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EA Engineers Australia 

Export 
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Export Certificate of Airworthiness 

EPFL Space Centre, École Polytechnique Fédérale de Lausanne, Switzerland 

ESA European Space Agency 

ESTEC European Space Research and Technology Centre 

E-USOC Spanish User Support, and Operations Centre 

FAA Federal Aviation Administration 

FEM Finite Element Method 

FHD Full-High Definition (1920 x 1080 display resolution) 

FRDS Fire Retardant Delivery System 

GPU Graphic Processing Unit 

IACDT Initial Aircraft Conceptual Design Tool 

IDE Integrated Design Environment 

IP Internet Protocol 

ISU International Space University 

IT Information Technology 

 JPL Jet Propulsion Laboratory 

LED Light-Emitting Diode 
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MIT Massachusetts Institute of Technology 

NASA National Aeronautics and Space Administration 

 PBL Project Based Learning 
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SE System Engineering 

SFP Special Flight Permit 
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SSAL Space Systems Analysis Laboratory 
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A Concurrent Design Facility Architecture for Education 

and Research in Multi-Disciplinary Systems Design 

 

 

Abstract 
 

Engineering design processes applied in the industry focuses more towards a concurrent 

approach rather than traditional sequential design, because of its potential to improve lead-

time, quality and reducing cost. In Concurrent Design (CD) or concurrent engineering (CE), 

all elements of the product life cycle are included and considered simultaneously during the 

design process. CE is also known as Collaborative Engineering. 

Over the last two decades, industries have applied a dedicated CD environment, 

representing an infrastructure of integrated hardware and software, where multi-disciplinary 

design teams work together collaboratively on a specific project. Graduates moving into 

engineering design will become more involved in CD and the use of so-called Concurrent 

Design Facilities (CDF). Therefore, universities need to adopt their design curriculums and 

expose students to CD principles to make them work-ready for this new environment.  

The objectives of this thesis are to investigate the design engineering education 

approaches in universities, with a focus on aerospace engineering, and to identify the 

requirements for a concurrent design facility specifically for design education and research. 

The thesis gives give special attentions to the design of concurrent design facility that are low-

cost, adaptable, and easy to use and its role in the overall design curriculums. 

 

Keywords: Concurrent design facility, aerospace design teaching, economy growths, project-

based learning, design tools and aerospace curriculums 
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1. Introduction 
 

Aerospace industry focuses more towards a concurrent approach rather than traditional 

sequential design. Specific-purpose concurrent design facility are being used, which improved 

the lead-time and cost [1]. This means shorter time to market as the concurrent design teams 

made far fewer changes before the product launch as compared to the over-the-wall teams. A 

Concurrent design facility (CDF) is a state-of-the-art facility equipped with computers, 

multimedia devices and software tools, allowing multi-disciplinary design teams to apply the 

Concurrent Engineering (CE), which is also be known as Collaborative Engineering methods 

to the design of space missions, including aircraft and other complex systems [2]. Concurrent 

design facility facilitates fast and effective interactions of all disciplines involved, ensuring 

consistent and high-quality results in much shorter time [3]. Research institutions, industries 

and universities adopting concurrent design (CD) have reported better results than the 

traditional methods for end-to-end space missions and space systems design projects [4-6].  

Future graduates will become more involve in concurrent designs and use of concurrent 

design facilities. Therefore, universities should review their aerospace design curriculums, 

consider introducing students to concurrent design principles and make them workplace ready. 

Universities implementing a concurrent design facility must integrate it in the overall 

curriculums to have the best learning outcomes. This implementation must also meet other 

requirements, such as suitable for research, easy to use, adaptable, flexible and affordable. 

The objectives of this thesis are to investigate the design engineering education 

approaches in universities, with a focus on aerospace engineering, and to identify the 

requirements for a concurrent design facility specifically for design education and research. 

The thesis gives special attention to the design of a concurrent design facility that is low-cost, 

adaptable, and easy to use and its role in the overall design curriculums. 

 

1.1. Current design practices in industry 

 

Examples of organisations that have adopted the CD/CE approach are the Boeing Company 

USA, Jet Propulsion Laboratory USA and Airbus France. 

The Boeing Company, Boeing Defence, Space & Security, Huntsville, Alabama, U.S.A. 

Dec. 21, 2012:   Boeing and NASA have completed their Preliminary Design Review (PDR) 

for the Space Launch System (SLS) core stage and avionics. They have validated the rocket 

design for sending humans beyond low Earth orbit to the moon, asteroid and ultimately Mars. 

The design meets all system requirements within the acceptable risk constraints and establishes 

approval for proceeding with the detailed design. In 2017, the initial mission was an un-crewed 

loop around Earth's moon. Boeing has implemented the concurrent design and production 

planning to speed up the creation of a core stage preliminary design that integrates the heritage 

and new designs in less than a year from contract award. These are important elements of 

Boeing schedule management approach. Boeing runs ahead of schedule and uses the extra time 

to ensure a safe and affordable rocket [7]. 

Jet Propulsion Laboratory (JPL), California Institute of Technology: JPL concurrent 

engineering design centre, JPL’s Project Design Centre (PDC) has been evolving concurrent 

engineering capability since 1994 to provide NASA faster, better, cheaper designs. JPL has 

been developing new capabilities for early mission concept formulation, and works toward the 

analysis capability to infuse new models, common database, providing a single source of truth, 

common infrastructure for concept formulation teams, and access to prior study results, 

allowing re-use  [8]. The fundamental principal behind PDC was to improve the quality of 

space mission conceptual studies and proposals, while at the same time reducing their cost by 

using the integrated tools and concurrent engineering process. Two teams utilize the PDC 
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facility. The first team is Team X and is responsible for formulating proposals for new 

unmanned planetary exploration missions. The second team is Team I, is like Team X except 

that Team I develops space instruments concepts [4]. 

 Airbus has started to design aircraft in 1969 using paper engineering drawings but has 

successfully applied CE to all their aircraft design: A380, A400M and A350 etc. since 1999. 

Airbus has also invested widely to develop and deploy their CE capabilities. The project called 

Airbus Concurrent Engineering (ACE), which commenced in the 1990s is now a key integrator 

and a strong vehicle of change management [9, 10]. 

Airbus reported that CE has: 

 Been widely accepted concept to replace the traditional engineering process and aims at 

using CE to reduce times and costs through multi-disciplinary approach  

 Led to their significant business benefits in terms of lead-time and reduction of effort in 

development. These benefits have now been made visible in developing the A340-500 and 

A340-600, and for the A380 [10]. 

 Concurrent process closes the gap between functional design and industrial design, 

providing the functional design with manufacturing information to facilitate ‘Design for 

Manufacturing’ and ‘Design for Assembly’[11]. 

 

All three organisations (Boeing, JPL and Airbus) have reported benefits from their CD/CE 

practices. Boeing has implemented CD to speed up core stage preliminary design stage, which 

has been an important element to Boeing schedule management approach. JPL PDC has 

implemented CE to improve the quality of space mission conceptual studies and proposals, 

including the reduction in design times and costs. Airbus has also implemented CE to improve 

quality, reduce design times and costs, and manufacture their aircraft. 

 

1.2. Supply shortage of aerospace engineers with relevant skills 

 

With the industry adopting CD/CE practises together with a growing economy [12-14], which 

forces industry to improve their lead-time and costs in designing aircraft or spacecraft missions, 

it is important for universities to contribute by developing skilled human capital [15, 16].  

However, there is a supply shortage of aerospace engineers since 2003. Some industry 

segments have 15% of the workforce eligible to retire ‘now – i.e. 2003’, with an additional 

25% eligible to retire within 5 years, i.e. 2008 [17].   

The U.S. alone, as one of the largest aerospace employers has projected a 6 % growth 

from 2016 to 2026 in the employment of aerospace engineers [18]. In 2015, 18 % of all U.S. 

aerospace engineers in the aerospace industry were eligible for retirement [19]. Boeing, for 

example, employs 14,000 workers over age 61, and 56 % of Boeing’s engineers are 50 years 

old or older [19]. Therefore, it is challenging to employ aerospace engineers for these 

industries. 

 It is also critical to employ engineers with relevant skills useful to the industry. In 

2003, there was already a skills shortage and unless action ‘is taken now’, (i.e. in 2003), ‘this 

trend will create a systemic crisis in the future’ [17]. Skills shortage includes technical 

capability and the lack of key systems integration thinking skills necessary for complex 

programs important to the industry. Such systems integration thinking skills relate to 

concurrent engineering methodologies. Though concurrent engineering facilities have already 

made their mark in the industry, university adoption has been somewhat limited. Two reasons 

are that, concurrent engineering centres is not a necessity (i.e. no requirement for fast, efficient 

end-to-end design environment) and its potential is not truly realised in the academic 

environment [4]. 
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 In 2009, the mismatch between the employers’ expectations and universities 

curriculum provided a platform for academics to claim that aerospace engineering degree 

courses are producing graduates without the skills needed to work in the industry. The skills 

requiring more focus were aircraft operation and maintenance [20]. In 2014, the industrial focus 

group also indicated that the aerospace industries were reluctant to employ graduate students, 

as they perceive them to lack some industry-specific professional skills. This industrial focus 

group composed of industry leaders from the Consortium for Research and Innovation in 

Aerospace in Québec (CRIAQ) Academy [21]. This trend illustrates that the universities are 

behind in supplying aerospace engineers with relevant skills as early as 2003. 

 
Table 1, Themes identified by students (X) and employers (black box) as relevant to employability [22]. 

 

                                                                            

 
 

 

In this light, a 2015 report produced by the Australian Government Office for Learning and 

Teaching, employability project has explored the perspective of stakeholders from 5 disciplines 

such as, engineering, information and computer technology, media and communications, life 

sciences and psychology [22]. The aims were to explore the perspectives on graduate 

employability and to identify areas of consensus, gaps and opportunities for development and 

collaborations.  

The main issue presented in this 2015 report is the adequacy of employability 

frameworks at the time to drive curriculums renewal in Australia. Table 1 lists the 

employability themes identified as relevant by the study participants (employers and students), 
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which highlights themes not explicitly included in the CareerEDGE framework. CareerEDGE 

is a model of employability that can be used as a framework for working with students to 

develop their employability [23]. 

It is useful for universities to consider incorporating a CDF to address some of these 

themes (Table 1: blue boxes) such as ‘Experience’, ‘Managing others’ and ‘Motivation’.  

The ‘Experience’ refers to the relevant work experience, which has been ranked 3rd out 

of 10 in the engineering discipline [22]. This thesis proposed that the ‘Experience’ be gained 

through either industrial attachment (if feasible) and/or undertaking design project themes that 

have been jointly developed with the industry (if feasible). For the ‘Managing others’ and 

‘Motivation’ themes, this thesis proposed for more focus on hands-on project management 

skills. This can be performed through more role-play case studies to improve students’ 

confidence in interacting and leading team members, and adopting the right approach to 

manage and resolve problems in some different simulated industrial scenarios. 

This is likely to help reduces the effects of mismatch between employer requirements 

and university graduate capabilities in some industry-specific professional skills [20, 21].  

 
1.3. Concurrent design methodology 

 

The first fully equipped CDF is the Project Design Centre (PDC), which started operations at 

Jet Propulsion Laboratory (JPL) in June 1994 [24]. In 1997, the Concept Design Centre (CDC) 

of Aerospace Corporation developed the Concurrent Engineering Methodology (CEM) for 

PDC. CEM is a collection of techniques, rules of thumb, lessons learned, algorithms, and 

relationships developed for conceptual space system design [25]. 

The European space industry has also adopted CE from the beginning of 1990s. An 

example is the Satellite Design Office at DASA/ Astrium in collaboration with the Technical 

University of Munich [26]. European Space Agency (ESA) CDF was established in November 

1998 at the Research and Technology Centre (ESTEC) on an experimental basis. This event 

was under the sponsorship and initiative of the General Studies Program (GSP) to evaluate the 

use of CE to create an integrated design environment for assessing future missions. CDF is a 

state-of-the-art facility, which included computers, software tools and multimedia devices, 

allowing multi-disciplinary design team to apply CE methods for space mission designs.  

CDF is used to provide technical and financial feasibility studies of future space 

missions. These included new spacecraft concepts and provide new mission concept 

assessments, space system trade-offs and options evaluations, and new technology validation 

at system mission level  [6, 27]. Other uses of CDF include aircraft design and development 

and tertiary education and research [7, 28]. 

There are many definitions of CE. One such definition is “Concurrent Engineering is 

a systematic approach to integrated product development that emphasises the response to 

customer expectations. It embodies team values of co-operation, trust and sharing in such a 

manner that decision making is by consensus, involving all perspectives in parallel, from the 

beginning of the product life-cycle.” CDF is based on 5 key elements, namely [6, 27]: 

 A process 

 A multi-disciplinary team 

 An integrated design models 

 A facility 

 A software infrastructure 

 

The first key element is a design process as illustrated in Figure 1, with many interdependencies 

between components [6]. Each component may influence another, and any change will 
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propagate through the whole system. Therefore, early assessment of the changes is essential to 

ensure completion with an optimised solution. The design process begins with a design team 

follows by mission requirements refinements and formalisations to define the constraints, and 

resources estimations. The process is iterative in nature and conducted by all team members to 

address the system design components quickly and completely with the aim to minimise risk 

of incorrect or conflicting design assumptions through debates and agreements as a team. 

The second key element is a multi-disciplinary team consisting of engineers working 

together in a collaborative environment. Each team member represents a domain discipline, 

and equipped with tools to design model, calculate and exchange data. These positions are 

project dependant. For instance, in space design project, these positions may consist of the 

systems, instruments, mission analysis, propulsion, attitude and orbit control, cost analysis, 

structures/ configuration, mechanisms/ pyros, thermal control, electrical power, command and 

data handling, communications, simulation, ground systems and operations, risk assessment 

and programmatics [6]. 
 

 
 

Figure 1, Mission Conceptual model and spacecraft design process [6]. 

 

The third key element is an integrated design model, where the design process is ‘model-

driven’ using data derived from individual tools of each domain discipline [6]. These are 

parametric-based models (PBM). Uses of PBM enables generic models of various mission 

scenarios to be characterised for studies and supports fast modifications and analysis of new 

scenarios essential for real-time process. It acts to finalise the design ground rules and to 

formalise the responsibility boundaries of each domain. The established model refines the 

design and introduces further levels of details.  
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Modelling process begins with acquiring the model suited to the mission scenario 

before performing the iterative design process of parameterisations. Each model includes an 

input, output, calculation and results area. Input and output areas are for exchanging parameters 

with the rest of the system such as the other internal and external tools and models. Calculations 

area includes equations and specifications data for different technologies to perform actual 

modelling process. Results area includes the numeric results summary used for presentations 

during the design process [6].  

Figure 2 illustrates an example of the CDF Parametric-model-based Software 

Architecture, consisting of several specific domain disciplines (project dependant). Each 

Domain disciplines model’s status can be consolidated through the CDF design process 

operation’s spread sheet (spreadsheets/workbook containing Model Inputs, outputs, 

calculations and results) for the sub-systems and system progress reporting [6]. 

 

 
 

Figure 2, CDF Parametric-model-based Software Architecture [6]. 

 

 

 
 

Figure 3, ESA Concurrent Design Facility room layout [6]. 
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The fourth key element is a facility consisting a suite of rooms designed and equipped with 

relevant hardware and software tools to create a multi-disciplinary design environment. This 

aims to provide effective communications, data interchanges, engineering tools and databases 

to team members working concurrently. The main design room (e.g. Figure 3) may consists of 

a large projection screen for systems engineer to direct any of the team member computer (PC) 

screens directly to this screen and back, smart board, and a large number of design stations. 

Choice of design stations are project dependant, and may consist of the relevant domain 

disciplines suitable for the projects [6, 27]. 

The fifth key element is a software infrastructure to generate, integrate domain models, 

and propagates data between models concurrently, do sub-system and system level modelling 

and calculations. Some of the established CDFs, which have adopted the common design tools 

are illustrated in Appendix A, Table 23 [6, 28-32]. ESA CDF has become a reference point for 

other European partners to apply this approach to space mission designs. Industries and 

national space agencies are using the ESA CDF as a guide to create their own facilities and 

processes [27]. In the United States of America (U.S.A.), the JPL, which was established in 

1994, is perhaps the most well-known of the concurrent engineering design centres [4]. Table 

2 lists the timeline for some of the major worldwide CDF establishments. 

 
Table 2, Timeline of some major concurrent design facility establishments [3]. 

Year 
starts 

Name Facility Entity Country 

1994 NASA - JPL Project Design Centre Team X [33] PDC Agency U.S.A. 

1994 
Georgia Technical Institute, Aerospace Systems Design Laboratory, CE & 
Integrated Product/ Process Development (IPPD) [34] 

ASDL University U.S.A. 

1996 TRW Integrated Concept Development Centre [4] ICDC Agency U.S.A. 

1997 NASA Goddard Space Flight Centre (Integrated Mission Design Centre) [4] IMDC Agency U.S.A. 

1997 Aerospace Corporation, Concept Design Centre [25] CDC Agency U.S.A. 

1998 ESA CDF, Noordwijk was established at ESTEC - experimental basis [3] CDF Agency Netherlands 

1999 EADS/ Astrium Satellite Design Office [35] SDO Industry France 
 EADS/Astrium, Friedrichshafen SDO Industry Germany 
 EADS/Astrium, Stevenage SDO Industry U.K. 

 Deutsche Aerospace AG (DASA)/ Astrium SDO Agency Germany 

1999 
Laboratory for Spacecraft and Mission Design (LSMD) at California Institute of 
Technology [4] 

PDC University U.S.A. 

2000 
Massachusetts Institute of Technology (MIT), Design Environment for Integrated 
Concurrent Engineering (DE-ICE) Project Design Centre [36] 

PDC University U.S.A. 

2004 Airbus, Airbus Concurrent Engineering (ACE) [37] ACE Industry Netherlands 

2004 Utah State University: Space Systems analysis Lab (SSAL) [4] SSAL University U.S.A. 

2005 Japan Aerospace Exploration Agency (JAXA) Mission Design Centre [38] MDC Agency Japan 

2005 CNES – CIC, Toulouse inauguration  [3] PASO Agency France 

2006 Thales Alenia Space, Roma [39] ISDEC Industry Italy 

2007 
China Academy of Space Technology (CAST) Shenzhou Institute (SZI) Concurrent 
Design Facility [2] 

CDF Agency China 

2007 Ecole Polytechnique Federal de Lausanne (EPFL), Lausanne [29] CDF University Switzerland 

2007 Thales Alenia Space, Torino (Collaborative System Engineering) [40] COSE Industry Italy 

2007 Built a new ESA CDF  CDF Agency Netherlands 

2008 Old ESA CDF knocked down CDF Agency Netherlands 

2008 ASI CEF, Roma opened CEF Agency Italy 

2008 
International Space University (ISU), Strasbourg [32] 
ISU CDF donated by ESA 

CDF University France 

2008 DLR (Bremen) inauguration [33] CEF Agency Germany 

2009 Technical University of Madrid (UPM) [28] CDF University Spain 

2015 
University of Strathclyde, Glasgow (Concurrent & Collaborative Design Studio) 
[41] 

CDF University U.K. 

