pressure is correct.  The peak pressure can be estimated using 

the polytropic relationship: 

 𝑃𝑚𝑎𝑥 = 𝑃𝐼𝐵𝐷𝐶(𝑟𝑐)
𝑛𝑝 (2.1) 

In equation (2.1), 𝑃𝑚𝑎𝑥 is the maximum pressure, 𝑃𝐼𝐵𝐷𝐶 is the pressure in the 

cylinder at indicated bottom dead centre (IBDC), 𝑟𝑐 is the compression ratio and 

𝑛𝑝 is the polytropic constant.  The correct phasing of the pressure data can be 

verified by examining the motoring pressure curve near the position of peak 

pressure.  Due to the leakage and heat loss, the angle at which the peak pressure 

occurs should precede TDC by between 0,8 to 1 degree for large direct-injection 

diesel engines (Zhoa & Ladammatos, 2001).  If the peak pressure occurs more 

than 2 degrees before TDC, the data is regarded as advanced with respect to 

volume (𝑉) (Lancaster et al. 1975).  Generally, a decrease in this angle will also 

be observed for increased engine speed (Zhoa & Ladammatos, 2001).  

As mentioned in the previous section, further and more accurate phasing can be 

performed using a logarithmic plot of the in-cylinder pressure versus volume (also 

referred to as a log P - log V plot).  Zhoa & Ladammatos (2001), as well as 

Lancaster et al. (1975), points out that the compression process (from intake valve 

closure until the piston reaches TDC) is a polytropic process satisfying the 

equation: 

 𝑃𝑉𝑛𝑝 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (2.2) 

Applying the logarithm to both sides of equation (2.2) allows the equation to be 

rewritten as:  log(𝑃𝑉𝑛𝑝) = log(𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡).  Expanding the logarithmic term leads 

to log(𝑃) + 𝑛𝑝 log(𝑉) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, which can be rearranged as follows:  

log(𝑃) = −𝑛𝑝 log(𝑉) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.  Thus, when plotted on a logarithmic scale, 

the compression segment of the pressure versus volume diagram will be a straight 

line, with a negative slope of 𝑛𝑝.  Empirical data have shown the value of 𝑛𝑝 to 

range between 1,25 and 1,35 for the slope of the compression line (Heywood, 

1988) (Blair, 1999).  Figure 6 below shows an accurately referenced and phased 

motoring log P - log V diagram.  The diagram was obtained by 

Lancaster et al. (1975) using a single-cylinder Waukesha Cooperative Fuel 

Research engine.   
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Figure 6: Accurately referenced and phased motoring log P - log V diagram 

(Source: Lancaster et al. 1975) 

   

There are several factors which can lead to the shape of the compression curve 

deviating from that of a straight line.  It is these deviations that can be used to 

validate both the pegging and phasing of the pressure data.  Assigning an incorrect 

reference pressure, or using an incorrect clearance volume during the data 

manipulation, will lead to curvature in the compression curve, at the beginning 

and end of the compression stroke respectively.  Figure 7 displays the data of 

Figure 6 after the reference pressure was lowered by 20 kPa.  In Figure 7 the 

curvature in the compression curve can be observed near the start of the 

compression stroke.  Figure 8 shows the data from Figure 6 after the clearance 

volume was reduced by 14 %, which leads to a curvature in the compression 

curve near TDC.    
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Figure 7: Data from Figure 6 with reference pressure lowered by 20 kPa 

(Source: Lancaster et al. 1975) 

 

Figure 8: Data from Figure 6 with clearance volume reduced by 14 % 

(Source: Lancaster et al. 1975) 
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Deviation from a straight line in the central region of the compression curve is an 

indication that the pressure data is incorrectly referenced with respect to crank 

angle position.  An example of incorrectly referenced pressure data is presented in 

Figure 9 where the data from Figure 6 has been retarded by 2 degrees of crank 

angle rotation.  As can be seen in Figure 9, this leads to crossover between the 

compression and expansion curves.  Deviation from a straight line in this central 

region of the compression curve for properly referenced and phased data is, 

however, an indication that the pressure data is faulty (Lancaster et al. 1975). 

 

 

Figure 9: Data from Figure 6 retarded with 2 degrees 

(Source: Lancaster et al. 1975) 

 

2.7.3 Calculation of mean effective pressures 

Plotting the measured in-cylinder pressure against the in-cylinder volume (P - V 

diagram) reveals additional information related to the combustion process.  The 

pressure of the in-cylinder gasses acting on the surface area of the piston exerts a 

force on the piston, which displaces the piston in the cylinder.  The gas is thus 

doing work on the piston, which can be described by: 
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 𝑊 = ∫𝑃𝑑𝑉 (2.3) 

In equation (2.3), 𝑊 is the work done on the piston, 𝑃 is the in-cylinder pressure 

and 𝑉 is the in-cylinder volume.  By performing the integration in equation (2.3) 

from BDC before the exhaust stroke to BDC after the intake stroke, the work 

exchange between the cylinder gasses and the piston (during the intake and 

exhaust strokes) can be calculated.  This is known as the pumping work (𝑊𝑝).  

The gross indicated work (𝑊𝑖,𝑔𝑟𝑜𝑠𝑠) is the work performed on the piston during 

the compression and expansion strokes.  The gross indicated work can thus be 

calculated by evaluating the integral in equation (2.3) from BDC before the 

compression stroke, to BDC after the expansion stroke (Lancaster et al. 1975). 

Another important parameter for a four-stroke engine is the net indicated work 

(𝑊𝑖,𝑛𝑒𝑡), which is the difference between the gross indicated work (𝑊𝑖,𝑔𝑟𝑜𝑠𝑠) and 

the pumping work (Zhoa & Ladammatos, 2001).  Therefore, the net indicated 

work can be expressed as: 

  𝑊𝑖,𝑛𝑒𝑡 = 𝑊𝑖,𝑔𝑟𝑜𝑠𝑠 −𝑊𝑝 (2.4) 

Dividing the gross indicated work by the swept volume (𝑉𝑠) of the engine, yields 

the gross indicated mean effective pressure (𝐼𝑀𝐸𝑃𝑔𝑟𝑜𝑠𝑠) as shown in equation 

(2.5) below: 

 𝐼𝑀𝐸𝑃𝑔𝑟𝑜𝑠𝑠  =  
𝑊𝑖,𝑔𝑟𝑜𝑠𝑠

𝑉𝑠
 (2.5) 

The IMEP of an engine is a parameter, which is independent of engine size, 

engine speed and the number of cylinders in an engine (Stone, 1992).  It is thus a 

useful parameter for comparing engines of different size (Lancaster et al. 1975).   

Similar to equation (2.5), the work output of the engine (as measured by the 

dynamometer) can be quantified using a parameter referred to as the brake mean 

effective pressure (BMEP).  

 𝐵𝑀𝐸𝑃 =
4𝜋𝑇𝑑𝑦𝑛𝑜

𝑉𝑠
 (2.6) 

with 𝑇𝑑𝑦𝑛𝑜 being the torque measured by the dynamometer (Ferguson & 

Kirkpatrick, 2001).  

The difference between the gross indicated mean effective pressure (𝐼𝑀𝐸𝑃𝑔𝑟𝑜𝑠𝑠) 

and the BMEP, is known as the friction mean effective pressure (FMEP).  It is a 

measure of the loss of power due to: mechanical friction in the engine, friction 

losses associated with the gas exchange process and due to driving auxiliary 

equipment such as the alternator, oil pump, cooling fan, etc. 

 𝐼𝑀𝐸𝑃𝑔𝑟𝑜𝑠𝑠 = 𝐵𝑀𝐸𝑃 + 𝐹𝑀𝐸𝑃 (2.7)       

The FMEP is mainly (although not exclusively) dependent on engine speed (with 

FMEP increasing with an increase in engine speed) (Van Basshuysen & 

Schäfer, 2004). 
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2.7.4 Heat release analysis 

The type of combustion analysis most commonly associated with compression-

ignition engines, is what is referred to as a heat release analysis (Stone, 1992).  A 

heat release model is a differential model of an engine power cycle (Ferguson & 

Kirkpatrick, 2001).  It computes the amount of heat (generally expressed as a 

function of crank angle) that needs to be added to an engine’s cylinder contents, in 

order to cause the observed variations in the in-cylinder pressure (Stone, 1992).  A 

typical heat release diagram for a direct-injection, compression-ignition engine 

was presented in Figure 2. 

The results obtained from the heat release analysis are very helpful in discerning 

the various modes of combustion in a compression-ignition engine (Milton, 2005).  

This makes heat release analysis a powerful diagnostic tool that can be used to: 

validate mathematical models for engine simulation, develop new injection 

strategies, test new combustion system designs and evaluate how engine 

performance and efficiency is affected by, for example, heat transfer and changes 

in injection timing (Bueno et al. 2012) (Ferguson & Kirkpatrick, 2001).       

2.7.4.1 Modelling the combustion process 

In order to perform the heat release analysis, the combustion process has to be 

modelled using a suitable combustion model.  According to Stone (1992), existing 

combustion models can be divided into one of three categories, namely: 

1. Zero-dimensional models 

2. Quasi-dimensional models 

3. Multi-dimensional models 

As one proceeds downward in the list above, the degree to which the model 

correlates with the physical combustion process increases.  However, at the same 

time, the level of complexity involved in implementing these models (and the 

computational power required to solve them) also increases substantially (Engine 

Combustion Modelling – An Introduction, [S.a.]).  

Zero-dimensional models (which are zero-dimensional in the sense that they 

include no consideration of the flow field dimensions) are the simplest to 

implement and also the most suitable to observe how the heat release rate is 

affected by empirical variations in engine operating parameters (Engine 

Combustion Modelling – An Introduction, [S.a.]).    Although higher accuracy can 

be obtained by using either a quasi-dimensional or multi-dimensional model, the 

large increase in complexity involved in setting up and solving these models can 

often not be justified.  Consequently, zero-dimensional models are frequently 

implemented to perform the heat release analysis of internal combustion engines 

and is considered adequate for diesel engine analysis (Heywood, 1988).   

Zero-dimensional models can be further sub-divided into: 

1. Single-zone models 

2. Two-zone models 
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3. Multi-zone models 

The most common approach to combustion modelling is to model the engine’s 

cylinder contents as a single zone.  The state of the cylinder contents is defined by 

average properties and no distinction is made between burned and unburned 

gasses.  A single-zone combustion model thus considers the contents of the 

cylinder to be homogenous.  The benefit of using such a model is having the 

ability to include the heat transfer and gas flow phenomena more simply (Zhoa & 

Ladammatos, 2001).  Alternatively, the cylinder contents can also be modelled as 

consisting of multiple zones, each at a different thermodynamic state and having 

different properties.  Each zone is, however, still considered to be uniform in 

composition and temperature, while all the zones are considered to be at the same 

pressure (Klein, 2007).  

2.7.4.2 Zero-dimensional, single-zone model 

When using a zero-dimensional, single-zone combustion model, the rate of release 

of the fuel’s chemical energy (or heat release) can be obtained by applying the 

first law of thermodynamics to an open system that is considered to be quasi static 

(uniform in temperature and pressure).  The first law, applied to such a system, 

yields: 

 
𝑑𝑄𝑐ℎ

𝑑𝜃
= (

1

𝛾−1
)𝑉

𝑑𝑃

𝑑𝜃
+ (

𝛾

𝛾−1
) 𝑃

𝑑𝑉

𝑑𝜃
+
𝑑𝑄𝑤

𝑑𝜃
 (2.8) 

where 
𝑑𝑄𝑐ℎ

𝑑𝜃
 is the heat release rate, 𝑉 is the cylinder volume, 𝑃 is the in-cylinder 

pressure, 𝜃 is the crank angle, 𝛾 is the specific heat ratio and 
𝑑𝑄𝑤

𝑑𝜃
 is the rate of heat 

transfer to the cylinder wall (Heywood, 1988).  For the detailed derivation of 

equation (2.8), please refer to Appendix A. 

According to Heywood (1988), when applying equation (2.8) to model diesel 

combustion, the following factors complicate the analysis:  

 Liquid fuel is injected into the cylinder (enters the control volume being 

analysed) and mixes with the air in the cylinder to produce an air-fuel 

distribution that is not uniform throughout the cylinder and which varies 

with time.  The process is therefore not quasi static. 

 The composition of the combustion gasses is unknown and not uniform. 

 The accuracy of the correlations that are used to predict the in-cylinder 

heat transfer in diesel engine is not well defined. 

 The crevice regions increase heat transfer and furthermore contain a non-

negligible fraction of the cylinder charge.  The gas trapped in these crevice 

regions are also at conditions different from that of the rest of the 

combustion chamber.   

Due to the challenges posed by dealing with the above-mentioned uncertainties, 

simple, as well as more sophisticated methods of combustion analysis only 

provide approximate answers.  The heat release calculated with the use of 

equation (2.8), is therefore referred to as the apparent heat release, as this value is 
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only an approximation of the actual amount of heat released during combustion, 

which cannot be determined exactly (Heywood, 1988).   

2.7.4.3 In-cylinder heat transfer 

In order to conduct the heat release analysis, the heat transfer to the cylinder wall 

has to be calculated using an appropriate model.  The last term in equation (2.8) 

accounts for the rate of heat transfer from the combustion products to the cylinder 

wall of the combustion chamber.  In general, the amount of heat transferred to the 

cylinder wall of the combustion chamber accounts for 25 % to 30 % of the total 

amount of energy released from the air-fuel mixture during the combustion 

process (Milton, 2005) (Finol & Robinson, 2006).  The rate of heat transfer is 

calculated from: 

 
𝑑𝑄𝑤

𝑑𝜃
=
ℎ 𝐴𝑤 (𝑇𝑔−𝑇𝑤)

60𝑛
 (2.9) 

where 
𝑑𝑄𝑤

𝑑𝜃
 is the rate of heat transfer to the cylinder wall, ℎ is the instantaneous 

heat transfer coefficient, 𝐴𝑤 is the combustion chamber wall area, 𝑇𝑔 is the 

instantaneous bulk gas temperature, 𝑇𝑤 is the mean surface temperature of the 

combustion chamber wall and 𝑛 is the rotational speed of the engine. 

As can be seen from equation (2.9), the calculation of the heat transfer rate 

requires knowledge of the in-cylinder heat transfer coefficient (ℎ), which varies 

both with time and position (Stone, 1992).  Various correlations have been 

developed to estimate the in-cylinder heat transfer.  These correlations differ from 

one another based on the type of heat flux that they predict.  Consequently, there 

are correlations to predict: the time-averaged heat flux to the cylinder walls, the 

instantaneous spatially-averaged heat flux to the cylinder walls, as well as 

correlations to predict the instantaneous local heat fluxes 

(Finol & Robinson, 2006).  In order to perform engine modelling, the temporal 

variation in heat flux is required, while the spatial variation in heat flux is 

considered to be less important.  It is only when exhaust gas emissions are 

considered, that the variation in heat transfer with position also needs to be 

accounted for (Stone, 1992).  Therefore, when the rate of heat transfer to the 

cylinder wall of a reciprocating engine needs to be calculated, the general 

approach is to use an instantaneous, spatially averaged heat transfer coefficient.  

One of the earliest correlations developed using an instantaneous, spatially 

averaged heat transfer coefficient, was the one proposed by Eichelberg (1939) - as 

cited by Stone (1992:378).  Eichelberg (1939) proposed the following equation to 

model in-cylinder heat transfer:      

 
𝑄𝑤

𝐴𝑠
= 2,43 𝑣𝑝

1/3 (𝑃𝑇𝑔)
1/2 (𝑇𝑔 − 𝑇𝑤) (2.10) 

where 𝐴𝑠 is the instantaneous surface area of the combustion chamber, 𝑣𝑝 is the 

mean piston speed and 𝑃 is the instantaneous in-cylinder pressure.  Equation 

(2.10) has the advantage of being very simple to implement, in that it only 

requires the user to specify a mean surface temperature.  Stone (1992), however, 
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pointed out that the correlation proposed by Eichelberg is not dimensionally 

consistent, which have led to arguments where the generality of the correlation is 

questioned.  Furthermore, the correlation proposed by Eichelberg (1939) is based 

on heat transfer due to free convection, which is essentially a different process 

from the heat transfer encountered in an internal combustion engine.  Inside the 

cylinder of an internal combustion engine, heat transfer occurs predominantly due 

to forced convection, with some contribution from radiation after start of ignition 

(Finol & Robinson, 2006).   

The first correlation, based upon forced convection, was the one proposed by 

Annand (1963): 

 
𝑄𝑤

𝐴𝑠
= 𝑎1

𝑘𝑔

𝐷
𝑅𝑒𝑏1(𝑇𝑔 − 𝑇𝑤) + 𝑐1(𝑇𝑔

4 − 𝑇𝑤
4) (2.11) 

In the above equation 𝑘𝑔is the thermal conductivity of the combustion gas, 𝐷 is 

the cylinder bore and 𝑅𝑒 is the Reynolds number.  When equation (2.11) is used 

to predict the heat transfer in a compression-ignition engine, Watson and Janota 

(1982), as cited by both Stone (1992) and Finol & Robinson (2006), suggests the 

following values for parameters 𝑎, 𝑏 and 𝑐: 

 𝑎1 = 0,25 - 0,8 

 𝑏1 = 0,7 

 𝑐1 = 0,576𝜎  (2.12) 

 𝜎 = Stefan-Boltzmann constant  

When there is no radiation present, that is during the intake, compression and 

exhaust strokes, the value of 𝑐1 should be set equal to zero (Stone, 1992).  

Another correlation that is widely used to predict in-cylinder heat transfer, is the 

correlation proposed by Woschni (1967): 

 ℎ = 129.8 𝐷−0,2 𝑃0,8 𝑇𝑔
−0,53 [𝐶1𝑣𝑝 + 𝐶2

𝑉𝑠𝑇𝑟

𝑃𝑟𝑉𝑟
(𝑃 − 𝑃𝑚)]

0,8 (2.13) 

In equation (2.13), ℎ is the heat transfer coefficient, 𝑉𝑠 is the swept volume of the 

engine and 𝑃𝑚 is the cylinder pressure of the motored engine.  𝑃𝑟 and 𝑇𝑟 represent 

the known state of the gas corresponding to the known instantaneous volume 𝑉𝑟, 
at some reference condition.  The reference condition is often taken to be at either 

inlet valve closure or start of injection. 𝐶1 and 𝐶2 are constants that should be 

applied having the following values: 

 𝐶1 = 6,18, 𝐶2 = 0 during the scavenging period 

 𝐶1 = 2,28, 𝐶2 = 0 during compression  (2.14) 

 𝐶1 = 2,28, 𝐶2 = 3,24×10
−3 during combustion and expansion 

(Woschni,1967) 
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A simplified form of equation (2.13) was later proposed by Hohenberg (1979): 

 ℎ = 𝐶1𝑉
−0,06 𝑃0.8 𝑇𝑔

−0,4(𝑣𝑝 + 𝐶2)
0,8  (2.15) 

where 𝑉 is the instantaneous cylinder volume and constants 𝐶1 and 𝐶2 have values 

of 130 and 1,4 respectively.  Hohenberg (1979), as cited by Finol & Robinson 

(2006), noticed that in the case of high-speed compression-ignition engines, 

Woschni’s correlation underestimates the heat flux during the compression and 

exhaust phases.  Furthermore, he also determined that the correlation proposed by 

Woschni (1967) overestimates the maximum value of the heat flux associated 

with combustion.  These findings, along with the fact that Woschni’s correlation 

is rather complicated to implement, led to the development of equation (2.15) 

(Balistrou et al. 2010).  The surface area to be used in conjunction with equation 

(2.15), is calculated as: 

 𝐴𝑠 = 2(
𝜋(𝐷2)

4
) + 𝜋(𝐷)𝑦 (2.16)  

With 𝑦 being the piston displacement from TDC as is given by equation (1.4) in 

Ferguson & Kirkpatrick (2001): 

 𝑦 = 𝑙 + 𝑅𝑝 − [(𝑙
2 − 𝑅𝑝

2 sin2 𝛼)
0,5
+ 𝑅𝑝 cos 𝛼]  (2.17) 

In equation (2.17), 𝑙 is the connecting rod length, 𝑅𝑝 is the radius to the crank pin 

and 𝛼 is the angle the crankshaft makes with the vertical.  

3 Selecting the Dynamometer System  

Before any design work could commence, an appropriate dynamometer had to be 

selected for the test setup.  In order to evaluate the different dynamometer options 

available, a list of engineering requirements was compiled to quantify the desired 

performance specifications of the engine test setup.  These requirements were then 

used to evaluate the various dynamometer options and finally to select the most 

appropriate dynamometer system. 

3.1 Test setup requirements 

At the time at which the dynamometer options were evaluated, a second larger test 

engine (a Honda GX670 V-Twin, two-cylinder, spark-ignition engine, with a 

maximum power output of 15,3 kW) was already selected for use in future 

research projects.  Although the test engine for this project (Yanmar L100N, 

single-cylinder, compression-ignition engine) had a maximum power output of 

7,4 kW, the dynamometer for this project was selected to also accommodate the 

larger Honda test engine.  This was done in order to improve the flexibility of the 

test setup, with regards to future research projects.   In the future, the same test 

setup can thus be used to conduct fuel-to-fuel evaluations on both petrol and 

diesel fuel blends, simply by changing the test engine.  Table 1 lists the various 
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engineering requirements that were used to quantify the performance of the 

engine test setup that was to be designed. 

Table 1: Test setup requirements 

Specification Unit 

Yanmar 

L100Na 

Honda 

GX670b 

Speed range rpm 0 - 3600 0 - 3600 

Maximum speed/High idle rpm 3800 ± 30 3850 ± 150c 

Torque range (when absorbing 

power) 
N·m 0 - 27,5 0 - 46 

Engine speed at max torque rpm 2200 - 2700 2500 

Maximum power kW 7,4 15,3 

at engine speed rpm 3600 3600 

Speed control accuracy required N/A 
± 1% or 5 rpm  

(whichever is greater)d 

Torque control accuracy required N·m ± 0,5 

Motoring capability N/A Preferred 

a  (Source: Yanmar Industrial Engines - Operators Manual, [S.a.]) 

b  (Source: Honda Owner’s Manual - GX670, 2007) 

c  (Source GX670 Engine Adjustment Information, 2010) 

d  (Source: SAE J1349 Standard, 2004) 

 

As can be seen from Table 1, the desired accuracy to which the dynamometer 

must be able to control the test engine, is to within ± 1 % of the speed set point 

and to within ± 0.5 N·m of the torque set point.  

3.2 Evaluation of dynamometer systems 

At this stage of the project, the viability of implementing each of the 

dynamometer systems researched during the literature study was evaluated.  The 

dynamometer systems were evaluated based upon: 

1. The suitability of the system, in terms of the type of testing to be 

performed.  This was done, by considering the ability of the dynamometer 

system to meet the requirements listed in Table 1.   

2. The complexity associated with integrating the dynamometer system with 

the existing test bench and test facility. 

3. The initial capital layout required to procure and install the dynamometer 

system, as well as the cost associated with maintaining the dynamometer 

system. 

4. The operation lifetime, as well as the flexibility of the dynamometer 

system, in terms of meeting future research needs. 
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The evaluation criteria listed above, formed the basis of the evaluation of each of 

the dynamometer systems.  For conciseness, the details surrounding the outcome 

of this evaluation process, along with some additional dynamometer features, are 

summarised in Table 2.  (The detailed evaluation, behind the data presented in 

Table 2, can be found in Appendix B.)  

 

Table 2: Dynamometer comparison 

 Dynamometer Type 

Features Hydraulic Eddy-current DC AC 

Control  

Stability 
Low Good Very Good Excellent 

Inertia 

Low (Less than 

equivalent sized  

eddy-current 

machine) 

Varies (Higher 

than hydraulic 

dynamometer) 

High Low 

Drag Force 
Drag force on 

engine 

Drag force on 

engine 

Essentially  

zero  

drag force 

Essentially 

zero  

drag force 

Motoring  

Capability 
No No Yes Yes 

Mounting  

Options 

Trunnion- 

mounted 

Trunnion- 

mounted 

Trunnion- or  

fixed 

mounted 

Trunnion- or  

fixed 

mounted 

Additional  

Hardware 

Constant 

pressure  

water supply 

Coolant supply 

Load bank 

and  

drive unit 

Load bank 

and  

drive unit 

Cooling  

Medium 
Water Water Air Air 

Electrical 

Requirements 
Low Low High High 

Cost Low Moderate High High 

Maintenance  

Required 
Moderate Moderate 

Moderate 

(Brush wear 

needs to be 

monitored) 

Little to no 

maintenance 

(Adapted from: Dynamometer Comparison, [S.a]) 

 

3.3 Dynamometer system selection 

Apart from the technical aspects discussed in the previous section and 

summarised in Table 2, a few additional factors had to be considered before the 

final dynamometer selection could be made.   These factors originated from the 
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fact that the selected dynamometer had to be integrated with an existing engine 

test stand, the desired project outcomes and the resources available in terms of 

time and funding.    

From a project point of view, it was decided that the selected dynamometer had to 

be able to motor the test engine.  Even though friction tests were not planned, the 

ability to motor the engine is vital in order to obtain proper motoring curves 

during engine indicating testing.  This will also extend the testing capability of the 

entire engine test facility, because up until this point no other test stand in the 

facility had the ability to motor a test engine.  

Even though the hydraulic dynamometer system is the most cost effective 

solution, its lack of accuracy and control stability makes for an inferior system.  

Furthermore, it offers the least flexibility in terms of future testing and the 

constant drag force that it exerts on the test engine is considered substantial when 

it comes to testing engines with low torque output.  Therefore, when it comes to 

the small engine test setup (requiring very accurate control) the hydraulic 

dynamometer is not the best option.  The eddy-current dynamometer system, on 

the other hand, does offer improved control stability (at a higher initial cost), but it 

still requires an adequate coolant supply and periodic maintenance.  Taking the 

above mentioned into consideration, along with the fact that neither of the two 

systems meet the requirement of being able to motor the test engine, it is clear that 

neither of the systems offer a viable solution. 

Focus was then shifted to the use of either a DC or AC dynamometer system.  

Due to the selected test engine being a single-cylinder, compression-ignition 

engine, a large amount of torsional vibrational was expected from the engine.  

Furthermore, the engine also has no additional cylinders to aid in balancing the 

forces generated during combustion.  The best possible control stability was thus 

required from the dynamometer’s side in order to achieve the desired 

performance.  As indicated in Table 2, both the DC and AC dynamometer offer 

improved control stability compared to the other dynamometer systems 

considered.  Furthermore, both systems are air-cooled and therefore do not require 

additional water lines to be installed, as is the case with the hydraulic and eddy-

current systems.  Both the AC and the DC dynamometers have the ability to 

motor the test engine, allowing friction tests to be performed, however, the DC 

dynamometer has higher inertia compared to the AC dynamometer.  Also, the AC 

dynamometer system requires less maintenance and is therefore a more cost 

effective solution in terms of maintenance cost.  Quotations were also obtained for 

complete DC and AC dynamometer systems and it was found that the AC 

dynamometer system also offers the most cost effective solution in terms of initial 

capital layout.       

Given this information, it was decided that an appropriately sized AC 

dynamometer system would best suit the project.  Due to the small amounts of 

power that would be generated, it was also decided that no regeneration will be 

utilized and that the generated power would rather be dissipated using an air-

cooled resistive load bank.           
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4 Test Setup Development  

This section describes the design of the test bench components, as well as its 

integration within the existing test facility.  Although some modifications were 

required in order to connect to the existing support services in the test cell, the 

focus was primarily placed on designing an appropriate engine test bench.  

Autodesk Inventor software was used to construct a detailed three-dimensional 

model of the entire assembly and to create the detailed drawings of all the 

designed components. 

4.1 Test engine 

When the test engine had to be selected for this project, the main focus was to 

select a small displacement engine that is simple in design, easy to maintain and 

that is representative of diesel engines used in modern day passenger vehicles.   

The test engine selected for use in this project is a Yanmar L100N single-cylinder, 

4-stroke, air-cooled, compression-ignition engine, with a displacement of 0,435 L.  

The engine has a mechanical fuel injection pump and a basic fuel supply system 

that is easy to remove, clean and replace when different fuel blends are being 

tested one after the other.  The Yanmar engine also has no on-board electronic 

control unit capable of changing the setup of the engine between tests and 

therefore influence the test results.  Its parts are readily available and it is a 

popular research engine that is referenced in many biodiesel research papers.  

There is also already test data available from previous research that can be used 

both for comparison and to validate the results obtained with the test setup being 

developed in this project.   

Most importantly, the re-entrant combustion chamber design that is employed by 

the Yanmar test engine is very common in larger diesel engines utilised by 

modern passenger vehicles.  The test engine’s familiar combustion chamber 

design, coupled with a compression ratio of 19,7:1 (Yanmar Industrial 

Engines - Operators Manual, [S.a.]), gives it combustion characteristics which are 

very similar to that of larger diesel engines.  The results obtained with the smaller 

Yanmar engine can thus be considered representative of the results that will be 

obtained with the use of a larger, four-cylinder diesel engine.   

The Yanmar engine was previously used in a final year mechanical project and 

was thus already available in the test facility.  Apart from being run-in during the 

previous project, the engine was only subjected to an additional three hours of 

testing.  It could therefore safely be concluded that the engine did not experienced 

significant wear and tear during its operational lifetime and was more than 

suitable for use in this project.  The detailed specifications of the Yanmar L100N 

engine are listed in Table 16 in Appendix I.   
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4.2 Test bed and engine stand design  

The bed of the test bench, as well as the engine stand used to support the Yanmar 

engine, was already designed and manufactured as part of Mr E. Grobbelaar’s 

final year project for his Bachelor’s degree in Mechanical Engineering 

(Grobbelaar, 2011).  Apart from the addition of a few threaded holes, used to 

secure the throttle actuator to the test bed, the existing test bed of the test bench 

was used unaltered in this project.   

The engine stand, however, required a few modifications to facilitate the 

mounting of the fuel supply system and other instrumentation.  Suitable anti-

vibration engine mountings were already designed by Grobbelaar (2011) during 

his final year project and formed part of the existing engine stand design.  

Therefore, it was not required to consider the design of the engine mountings for 

the test engine.   

4.3 Electric dynamometer 

In an effort to reduce the overall cost of the system, it was decided to measure the 

torque generated using a load cell, as opposed to using an in-line torque 

transducer.  From a practical point of view, especially when it comes to steady 

state testing, using a load cell is also preferred.  This is substantiated by 

Martyr & Plint (2007) who states that compared to an in-line torque transducer, a 

well-maintained, trunnion-mounted machine more consistently provides accurate 

torque measurement results during steady state testing.  

4.3.1 Selecting the electric motor 

Before any design work could commence, an appropriate AC electric motor had 

to be selected that could be used as the dynamometer.  In order to ensure that the 

electric motor was suitable for the application, both the electrical and mechanical 

characteristics of the motor had to be considered. 

4.3.1.1 Electrical characteristics 

In order to specify the power rating and rated speed of the required motor, the 

performance curve of the electric motor was compared to the performance curves 

of both the Yanmar L100N compression-ignition engine and the larger Honda 

GX670 spark-ignition engine.   

The synchronous speed (𝑛𝑠𝑦𝑛𝑐), of an induction motor is defined by equation (7.1) 

in S.J. Chapman (2005) as: 

 𝑛𝑠𝑦𝑛𝑐 =
120𝑓𝑒

𝑁𝑝
 (4.1) 

where, 𝑓𝑒 is the frequency of the input voltage and 𝑁𝑝 is the number of poles in 

the machine.  From equation (4.1) it is clear that the lower the number of poles in 

the machine, the higher the synchronous speed of the motor.  In an effort to match 

Stellenbosch University  https://scholar.sun.ac.za



 

35 

 

the electric motor as closely as possible to the internal combustion engine, a two 

pole AC induction motor was selected.   

The two pole construction gives the motor a synchronous speed of: 

 𝑛𝑠𝑦𝑛𝑐 =
120(50)

2
 (4.2) 

           = 3000 𝑟𝑝𝑚   (4.3)  

The standard power ratings of available induction motors were evaluated based on 

the Honda engine’s maximum power output of 15,3 kW.  Both a 15 kW and an 

18,5 kW AC induction motor were identified as possible dynamometer options.  

The performance curves of both these electric motors were then compared to the 

performance curves of the test engines.  The performance curves of both test 

engines were plotted using data provided by the original engine manufacturer.  

The performance curves plotted for the electric motors represent the expected 

performance of a motor and drive unit combination, where the motor is no longer 

limited to operating at only 50 Hz.   

Essentially, when employing a motor and drive unit combination, there is constant 

torque region for all speeds below the synchronous speed (or when taking into 

account slip, the rated speed) of the motor.  At speeds higher than the synchronous 

speed, the motor and drive unit has a constant power rating and the torque 

therefore drops off as the operating speed of the motor increases (Induction Motor 

Speed Torque Characteristics, 2006).  Figure 10 below shows the torque (plotted 

on the vertical axis) versus speed (plotted on the horizontal axis) of both the 

electric motors and the test engines.  The vertical dotted line indicates the 

synchronous speed of the electric motors.   

  

 

Figure 10: Test engine and electric motor torque curves 
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From Figure 10 it can be seen that although the 15 kW electric motor, is capable 

of absorbing the torque generated by the Yanmar diesel engine, it has too low a 

rating to be used with the larger Honda petrol engine when testing at speeds above 

the electric motor’s rated speed.  It is advised that a motor with a power rating 

higher than the maximum power developed by the engine is selected.  This will 

ensure that situations are avoided where the motor becomes overloaded for short 

periods of time when the torque output of the engine spikes to values larger than 

the maximum rated output of the engine.  These torsional oscillations are quite 

common, especially when testing single-cylinder, compression-ignition engines.  

Considering all of the above, an induction motor with power rating of 18,5 kW 

was selected to be used as the dynamometer.  This makes for a more suitable 

dynamometer system, with additional capacity, which prevents the dynamometer 

from being required to continuously operate close to its rated load. 

4.3.1.2 Mechanical characteristics 

Due to a load cell being used for torque measurement, the electric motor had to be 

trunnion-mounted between two pedestals.  Therefore, in addition to satisfying the 

electrical requirements listed above, the physical construction of the selected 

motor had to meet the following criteria: 

 The motor’s casing had to allow for attachment of calibrating arms as well 

as a load cell. 

 The shaft of the motor had to be such that an encoder could be mounted to it 

in order to measure the operating speed of the electric motor. 

 The physical construction of the motor had to allow it to be 

trunnion- mounted between pedestal bearings. 

 The terminal box of the motor had to be mounted on top of the electric 

motor in order to minimise the influence of the electric cabling on the torque 

measurements. 

 The electric motor had to be air-cooled, as water lines running to and from 

the motor’s casing will influence the torque measurements. 

After identifying a selection of motors that satisfied the electrical requirements, 

quotations were obtained from various suppliers.  These quotations were then 

evaluated along with the available mounting options of each electric motor 

considered.   

4.3.1.3 Selected motor 

After considering both the electrical and mechanical characteristics discussed 

above, a W22 electric motor from WEG was selected for the application.  The 

selected motor is a standard efficiency, 3-phase, 2-pole, AC, induction motor, 

with a power rating of 18,5 kW.   

The selected motor employs a cast iron frame and has both a foot and flange 

mount.  Both mounting options were requested on the single motor in order to 

Stellenbosch University  https://scholar.sun.ac.za



 

37 

 

allow as much freedom as possible for the design of the trunnion bearings, load 

cell attachment and calibration arm mountings.   

4.3.2 Modifications made to electric motor 

A number of modifications were made both to the shaft and casing of the 

purchased electric motor, in order to allow it to be trunnion-mounted to the 

dynamometer stand. 

4.3.2.1 Motor casing 

The standard driveshaft of the electric motor was too short (especially on the non-

drive end of the motor) to be able to suspend the motor from its shaft when 

trunnion mounting it.  As a result, the design of the motor’s casing had to be 

adapted in order to trunnion mount the entire casing between two pedestal 

bearings, rendering the motor’s casing free to rotate.  After disassembly of the 

electric motor, existing components were altered and a number of additional 

components were designed, in order to convert the electric motor into a trunnion-

mounted dynamometer.    

Two new flanges were designed that could attach to the existing flanges on both 

ends of the electric motor (access to the flange on the non-drive end of the motor 

was obtained by removing the cooling fan and shroud from this end of the motor).  

The new flange on the non-drive end of the dynamometer was designed purely to 

act as interface between the dynamometer and the rear trunnion bearing (housed 

in the rear pedestal).  In addition to functioning as an interface between the 

pedestal bearing and the dynamometer, the flange designed for the drive end of 

the dynamometer also acts as attachment point for the load cell and dynamometer 

calibration arms.  Finally, both existing flanges of the electric motor were also 

modified to allow attachment and ensure proper alignment of the two newly 

designed flanges.  In Figure 11 below, the designed flanges for the drive end and 

non-drive end of the dynamometer can be seen.  The designed flange for the non-

drive end is shown bolted to the existing flange of the electric motor.  The newly 

designed flanges can also be seen in Figure 13, which shows the flanges after they 

have been integrated as part of the complete dynamometer assembly. 
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Figure 11: Drive end flange (top) & non-drive end flange (bottom) 

 

4.3.2.2 Dynamometer shaft 

The shaft with which the electric motor was supplied also required quite a few 

modifications.  Firstly, the electric motor’s driveshaft and rotor assembly were 

removed in order to machine down the driveshaft ends to accurately interface with 

the pedestal bearings.  Secondly, the drive end of shaft was modified for proper 

fitment of the taper lock (used to connect the dynamometer’s shaft to the test 

setup’s driveshaft).  Furthermore, the shaft was also extended to enable 

attachment of a shaft encoder at the rear of the dynamometer.  This encoder was 

used to measure the dynamometer’s rotational speed.   

The dynamometer’s shaft was extended by first drilling and tapping the non-drive 

end of the shaft.  A threaded shaft extension was then designed and fabricated 

using an oversized diameter compared to that of the dynamometer shaft.  After 

applying Loctite 577 thread locking compound to the thread of the designed shaft 

extension, the extension piece was bolted to the dynamometer shaft and torqued.  

This method of attaching the extension piece to the dynamometer shaft was 

considered sufficient seeing that the shaft extension would not support any load 

and that it would only be used to rotate the shaft encoder (which has a very low 

starting torque of only 0,05 N·m and moment of inertia of 6 x 10-6 kg·m2). 
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After allowing a minimum of 24 hours for the Loctite to cure, the shaft assembly 

was put back into the lathe for machining.  Due to the shaft encoder’s small 

tolerance for radial run-out, it was vital that the extension piece added was 

concentric with the rest of the dynamometer’s shaft.  Concentricity of the final 

shaft design was achieved by machining the assembled shaft and extension piece 

down to size as a single component.  During the machining process, the shaft was 

supported at its bearing surfaces while the radial run-out of the shaft extension 

was monitored using a mechanical dial gauge.  The shaft was machined down to 

its final size (as dictated by the inner diameter of the selected trunnion bearing), 

while ensuring that the radial run-out of the extended shaft remained within 

acceptable levels according to the shaft encoder’s specifications.   

4.3.2.3 Trunnion bearings 

Mechanical mounts were required to physically mount the dynamometer to the 

test bench, as well as allow the torque reaction of the dynamometer to be 

measured.  This was addressed by designing two pedestals that were strong 

enough to support the entire mass of the dynamometer, as well as resist the 

dynamic loads that are generated when the dynamometer is absorbing power from 

the engine.  These pedestals were designed to house trunnion bearings, which 

enable the dynamometer’s casing to pivot around the central axis formed by the 

dynamometer’s shaft.  The outer races of these trunnion bearings were located in 

the pedestals using a slight press fit, while the inner races of the bearings seated 

on the designed flanges (shown in Figure 11) which were attached to the 

dynamometer’s casing.  The torque reaction was measured using a load cell that 

was attached to the dynamometer’s casing. 

The above-mentioned pedestals were manufactured by cutting the designed 

profiles out of a 40 mm thick billet of steel.  Preliminary machining of the 

pedestals was then performed in order to reduce the thickness of the profiles 

where required.  The pedestal bases were laser cut from 25 mm thick mild steel, 

after which welded constructions were formed with the profiles machined 

previously.  Up until this point, the pedestals were manufactured still slightly 

larger than their specified final dimensions.  This was done deliberately as it was 

anticipated that localised heating introduced by the welding process, as well as 

stress relieving of the material (due to the large amount of material being removed 

during the preliminary machining phase) would cause the material to distort.   

After the welding was completed, the pedestals were machined to meet the final 

specified tolerances.  Finally, the fabrication was completed by line boring the 

two pedestals to ensure that the bearing surfaces were concentric.  A bearing plate 

was also designed and fabricated for each pedestal in order to keep the bearings in 

position and close off the pedestal.  The rear bearing pate also doubles as 

mounting bracket for the shaft encoder measuring the rotational speed of the 

dynamometer.  In Figure 12 below the fabricated pedestals can be seen along with 

their bearing plates, the designed flanges for the front and rear of the 

dynamometer, as well as the modified existing flanges of the electric motor. 

 

Stellenbosch University  https://scholar.sun.ac.za



 

40 

 

 

Figure 12: Machined dynamometer components prior to being painted 

 

The front pedestal was machined to accept a SKF double row, self-aligning, ball 

bearing (part no: 1213 ETN9).  The self-aligning bearing was selected, because it 

is insensitive to angular misalignment between the dynamometer casing and the 

axis formed by the two bearing housings (pedestals).  The self-aligning bearing 

also generates less friction compared to other types of roller bearings, rendering it 

ideal for the application (friction in the trunnion bearings needs to be kept to a 

minimum in order to obtain repeatable and accurate torque measurements) (Self-

aligning ball bearings, [S.a.]).     

For the rear pedestal, a SKF, single row, deep groove ball bearing with metal 

shields was selected (part no: 6213-2Z).  The deep groove ball bearing is capable 

of accommodating axial load and is therefore employed to ensure axial location of 

the dynamometer casing.  Its sealed construction also renders it maintenance free 

without influencing the friction characteristics of the bearing, due to the shields 

not making contact with the inner bearing ring.   

4.3.2.4 Additional dynamometer components 

Apart from the various components already mentioned in this section, a number of 

additional dynamometer components were also designed to enable calibration of 

the dynamometer and mounting of the load cell. 

Calibration arms 

Using the maximum rated torque output of both the Yanmar and the larger Honda 

test engine, the sensitivity and mounting position of the load cell, as well as the 

spatial constraints surrounding the location of the test setup, a practical length was 

chosen for the design of the calibration and counterweight arm.  Other design 

requirements considered during the design of the arms included high rigidity and 

minimising the effects of thermal expansion (which leads to a change in length of 

the arms due to varying material temperature between consecutive calibration 
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events).  The above mentioned were addressed by choosing a tall and slender 

profile for the design of the arms, while limiting the length of the arms to a 

dimension that is practical. 

Weight tray 

A weight tray was also designed so that existing calibration masses could be used 

to calibrate the dynamometer.  The tray mounts directly to the dynamometer’s 

designed calibration arm and employs a knife-edge design which fits into a v-

groove machined into the calibration arm.  This knife-edge ensures that the 

calibration masses are always mounted at a preselected distance from the rotation 

axis of the dynamometer.   

Load cell brackets 

The torque reaction of the dynamometer was measured using a HBM U2A tension 

and compression load cell.  Due to the physical construction of the load cell, a 

special bracket and connecting rod arrangement had to be designed to mount the 

load cell to both the dynamometer stand and the dynamometer.  The load cell, 

along with the designed calibration arms and weight tray are shown in Figure 13 

below. 

 

 

Figure 13: Load cell (left), calibration arms and weight tray (right) 

 

4.3.3 Dynamometer stand design 

The existing stand, used to support the previously employed Froude 

dynamometer, had to be modified to accept the newly designed electric 
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dynamometer.  This was achieved by extending the length of the test bench, as 

well as by changing the mounting location of the load cell.  The length of the 

dynamometer was increased by adding an extension piece and an extra set of 

support legs to the front of the existing stand.  New holes were then drilled to 

mount the newly designed load cell bracket, as well as the front and rear pedestals 

to the dynamometer stand.   

4.4 Driveshaft and safety guard design 

At the start of this project a driveshaft (which was designed by Grobbelaar (2011) 

during his final year project) was already available.  This driveshaft was 

previously used to connect the Yanmar engine to a hydraulic dynamometer.  Due 

to employing the same test engine as the previous test setup, it was decided to 

rather adapt and reuse the existing driveshaft, as appose to designing a completely 

new shaft.  This was done in an effort to save cost and to expedite the project.  

For the design of the previous driveshaft, an automobile front axle half shaft 

assembly was used as a departure point.  An adapter flange was designed to 

connect the inner constant velocity joint of the half shaft, to the imperial sized 

output shaft of the Yanmar test engine.  This was accomplished by purchasing a 

Fenner weld-on hub (designed to accept an imperial sized taper-lock) and welding 

this hub to the designed flange.  Final machining of the flange was performed 

after the welding process to ensure that the final tolerances were met and that the 

flange ran true.  This section of the previous driveshaft was used unaltered for the 

new test setup.     

The other end of the driveshaft was connected to the dynamometer by 

implementing a completely new design.  Due to the anticipated oscillation in the 

torque output of the engine, a Fenaflex F50 tyre coupling was selected to damp 

out the majority of this torsional vibrations.  The flexible coupling was connected 

to the driveshaft through the use of a taper lock and a parallel key (an end-milled 

parallel keyway was machined into the driveshaft specifically for this purpose).  

The flexible coupling was designed by catalogue and selected based on its power 

rating at the rated speed of the engine.  In addition, the factors of safety guarding 

against failure due to the maximum nominal torque output of the engine, as well 

as due to the peak torque output of the engine (which occurs due to spikes in the 

engine’s torque output profile) were calculated.  The peak torque output of the 

engine was obtained by applying a service factor (determined based upon the 

system architecture and available literature) to the maximum rated torque output 

of the engine.  Analysis showed the flexible coupling has a factor of safety of 2,4 

guarding against failure given the maximum nominal torque output of the engine 

and a factor of safety of 1,3 guarding against short term overload of the flexible 

coupling during torque spikes.  The detailed procedure regarding the sizing and 

selection of the flexible coupling is presented in Appendix C.   

A second flange was designed to connect the flexible coupling to the 

dynamometer shaft.  Here attachment was again ensured by incorporating a weld-
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on hub into the design of the flange to allow the flange to be fixed to the 

dynamometer shaft through the use of a taper lock.  This same flange also makes 

provision for the mounting of a spherical bearing (SKF part no: GE 20 ES 2RS), 

which locates the end of the driveshaft that is extending through the centre of the 

flexible coupling.  This spherical bearing, along with the 4 degrees of 

misalignment that can be tolerated by the flexible coupling, allows for relative 

misalignment between the output shaft of the engine and the dynamometer’s shaft.  

Due to the construction of the driveshaft, a small degree of misalignment is 

actually preferred as it prevents brinelling of the constant velocity joint that is 

connected to the output shaft of the test engine.   

Due to the addition of a keyway to the shaft, a detailed fatigue analysis was 

performed on the design of the driveshaft.  This was done using the distortion 

energy ASME elliptic failure criteria which indicated a factor of safety of 1,6 

guarding against cyclic loading of the driveshaft.  A check was also performed for 

first cycle yielding by calculating the maximum von Mises stress and comparing it 

to the yield strength of the driveshaft material.  This produced a factor of safety of 

2,65.  The details of the aforementioned driveshaft analysis can be found in 

Appendix D.  Finally, as an additional check, the structural integrity of the 

driveshaft design was also verified by performing a finite element analysis (FEA) 

on the driveshaft design.  The results obtained from the linear static analysis 

showed good correlation with hand calculations performed for the same applied 

loads.  The FEA results indicated a factor of safety of 1,7 guarding against 

yielding for a pure torsional load case.  The details surrounding the finite element 

model used, as well as the results obtained are presented in Appendix E.   

Once it was verified that the driveshaft design was satisfactory, the required 

modifications were made to the length of the existing driveshaft safety guard.  

This guard is installed to protect personnel and equipment in the event of a 

catastrophic failure of any of the driveshaft components.  The guard encloses the 

entire driveshaft and will, during failure of any driveshaft component, constrain 

such a component, preventing it from inflicting any further damage to equipment 

or test cell personnel.  The newly designed driveshaft and modified safety guard is 

shown in Figure 14 below. 
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Figure 14: Driveshaft and safety guard 

 

4.5 Test setup integration 

Once manufacturing of the designed components were complete, fit checks were 

performed to verify that the required tolerances were met during the fabrication 

process.  Upon completion of the fit checks, the parts were cleaned and painted. 

4.5.1 Test bench integration   

Integration of the entire test setup was started by first adding the mounting holes 

for the throttle actuator to the test bed, after which the test bed was installed in the 

allocated test cell.  The test bed was then aligned and levelled using the six anti-

vibration feet located underneath the bed.  After satisfactory alignment was 

achieved, the engine and dynamometer was installed, along with their respective 

support stands.  The dynamometer was then mechanically aligned with the engine, 

after which it was secured to its support stand by bolting down the pedestals and 

connecting the load cell to the dynamometer’s casing.  At this point in time the 

driveshaft was not yet installed as the electric motor and its drive unit still had to 

be commissioned (this requires running the electric motor without any load).   

Finally, the exhaust system of the engine was installed and connected to the test 

cell’s extraction system.  This required that additional flanges and exhaust 

extension pieces be designed and fabricated in order to tie the standard exhaust 

system of the engine into the exhaust extraction system of the test cell.  Care was 

taken when implementing the aforementioned changes to prevent creating 

additional back pressure at the outlet of the engine’s standard exhaust system.  
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4.5.2 Integration of dynamometer system   

For the purpose of commissioning the dynamometer system, the shaft encoder at 

the back of the dynamometer was installed to enable the rotational speed of the 

dynamometer to be measured.  After all of the required mechanical integration 

was completed, the supplier of the drive unit was contacted to install both the 

drive unit and the 18,5 kW brake resistor.  A formal proposal document was 

provided to the supplier of the drive and brake resistor, ahead of time, in which all 

of the test setup requirements were detailed (Grobbelaar & Haines, 2012).  No 

fuel system was installed at this stage and the engine was still operated using its 

supplied fuel tank.  The supplier then performed an on-site installation of the 

hardware and commissioned the dynamometer system.  During the 

commissioning process, the driveshaft and safety guard was installed to enable the 

dynamometer to apply load to the engine.  This was done to verify the 

functionality of the complete system. 