2017 
Australian National Concurrent Design Facility (ANCDF). 
Funded by UNSW Canberra, ACT Government and supported by French Space 
Agency CNES (Centre National d’Etudes Spatiales) [42] 

ANCDF Agency Australia 
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1.4. CDF applications and their effectiveness 

 

This sub-chapter reviews the effectiveness of CDF for research institutions, and academia in 

collaborations with the industries. 

 

Industry Research Institutions – operations of CDF  

 

The European Space Agency (ESA) CDF has evolved from an experimental facility into a 

functional operation for mission assessment (since November 1998). It has obtained quality 

results for new missions in their early conceptual pre-phase-A level in shorter time than 

traditional methods and with minimum resources. ESA CDF teams were judged by customers 

to be more detailed and internally consistent than those using the classical approaches [6]. 

Benefits in performances for the typical pre-phase-A study includes shortening of study 

duration (design phase) from 6-9 months to 3-6 weeks; factor of 4 reduction in time; factor of 

2 reduction in cost for customers; increased numbers of studies per year; improved quality, 

reduced risk and cost. The technical report becomes part of the specifications for subsequent 

industrial activity and capitalisation of corporate knowledge for further reusability [3]. 

Space Centre, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland CDF is 

founded to foster, promote and federate space technology across education, science and 

industry at Swiss and international levels. EPFL CDF setup follows the approaches from ESA 

CDF and TeamX project at Jet Propulsion Laboratory and has close relationships with the 

industries. The benefits include faster design of new products, shorter times to market, overall 

quality improvements, knowledge re-usability and fast implementations of trade studies. 

However, the CDF development is mainly defined for improving the quality of education and 

providing a unique experience for EPFL students [43]. 

 

Industry-university collaboration – operations of university CDF 

 

ESA-ISU collaboration: ESA donated their early CDF to the International Space University 

(ISU) with continuous supports and collaborations. During the 2 years of ISU CDF operations, 

students’ assignments for the ISU MSc. in Space Studies (MSS) 2009/10 classes conducted 

have shown very encouraging results based on students’ feedback and overall quality of the 

work produced by them [32]. 

E-USOC – UPM collaborations: Industry-university collaborations between the 

Technical University of Madrid (UPM), and Spanish User Support and Operations Centre (E-

USOC) started from academic year 2009/10 on space education. ESA has assigned the E-

USOC to support operations of scientific experiments on board the International Space Station 

(ISS). This collaboration incorporated the CDF approach and Project Based learning (PBL) 

training process, and has also shown good results where students’ motivation and their results 

(technical and transversal skills) were improved [28]. 

 

1.5. Technologies available for CDF 

 

A low-cost CDF suitable for engineering design education and for research is feasible. This is 

mainly due to the rapid advancement and lower cost in Information Technology hardware, 

software tools, and supporting IT infrastructure such as networking, video conferencing, cloud 

computing and storages and security [1]. 

Suppliers of Central Processing Unit (CPU) bring out new generation processors every 

year with improved performance-to-cost ratio (trend) [44]. Figure 4 illustrates the Intel CPU 

core i7 series performance improvement (trends) from 2nd to 8th generation. The corresponding 
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costs have been relatively flat from 4th to 6th generation and reduced in 7th and 8th generations. 

The CPU’s performance is measured in term of CPU-mark value, which is a relative figure. 

The bigger the number the faster the CPU. For example, a PC with a CPU-mark value of 4000 

can process roughly twice as much data as a PC with a result of 2000 [44].   

 

 
  

Figure 4, Intel CPU: Performance-to-Cost Ratio (trend, Q4 2011 to Q2 2017) [44]. 

 

 

Software suppliers, especially those with large user-base in industry and universities, offer 

students/academics educational licensing of their popular design tools universities. 

For the Centralised Data Storage Server environment, universities may utilise their 

existing Information Technology (IT) infrastructure as alternative to purchasing new separate 

hardware and software if feasible. This should help to minimise the CDF setup cost.  

The CDF facility is based on access to a multi-purpose room with high-speed 

networking and internet infrastructure. However, it is acknowledged that the availability of 

suitable infrastructure can be an issue. It may not be necessary to build a new building, but 

making modifications to a building, including furniture can still be costly. 

 

1.6. Challenges to establish a CDF architecture for education and research 

 

Literature shows that currently it is more affordable for many universities to setup a CDF for 

education and research [45]. However, universities still face challenges in operations and 

infrastructure when considering a CDF [28, 29, 46].  

CDF in research institutions and industry are mainly engaged in commercial product 

development and design using experienced teams, while universities are mainly tied to their 

schedules and focus on Project Based Learning (PBL) [28]. In most cases, students starting 

their minor do not have the team experience required for project design in a group. These 

differences may limit the universities efforts to setup a suitable CDF [29].  

Lecturers and students face a steep learning curve, project synchronisations with 

academic schedules, students’ team changes and variations in students group size for each 

project [29, 46]. 



26 
 

The purpose of setting up a CDF for education and research is mainly to address the 

relevant industry and agency needs. However, universities need to decide between 

implementing the CDF-based training course as an undergraduate core or elective course. If 

the initial CDF setup is offered as: 

 A core course, relevant industry is likely to welcome the decision, since they can expect 

more future graduates to meet their requirements for employment. However: 

o Potential students may be interested in other electives instead of CDF. As a result, 

they may not enrol in the aerospace program or may enrol at other universities with 

CDF as an elective. 

o Universities may encounter resourcing issues such as academic, support staffing, and 

CDF room constraints. 

 An elective course, industry may perceive that the universities are not moving fast enough 

to support them. However: 
 

o Potential students will have more options to match their individual career needs. 

o Universities will be given more times to fully implement the CDF in curriculum, 

including lower resourcing issue. 

o Universities will be able to review the numbers of students opting for the CDF elective 

over times before deciding to remain as an elective or change to being a core course. 

 

In this light, other university, such as Utah State University (USU) reviewed in this thesis 

(subsequent work) has an elective CDF course in their undergraduate program. USU Year-4 

students need to select and complete the elective course: Spacecraft Systems Engineering 

before they can enrol in the Space System Design course [47]. The Space System Design 

Course is conducted in the USU Concurrent Engineering Facility (CEF), known as the Space 

systems Analysis Laboratory (SSAL) [4].  

 

This is a challenging decision to be considered by the university management. 

 

The Technical University of Madrid (UPM) and International Space University (ISU) reviewed 

in this thesis offer CDF training only in their Master programs. 

 

1.7. Research questions and methodology 

 

Literature reviews have shown the importance that universities need to embrace CD in their 

curriculums. Universities have considered implementing and did collaborate with the industries 

in setting up CDF in curriculums in view of the various challenges [48]. However, there appear 

to have minimal low-level focuses on what kinds of industry-university collaborations 

requirements are required to setup a low-cost long-term CDF architecture. These low-level 

focuses refer to the supporting elements such as the pre-requisites for attending CDF based 

training and post-CDF training requirements.  

These are important gaps identified in this thesis because CD methodology and CDF is 

not just a single element implementation in the university. CDF setup will likely not work as 

well in isolation from the industries though it may have state-of-the-art setup (i.e. top-of-the-

line IT infrastructure, hardware, CD software tools and facility). University CDF is just a part 

of a larger-scale-solution-package to allow the industries to address the associated problems 

due to economic growths [12-14]. Therefore, the university CDF is likely to work better and 

able to maintain its relevance through the continuous long-term industry-university 

collaborations as the economy and technology changes and progresses. Such collaborations 

should minimise the mismatch between employers’ expectations and aerospace engineering 
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degree courses and, the reluctance of aerospace companies to hire graduate students, as they 

perceive them to lack some industry-specific professional skills [20, 21]. 

To this end, this thesis proposes a low-cost CDF be setup to enhance design teaching 

and research. This thesis has also identified and answered three research questions. These 

research questions are: 

1. How is aerospace design currently taught at universities and to what extend are student 

graduate skills compatible with industry requirements?  

 

2. What are the requirements for a Concurrent Design Facility suitable for design education 

and research at university level?  

 

3. What CDF architecture would best meet the aforementioned requirements, including 

hardware, software, data management, infrastructure, etc., from an ease of use and cost 

perspective?  

 

To answer research question-1, a comprehensive literature review was conducted in aerospace 

design teaching methodologies and Concurrent Design Facilities. 

 

To answer research question-2, this thesis has identified the essential requirements for 

establishing a CDF suitable for design education and research, which covers broadly the 

following areas: 

 Able to emulate industry design practices. 

 Able to incorporate sufficient students training and preparation. 

 Must be a low-cost ergonomic multi-disciplinary facility room with sufficient numbers of 

upgradable generic hardware and design/support software for an average size team. 

 Must have secure data storage with ability to perform onsite/offsite content sharing and 

collaboration. 

 Design tools are flexible and adaptable for multi-disciplinary research needs, and easy to 

learn and use. 

 

To answer research question-3, the recommended CDF architecture and design environment 

that meets the requirements identified in research question-2 has been answered in detail. 
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1.8. Structure of this thesis 

 

The structure of this thesis consists of five chapters. Chapter 1 introduces the main objectives 

of this thesis, followed by a comprehensive literature review with focus in the aerospace 

disciplines, identification of research questions and summary of contributions. The rest of this 

thesis is organised as follows: 

 Chapter 2 reviews the aerospace design teaching methodologies, which includes a case 

study.  

 Chapter 3 describes the development of the collaborative teaching tool to enhance design 

teaching.  

 Chapter 4 investigates a low-cost CDF architecture for education and research. 

 Chapter 5 concludes this thesis with discussions, concluding remarks and outlooks.  

 

Brief descriptions of each of these chapters 

 

Chapter 1: Introduction. This chapter introduces the main objectives of this thesis and focuses 

on a comprehensive literature reviews of the aerospace discipline. This includes industry 

practices, engineer skills, concurrent design methodologies and effectiveness, technologies 

available and challenges to setup CDF for education and research, and identification of research 

questions. 

 

Chapter 2: Aerospace design teaching methodology. This chapter focuses on: 

 Literature reviews of aerospace programs at selected universities that incorporate CDF or 

do not incorporate CDF. 

 A case study that has been conducted for a typical capstone design course. 

 

Chapter 3: Development of collaborative teaching tool to enhance pre-CDF multi-disciplinary 

design education. 
 

 ‘to enhance’ refers to: 

o Allowing students to focus visually on the lectures and tutorials instead of having to 

spend extra times to learn new complex professional tools prior to completing their 

assignments. 

o The tool’s workflow is similar to the popular ESA CDF approach. 

o The Real-time automatic interfacing between tool’s workbook and 3D model, 

allowing students to perform iterative design cycle with system wide perspective. 

 ‘Pre-CDF’ refers to education period prior to the actual use of a CDF.  

 

This chapter introduces a collaborative teaching tool, which is called the Initial Aircraft 

Conceptual Design Tool (IACDT). This tool has been developed by closely referencing a 

typical Year-3 aircraft design course structure and aims at teaching students the interactions 

between multiple disciplines and self-discovery CD workflows. Appendix C provides the 

IACDT detail operations. 

 

Chapter 4: Investigate a low-cost CDF architecture for education and research. The following 

research works have been conducted: 
 

 Integration of a CDF in design curriculum with project-based learning, including remote 

collaboration with industries and universities. 

 CDF architecture. 



29 
 

 Recommendations of IT hardware and software architecture (CDF for education and 

research). 

 Minimum support facilities for CDF room (physical room layout). 

 

A case study (simulation) has been conducted based on a sub-system component in another 

case study in this thesis: Year-4 final design course. The case study (simulation) has determined 

that the proposed multi-disciplinary optimisation tool, spreadsheet/workbook and 

computational simulation tool is able to interface with each other and function as a single 

cohesive design tool platform. 

 

Chapter 5: Discussions, concluding remarks and outlooks. This chapter concludes a summary 

of research works conducted, answering the three research questions, which results in the 

proposal of a low-cost CDF for education and research before giving a brief outlook. 

 

1.9. Contributions to this thesis 

 

The contributions of this thesis are multi-folds:   

 

 Conducted comprehensive relevant literatures reviews in the aerospace design teaching 

methodology and Concurrent Design Facility. 

 

 Conducted a case study for a typical capstone design project. 

 

 Developed original novel Collaborative Tool for pre-CDF education, known as the Initial 

Aircraft Conceptual Design Tool (IACDT). 

o The original novel elements come from combining into a single platform the: 

 Closely referencing a typical Year-3 aircraft design course structure, and  

 Real-time interfacing between the various spreadsheet (acting as MDO) within the 

tool and the 3D model. 

 

 Proposed an original novel low-cost CDF architecture for education and research, which 

includes the integrated pre-requisites, post CDF-based supporting components and 

minimum support facilities to function as an overall single cohesive CDF platform as 

follows. 
 

o Pre-requisites: 

 Utilises the IACDT Collaborative Tool, developed in this thesis, to enhance the 

Year-3 aircraft design course as part of the pre-CDF education. 

 Maintain existing formal short courses as part of the overall integrated supporting 

components. This includes CAD/CAE, Computational Simulation, Multi-

Disciplinary Optimisation and more focus on Project Management. 

o Maintaining existing post CDF-based training and industrial-university collaboration 

with more focus (if feasible) in: 

 Industrial attachment and final work experience reporting. 

 Industrial feedback. 

 Joint creation of design themes for realistic real-world scenarios. 

o IT hardware and software architecture. 

o Minimum support facilities for CDF room (physical room layout). 
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 Conducted a case study (simulation) successfully to integrate modeFRONTIER (multi-

disciplinary optimisation), MS-Excel and MATLAB. This is to determine that the proposed 

design tools can interact with each other in a typical CDF environment. Lessons learned 

were: 
 

o Utilising a blank spreadsheet/workbook prepare a new design workflow for multi-

disciplinary optimisation has taken longer time than the combination of 3 design tools.  

o Utilising the highly automatic modeFRONTIER, MS-Excel and MATLAB 

combination is more intuitive and required less preparation. 

o Optimisation results from modeFRONTIER combination are faster and more 

comprehensive. 

 

 Conducted a case study, which has successfully determined that the proposed open-source 

parallel rendering middleware SAGE2 tool is able to function as intended in a typical CDF 

environment. 
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2. Aerospace design teaching methodology 
 

This chapter reviews the aerospace design teaching methodologies at different universities that 

are without CDF and with CDF incorporated in curriculums. The curriculum and design 

teaching methodology at a number of selected universities were investigated. 

 

The descriptions of University of New South Wales (Sydney) (UNSW), the University of 

Queensland (UQ), RMIT University, University of Bristol (UB) and Utah State University  

(USU) programs in the following works were supported by Table 3, Table 4, Table 5, Table 7 

and Table 8 program (courses listings) respectively. These tables are also relevant to the 

answering of research question 1 in chapter 5. This aims to identify each available course 

‘position’ within the entire degree program-wide perspective better. Therefore, these tables are 

important in this work. 

 

Design teaching methodologies (without CDF) in Australia 

 

The aerospace design programs that are offered by the University of New South Wales 

(Sydney), the University of Queensland and RMIT University, which do not have CDF-based 

course in curriculum, were reviewed [49-51].  

These three universities were selected for reviews due to their good ranking in Australia 

[52]. Another reason for selecting RMIT University is because this thesis included a case study 

based on the RMIT University’s capstone design project and an Initial Aircraft Conceptual 

Design Tool was developed by closely referencing a RMIT University Year-3 aircraft design 

course structure. 

All three universities are generally adopting similar 4-years curriculums structure and 

have a capstone design project.  

There is no formal project management (PM) course in their honours programs, but PM 

elements are embedded in courses. 

This thesis included a case study on a typical capstone design project course (without 

CDF) to investigate the course structures and attributes in more detail (Sub-Chapter 2.4). 

 

Design teaching methodologies (without CDF) in United Kingdom 

 

The aerospace design program that is offered by the University of Bristol (UB), which does 

not have CDF-based course in curriculum is also reviewed.  

This university is selected for review due to its good ranking in U.K. [52]. 

The main difference between UB and UNSW (Sydney)/UQ/RMIT is that, although UB 

does not have a CDF at the university, UB has started to collaborate with external agency, 

Science and Technology Facilities Council’s (STFC) RAL Space in 2017 to design UB’s first 

CubeSat. UB student reported that working on a real-life mission was very motivating for them 

and a unique opportunity [53]. 

 

Design teaching methodologies (with CDF) in Spain, France and United States of America 

 

The aerospace design teaching methodologies that are offered by the Technical University of 

Madrid (UPM), International Space University (ISU) and Utah State University (USU), which 

already have a CDF are reviewed [4, 28, 32].  

UPM and ISU were selected for reviews because their CDF architecture is based on the 

ESA CDF. USU was selected for review because of its CDF architecture is based on that of the 

NASA JPL CDF. USU CDF is also known as the Space Systems Analysis Laboratory (SSAL). 
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UPM and ISU was also compared with the ESA/ESTEC CDF on domain disciplines 

implementations [6]. UPM, ISU and ESA/ESTEC CDF have adopted the six common domains 

disciplines: Mission, Power, Propulsion, Payload, Communication and Thermal.  

UPM has integrated CD and PBL in their conceptual space mission design course, led 

by UPM and (industry) E-USOC staff.  

ISU has adopted the ESA approach (ISU CDF donated by ESA) in their MSc design 

course, with internship and individual project in the final module of the course. Internship is 

defined as ‘a period of time during which someone works for a company or organization in 

order to get experience of a particular type of work’ [54]. 

USU undergraduate program included capstone courses in their Year-4 program, and 

an elective CDF course. USU Year-4 students need to select and complete a specific elective 

course before they can enrol in the CDF-based Space System Design course [47]. This course 

is conducted in the USU Concurrent Engineering Facility (CEF), known as the Space systems 

Analysis Laboratory (SSAL) [4].  

 

UPM, ISU and USU have reported positive results from CDF-based training.  

UPM Master in Space Systems students surveys results have shown that both Year-1 

and -2 students were positive about CD concept and believed their skills have been improved 

due to CDF activities [55]. 

ISU MSS students’ assignments involved generating different mission architectures 

and design options from a set of requirements. ISU Faculty plays the role of customer. 

Assignments for the ISU MSS 2009 and MSS 2010 classes results have been very encouraging, 

based on students’ feedback and overall quality of the work by them produced.[32] 

USU CDF-based course (space system design) is conducted at the USU Concurrent 

Engineering Facility (CEF). This course is mainly for teaching students on end-to-end design 

of a space system, including letting students perform their work in a CE setting. USU has 

reported that the use of CEF for teaching would be beneficial as the undergraduate space 

systems design course will be taught in a more practical and real-world applicable manner. 

USU has also reported that students have benefited in terms of better understanding of the 

complexity of modern aerospace systems and innovative approaches necessary to optimise 

these systems [4].  

 
2.1. University of New South Wales (Sydney) 

 

A typical 4-year undergraduate aerospace engineering (Honours) program at the University of 

New South Wales (Sydney) is listed in Table 3 [49]. Year-1 consists of eight core courses and 

one elective. Year-2 consists of eight core courses and one elective. Year-3 consists of six core 

courses (includes aerospace design course, introducing CATIA: a prerequisite for Year-4 

design project (elective)), and three industrial training or exchange opportunity components 

(minimum 60 days Industrial Training): Year-3 mandatory. Year-4 consists of three (core) 

research thesis, two (core) courses, one aerospace design project and two discipline electives.  