4.6 Fuel supply system 

Accurate measurement of the test engine’s fuel consumption is essential in order 

to obtain accurate and repeatable engine performance data.  This required the 

design and installation of a fuel supply system comprising of: 

 A supply tank 

 An AVL 730 dynamic fuel balance (fuel flow meter)  

 Electric fuel pumps 

 Fuel filters 

 Suitable piping, fuel lines and ball valves to direct the flow of fuel 

 Temperature sensors to monitor the fuel supply and return temperature 

4.6.1 Fuel system layout 

Installation of the fuel supply system was started by designing and manufacturing 

a support bracket for the AVL 730 dynamic fuel balance, which was then used to 

mount the fuel flow meter to the test cell wall.  This bracket supports the flow 

meter using three adjustable feet, which are used to ensure that the flow meter is 

levelled correctly.  The required fittings were then installed and the inlet and 

outlet ports of the flow meter were setup to connect to the fuel supply tank and the 

engine.  Due to the small capacity of the engine, as well as the fact that different 

fuel blends will be tested, a header tank was not installed.  Instead, fuel is supplied 

to the fuel flow meter from a 25 L container, which can easily be exchanged for a 

container with a different fuel blend without having to disturb the installed fuel 

supply system of the engine.   

A 6,5 bar electric fuel pump is used to pump fuel from the 25 L container, through 

a 10 micron diesel filter, to the inlet of the fuel flow meter.  From the fuel flow 

meter, the fuel is then gravity fed through a ball valve, after which the fuel flows 

through a fixed ¼ inch stainless steel line to the test bed.  From here, a second 
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electric fuel pump (3 bar capacity) is used to pump the fuel through a 3 micron 

diesel filter and directly to the engine’s injector.  The return fuel line is routed 

from the engine’s injector and ties back into the supply fuel line on the suction 

side of the 3 bar pump.  This then completes the closed fuel circuit, which fuel can 

only enter by first passing thought the fuel flow meter.  Therefore, once all the 

fuel lines have been primed, any fuel being consumed by the engine will pass 

through the flow meter first and be measured.  The closed fuel circuit existing 

between the engine and fuel flow meter, allows the fuel supply container (which is 

located before the fuel flow meter in the circuit) to be exchanged and the engine 

started without needing to bleed the fuel system each time. 

4.6.2 Fuel system wiring 

The inlet of the fuel flow meter is controlled by a solenoid valve, which only 

opens when the fuel flow meter needs to refill its measuring vessel.  Therefore, a 

wiring circuit was setup where the 6,5 bar fuel pump receives its supply from the 

12 V battery next to the test bed.  A relay (with normally open terminals and 

whose coil is energized by the same circuit which energizes the solenoid valve of 

the fuel flow meter) was then inserted in series with this circuit.  Consequently, 

every time that the fuel flow meter opens and closes the solenoid valve, it 

automatically also switches the fuel pump (supplying the fuel to the fuel flow 

meter) on or off.  The second fuel pump (located on the test bed) is controlled 

from the ignition switch of the engine, as it only needs to pump fuel to the engine 

when the engine’s ignition is switched on.  

5 Instrumentation and Actuators 

After preliminary setup of the dynamometer system was completed, the rest of the 

test setup was instrumented.  Various sensors were fitted to monitor the operating 

condition of the engine, as well as to measure and record engine performance and 

engine indicating parameters.  Detailed wiring diagrams were also created to 

document the installation of all instrumentation and actuators. 

5.1 Throttle actuator 

A TGS Posicon 1000 throttle actuator was installed in order to control the fuel 

supply to the test engine.  The TGS 1003 Mechanical Positioning Device, 

employed by the system, has a nominal stroke of 100 mm and a nominal force 

output of 140 N.  The system’s control unit accepts a 0 - 10 V analogue signal as 

input (to control the position of the actuator) and outputs a 0 - 10 V signal (to 

indicate the actual position of the actuator).       

Considering the high levels of vibration generated by the test engine, the sensitive 

nature of the throttle actuator, as well as its relatively high mass, it was decided 

not to connect the throttle actuator directly to the throttle linkage of the engine.  

Instead, the throttle actuator was mounted to the test bed, directly beneath the 
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engine test stand.  A throttle cable was then installed to connect the throttle 

actuator to the original throttle linkage of the engine.  This then isolated the 

throttle actuator from any engine vibration and rendered the throttle and governor 

settings of the engine untouched.  The installed throttle actuator can be seen in 

Figure 15 below. 

 

 

Figure 15: Instrumented test setup 

 

5.2 Load cell and signal amplifier 

The load cell employed was a 4-wire circuit, 500 kgf HBM U2A tension and 

compression load cell.  The load cell is capable of measuring the applied load in 

both tension and compression (this enables torque to be measured both when 

absorbing and motoring the engine).  However, should the need exist to also 

measure the torque when motoring the engine, the load cell also needs to be 

calibrated in compression.   

The load cell was mounted to the dynamometer stand, where it was mechanically 

attached to the dynamometer.  Shielded extension wire was then used to connect 
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the load cell to a LCS/I/0350 signal amplifier located within the control room.  

Special care was taken to avoid routing the cabling close to any AC wiring or 

other noise sources that could negatively influence the torque readings.  

5.3 Fuel flow measurement 

As mentioned previously, fuel flow to the engine was measured using an AVL 

730 dynamic fuel balance (fuel flow meter).  The fuel flow meter employs a 

gravimetric measurement principle (which eliminates the need to account for the 

variation in fuel temperature and hence changes in fuel density) to monitor the 

weight of fuel in a measuring vessel.  The measuring vessel is supported by a 

combination of a torsion spring and beam balance, while the vertical displacement 

of the vessel (due to a change in fuel mass) is monitored using a highly sensitive 

capacitive sensor.  The unit is capable of measuring the instantaneous fuel 

consumption, as well as the cumulative fuel consumption over a specified period 

of time.  These measurements can also be recorded during dynamic changes in the 

engine’s operating condition.  A fuel temperature control unit was not required in 

the end as the data showed that the inlet fuel temperature remained within ±2 °C 

throughout the tests.  The installed AVL fuel flow meter is shown in Figure 16 

below. 

 

 

Figure 16: Installed AVL fuel flow meter 

 

5.4 Engine oil pressure 

A WIKA A-10 pressure transducer was installed to measure the test engine’s oil 

pressure during operation.  An oil pressure sensor with a rating of 0 - 25 bar was 
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selected and installed.  The sensor uses a 2-wire circuit and has a 4 - 20 mA 

output.   

Access to the engine’s oil pressure was obtained by removing an existing plug 

from one of the oil channels running through the engine’s crank case.  A special 

fitting was fabricated that was installed into the oil channel and the oil pressure 

sensor was mounted to the engine stand.  A braded stainless steel hose was then 

used to connect the pressure sensor to the fitting installed in the engine’s oil 

channel.   

5.5 Engine indicating instrumentation 

In order to perform engine indicating the test engine was instrumented with 

transducers to record the in-cylinder and intake manifold pressures.  A shaft 

encoder was also installed in order to reference the measured pressures to the 

instantaneous position of the crankshaft. 

5.5.1 In-cylinder pressure transducer selection 

After considering various Kistler and AVL pressure sensors, it was decided that 

the significant cost associated with using a traditional piezoelectric measurement 

chain could not be justified.  Alternative measurement options were researched 

during which Optrand transducers were identified as a viable solution.   

As opposed to a piezoelectric sensor, Optrand transducers do not require a 

separate charge amplifier which results in a considerable saving when using these 

transducers.  Furthermore, the Optrand transducer itself is a cheaper alternative to 

a Kistler or AVL piezoelectric sensor.  It was therefore concluded that the use of 

an Optrand transducer would result in the least expensive measurement chain and 

it was consequently decided to rather use an Optrand pressure transducer to 

measure the in-cylinder pressure of the engine. 

The various transducer options available from Optrand were carefully considered 

based on their pressure ranges, sizes and dynamic behaviour.  Finally, the 

AutoPSI-S miniature transducer was identified as being the preferred choice.  This 

transducer has a pressure range of 0 - 200 bar and a frequency range of 1 Hz to 

25 kHz.  Its miniature design also allows for easy installation into the cylinder 

head of the engine. 

5.5.2 In-cylinder pressure transducer installation 

In order to measure the in-cylinder pressure of the test engine, the Optrand 

AutoPSI-S miniature pressure transducer was installed into the combustion 

chamber of the engine.  The test engine does not have glow plugs and therefore no 

existing bore was available to install the pressure transducer.  Direct installation 

of the miniature pressure transducer was also not possible, due to an air channel 

that had to be traversed before the combustion chamber could be reached (this 

channel forms part of the cooling system of the engine and transports air forced by 
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the flywheel fan throughout the cylinder head of the engine).  After considering 

all of the above, it was decided to design and manufacture an adapter sleeve that 

could be inserted into the cylinder head to house the miniature pressure 

transducer.   

The adaptor sleeve was designed to allow for flush installation of the pressure 

transducer with the combustion chamber ceiling.  This was done to avoid the 

complications (discussed in section 2.6.3.2 of this report) that are associated with 

the addition of an indicating channel (which is created when the transducer is not 

mounted flush with the combustion chamber).  Figure 17 shows the fabricated 

adapter sleeve, as well as the position where the sleeve was installed in the 

engine’s cylinder head.  

 

 

Figure 17: Adapter sleeve (top) and engine cylinder head (bottom) 

 

The adapter sleeve was installed into the cylinder head of the engine after 

applying Loctite 648 (a high strength, high temperature resistant adhesive) to the 

threads of the sleeve.  The adapter sleeve was also sealed off from the air channel 
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that it traverses by using an appropriate elastic bonding agent.  Finally, the section 

of the sleeve that protruded into the combustion chamber was machined down to 

match the contour of the combustion chamber ceiling.  Figure 18 shows the 

bottom view of the machined cylinder head with the adapter sleeve installed. 

 

 

Figure 18: Machined cylinder head with adapter sleeve installed 

   

5.5.3 Intake manifold pressure measurement 

The intake manifold pressure was measured using a tapping point in the intake 

manifold of the engine.  Due to the pulsating nature of the flow encountered, a 

stable pressure reading could not be obtained by measuring directly on the intake 

manifold of the engine.  Consequently, a damping chamber had to be installed to 

damp out the pressure waves in the measurement line.  The pressure reading was 

then taken after the damping chamber using a WIKA S-10 strain gauge pressure 

transducer.  This transducer has a pressure range of -1 to 3 bar gauge pressure and 

a 4 - 20 mA output.  However, the data acquisitioning unit could only accept 

voltage inputs and therefore the output signal of the intake manifold pressure 

transducer was routed to the data acquisitioning unit via a 3104 isolated signal 

converter from PR Electronics.  This signal converter, converted the received 

4 - 20 mA signal into a 0 - 10 V signal. 
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5.5.4 Engine shaft encoder  

For the purpose of referencing the in-cylinder pressure to the crank angle position, 

a Leine Linde RHI 503 incremental shaft encoder was selected.  This encoder 

functions by means of a photoelectric scanning principle.  Light is emitted by a 

LED and passes through a scanning reticle, after which it falls onto a graduated 

disc.  Both the disc and scanning reticle are transparent, while the gratings are 

either transparent or reflective.  As the disc rotates, gratings on the disc move 

relative to the stationary scanning reticle, causing the intensity of the parallel light 

which falls onto the disc to be varied (modulated).  The changes in light intensity 

are recorded by photovoltaic cells, which output electrical signals with very 

accurate signal periods (Encoder Technology - Details and Descriptions, 2014).     

The RHI 503 incremental shaft encoder has two output channels (phased by 90 

electrical degrees) each of which outputs 3600 pulses per revolution.  This 

translates to a resolution of 0,1 degrees of crank angle rotation.  The encoder also 

has a third reference channel, which outputs a single pulse per revolution.  

Through proper alignment of the encoder with the engine’s crankshaft, this pulse 

from the reference channel can be used to indicate the position of top dead centre 

(TDC) in the engine.  The RHI 503 encoder was specifically selected for its 

rugged design, which enables it to withstand higher vibrational loads compared to 

other encoders.  This was particularly important since the encoder is used on the 

single-cylinder, compression-ignition engine, which is known for generating high 

levels of vibration during operation.  Furthermore, as pointed out by AVL (2002), 

another advantage of using an optical encoder is that they are less susceptible to 

electrical interference, which is especially important in the engine testing 

environment where test cells are often plagued by large amounts of electrical 

noise.  

Brackets for mounting the encoder to the engine were already available, but were 

modified slightly, to allow for improved alignment of the shaft encoder during 

installation.  A machined flange with a protruding shaft was mounted to the 

engine’s flywheel and clocked up to have a radial run-out of less than 0,015 mm.  

This high degree of alignment was required in order to limit the amount of stress 

placed on the shaft encoder’s bearing.  The encoder was then aligned with this 

protruding shaft and fastened to a second bracket which secured it to the engine’s 

casing.   

5.6 Temperature measurements 

Apart from the various instrumentation discussed above, several thermocouples 

were also installed to measure the following temperatures: 

 Ambient air temperature 

 Inlet air temperature 

 Engine oil temperature 

 Supply fuel temperature 
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 Return fuel temperature 

 Exhaust gas temperature 

It was decided to standardise on a single type of thermocouple sensor for all the 

temperature measurements as this reduces the number of types of extension wire 

and connectors that has to be purchased to only one.  This reduces the overall 

installation cost and also allows for interchange ability of the sensors in the event 

of sensor failure.  Due to the high temperature requirement associated with 

measuring the exhaust gas temperature (exhaust gas temperature reaches in excess 

of 600 °C), all temperature measurements were conducted using K-type 

thermocouple sensors (which has a maximum measureable temperature of 

1200 °C).   

5.7 Emergency stops and override button 

Two emergency stop switches were installed (one inside the test cell on the test 

bench itself) and another inside the control room.  These emergency stops act as 

master control relays and when activated initiates complete shutdown of the entire 

test setup.  The PLC, however, remains powered during such an event to allow 

instrumentation readings to be visible.  These emergency stops were hard wired 

and remained latched after being activated.  This means that the test setup cannot 

be restarted until the emergency stop bottom has physically been reset. 

The emergency stop inside the control room also employs an override button.  

When pressed, the override button prevents the control software from shutting 

down the entire test setup in the event that an alarm has been tripped.  The 

override button thus enables the operator to regain control of the test after the 

alarm condition has been addressed, thus preventing the test from being stopped 

abruptly and the data being compromised.  Care must be taken to ensure that it is 

safe to do so before overriding the automated shutdown procedure of the test 

setup.     

5.8 Smoke measurement 

Smoke measurements were conducted using an AVL 415 variable sampling 

smoke meter.  Due to the unavailability of a suitable smoke probe, a smoke probe 

was designed, using the guidelines stipulated in the AVL documentation, which 

accompanied the smoke meter.   

The smoke probe consists of a 8 mm diameter stainless steel tube with a threaded 

tip, onto which a stainless steel cap is screwed.  The cap covers ten equally spaced 

3 mm diameter holes (drilled into the 8 mm tube) preventing them from being 

directly exposed to the soot in the exhaust gas.  This cap therefore prevents rapid 

clogging of the 3 mm sampling holes during testing.  The exhaust gas is sampled 

thought the 3 mm diameter holes and then transported along the inside of the 

8 mm tube to outside the exhaust system, from where it is conveyed to the smoke 

meter via an extension hose.  The designed smoke probe can be seen in Figure 19. 
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Figure 19: Designed smoke probe (bottom) and stainless steel cap (top) 

 

The smoke probe assembly was installed along the centreline of the exhaust pipe 

in a straight section of the exhaust system.  The probe was positioned at least six 

pipe diameters away from the nearest bend in the exhaust pipe system.  This 

prevents the flow of the gas in the exhaust system itself from influencing the 

measurement reading (Smoke value measurement with the filter-paper-

method, 2005).  

5.9 Final test cell layout 

The final test facility houses the entire engine test bench with its instrumentation, 

the fuel supply for the engine, a dynamic fuel flow meter, an exhaust extraction 

system and the resistive load bank for the dynamometer.  The variable speed drive 

(VSD) unit of the dynamometer, the control cabinet (that houses the 

programmable logic controller, along with various other controllers) and the 

computer (that is used to control the entire test setup) are all installed in the 

control room adjacent to the test cell.  From inside the control room the operator 

can safely conduct all of the required testing, having full control of all equipment, 

without being required to enter the test cell while the engine is running.  The 

developed test bench can be seen in Figure 20 below. 
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Figure 20: Developed test bench 

 

6 Control System and Data Logging 

This section describes the setup and functionality of the control system hardware 

and software.  The same system was also used to capture and log all engine 

performance data.  Separate hardware and software was, however, employed to 

perform the high-speed data acquisitioning during the conduction of the engine 

indicating tests. 

6.1 Control system architecture 

Figure 21 shows the system architecture that was employed to manage the test 

setup’s control and data logging procedures.     

Operator input is provided to a desktop computer, via a graphical user interface 

known as ETA (Engine Test and Automation).  The desktop computer is in turn 

connected to a programmable logic controller (PLC).  Communication between 

the PLC and desktop computer is handled by RSLinx software and a suitable 

Allen-Bradley (AB) driver.  This communication follows RS-232 protocol.  The 

PLC handles all control and logic operations, as well as accepts inputs and 

supplies outputs to the various transducers and actuators that form part of the test 

setup.  The dynamometer is controlled by an AB PowerFlex 753 drive unit, which 

is also connected to the PLC.  The PLC supplies set point values to the VSD 

(using RS-232 protocol) and the VSD then returns the actual measured results to 

the PLC.  
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Figure 21: Control system architecture 

6.2 Hardware 

The control system hardware was installed in the test cell’s control room in order 

to establish a central location from where the entire test setup could be controlled.  

A control cabinet was set up in the control room into which the following items 

were installed: 

 Fuel flow meter controller 

 Throttle actuator controller 

 Load cell amplifier 

 A current to voltage converter 

 AB MicroLogix 1500 PLC with accompanying expansion modules 

 Various fuse, relays, power supplies and transformers 

6.2.1 PLC hardware 

The PLC system consisted of an AB MicroLogix 1500 (1764-24BWA) controller, 

to which an AB DeviceNet Scanner (1769-SDN) was directly connected (so that it 

receives power from the backplane of the controller).  The DeviceNet Scanner 

was in turn connected to an AB DeviceNet Adapter (1794-ADN) (through the use 

of an ethernet connection).  Finally, three different expansion modules 

(comprising of an analogue input, analogue output and a thermocouple module) 

were connected directly to the DeviceNet Adapter.  Following is a more detailed 

description of the various connections that were made to both the controller and 

the expansion modules.    

6.2.1.1 MicroLogix 1500 controller (1764-24BWA) 

Aside from handling all logic operations, the base unit of the MicroLogix 1500 

PLC also provided a number of digital inputs and relay outputs.  The digital inputs 

were used to monitor the state of the override button (which is accessible to the 

operator via the emergency stop inside the control room).  Relay outputs were 

used to control the ignition and starter relay circuits, switch the drive on and off, 

as well as to set the throttle actuator to the shut-off position.  The emergency stop 
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of the drive was connected in parallel with the ignition relay circuit so that the 

drive would shut down when the ignition relay coil was de-energised.       

6.2.1.2 Analogue output module (1794-OE4/B) 

The various terminals of the analogue output module were configured to output 

either a 0 - 10 V signal or a 4 - 20 mA signal.  The module was used to control the 

position of the throttle actuator, as well as to send the desired speed set point of 

the dynamometer to the VSD. 

6.2.1.3 Analogue input module (1794-IE8/B) 

Similar to the analogue output module, the terminals of the input module were 

configured in the control software to accept either a 0 - 10 V voltage signal or a 

4 - 20 mA current signal.  Where possible, transducers with a current output signal 

were selected.  This was done due to the current signals proving to be less 

susceptible to electrical noise, which is quite common in the engine test cell 

environment.  

This module received the following inputs: 

 Feedback indicating the actual throttle position. 

 The engine oil pressure reading. 

 The mass of fuel in the AVL dynamic fuel balance. 

 The measured torque (received from the load cell amplifier). 

 The actual operating speed of the dynamometer (received as input via the 

VSD). 

6.2.1.4 Thermocouple module (1794-IT8) 

From the test setup, the various thermocouples were routed to a junction box 

installed on the test setup.  From the junction box, extension wire was routed to 

the thermocouple input module on the PLC.  The type of thermocouple used was 

selected in the PLC software and the thermocouple module then provided the cold 

junction compensation for all the thermocouples internally.  Figure 22 below 

shows the control cabinet which was setup to house the PLC and the various 

controllers. 
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Figure 22: Control cabinet housing PLC and controllers 

 

6.2.2 Allen-Bradley drive (PowerFlex 753 VSD) 

An Allen-Bradley PowerFlex 753 VSD was installed to control the speed of the 

dynamometer.  The VSD receives the measured speed of the dynamometer as 

input form the shaft encoder mounted at the back of the dynamometer.  The 

required speed set point is supplied to the VSD via the PLC.  The VSD then 

compares the actual speed of the dynamometer to the speed set point and alters the 

rotational speed of the dynamometer accordingly (by altering the amplitude and 

frequency of the voltage supplied to the dynamometer) in order to match the 

actual speed of the dynamometer to the supplied speed set point.  The power 

generated by the dynamometer, when operating in absorption mode, was 

dissipated in a 18 kW, air-cooled brake resistor, which was mounted to the inside 

of the test cell wall.   

6.2.3 Engine pressure indicating hardware 

All high-speed data acquisitioning was performed using a National Instruments 

(NI) 6351 USB data acquisition unit.  This unit was employed to capture and log: 

in-cylinder pressure, intake manifold pressure, as well as the inputs received from 

the shaft encoder mounted to the test engine.  Hardware triggering (output from 
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the shaft encoder) was used to reference both the captured in-cylinder pressure 

and intake manifold pressure measurements to crank angle rotation. 

By design, the shaft encoder outputs 3600 pulses per crankshaft revolution.  When 

the engine is operated at high idle (3800 rpm), this amounts to a maximum data 

input rate (to the data acquisitioning unit) of 228 Ks/s.  The data acquisitioning 

unit used has a sampling rate of 1,25 Ms/s single-channel and 1 Ms/s multi-

channel (aggregate).  Consequently, the in-cylinder pressure, as well as the intake 

manifold pressure could be sampled (simultaneously) at more than double the 

maximum data output rate of the engine.  Therefore, aliasing was avoided by 

selecting the sampling frequency in the data capturing software to be at least 

500 Ks/s per channel.               

6.3 Software 

The software for each of the hardware items employed, were programmed and 

configured to achieve the desired control of the test setup. 

6.3.1 PLC software 

RSLogix 500 software was used to configure the ladder logic program uploaded 

to the PLC controller.  The program consisted of a main routine (which monitored 

the status and connectivity of the PLC), as well as various sub-routines (which 

were called upon by the main routine as required).     

The function of the main routine is to monitor the connectivity and status of the 

PLC, as well as to call the various sub-routines.  Different sub-routines were 

employed to: monitor and pass digital inputs and outputs between the PLC and the 

graphical user interface (GUI), copy analogue and thermocouple inputs to the 

GUI, copy set point values from the GUI to the analogue outputs of the PLC, as 

well as to perform the fuel flow calculations.  These sub-routines were customised 

(in RSLogix 500 software) with the aid of an employee from Sasol Advanced 

Fuels Laboratory, in order to suit the current test setup configuration and 

functionality.      

Setup of the PLC system was started by configuring the RSLogix 500 software to 

accept the 1769-SDN DeviceNet Scanner module.  RSNetWorx software was then 

used to register all of the PLC hardware items on the network, as well as to upload 

the current network configuration to the scanner module.  Once the network was 

established, each of the expansion modules was configured independently, again 

using RSNetWorx software.  Setup of the PLC software was then completed by 

uploading the final settings to the scanner module.  

6.3.2 User interface 

A graphical user interface was developed to control the entire test setup by 

employing a SCADA (Supervisory Control and Data Acquisition) system known 

as ETA.  ETA was developed by Cape Advanced Engineering, specifically for the 
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engine testing environment.  It could therefore be configured to enable complete 

control of the test setup, while simultaneously allowing the operator to (in real 

time) monitor all measured variables of the setup.  ETA also allows both manual 

and automated test sequences to be executed based on individual testing 

requirements.  All set point and measured values were passed between ETA and 

the test setup hardware, via the AB MicroLogix 1500 PLC.  Measured variables 

(such as torque and dynamometer speed) were calibrated directly in ETA.  Set 

point values (such as the throttle actuator position and torque set point) were also 

calibrated from within ETA.  Therefore, the entire measurement chain was 

included during the calibration process.   

Separate test panels were set up in ETA to: 

 Control the state of the engine and dynamometer. 

 Switch between the different test setup control modes. 

 Display all measured variables of the test setup.  These included: engine 

performance parameters, engine operating conditions, ambient testing 

conditions, as well as the state of various auxiliary equipment. 

 Visually monitor engine performance parameters, engine operating 

conditions and ambient conditions.  

The graphical user interface can be seen in Appendix G.           

6.3.3 Engine pressure indicating software 

All engine indicating related measurements were captured and logged with the use 

of LabVIEW software and the hardware discussed in section 6.2.3.  Within 

LabVIEW a customized VI (Virtual Instrument) was programmed that could 

capture both the intake manifold and in-cylinder pressure measurements.  

Hardware triggering was implemented (through the use of the shaft encoder 

attached to the engine’s crankshaft) to start the logging process, as well as to 

determine the time increments at which the pressure measurements were captured.   

6.4 Control system operating modes 

From within ETA, the test setup can be operated in either torque control or speed 

control mode.  The operating mode of the control system can be selected by the 

user and is based upon the type of engine test to be performed. 

6.4.1 Constant torque mode 

In this control mode, the operating condition of the engine is controlled as is 

shown in Table 3 below.  Constant torque mode is used whenever partial load 

testing is to be performed.  It is, however, also possible to perform partial load 

testing using constant speed mode (discussed in the next section of this report).  

During partial load testing the operating point of the engine is fixed by supplying 

both a speed and a torque set point value, after which the control system regulates 
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the throttle position of the engine in order to maintain the engine at the specified 

operating point.    

Table 3: Constant torque mode 

Speed Set point provided as input by the operator. 

Torque Set point provided as input by the operator. 

Throttle Adjusted by the control system. 

6.4.2 Constant speed mode 

In this control mode, the operating point of the engine is fixed by altering the 

engine parameters as is shown in Table 4 below.  This mode of control lends itself 

towards testing at full load conditions during which a constant speed set point is 

selected and the engine’s throttle is set to the wide open position.  The amount of 

torque placed on the engine is then altered by the control system in order to 

maintain the engine speed at the specified speed set point. 

Table 4: Constant speed mode 

Speed Set point provided as input by the operator. 

Torque 
Varied by control system (as the throttle setting is changed by the 

operator) in order to maintain the speed as per the speed set point. 

Throttle Adjusted manually by the operator. 

7 Commissioning of Test Setup 

This section details the procedures implemented in order to validate the 

dynamometer design, as well as to calibrate the various sensors and actuators.  

Furthermore, this section also focuses on the accuracy and stability of the test 

setup’s control system, before finally addressing the repeatability of the test setup.  

7.1 Validation of dynamometer design 

After integrating the newly designed dynamometer, a static calibration was 

performed in order to ensure that the dynamometer measured the torque 

accurately.  The calibration results were analysed to verify that the dynamometer 

has a linear output response and that it displays a limited amount of hysteresis 

when loaded and unloaded.  Finally, the repeatability of the dynamometer system 

was also validated.         

Figure 23 below shows the results obtained during a calibration cycle prior to 

starting the engine.  The figure presents the applied torque (shown on the vertical 

axis) plotted against the measured voltage output (shown on the horizontal axis).  

After the data points were plotted, a first-order polynomial was fitted to the data 

using the method of least squares.   
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Figure 23: Dynamometer linearity 

 

The coefficients of determination (𝑅2) of the curve fits in Figure 23 are 0,99 and 1 

for the cases of loading and unloading the dynamometer respectively.  This 

verifies that a first-order polynomial can be used to represent the measured data 

exceptionally well and therefore also confirms that the output of the dynamometer 

is linear over the measured range.  Furthermore, from Figure 23 it can also be 

observed that the dynamometer displays almost zero hysteresis.  Comparing the 

two measured datasets (loading versus unloading), there is only a 0,1 N·m 

difference in the zero offset.  Simultaneously, the percentage difference between 

the remaining data points are, on average, less than 0,3 %.  The small amount of 

hysteresis confirms the sound design and alignment of the trunnion bearings.  It 

also confirms that the amount of friction present in the system is acceptably small. 

Finally, the repeatability of the dynamometer was tested using a hot setup with 

calibration being performed pre- and post-testing of the engine.  The test setup 

was run until the engine reached operating temperature (this being determined by 

monitoring the engine’s oil temperature), after which the first calibration was 

performed.  The results of this calibration are presented as the data points labelled 

“Calibration (Pre-Testing)” in Figure 24 below.  The engine was then tested over 

a range of partial load points at various engine speeds, after which the setup was 

shut down and the dynamometer calibration was performed once more to obtain 

the results labelled “Calibration (Post-Testing)” which are also presented in 

Figure 24.    
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Figure 24: Dynamometer repeatability 

 

From Figure 24 it is clear that the dynamometer displays excellent repeatability 

with the output being linear across its measurement range (the 𝑅2 values for both 

curve fits are 1).  The pre- and post-testing calibration results display 0 N·m 

difference in the zero offset, which is extremely good.  Furthermore, comparing 

the polynomial coefficients of the curve fits in Figure 24 to those of the curve fits 

in Figure 23, also shows very good correlation of the calibration results obtained 

with a hot and cold setup.  Considering the good repeatability shown above, along 

with the linear output and negligible amount of hysteresis exhibited by the 

complete dynamometer system, it was concluded that the dynamometer design 

was acceptable and it was consequently signed off for testing.  The data that was 

used to produce Figure 23 and Figure 24 can be found in Appendix K). 

7.2 Calibration of instrumentation and actuators 

Prior to starting any tests, all pressure transducers and thermocouples were 

calibrated.  This section summarises the calibration procedures followed.  The 

details surrounding the execution of these processes, along with the results that 

were obtained, are presented in Appendix H. 

7.2.1 Throttle actuator calibration 

The Posicon 1000 throttle actuator system leaves the factory fully calibrated and 

does not require recalibration when installed.  It was, however, required to set the 

amount of force exerted by the actuator (this is selected as a percentage of the 

nominal force rating of the actuator).  Apart from the force setting, it was also 
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required to set the fixed positions for “shut off”, “idle”, and “maximum throttle”.  

These settings were all performed by following the procedure detailed in the 

throttle actuator’s user manual.   

The final step was to calibrate the feedback signal from the actuator (this was 

performed directly in ETA) in order to determine the actual position of the 

actuator from within ETA.  During this process, the actual position of the actuator 

was verified using the hand held remote terminal of the actuator, which displays 

the actual position of the actuator as a percentage of the stroke between the 

predefined “idle” and “maximum throttle” positions.   

7.2.2 Fuel flow meter calibration 

The AVL dynamic fuel balance was calibrated upon installation following the 

detailed calibration procedure in the fuel flow meter’s user manual.  The 

calibration procedure was directly performed from the fuel flow meter’s control 

unit.  Once the calibration requirements stipulated in the fuel flow meter’s user 

manual were met, the output from the fuel flow meter’s control unit was 

calibrated directly in ETA.  This ensured that the entire measurement chain was 

included in the calibration process and that the fuel flow rate displayed in ETA 

was synchronised with the flow rate displayed by the fuel flow meter’s control 

unit.  Refer to Appendix H.4 for the detailed calibration procedure implemented.  

7.2.3 Pressure transducer calibration 

7.2.3.1 In-cylinder pressure transducer 

During the calibration of the Optrand transducer, a WIKA CPB 3000 dead weight 

tester was used to apply a known pressure to the sensor.  In an effort to achieve 

the best possible accuracy during the calibration process, the wiring setup, 

hardware equipment and data logging software was implemented in exactly the 

same way it was to be used to log data during the engine tests.  During calibration, 

the sensor was electrically connected to the NI 6351 USB data acquisition unit 

and the sensor output was recorded using LabVIEW software.  Refer to Appendix 

H.2.1 for the calibration results obtained. 

7.2.3.2 Intake manifold pressure transducer 

The measurement range of -1 to 3 bar gauge pressure of the WIKA S-10 strain 

gauge pressure transducer required that the sensor be exposed both to vacuum and 

positive gauge pressure during calibration.  The senor was calibrated while being 

electrically connected exactly the same way it was to be used in service, but 

without being connected to the damping chamber.  The reason for excluding the 

damping chamber during calibration was due to the chamber adding too much 

volume to the measurement line, which made it difficult to achieve the required 

vacuum pressure using the available calibration equipment. 

The sensor was calibrated over a pressure range of -0,6 to 1 bar, using a pressure 

pump from SI Pressure Instruments and a WIKA reference gauge.  The upper 
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range of the calibration was restricted to 1 bar due to the test engine not 

employing force induction.  Consequently, the mean intake manifold pressure will 

not rise higher than atmospheric pressure.  The calibration results are presented in 

Appendix H.2.2. 

7.2.3.3 Oil pressure transducer 

The A-10 pressure transducer which was used to measure the engine oil pressure 

was supplied with a calibration certificate.  The sensor supplier is ISO certified, 

therefore the sensor was installed as supplied and the provided sensitivity from the 

calibration certificate was used to determine the measured pressure.  The 

measurements obtained from the oil pressure sensor is purely for monitoring 

purposes (in order to verify that there is sufficient oil pressure during start-up and 

that the oil pressure reading does not abruptly change during operation), therefore 

using the sensitivity provided on the sensor’s calibration certificate was deemed 

fit for the purpose.     

7.2.4 Temperature sensor calibration 

A Fluke 9142 field metrology well was used as heat source during the calibration 

of the thermocouple sensors.  The reference temperature measurement was 

obtained by employing a calibrated platinum resistance thermometer in 

conjunction with the field metrology well.   

Prior to performing the calibration, the thermocouples were installed as part of the 

test setup and all the associated wiring to the measurement equipment completed.  

The thermocouples were then removed from the test setup, with all of their 

respective wiring harness in place as they would be used as part of the test setup.  

The sensors were then calibrated with the output values being captured directly in 

ETA.  The field metrology well has a temperature range of -25 °C to 150 °C and 

the thermocouples were calibrated over a temperature range of 0 °C to 140 °C 

with data points captured every 20 °C.  Upon reaching each of the temperature set 

point values, the heat source, reference temperature probe and thermocouples 

were allowed to stabilise before the data was captured.  Calibration cycles were 

performed both while increasing and decreasing the temperature, after which the 

averages of the measured results were calculated.  A first order polynomial was 

then fitted to the data and used as a calibration curve.  Refer to Appendix H.3 for 

the detailed calibration results.   

7.3 Stability and accuracy of test setup 

Due to the implementation of a new control system and new control hardware, an 

initial test sequence was executed during which the PID settings of the entire 

control system were set.  Preliminary testing was then performed, over multiple 

days, in order to monitor the control stability of the test setup.  These tests also 

served the purpose of identifying the most suitable speed and load points at which 

to conduct future engine tests.   
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In order to obtain an accurate indication of the engine’s performance, the aim was 

to select speed and load points which were representative of the engine’s normal 

operating range.  The final test points were identified by evaluating the engine’s 

performance curves (see Figure 53 in Appendix I) and selecting the load points 

such that they all fall within the engine’s torque output capability over the 

selected speed range.  Following this selection procedure, preliminary test points 

were identified as being: 5, 10, 15 and 20 N·m at 2400 rpm, 2800 rpm and 

3200 rpm respectively.  These test points therefore also cover the 3000 rpm 

operating point of a 50 Hz generator, which is a typical application in which the 

test engine is commonly used.  The test points are shown in Figure 25 where the 

torque is plotted against engine speed (shown in rpm on the horizontal axis).  In 

addition, Figure 25 also displays the peak torque curve of the test engine as 

obtained from the engine manufacturer’s data.  

An automated test sequence was then programmed in ETA and executed using 

constant torque mode.  The engine was started and allowed to reach operating 

temperature, after which the automated test was initiated.  The automated test was 

started at a load of 5 N·m and a speed of 2400 rpm (test point 1 in Figure 25).  

The engine was run at each this test point for 2 minutes (the amount of time 

required for the engine’s exhaust gas temperature to stabilise), after which sixty 

data points were then captured over a period of five minutes.  Upon completion of 

the data capturing, the automated test moved the test engine on to the second test 

point (10 N·m at 2400 rpm).  After the test point was reached, the engine was run 

once more until the exhaust gas temperature stabilised and the sixty data points 

were captured again.  This process was repeated to sequentially complete all the 

test points in the order shown in Figure 25, without any intervention from the 

operator. 

  

 

Figure 25: Test points used during testing 
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The results of the test are presented in Figure 26, where the measured torque is 

plotted for each captured data point.  The data presented are the raw data points as 

they were captured (over a period of 5 minutes) and without correcting the torque 

for ambient conditions.  From Figure 26 it is clear that the test setup exhibits very 

good control stability across all test points, especially considering the fact that the 

test engine used is a single-cylinder, compression-ignition engine, which is known 

for torsional oscillations. 

The largest deviation in load, can clearly be noticed for all test points conducted at 

a test speed of 2800 rpm, with the highest deviation being recorded at test point 

number 5 (20 N·m at 2800 rpm).  These more noticeable deviations in load can be 

attributed to the engine’s torque characteristic displaying significant torque 

backup around 2800 rpm (as can be seen from the steep gradient in the full load 

torque curve presented in Figure 25 above).  As a result, when running at an 

operating speed of 2800 rpm, any small deviation in speed, results in a significant 

change in fuel delivery and therefore torque output of the engine.  The change in 

torque output of the engine causes the engine’s speed to change even more, 

forcing the control system to respond by changing the load on the engine, in order 

to bring it back to the set point values for the specific test point.  The repetition of 

the above sequence of events, is the cause of the larger deviations in torque output 

for test points conducted at speeds of 2800 rpm.   

   

 

Figure 26: Test setup control stability over period of 5 minutes 
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Table 5 was constructed in order to quantify the accuracy of the data presented 

graphically in Figure 26.  Statistical analysis was performed which yielded the 

mean and standard deviation values (for both load and speed) for each of the 

recorded data sets.  The results of which can be seen in the last four columns of 

Table 5.  Further inspection of the results reveals that the mean torque values are 

all within the initial stipulated ± 0,5 N·m tolerance band, listed in Table 1.  This 

also holds for test point 5, where even with the larger deviations due to the 

reasons discussed in the paragraph preceding Figure 26, the value of the mean 

torque recorded is still within 0,4 N·m of the set point value of 20 N·m.  Table 5 

also indicates that the mean speed values obtained are all within 5 rpm of the set 

point value and therefore far exceed the ±1 % speed control accuracy requirement, 

listed in Table 1.  Overall, the stability and accuracy of the entire test setup 

(including the control system) proved satisfactory and the stipulated design 

requirements were met successfully.  Note that test point 1 was repeated at the end 

of the test cycle in order to compare the test setup accuracy before and after 

completing the entire test cycle.    

 

Table 5: Control system accuracy 

Test  

Point  

# 

Test Point  

(Set Point  

Values) 

Mean 

Torque 

[N·m] 

Mean 

Speed  

[rpm] 

Load Speed 

Standard 

Deviation 

[N·m] 

Standard 

Deviation 

[rpm] 

1 5 N·m at 2400 rpm 5,0 2400 0,1 0,6 

2 10 N·m at 2400 rpm 9,9 2402 0,1 0,7 

3 15 N·m at 2400 rpm 14,9 2403 0,1 0,9 

4 20 N·m at 2400 rpm 19,7 2404 0,2 1,0 

5 20 N·m at 2800 rpm 19,6 2804 0,9 2,7 

6 15 N·m at 2800 rpm 14,9 2805 0,3 0,5 

7 10 N·m at 2800 rpm 9,9 2802 0,3 0,4 

8 5 N·m at 2800 rpm 5,0 2800 0,2 0,3 

9 5 N·m at 3200 rpm 5,0 3198 0,2 0,2 

10 10 N·m at 3200 rpm 9,9 3200 0,2 0,2 

11 15 N·m at 3200 rpm 14,9 3202 0,3 0,2 

12 20 N·m at 3200 rpm 19,7 3205 0,4 0,3 

13 5 N·m at 2400 rpm 5,0 2402 0,1 0,6 

 

Data obtained by Corbett (2017), who used the test bench developed in this 

project to perform testing of the larger Honda GX670 spark-ignition engine, 
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shows that the dynamometer also displays very good control stability when testing 

at higher load points, as can be seen in Figure 27 below.  This verifies that the 

developed test bench and dynamometer system meets the control accuracy 

requirements initially stipulated in Table 1, where the test setup was designed 

with the purpose of also being suitable to test the larger Honda, spark-ignition 

engine.  

 

 

Figure 27: Test setup stability when testing Honda, spark-ignition engine 

 (Source: Corbett, 2017) 

7.4 Repeatability 

In order to verify the repeatability of the test setup, it was decided to monitor 

brake specific fuel consumption (BSFC) and exhaust gas temperature over four 

different load points, each of which were tested at three different speeds (test 

points 1 through 12 in Table 5).  During these tests, 50 ppm diesel was used as 

fuel and differences in ambient conditions were accounted for by applying the 

SAE J1349 power correction factor (SAE J1349 Standard, 2004).  Comparing the 

BSFC results of the two tests, showed a percentage difference of 1,6 % (on 

average).  The difference in exhaust gas temperature results for the same tests, 

showed a percentage difference of 3,2 % (on average) when comparing the results 

of the first test, to that of the second.  The inlet air temperature recorded during 

these tests displayed an average difference of 2,7 °C between tests 1 and 2.  The 

results obtained are presented in Figure 28 and Figure 29 respectively, where the 

measured values have been plotted against BMEP.  The measured test data which 

is presented graphically in this section can be found in tabulated form in 

Appendix K. 
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Figure 28: BSFC versus BMEP 

 

Figure 29: Exhaust gas temperature versus BMEP 
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8 Engine Performance Testing and Results 

After commissioning of the test setup, during which the repeatability of the entire 

test setup and measurement system was confirmed, the engine performance tests 

were started. 

The first part of the engine performance testing, consisted of full load testing 

using 50 ppm diesel as fuel.  Following these tests, partial load testing was 

performed in order to investigate the effects on engine performance when using a 

B10 biodiesel blend (10 % by volume biodiesel blended with 90 % by volume 

petroleum diesel) as opposed to 50 ppm diesel.  The source of the biodiesel was 

fatty acid methyl esters produced from palm-based cooking oil.  The pure 

biodiesel was sourced from a biofuel supplier and the B10 blend was then 

produced through splash blending.   

The original engine manufacturer confirmed that the highest percentage of 

biodiesel previously tested in the engine was 7 % (before modifications were 

required to the fuel injection equipment), but it was decided to use a B10 blend in 

an attempt to be able to detect a noticeable difference in the test results when 

comparing B10 to petroleum diesel.  

Prior to conducting each of the engine tests, the dynamometer was calibrated to 

ensure that the measured torque was accurate.  Furthermore, a second calibration 

sequence was also performed after completion of each test.  This was done to 

verify that there was no drift in the calibration during the logging of the test data.   

8.1 Full load testing 

A full load test was performed prior to starting the engine performance testing.  

The result from the full load test was used to establish a baseline for the 

performance of the test engine.  After completing the full load test, all of the 

engine performance tests were conducted.  At the end of the entire test program 

(multiple days later), a second full load test (the bracket test) was performed.  The 

results of the two full load tests were then compared to each other in order to 

ensure that the engine still made the same amount of power after completing the 

entire test program.  Thus, verifying that the performance of the engine itself 

remained unchanged throughout the duration of the engine test program. 

The results of these two full load tests are presented in Figure 30 below.  Figure 

30 shows both the full load torque and power curves.  The measured parameters 

were plotted against engine speed, with all full load tests being conducted over a 

speed range of 2400 - 3600 rpm.  Note that the horizontal axis in Figure 30 starts 

at a speed of 2200 rpm.  
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Figure 30: Torque and power curves pre- and post-testing 

 

In Figure 30 it can be seen that the results from the second test compare very well 

to that of the first full load test, even though these two tests were conducted 

multiple days apart.  The largest discrepancy (less than 1 N·m) occurs at a speed 

of 2600 rpm.  Further investigation revealed that the difference was due to a 

slightly higher fuel consumption rate during the first test.  This can be attributed 

to increased fuel delivery which is controlled by the engine’s internal control 

system (over which the test setup has no control).  Apart from the slight 

discrepancy in the data at 2600 rpm, the remaining data points were all within 

0,5 N·m of each other.  Similarly, the two power curves shown also correspond 

very well with the same trends being visible as can be observed from the torque 

data. 

Both the torque and power data in Figure 30 indicate that during test 2, the highest 

speed that the engine could achieve (under full load conditions) was slightly lower 

(at 3560 rpm) than the speed of 3600 rpm achieved during test 1.  This difference 

is due to the influence of the mechanical governor (which exhibits a 5 % speed 

droop in order to ensure stable speed control).  It was ensured that the throttle was 

always at the wide open throttle position during the full load tests.  The changes in 

the performance curves are therefore not related to a change in throttle actuator 

input.  The difference in output observed can only be due to hysteresis in the 

governor, or due to a change in the governor springs.  This was left untouched, 

because it was decided beforehand not to make any changes to the engine’s fuel 

delivery system. 

Figure 31 below shows the governor droop which was measured during the 

second full load test.  Multiple data points were captured near the breakaway point 
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(at 3600 rpm) in an effort to capture the drop-off.  Governor droop was, however, 

not measured during the first test, due to no governor breakaway being present at 

the time. 

 

 

Figure 31: Measured governor droop 

 

8.2 Partial load testing 

Partial load tests were also conducted in order evaluate the effect that the use of a 

B10 biodiesel blend has on the performance of the test engine.  In order to report 

the findings, BSFC was chosen as the parameter to quantify the effect on engine 

performance. 

Test points 1 through 12 in Table 5, the same test map previously used to test for 

repeatability, was also used to conduct the fuel-to-fuel evaluations.  Figure 32 

shows the BSFC values (presented in g/kWh) recorded for both diesel and B10 

when exposed to the above-mentioned test map.  The BSFC values were plotted 

against BMEP, which is plotted in kPa on the figure’s horizontal axis.  

From the results it is clear that the trend is that across the various load points B10 

results in higher BSFC values.  This corresponds with what is found in the 

literature and can be attributed to the lower energy content and higher density of 

biodiesel compared to that of petroleum diesel (Aziz et al. 2006) (Ozsezen & 

Canakci, 2011).  The measured data used to construct Figure 32 can be found in 

Appendix K. 
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Figure 32: Effect of B10 on BSFC 

 

The diesel BSFC results shown in Figure 32 differ somewhat from those 

presented in Figure 28, with the discrepancy being most noticeable at low load 

conditions.  The results consistently display improved correlation as the load is 

increased.  The data presented in the two figures were captured multiple days 

apart with the test setup being subjected to numerous hours of testing in-between.  

Any small change in friction (during this hours of testing) along the driveline 

would result in a change in the fuel consumption of the engine (to compensate for 

the change in friction) when the engine is required to repeat the predefined test 

point.  The small change in friction would not be measured by the load cell and 

would therefore result in different BSFC results being obtained.  This explains 

why the differences in the BSFC results are most noticeable at low load (where 

the change in friction makes up for a larger percentage of the load applied by the 

dynamometer).  In both cases, however, the test setup continued to display very 

good repeatability. 

8.3 Smoke measurement 

During the conduction of the partial load tests, smoke measurements were taken 

to evaluate the amount of soot present in the engine’s exhaust gas.  The effect on 

the amount of soot particles present was evaluated by monitoring the change in 

filter smoke number (FSN).  The results obtained displayed good repeatability, 
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with measurements for consecutive tests showing variances as low as 0,02 in FSN 

(on average). 

Comparing the effect of the use of B10 biodiesel to that of 50 ppm diesel, it was 

found that although the influence of B10 is very small, the biodiesel produces the 

same (to within 0,01 FSN) or lower FSN values compared to 50 ppm diesel.  This 

can be seen in Figure 33 below (where the filter smoke numbers have been plotted 

against BMEP).   

This observed reduction in soot content can be attributed to the higher oxygen 

content of biofuel (compared to the oxygen content of petroleum diesel) which 

leads to improved and more complete combustion.  This in turn results in reduced 

soot particles being present in the engine’s exhaust gas and corresponds with what 

is reported in the literature (Aziz et al. 2006) (Gopinath & Sundaram, 2015) 

(Ozsezen & Canakci, 2011). 

A significant discrepancy was, however, obtained at a BMEP of 578 kPa and a 

speed of 2800 rpm where the use of B10 biodiesel resulted in a higher FSN 

compared to 50 ppm diesel.  This data point is inconsistent with the rest of the 

results obtained and could unfortunately not be repeated, due to a faulty smoke 

meter (the cause of which was later identified as being a dry solder joint).  

However, the integrity of the data was not compromised, as the smoke meter 

performs a self-calibration check prior to taking each measurement.  The 

measured data used to construct Figure 33 can be found in Appendix K.   

 

 

Figure 33: Effect of B10 on FSN 
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9 Engine Indicating Testing and Results 

During the engine indicating tests, crank angle based measurements of the intake 

manifold pressure and in-cylinder pressure were recorded.  The recorded data was 

then analysed and used to construct a zero-dimensional, single-zone, heat release 

model of the engine.  

9.1 Testing and data capturing 

Prior to starting any of the tests, the incremental shaft encoder on the engine was 

mechanically aligned relative to the crankshaft of the engine.  The purpose of the 

exercise was to align the encoder such that its trigger pulse was as close as 

practically possible to coinciding with the TDC position of the piston (just prior to 

the start of the intake stroke).  