The Year-4 design project course consists of a capstone design project. Students design 

teams develop the aircraft preliminary design to satisfy the request for proposal in a holistic 

approach. Students need to review the requirements of several disciplines including conceptual 

designs, configurations, weights, sizing, payload, aerodynamics, propulsion, structures, 

systems, stability and control, performance, and cost. Subsequently, students will integrate 

these elements into a single aircraft design through teamwork, report writing, and presentation 

skills, which is a focus to develop important professional skills for the industry. Students use 

the school resources such as the computer aided design and manufacturing, wind tunnels, 

simulation and test facilities. Team meetings with staff and lectures on advanced project design 
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support the projects. The school and external experts give lecture in specific areas, which 

include structural design, aerodynamic, engine integration and system design. This program 

does not have a CDF-based training, nor a formal PM course.  

 
Table 3, University of New South Wales (Sydney) aerospace engineering (Hon) program [49]. 

 
University of New South Wales (Sydney): Aerospace Engineering (Honours) [assess date: 28 Aug 2018) 

Year-1 Year-2 Year-3 Year-4 
Engineering Design and 
Innovation 

Discipline (Elective) Aerospace Structures 
Dynamics of Aerospace 
Vehicles 

Computing for Engineers or 
Computing 1A or Introduction 
to Programming 

Engineering Mathematics 2E Aerodynamics General Education 

Maths 1A or Higher Maths 1A Thermodynamics Flight Performance, Propulsion Research Thesis (1/3) 

Engineering (Elective) General Education Aerospace Design 
Aerospace Design Project A 
(capstone/teamwork) 

Maths 1B or Higher Maths 1B Numerical Methods and Stats 
Professional Engineering and 
Communication 

Discipline (Elective) 

Physics 1A or Higher Physics 1A Engineering Mechanics 2 Linear Systems and Control Research Thesis (2/3) 

Electrical and 
Telecommunications 
Engineering 

Engineering Design 2 
Industrial Training or Exchange 
Opportunity 
(Mandatory: minimum 60 
days) 

Discipline Elective 

Engineering Mechanics Mechanics of Solids 1 Discipline Elective 

Design and Manufacturing Fluid Mechanics Research Thesis (3/3) 

 

 

Australian National Concurrent Design Facility (ANCDF) located at UNSW Canberra Space 

 

While UNSW (Sydney)’s BEng Aerospace Engineering (Honours) program does not have a 

CDF-based program, a new Australian National Concurrent Design Facility (ANCDF) is 

opened in November 2017 at UNSW Canberra Space. ANCDF is also known as the Australia’s 

National Space Agency (ANSA), which is jointly funded by UNSW (Canberra), the ACT 

Government and supported through a partnership with the French Space Agency CNES, who 

are providing software and training. Since the opening of ANCDF in November 2017, staff 

and academic training at the ANCDF are conducted by the French Space Agency CNES 

(Centre National d’Etudes Spatiales) [42].  

 

2.2. University of Queensland 

 

A typical 4-year undergraduate Bachelor of Engineering (Hon) Mechanical and Aerospace 

Engineering Dual Major, such as the one at The University of Queensland, is listed in  Table 4 

[50]. Students must complete 64 units comprising 56 units, being all courses from part A - 

compulsory; and 4 units from part B4 - advanced electives; and four units’ introductory 

electives from part B1. The Year-4 design project course consists any one of the four options:  

 Professional Engineering Project (I) or  

 Engineering Thesis (II), or 

 Engineering Thesis (III) or  

 Major Design Project (IV) – (capstone design course) 

 

Option (I) is a major investigation, research project or a significant design task, as part of a 

Centre of Excellence for Environmental Decisions (CEED) project taken in conjunction with 

industry.  

Option (II) and (III) involve a thesis project on an approved topic that integrates 

engineering skills acquired through the engineering program.  
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Option (IV) involves multidisciplinary topics for group design project sponsored by the 

industry in research, academic and commercial organisations to complete detailed design 

calculations to the sponsor's specifications.  

 The ‘Major Design Project (option IV)’ course is a capstone course for senior students of 

Mechanical, Mechanical and Aerospace, and Mechanical and Materials Engineering, and 

requires in depth project-based application of knowledge from a wide range of preceding 

courses.  

 Students must also conduct and demonstrate the ability to independently study and research 

relevant materials as required to complete their assigned designs. This includes the 

formulations of technical specifications through a process of negotiation with the 

course coordinator, project supervisor, and to complete the designs with a high level of 

scientific and engineering rigor. 

 Students manage the projects, and coordinate the group workloads in documentations, 

formal public presentations, demonstrations of teamwork for satisfactory completions. 

Students’ final submitted reports are marked based on the standards of professional 

consulting engineers.  

 
Table 4, The University of Queensland mechanical aerospace engineering (Hon) program [50]. 

 
The University of Queensland: Mechanical Aerospace Engineering (Honours) [assess date: 28 Aug 2018) 

Year-1 Year-2 Year-3 Year-4 

Engineering Design, and 
Calculus & Linear 
Algebra II 

Analysis of Ordinary 
Differential Equations 

Aero Design and Manufacturing 

Engineering Modelling & 
Problem Solving 

Advanced Calculus and 
Linear Algebra II 

Finite Element Method 
& Fracture Mechanics 

Aerospace Propulsion 

Or Engineering Design, Modelling 
& Problem Solving 

Structures & Materials 
Thermodynamics & Heat 
Transfer 

Professional Practice and the Business 
Environment 

Calculus & Linear Algebra and 
Advanced Multivariate Calculus 
& Ordinary Differential Equations 

Introduction to 
Engineering Design and 
Manufacturing 

Engineering 
Management & 
Communication 

Control Engineering 1 

Or Advanced Calculus & Linear 
Algebra I and 

Fundamentals of Fluid 
Mechanics 

Analysis of Engineering 
& Scientific Data 

1 elective from: 
Professional Engineering Project or 
Engineering Thesis or 
Major Design Project 
(capstone/collaborative) 

Multivariate Calculus & Ordinary 
Differential Equations 

Machine Element Design 
Mechanical Systems 
Design 

B1 – 2 Introductory elective from: 
Chemistry 1, Introduction to Software 
Engineering, Introduction to Research 
Practices - The Big Issues or 
Electromagnetism and Modern Physics 

Engineering Mechanics: Statics & 
Dynamics 

Intermediate 
Mechanical & Space 
Dynamics 

Advanced Dynamics & 
Vibrations 

B4 – 2 advanced elective from: Flight 
Mechanics & Avionics, Aerospace 
Composites, Hypersonic & Rarefied Gas 
Dynamics, Space Engineering or 
Computational Fluid Dynamics 

Engineering Thermodynamics Engineering Analysis I Fluid Mechanics  

Introduction to Electrical Systems  Engineering Analysis II  

 

 

2.3. RMIT University 

 

A typical 4-year undergraduate (BEng) aerospace engineering (Hon) program such as the one 

at RMIT University is listed in Table 5, which includes a typical capstone design project course 

[51]. 

Year-1 consists of eight core courses. Year-2 consists of seven core courses and one 

University elective. Year-3 consists of 7 core courses and 1 Program elective (includes 

aerospace design principles course, which covers project plan, CAE, aircraft sizing and 
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configuration) and 1 elective course. Year-4 consists of five core courses, Program 2 electives 

and one University elective.  

Year-1 and -2 devote to understanding of engineering such as maths and mechanics of 

materials.  

Year-3 deepens student knowledge in aerospace engineering including one program 

elective tailored to suit students’ areas of interest and enhance career opportunities.  

Year-4 focuses on putting theory into practice through a major professional research 

project. Students plan their research project, conduct relevant literature review, complete the 

research project and report findings. This capstone research design project will develop and 

reinforce students’ skills and knowledge as defined by Engineers Australia. This program does 

not have a CDF, nor formal project management course.  

The Year-4 ‘International Industry Experience 2’ (IIE) and ‘Industrial Placement 

Program’ (IPP) courses are available. However, IIE enrolment depends on the course 

coordinator’s confirmation of placement with an international host organisation. Beside this, 

the eligibility is based on both academic performance and a successful interview. The IPP 

enrolment must be pre-approved by the course coordinator. 

 
Table 5, RMIT aerospace engineering (Hon) program [51]. 

 
RMIT: BEng (Aerospace Engineering) (Honours) (assess date: 12 Oct 2018) 

Year-1 Year-2 Year-3 Year-4 
Introduction to Professional 
Engineering Practice 

Mechanics and Materials 2 
Aerospace Dynamics and 
Control 

Engineering capstone Project 
Part A (team work) 

Introduction to Aircraft Dynamics Advanced Aerodynamics Aerospace Design Project 

Engineering Mathematics C 
Math & Stats for Aero, Mech. 
& Auto. 

Aerospace Propulsion 
Aerospace Finite Element 
Methods 

Mechanics and Materials 1 Principles of Aerodynamics 
Computational Engineering 
Analysis 

Program elective 

Applied Thermodynamics Systems Engineering Aerospace Structures 
Engineering capstone Project 
Part B (team work) 

Fluid Mechanics of Mechanical 
Systems 

Flight Mechanics 
Research Methods for 
Engineers 

Advanced Aerospace 
Structures 

Computer Aided Design 
Design for Manufacture and 
Assembly 

Aerospace Design Principles Program elective 

Further Engineering 
Mathematics C 

University elective 

Program elective (12pt) 
International Industry 
Experience 1:  
a. Required placement 
confirmation. 
b. Eligibility based on academic 
performance and successful 
interview. 

Program elective (24pt) 
International Industry 
Experience 2: 
a. Required placement 
confirmation. 
b. Eligibility based on academic 
performance and successful 
interview. 
 or, 
Industrial Placement Program: 
a. Required pre-approval to 
enrol by course coordinator. 
 
And, 1 university elective. 

 

 

Figure 5 illustrates a typical capstone design project course structure, which is based on the 

Honours program in Table 5 [51, 56]. Students team work together to develop concept solutions 

of real-world problem requirements through PBL. Student group selections begin when the 

course commences. Students receive the design project themes to aid group selections and 

formations.  

These themes may come from academic staff and the course coordinator for 

development into the product requirements document (PRD). Students also receive the project 

schedules and academic advisor’s mentor throughout the lectures, tutorials, reviews and 
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presentations. The design process aims to deliver a peer learnings process and guide students 

toward a properly managed group project to train students in design skills. 

A supporting Year-3 course precedes the Year-4 design course. This Year-3 course 

covers the aerospace design principle, where students learn what design is, the steps in a typical 

design process, available resources and multi-disciplinary design, etc. The course includes 

assignments involving research of a design related topic, estimating the initial aircraft weight 

and aircraft sizing. The combined Year-3 and -4 courses aim to consolidate the learning of 

individual supporting aerospace courses from Year-1 to -4 and apply this combined knowledge 

to design complex multi-disciplinary systems (i.e. baseline engineering practice). 

 

 
 

Figure 5, A typical capstone design course structure. 

 

 

Overall, this program appears to meet the aerospace discipline components required by the 

industries in light of some challenges in conducting the Year-4 aerospace design course [22]. 

From a course coordinator’s perspectives, such challenges include the managing of these 

groups, and determining a transparent and fair assessment scheme. The project finishes with 

the submission of a consolidated design report. Although this report reflects the outcome of the 

group efforts in Figure 5 – blue box, it does not reflect the contributions of individual students, 

nor how each has contributed to the design process. University policy requires the assessments 

of individual student contributions, and their involvements in the design process is a challenge 

in project-based learning [56]. 
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2.4. Case study: A typical Year 4 aerospace design course, RMIT 

 

The preceding sub-chapter reviews four typical university aerospace undergraduate programs 

that are without CDF. This sub-chapter evaluates a typical Year-4 aerospace design course 

structure and attributes in Figure 5 through a case study. 

 

2.4.1. Capstone design project course 

 

The Year-4 design project course includes a duration of 12 workweeks at about 10 hours per 

week per student. Face-to-face learning mode is 11 workweeks, teachers guided hours are 36 

hours per semester and learner directed hours is 84 hours per semester. The primary learning 

mode consists of lectures and facilitated project-based group design sessions for students to 

tackle complex tasks, aim at generating credible conceptual design solutions. The course 

coordinator and tutor meet face-to-face with students twice a week. Students are also able to 

assess to the course coordinator through the University student course ‘blackboard’ website 

and emails. Students may meet on their own group or part of a group during the week in the 

University study areas or computer laboratories for additional discussions in-between lectures 

and tutorials. 

Students receive the design briefs to generate, evaluate and select suitable the design 

concepts to meet these requirements. Each students group averaging at seven students work on 

the same design brief. Workweek 1 to 10 allocates an hour of lecture each week. Eight tutorials 

are available with tutorial one starting on workweek 3 after lecture 3. Tutorial is a non-teaching 

or counselling class conducted by teaching staff in a tutoring role to assist, facilitate and 

encourage 1 or small group of students to feel competent in their learning process to achieving 

their educational goal [57]. Workweek 11 and 12 has no lecture or tutorial, but in workweek 

11, the student groups do their final presentations. The judging panel consists of the course 

coordinator, tutor, internal lecturer and an external aviation industry person. Students group 

submit their final group reports in workweek 12.  

 

2.4.2. Project workflows structure 

 

The Year-4 design project course commenced with lecture1, also known as workweek1 (wwk1) 

and lecture2 in wwk2. Tutorial 1 commenced in wwk3 as illustrated in Table 6 timeline. 

 
Table 6, Case study: Capstone Design Project Course – Timeline 

Case study: Capstone Design Project Course – Timeline 
(average 7 students per design project group) 

wwk1 wwk2 wwk3 wwk4 wwk5 wwk6 wwk7 Public 
Holiday 

wk 

Public 
Holiday 

wk 

wwk8 wwk9 wwk10 wwk11 wwk12 

Lecture 
1 

(1 hour) 

Lecture 
2  

(1 hour) 

Lecture 
3  

(1 hour) 

Lecture 
4  

(1 hour) 

Lecture 
5  

(1 hour) 

Lecture 
6  

(1 hour) 

Lecture 
7  

(1 hour) 

  Lecture 
8  

(1 hour) 

    

  Tutorial 
1 

Supervis
ed  

(45 min) 

Tutorial 
2 

supervis
ed 

(45 min) 

Tutorial 
3 

supervis
ed 

(45 min) 

Tutorial 
4 

supervis
ed 

(45 min) 

Tutorial 
5 

supervis
ed 

(45 min) 

  Tutorial 
6 

supervis
ed 

(45 min) 

Tutorial 
7 

supervis
ed 

(45 min) 

Tutorial 8 
supervise

d 
(45 min) 

  

  I was present  
(wwk4 to wwk7) 

  I was present  
(wwk8 to wwk10) 

  

   I download off-line data from students google drive  
(From wwk4 to wwk12, including 2 Public Holiday wks.) 
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Course coordinator and tutor activities 

 

From tutorial 2 to 6, the course coordinator and tutor each: 

 Supervised different groups at around 45 minutes each group, and  

 Exchange groups in the following wwk.  

 

The author was in the tutor’s supervised groups from tutorial 2 to 6 and able to observe more 

students’ groups as the course coordinator and tutor exchange groups each wwk.  

In tutorial 7 and 8 (last tutorial), the course coordinator gathered the groups with similar 

design brief to discuss their progress. This included: 

 What went wrong in their research approach in selecting concepts and options? 

 What they have not touches on, and critically analysed a few possible concepts? 

Subsequently, a suitable concept with justifications is determined for the students final 

reporting and presentations in the last two wwks. 

 

Author’s activities 

 

Observations have been conducted through the below activities as illustrated in Table 6. 

 Being present at each tutorial group discussions supervised by the course coordinator and 

tutor from workweek (wwk) 3/tutorial 1 to workweek (wwk) 10/tutorial 8. 

 Downloading the off-line data collections stored in the students’ group google drives 

(permissions given by students) from workweek (wwk) 4/tutorial 2 to workweek (wwk) 12.  

 

In each tutorial session, the observations involved the following: 

 Recorded the main collaboration activities using notebooks, and  

 Summarised into short pointers (MS-Word) as part of the data collections.  

 Did not directly contributes to the discussions, but  

 Did request for clarifications if unclear and did provide some minimal personal views.  

 

2.4.3. Adopted design process, software and hardware tools 

 

Design process was observed to consist the applications of iterative cycles from concepts 

generation to evaluations, and finally to concepts selections. Students need to have a minimum 

of two concepts generations stages in wwk3 and wwk7, be prepared for final group 

presentations in wwk11 and final group report submissions in wwk12. Each students group has 

at least one member who is able to use CAD to create conceptual diagrams for final reporting. 

Tools used were mainly MS-Word, MS-Excel, MS-PowerPoint, Email, Google drive, 

MATLAB and CATIA. These were running in non-CD mode though for example, MS-Excel 

has such a feature. For hardware, students were able to book the university desktop computers 

in any available computer laboratory or use their own laptops.  

 

2.4.4. Off-line data collections 

 

The students group setup their shared google drives in wwk3 and wwk4 to function as their 

primary data exchange and storage server environment, but each group have setup their design 

document folders structures differently though they may have similar design briefs. Off-line 

data have been collected from wwk4/tutorial2 to wwk12 by downloading the design documents 

from the assessable students group google drives each week.  
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  Off-line data collections were analysed and consolidated into a chart as illustrated in 

Figure 6. The chart shows the trends for the numbers of design documents changes for three 

students’ groups with similar design brief from wwk4 to wwk12. These data were further 

analysed regarding their collaborations levels, where data downloaded each week were 

analysed for its file folder names, filenames, file dates, and compared with the preceding 

week’s downloads. The aims were to determine whether the documents were deleted, newly 

added files (new filenames), modified files (same filenames but different dates) or similar files 

(same filenames and dates) Examples: 

• File1 added in wwk1 equal 1 change/increase in collaboration level (CL). 

• File1 modified in wwk2 (file date change) equal 1 change/increase in CL. 

• File1 deleted in wwk3 equal 1 change/increase in CL. 

• File1 not changed in wwk4 (file date not changed) equal No change in CL. 

 

 
 

Figure 6, Number of Changes (vertical axis) in Google Drive ‘data server’ over Timeline. 

 

Collaborations levels observed have shown that the offline google drive activities in Figure 6 

has similar trend, with higher documents change levels near to the submissions periods for 

assignments and presentations 2, 3, 4, 5, 6). During wwk7, wwk8 and the two Public Holidays 

in between these two wwks, these collaborations levels have shown a downward trend. All 

three Groups activities levels also seem to synchronise with the curriculums timeline and not 

based on the needs to achieve the optimal numbers of iterative cycles.  

 

2.4.5. Student group tutorial sessions 

 

Observations on student group tutorial sessions started from tutorial1 (wwk3) to tutorial 8 

(wwk10, last tutorial). Each group discussions usually take place after tutorials. Some groups 

have arranged their follow-up discussions in the same lecture room after the tutorials, while 

others meet during the week, to consolidate individual works before next tutorials. Generally, 

the design workflows were non-concurrent as students usually do their own research. 
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In tutorial 1, 2 and 3, the course coordinator and tutor led each group at around 45min 

per group to determine their design status, encouraged them to select a team leader to manage 

the group activities, and proactively participate in the discussions. In tutorial 1, 2 and 3, 

individual member presents their own idea with the aid of notebook drawn by hand. 