Using the partial load test map presented in Figure 25, test points numbers: 1, 4, 9 

and 12 from Table 5, were selected to be used during the engine indicating tests.  

These particular test points were selected to monitor the effect that high and low 

load, as well as, high and low speed, have on the engine indicating measurements. 

Testing was started by performing motoring tests at the preselected speeds of 

2400 rpm and 3200 rpm, with the entire test setup at normal operating 

temperature.  Due to heat losses and leakage being more significant for a hot 

engine, it is important that the data be captured while the engine is at its normal 

operating temperature.   

During each test, 500 cycles of both in-cylinder and intake manifold pressure 

were captured simultaneously for each run.  The larger number of cycles was 

chosen, due to the inherent cycle-to-cycle variation associated with the single-

cylinder, diesel engine (as discussed in section 3.3).  Furthermore, capturing a 

larger number of cycles requires no additional effort from an engine testing point 

of view, it only leads to larger data files during post processing.  The pressure data 

was then averaged over the 500 cycles in order to eliminate as much of the cycle-

to-cycle variation of the engine as possible.  As pointed out by Lancaster et al. 

(1975) averaging the measured pressure data over a number of cycles is an 

acceptable procedure.  Statistically, the variance associated with the measured 

average pressure reduces as the number of samples (the number of engine cycles) 

used to calculate the average pressure is increased.  

Due to the high degree of cyclic variation of the single-cylinder engine, as well as 

due to the employment of the variable speed drive to control the electric 

dynamometer, the measured pressure signal still exhibited a substantial amount of 

high frequency noise.  Consequently, a low pas filter was constructed using the 

fdatool in Matlab, after which the pressure data was filtered using the filtfilt 

function in Matlab.  This function was best suited to the application as it filtered 

the data both forwards and backwards, eliminating any phasing of the data during 

the filtering process.  The cut-off frequency of the filter was chosen such that no 
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clipping of the peak pressure occurred.  Therefore, the integrity of the pressure 

data remained intact after the filtering process. 

9.2 Referencing and phasing 

In order to reference the in-cylinder pressure, the measured intake manifold 

absolute pressure (MAP) was averaged over 6 degrees of crankshaft motion (from 

3 degrees before bottom dead centre (BDC) to 3 degrees after BDC) (Zhoa & 

Ladammatos, 2001).  This then gave the average MAP at BDC between the intake 

and compression stroke for the particular load and speed.  The in-cylinder 

pressure (over this same range of crankshaft motion) was then pegged at this 

calculated averaged MAP. 

Final and accurate phasing of the pressure data was performed using the 

procedures described in section 2.7.2.  This consisted of plotting the log P - log V 

diagram of the measured data and using the shape of the curve (more specifically 

the straightness and slope of the compression line) in order to verify accurate 

phasing of the data.  The initial mechanical alignment of the encoder (discussed in 

the previous section) meant that only a small amount of additional phasing was 

required.  The guidelines given by Zhoa & Ladammatos (2001) was used to 

perform the phasing until a straight compression line was obtained, having a slope 

of −𝑛𝑝 and the shape of log P - log V diagram displayed a sharp and distinct tip at 

TDC (as can be seen in Figure 34).  In addition, the pressure curve was also 

examined in order to ensure that the crank angle at which the peak pressure occurs 

precedes TDC, as is explained in the literature (Zhoa & Ladammatos, 2001) 

(Lancaster et al. 1975). 

9.3 Motoring test results   

Table 6 below shows the peak pressure, as well as the crank angle position where 

the peak pressure occurred, for the motoring tests conducted at 2400 rpm and 

3200 rpm.  It was found that the peak pressure occurs prior to the piston reaching 

TDC and that the angle with which the peak pressure precedes TDC, decreases 

from 0,2 to 0,1 degrees when the engine speed increases form 2400 rpm to 

3200 rpm.  This agrees very well with what is reported in the literature by Zhoa & 

Ladammatos (2001).  Furthermore, equation (2.1) was solved for 𝑛𝑝, in order to 

calculate the value of the polytropic exponent (for the compression stroke) when 

using the measured test data.  The measured values of 𝑃𝑚𝑎𝑥 and 𝑃𝐼𝐵𝐷𝐶, as well as 

the value of the compression ratio (𝑟𝑐), was then substituted into the equation, 

which yielded the results shown in the last column of Table 6.  Here it can be seen 

that values of 1,3 and 1,32 were obtained for the polytropic exponent, 

corresponding to test speeds of 2400 rpm and 3200 rpm respectively.  This falls 

well within the range of 1,25 to 1,35 that is reported in literature by 

Lancaster et al. (1975) and Stone (1992).  

 

Stellenbosch University  https://scholar.sun.ac.za



 

78 

 

Table 6: Referenced and phased data of motoring tests 

Test Description 

𝑷𝒎𝒂𝒙  

[kPa] 

Position of 𝑷𝒎𝒂𝒙  

[Degrees before TDC] 

Polytropic  

Exponent 

(𝒏𝒑) 

Motoring at 2400 rpm 4896 0,2 1,30 

Motoring at 3200 rpm 5084 0,1 1,32 

 

Figure 34 below, shows the phased pressure versus volume diagram, for the 

motoring test conducted at 3200 rpm.  The data is plotted on axes having a 

logarithmic scale, with the pressure presented in kilopascals and the cylinder 

volume in cubic meters.   

 

 

Figure 34: Log P - log V motoring curve at 3200 rpm 
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can be observed in the exhaust stroke in Figure 34 above.  Thermal shock, also 
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thermal shock, due to the direct exposure of its sensor diaphragm to the 

combustion pressures (and therefore combustion temperature) (Wlodarczyk, 

2012).  

9.4 Repeatability of data 

After concluding the initial motoring tests and verifying the accuracy of the data, 

testing at the remainder of the selected indicating test points (test points 1, 4, 9 

and 12 from Table 5) were performed.  A second test sequence was also 

performed, during which the entire set of motoring and partial load test points 

were repeated.  This was done in order to verify the repeatability of the entire 

engine indicating test setup. 

Analysis of the measured data showed very good repeatability (see Table 7 below) 

when comparing the results obtained during the second (repeat) test sequence to 

that of the first.  The pressure data recorded at test point 4 (20 N·m at 2400 rpm) 

for both test 1 and test 2 are presented in Figure 35 below.  Also plotted in Figure 

35 are the two motoring curves recorded at 2400 rpm during test 1 and 2 

respectively.  Inspection of Figure 35 shows that both the motoring and 

combustion pressure traces exhibit very good repeatability with the pressure traces 

for tests 1 and 2 being almost identical. 

 

 

Figure 35: Pressure data repeatability for 2400 rpm 
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obtained during tests 1 and 2.  𝐼𝑀𝐸𝑃𝑔𝑟𝑜𝑠𝑠 was calculated by substituting equation 

(2.3) into equation (2.5) and performing the numerical integration of the measured 

pressure data from BDC before the compression stroke, to BDC after the 

expansion stroke.  Table 7 below, lists the values of the above mentioned 

parameters as measured at all of the test points.  Also shown in Table 7, is the 

percentage and degree differences between each of the above parameters when 

comparing the results obtained during test 2 to that obtained during test 1. 

   

Table 7: Repeatability data of engine indicating tests 

Test  

Point  

# 

Test  

Point 

Max P  

[kPa] Diff  

[%] 

Pos of max P  

after TDC [°] Diff  

[°] 

𝑰𝑴𝑬𝑷𝒈𝒓𝒐𝒔𝒔  

[kPa] 
Diff  

[%] 
Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 

1 

5 N·m 

at  

2400 

rpm 

6013 5997 0,3 7,7 7,6 0,1 226,8 228,6 0,8 

4 

20 

N·m at  

2400 

rpm 

6462 6442 0,3 9,0 9,0 0,0 634 635 0,2 

9 

5 N·m 

at  

3200 

rpm 

5438 5448 0,2 11,2 11,2 0,0 246,2 254,2 3,2 

12 

20 

N·m at  

3200 

rpm 

6121 6105 0,3 10,3 10,4 0,1 656,7 665 1,3 

 

When observing the percentage differences in maximum pressure obtained 

between tests 1 and 2, as well as the position where the maximum pressure 

occurred, it is clear that the data displays very good repeatability.  In addition, the 

last column of Table 7 shows very good repeatability of the calculated 𝐼𝑀𝐸𝑃𝑔𝑟𝑜𝑠𝑠, 

with differences as low as 0,2 % being obtained.  With the exception of the IMEP 

result for test point number 9, all other IMEP values are within 1,5 % of each 

other.  Based on the results above, it can be concluded that the repeatability of the 

entire test setup and engine indicating measurement chain is satisfactory. 

9.5 Data accuracy 

Apart from verifying the repeatability of both the engine indicating test setup and 

measurement chain, the accuracy of the measured data was also investigated.  

This was accomplished by comparing the gross IMEP values (obtained from the 
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measured in-cylinder pressure data) to the gross IMEP values obtained when 

using the measured BMEP and adding the FMEP (that is solving equation (2.7)). 

The FMEP was calculated using the Willan’s Line model.  When implementing 

this model, the fuel consumption of the engine is plotted against BMEP for 

constant engine speed.  This line is then extrapolated until it intersects the 

negative BMEP axis (where it indicates zero fuel flow).  The power output read 

from where the extrapolated line intersects the BMEP axis can then be regarded as 

an approximation of the FMEP for the specific engine speed (Van Basshuysen & 

Schäfer, 2004).  Willan’s model assumes that when running at constant speed, 

engine friction is independent of indicated power and, furthermore, that indicated 

efficiency remains constant.  This assumption is, however, only reasonable when 

running at operating points away from maximum power (Stone, 1992). 

Figure 36 illustrates how the process described above was applied to calculate the 

FMEP at speeds of 2400 rpm and 3200 rpm respectively.  In Figure 36, the fuel 

flow is plotted on the vertical axis (in units of g/s), while BMEP is shown on the 

horizontal axis (in units of kPa).  Fitting a linear curve to the measured data points 

and extrapolating this curve to where it intersects the BMEP axis, allows the 

FMEP to be read off for each of the engine speeds.  The curve fits for the data of 

2400 rpm and 3200 rpm, both indicated 𝑅2 values of 1.   A FMEP of 114 kPa was 

obtained for a test speed of 2400 rpm, while the data recorded at a speed of 

3200 rpm indicated a FMEP of 143 kPa.  These results agree well with literature, 

where Van Basshuysen & Schäfer (2004) also reports that the FMEP increases 

with increasing engine speed. 

 

  

Figure 36: Fuel flow versus BMEP 
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Equation (2.7) was then solved for the gross IMEP using the FMEP obtained from 

Figure 36, along with the BMEP measured at the specific load points.  The gross 

IMEP values obtained using the above method, was then compared to the gross 

IMEP obtained when solving equation (2.5) using the measured in-cylinder 

pressure data.  The percentage differences were calculated using the gross IMEP 

values obtained from equation (2.5) as baseline.  Table 8 below shows the results 

obtained. 

 

Table 8: Gross IMEP comparison 

Test  

Point 

BMEP  

[kPa] 

FMEP  

[kPa] 

𝑰𝑴𝑬𝑷𝒈𝒓𝒐𝒔𝒔 

(Eq 2.7) 

[kPa] 

𝑰𝑴𝑬𝑷𝒈𝒓𝒐𝒔𝒔  

(In-cylinder 

Data) [kPa] 

Difference  

[%] 

20 N·m 

at 2400 rpm 
570,3 114,0 684,3 641,7 6,7 

20 N·m 

at 3200 rpm 
570,5 143,1 713,6 697,4 2,3 

 

The results show improved correlation between the gross IMEP values for the test 

conducted at 3200 rpm, indicating a percentage difference of 2,3 % between the 

measured and calculated gross IMEP values.  Results obtained at 2400 rpm show 

a slightly higher percentage difference (6,7 %) when comparing the measured and 

calculated gross IMEP values.   

The observed discrepancies between the gross IMEP values can be contributed to 

several reasons.  Firstly, the Optrand transducer, used to capture the in-cylinder 

pressure data, is susceptible to cyclic temperature drift.  This was already 

discovered when plotting the pressure versus volume data (refer to Figure 34).  

The fact that cyclic temperature drift acts over such a large range of crank angles, 

means it has a substantial influence on the calculation of the IMEP - which is 

obtained by integrating over a single engine cycle (Pressure Sensors for 

Combustion Analysis, 2013).  Secondly, in a study performed by Wlodarczyk 

(2012), the accuracy of the Optrand transducer was compared to that of a 

6061 Kistler, water-cooled, piezoelectric pressure transducer.  Both sensors were 

mounted inside the cylinder head and an additional heat shield (in the form of an 

Inconel 600 wire mesh) was installed in front of the Optrand transducer.  Results 

showed that at pressures above 5 bar, the pressure measured by the Optrand 

transducer is accurate to within ± 1,5 % of the pressure measured by the 

piezoelectric pressure transducer.  Performing the integration using inaccurate 

pressure data is thus another source of error in the IMEP calculation.  Lastly, 

using the Willan’s line method to calculate the FMEP is limited to the 

assumptions discussed earlier in this section of the report and the method does 

therefore not account for the change in friction, due to a change in indicated 

power. 
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9.6 Heat release 

After verifying the repeatability and accuracy of the measured in-cylinder data, 

the data was used to setup a heat release model for the test engine.  For the 

purpose of the heat release analysis, the combustion process was modelled using a 

zero-dimensional, single-zone combustion model.  This allows the contents of the 

cylinder to be modelled as being homogenous, which significantly simplifies the 

analysis, yet still remains accurate enough to capture the influences that changes 

in the engine operating parameters have on the rate of heat release 

(Heywood, 1988). 

An Excel spreadsheet was setup based on the work done by Goering (1998), in 

order to implement equation (2.8) and consequently perform the heat release 

analysis.  Inputs to the spreadsheet included: the test point speed, the fuel flow 

rate, the ambient test conditions used to calculate the intake air density, as well as 

the measured in-cylinder pressure data for the specific test point.  The flow rate of 

the intake air was calculated using equation (2.27a) from Heywood (1988).  In the 

absence of more accurate measured data, a volumetric efficiency of 85 % 

(Heywood, 1988) was assumed during the calculation of the air flow rate.  Apart 

from entering the test conditions, physical properties such as the: bore, stroke, 

connecting rod length and compression ratio of the engine (as obtained from the 

engine’s data sheet) was also provided as inputs.  This spreadsheet was then used 

to perform accurate phasing and pegging of the measured pressure data and 

ultimately to calculate the rate of heat release for each test point.   

During the heat release analysis, the heat transfer from the cylinder gases to the 

combustion chamber wall was accounted for, by implementing equation (4.2).  

After evaluating the various models of the heat transfer coefficient available in the 

literature, it was decided to implement equation (2.15), as proposed by Hohenberg 

(1979).  The correlation proposed by Eichelberg was not selected due to it not 

being based on forced convection.  The correlation proposed by Hohenberg 

(1979) was selected over that of Woschni (1967), due to the shortcomings of 

Woschni’s correlation when it comes to predicting heat transfer for high-speed 

compression-ignition engines (which is the type of engine used in this study).  As 

an added benefit, Hohenberg’s correlation is also significantly less complicated to 

implement compared to that of Woschni.  Although, the different correlations 

discussed above, each leads to a different value of the instantaneous heat transfer 

coefficient (ℎ), the consequent variation in calculated heat transfer to the cylinder 

wall, is not that significant.  According to Stone (1992), an error of 10 % in the 

predicted amount of in-cylinder heat transfer, only results in a 1 % error in 

predicted engine performance.  

The accuracy of the heat release model was verified by confirming that the rate of 

heat release for the motoring pressure data, displayed zero heat release (due to no 

fuel being added to the engine during the motoring test).  The results obtained for 

the motoring test conducted at a speed of 2400 rpm are presented in Figure 37 

below, where the measured data is plotted against crank angle.  The measured 

pressure trace is plotted on the primary vertical axis and the rate of heat release 
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(ROHR) is shown plotted on the secondary vertical axis.  Note that the horizontal 

axis covers a range from 280 degrees of crankshaft rotation to 520 degrees.   

 

 

 

 

Figure 37: Rate of heat release for motoring at 2400 rpm 

 

After confirming the accuracy of the heat release model, the heat release analysis 

was completed for all four of the engine indicating test points.  Figure 38 displays 

the obtained ROHR for test point number 4 (20 N·m at 2400 rpm), with the 

ROHR shown on the primary vertical axis in units of J/0,1 degree.  Aside from the 

ROHR, Figure 38 also displays the cumulative heat release (CHR), which was 

obtained through numerical integration of the rate of heat release curve.  The CHR 

represents the area enclosed under the ROHR curve for the entire combustion 

process.  The CHR is thus a good approximation (since the analysis is not exact) 

of the mass of fuel injected (𝑚𝑓) times the lower heating value (also known as the 

net calorific value) of the injected fuel.  That is, 

 𝐶𝐻𝑅 = ∫ 𝑄𝑐ℎ𝑑𝜃 =
𝜃𝑒𝑛𝑑
𝜃𝑠𝑡𝑎𝑟𝑡

𝑚𝑓𝑄𝐿𝐻𝑉    (9.1) 
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Figure 38: ROHR and CHR (20 N·m at 2400 rpm) 

 

Due to the absence of a needle lift sensor to determine the exact start of injection 

(SOI), the 
𝑑𝑃

𝑑𝜃
 curve was used as an indication of the start of injection (see 

Appendix J).  For the data recorded at test point 4, the first peak of the 
𝑑𝑃

𝑑𝜃
 curve 

indicated SOI occurring at 348,2 degrees of crank angle rotation.  Start of 

injection results in the CHR curve dipping below zero at SOI (as can be observed 

in Figure 38 above).  This is due to the heat being extracted from the combustion 

chamber in order to vaporize the injected fuel, resulting in a negative ROHR.  

Following the SOI event, start of combustion (SOC) occurs at 358,7 degrees, 

indicating a combustion delay of 10,5 degrees of crank angle rotation.  After SOC, 

the premixed combustion phase commences and lasts for 8,8 degrees up until the 

367,5 degree mark.  At this point, the mixing controlled combustion phase starts, 

which lasts until the start of the late combustion phase at 390 degrees.  The heat 

release ends with the conclusion of the late combustion phase at 406 degrees. 

10 Conclusion and Recommendations 

During this project, a small diesel engine test bench employing an electric 

dynamometer was developed.  The test bench was developed to meet the needs of 

Stellenbosch University’s Biofuel Test Facility, which required an engine testing 

platform that enables testing of small quantities of biofuel.  This requirement 

originated from the ability of the Department of Process Engineering to produce 
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their own biofuel, in small quantities at a time.  The development of the small test 

bench further expands the testing capability of the Biofuel Test Facility by 

enabling further insight to be gained regarding the effects that the use of biofuel 

has on the performance and emissions of a compression-ignition engine.  The 

valuable information gained using the developed test bench is especially relevant 

given the implementation of local and global mandates to continue to increase the 

quantities of biofuel introduced into fuel supplies. 

A number of different dynamometer systems were researched and an AC electric 

dynamometer system, comprising of an AC induction motor, a VSD and a resistor 

bank was selected as the most appropriate dynamometer system.  The electric 

motor was modified as required and the dynamometer system was then integrated 

with the existing test bench.  A suitable driveshaft was also designed and 

manufactured to couple the engine to the dynamometer.  The test bench was 

upgraded by installing a fuel flow meter, throttle actuator and various other 

sensors to measure engine performance.  The cylinder head of the test engine was 

also modified and a fibre-optic pressure transducer was installed to measure 

in-cylinder pressures.  Software was successfully developed to measure and 

capture both in-cylinder and intake manifold pressures during engine indicating 

testing. 

It was found that the developed test bench, control system and support equipment 

displayed good control stability and was capable of producing accurate and 

repeatable results.  BSFC and exhaust gas temperature results from different tests 

showed correlation between the tests to within 1,6 % and 3,2 % respectively.  

Smoke measurements proved to be very repeatable indicating correlation to within 

0,02 FSN (on average) for results obtained during consecutive tests.  Engine 

indicating tests showed that the developed in-cylinder pressure measurement 

system is capable of providing results at a resolution of 0,1 degrees of crankshaft 

rotation.  Comparing the maximum in-cylinder pressure recorded during 

consecutive tests, showed that the obtained results were within 0,3 % of each 

other, while measured IMEP values showed correlation ranging from 0,2 % to 

3,2 %.  Comparison of measured IMEP values to theoretical calculated IMEP 

values indicated good accuracy of the engine indicating setup (considering not 

using a water-cooled transducer) with correlation as good as 2,3 % being achieved 

between the measured and calculated values.  

Even though careful consideration was given to the selection of the test points, for 

future research it is recommended that the test speed of 2800 rpm be changed to 

move away from the torque backup region of the engine’s performance curve.  In 

terms of future engine indicating testing, it is recommended that a water-cooled 

piezoelectric pressure transducer be installed into the cylinder head of the engine.  

This will enable more accurate IMEP measurements to be recorded due to reduced 

influence of thermal effects on the transducer diaphragm and hence measured 

pressure.  Furthermore, it is also strongly advised that all cabling used for in-

cylinder pressure measurement be upgraded to at least category 6 shielded twisted 

pair cable, in order to reduce the amount of electrical noise present in the 

measured pressure data.   
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Finally, in this study the captured pressure data was averaged over 500 engine 

cycles and a single heat release analysis was performed.  The software that was 

developed to capture the pressure data can, however, be modified to capture any 

number of cycles.  As an alternative approach, heat release analysis can also be 

performed on each individual engine cycle, after which statistical analysis can 

then be used to obtain the final heat release results.  It is recommended that future 

researchers also investigate this method of performing the heat release analysis.      
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Appendix A: Apparent Heat Release 

A major advantage of using a heat release approach (based on the first law of 

thermodynamics) is that the variation in in-cylinder pressure can directly be 

related to the amount of chemical energy released during the combustion process.  

Most importantly, the above mentioned is possible while retaining the simplicity 

of modelling the engine’s cylinder contents using a single-zone model (Heywood, 

1988). 

 

Figure 39: Open system boundary of combustion chamber 

(Adapted from: How to Test Engine Compression, [S.a.]) 

 

The heat release analysis starts with the first law of thermodynamics applied to an 

open system.  Using the sign convention as indicated in Figure 39, this yields: 

 𝑑𝑄𝑐ℎ − 𝑑𝑄𝑤 − 𝑑𝑊 + ∑ℎ𝑖𝑑𝑚𝑖 =𝑑𝑈𝑠 (A1) 

where the term 𝑄𝑐ℎ is the chemical energy released during combustion, 𝑄𝑤 is the 

heat transfer to the cylinder wall, 𝑑𝑊 is the work done on the piston (which 

equals 𝑝𝑑𝑉) and ∑ℎ𝑖𝑑𝑚𝑖 is the mass flux across the system boundary.  Finally, 

𝑈𝑠 represents the sensible internal energy of the cylinder charge (changes in 

internal energy due to phase changes and chemical reactions are ignored).  

Rearranging equation (A1) and substituting 𝑝𝑑𝑉 for 𝑑𝑊, it follows that: 

 𝑑𝑄𝑐ℎ = 𝑑𝑈𝑠 + 𝑝𝑑𝑉 − ∑ℎ𝑖𝑑𝑚𝑖 + 𝑑𝑄𝑤 (A2) 
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The mass flux term can be expressed as: 

 ∑ℎ𝑖𝑑𝑚𝑖 =ℎ𝑓𝑑𝑚𝑓 − ℎ𝑐𝑟𝑑𝑚𝑐𝑟 (A3) 

with ℎ𝑓 being the sensible enthalpy associated with the fuel being injected into the 

cylinder and ℎ𝑐𝑟 the enthalpy associated with the flow into and out of the crevice 

regions.  Assuming ideal gas behaviour (the internal energy is a function of 

temperature only), the sensible internal energy of the cylinder charge can be 

expressed as: 

  𝑈𝑠 = 𝑚𝑢(𝑇) (A4)   

with 𝑇 being the mean temperature of the cylinder charge and 𝑚 the mass of the 

cylinder contents within the system boundary (Heywood, 1988).  Differentiating 

equation (A4), gives: 

 𝑑𝑈𝑠 = 𝑚𝑑𝑢(𝑇) + 𝑢(𝑇)𝑑𝑚 (A5) 

As mentioned previously, the internal energy of an ideal gas is dependent on 

temperature alone.  It therefore follows that the specific heat (𝑐𝑣) of an ideal gas is 

also, at most, only a function of temperature.  According to equation (4.23) in 

Boles & Cengel (2007), the differential change in internal energy can then be 

written as: 

 𝑑𝑢 = 𝑐𝑣(𝑇)𝑑𝑇 (A6) 

with 𝑐𝑣 being the specific heat of air at constant volume. 

Substituting equation (A6) into equation (A5) yields: 

 𝑑𝑈𝑠 = 𝑚𝑐𝑣(𝑇)𝑑𝑇 + 𝑢(𝑇) 𝑑𝑚 (A7) 

Substituting equations (A3) and (A7) into equation (A2) yields: 

𝑑𝑄𝑐ℎ = 𝑚𝑐𝑣(𝑇)𝑑𝑇 + 𝑢(𝑇) 𝑑𝑚 + 𝑝𝑑𝑉 − (ℎ𝑓𝑑𝑚𝑓 − ℎ𝑐𝑟𝑑𝑚𝑐𝑟) + 𝑑𝑄𝑤 (A8) 

Neglecting the quantity of fuel that is injected into the cylinder (ℎ𝑓~ 0), 𝑑𝑚 is 

caused by flow into and out of the crevice regions (that is 𝑑𝑚 = −𝑑𝑚𝑐𝑟) 
(Heywood, 1988).  Equation (A8) then becomes: 

 
𝑑𝑄𝑐ℎ

𝑑𝜃
=
𝑚𝑐𝑣(𝑇)𝑑𝑇

𝑑𝜃
+
𝑝𝑑𝑉

𝑑𝜃
+ (ℎ𝑐𝑟 − 𝑢(𝑇))

𝑑𝑚𝑐𝑟

𝑑𝜃
+
𝑑𝑄𝑤

𝑑𝜃
  (A9) 

where all the terms have been expressed with respect to the crank angle (𝜃).  

Using the ideal gas law:  

𝑃𝑉 = 𝑚𝑅𝑇  (A10) 

For a constant value of 𝑅 (the universal gas constant) it follows that: 

 𝑑𝑇 =
𝑉𝑑𝑃

𝑚𝑅
+
𝑃𝑑𝑉

𝑚𝑅
−
𝑃𝑉𝑑𝑚

𝑚2𝑅
 (A11) 

       =
𝑉𝑑𝑃

𝑚𝑅
(
𝑃

𝑃
) +

𝑃𝑑𝑉

𝑚𝑅
(
𝑉

𝑉
) −

𝑃𝑉𝑑𝑚

𝑚2𝑅
 (A12) 
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       =
𝑇𝑑𝑃

𝑃
+
𝑇𝑑𝑉

𝑉
−
𝑇𝑑𝑚

𝑚
 (A13) 

Substituting equation (A13) into equation (A9) it follows that: 

𝑑𝑄𝑐ℎ

𝑑𝜃
=
𝑚𝑐𝑣(𝑇)

𝑑𝜃
(
𝑇𝑑𝑃

𝑃
+
𝑇𝑑𝑉

𝑉
−
𝑇𝑑𝑚

𝑚
) +

𝑝𝑑𝑉

𝑑𝜃
+ (ℎ𝑐𝑟 − 𝑢(𝑇))

𝑑𝑚𝑐𝑟

𝑑𝜃
+
𝑑𝑄𝑤

𝑑𝜃
 (A14) 

Using equation (A10) to eliminate 𝑚 from equation (A14) leads to: 

𝑑𝑄𝑐ℎ

𝑑𝜃
=
𝑃𝑉

𝑅𝑇
𝑐𝑣(𝑇)

𝑇𝑑𝑃

𝑃𝑑𝜃
+ 𝑐𝑣(𝑇)

𝑃𝑉

𝑅𝑇

𝑇𝑑𝑉

𝑉𝑑𝜃
− 𝑐𝑣(𝑇)

𝑇𝑑𝑚

𝑑𝜃
  

                          +
𝑝𝑑𝑉

𝑑𝜃
 + (ℎ𝑐𝑟 − 𝑢(𝑇))

𝑑𝑚𝑐𝑟

𝑑𝜃
+
𝑑𝑄𝑤

𝑑𝜃
 (A15) 

          =
𝑐𝑣(𝑇)

𝑅
(
𝑉𝑑𝑃

𝑑𝜃
) + (1 +

𝑐𝑣(𝑇)

𝑅
) (

𝑃𝑑𝑉

𝑑𝜃
) − 𝑐𝑣(𝑇)

𝑇𝑑𝑚

𝑑𝜃
 

              +(ℎ𝑐𝑟 − 𝑢(𝑇))
𝑑𝑚𝑐𝑟

𝑑𝜃
+
𝑑𝑄𝑤

𝑑𝜃
 (A16) 

The specific heat ratio (𝛾) is defined as: 

 𝛾 =
𝑐𝑝(𝑇)

𝑐𝑣(𝑇)
  (A17)  

With 𝑐𝑝 and 𝑐𝑣 being the specific heats at constant pressure and constant volume, 

respectively.  For an ideal gas, the relationship between 𝑐𝑝 and 𝑐𝑣 is given by 

equation (4-29) in Boles & Cengel (2007) as: 

 𝑐𝑝(𝑇) = 𝑐𝑣(𝑇) + 𝑅   (A18) 

Substituting equations (A17) and (A18) into equation (A16), as well as utilizing 

the fact that 𝑑𝑚 = −𝑑𝑚𝑐𝑟, yields: 

𝑑𝑄𝑐ℎ

𝑑𝜃
= (

1

𝛾−1
)𝑉

𝑑𝑃

𝑑𝜃
+ (

γ

𝛾−1
)𝑃

𝑑𝑉

𝑑𝜃
   

                           +[ℎ𝑐𝑟 − 𝑢(𝑇) + 𝑐𝑣(𝑇)]
𝑑𝑚𝑐𝑟

𝑑𝜃
+
𝑑𝑄𝑤

𝑑𝜃
 (A19) 

From equation (A19) it is clear that when crevice flow is neglected, the heat 

released during combustion can be calculated from knowledge of the changes in: 

the in-cylinder volume, the in-cylinder pressure and the heat transferred to the 

cylinder wall.  Neglecting crevice flow yields the apparent heat release rate: 

𝑑𝑄𝑐ℎ

𝑑𝜃
= (

1

𝛾−1
)𝑉

𝑑𝑃

𝑑𝜃
+ (

γ

𝛾−1
)𝑃

𝑑𝑉

𝑑𝜃
+
𝑑𝑄𝑤

𝑑𝜃
 (A20) 

which is equation (2.8) in Section 2.7.4.2.  

Stellenbosch University  https://scholar.sun.ac.za



 

91 

 

Appendix B: Evaluation of Dynamometer Systems 

Four different dynamometer systems were considered, each of which are 

discussed in detail in the sections to follow.   

B.1 Hydraulic dynamometer system 

Even though it was already determined that the Froude hydraulic dynamometer, 

that the test bench employed previously, would not be able to meet the needs of 

this project, a modern hydraulic dynamometer system was still considered as an 

option for the upgraded test bench.  The technology employed to control modern 

day hydraulic dynamometers is far advanced when compared to the hand operated 

Froude dynamometer.  Therefore, the use of a hydraulic dynamometer system was 

still considered an effective means of applying load to the test engine.  

B.1.1 Suitability of dynamometer system 

When it comes to measuring power with a dynamometer, it is the torque 

measurement that governs the accuracy of the system (speed can generally be 

measured to any desired accuracy) (Killedar, 2012).  Considering the performance 

requirements stipulated in Table 1, it is clear that such a high level of accuracy 

will prove difficult to achieve with just a basic hydraulic dynamometer setup.  The 

reason for this is that the load applied by a hydraulic dynamometer is largely 

dependent on the pressure of the supply water to the dynamometer being constant.  

Any fluctuation in the supply pressure of the water will cause a disturbance in the 

load applied to the engine.  Therefore, in order to achieve the best possible 

control, when using a hydraulic dynamometer, the pressure of the supply water 

must be regulated.  This is done using either a pressure regulator or by installing a 

header tank in the supply water line.  Optimum control also requires that the 

dynamometer be fitted with a butterfly valve (on the outlet side of the 

dynamometer) which is controlled using a closed-loop electrohydraulic servo 

system, or alternatively by a DC electric servo motor (Killedar, 2012).  This valve 

controls the load applied by the dynamometer, by regulating both the amount of 

water within the dynamometer casing and by varying the rate at which water 

flows through the dynamometer.  The response of this valve thus has a major 

effect on the load control response of the entire dynamometer (Killedar, 2012).    

A downside to installing a hydraulic dynamometer on the small test bench is that 

water is always present in the casing of the dynamometer.  This means that the 

dynamometer is constantly exerting some drag force on the test engine.  Even 

though this drag force is small, in terms of the overall output of the small test 

engine, it is considered substantial enough to have an effect on the test results.  

Furthermore, the hydraulic dynamometer also has no starting or motoring 

capability.  The use of a hydraulic dynamometer thus limits the testing capability 

of the entire test setup in that it does not allow the motoring torque (and hence the 

friction losses associated with a particular test engine) to be measured.   
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B.1.2 Integration 

Trunnion mounting the hydraulic dynamometer to a test stand requires the design 

and fabrication of pedestals (to house the trunnion bearings) which can be used to 

support the dynamometer.  These pedestals have to be line bored to ensure that the 

bearings are concentric and hence that the dynamometer shaft runs true.  Although 

an adequate water supply is available in the test facility, the test engine does not 

require any cooling water (the single-cylinder engine is air-cooled).  Water supply 

and return lines will therefore have to be installed specifically for the hydraulic 

dynamometer.   

In order to achieve the best possible control, additional equipment will also have 

to be installed to ensure that water is supplied to the dynamometer at constant 

pressure (although there is an adequate water supply available in the test facility, 

no hardware is in place to regulate the water pressure).  This might prove difficult, 

as there is limited space available in the test cell where the engine test stand is to 

be installed.  Provision will also have to be made for the mounting of a load cell 

and attachment of this load cell to the dynamometer in order to measure the torque 

absorbed by the dynamometer.          

B.1.3 Cost 

When it comes to purchasing a new dynamometer system, a hydraulic 

dynamometer is typically the most cost effective solution.  The fact that this 

dynamometer can be set up using a relatively simple control system, is the main 

reason why it is so cost effective.  When increased accuracy and control capability 

is required, cost will rise due to the requirement of additional equipment.  In terms 

of overall operating cost, hydraulic dynamometers are very cost effective, with the 

only electrical power consumption being the small amount of electricity that is 

consumed by the dynamometer’s control system (Killedar, 2012).  Water is only 

circulated through the dynamometer, so the only cost involved here is the cost of 

supplying the water at constant pressure to the dynamometer.  

Minimal maintenance is required throughout the dynamometer’s life cycle as 

scale formation in the water and stator pockets occurs very slowly over time 

(Killedar, 2012).  Being a trunnion-mounted machine, the trunnion bearings can 

be prone to brinelling.  This problem can, however, be addressed by periodically 

rotating the trunnion bearings to prevent localised brinelling of the trunnion 

bearings (Martyr & Plint, 2007).   

B.1.4 Operational lifetime and flexibility (future research) 

Hydraulic dynamometers have an extremely long operational lifetime.  Provided 

the small amount of maintenance (as mentioned above) is performed, the 

dynamometer can remain operational for years.  The flexibility of the 

dynamometer system is, however, quite limited in terms of the types of engine 

testing for which it can be employed.  If in the future, the need might exist to 

perform any sort of transient testing or if the need to be able to motor the test 
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engine becomes essential, the hydraulic dynamometer system will become 

obsolete and a new system will have to be installed to satisfy the testing 

requirements. 

B.2 Dry gap eddy current dynamometer system 

When it came to the eddy-current dynamometers, the wet gap machine was not 

considered, due to its inherent high inertia, high level of minimum torque and 

liability to corrosion if left static for longer periods of time 

(Martyr & Plint, 2007).  The last mentioned point is of particular importance 

given the infrequent nature of the engine testing conducted at Stellenbosch 

University’s Biofuel Test Facility.  Consequently, the following section details the 

evaluation of the dry gap eddy-current dynamometer. 

B.2.1 Suitability of dynamometer system 

Although the dry gap eddy-current dynamometer also requires a water supply, 

unlike the hydraulic dynamometer, the torque and speed control of the eddy-

current dynamometer is not affected by any fluctuation in the water pressure.  

This then eliminates the need for additional hardware to control the water supply 

pressure.  In addition, since water only flows between the loss plates of the 

dynamometer and is never in contact with the machine’s rotor, the eddy-current 

dynamometer has less drag and thus a lower level of minimum torque compared 

to the hydraulic dynamometer.   This is particularly beneficial considering that the 

test engines will primarily be small capacity engines with low torque output.     

Similar to the hydraulic dynamometer, the eddy-current machine also does not 

have the ability to motor or start the test engine.  This shortcoming can, however, 

be overcome by installing an additional electric motor behind the dynamometer as 

part of the drive train.  This electric motor then enables the operator to motor the 

engine when the dynamometer is not absorbing power.  However, the addition of 

such a motor to the system does bring about its own challenges.  Firstly, in terms 

of mechanical design (both the dynamometer and the motor has to be coupled to 

the engine utilizing two concentric driveshafts, the one running inside the other).  

Secondly, a more sophisticated control system is required, that makes provision 

for the control of the additional electric motor.   

B.2.2 Integration 

Trunnion mounting an eddy-current dynamometer has similar requirements to that 

of trunnion mounting a hydraulic dynamometer.  However, compared to a 

hydraulic dynamometer of similar capacity, the eddy-current dynamometer is 

typically a heavier machine (Killedar, 2012).  This might complicate the mounting 

of the dynamometer, although supporting the mass of the dynamometer is in 

general not a large concern in engine test setups as the test bench can easily be 

designed to accommodate the additional mass.  Although the dynamometer does 

not require a constant supply water pressure to obtain good torque control, it is 
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crucial that an adequate water flow rate is maintained through the dynamometer 

during operation.  A drop in the water flow rate will cause the loss plates to 

overheat and distort.  In the event that these plates do distort, the air gap between 

the rotor and the loss plates will close up, leading to catastrophic failure of the 

dynamometer when the rotor comes into contact with the cooling plates (Martyr & 

Plint, 2007) (Killedar, 2012).  If the eddy-current machine is selected, flow 

switches will have to be fitted to the dynamometer to ensure that a suitable water 

flow rate is maintained.  Pressure switches alone will not suffice, as it is possible 

to have pressure in a closed system without having any flow of water (Martyr & 

Plint, 2007).   

B.2.3 Cost 

When it comes to the initial capital layout, the eddy-current dynamometer is 

slightly more expensive than an equivalent sized hydraulic dynamometer. 

Furthermore, since the eddy-current machine achieves load control through 

varying the current supplied to the field coils inside the dynamometer, it has 

higher electrical power consumption than a hydraulic dynamometer.  This in turn, 

contributes to it having higher operating cost compared to a hydraulic 

dynamometer (Killedar, 2012). 

The maintenance requirements for the eddy-current dynamometer are very similar 

to those of the hydraulic dynamometer.  The fact that the eddy-current 

dynamometer also utilises a trunnion-mounted arrangement, similar to that of the 

hydraulic dynamometer, means that it is susceptible to similar complications in 

terms of brinneling of its trunnion bearings.  The eddy-current dynamometer also 

requires that maintenance be performed on a more regular basis compared to a 

hydraulic dynamometer.  This is due to scale formation occurring more rapidly in 

the loss plates of the eddy-current machine, then it does inside a hydraulic 

dynamometer (Killedar, 2012). 

B.2.4 Operational lifetime and flexibility (future research) 

As long as the required maintenance is performed and an adequate water flow rate 

is maintained through the dynamometer during testing (thus ensuring that the 

outlet water temperatures do not rise above the specified operating limits), eddy-

current machines are very reliable and continue to perform satisfactory for years 

on end.  However, if the dynamometer is not maintained properly and clogging of 

the water channels inside the loss plates occur, a substantial reduction in the 

power absorption capability of the dynamometer will be noticed. 

Eddy-current dynamometers are limited to steady state testing and are not used to 

perform transient testing.  Due to the load applied by these dynamometers only 

being a function of the amount of current that is supplied to field coils they are, 

however, capable of performing rapid load changes.  They also have the capability 

of developing a substantial amount of braking torque at low operating speeds, 

which can be useful for future research projects (Martyr & Plint, 2007).  Similar 
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to a hydraulic dynamometer, the eddy-current machine’s biggest limitation is, 

however, still the fact that it lacks the ability to motor the test engine.     

B.3 DC dynamometer system 

Apart from the passive dynamometer systems discussed up until this point, active 

dynamometer systems were also considered.  The first of which was the DC 

dynamometer system. 

B.3.1 Suitability of dynamometer system 

One of the most attractive features of these dynamometer systems is the fact that 

DC dynamometers are available in air-cooled versions (Killedar, 2012).  The fact 

that the engines that will be tested on the particular test bench are also all air-

cooled, makes the implementation of an air-cooled dynamometer system very 

attractive.  If a DC dynamometer is selected, the requirement of coolant supply 

and return lines running to and from the test bench is thus eliminated.  This not 

only reduces the amount of hardware to be installed, but also reduces the risk of 

any potential damage to electronic components due to accidental leakage of fluid 

in the test cell environment.  A dynamometer that is not dependent on any cooling 

water, also lends itself to more accurate torque measurement, due to there being 

less external influences (such as fluid motion in the coolant lines that connect 

directly to the dynamometer casing) that can affect the measurement values.  The 

absence of any fluid flowing to or from the dynamometer, therefore allows one to 

obtain more accurate and repeatable torque measurement results.   

A further advantage of selecting a DC dynamometer is that apart from just being 

able to absorb the power generated by the test engine, the dynamometer will also 

be capable of driving the engine being tested.  That is, unlike the dynamometers 

discussed previously, DC dynamometers have the ability to motor the test engine 

and can therefore be used to measure the frictional torque of the particular test 

engine (Salam Z, 2003) (Stone (1992).  If the dynamometer is selected such that it 

is capable of developing enough start-up torque to be able to crank the test engine, 

then the dynamometer can be used to start the engine directly.  This then 

eliminates the need for the presence of a starter motor on the engine.   

Disadvantages of selecting a DC dynamometer system are that these systems tend 

to have high inertia, as well as limited maximum operating speed, when it comes 

to engine testing.  The high inertia of these systems limits the transient response 

of the entire dynamometer setup and may lead to problems with torsional 

vibration (which is already a concern for the single-cylinder, compression-ignition 

engine) (Martyr & Plint, 2007).   

B.3.2 Integration 

When it comes to integrating the DC dynamometer with the existing test setup, 

the DC dynamometer allows for several mounting options.  The simplest 

mounting arrangement, requiring the least amount of mechanical modification, 
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will be to use a foot-mounted DC electric motor and to mount it directly to the 

existing test bed (Killedar, 2012).  Seeing that the dynamometer will be fixed to 

the test bed, proper alignment of the engine and dynamometer will be crucial 

during installation.  If the DC dynamometer is mounted directly to the test bed, an 

inline torque transducer, such as a torque flange, will have to be employed to 

measure the torque output of the engine.  Financially this might not be a viable 

solution, seeing that these transducers are quite expensive.   

An alternative method of power measurement offered by a DC dynamometer is to 

calculate the power absorbed by the dynamometer (which operates as a generator 

when absorbing the power developed by the test engine) by measuring the voltage 

and current that the dynamometer outputs when absorbing power.  However, 

when measuring the electrical parameters, the efficiency of the dynamometer at 

all of its operating speeds needs to be known in order to obtain an accurate 

indication of the power absorbed (Stone 1992).  As the efficiency of the 

dynamometer is generally not known at all of its operating speeds, this method of 

power measurement is less accurate compared to when a load cell or inline torque 

transducer is used.  The option is of course still available to trunnion mount the 

DC dynamometer and to measure the torque using a load cell - exactly like in the 

case of a hydraulic or eddy-current dynamometer.  It should, however, be verified 

beforehand that the physical construction of the proposed electric motor allows 

for the required modifications to be made that will enable it to be 

trunnion-mounted. 

Installing a DC dynamometer will furthermore also require the installation of 

additional hardware that is not required when using either a hydraulic or eddy-

current dynamometer.  This includes items such as the drive unit (used to control 

the dynamometer) that will need to be installed in a suitable enclosure.  The 

enclosures that house these drive units can be quite large (especially for drive 

units with high power ratings) and mounting space can be difficult to 

accommodate in the engine test cell environment.  Typically, these units have to 

be mounted outside of the test cell for noise and temperature reasons, but also as 

close as possible to the dynamometer in order to reduce the cost of cabling to the 

dynamometer (Martyr & Plint, 2007).  In addition to the drive unit, other 

hardware such as a system to feed the generated power back to the electrical grid, 

or a load bank to dissipate the power generated in the form of heat, also needs to 

be installed.   

B.3.3 Cost 

In terms of initial capital layout, DC electric motors are quite expensive and really 

only economical at low (< 3,7 kW) and high (> 75 kW) power ratings 

(Killedar, 2012).  As mentioned previously, when using a DC dynamometer 

operating in regeneration mode, the option is available to feed the electrical power 

generated back to the mains supply (in an effort to generate some revenue using 

the dynamometer system).  This is, however, not an economic solution for the 

proposed small test engine setup.  The developed test bench will primarily be used 
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to conduct fuel-to-fuel evaluations using small capacity engines consequently 

power will be generated infrequently and in small quantities at a time.  The 

additional hardware (as mentioned in the previous section) that also requires 

installation will necessarily drive up the initial installation cost of the 

dynamometer system. 

Operating a DC dynamometer will also require some periodic maintenance to be 

performed on the brushes and commutator that form part of the construction of the 

DC electric motor.  As these components wear during normal operation of the 

dynamometer, their condition will have to be monitored so that they can be 

replaced when needed (Killedar, 2012).   

B.3.4 Operational lifetime and flexibility (future research) 

Apart from the brushes of the DC dynamometer that require periodic replacement, 

the DC dynamometer system is very robust and has a very long lifetime.  In 

situations where the DC electric motor is trunnion-mounted, the pedestal bearings 

will need to be rotated from time to time in order to avoid localised brinelling of 

the bearings.  This is, however, a general requirement for any trunnion-mounted 

dynamometer setup. 

The DC dynamometer system is very flexible when it comes to satisfying possible 

future research needs, provided that, the power and speed rating of the test engine 

does not exceed that of the dynamometer.  Unlike the previous dynamometers that 

were considered, due to its motoring capability, the DC dynamometer can also be 

used to perform transient testing (Atkins, 2009).  This can considerably expand 

the future testing capability of the entire test setup.   

B.4 AC dynamometer system 

The second active dynamometer system considered was the alternating current 

(AC) dynamometer system.   

B.4.1 Suitability of dynamometer system 

Apart from the fact that an AC dynamometer operates on AC current and has an 

AC power supply, the dynamometer itself is very similar to the DC dynamometer 

considered in the previous section.  Just like the DC dynamometer, an AC 

dynamometer is also air-cooled and does not require any cooling water 

(Killedar, 2012).  Consequently, an AC dynamometer offers the same benefits that 

are associated with not having any cooling lines running to and from the 

dynamometer as was discussed for the DC dynamometer in the previous section. 

As was previously mentioned, AC dynamometers also have the ability to motor 

and start the test engine.  Therefore, as is the case with the DC dynamometer, the 

AC dynamometer can be used to measure the friction loss associated with a 

particular test engine while the engine is being driven by the dynamometer.  It 
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should, however, be noted that AC dynamometers are also limited when it comes 

to their maximum operating speed.    

B.4.2 Integration 

Except for AC dynamometers weighing less compared to a DC dynamometer of 

the same power rating, there is no significant advantage in using an AC 

dynamometer over a DC dynamometer when it comes to physically mounting the 

dynamometer to the test stand (Killedar, 2012).  All of the mounting and torque 

measurements options that are available for a DC dynamometer are also available 

for an AC dynamometer.  Similar to a DC dynamometer system, an AC 

dynamometer system also requires extra space in the test facility to mount its 

drive unit and other additional hardware.  In other words, in terms of mounting 

either a DC or an AC dynamometer, there is no real advantage in choosing one 

above the other.      

B.4.3 Cost 

Although the drive units for AC dynamometers tend to be slightly more expensive 

than for DC dynamometers, the AC motor itself is far cheaper than an equivalent 

sized DC motor.  Furthermore, an AC dynamometer requires virtually no 

maintenance, while the brushes and commutator of a DC machine do require 

periodic replacement (Killedar, 2012).  Therefore, in terms of maintenance cost, 

the AC machine is by far the preferred solution.  The initial installation cost 

associated with the additional hardware requirements of an AC dynamometer is 

very much the same as for a DC dynamometer system. 

B.4.4 Operational lifetime and flexibility (future research) 

The design of the AC electric motor renders it essentially maintenance free.  This 

makes the AC dynamometer even more robust than a DC dynamometer and 

consequently very reliable over its entire operational lifetime.  The lower inertia 

of the AC dynamometer means that it is capable of faster load changes, which 

translates into it offering improved transient testing capability over the DC 

dynamometer.  This makes the AC dynamometer more suitable for testing smaller 

capacity engines and allows for even more flexibility in terms of the future 

research projects that can be accommodated.  Finally, the lower inertia of the AC 

motor is also beneficial in terms of not contributing towards torsional vibration, 

which is always a concern when testing single-cylinder engines.   
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Appendix C: Flexible Coupling Selection 

The selection of an appropriately sized flexible coupling was performed by 

following the guidelines stipulated in the Fenaflex flexible tyre coupling catalogue 

from Fenner (Drive Design and Maintenance Manual, [S.a.]).  

The first step in selecting the coupling was to identify a coupling capable of safely 

transmitting the required amount of shaft power at the applicable speed where the 

test engine outputs its maximum power.  From Table 16 it can be seen that the 

maximum power output of the test engine is 7,4 kW at a speed of 3600 rpm.  