In tutorial 2 (wwk4), the course coordinator formed student groups with an average of 

7 students per group having similar design theme. In tutorial 1 and 2, student groups were 

required to determine 10 product design requirements (PDR). In tutorial 3, 4 and 5, students 

were asked to determine the concept options, select one for presentation. The tutor and course 

coordinator provided feedbacks during the student presentations. 

In tutorial 7 and 8 (wwk10, last tutorial), students were in the process of selecting and 

finalising one concept for final group presentation (wwk11) and final group report submission 

(wwk12). In wwk11, student final group presentation taken place. In wwk12, students 

submitted their final group reports to the course coordinator. Overall, the general interests and 

enthusiasms of the students were good. 

 

2.4.6. Analysis and discussions design group observations 

 

The analysis and discussions of the preceding case study includes Collaboration level (‘data 

storage server’ activities levels), Collaboration level (team communications level), Tools 

(software and Hardware), Design facility, Design Process/ workflow/ iterative cycle and 

Project management and control. These were the essential elements observed in the capstone 

design course, which provided a ‘window’ into its design approach and effectiveness. 

Design process chart in Figure 6 shows high collaboration levels in the data storage 

server and team communications occurring at the initial design cycle but this reduced mid 

cycle. The highest collaborations levels occurred near to the final stage of the design cycle.  

This could be due to students aligning their design activities with the course curriculums 

(Submission 2 due: wwk4, submission 3 due: wwk6, final group presentation/ submission 5 

due: wwk11, and final submission 6 due: wwk12) and not based on the actual design project 

requirements. In general, students tend to focus on their own project works, especially around 

the mid cycle, resulting in less than expected communication level between team members. 

Students may meet for discussions 2 to 3 times per week during the design timeline. This could 

be before and after each tutorial and maybe another two to three times during mid-week in the 

university study areas or laboratories.  

Design activities are highest when near to the end of design timeline. From the 

engineering standpoint, there is not enough iterative cycles executed resulting in some missing 

options and considerations as highlighted in the preceding discussions. 

Tools used included MS-Word (with EndNote), MS-Excel, Power Point, Email, Google 

Drive (shared), MATLAB and CATIA. These tools were running in non-CD mode though e.g. 

MS-Excel has such a feature. Students skills in 3D CAD modelling are also limited (learning 

mode), which were reflected in some student’s final group reports. Some students also found 

themselves having to learn CAD instead of focusing on the design project. For hardware, 

students could book the typical personal computer (PC) ‘standard hardware configurations’ in 

the university laboratories or use their own laptops. 

Design facility is an important aspect of the whole design process. Generally, there 

were at least 2 to 4 student group discussions amongst students before and after each lecture 

and tutorials, either in the computer laboratories, tutorial rooms or at the allocated study areas 

within the University. Real-time collaborations appeared to be minimum especially when there 

was no lecture or tutorial. Students usually do own research works when not discussing in 

groups. Therefore, the students worked in a combination of centralised and de-centralised 

(mainly) design environment. 
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The design project adopted an iterative cycle approach, but bended towards the 

sequential or ‘over-the-wall’ workflows. Design activities levels were higher when getting near 

to each task’s assignment submissions periods with highest levels near to the final group 

presentation and report submission period. The overall design workflows were more aligned 

with course curriculums and do not allow sufficient iterative cycles.   

Project management (PM) and control were generally present though not as tight. This 

was likely due to the student team leader lacking in PM hands-on experience in leading, 

motivating the team members, and time managements on the group. 

Student group sizes seem to vary between institutions. Some believe it is ideal to have 

between 3 to 6 students in a group tutorial (mainly general curriculums), another (aerospace 

design project) have between 6 to 7 students [28, 57]. Yet, other (aerospace design project) 

may have a team of 4 students [29]. In tutorial sessions 1 to 6, there was an average of seven 

students, which are like other institutions. 

 

2.4.7. Lessons learned from case study results 

 

The CS has shown the ‘waterfall’ and ‘over-the-wall’ approaches resulting in reduced iterative 

cycles and lower project completeness. However, the presence of these findings have to also 

be looked at in the context, that a typical aircraft design project takes about 5 years or more 

and will involve engineers, scientists and managers from a wide range of disciplines [56].  

Universities should help the industries by aligning its curriculums closer to the CDF 

attributes (benefits) described in this thesis despite constraints in the curriculums timelines and 

costs. This is in-line with many case studies that have demonstrated savings in time and cost 

compared to traditional processes for systems design, and aerospace engineering education 

should adopt CDF for design teaching and research [48]. 

The CS has also shown a general lack in concurrent enabled software tools used, CAD 

skills and project management hands-on skills from students. This could have further 

contributed to lower project completeness. Universities should consider adopting the CDF 

platform, along with CD enabled software platforms and with more focus on project 

management (PM) hands-on skills as pre-requisites in order to realise the full potential of CDF 

implementation.  

This work has also developed a Year-3 aerospace conceptual design project tool 

(closely referencing a typical Year-3 aircraft design course structure) aims at enhancing the 

design teaching so that Year-3 students could have better appreciation and improve their 

preparedness for their Year-4 aircraft design curriculums. 

PM is a crucial component of effective Project-Based Learning (PBL), which offers a 

wealth of opportunities to build the essential 21st Century competencies, which enhance the 

PM skills that will be extremely valuable to students as they enter the workforce [58]. David 

Woerner, chief engineer, NASA pointed out that; there are difference in PM process in the 

1990s and today. In the 1990s, (Mars Pathfinder (launched in 1996): risk was not really an area 

of focus, where one person on Pathfinder working on risk, and did have a short list of risks that 

were transformed into requests for funds. Today, risk analyses are done in a meticulous 

approach (e.g. every subsystem (Mars Science Laboratory, launched in 2011)) and every 

engineer had baskets of risk. These information are consolidated at project level, and the team 

could see how project risk evolved over time [59]. Therefore, it will likely be a challenge for 

students to enrol in the Year-4 design course without more focus in PM. 
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2.5. University of Bristol (UB), United Kingdom 

 

In the U.K., it is common for universities to offers 3 years undergraduate (BEng) and 4 years 

undergraduate (MEng) study, such as the University of Sheffield and the University of Bristol.  

The University of Bristol offers 2 undergraduate study, the 3 years BEng Aerospace 

Engineering (H405) and the 4 years integrated Masters (MEng) Aerospace Engineering (H410) 

[53]. The BEng study does not have research or capstone design project and is course works 

based.  

The first 2 years of the MEng course follows the same structure as the BEng in 

Aerospace Engineering. The curriculums focus on teaching students the solid understanding of 

engineering studies such as Mathematics, and Mechanics etc. 

In Year-3 and -4, greater flexibility is available for the students to pursue options that 

interest them. A typical 4-year undergraduate (MEng) aerospace engineering program such as 

the one at UB is shown in Table 7. The Year-4 Group Design Project involves capstone activity, 

where the students will exercise and consolidate their design, aeronautical engineering and 

management skills in the context of a complete aerospace vehicle design study. Project 

Management learning is embedded within the course.  

 
Table 7, University of Bristol, undergraduate study: 4 Years Integrated Master in Aerospace [53].  

University of Bristol, undergraduate study: 4 Years Integrated Master in Aerospace 

Year-1 Year-2 Year-3 Year-4 
 Fluids 1  Aerodynamics  Aerodynamics 3  AVDASI 4 – Group Design Project 

(capstone/team collaboration) 

Thermodynamics 1 Structures and Materials 
2 

Aircraft Propulsion Final Year Research Project 
(PM skills) 

Structures and Materials 1 Flight Dynamics & 
Control 2 

AVDASI 3  

Aeronautics and Mechanics Vibrations 2 Structures and Materials 
3 

 

Design and Computing Aerospace Vehicle 
Design and Systems 
Integration 2 

Individual Exploratory 
Project 

 

Application of Electronics Space Systems Sensors, Signals and 
Control 

 

Engineering Mathematics 1 Engineering 
Mathematics 2 

Professional Studies B – 
Professional Awareness 

 

AVDASI 1 – Aerospace Vehicle 
Systems Introduction 

Professional Engineering   

    

1 course (Optional)  2 courses (Optional) 5 courses (Optional) 

 

The aerospace design program that is offered by the University of Bristol (UB) does 

not have a CDF-based course, nor an Industrial Placement Program in curriculum. However, 

UB has started to collaborate with external agency, namely, the CDF at the Science and 

Technology Facilities Council’s (STFC) RAL Space in 2017 to design UB’s first CubeSat. UB 

student reported that working on a real-life mission is very motivating for them and it’s a unique 

opportunity [53]. 

 

2.6. Spanish User Support and Operations Centre – Technical University of Madrid 

collaborations (with CDF) 

 

The space education program (since academic year 2009/10) at the Technical University of 

Madrid (UPM), which is also known as Polytechnic University of Mardrid, is a good example 

to illustrate the benefits of industry-university collaboration. This was in collaboration with the 

Spanish User Support and Operations Centre (E-USOC), the centre assigned by ESA to support 
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the International Space Station operations of scientific experiments [28]. E-USOC is located at 

UPM technology campus in Madrid and is a centre of Polytechnic University of Madrid (UPM) 

[60]. 

These activities have been integrated within the last semester of the UPM Aerospace 

Engineering degree, which included a laboratory created for students to validate and integrate 

the subsystems of a microsatellite using demonstrator satellites [28]. In parallel, students were 

also involved in a Project Based Learning (PBL) to work in groups of (6 – 7) to develop the 

conceptual design of a space mission. One student in each group is given the role and 

responsible for the design of one of the satellite subsystems (SS) such as the project manager, 

mission design engineer, mechanical engineer (SS), electrical engineer (SS), propulsion 

engineer (SS), orbit and attitude control engineer (SS) and payloads engineer (SS). 

The incorporation of PBL allows students to do a similar works as in different 

companies and space agencies. This is where multi-disciplinary experts work together for a 

limited time to develop a feasible space mission.  

The results of the student surveys and lecturers’ perceptions show that PBL encourages 

student motivation and improves their results. They acquired better technical training and 

improved transversal skills. However, this methodology also requires more lecturer 

involvement than the traditional methods [28]. 

Final-year degree students, led by lecturers and E-USOC staff, developed the project 

topic and schedules, which was very challenging, because such projects require high student’s 

participations, but their program schedule is not always compatible with the project schedule 

and milestones. Only very high motivation and commitment with the project make it possible 

[28]. 

Since the IDR/UPM Institute (Instituto Universitario de Microgravedad ‘Ignacio da 

Riva’) established a CDF for space mission design in 2011, the CDF has been mainly used for 

academic purposes within the: 

 UPM Master in Space Systems, MUSE (Master Universitario en Sistemas Espaciales) 

incorporating PBL [55, 61].  

 This was besides the PBL related surveys activities in academic years 2012/2013 and 

2013/2014 [28]. 

 

First year MUSE students cooperate with their more experiences second year students to enable 

comprehensive and resource-effective use of the CDF. MUSE student surveys results show 

that students [55]: 

 Have a positive point of view about the CD concept. 

 Suggest that more activities would be beneficial for the learning.  

 Think that their skills have been improved due to CDF activities, where progress has been 

higher for Year-1 students. 
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Figure 7, IDR/UPM CDF layout established since 2011 [61]. 
 

 

The layout of IDR/UPM CDF is illustrated in Figure 7 [61]. This CDF is based on a smaller 

scale ESA/ESTEC CDF approach, with 13 workstations in a round table distribution, audio-

visual distribution system and videoconference system. 

 

2.7. European Space Agency - International Space University collaborations (with CDF) 

 

Another good example is the ESA – ISU collaboration. The ISU CDF shown in Figure 8 was 

donated by ESA research centre ESTEC after 10 years of operations, with wide portfolio of 

future missions studied and several concept designs analysed. A new and more advanced CDF 

installation was established at ESA [32].  
 

 
 

Figure 8, Panoramic view of the ISU CDF (courtesy of Remy Chalex, ESA) [32]. 

The ISU offers two graduate degrees: 

 Master of Science (MSc.) in Space Studies (MSS) 

 Master of Science (MSc.) in Space Management (MSM) 

 

Both courses include CE-based activities in each of these degrees, run for a full academic year 

and divides into five separate modules as shown in Figure 9. Module 1 (7 weeks) core 
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curriculums is common to both programs Module 2 (9 weeks) and Module 3 (9 weeks) covers 

a specialised curriculum for each program separately. Module 4 (8 weeks) includes team 

projects by students from both programs. Module 5 (12 weeks + 1 week presentations) includes 

internship and an individual project. 

 

 
 

Figure 9, ISU Master of Science Course Structure [32]. 

 

The ISU CE approach follows the one defined by ESA, which states that for the successful and 

effective application of CE, the five key elements must be present as reviewed in Sub-Chapter 

1.3 [6, 32]. 

For the preliminary design, ISU CDF has adopted 10 mission study domains such as 

the System, Attitude Determination and Control, Power, Structures, Communications, 

Propulsion, Thermal, Payload, Mission and Cost. Although these are not enough to complete 

and accurately model a spacecraft, this breakdown structure is acceptable for design teaching 

purposes. The ISU CDF Integrated Design Environment (IDE), which is based on the 

architecture employed at ESA is given in Figure 10 [6]. This IDE has been fully implemented 

in Spreadsheet/Workbook, which was also based on the internal Spreadsheet/Workbook 

functions and Visual Basic macros. 

ISU Master of Space Studies (MSS) students’ assignments involved generating 

different mission architectures and design options from a set of requirements. ISU Faculty 

plays the role of customer. Assignments for the ISU MSS 2009 and MSS 2010 classes results 

have been very encouraging, based on students’ feedback and overall quality of the work by 

them produced [32]. 

 

 
 

Figure 10, ISU CDF Integrated Design Environment (left.). Design Process Workbook structure (right) [32]. 
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2.8. Utah State University (USU) (with CDF) 

 

Utah State University (U.S.A.) offers a Bachelor of Science in Mechanical Engineering with 

Aerospace Emphasis Program.  

In the Space System Design Course, students work in teams to perform a space system design 

involving all aspects, including technical, cost, and schedule. It is conducted in the USU 

Concurrent Engineering Facility (CEF), known as the Space systems Analysis Laboratory 

(SSAL) [4].  

 
Table 8, Bachelor Science, Mechanical Engineering: Aerospace Emphasis Program [47] 

 

Year-1: Pre-Professional Program ( * : require for admission to the Professional Engineering Program) 

Fall Semester Credits Notes Spring Semester Credits Notes 
CHEM 1210: Principles of Chemistry 
1* 

4  MAE 1200: Engineering Graphics* 2  

CHEM 1215: Chemical Principles Lab 
1* 

1  MATH 1220: Calculus 2 (QL)* 4  

MATH 1210: Calculus 1 (QL)* 4  PHYS 2210: Physics for Scientists & 
Engineers 1 (BPS/QI)* 

4  

MAE 1010: Intro to Mechanical 
Engineering* 

3  PHYS 2215: Physics for Scientists & 
Engineers Lab 1* 

1  

Breadth American Institutions (BAI) 3 Pick course Breadth Creative Arts (BCA) 3 Pick course 

Year-2: Pre-Professional Program ( * : require for admission to the Professional Engineering Program) 
ENGL 2010: Intermediate Writing: 
Research Writing in a Persuasive 
Mode (CL2) * 

3  MAE 2160: Material Science * 3  

ENGR 2010: Engineering Mechanics 
Statics * 

3  MAE 2165: Material Science 
Laboratory * 

1  

ENGR 2210: Fundamental Electronics 
for Engineers * 

3  MAE 2300: Thermodynamics I * 3  

MATH 2210: Multivariable Calculus 
(QI) * 

3  MATH 2250: Linear Algebra and 
Differential Equations (QI) * 

4  

PHYS 2220: Physics for Scientists and 
Engineers II (BPS/QI) * 

4  ENGR 2030: Engineering Mechanics 
Dynamics * 

3  

PHYS 2225: Physics for Scientists and 
Engineers Lab II * 

1  ENGR 2140: Mechanics of Materials * 3  

Year-3: Professional Engineering Program 
CS 1400: Introduction to Computer 
Science--CS 1 

4  MAE 3210: Engineering Numerical 
Methods 

3  

MAE 3600: Engineering 
Professionalism and Ethics 

1  MAE 3340: Instrumentation and 
Measurements 

3  

ENGR 3080: Technical Communication 
for Engineers (CI) 

3  MAE 3440: Heat Transfer (QI) 3  

MAE 3040: Mechanics of Solids 3  MAE 4300: Machine Design 3  

MAE 5360: Advanced Dynamics 3  Breadth Life Sciences (BLS 3 Pick course 

MAE 3420: Fluid Mechanics 3     

Year-4: Professional Engineering Program 
MAE 4400: Fluids/Thermal Laboratory 

(CI) 
2  MAE 4810: capstone Design II 3  

MAE 4800: capstone Design I (CI) 
(Team Work) 

3  Mechanical Engineering Technical 
Electives- Aerospace 

3 ECE 5230 - 
Spacecraft 
Systems 
Engineering 

MAE 5500: Aerodynamics OR MAE 
5560: Dynamics of Space Flight 

3  Mechanical Engineering Technical 
Electives- Aerospace 

3 Pick course 

Mechanical Engineering Technical 
Electives- Aerospace 

3  Depth Humanities and Creative Arts 
(DHA) 

3 Pick course 

Breadth Humanities (BHU) 3 Pick course Depth Social Sciences (DSS) 3 Pick course 

Breadth Social Sciences (BSS) 3 Pick course    

 

This course is mainly for teaching students on end-to-end design of a space system, 

including students performing their work in a CE setting. The use of CEF for teaching is 

beneficial as space systems design courses are taught in a more practical and real-world 
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applicable manner. Students also benefited in terms of better understanding of the complexity 

of modern aerospace systems and innovative approaches necessary to optimise these systems 

[62]. 

USU Concurrent Engineering Facility has adopted similar approach to NASA Jet 

Propulsion Laboratory (JPL), Godard Space Flight Centre and The Aerospace Corporation. 

USU reported that their Concurrent Engineering Facility is suited for teaching a space systems 

design, with nine PCs networked together with file sharing server. Each PC is installed with 

tools for space systems design. The PCs are laid out in a U-configuration to allow easy 

interaction among team members as shown in Figure 11 [4]. An LCD projector in front of the 

room can display content from any PC as shown. 

This undergraduate program consists of 4 years. Year-1 and -2 are known as the pre-

professional program and Year-3 and -4 are known as the professional engineering program. 

In Year-4, there are 2 capstone courses as shown in Table 8 [47].  
 

 
 

Figure 11, USU SSAL CEF layout [4]. 

 

 

2.9. Lessons learned from (E-USOC)-UPM, ESA-ISU collaboration, and USU 

 

In comparison to UPM and ISU, the ESA/ESTEC CDF uses more domain disciplines for their 

full-scale mission studies [6]. However, all three CDFs have adopted the six common domains 

disciplines: Mission, Power, Propulsion, Payload, Communication and Thermal.  

UPM has adopted the ESA CDF approach, and integrated CD and PBL in their 

conceptual space mission design course, led by UPM lecturers and (industry) E-USOC staff. 

UPM challenges are that, the students attending other courses are not always compatible with 

the project schedule and its fixed milestones. Since the PBL/CDF related surveys activities in 

academic years 2012/2013 and 2013/2014 for UPM aerospace engineering degree course, the 

UPM CDF has been mainly used for academic purposes within the UPM Master in Space 

Systems (MUSE) incorporating PBL [28, 55, 61]. 

ISU has adopted the ESA approach (ISU CDF donated by ESA) in their MSc. design 

course, with internship and individual project in the final module of the course. USU has 

incorporated capstone courses and CDF based training in their under-graduate and graduate 

program. All three universities have reported positive results from the CDF based training [4, 

28, 32]. 
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2.10. Summary comparisons of employability themes and aerospace design teaching 

(without and with CDF) 

 

Table 9 provides the summary comparisons of the employability themes identified by the 2015 

report with the referenced aerospace design teaching methodologies (without and with CDF) 

[22]. The comparison shows that current curriculums (without and with CDF) reviewed meet 

most of the identified employability themes except industrial ‘business acumen’ and 

‘experience’. The main difference between curriculums without and with CDF is listed in the 

last 3 rows (highlighted in grey) of Table 9. The curriculums with CDF incorporate the CDF 

facility and CD workflows in designs training, but not available to curriculums without CDF. 

Table 10 provides a comparison of the referenced aerospace design programs, which is 

also based on some similar sub-categories (denoted by #), from Table 1, as follows: 

 Current programs as referenced that incorporate or do not incorporate a CDF. 

 A proposed curriculum: CDF integrated with pre-requisites and industry collaboration 

(subsequent research works). (*) denotes assessments given in this thesis. 

 

Literature reviews of the 7 universities (UNSW (Sydney), UQ, RMIT, UB, UPM, ISU and 

USU), including the case study results have shown that there should be more focus in the sub-

categories as listed in Table 10 [28, 32, 47, 49-51, 53]. This includes project management, pre-

CDF multi-disciplinary education (e.g. via IACDT incorporating MDO), CAD, CAE, 

computational engineering simulations, joint industrial-university design theme creations, 

more focus on industrial attachments and individual final project reporting. 

 
Table 9, Comparison of employability themes and aerospace design teaching (without and with CDF) [22]. 

Category, Sub-category and Engineering disciplines listings were taken from Table 1, 

Employability themes identified by students (X) and employers (O) as 
relevant to employability from engineering discipline [22] 

UNSW [49], UQ [50],   
RMIT [51], UB [53]. 

UPM [28], ISU [32], USU 
[4]. 

Category Sub-category 
Engineering 
disciplines 

Design teaching 
curriculums (without CDF)  

Design teaching 
curriculums (with CDF) 

Career 
development 
learning 

Business acumen X,O No No 

Career planning X,O Yes Yes 

Knowledge of industry and job market X,O Yes Yes 

Networking X,O Yes Yes 

Passions and interests X,O Yes Yes 

Professionalism O Yes Yes 

Recruitment processes preparation X,O Yes Yes 

Experience X,O No No 

Degree subject knowledge, understanding and skills X,O Yes Yes 

Generic skills 

Adaptability X Yes Yes 

Communication X,O Yes Yes 

Critical thinking O Yes Yes 

Entrepreneurship X No No 

Ethics X,O Yes Yes 

Innovation and creativity O Yes Yes 

Leadership X Yes Yes 

Lifelong learning X,O Yes Yes 

Numeracy  Yes Yes 

Problem solving X Yes Yes 

Teamwork X,O Yes Yes 

Time management X Yes Yes 

Work ethic X,O Yes Yes 

Working under pressure O Yes Yes 

Emotional 
intelligence 

Self-awareness X,O Yes Yes 

Self-management X,O Yes Yes 

Awareness of others X Yes (PBL) Yes (CDF, PBL) 

Managing others X,O Yes (PBL) Yes (CDF, PBL) 

Motivation X,O Yes (PBL) Yes (CDF, PBL) 
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Table 10, Comparison of Design teaching methodology (with and without CDF), and CDF integrated with pre-

requisites and industry collaborations. 

Category 
Sub-category 

(# = sub-categories similar to Table 1 ) 

Design teaching 
curriculums (without 

CDF) 
 

UNSW [49], UQ [50],   
RMIT [51], UB [53]. 

Design teaching 
curriculums 
(with CDF) 

 
UPM [28], ISU 
[32], USU [4]. 

CDF integrated 
with pre-

requisites and 
industry 

collaboration 
(*) denotes 

assessment in 
this thesis 

Specialised 
skills 

Project Management (with more focus) 
(# Leadership, Communication, Awareness of 
others, Managing others, Motivation, Teamwork, 
Time management) 

PM: Yes (PBL), but need 
more focus 

PM: Yes (CDF, 
PBL), but need 

more focus 

PM: Yes (CDF, 
PBL) 

Year-3 Aerospace (Aircraft) Design formal 
course, with pre-CDF multi-disciplinary 
education (MDE via IACDT tool) 

Yes, but also need pre-
CDF MDE 

Yes, but also need 
pre-CDF MDE 

Yes 

Project Based Learning (PBL), capstone project 
and group report 

Yes Yes Yes 

CAD, CAE formal short course Yes Yes Yes 

Computational engineering simulation tools 
formal short course 

No No Yes * 

Multi-disciplinary Optimisation formal short 
course 

No No Yes * 

Concurrent Design Facility environment formal 
short course 

No No Yes * 

Year-4 design themes from joint industrial-
university collaborations 

No Yes Yes 

More focus on industrial attachment and 
individual report 
(# Work experience, Adaptability, Networking, 
Professionalism) 

Yes, but need more 
focus 

Yes Yes 
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3. Development of a collaborative teaching tool to enhance multi-

disciplinary design education  
 

This chapter introduced an original novel collaborative teaching tool to enhance multi-

disciplinary education prior to students enrolling in the capstone design course. 

The original novelty elements come from the development of the Real-Time Integration 

of spreadsheets/workbook (acting as MDO) and CAD 3D model, and closely referencing the 

typical Year-3 aircraft design course structure. This integration allows any change in any of 

the sub-system to propagate in real-time to all others relevant sub-systems and the dynamically 

linked 3D aircraft model. 

Learning to use this tool is aimed at enhancing the Year-3 aircraft design course with 

CE workflows. Therefore, this tool functioned as a pre-requisite to prepare students for 

enrolment in CDF-based capstone design project. Subsequently, students enrolling in the future 

CDF-based (capstone/PBL) design project will be able to focus more on the design projects, 

instead of spending their times during the project design to learn the CD attributes and 

workflows. 

This tool has also provided answers to research question 3 in later work (Chapter 5) on 

one of the essential requirement (ER 12) established in Sub-chapter 4.1.1, Table 11. 

 This collaborative teaching tool is called the ‘Initial Aircraft Conceptual Design Tool’ 

(IACDT). It is dynamically linked to CAD for real-time geometry updates of the 3D model. 

IACDT development involved closely referencing a typical Year-3 aircraft design course 

structure. The ‘collaborative’ element comes from the spreadsheet/workbook built-in ‘sharing’ 

function, which allows the same spreadsheet/s/workbook to be opened by multiple users to 

view, edit and save their entries simultaneously. Therefore, a team of 10 students can use this 

tool concurrently to change their individual sub-system spreadsheet, and review the 

corresponding change/s to other sub-system spreadsheet within the same workbook for a 

system wide perspective, which is useful in trade-off studies. 

The limitation of this collaborative tool is that, it is ‘hardwired’ only to the FAR 23 

general aviation 2-seaters propeller aircraft. Future enhancement may include FAR 25 

commercial aircraft, and the removal of the current limitations. The Chapter Structure is: 

 

Figure 12 illustrates the structure of this chapter with the five sub-chapters as follows: 

 Objective of IACDT 

 Benefits of the IACDT 

 A typical university aerospace design principle curriculum 

 Closely referencing a typical Year-3 aircraft design course structure. 

 Operations of the IACDT: Detail operations (equations/workflows) are in Appendix C.  

 

The detail operations for the following sub-components are described in Appendix C: 

 IACDT design process demonstration/ colour codes, aircraft mission requirements 

(spreadsheet (TAB1)),  

 Weight estimation (spreadsheet (TAB2)) 

 Matching chart (spreadsheet (TAB3)) 

 

Aircraft Configurations: 

 Fuselage (spreadsheet (TAB4)) 

 Propulsion (spreadsheet (TAB5)) 

 Wing (spreadsheet (TAB6)) 
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 Tail (spreadsheet (TAB7)) 

 Weight and balance (spreadsheet (TAB8)) 

 Drag polar (spreadsheet (TAB9)) 

 Preliminary 3 view of the aircraft concept (3D solid model). 

 

    
 

Figure 12, Sub-chapter structure of IACDT development. 
 

 

3.1. Objective of IACDT tool 

 

The objective of IACDT is to enhance aircraft design teachings by including an iterative CD 

environment. This tool demonstrates the iterative design workflows for sizing of an aircraft 

design concept with focus on CD, which include: 

 Concept evaluation, weight estimation, sizing, configuration and optimisations.  

 IACDT development references [6, 63-66], real-time automatic linking computation results 

between the relevant sub-system components. 

 Adopt an approach similar to ESA CDF status reporting by using workbooks to consolidate 

all domain model data [6]. This workbook is also a multi-disciplinary optimisation (MDO) 

platform. Computational results are automatically and dynamically linked to the CAD 3D 

model (aircraft concept).  

 The IACDT Concurrent Design (multiple access) functions come from the followings: 

o  Setup the linking (cells/equations) between all relevant sub-system spreadsheets in the 

same workbook. 

o Activating the ‘shared’ function built into Excel allows all spreadsheets in the same 

workbook to be opened and shared by multiple students at the same time (real-time).  

o Multiple students can review and edit concurrently on their individually assigned sub-

system spreadsheet (i.e. assigned role). This provides a system wide perspective to 

multiple students at the same time. 
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Limitation: 

Multi-disciplinary optimisation function is still sequential, where each iteration of 

optimisation is performed through each parameter change within any of the sub-system. 

 

The lecturer conducts the course on a large screen and in parallel using this tool to demonstrate 

in real-time how the initial aircraft design process can be sped up. Students will be better 

equipped to complete their assignments by following the workflow of the tool. Students will 

also be able to understand the links between the CD benefits and their learning in initial weight 

sizing, matching chart to aircraft configuration and optimisation. The real-time and semi-

automated changes (the tool) in various aspects of the initial sizing and configurations, 

including automatically and dynamically updating of the CAD 3D model via the framework of 

this tool, will allow students to understand the iterative system wide perspective better and 

appreciate the benefits of CD that could help in their capstone design projects. 

 

3.2. Benefits of IACDT tool 

 

IACDT development involves interfacing between spreadsheets/workbooks and CAD, which 

provides benefits over the full feature professional tools as follows:  

 IACDT closely referenced a typical Year-3 aircraft design course structure allowing 

students to focus visually on the lectures and tutorials instead of spending extra times to 

learn new professional full-features complex tool/s. This included the IACDT workflows 

and equations auto calculations and linkages between sub-system components.  

 The disadvantages of professional tools are that, students will require extra times to 

evaluate the entire tool options and understand the tools to some reasonable extend before 

they could filter out only the features relevant to their project. This could side track students 

and delay their assignments completion. If students are to explore professional tool/s, they 

will still need to figure out their own unique workflows/ approach to their assignments from 

the beginning. 

 IACDT adopts a similar approach to the ESA CDF status reporting. This approach uses a 

workbook to consolidate all the domain model data to calculate and produce the results 

instantly for further analysis and progress reporting [6]. This allows students to acquire the 

CD knowledge (via demonstrations during lectures), which includes the team members and 

leader’s collaboration process. 

 Real-time 3D model automatic updating (interfaced between IACDT and CAD) allows 

students to review visually the 3D model changes to certain aircraft components parameters 

(e.g. Initial take-off gross weight (converged – from weight sizing). Students will learn and 

appreciate the benefits of such CD integration (system wide perspective), make them aware 

of any error in their IACDT formulas/ equations, and enables students to submit more 

accurate assignments. 

 

3.3. Typical aerospace design core curriculum 

 

The Year-3 aerospace/aircraft design course in a typical 4-year (BEng) aerospace engineering 

(Hon) program spreads over 12 weeks of lectures, tutorials and assignments and teaches sizing 

of an aircraft design concept [51]. This includes weight estimation, sizing, configuration, and 

optimisation. Project management elements are covered, as part of developing a plan for an 

aerospace project, which includes professional ethics and communication skills. 
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3.4. IACDT closely referenced a typical Year-3 aircraft design course structure 

 

IACDT development involves closely referencing a typical Year-3 aircraft design course 

structure, e.g. aircraft initial weight estimation and aircraft configuration sizing, etc. Students 

are taught how to step through the first conceptual design phase, focusing on the preliminary 

sizing (weight estimation and matching chart) and configuration design (fuselage, propulsion, 

wing, tail, weight and balance, and drag polar). From the configuration freeze phase onwards 

to detail design, fabrication and support phases making up the complete aircraft design cycle 

are not included in the IACDT workflows. 

The IACDT workflows consist of three main components as shown in Figure 13, 

namely, the aircraft mission requirements, conceptual design phase: Preliminary Sizing (weight 

estimation and matching chart) and Preliminary Configuration (fuselage, propulsion, wing, tail, 

weight and balance, and drag polar).  

Since the objective is mainly to demonstrate the user-friendliness and benefits of CDF 

environment (as a teaching tool), this version of the tool is deemed sufficient with the limitation 

to a single engine, 1 pilot, 1 PAX, FAR 23 only, and variation in mission requirements as given 

in the tool. Future works will expand this tool into the FAR 25 commercial aircraft category, 

and not limited to 2-seaters propeller aircraft. 

 

 
 

Figure 13, Aircraft Conceptual Design Phases adopted by IACDT.  

 

 

3.5. IACDT tool operations 

 
The IACDT main workbook consists of a number of spreadsheet (TAPs). Each spreadsheet is 

assigned from (TAB1: manual entries of mission requirement, summary of design workflows 

and summary of calculated overall design results) to (TAB2 to TAB9: for various aircraft 

components) as illustrated in Figure 14. The detail IACDT operations (with equations and 

workflows) are given in Appendix C, and the main source of references are as follows: 

 Raymer 1992: Aircraft design: a conceptual approach [67]. 

 Roskam 1997: Airplane aerodynamics and performance [68]. 

 Sadraey 2013: Aircraft Design: A Systems Engineering Approach [69]. 

 Snorri Gudmundsson, 2013: General Aviation Aircraft Design: Applied Methods and 

Procedures [64].  

 

Each IACDT worksheet in Figure 14 is layout to closely match the workflows of the core 

curriculums (e.g. lecture notes/slides and tutorial slides for assignments) to allow students to 

visually relate better between what they learned and how they could translate the knowledge 

into completed assignments.  
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Figure 14, IACDT Workflow Structure from 9 * TABs: system (worksheet). 

 

 

The IACDT workflows begin with manual entry of the aircraft mission requirements in 

spreadsheet (TAB1), including various constraints and historical data/ statistical equations in 

Tab 2 – 9. Subsequently, both initial weight estimation (Tab 2: Initial Take-off Gross Weight, 

Empty Weight, Fuel Weight, and assumed Coefficient: CLmaxclean, CLmaxTO and 

CLmaxL)) and Matching Chart (Tab 3: Power Loading (W/hp: lbs/hp) vs. Wing Loading (W/S:  
𝑙𝑏𝑠

𝑓𝑡.2⁄ ), S and hp (propeller aircraft)) will be computed. Design point/s may be selected 

manually from the Matching Chart, which is updated automatically when any relevant 

parameter value changes (Tab 3).  

With the design point selected, the other configuration computation results (Tab 4 – 9), 

could be reviewed and the relevant parameters could be fine-tuned (an iterative process). These 

include fuselage, propulsion, wing, tail, weight and balance, and stability and control, and drag 

polar. The relevant geometries linked with the CAD model will also be changed when the 

relevant parameter/s change. This is an iterative process, where the change continues until the 

spreadsheet results and CAD model is perceived as optimised by the team. The results can be 

re-computed automatically upon modifications. This iterative process will continue until all 

relevant disciplines converge.  

The CD elements come from the combination of linking between all relevant sub-

system spreadsheets and the collaborative ‘shared’ function built into the spreadsheet. 

Therefore, multiple students can review and edit concurrently. This provides a system wide 

perspective to multiple students at the same time. 

Limitation: 

The IACDT tool optimisation function is performed at every change in at least one-

parameter value in any of the sub-system spreadsheet. However, it is still not a full-

featured commercial grade automatic optimisation tool.  
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4. Investigate a low-cost CDF architecture for education and research 
 

This chapter investigate a low-cost CDF architecture for education and research, which 

includes: 

 Integration of a CDF in design curriculums with project-based learning, including remote 

collaboration with industry and other universities. 

 Simulations of a proposed CDF architecture based on a case study and using standard 

hardware and software. 

 Recommendations of IT hardware and software architecture (CDF) for teaching and 

research in engineering design in a university environment. 

 Minimum support facilities for CDF room (physical room layout). 

 

4.1. Integration of a CDF in design curriculums with project-based learning, including 

remote collaboration with industries and universities 

 

This thesis focuses directly on the specific described gaps that appeared to have little attention 

from the literature reviews. The final CDF setup for education and research will mainly be 

based on the evaluations of existing industry CDF setup components, the existing typical 

undergraduate aerospace curriculums, and taking advantages of the current low-cost advances 

in IT technology.  

 

4.1.1. Essential requirements of a CDF for education and research 

 

The objective to establish a CDF for education and research is to meet the needs of the relevant 

industries. Therefore, a set of rationale and its essential requirements that are relevant to these 

industries must be established as given in Table 11. 
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Table 11, The rationales and its respective essential requirements of a CDF for education and research 

No. Rationales No. Essential requirements (ER) 
1 It is important to expect industry to employ graduates 

with relevant skills. This is also to minimise the effects of 
mismatch between employer requirements and 
university graduate capabilities in some industry-specific 
professional skills [20, 21]. 

ER1 The architecture must emulate industry 
design practices to expose the students to 
concurrent design workflows, skills and 
collaborations, which are critical to industry 
setting. 

2 Although a CDF in industry and university has common 
elements such as a multi-disciplinary design team, 
where the team work together in the same room, both 
do have different priorities. Industry is more focus in 
deliverable commercial project design, but university is 
more focus in teaching students how to apply CD 
methodology [28]. Therefore, it is reasonable for this 
thesis to recommend a smaller size design team to be 
administratively more manageable at university level. In 
this light, the team size can be expanded when the 
needs arise.  

ER2 The architecture should include sufficient 
specific domain disciplines PCs to 
accommodate an average size design team. 
 

3 It is important to teach students not only to work 
together in the same room, but also learn to interact 
with others of different cultures and like-minded 
students who are in other countries.  
 

ER3 The CDF should be capable of offsite contents 
sharing to enable concurrent collaborations 
between universities, industries and 
agencies, such as multi-disciplinary design 
projects and competitions. 

4 It is important to have affordability as it will allows more 
university to embrace CDF.  

ER4 The CDF should be low-cost in terms of IT 
hardware, software tools and IT 
infrastructure. 

5 It is important that university will not likely have to 
spend more time and cost whenever new tools are 
required due to new research requirements. This can be 
disruptive to the overall university programs and staff 
scheduling.  