Furthermore, the operating conditions of the flexible coupling were also 

accounted for by applying a service factor to the maximum power developed by 

the engine.  Multiplying the maximum power output of the engine with the 

selected service factor gives the design power, which was ultimately used to select 

the appropriate size coupling. 

For the test setup configuration consisting of an internal combustion engine 

driving a dynamometer with a duty cycle of less than 10 hours per day, the table 

on page 113 of the flexible coupling catalogue indicates a service factor (𝑆𝐹) of 

1,3 (Drive Design and Maintenance Manual, [S.a.]).  Applying the service factor 

to the maximum power output of the engine results in a design power of: 

 𝐷𝑒𝑠𝑖𝑔𝑛 𝑝𝑜𝑤𝑒𝑟 = 𝑃𝐸,𝑚𝑎𝑥×𝑆𝐹 (C1) 

                            = 7,4 ×1,3 (C2) 

                            = 9,62 𝑘𝑊  (C3) 

The power ratings table on page 114 of the flexible coupling catalogue shows that 

the first coupling capable of transmitting this amount of power at a speed of 

3600 rpm is a F50 size coupling.  The specifications of which are presented in 

Table 9 below. 

Table 9: Fenaflex F50 flexible tyre coupling specifications 

Specification Unit F50 Coupling 

Nominal torque rating (𝑻𝑭,𝒏𝒐𝒎) N·m 66 

Maximum torque rating (𝑻𝑭,𝒎𝒂𝒙) N·m 160 

Maximum speed rating rpm 4500 

Maximum parallel misalignment mm 1,3 

Maximum end float mm ± 1,7 

Maximum angular misalignment ° 4 

(Source: Drive Design and Maintenance Manual, [S.a.])  

 

Given the flexible coupling’s nominal torque rating of 66 N·m, the factor of safety 

guarding against failure of the flexible coupling during normal operation is 

therefore: 
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 𝑛𝑓𝑐 =
𝑇𝐹,𝑛𝑜𝑚

𝑇𝐸,𝑚𝑎𝑥
 (C4) 

       =
66

27,5
 (C5) 

       = 2,4 (C6) 

In addition to its continuous torque rating of 66 N·m, the flexible coupling also 

has a maximum torque rating of 160 N·m.  As stipulated by the Drive Design and 

Maintenance Manual ([S.a.]), this rating is to be regarded as the short term 

overload rating of the particular flexible coupling.  The maximum torque rating 

enables the coupling to cope with sudden spikes in the transmitted torque, which 

might occur due to torque pulsations from the engine, or due to a sudden torque 

reversal (for example when the engine comes to rest during shutdown) 

(Martyr & Plint, 2007).   

These sudden spikes in the transmitted torque can be accounted for by applying 

service factors (for the applicable engine-dynamometer configuration) to the 

maximum torque output of the engine.  This allows the design torque to be 

calculated using equation (C7) below: 

 𝑇𝑑𝑒𝑠𝑖𝑔𝑛 = 𝑇𝐸,𝑚𝑎𝑥 (𝐾1 + 𝐾2) (C7) 

where 𝑇𝑑𝑒𝑠𝑖𝑔𝑛 is the design torque and 𝑇𝐸,𝑚𝑎𝑥 is the maximum nominal torque 

output of the test engine (obtained from Table 16).  𝐾1 and 𝐾2 are the service 

factors to account for the driving and driven machine, respectfully.  For a single-

cylinder, compression-ignition engine driving a generator, Cabris (Pty) Ltd. 

(1992) indicates values of 3 and 1,5 for 𝐾1 and 𝐾2 respectfully.  Substituting the 

aforementioned values into equation (C7), leads to a design torque of: 

  𝑇𝑑𝑒𝑠𝑖𝑔𝑛 = 27,5 (3 + 1,5) (C8) 

              = 123,8 𝑁𝑚 (C9) 

At this point it is worth noting that the majority of the engine tests will be 

conducted at partial load and that it is only during full load tests that the flexible 

coupling will have to transmit the maximum torque output of the engine.  The 

factor of safety guarding against failure of the flexible coupling during torque 

spikes is therefore: 

 𝑛𝑡𝑠 =
𝑇𝐹,𝑚𝑎𝑥

𝑇𝑑𝑒𝑠𝑖𝑔𝑛
 (C10) 

                =
160

123,8
 (C11) 

                = 1,3 (C12) 

This result was considered acceptable, given the fact that it is on top of the already 

applied service factor of 4,5 and that it is only during full load tests and for only 

very short periods of time that the flexible coupling is likely to experience such 

high levels of torque.   
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Appendix D: Driveshaft Analysis 

Once a suitable coupling was selected, the next step was to verify that the 

driveshaft itself would be capable of transmitting the required amount of torque 

after the proposed design changes to the driveshaft were implemented.  

D.1 Driveshaft layout 

The assembly drawing of the driveshaft components is shown in Figure 40.  

Moving from left to right in Figure 40, torque is transmitted from the engine to the 

driveshaft (component 1 in Figure 40), via the engine flange and constant velocity 

joint assembly (component 2).  The driveshaft then transmits the torque to the 

dynamometer flange assembly (component 3) via the taper lock (component 9) 

and flexible coupling components (components number 4 and 5).  The second 

flange of the flexible coupling has been bolted to the dynamometer flange to form 

the dynamometer flange assembly.  Not shown in Figure 40 is the keyway which 

has been machined into the driveshaft (at point B) to aid in transmitting the torque 

between the driveshaft and the taper lock (component 9).  

On the dynamometer side (at point D), the shaft is supported in a spherical 

bearing which was secured in the dynamometer flange using a slight press fit.  

The function of this bearing is to locate the shaft, as well as to accommodate 

angular misalignment of the shaft.  This end of the driveshaft does not transmit 

any torque. 
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Figure 40: Driveshaft assembly drawing
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D.2 Driveshaft material 

Due to the driveshaft being a repurposed half shaft of a vehicle powertrain, the 

exact material properties of the shaft was unknown.  However, various literature 

sources indicated that a commonly used material for such shafts is AISI 4140 steel 

(AISI 4140 Chrome-Molybdenum High Tensile Steel, 2012) (High Strength Bars, 

[S.a.]) (4140 High Tensile, [S.a.]).  The properties of 4140 steel differ 

significantly depending on the type of heat treatment applied to the material.  

Literature shows the yield strength varying from 415 MPa to 1735 MPa and the 

ultimate tensile strength ranging from 655 MPa to 1965 MPa (AISI 4140 Search 

Results, [S.a.]).  The modulus of elasticity and poisson’s ratio for all these 

material are the same though.   

Following a conservative approach, the driveshaft material was assumed to be 

AISI 4140 steel, annealed at 815 °C, furnace cooled at 11 °C/hour to 665 °C and 

then air cooled.  According to the literature, this produces 4140 steel with the 

lowest yield and ultimate tensile strength values (AISI 4140 Steel, Annealed at 

815 °C, [S.a.]).  The exact material properties used during all analysis of the 

driveshaft are presented in Table 10 below. 

 

Table 10: Material properties for AISI 4140 steel in annealed condition 

Property Symbol Unit Value 

Ultimate tensile strength 𝑆𝑢𝑙𝑡 MPa 655 

Yield strength 𝑆𝑦 MPa 415 

Modulus of elasticity 𝐸 GPa 205 

Poisson's ratio 𝜈 - 0,29 

Density 𝜌 kg/m3 7850 

(Source of data: AISI 4140 Steel, annealed at 815°C, [S.a.]) 

 

D.3 Driveshaft loads  

With reference to Figure 40 above: the driveshaft was modelled as having a roller 

support at point A (the constant velocity joint allows rotation, as well as a small 

amount of axial displacement of the shaft).  Point C was also modelled as a roller 

support, but in addition the spherical bearing also constrains the shaft from 

moving to the right (in the direction of the dynamometer) in the axial direction.  

Axial movement of the shaft towards the engine is constrained by the flexible 

coupling. 

Figure 41 below shows the free body diagram of the driveshaft, which was used to 

analyse the stresses in the shaft.  The force (𝐹𝐺) represents the mass of the shaft 

applied as a single force at the centre of the shaft.  Note that the gravitational 

acceleration (𝑔) is equal to 9,796 m/s2 at the test cell location.     
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 𝐹𝐺 = 𝑚𝑠𝑔 (D1)  

      = 1,52×9,796 (D2) 

      = 14,88 𝑁 (D3) 

The force 𝐹𝐵𝑦 represents the mass of the taper lock, left flange of the flexible 

coupling and half the mass of the tyre coupling (the remainder of the flexible 

coupling’s mass, as well as the mass of the dynamometer flange is regarded as 

being supported by the dynamometer’s shaft).  

 𝐹𝐵𝑦 = 𝑚𝐵𝑔 (D4) 

        = 1,55×9,796 (D5) 

        = 15,18 𝑁  (D6) 

   

Figure 41: Free body diagram of driveshaft 

 

The reaction forces were determined by summing the forces in the y-direction and 

setting them equal to zero. 

 ∑𝐹𝑦 = 0 (D7) 

  
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑅𝐴𝑦 + 𝑅𝐶𝑦 − 𝐹𝐵𝑦 − 𝐹𝐺 = 0 (D8) 

  
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑅𝐴𝑦 = 𝐹𝐵𝑦 + 𝐹𝐺 − 𝑅𝐶𝑦 (D9) 

Setting moments about point A equal to zero, yields: 

 ∑𝑀𝑜𝑚𝑒𝑛𝑡𝑠𝐴 = 0 (D10) 

  
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐹𝐺(0,15) + 𝐹𝐵𝑦(0,22) − 𝑅𝐶𝑦(0,294) = 0 (D11) 

  
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑅𝐶𝑦 =

𝐹𝐺(0,15)+𝐹𝐵𝑦(0,22)

0,294
 (D12) 

  
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑅𝐶𝑦 = 18,95 𝑁 (D13) 
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Substituting equation (D13) into equation (D9) yields: 

 𝑅𝐴𝑦 = 11,11 𝑁 (D14) 

Setting the sum of the torques equal to zero, yields: 

 ∑𝑇𝑜𝑟𝑞𝑢𝑒 = 0 (D15) 

  
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑇𝐵 = 𝑇𝐴 (D16) 

The exact torque values will be discussed later in this section.  The shear force 

and bending moment diagrams were constructed, which indicated the worse stress 

due to combined loading occurring at point B.  A section was then made at point 

B in order to determine the internal loads present at point B.  The free body 

diagram is shown in Figure 42 below. 

 

Figure 42: Free body diagram of sectioned shaft 

 

Summing moments about point B yields: 

 ∑𝑀𝑜𝑚𝑒𝑛𝑡𝑠𝐵 = 0 (D17) 

  
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑀 + 𝐹𝐺(0,07) − 𝑅𝐴𝑦(0,22) = 0 (D18) 

  
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑀 = 𝑅𝐴𝑦(0,22) − 𝐹𝐺(0,07) (D19) 

Substituting equations (D3) and (D14) into equation (D19) yields: 

 𝑀 = 1,4 𝑁 ⋅ 𝑚 (D20) 

The internal shear force (𝐹𝑠) is not considered, due to its resulting shear stress 

being zero at the outer radius of the shaft where the bending and torsional stresses 

are a maximum. 
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D.4 Stress concentration factors for a keyway 

The stress in a solid shaft with circular cross-section is given by equation (7.4) in 

Budynas & Nisbett (2008) as: 

  𝜏 = 𝐾𝑡𝑠
16𝑇𝑥

𝜋𝑑3
     (D21) 

with 𝜏 being the shear stress, 𝐾𝑡𝑠 the applicable shear stress concentration factor, 

𝑇𝑥 the applied torque and 𝑑 being the diameter of the shaft.  Popov & Balan 

(1999) recommends omitting the stress concentration factor (𝐾𝑡𝑠) from equation 

(D21) when calculating the maximum shear stress in the shaft.  The increase in 

stress due to the keyway is then accounted for by reducing the value of the 

allowable shear stress by 25 %.  As an alternative option, the literature was 

consulted further to obtain a more accurate indication of the stress concentration 

factor for the specific keyway dimensions.  Figure 43 shows the dimensions of the 

end-milled keyway that was machined into the driveshaft.  The dimensions in 

Figure 43 are: 𝑏 = 8 mm, 𝑡 = 5 mm, 𝑟 = 0,3 mm and 𝑑 = 25 mm. 

  

Figure 43: Keyway dimensions 

 

The keyway in Figure 43 has a 
𝑟

𝑑
 ratio of 0,012 for which Leven (1949), as cited 

by Pilkey (1997), recommends a stress concentration factor of 𝐾𝑡𝑠 = 3.  The data 

presented by Leven (1949) is for a keyway with no key inserted.  Pilkey (1997) 

also cites Okubo et al. (1968) who proposes stress concentration factors for a 

keyway where a key has been inserted into the keyway and where the key is used 

as primary means of transmitting the torque.  However, given that the majority of 

the torque in the driveshaft being analysed is transmitted through the use of a 

taper lock (the key only acts as a backup to prevent the taper lock from slipping 

on the shaft during torque spikes), the stress concentration factors proposed by 

Leven (1949) was considered more representative.  It is worth noting that the 

stress concentration factors proposed by Leven (1949) is for a keyway of width 

𝑏 =
𝑑

4
 and depth 𝑡 =

𝑑

8
, which is slightly different from the analysed shaft’s 
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keyway ratios of 𝑏 =
𝑑

3,125
 and 𝑡 =

𝑑

5
.  However, in a study performed by 

Pedersen (2010), where the stress concentration factors proposed by Leven (1949) 

are compared to that obtained for a keyway with ratios of 𝑏 =
𝑑

3,571
 and 𝑡 =

𝑑

10
, it 

was found that Leven’s (1949) data is conservative in that it slightly overestimates 

the value of the stress concentration factor.  Nonetheless, a conservative approach 

was followed and the value proposed by Leven (1949) and Pilkey (1997) was 

implemented.  That is:  

 𝐾𝑡𝑠 = 3 (D22)  

Similar to the stress concentration factor for torsion, Chart 5.1 in Pilkey (1997) 

presents the stress concentration factor for a keyway subjected to bending load. 

For a  
𝑟

𝑑
 ratio of 0,012, this chart indicates a bending stress concentration factor of: 

 𝐾𝑡 = 2,66 (D23)     

D.5 Fatigue analysis 

The constant bending moment supported by the shaft results in cyclic loading of 

the shaft, due to the bending moment becoming completely reversed during 

rotation of the shaft.  In addition, due to the cyclic nature of the torque output of 

the single-cylinder test engine, the torque transmitted by the shaft is also not 

constant and results in cyclic loading of the shaft.  Due to the aforementioned, a 

fatigue analysis was performed on the shaft. 

The DE-ASME Elliptic failure criteria (Budynas & Nisbett, 2008) was used to 

perform the fatigue analysis.  This criteria neglects axial loads, as is commonly 

done in fatigue analysis, due to the axial loads being small and constant.  

Therefore, they contribute very little towards fatigue failure (Budynas & 

Nisbett, 2008).  Using the DE-ASME Elliptic criteria, the factor of safety 

guarding against fatigue loading is given by equation (7.11) in Budynas & Nisbett 

(2008) as: 

 
1

𝑛𝐹
=

16

𝜋𝑑3
[4 (

𝐾𝑓𝑀𝑎

𝑆𝑒
)
2
+ 3(

𝐾𝑓𝑠𝑇𝑎

𝑆𝑒
)
2
+ 4(

𝐾𝑓𝑀𝑚

𝑆𝑦
)
2

+ 3(
𝐾𝑓𝑠𝑇𝑚

𝑆𝑦
)
2

]

0,5

  (D24)  

with 𝑀𝑚 and 𝑀𝑎 being the midrange and alternating bending moments 

respectively.  Similarly 𝑇𝑚 and 𝑇𝑎 are the midrange and alternating torsional 

loads.  𝑆𝑒 is the endurance limit of the shaft and 𝑆𝑦 is the yield strength of the 

material.  𝐾𝑓 and 𝐾𝑓𝑠 are the fatigue stress concentration factors given by equation 

(6.32) in Budynas & Nisbett (2008) as: 

 𝐾𝑓 = 1 + 𝑞(𝐾𝑡 − 1)  (D25) 

 𝐾𝑓𝑠 = 1 + 𝑞𝑠(𝐾𝑡𝑠 − 1) (D26) 

Notch sensitivities 𝑞 and 𝑞𝑠 were determined from Figures (6.20) and (6.21) in 

Budynas & Nisbett (2008) as being 0,58 and 0,62 respectively.  Substituting 
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equation (D23) into equation (D25) and equation (D22) into equation (D26) 

yields: 

 𝐾𝑓 = 1,96  (D27) 

 𝐾𝑓𝑠 = 2,24 (D28) 

The endurance limit 𝑆𝑒 is defined by equation (6.18) in Budynas & Nisbett (2008) 

as: 

 𝑆𝑒 = 𝑘𝑎𝑘𝑏𝑘𝑐𝑘𝑑𝑘𝑒𝑘𝑓𝑆𝑒′ (D29) 

with 𝑘𝑎 through 𝑘𝑓 being the Marin factors and 𝑆𝑒′ the endurance limit of the 

rotating test specimen.  𝑆𝑒′ is defined in equation (6.8) in Budynas & Nisbett 

(2008) as: 

 𝑆𝑒′ = 0,5(𝑆𝑢𝑡) (D30) 

       = 0,5(655) (D31) 

       = 327,5 𝑀𝑃𝑎 (D32) 

Equation (6.19) in Budynas & Nisbett (2008) defines the surface factor 𝑘𝑎 as:  

 𝑘𝑎 = 𝑎𝑆𝑢𝑡
𝑏 (D33) 

      = 4,51(655)−0,265 (D34) 

      = 0,81 (D35) 

Constants 𝑎 and 𝑏 were obtained from Table (6.2) in Budynas & Nisbett (2008).  

Equation (6.20) in Budynas & Nisbett (2008) defines the size factor 𝑘𝑏 as: 

 𝑘𝑏 = (
𝑑

7,62
)
−0,107

 (D36) 

      = 0,88 (D37) 

with 𝑑 being the diameter of the shaft (25 mm).  Assuming a reliability of 99 % 

results in a reliability factor of: 

 𝑘𝑒 = 0,814 (D38) 

as given in Table (6.5) in Budynas & Nisbett (2008).  The remaining Marin 

factors are all equal to one. 

 𝑘𝑐 = 𝑘𝑑 = 𝑘𝑓 = 1 (D39) 

Substituting the calculated values of the Marin factors back into equation (D29), 

along with the value of 𝑆𝑒′, results in an endurance limit of: 

 𝑆𝑒 = 189,89 𝑀𝑃𝑎 (D40) 

For a rotating shaft, the bending moment is completely reversed and the bending 

moment’s midrange component is zero (Budynas & Nisbett, 2008).  The bending 

moment calculated in equation (D20) was considered to be the alternating 
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component of the bending moment load.  The maximum nominal torque output 

(𝑇𝐸,𝑚𝑎𝑥) of the test engine (obtained from Table 16), was regarded as being the 

midrange torque component.  The alternating torque component was then 

calculated by subtracting the maximum nominal torque output of the engine from 

the design torque (𝑇𝑑𝑒𝑠𝑖𝑔𝑛) calculated previously in equation (C9).  That is: 

 𝑇𝑎 = 𝑇𝑑𝑒𝑠𝑖𝑔𝑛 − 𝑇𝐸,𝑚𝑎𝑥 (D41) 

      = 123,8 − 27,5 (D42)  

       = 96,3 𝑁 ⋅ 𝑚 (D43) 

To summarise: 

 𝑀𝑚 = 0 

 𝑀𝑎 = 1,4 𝑁 ⋅ 𝑚   

 𝑇𝑚 = 27,5 𝑁 ⋅ 𝑚 (D44) 

 𝑇𝑎 = 96,3 𝑁 ⋅ 𝑚 

Substituting equations (D44), (D40), (D27), (D28) and the yield strength from 

Table 10 into equation (D24) yields: 

1

𝑛𝑓
=

16

𝜋(0,025)3
[4 (

(1,96)(1,4)

189,89×106
)
2
+ 3(

(2,24)(96,3)

189,89×106
)
2
+ 3(

(2,24)(27,5)

415×106
)
2
]
0,5

  (D45)   

Solving for 𝑛𝑓 yields: 

 𝑛𝑓 = 1,6 (D46) 

Considering the conservative selection of material properties and stress 

concentration factors during the fatigue analysis, the above factor of safety 

guarding against fatigue failure was considered satisfactory. 

A separate check was also performed for first cycle yielding using the maximum 

von Mises stress given by equation (7.15) in Budynas & Nisbett (2008) as: 

 𝜎′ = [(
32𝐾𝑓(𝑀𝑚+𝑀𝑎

𝜋𝑑3
)
2

+ 3(
16𝐾𝑓𝑠(𝑇𝑚+𝑇𝑎)

𝜋𝑑3
)
2

]
0,5

  (D47) 

      = 156,5 𝑀𝑃𝑎  (D48) 

The factor of safety guarding against first cycle yielding is therefore: 

 𝑛𝑦𝑖𝑒𝑙𝑑 =
𝑆𝑦

𝜎′
 (D49) 

            =
415

156,5
 (D50) 

            = 2,7 (D51) 

This result shows that the keyway and shaft is strong enough to prevent first cycle 

yielding during operation.  
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Appendix E: Driveshaft FEA 

Due to the variance in stress concentration factors proposed in the literature, as 

well as not having more definitive data for the stress concentration factor for the 

particular dimensions of the keyway machined into the shaft, it was decided to 

also perform a finite element analysis of the driveshaft.  The flexible coupling was 

already designed by catalogue as discussed in Appendix C and was not included 

as part of the finite element analysis.  The finite element analysis thus only 

focuses on the stresses inside the driveshaft itself and therefore considers the 

flexible coupling to be a rigid element. 

E.1 Model description 

The finite element model was created in NX Nastran 10, using quadratic 

tetrahedral solid elements.  General element size used was 4 mm over the majority 

of the model.  A finer mesh (1 mm element size) was used at the fillet radii to 

capture the elevated stress at these points.  Surface-to-surface gluing was 

employed to join the finer meshes at the fillet radii to the general coarser mesh of 

the model.  The surface-to-surface gluing was performed sufficiently far from the 

fillet radii so as to not influence the stress distribution at the fillet radii 

themselves.  Due to the elevated stress expected in the keyway, the inner surfaces 

of the keyway were meshed using an element size of 0,5 mm.  The material 

properties used were those for AISI 4140 steel in the annealed state as presented 

in Table 10.  Table 11 below summarises the properties of the finite element 

model. 

 

Table 11: FEA model summary 

Description 
 

Solver NX Nastran 

Time dependency Steady state 

Number of quadratic tetrahedral solid elements 85 380 

Number of nodes in the model 130 701 

 

E.2 Loads 

During the stress analysis performed in Appendix D, it was found that the stress 

contribution from the bending load proved to be insignificantly small in 

comparison to the stress caused by the torsional load (the bending stress is less 

than 0,6 % of the torsional stress).  Therefore, when performing the finite element 

analysis, the shaft was modelled as experiencing a pure torsional load.  In 

Appendix C the design torque for the engine-dynamometer configuration was 

determined to be: 𝑇𝑑𝑒𝑠𝑖𝑔𝑛 = 123,8 N·m.  This is less than the maximum torque 
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rating of the flexible coupling, which is: 𝑇𝐹,𝑚𝑎𝑥 = 160 N·m.  Following a 

conservative approach, it was decided to use a maximum load of 160 N·m when 

performing the finite element analysis. 

The load of 160 N·m was applied at the point A where the torque is transmitted 

from the constant velocity joint to the shaft.  The applied torque can be seen in 

Figure 44 below where it is indicated with red arrows. 

E.3 Constraints 

A fixed constraint was applied across the face of the right-hand (dynamometer 

side) face of the driveshaft tip.  This prevented the driveshaft from displacing in 

the z-direction (axial direction).  All other degrees of freedom were left 

unconstrained at this point. 

In addition, a fixed constraint was also applied in the tangential direction 

(𝜃-direction) where the taper lock (which secures the flexible coupling to the 

shaft) interfaces with the driveshaft.  This constraint prevents the shaft from 

rotating and models the torque being transmitted to the flexible coupling. 

 

 

 

Figure 44: Model loads and constraints 

E.4 Results 

A linear static analysis was then performed and the maximum von Mises stress 

was extracted.  The results obtained are presented in Figure 45 below. 
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Figure 45: Von Mises stress distribution 
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The FEA results confirmed what was found with the hand calculations in that the 

stress inside the keyway is higher than at any of the two fillet radii.  Furthermore, 

the FEA results show that the maximum stress (379 MPa) occurs right next to the 

taper lock where the fixed constraint was applied.  This is in fact incorrect and is 

an artefact of the finite element model itself.  This high stress occurs due to the 

rigid constrain that was applied in is not representative of the actual stress that the 

shaft experiences during operation.  Neglecting the high stress next to the 

constraint, the results show that the second highest stress occurs at the fillet radius 

inside the keyway.  The model was checked for convergence by refining the mesh 

over four iterations.  Final results indicated correlation of the maximum von 

Mises stress, inside the keyway, to within 0,5 %.  The final results show a 

maximum von Mises stress of 241 MPa at the fillet radius inside the keyway, as is 

shown in Figure 46 below. 