ER5 The architecture should be flexible and 
adaptable to research needs through ease of 
installing low cost new commercial and 
internally developed tools. 
 

6 It is important that university will not likely have to 
spend more time and cost to change or upgrade 
hardware whenever new area of research is required. 
This can disrupt the university programs scheduling.  

ER6 Generic hardware configuration needs to be 
selected for multi-disciplinary complex 
design studies. 
 

7 It is important to have scalability to minimize 
maintenance cost over long-term. The time taken to 
scale installed hardware is likely to be shorter and lower 
cost than purchasing new hardware to install and 
uninstalling existing hardware.  

ER7 The CDF architecture should be scalable such 
as hardware configuration can be extended 
or upgraded when new technologies are 
available. 
 

8 It is important especially for projects that are 
confidential, patent and defense in nature to have 
secure collaboration.  

ER8 The CDF should include secure data storage 
to keep design data internally and/or in the 
Cloud. 

9 The whole purpose of CDF training is to teach students 
how to apply these methodology to be work-ready. 
Therefore, intuitive and easy to learn and use is an 
important priority for education.  

ER9 The facility must be capable of Design 
Optimization and Sensitivity Analysis, which 
is intuitive and easy to learn and use, and 
effective for multi-disciplinary design 
projects. 

10 It is important that students learn how to apply CD 
methodology, the ability to share content onsite or 
offsite intuitively and effectively becomes an integral 
part of the whole learning experience.  

ER10 The Data processing and Visualization must 
be available through shared projection of 
contents between local and off-sites 
(distributed concurrent design process) 
simultaneously and seamlessly. 

11 It is important to the well-being of the students and staff 
to be able to work in a conducive environment. This will 
allow them to be more productive as well.  

ER11 The CDF room must meet ergonomic and 
safety standards. 
 

12 Project design timeline is usually relatively short. It is 
important that students should spend more quality time 
to design project instead of learning the pre-requisite/s. 
In a group environment, this may also potentially delay 
the group progress.  

ER12 The curriculums incorporating CDF must 
include sufficient student training and 
preparation. 
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4.1.2. Approaches for Universities-Industries collaborations 

 

Aerospace industries are likely to have their own unique design workflows and tools, and often 

with rapid changes and upgrades. Therefore, universities should collaborate with the industry 

to maintain an up-to-date environment similar to the two industry-university collaborations 

examples as reviewed. Both UPM and ISU have shown encouraging results [28, 32]. Lessons 

learned from (E-USOC)-UPM and ESA-ISU collaborations did highlight their different 

objectives. These differences are not always compatible in terms of each entity’s priorities. For 

example, a university may have a lesser number of specific domain disciplines in the CDF 

based program than industry [32]. Despite of these differences, the collaborations has 

significant benefits [15]. The key mechanism to bridge the gaps is: 

 Creating joint industry-university design themes and  

 More focus on student industrial attachment (internship) post CDF/PBL based training.  

 

This allows students to apply what they have learned, while the industry could assess the 

students’ performances for feedback to the university (i.e. closing the gaps). The internship 

enables students to experience the real industry environment in advance before graduation and 

excite them to study harder, which is good [70].  

With the importance of industrial-university collaborations to help minimise the 

mismatch between employers’ expectations and aerospace engineering degree courses and, 

minimise the reluctance of aerospace companies to hire graduate students, this thesis proposes 

a general collaborations workflow as part of the overall CDF architecture for educations and 

research [20, 21]. 

Figure 15 illustrates a proposed industry-university collaboration workflow. The 

existing industry CDF elements may consist of the mission/product design workflows, software 

design tools, hardware and the facility. The existing curriculums consist of the undergraduate 

supporting core courses from Year-1 to -4, Year-3 design principle core course and Year-4 

final design project course (elective).  

The additional curriculums are the modifications to the existing Year1 to -4 curriculums 

in order to embed the relevant software tools with the existing formal short course to prepare 

students for the Year-4 final design project, with more PM focus as a pre-requisite prior to 

enrolling in the Year-4 final design project course. Post-CDF-based training is to be followed 

by industrial attachment (whenever feasible). Finally, there should be a continuous industry-

university collaboration whenever feasible, with joint efforts on creating the design project 

themes relevant to the industry. These built-in supporting elements, which ‘wrapped’ around 

the defined CDF architecture aims to maintain a long-term suitable CDF for education and 

research. 

As part of closing the identified gaps, this thesis has introduced a pre-CDF multi-

disciplinary education component. This aims to enhance design teaching in preparation (as a 

pre-requisite) for the capstone/PBL design project course within a CDF setting. 
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 Figure 15, A relevant CDF setup for universities requires suitable supporting elements. 

 
 

4.2. CDF architecture 

 
The objectives of this thesis are to investigate the design engineering education approaches in 

universities, with a focus on aerospace engineering, and to identify the requirements for a 

concurrent design facility specifically for design education and research. In this light, industries 

and national space agencies have been using the ESA CDF established in 1998 as a guide to 

creating their own facilities and processes [6, 27].  

Since the focus of this thesis is on aerospace engineering, it is reasonable to identify the 

ESA CDF design stations/domain disciplines, as a reference guide for the typical university 

initial CDF setup. ESA CDF adopted 19 design stations/disciplines for their full-scale 

preliminary studies as illustrated in Appendix B, Table 24.  

 This thesis has selected up to 10 such stations/disciplines and the corresponding tools. 

These are also the same tools adopted by other established CDFs in the industries and 

universities.  

Adoption of the 10 disciplines stations for initial setup is because lessons learned in 

literatures have shown that universities with CDF have implemented a maximum of 10 or less 

disciplines workstations. Besides this, case study in this thesis and literatures have shown that 

universities with non-CDF/PBL and CDF/PBL combination has an average of 7 and 6 – 7 

students in a group respectively [28]. The CDF architecture can expand beyond 10 relevant 

disciplines workstations in the future when the needs arise. 

Finally, a case study has been conducted in this thesis to simulate the interfacing 

between some of these tools (project dependant). 

 

4.2.1. Design tools adopted by industries, educational and research institutions, and 

proposal for initial CDF setup 

 

A short list of industries and universities adopting the CDF platform with their choices of tools 

adoptions is shown in Appendix A, Table 23. From the 3 CDFs (ESA, UPM and ISU) reviewed, 

all 3 have adopted the 6 common domain disciplines as in Table 12 – List A [6, 28, 32]. ISU 

adopts additional disciplines and tools similar to ESA as listed in Table 12 - list B [32]. 
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Table 12, List A: 6 common disciplines used by ESA, UPM and ISU. List B: disciplines used by ESA and ISU. 
 

List A: adopted by ESA, UPM and ISU Corresponding Tools adopted 
Mission (analysis) AGI STK - (4D modelling, simulation, and analysis of objects from land, sea, air, and 

space. This aims to evaluate system performance in real or simulated-time) [71] 

Power AGI STK 

Propulsion MATLAB - (Stateflow/Simulink Aerospace Blockset to model and simulate aircraft, 
spacecraft, rocket, propulsion systems and unmanned airborne vehicles [72]), 
Turbofan Engine System Block, and Programming codes. 
SolidWorks (CAD/CAE) 

Payload MATLAB - (requires programming codes),  
CATIA (CAD) 

Communication AGI STK – (4D modelling, simulation, and analysis of objects from land, sea, air, and 
space. This aims to evaluate system performance in real or simulated-time) 

Thermal ESARAD/ESATAN,  
MATLAB Simulink - (Simscape/Fluids Block: Thermal and programming codes). 

List B: adopted by ESA and ISU Corresponding Tools adopted 
Team Leader/ System Engineer MS-Excel - (proposed to combine with System Engineer) 

Cost (Analysis) AGI STK,  
Small Satellite Cost Model 2014 

Attitude Determination & Control/ Simulation 
(Mission: spacecraft. motion) 

MATLAB Simulink 

Structures CATIA,  
SolidWorks - (CAD/CAE, SIMULIA Structural Simulation/Finite Element Analysis) 

 

 

Since the objective is to familiarise students with the common domain disciplines adopted by 

the industries and industry-university collaboration, this thesis proposes to adopt the same 10 

domain disciplines/stations as listed in Table 12 – List A and B. The Team Leader and System 

Engineer disciplines can be combined into one station.  

List A and B, are combined in Table 13, based on design tools allocations to its 

corresponding domain disciplines. 

 
Table 13, Proposed CDF tools used for specific disciplines in space engineering designs. 

 
Proposed CDF Tools Domain Disciplines 

MS-Excel Team Leader Systems     

AGI STK Mission (analysis) Power Communication Cost (analysis) 

MATLAB/Simulink Propulsion Payload Thermal 

Attitude Determination & Control/ 
Simulation (Mission: spacecraft motion) 
(Aerospace Blockset add-on for Simulink 
to model and simulate aircraft, 
spacecraft, rocket, propulsion systems 
and unmanned airborne vehicles [72]). 
Payload needs programming code. 
MATLAB Simulink (Simscape Block: 
Thermal and programming codes). 

SolidWorks Propulsion Structures     

CATIA Payload Structures    ISS Internal Payload 

ESARAD/ ESATAN Thermal       

Small Satellite Cost Model 2014 Cost (analysis)       

 

 

The proposed CDF tools are multi-industries and multi-disciplines (described in this 

subsequent works), which include MS-Excel, MATLAB, SolidWorks, AGI STK and 

modeFRONTIER. Figure 16 shows the five proposed tools for the 10 specific domain 

disciplines after the following design tools consolidation. This aims to minimise students’ 

learning curve.  
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 CATIA can be installed as an alternative when future needs arise, but is initially excluded 

to minimise learning curve of 2 CAD tools as: 

o Payload discipline can be allocated to MATLAB programming coding environment (or 

alternatively to SolidWorks). 

o Structures discipline can be allocated to SolidWorks (3D CAD, FEA, CFD, Kinematics, 

CAM, Electrical, Sustainability, Plastics mold filling) 

 For Thermal, instead of using ESARAD/ESATAN (No interface to MDO, 

modeFRONTIER), MATLAB (Simscape/Fluids Block: Thermal and programming 

coding) can be used instead.  

 For Cost (analysis), instead of using Small Satellite Cost Model 2014 (No interface to 

modeFRONTIER), AGI STK (Free license under AGI STK Educational Alliance program) 

can be used for:  

o 4D modelling, simulation, and analysis of objects from land, sea, air, and space 

o All aspects of space mission design: 

 Oribit, power/fuel budget, payload performance, attitude modelling, communication 

modelling, space weather, trade analyses/optimisation/maneuver planning and 

rendezvous/proximity operation. 

o Aircraft and UAV design at mission level: 

 Aircraft flight modelling, formation flying, navigational precision, test/evaluation 

support, radar/detection modelling, dense traffic safety of flight analysis, pre-flight 

planning, real-time visulaisation, post-flight reconstruction, terrain effects and RE 

communications. 

 Aircraft systems design cost analysis. 

o Missile systems design and model end-to-end complex missile defense systems. 

 

 
 

Figure 16, The 5 proposed design tools with abilities to interface with each other for spacecraft and aircraft 

conceptual design. 
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4.2.2. The proposed design tools are multi-disciplines 

 

Although the initial selections of the following domain specific and general design tools, are 

focused toward the aerospace discipline. These tools are multi-disciplines and applicable to 

different industry as illustrated in Table 14 (by industry) and Table 15 (by functions). 

Therefore, the proposed design tools are ready for these other disciplines as well. 

 

Domain specific tools: 

 SolidWorks (Pricing not publicly available) 

 MATLAB/Simulink (Each education license: AU$775/AU$775) 

 STK (Free education license) 

 

General tools: 

 MS Excel (Free education license) 

 modeFRONTIER (MDO) (Each education license (yearly): Euro $1,200 teaching/research, 

$240 PhD student and $120 student)  

 

 
Table 14, Multi-disciplinary design tools (Industry application) 

Multi-disciplinary design tools (Industry application) 

Domain specific tools General tools 

SolidWorks [73] MATLAB [72] AGI STK [71] MS Excel [74] 
modeFRONTIER [75] 

www.esteco.com (assess date: 
28Nov2018) 

Aerospace & Defense Aerospace & Defense 

Aerospace (space, 
aircraft, UAV, 
missile design) 

MS Excel can be 
used in most 
industries that 
require automatic 
numerical 
computation 
simulations. 

Aerospace 

Automotive Automotive Automotive 

Electronic Electronics / Semiconductors Electronics 

Industrial Equipment – 
Packaging Machinery 
Mold, Tool & Die 
Heavy Equipment 

Industrial Automation & 
Machinery / Railway Systems 

Industrial equipment 

Architecture, Engineering 
& Construction (AEC) 

Software & Internet 
Architecture Engineering & 
Construction 

Transportation & Mobility 
Biotech and Pharmaceutical 
/ Medical devices / 
Neuroscience 

Biotech & Pharmaceutical 

Marine & Offshore Energy Production Marine & Off-Shore 

Energy, Process & Utilities 
Chemicals and 
Petrochemicals 

Energy & Environment 

Consumer Goods & Retail Metals, Materials and Mining Consumer Goods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.esteco.com/
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Table 15, Multi-disciplinary design tool’s functions 

Multi-disciplinary Design tool’s functions 

SolidWorks [73] MATLAB [72] AGI STK [71] MS Excel 
[74] 

modeFRONTIER [75] 
(list aircraft, automotive 

design only) 
3D CAD 

Embedded Systems 
Control Systems 
Digital Signal 
Processing 
Wireless 
Communications 
 
Image Processing and 
Computer Vision 
 
Internet of Things  
FPGA Design and Co-
design 
 
Mechatronics 
Test and 
Measurement 
Computational Biology 
Computational 
Finance 
Robotics 
Data Analytics 
Predictive 
Maintenance 
Power Electronics 
Control Design 
 
Deep Learning 
Enterprise and IT 
Systems 

4D modelling 

The list is too 
long to be 
included in 
this table for 
automatic 
numerical 
computationa
l simulations. 

Aircraft design 
Wing design 
Aero-elastic systems 
Fuselage shape 
Aircraft structural 
components 
Composite materials Metal 
sheet thermal forming 
Turbine blades 
Acoustic emissions 
Mission design 
Impact damage prediction 

Simulation: (FEA) 
Finite element 
analysis 

Simulation, and analysis of 
objects from land, sea, air, and 
space 

Simulation: (CFD) 
Computational fluid 
dynamics 

Motion (kinematics 
Analysis) 

Plastics (Part & 
Mold filling 
Analysis) 

All aspects of space mission 
design: 
Orbit, power/fuel budget, 
payload performance, attitude 
modelling, communication 
modelling, space weather, trade 
analyses/optimisation/maneuver 
planning and 
rendezvous/proximity operation. 

Automotive design 
Chassis structural analysis 
Vehicle multi-body dynamics 
Transmission and powertrain 
systems 
Noise, Vibration, and 
Harshness (NVH) 
Handling and comfort 
Engine cooling system Engine 
optimization, calibration and 
tuning Hybrid and fuel cell 
engine Thermodynamics  
Drag minimization Racecar 
aerodynamics Train 
aerodynamics 
Crashworthiness optimization  
Restraint systems  
ABS control  
ADAS systems Electronic 
Control Valves  
HVAC component 
optimization 

Sustainability 
(environmental 
impact) 

Aircraft and UAV design at 
mission level: 
Aircraft flight modelling, 
formation flying, navigational 
precision, test/evaluation 
support, radar/detection 
modelling, dense traffic safety of 
flight analysis, pre-flight 
planning, real-time visualisation, 
post-flight reconstruction, terrain 
effects and RE communications. 

Electrical systems 
design 

Model Base 
Definition 

Composer (technical 
documentation) 

Missile systems design and 
model end-to-end complex 
missile defense systems. 

Visualisation 

CAM Computer 
Aided 
Manufacturing 

 

 

4.2.3. Justification to MDO into the CDF platform 

 

This sub-chapter discusses the justifications to integrate modeFRONTIER as the MDO tool in 

the proposed CDF platform.  

Lessons learned from literature shows that ESA, (E-USOC)-UPM and ESA-ISU 

collaborations and the IACDT tool presented in this thesis has one common element in their 

workflows. This is the multi-disciplinary optimisation (MDO) function within the design 

process of the ESA CDF inspired Integrated Design Model (IDM) using the 

spreadsheets/workbook. This is a ‘must-have’ function due to the iterative nature of the whole 

design process to provide improved quality. 

Using spreadsheets/workbook as the main CDF data exchange and session management 

tool inspired by the ESTEC’s CDF-IDM is fast and easy for development and deployment. 

However, it requires lots of maintenance once the projects grew in scopes and numbers. This 

means it has reached the limit of what spreadsheets/workbook can reasonably do for software 

maintenance and integration with other tools [29, 76]. 
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 For instance, in workbook, a typical new design workflow will need to be manually 

created from a blank spreadsheet. Intuitively, this is a lengthy manual process with a certain 

amount of debugging/testing before the first meaningful data can be entered. 

On the other hand, commercial MDO tool such as ModeFRONTIER and iSIGHT, etc. 

offer system integration from CAD/CAE to optimisation, visualisation, statistical analysis and 

full product data management (PDM) integration [77-79]. ModeFRONTIER provides intuitive 

workflows creations based on simple Drag-and-Drop of functional and application built-in 

interface icons into its workflow space. This is a relatively short process before the first 

meaningful data can be entered.  

In this light, this thesis has utilised the MS-Excel (IACDT development) and 

modeFRONTIER (case study) and has been able to determine that the modeFRONTIER is 

more intuitive and efficient than its spreadsheets/workbook counterpart. 

When selecting MDO tools, it is important to consider commercial MDO tools over 

free MDO tools, though the free tools usually supports provided in terms of User Group 

Forums. This is because: 

 Open source software is generally perceived as not as well supported as proprietary 

software and there are considerations for Warranties and Liability Indemnity Matters [80].  

 It is difficult to make open-source developers liable for their code due to the open-source 

software development environment. Developers share code around the community, 

responsibility is collective. "Potentially there's no way to enforce liability” [81]. 

 With the preceding 2 points and with students having short durations in design curriculums, 

logically, it’s better for them to spend their time learning such complex design tools that 

are, not only well established and supported by large numbers of well establish industries 

and institutions, but also have developer’s accountability and liability. This is especially 

important, when a design project have urgent critical quality and safely issues to resolve. 

 

Two of such open source MDO tools are the NASA OpenMDAO and ESA OCDT. 

 

OpenMDAO developed at the NASA Glenn Research  

 

OpenMDAO is an open source engineering analysis framework, written in Python. This tool is 

hosted at the site: (http://openmdao.org/ assess date: 21 Aug 2018) and is used for analysing 

and solving Multi-Disciplinary Analysis and Optimization (MDAO) problems [82]. The 

environment requires coding to function, which includes interfacing plug-ins.  

 

Open Concurrent Design Tool (OCDT) developed at ESA  

 

OCDT is released by ESA in 2016 to replace the previous ESA CDF IDM implemented in 

spreadsheets/workbook [76]. OCDT keep the good points of IDM and lessons learned which 

is extendible to multi-site distributed design sessions. It has the following attributes: 

 Restricted in OCDT Software Licences. Membership of the community requires that the 

persons work in a ESA member state or cooperating state. 