 

 

 

Figure 46: Maximum von Mises stress occurring in keyway 
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Performing a hand calculation using equations (D21) and (D22) to determine the 

maximum von Mises stress at the keyway for the case of the shaft experiencing 

pure torsion yields: 

 𝜏 = 𝐾𝑡𝑠
16𝑇𝑥

𝜋𝑑3
    (E1)   

    = 3
16(160)

𝜋(0,025)3
     (E2) 

    = 156,46 𝑀𝑃𝑎     (E3) 

   = 156,5 𝑀𝑃𝑎     (E4) 

The von Mises stress for this case of pure shear due to torsion is therefore 

(Budynas & Nisbett, 2008): 

 𝜎𝑣𝑜𝑛 𝑀𝑖𝑠𝑒𝑠 = √3(𝜏)     (E5) 

                  = √3(156,5) (E6) 

                  = 270,98 𝑀𝑃𝑎 (E7) 

                  = 271 𝑀𝑃𝑎 (E8) 

Keeping in mind that the selected stress concentration factor has a significant 

influence on the final stress value, the result above shows good correlation with 

the result of 241 MPa obtained using the finite element analysis.  Based on the 

FEA results, the factor of safety guarding against failure of the shaft is therefore: 

 𝑛𝑦𝑖𝑒𝑙𝑑 =
𝑆𝑦

𝜎′
 (E9) 

            =
415

241
 (E10) 

            = 1,7 (E11) 

Overall, the FEA results confirm (as was found with the hand calculations) that 

the stresses in the shaft is acceptably low for safe operation. 
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Appendix F: LabVIEW Software  

A LabVIEW virtual instrument (VI) was developed to measure and record all 

engine indicating data.  The VI consists of a front panel (which acts as graphical 

user interface) and a block diagram (where all the coding is performed).  The VI 

was set up to use hardware triggering (obtained from the shaft encoder mounted to 

the crankshaft of the engine) to log both the in-cylinder and intake manifold 

pressures simultaneously.  Apart from the pressure data, the software also records 

the rotational speed of the engine and then displays all measured parameters in 

real time on the front panel.   

From the front panel the user can insert the calibration constants of both pressure 

transducers, control the number of cycles logged during each test, as well as 

define in what location and under which file name the recorded data is stored.  

The front panel also houses two push buttons (one button to restart the hardware 

triggering process and one button to stop the program).  In addition, there is also a 

single latching button which is used to start the data logging process.   

The incremental shaft encoder, which is used as a hardware trigger, outputs one 

trigger pulse (at TDC) per engine revolution.  This means that two pulses are 

outputted during each four-stroke engine cycle.  In the event that the wrong TDC 

pulse from the encoder is captured, the restart button on the front panel can be 

used to restart the software to shift to the next TDC pulse.  The front panel and 

block diagram of the LabVIEW VI can be seen in Figure 47 and Figure 48 

respectively. 

 

 

Figure 47: LabVIEW software front panel 
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Figure 48: LabVIEW software block diagram
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Appendix G: ETA Software 

Figure 49 below shows the graphical user interface which was setup and configured to perform the engine testing.  This interface was configured to allow 

complete control of the test setup, while at the same time enabling the operator to view all measured variables in real time.  From within the ETA software, all 

the various tests were executed and the data of all measured variables were logged. 

 

 

Figure 49: ETA (graphical user interface used to control the test setup) 
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Appendix H: Calibration Results 

This section describes the calibration procedures of the various test setup 

instrumentation and presents the calibration results that were obtained. 

H.1 Torque calibration 

The calibration of the dynamometer was performed by installing the designed 

calibration arms onto the dynamometer and then suspending calibrating masses 

from the calibration arms in order to apply a known torque to the dynamometer.  

The output from the load cell’s signal amplifier was logged (via the PLC) directly 

in ETA in order to include the entire measurement chain in the calibration 

process.  The load cell output was recorded both while loading and unloading the 

dynamometer.  This was done in order to determine if there was any hysteresis 

present in the system.  The output during unloading of the dynamometer was 

consistently used to construct the torque calibration curve in ETA.  Figure 50 

shows the torque calibration being performed directly in ETA.  The measured 

values are the bit values obtained from the PLC and the output values are the 

torque values applied to the dynamometer in N·m. 

 

 

Figure 50: Dynamometer torque calibrated directly in ETA 

 

Calibration of the dynamometer was consistently performed using a hot setup and 

the calibration values were recorded before and after each and every test that was 

performed.  This was done to verify that the dynamometer output did not drift 

during the tests and also to confirm the repeatability of the dynamometer. 
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H.2 Engine indicating pressure transducers 

Both the Optrand in-cylinder pressure transducer, as well as the intake manifold 

pressure transducer was calibrated, while connected to the NI 6351 USB data 

acquisition unit.  The transducer outputs were then recorded in LabVIEW, thereby 

ensuring that the entire measurement chain was accounted for in the calibration 

process.   

H.2.1 In-cylinder pressure transducer 

During the calibration process, pressure was applied to the Optrand in-cylinder 

pressure transducer using a WIKA CPB 3000 dead weight tester.  Differences in 

the local gravitational force and temperature was accounted for by applying the 

applicable correction factors (calculated using the equations provided in the dead 

weight tester’s operating manual) in order to obtain the true applied pressure.  The 

output of the in-cylinder pressure transducer was recorded both while loading 

(increasing the applied pressure) and unloading the transducer (decreasing the 

pressure applied to the transducer).  This process was repeated three consecutive 

times to obtain the average output values for loading and unloading the 

transducer.  The average of these two sets of data (one set representing the 

average output when loading the transducer and the other set the average when 

unloading the transducer) was then taken to construct the final calibration curve.   

This calibration results are presented graphically in Figure 51, where a linear 

curve was fitted through the data.  The gradient and y-intercept of this linear curve 

was then used to obtain the transducer’s sensitivity and zero offset values 

respectively.  These values are shown in Table 12 and were entered into the 

LabVIEW software described in Appendix F. 

 

 

Figure 51: In-cylinder pressure transducer calibration 
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Table 12 below provides the average values obtained during the calibration 

process.  Note that the transducer could only be calibrated to a maximum pressure 

of 57,7 bar (the dead weight tester has a maximum rating of 60 bar), even though 

the pressure transducer has a range of 0 - 200 bar.  This is not ideal, however, 

given that the maximum pressure measured during all testing was 64,6 bar (see 

maximum pressure measured at test point 4 in Table 7), it was considered 

acceptable to assume that the output of the pressure transducer remains linear up 

to the maximum pressure measured.   

 

Table 12: In-cylinder pressure transducer calibration values 

Date 21/10/2013 

Time 17:00 

Sensitivity [mV/bar] 15 

Zero offset [mV] 604 

        

True Applied  

Pressure [bar] 

Loading Avg 

Voltage [mV] 

Unloading Avg 

Voltage [mV] 

Avg Voltage 

 [mV] 

0,00 601 607 604 

9,79 750 751 751 

17,78 871 872 871 

25,77 992 992 992 

33,76 1112 1113 1113 

41,75 1232 1232 1232 

49,75 1352 1352 1352 

53,74 1411 1411 1411 

57,74 1470 1470 1470 

 

H.2.2 Intake manifold pressure transducer 

The intake manifold pressure transducer was calibrated using a pressure pump 

from SI Pressure Instruments, which was also capable of pulling a vacuum.  The 

pressure applied to the pressure transducer was measured using a WIKA reference 

gauge.  The output of the intake manifold pressure transducer was recorded both 

while loading and unloading the transducer (as was done for the in-cylinder 

pressure transducer).  The calibration procedure of loading and unloading the 

transducer was repeated three times, after which the exact same procedure as 

described for the calibration of the in-cylinder pressure transducer was followed 

to obtain the average calibration values.   

The calibration results obtained are presented graphically in Figure 52 below, 

where the transducer’s output voltage is plotted against the applied pressure.  The 
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output voltage is shown on the vertical axis in units of mV and the pressure is 

indicated on the horizontal axis in bar.   

 

 

Figure 52: Intake manifold pressure transducer calibration 

 

Figure 52 indicates that the transducer has a very linear output and a linear curve 

was therefore fitted to the data.  The gradient and y-intercept of this linear curve 

was again used to obtain the transducer’s sensitivity and zero offset values (see 

Table 13 which shows the raw calibration data).  These sensitivity and zero offset 

values were also entered into the LabVIEW software described in Appendix F. 
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Table 13: Intake manifold transducer calibration values 

Date 15/10/2013 

Time 12:00 

Sensitivity [mV/bar] 2505 

Zero offset [mV] 2531 

        

Applied  

Pressure [bar] 

Loading Avg 

Voltage [mV] 

Unloading Avg 

Voltage [mV] 

Avg Voltage 

 [mV] 

-0,60 1035 1040 1037 

-0,55 1160 1167 1163 

-0,50 1284 1292 1288 

-0,45 1410 1413 1412 

-0,40 1534 1537 1535 

-0,35 1656 1654 1655 

-0,30 1779 1780 1780 

-0,25 1898 1900 1899 

-0,20 2021 2023 2022 

-0,15 2145 2143 2144 

-0,10 2270 2269 2269 

-0,05 2394 2392 2393 

0,00 2513 2515 2514 

0,00 2517 2524 2520 

0,20 3046 3046 3046 

0,40 3518 3541 3530 

0,60 4038 4041 4039 

0,80 4554 4539 4546 

1,00 5038 5038 5038 

H.3 Thermocouples 

All thermocouple sensors were calibrated using a Fluke 9142 field metrology well 

and a calibrated platinum resistance thermometer was used to indicate the 

reference temperature.  The thermocouples were calibrated directly in ETA, in 

order to include the entire measurement chain in the calibration process. 

Calibration was performed from 0 °C to 140 °C in increments of 20 °C, both 

while increasing and decreasing the temperature set point values.  The average of 

the two data sets obtained (for each thermocouple sensor) was then used as the 

final calibration values for each particular sensor.  The averaged calibration values 

are presented in Table 14 below.  

Stellenbosch University  https://scholar.sun.ac.za



 

123 

 

Table 14: Thermocouple calibration results 

Set 

Point  

[°C] 

Exhaust  

[°C] 

Oil 

[°C] 

Inlet 

Air 

[°C] 

Fuel 

Supply 

[°C] 

Ambient 

[°C] 

0,0 0,7 0,8 1,2 0,7 0,7 

20,0 19,9 19,8 19,9 19,5 19,7 

40,0 40,0 39,4 39,4 38,9 38,9 

60,0 59,8 58,8 58,8 58,5 58,4 

80,0 79,5 78,6 78,4 78,2 78,2 

100,0 99,7 98,4 98,2 97,8 98,0 

120,0 120,1 118,7 118,3 118,1 118,2 

140,0 140,7 139,1 138,5 138,6 138,6 

H.4 Fuel flow meter 

The AVL dynamic fuel balance was calibrated upon installation following the 

detailed calibration procedure in the fuel flow meter’s user manual.  The fuel flow 

meter came supplied with a 50,00 g calibrating mass to be used during the 

automatic calibration sequence.  During the first step of the calibration process the 

gain setting was verified as being correct by weighing the mass (using the fuel 

flow meter with the measuring vessel filled halfway) and ensuring that the error 

between the mass reported by the fuel flow meter and the actual mass of the 

calibrating mass was within the allowed tolerance band stipulated in the fuel flow 

meter’s user manual.  The user manual stipulates an allowable error of ± 0,06 g 

when measuring the mass.  After making a fine adjustment to the gain, the 

measured mass obtained was 50,00 g.   

Next, the fuel flow meter’s linearity was verified by comparing the deviation in 

two calibration values, one obtained with the measuring vessel full and the other 

with the vessel almost empty.  The allowable difference between the two 

measurements again had to be within 0,06 g.  The calibration process was 

repeated a number of times to verify that repeatable measurements could be 

obtained, all of which were within the allowable deviation allocated for linearity.  

Finally, the output from the fuel flow meter’s controller was calibrated directly in 

ETA to ensure that the fuel flow rate displayed in ETA was the same as that 

displayed by the fuel flow meter’s control unit. 

H.5 Equipment 

The details of the various equipment used during testing and calibration are 

presented in Table 15 below. 
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Table 15: Equipment details 

Equipment Description Serial # 

Test setup hardware 
  

Test engine Yanmar L100N S29283 

Electric motor 
18,5 kW WEG  

2-pole, 380 V,  B3/B5T 
No number 

Fuel flow meter 
AVL 730 dynamic fuel 

balance 
1555 

Load cell 500 kgf HBM U2A C48422 

Load cell amplifier LCS/I/0350 No number 

Engine shaft encoder Leine Linde RHI 503  36967650 

Dynamometer shaft encoder 
Turck incremental  

rotary encoder 

Ri-12H15E- 

2B500-H1181 

(Catalogue #) 

Engine indicating instrumentation     

In-cylinder pressure transducer Optrand AutoPSI 7773B 

Intake manifold pressure transducer WIKA S-10 11044RY3 

Signal converter PR Electronics 3104 Not available 

Data acquisitioning unit NI 6351 USB  15F405E 

VSD AB PowerFlex 753 No number 

Brake resistor Penbro Kelnick 18 kW 61532 33E 

PLC     

PLC base unit 
MicroLogix 1500  

(1764-24BWA) 
Ser A, Rev A 

DeviceNet scanner DeviceNet (1769-SDN) Ser A, Rev 1 

DeviceNet adapter DeviceNet (1794-ADN) 
Ser B, Rev 

A01 

Analog output module 
Analog output  

(1794-OE4/B) 
No number 

Analog input module Analog input (1794-IE8/B) No number 

Thermocouple input module Thermocouple (1794-IT8) No number 

Throttle actuator system TGS Posicon 1000   

Control unit TGS 1001 1001.0401.016 

Actuator TGS 1003 1003.0401.018 

Smoke meter AVL 415 variable sampling No number 

Calibration equipment     

Dead weight tester WIKA CPB 3000 30285 

Pressure and vacuum pump SI Pressure Instruments 165829 

Reference gauge  WIKA master gauge No number 

Field metrology well Fluke 9142 B53479 
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Appendix I: Test Engine Specifications  

The specifications of the test engine used are presented in Table 16 below and the 

manufacturer’s performance curves for the engine are shown in Figure 53. 

Table 16: Test engine specifications 

Specification Unit Yanmar L100N 

Number of cylinders - 1 

Bore x stroke mm 86 x 75 

Displacement L 0,435 

Compression ratio - 19,7:1 

Continuous  

rated output 

Engine speed rpm 3600 

Output  kW 6,6 

Maximum  

Rated Output 

Engine speed  rpm 3600 

Output (𝑷𝑬,𝒎𝒂𝒙) kW 7,4 

Max speed/High idle rpm 3800 ± 30 

Max torque at 2200 - 2700 rpm (𝑻𝑬,𝒎𝒂𝒙) N·m 27,5 

(Data Source: Yanmar Industrial Engines - Operation Manual, [S.a.]) 

 

 

Figure 53: Yanmar L100N performance curves 

(Source: Yanmar L100N Performance Curves [S.a.]) 
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Appendix J: Engine Indicating Figures 

For each of the engine indicating test points shown in Table 7, the complete heat 

release analysis was performed and the pressure, P - V, log P – log V and dP/dθ 

curves were generated.  All of these curves were then plotted once more for the 

repeat tests of the test points in Table 7.  Figure 54 and Figure 55 shows the P - V 

and dP/dθ curves, respectively for test point 4 in Table 7. 

 

 

Figure 54: Pressure versus volume diagram for 20 N·m at 2400 rpm 

 

 

Figure 55: dp/dθ curve for 20 N·m at 2400 rpm  

0

1000

2000

3000

4000

5000

6000

7000

0 0,0001 0,0002 0,0003 0,0004 0,0005

P
 [

kP
a]

V [m3]

-30

-20

-10

0

10

20

30

40

250 300 350 400 450 500

d
P/

d
θ

[k
P

a/
d

e
g]

Crank Angle [deg]

Stellenbosch University  https://scholar.sun.ac.za



 

127 

 

Appendix K: Test Data 

Table 17: Numerical data used to produce Figure 23 

x x 

Calculated 

using:  

y = 6,924x + 

0,183 

Calculated 

using:  

y = 6,962x - 

0,139 

    

Voltage  

(Loading) 

[V] 

Voltage  

(Unloading) 

[V] 

Torque 

(Loading) 

[Nm] 

Torque  

(Unloading) 

[Nm] 

Difference  

[Nm] 

Difference  

[%] 

0,01 0,04 0,25 0,14 0,1 -  

0,61 0,65 4,41 4,39 0,0 0,5 

1,26 1,30 8,91 8,91 0,0 0,0 

1,91 1,96 13,41 13,51 0,1 0,7 

2,56 2,60 17,91 17,96 0,1 0,3 

3,21 3,25 22,41 22,49 0,1 0,4 

3,87 3,90 26,98 27,01 0,0 0,1 

4,53 4,55 31,55 31,54 0,0 0,0 

5,19 5,19 36,12 35,99 0,1 0,3 

   
      

   
Average Difference [%]: 0,3 

 

Table 18: Numerical data used to produce Figure 24 

x x 

Calculated 

using:  

y = 6,988x - 

0,065 

Calculated 

using:  

y = 6,984x - 

0,001 

    

Voltage  

(Pre-

Testing) 

[V] 

Voltage  

(Post-

Testing) 

[V] 

Torque 

(Pre-Testing) 

[Nm] 

Torque  

(Post-Testing) 

[Nm] 

Difference  

[Nm] 

Difference  

[%] 

0,03 0,02 0,14 0,14 0,0 -  

0,64 0,63 4,41 4,40 0,0 0,2 

1,28 1,28 8,88 8,94 0,1 0,7 

1,94 1,92 13,49 13,41 0,1 0,6 

2,58 2,58 17,96 18,02 0,1 0,3 

3,23 3,22 22,51 22,49 0,0 0,1 

3,88 3,87 27,05 27,03 0,0 0,1 

4,52 4,52 31,52 31,57 0,0 0,1 

5,16 5,15 35,99 35,97 0,0 0,1 

   
      

   
Average Difference [%]: 0,3 
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Table 19: BSFC repeatability data for Figure 28 

Test  

Point 

Test 1 Test 2 BSFC  

Difference  

[%] 
BMEP  

[kPa] 

BSFC  

[g/kWh] 

BMEP  

[kPa] 

BSFC  

[g/kWh] 

5 N·m at  

2400 rpm 
140,9 375,0 139,2 380,0 1,4 

10 N·m at  

2400 rpm 
280,2 272,1 279,9 272,2 0,0 

15 N·m at  

2400 rpm 
425,0 240,8 426,7 243,2 1,0 

20 N·m at  

2400 rpm 
563,4 232,0 566,0 236,0 1,7 

20 N·m at  

2800 rpm 
564,1 241,6 566,0 242,6 0,4 

15 N·m at  

2800 rpm 
425,1 244,7 426,0 250,9 2,5 

10 N·m at  

2800 rpm 
280,5 281,2 279,6 282,3 0,4 

5 N·m at  

2800 rpm 
141,6 396,0 140,0 407,8 3,0 

5 N·m at  

3200 rpm 
141,3 426,4 139,0 440,9 3,4 

10 N·m at  

3200 rpm 
280,1 293,2 279,9 299,3 2,1 

15 N·m at  

3200 rpm 
425,5 258,1 426,4 262,5 1,7 

20 N·m at  

3200 rpm 
563,7 248,5 566,1 252,4 1,6 

  

        

 
 

Average Difference [%]: 1,6 
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Table 20: Exhaust gas temperature repeatability data for Figure 29 

Test  

Point 

Test 1 Test 2 T_Exhaust 

Difference  

[%] 
BMEP  

[kPa] 

T_Exhaust 

[°C] 

BMEP  

[kPa] 

T_Exhaust  

[°C] 

5 N·m at  

2400 rpm 
140,9 165,8 139,2 171,2 3,3 

10 N·m at  

2400 rpm 
280,2 228,9 279,9 238,9 4,3 

15 N·m at  

2400 rpm 
425,0 307,0 426,7 321,2 4,6 

20 N·m at  

2400 rpm 
563,4 397,4 566,0 413,2 4,0 

20 N·m at  

2800 rpm 
564,1 438,5 566,0 454,2 3,6 

15 N·m at  

2800 rpm 
425,1 345,5 426,0 357,0 3,3 

10 N·m at  

2800 rpm 
280,5 262,1 279,6 270,0 3,0 

5 N·m at  

2800 rpm 
141,6 191,6 140,0 196,5 2,5 

5 N·m at  

3200 rpm 
141,3 221,6 139,0 226,0 2,0 

10 N·m at  

3200 rpm 
280,1 293,0 279,9 299,9 2,3 

15 N·m at  

3200 rpm 
425,5 381,0 426,4 389,9 2,3 

20 N·m at  

3200 rpm 
563,7 486,7 566,1 502,2 3,2 

  

        

  

Average Difference [%]: 3,2 
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Table 21: Inlet air temperature data for section 7.4 

Test Point Test 1 [°C] Test 2 [°C] Difference [°C] 

5 N·m at 2400 rpm 23,3 27,2 3,8 

10 N·m at 2400 rpm 22,3 26,3 4,0 

15 N·m at 2400 rpm 23,2 27,1 3,9 

20 N·m at 2400 rpm 24,8 28,8 4,0 

20 N·m at 2800 rpm 26,4 30,4 4,0 

15 N·m at 2800 rpm 27,0 30,4 3,4 

10 N·m at 2800 rpm 26,0 28,8 2,8 

5 N·m at 2800 rpm 24,7 27,1 2,4 

5 N·m at 3200 rpm 24,1 25,8 1,7 

10 N·m at 3200 rpm 24,8 26,0 1,3 

15 N·m at 3200 rpm 26,4 27,1 0,7 

20 N·m at 3200 rpm 28,7 29,0 0,3 

        

Average Difference [°C]: 2,7 
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Table 22: BSFC data for Figure 32 

Test  

Point 

Diesel B10 BSFC  

Difference  

[%] 
BMEP  

[kPa] 

BSFC  

[g/kWh] 

BMEP  

[kPa] 

BSFC  

[g/kWh] 

5 N·m at  

2400 rpm 
157,9 334,5 159,2 340,1 1,7 

10 N·m at  

2400 rpm 
296,6 254,5 299,1 262,7 3,2 

15 N·m at  

2400 rpm 
440,8 234,6 446,4 234,5 0,0 

20 N·m at  

2400 rpm 
577,8 230,1 585,1 232,6 1,1 

20 N·m at  

2800 rpm 
577,7 233,2 584,8 238,2 2,1 

15 N·m at  

2800 rpm 
441,0 240,6 446,0 245,1 1,9 

10 N·m at  

2800 rpm 
296,7 266,5 299,1 275,4 3,3 

5 N·m at  

2800 rpm 
157,7 360,3 159,0 368,8 2,4 

5 N·m at  

3200 rpm 
157,7 378,6 157,9 394,7 4,3 

10 N·m at  

3200 rpm 
297,0 276,0 299,4 285,1 3,3 

15 N·m at  

3200 rpm 
440,7 248,4 445,9 254,5 2,4 

20 N·m at  

3200 rpm 
578,2 242,4 585,0 248,5 2,5 
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Table 23: Smoke data for Figure 33 

Test  

Point 

Diesel B10 

BMEP  

[kPa] 

Smoke  

[FSN] 

BMEP  

[kPa] 

Smoke  

[FSN] 

5 N·m at  

2400 rpm 
156,6 0,09 152,1 0,09 

10 N·m at  

2400 rpm 
295,4 0,27 292,2 0,28 

15 N·m at  

2400 rpm 
440,2 0,72 438,0 0,70 

20 N·m at  

2400 rpm 
577,6 1,63 576,7 1,52 

20 N·m at  

2800 rpm 
577,7 1,29 575,8 1,78 

15 N·m at  

2800 rpm 
440,5 0,72 438,0 0,61 

10 N·m at  

2800 rpm 
295,6 0,31 291,9 0,26 

5 N·m at  

2800 rpm 
156,5 0,09 152,1 0,10 

5 N·m at  

3200 rpm 
156,5 0,11 151,7 0,11 

10 N·m at  

3200 rpm 
295,6 0,35 292,4 0,30 

15 N·m at  

3200 rpm 
440,3 0,69 437,5 0,66 

20 N·m at  

3200 rpm 
577,6 1,69 576,7 1,42 

 

Table 24: Heat release data for section 9.6 

Test  

Point 

Test 1 Test 2 

SOI  

[°] 

SOC 

[°] 

Ignition 

Delay [°] 

Max  

ROHR 

[J/0,1°] 

SOI  

[°] 

SOC 

[°] 

Ignition 

Delay 

[°] 

Max 

ROHR 

[J/0,1°] 

5 N·m at  

2400 rpm 
347,3 359,2 11,9 3,2 347,2 359,2 12,0 3,2 

20 N·m at  

2400 rpm 
348,2 358,7 10,5 3,65 348,0 358,7 10,7 3,6 

5 N·m at  

3200 rpm 
347,3 360,8 13,5 2,7 347,3 360,8 13,5 2,7 

20 N·m at  

3200 rpm 
348,5 360,1 11,6 3,9 348,8 360,1 11,3 3,9 
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