 Australia is not listed as 1 of the 22 ESA member states or a cooperating state. Therefore, 

Australian industries and universities are not able to consider the ESA OCDT. 

 

ESTECO modeFRONTIER (Justification of the Proposal) 

 

This thesis proposes to integrate the commercially available MDO Tool, modeFRONTIER, 

into the proposed CDF design tool platform, and the justifications as follows: 

http://openmdao.org/
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 Proposed over other commercial tools such as iSIGHT and ModelCenter is because of its 

large optimisation algorithm library and powerful post-processing capability [83].  

 Implemented in recent time, by the industries, universities as well as research institutes for 

teaching and research proposes around the world [84]. 

o One reason for its popularity is the way it uses the available resources in an efficient 

and integrated manner and providing multi-dimensional post-processing tools.  

o It is also user-friendly, which integrates with major CAE codes and commercial 

numerical analysis tools. 

 A case study (simulations) has been conducted successfully in the thesis using 

modeFRONTIER, MS-Excel and MATLAB to interface with each other and function as a 

single design unit. 

 Other baseline benefits: 

o Suitable for Aerospace, Automotive and Electronics disciplines. 

o Include integration Interfaces to the proposed design tools [85, 86]. 

 

4.2.4. Case study simulations to evaluate the proposed software tools. 

 

The set of design tools listed in Table 13 are evaluated for its suitability for incorporations into 

the proposed CDF platform. The evaluations focused mainly on the interfacing functions 

between tools by using simple examples and a case study (simulation).  

  

Tools evaluations by simple examples 

 

A number of evaluations of the proposed tools by using simple examples shown in Table 16 

have been performed successfully. The evaluations include tools setup, interfacing testing 

status between tools, and developer information for tools integration supports. Some 

corresponding details are illustrated in the Appendix section. 

 
Table 16, Proposed CDF design tool interfacing with each other. 

 
Interfaces illustrated through setup and/or simple examples 

2 applications interfacing with each other  Setup status Interface tested status 

MS-EXCEL [87] with MATLAB Simulink          Appendix D Completed Ok 

MS-EXCEL with SolidWorks        Completed Ok (shown in IACDT development) 

MS-EXCEL with AGI System Tool Kit (STK)          Appendix E  Completed see (I) 

MS-EXCEL with modeFRONTIER           Appendix F Completed Ok 

MATLAB Simulink [88] with SolidWorks         Appendix G Completed Ok 

MATLAB Simulink with AGI System Tool Kit (STK)  see (II) see (II) 

MATLAB Simulink with modeFRONTIER          Appendix H Completed Ok 

AGI STK [89] with SolidWorks         Appendix I                                                                     Completed Ok 

AGI STK with modeFRONTIER  see (III) see (III) 

SolidWorks [90] with modeFRONTIER           see (IV) see (IV) 

No Developer’s information: integrations between (below) tools are supported (last assess: May 2018) 
(I) Integrating STK with Excel http://help.agi.com/stk/index.htm#training/StartExcel.htm  [assess date: 21Aug2018] 

(II) 
Integrating STK with 
MATLAB 

http://help.agi.com/stk/index.htm#training/StartMatlab.htm%3FT.ocPath%3DTraining%7CLevel
%25202%2520-%2520Advanced%2520Training%7C_____9) and MATLAB Interface: 
http://help.agi.com/stk/index.htm#matlab/matlab.htm%3FT.ocPath%3DIntegrating%2520with%
2520STK%7C_____4        [assess date: 21Aug2018] 

(III) 
Integrating STK with 
modeFRONTIER 

https://www.esteco.com/modefrontier/multiobjective-aerospace-mission-performance-
optimisation-systems-tool-kit-stk-and-mode (require registering and login) [assess date: 
21Aug2018] 

(IV) 
Integrating SolidWorks with 
modeFRONTIER 

https://mydesktop.rmit.edu.au/Citrix/StoreWeb/clients/HTML5Client/src/SessionWindow.html?
launchid=1527578124649  (require license, lecturer/student login) [assess date: 21Aug2018] 

 

 

 

http://help.agi.com/stk/index.htm#training/StartExcel.htm
http://help.agi.com/stk/index.htm#training/StartMatlab.htm%3FTocPath%3DTraining%7CLevel%25202%2520-%2520Advanced%2520Training%7C_____9
http://help.agi.com/stk/index.htm#training/StartMatlab.htm%3FTocPath%3DTraining%7CLevel%25202%2520-%2520Advanced%2520Training%7C_____9
http://help.agi.com/stk/index.htm#matlab/matlab.htm%3FTocPath%3DIntegrating%2520with%2520STK%7C_____4
http://help.agi.com/stk/index.htm#matlab/matlab.htm%3FTocPath%3DIntegrating%2520with%2520STK%7C_____4
https://www.esteco.com/modefrontier/multiobjective-aerospace-mission-performance-optimization-systems-tool-kit-stk-and-mode
https://www.esteco.com/modefrontier/multiobjective-aerospace-mission-performance-optimization-systems-tool-kit-stk-and-mode
https://mydesktop.rmit.edu.au/Citrix/StoreWeb/clients/HTML5Client/src/SessionWindow.html?launchid=1527578124649
https://mydesktop.rmit.edu.au/Citrix/StoreWeb/clients/HTML5Client/src/SessionWindow.html?launchid=1527578124649
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Tools evaluations by case study (Simulations) 

 

Evaluation by a case study (simulations) has been conducted to: 
 

 Determine whether the proposed design tools could interface with each other as a single 

unit in the proposed CDF setting. 

 Lessons learned from the evaluation were: 
 

o Utilising a typical blank spreadsheet/workbook as a basis to manually prepare a new 

design workflow for multi-disciplinary optimisation has taken longer time than the 

combination of 3 design tools. The manual approach also required more 

debugging/testing before the first meaningful data can be entered. 

o Utilising the highly automatic modeFRONTIER, MS-Excel and MATLAB 

combination is more intuitive and required less preparation before the first meaningful 

data can be entered. 

o Optimisation results from the modeFRONTIER combination are faster and more 

comprehensive due to its built-in optimisation options. The manual method requires 

lots of hands-on preparation to change between optimisation workflow due to the need 

to prepare each new optimisation option workflow. 

o It is apparent that a sufficiently complex design project will need the highly automatic 

modeFRONTIER combination tools instead of the manual method. This will allows the 

design team to focus on the project instead of spending time to prepare the workflow. 

 

This case study is based on the preceding capstone design project case study, and focused on 

the power configuration and management sub-system of the design theme: Fire Retardant 

Delivery System (FRDS), Appendix J. 

The case study evaluated one parameter requiring three of the five proposed tools (study 

dependence). This is deemed sufficient to illustrate the interfacing capability between these 

tools to function as a single unit. The tools used are MS-Excel, MATLAB, and 

modeFRONTIER.  

The case study (Simulations) estimates the maximum copper cable length allowable for 

the required operations, at a particular cable size (circular cross-section area), continuous rated 

current and fixed power supply voltage. Figure 17 illustrates the case study design and 

interfacing workflow. 

 

 
 

Figure 17, Case study to determine interfacing function between design tools: MS-Excel, MATLAB and 

modeFRONTIER (MDO). 
 

 

 

 

 

 

 

 

Requirement Conceptual phase Modelling Modelling
Excel Matlab

modeFRONTIER

Optimisation



66 
 

The detail descriptions of the case study assumed configuration, and following Case Studies 

are given in Appendix J: 
 

 Case study – Evaluation approach by Manual Calculations 

 Case study - Evaluation approach by the proposed CDF design tools 

o Simulation: modeFRONTIER interfaces with MS-Excel (built-in application node) 

o Simulation: modeFRONTIER interfaces with MATLAB (built-in application node) 

o Simulations: modeFRONTIER interfaces with MS-Excel and MATLAB (built-in 

application node) 

 

In summary, the preceding evaluations results by Simulations using modeFRONTIER 

interfaces with MS-Excel and MATLAB (built-in application node) have shown that these 

tools is able to function as a single unit in the CDF environment. 

 

4.3. Recommendations of IT hardware and software architecture (CDF for education 

and research) 

 
Figure 16 lists the proposed software design tools and Table 17 lists the proposed design tool’s 

operating systems. The next step is to identify the IT hardware to install these tools, which 

include: 
 

 Hardware configuration, costs and supports for the design software tools: Personal 

Computer Brands, CPU, GPU, memory, hard disk and display (initial cost, annual 

maintenance cost and upgradability). 

 
Table 17: Evaluations and selections of the proposed design tools operating systems. 

 
Design tool Comparison Results Conclusion 

MS- Excel Comparison between Windows and 
MAC operating system  
by Microsoft for its MS-Excel 
application [91].  

Windows version has more 
features than its MAC 
counterpart 

MS-EXCEL 2013 for Windows proposed 
over MAC. 

MathWorks 
MATLAB 

Comparison between Windows, MAC 
and Linux operating system  
by MathWorks for its MATLAB and 
Add-On applications [92].  

Windows version has more 
Add-On application 
availabilities than its MAC 
or Linux counterpart.  

MATLAB 2018a for Windows proposed 
over MAC and Linux. 

Dassault Systems 
SolidWorks 

SolidWorks is only available in 
Windows but not MAC or Linux 
operating system: by Dassault 
Systèmes SolidWorks Corporation, for 
its SolidWorks CAD application [93].  

SolidWorks CAD 
applications are available 
for Windows and support 
MS-Excel and MS-Word, 
but not for MAC. 

SolidWorks for Windows proposed. 

Analytical Graphic, 
Inc. System Tool Kit 
(STK) 

n.a. n.a. AGI STK available only for Windows 
[94] and is proposed. 
 

ESTECO 
modeFRONTIER 

n.a. n.a. ModeFRONTIER [85, 86]  for Windows 
proposed as other proposed tools (MS-
Excel, MATLAB, SolidWorks and STK) 
are to be in Windows platform.  
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4.3.1. Hardware Cost: Personal Computers, Video Wall and Smart Board 

 

The evaluations is conducted to determine the recommended Personal Computer Brands, CPU, 

GPU, memory, hard disk/solid state disk and display, which includes the initial cost, annual 

maintenance cost and upgradability.  
 

 Table 20 provides the summary proposal in unit costs. 

 Table 21 Summary of hardware and annual maintenance costs. 

 

The hardware configuration justifications are based on the software tool’s minimum and 

recommended system installation requirements with subsequent considerations of pricing. The 

focus is not on the brand of the hardware. 

 

The Justification – Personal Computers 

 

The proposed PC configurations has the latest Intel 8th generation CPU, NVIDIA 1070 series 

graphic accelerator (GPU) and solid-state drive (SSD) storage in ‘C’ drive installed with 

Windows 10 pro and essential applications/tools. Therefore, these are powerful PCs and with 

its upgradability, it is a cost-effective solution. Since, the aim is to setup a CDF at lowest 

possible cost, this same hardware configuration is proposed for the individual domain 

discipline stations, workstations and servers. 

 Table 18 lists the minimum and recommended systems requirements for installing the 

proposed design tools. Table 20 lists the proposed hardware system specifications, which well 

exceeds the recommended systems requirements. 

 
Table 18, Minimum and recommended systems requirements for installing the proposed design tools. 

Software Tools 
Operating 
Systems 

CPU, 
Processors 

Disk Space RAM GPU, Graphics 

MS-Excel [74] Windows 10, 8.1, 7 
SP1 (64bit) 

Intel, 1.6 GHz or 
faster, 2-core.  
2.0 GHz or greater 
recommended for 
Skype for Business. 

4 GB 4 GB 128 MB graphics 
memory 

MathWorks Matlab 
Release 2018a [95] 

Windows 10, 8.1, 7 
SP1 (64bit) 

Minimum 
Any Intel or AMD 
x86-64 processor 
 
Recommended 
Any Intel or AMD 
x86-64 processor 
with 4 logical cores. 

Minimum 
2 GB HDD for 
MATLAB only, 
4-6 GB typical 
Installation 
Recommendations 
SSD recommended 
Full install: all 
MathWorks 
products may use 
up to  22GB space. 

Minimum 
4 GB 
 
Recommended 
8 GB 
For Polyspace, 4 
GB per core is 
recommended 

No specific graphics 
Card is required. 
 
Hardware 
accelerated 
graphics card,  
OpenGL 3.3 with 
1GB GPU memory 
is recommended 
 

Dassault Systems 
SolidWorks 2018 
[73] 

Windows 10, 8.1, 7 
SP1 (64bit) 

3.3 Ghz or higher 10 GB or more 
50 GB or more for 
server function 

16 GB or more. Not specified 

Analytical Graphic, 
Inc. System Tool Kit 
(STK) [96] 

Windows 10, 8.1, 7 
SP1 (64bit) or 
higher 

2+ Ghz, Intel Core 
Duo, SSE2 
(minimum). 
Pentium 4 or Xeon 
Processors 

136 GB (includes 
supplemental STK 
Modules) 

3 + GB High-end OpenGL-
2.0+ compatible 
graphics card (512+ 
MB memory) 

ESTECO 
modeFRONTIER 
[75, 97] 

Windows 10, 8.1, 7 
SP1 (64bit) 

Intel, Core i5 2.4G, 
8MB for mF. 
Intel, Pentium 2 
266Mhz processor 
for Java 8.0. 

500 MB 128 MB – same as 
Java 8.0. 

Not specified 
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The Justification – Video Wall 

 

The justification for the proposed video wall is based on the minimum and maximum 

recommended viewing distances limits taken from the ergonomics considerations of the 

proposed CDF layout described in the subsequent works.  

 
Table 19, Specifications comparisons between 2 different video walls. 

Specifications Barco UniSee NEC 
 https://www.barco.com/en/product/bar

co-unisee#modal-1 (assess date: 1 Oct 
2018) 

https://www.necdisplay.com/p/displays
/un551s-tmx9p (assess date: 1 Oct 2018) 

LCD technology PA-VA S-IPS (P-DID) 

Resolution Full HD (1920 X 1080 pixel) Full HD (1920 X 1080 pixel) 

Backlight Direct LED LED Direct-lit 

Aspect ratio 16:9 16:9 

Luminance 800 cd/𝑚2  (TYPICAL) 700 cd/m2    max. 

Contrast 4000:1 (TYPICAL) 1200:1 (500,000:1 Dynamic) 

Pixel Pitch Not specified 0.63 mm 

Viewing Angle (typical) Not specified 178° Vert., 178° Hor. 

Refresh Rate Not specified 60Hz 

Response Time (Gray to Gray) < 8 ms 8 ms 

Active Screen Area 1212.5 x 682 mm | 47.7" x 26.8" 1209.6 x 680.4mm / 47.6 x 26.8 in. 

Bezel Width:Left/Right,Top/Bottom NA (bezel-less) 0.9mm inactive border along all display sides 

Dimensions (WxHxD) 1213.5 x 683 x 94.9 mm | 47.8" x 26.9" x 3.74" 47.7 x 26.9 x 3.9 in. / 1211.4 x 682.2 x 98.8 

Operating Temperature 0°C - 40°C 41-104°F / 5-40°C 

Operating Humidity Min. 20% | Max. 70% for T < =30°C or 115%-
(1.5% x T/°C) for T=30°C to 40°C (non-
condensing) 

20-80% 

Limited Warranty (parts & labour) Not specified 3 years 

 

 

This justification is also taken in conjunctions with the secondary considerations of the Barco 

and NEC video wall specification in Table 19, which is quite similar though the Barco model 

has more contrast. The estimated prices for the nine FHD panels making up a 3 x 3 tiled video 

wall in Table 20 have shown that the NEC is more cost effective. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.barco.com/en/product/barco-unisee#modal-1
https://www.barco.com/en/product/barco-unisee#modal-1
https://www.necdisplay.com/p/displays/un551s-tmx9p
https://www.necdisplay.com/p/displays/un551s-tmx9p
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Table 20: Proposed CDF hardware with unit costs. 

 

Hardware Descriptions 
Estimated Cost (per 

unit) 
Remarks 

Personal 
Computer 
(PC) 

DELL (XPS Tower): 
Intel CPU, 8th generation i7-8700 (6 core, 
up to 4.6Hz) 
Windows 10 pro 64bit 
Memory (System): 16GB, upgrade: 32GB 
Storage: ‘C’ drive: SSD 256GB, upgrade 1TB 
1TB, ‘D’ Hard Drive: 2TB, upgrade 4TB 
Price: AUD$2,6000 
 
Graphic Accelerator (GPU): NVIDIA 1070: 
7680x4320@60Hz (Max resolution) 
(upgradeable to dual NVIDIA 1080) 
 
Display (Monitor): 31.5 in 4K (UHD)  
(upgradeable to large screen size); Dell 
UP3216Q - UltraSharp 32 Ultra HD 4K 
Monitor with PremierColor 
AUD$2,199.00 

$4,800 AUD www.dell.com.au 
(date assessed: 31 Oct 2018) 
 
 Note:  

Total 13 x PC required: 

 10 x PC: specific domain disciplines 
 1 x PC: Gateway, VPN, Cloud 

 1 x PC: SAGE2(admin) to drive Video Wall 

 1 x PC: Data Exchange Server 
Design data to be back up nightly into the 

University central Server to save cost on Data 

Exchange Server (DES) hardware. 
           

SAGE2-server PC is used to drive the daisy-

chained video wall (total 9 * 55” (3x3 tile) 
1920x1080 FHD each = 5760x3240 

resolution).  

Nvidia GPU  max.7680x4320@60Hz should 
be able to drive the 9 panels that are daisy-

chained using DisplayPort.  

This GPU is upgradable to dual GPU cards 
running in parallel. 

Video Wall NEC 55" Ultra Narrow Bezel S-IPS 3x3 
Video Wall Solution: Model: un551s-tmx9p 
LCD TileMatrix™ (1920 x 1080) 
 
Dimensions (WxHxD) each of the 9 display: 
Without stand: 47.7 x 26.9 x 3.9 in. / 
1211.4 x 682.2 x 98.8 mm 
OR, 
Barco UniSee Video Wall 
55" Display size, Full HD (1920 x 1080), 
Bezel-less design 
Unit price USD: $8,500 List / $7,600 (offer) 

$46,999 USD converted 
to $65,050 AUD 
 
 
 
 
 
 
 
 
 
$68,400 USD (offer x 9 
panel) converted to 
$94,670 AUD 

https://www.necdisplay.com/p/displays/un5
51s-tmx9p  (assess date: 21Aug2018) 
Viewing Angle (typical): 178° Vert., 178° Hor. 

Expanded daisy chain options with UHD pass 
through via DisplayPort enables UHD 

resolution across the entire wall. (55" Ultra-
Narrow Bezel, S-IPS Video Wall 

Display@$4,449.00 each) 

 
http://www.barco.com  (assess date: 31 Oct 

2018) 

https://www.electronicwhiteboardswarehous
e.com/barco-unisee-video-wall-display.html 
(assess date: 31 Oct 2018) for pricing. 

Smart 
Board 

84” Microsoft Surface Hub (smart board) 
Size: 46.12” x 86.7” x 4.15”  
(1171.5mm x 2202.9mm x 105.4mm) 
Resolution: 3840 x 2160 @ 120Hz 

assess date: 21Aug2018 
$34,099 AUD, 84 in 
 
assess date: 08Oct2018 
start from: $22,000 
est: $34,099 AUD with 
accessories e.g. rolling 
stand etc) 

https://www.theaustralian.com.au/business/
technology/microsoft.-surface-hub-offers-
walltowall-conference-possibilities/news-
story/ab03c84ec247009d69ebfa13974b20f7   
(assess date: 21Aug2018) 
https://www.microsoft.com/en-
us/surface/business/surface-hub/tech-specs  
(assess date: 08Oct2018) 

 

 
Table 21, Summary of hardware and annual maintenance costs. 

 

Hardware description Unit Price 
Quality 

required 
Total cost 

Personal Computer (PC) $ 4,800 AUD 13 $ 62,400 AUD 

Video Wall (3 x 3) 55” $ 65,050 AUD 1 $ 65,050 AUD 

Smart Board 84” $ 34,100 AUD 1 $ 34,100 AUD 

Networking platform $ 5,000 AUD 1 $ 6,000 AUD (estimated) 

Annual Maintenance (10%) hardware cost $16,755 AUD 1 $ 16,755 AUD (estimated) 

Exclude setup cost   $ 184,305 AUD (estimated) 

 

 

 

 

 

http://www.dell.com.au/
mailto:max.7680x4320@60Hz
https://www.necdisplay.com/p/displays/un551s-tmx9p
https://www.necdisplay.com/p/displays/un551s-tmx9p
mailto:Display@$4,449.00
http://www.barco.com/
https://www.electronicwhiteboardswarehouse.com/barco-unisee-video-wall-display.html
https://www.electronicwhiteboardswarehouse.com/barco-unisee-video-wall-display.html
https://www.theaustralian.com.au/business/technology/microsoft.-surface-hub-offers-walltowall-conference-possibilities/news-story/ab03c84ec247009d69ebfa13974b20f7
https://www.theaustralian.com.au/business/technology/microsoft.-surface-hub-offers-walltowall-conference-possibilities/news-story/ab03c84ec247009d69ebfa13974b20f7
https://www.theaustralian.com.au/business/technology/microsoft.-surface-hub-offers-walltowall-conference-possibilities/news-story/ab03c84ec247009d69ebfa13974b20f7
https://www.theaustralian.com.au/business/technology/microsoft.-surface-hub-offers-walltowall-conference-possibilities/news-story/ab03c84ec247009d69ebfa13974b20f7
https://www.microsoft.com/en-us/surface/business/surface-hub/tech-specs
https://www.microsoft.com/en-us/surface/business/surface-hub/tech-specs
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4.4. Minimum support facilities for CDF room (physical room layout) 

 

For the CDF facility, it is based on functionality, and a room with high-speed networking and 

internet infrastructures can be selected to be multipurpose. 

However, the thesis acknowledges that the availability of suitable infrastructure could 

be an issue. It may not be necessary to build a new building, but making changes to a building, 

including furniture is still costly. 

The physical room layout will include 10 computers and desks configured in a ‘U’ 

shape in front of a video wall and a movable smart board. This is to facilitate efficient 

collaboration amongst the team and unobstructed view of the video wall. 

 

 
 

Figure 18, Proposed CDF layout for engineering education and research. Dimensions: mm (top), inch (bottom). 

 

 

4.4.1. CDF Integrated Design Environment and design/supporting software tools  

 

CDF Integrated Design Environment (IDE) architecture 

 

This thesis proposes a CDF Integrated Design Environment (IDE) as illustrated in Figure 19. 

The CDF IDE consists of up to 10 domain disciplines linked to the central data exchange 

system (DES) servers, which is similar in approach to the IDE adopted by the ESA CDF and 

ISU CDF [6, 32]. These domain disciplines may include the Team Lead/System Design 

Engineer, Systems, Cost, Mission, Propulsion, Attitude Determination and Control/Simulation, 

Communications, Structures, Thermal, and Power and Payload. However, the specific tools 

utilisation is also project dependent. 

The domain model design status can be consolidated from the DES by the CDF design 

process workbook for progress reporting [6]. The MDO enhancement is through the workbook 

(previously, used as the main MDO), which is to be embedded within the proposed commercial 

MDO tool environment. The embedded spreadsheet/workbook will host all the required 

parameters for inputs into MDO tool highly automated MDO workflows. The ‘Model-Driven’ 

Video Wall Smartboard 

10 x domain disciplines 
computer desks 
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design process uses data derived from the collections and integrations of the design tools used 

by each specialist for his/her domain. During in-session discussions, the video wall displays 

the sub-systems and system model’s data for the entire team. Offsite collaboration is through 

the Virtual Private Network and/or cloud services, which depends on the project confidentiality 

level. 

  

 
 

Figure 19, Proposed CDF IDE architecture for engineering education and research. 

 

 

The proposed VPN will be suitable for design projects undertaken in the proposed CDF 

architecture that are confidential, with patent/copyright, and defence in nature. 

The proposed Cloud services alongside with the VPN will provide easily 

implementation and low cost, though less safe than VPN. This is in terms of hosting and 

delivering services over the internet, allowing sharing of software, data and services over 

internet from any location [98, 99].  

Though the Cloud computing is less safe than VPN, it has been considered among the 

top 10 most important technologies [100]. Researchers estimated that from 2011 to 2016, 12% 

of software market will move toward cloud computing and cloud computing market will reach 

$95 billion [101]. Emerging new paradigm in cloud computing such as public cloud computing 

servers from Google Drive, SkyDrive, Dropbox, Mendeley may be used in CDF for education 

to save investment on hardware [16]. 

 

CDF Design/Support Software tools 

 

The thesis proposes using generic hardware with minimal use of domain specific software. The 

summaries of proposed tools are given as follows:  

 

Design tools (domain disciplines) 

 MS-Excel (for Systems Analysis) 
 MATLAB Simulink (for Attitude Determination and Control, Propulsion, Thermal, and 

Payload and Configuration). 
 SolidWorks (for Structural/Mechanical CAD modelling, Payload and Configuration) 
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 AGI System Tool Kit (for Cost Analysis, Power, Mission Simulation/Analysis, and 

Communications). 
 ModeFRONTIER (MDO) (for highly automated iterative optimisation and interfacing with 

other proposed tools to work as a single unit platform concurrently).  
o It is also able to interface with other design tools and disciplines, such as the automotive 

and electronic/electrical industries. 
 

Support tools (general) 

 Microsoft (MS): MS-Word - report writing, MS-Excel - computational, MS-Outlooks or 

Windows Mails – emailing and communications/collaborations, and MS-PowerPoint – 

Presentations. 

 MS-Skype - video conferencing and communications/collaborations. 

 MS-Windows security and cloud storage. 

 

Support tools (video wall and computers collaborations) 

 

The proposed CDF workflow includes a large video wall and 10 disciplines personal computers 

for team member’s collaborations, which requires seven essential functions as listed in Table 

22. This table also compares the various tools that enable collaborations. SAGE2 facilitates 

data intensive co-located and remote collaboration by using a Scalable Resolution Shared 

Displays (SRSD), is the most feature-rich amongst the tools compared [102]. 

 
Table 22, Comparison of systems that enable collaboration [102] 

 
 

Therefore, the thesis proposes to adopt SAGE2 tool. This is an Open-source parallel rendering 

middleware SAGE2 (Scalable Amplified Group Environment) web-based collaboration tool. 

The National Science Foundation funded the SAGE2 and that it was developed by Electronic 

Visualization Laboratory at the University of Illinois, and Laboratory for Advanced 

Visualization and Applications at the University of Hawaii [102, 103]. 

SAGE2 is a cloud-based customised web server with clients accessed through visiting 

a uniform resource locator (URL) in a web browser to facilitate data intensive co-located and 

remote collaborations using a Scalable Resolution Shared Displays (SRSD) [104].  

The only 2 prerequisites for running SAGE2 are the cross-platform Node.js JavaScript 

runtime that is built on Chrome’s V8 JavaScript engine https://nodejs.org/en/ (assess date: 17 

Oct 2018), is installed on the computer that hosts the Web Server, and up-to-date (Google 

Chrome) web browsers are installed on any computer running a client [102]. In this light, there 

https://nodejs.org/en/
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is no requirement for a separate Audio/Video Switcher desktop unit such as the AMX Control 

System Processor Unit (https://www.amx.com/en-US (assess date: 31 Oct 2018).  

SAGE2 allows the CDF design team members to mirror any number of computer 

screens or application windows to share their individual screen contents. Such contents may 

include PDFs, videos, images, 2D and 3D custom and off-the-shelf applications on the large 

video wall. 

 

 
 

Figure 20, Ranges of Scalable Resolution Shared Displays (SRSD) configurations [102]. 

 

SAGE2 SRSD can run using one or multiple computers with each connected to one or multiple 

monitors. Figure 20 illustrates a range of SRSD configurations. Picture A shows 1 x 4K monitor 

connected to one computer running SAGE2. Picture B shows eight monitors connected to two 

GPUs on one computer running SAGE2. Picture C shows a cylindrical tiled wall with 72 x 

displays connected to a 36-computer cluster, with the SAGE2 Server running on the head node. 

Picture D shows a tiled wall with 18 x displays connected to a 6-computer cluster, with the 

SAGE 2 Server running on the head node.  

A SAGE2 session can starts at one site and mirrors the SRSD to all other sites by simply 

visiting the same URL. All contents uploaded to the SAGE 2 Server are displayed on each 

site’s SRSD. Any SAGE2 components (e.g. server, audio client, display clients, interaction 

clients and input clients) can run on the same computers or distributed across a cluster of 

computers. The SAGE2 Display Clients are web browser’s instances, which connect to the 

SAGE2 Server by visiting a URL. The Audio-Client runs in a web-browser and initialised by 

D 

https://www.amx.com/en-US
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connecting to the SAGE2-Server by visiting a URL. Once a video file is loaded into SAGE2 

space, the Audio Client will output the sound and synchronize the Display Clients’ video with 

its audio. 

 

SAGE2 operations – A simple case study (simulation) 

 

A simple case study (simulations) has been successfully conducted in the thesis to illustrate the 

SAGE2 setup and collaborations workflows. The 1st step is to register with the SAGE2 website 

and download the open source code  http://sage2.sagecommons.org/sources/ (assess date: 17 

Oct 2018) [103]. The computer used to install and setup SAGE2 host web server is connected 

to two monitors (a desktop monitor and a large ‘simulated’ video wall).  

After SAGE2 is setup and running, the simulated ‘large video wall’ is active without 

content. On-site (in CDF room) or off-site team members may connect to the CDF video wall’s 

SAGE2 host web server through the client connections by visiting the server website address 

(i.e. IP:  port - Internet Protocol to communicate over a network).  

 

 
 

 
 

Figure 21, Simulation of a Client SAGE2 screen (an instance of domain discipline) connected to SAGE2 server 

(top), with ‘Screen Sharing’ option (bottom) activated to share spreadsheet Data on the video wall. 

 

Figure 21 (top), illustrates the simulations of a Client SAGE2 screen (an instance of specific 

domain discipline) connected to SAGE2 server. The ‘Screen Sharing’ option (bottom) is 

activated to share the spreadsheet Data on the simulated video wall in Figure 22. Upon clicking 

on the ‘Screen Sharing’, followed by the ’Application Window’ and the opened spreadsheet to 

share, the selected spreadsheet will be displayed on the video wall and all connected client’s 

screens. The spreadsheet data may be changed directly at the video wall (using client SAGE2 

pointer in Figure 21 bottom, or from the Client screen that shared the spreadsheet data). Since 

http://sage2.sagecommons.org/sources/
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the same SAGE2 host web server has two displays (monitor and video wall), the monitor screen 

in Figure 23 may also run the ‘client’ service that can be doubled up as one of the 10 disciplines 

station PC. However, this is not recommended as it may potential slowdown the video wall 

responsiveness to support other clients connected to the server. 

 

 
 

Figure 22, Simulated video wall displaying spreadsheet upon the Client sharing the spreadsheet. Spreadsheet 

data may be changed directly at the video wall (using client SAGE2 pointer or from the Client screen). 

 
 

 
 

Figure 23, Simulation of the ‘client’ monitor screen running on the same SAGE2 web server. 
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4.4.2. Proposed CDF physical layout 

 

The proposed CDF facility consists of up to 10 disciplines personal computers (PC). This is 

deemed sufficient for the purpose of education and research [28]. A Local Area Network 

(LAN) connects the 10 discipline PCs, Data Exchange Server and Gateway PC. Each discipline 

PC will be installed with the relevant tools for executing various domain discipline workloads, 

e.g. for satellite design. The 10 discipline PCs are not restricted to any discipline and may 

change discipline when the needs arise.  

Data such as CAD models, graphs, tables, CFD/FEM results, etc. can be presented on 

a large tiled video wall with the support of an open-source SAGE2 parallel rendering 

middleware [102]. The PCs will be laid out in a U-shape configuration to enable efficient 

interaction between the team members and for viewing the video wall. This layout is similar in 

concept to the ESA CDF layout [6, 105]. 

The team leader/system engineer can create status reports using a workbook, which 

consolidate all the domain model’s data for computation, produce the results for further 

analysis and progress reporting. Since, a typical new project may require each team member to 

use a blank spreadsheet to populate data, the team leader needs to discuss and agree on the data 

formats with the team members. 

Offsite collaboration will be through the Gateway using Virtual Private Network (VPN) 

or Cloud services. The thesis acknowledged that the bandwidth issue is a challenge as there are 

uncontrollable elements due to potential limitation from different country national broadband 

infrastructure. 

 

Ergonomics considerations of the proposed CDF layout 

 

The proposed CDF layout is similar in concept to the ESA CDF, which uses a ‘U’ shape layout 

for the stations to facilitate the project design process [6]. The ergonomics aspects is also taken 

into consideration. The sizing for aisles and walkways at minimum of 1,500mm has exceeded 

the requirements from the Code of Practice, Managing the work environment and facilities 

requirements, Safe Work Australia. The Code states that the Aisles and walkways should be at 

least 600 mm wide and kept free of furniture or other obstructions at all times [106]. The 

proposed computer desks at minimum of 1500 * 900 mm have also meet the requirements from 

the University of Adelaide Health Safety and Wellbeing (HSW) Handbook [107]. 

 

Horizontal video wall and smart board viewing considerations 

 

Based on the proposed 55-inch (3 x 3 = 9 panels) video wall, the 10 x ‘U’ shape domain 

disciplines desks configurations have been evaluated to have suitable minimum and maximum 

viewing distances from the video wall. The video wall with nine panels has a size of 3,634.2mm 

(W) x 2,046.6mm (H) x 98.9mm (T) mounted at the centre-front wall without gap as illustrated 

in Figure 24 and Figure 25.  

Team members sitting at ‘EYE 1 Position’ and ‘EYE 2 Position’ locations in Figure 24 

with a viewing angle range of 14.53 degree and 27.08 degree respectively is within the 

horizontal normal viewing field limits of 50 degree. The members eyes viewing angle range of 

50 degree occupying the full view of the computer monitor has also meet this same 

requirement, Figure 26 [108].  

In relations to the eye-to-monitor distance, the proposed distance of 450mm + 300mm 

= 750mm (e.g. EYE 2) illustrated in Figure 24 does meet the recommended requirements of a 

minimum 15.7 inch (398.78mm) and about one arm length away or slightly further as a general 

guide [109, 110]. 
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The average viewing distances from ‘EYE 1 position’ and ‘EYE 2 position’ to the 

centre of the video wall in Figure 24 at 5,785.76mm and 7,183.76mm respectively is also within 

the recommended limits. This is based on the followings: 

  A fixed-frame projection screen size of 3,632mm (W) x 2,108mm (H) is recommended to 

have a maximum viewing distance of 12.6 meters [111].  

 A LED video wall size of 4,000mm (W) x 2,500mm (H) with 1920 x 1080 (FHD) and 

Pixel Pitch of 1.9mm (per FHD panel) is recommended to have a maximum and minimum 

viewing distances (1000 * Pixel Pitch) of 12.3 meters and 2 meters respectively [111].  

 In general, a text height of 1 inch (25 mm) displayed at 15 feet (4.5 m) of viewing distance 

will ensure legibility, and a text height of 2 inch (50mm) improves legibility at 30 feet 

(9m) as illustrated in Figure 27 [112]. 

 The proposed 3x3 panel video wall has the following specifications [113]: 

o Total 3x3=9 FHD panel has a total size: 3,634mm (W) x 2,046mm (H) 

o Total combined resolution: 5,760 x 3,240 (better than 4K: 3,840 x 2,160 pixels). 

o Viewing angles of (typical) 178° Vertical and 178° Horizontal 

o Pixel Pitch of 0.63 mm, the minimum viewing distance may be reduced further to 1000 

* 0.63 = 630mm [111]. 

 

 

 
 

Figure 24, Proposed CDF detail layout for education and research, with horizontal dimensions. Dimensions: mm 

(top), inch (bottom). 

 

 

The moveable 84 inch smart board with a 100 degree horizontal field of view and a size of 

1,171.5mm (H) x 2,202.9mm (W) x 105.4mm (T) as in Figure 24, is recommended with a 

maximum viewing distance of 6.3 meters [111, 114]. Therefore, in most situations, both the 

moveable smart board and team members located outside its field of view will have to move 

and angle within the field of view if the smart board is required for discussions. 
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Vertical video wall and smart board viewing considerations 

 

The proposed CDF layout does consider the vertical fields of views and distances beside the 

horizontal aspects as illustrated in Figure 25. The desk top height of 700mm (average) and 

monitor height-to-eye level of 40mm (maximum recommended) meets the guidelines, and the 

male common sitting posture measurement for eye height of 1,336.04mm meets [107, 110]. 

Based on these guidelines for the layout and the vertical normal viewing field limits of 

60-degree, Figure 26, team members at ‘EYE 3 position’ should have unobstructed views of 

the whole video wall [108]. However, team members at ‘EYE 1 position’ or similar positions 

will have the bottom 188.91mm (H) of display content obstructed. This is mainly due to the 

height of the monitor in front of the eye level and the average viewing distances for EYE 2 is 

longer than EYE 1 position by an average of 1,398mm (i.e. avg. 7,183.76 – 5,785.76) to the 

video wall centre. However, this may not be a problem as it is assumed that usually, most of 

the content does not occupy the entire video wall. Note: the video wall be may raise by an 

estimated 254mm (10 inches) if the ceiling could accommodate the additional height in order 

that EYE 1 could have full view of the video wall. 

 

 
 

Figure 25, Proposed CDF layout for education and research, with vertical dimensions. Dimensions: mm (top), 

inch (bottom). 
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Figure 26, Eye's field of views, A: left, horizontal and B: right, vertical viewing fields [108]. 

 

 
 

Figure 27, Font size vs. viewing distance [112] 
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5. Discussions, concluding remarks and outlooks 
 

Concurrent Engineering (CE) design practices and processes are increasingly used in industry. 

However, there is a shortage of aerospace engineers with relevant skills. There is a lack of 

exposure to Concurrent Design (CD) at university since Concurrent Design Facilities (CDF) 

are perceived to be expensive and are not available since there is no requirement for learning 

and teaching practices based on fast, efficient end-to-end design environment. As a result, CE 

design practice potential is not truly realised in the academic environment. 

Best practices show that a CDF can shorten design time, reduce cost, and improve 

quality. There are also evidences that CDF applications are effective in the industries and 

research institutions, and albeit limited, there have been successful implementations of CDF at 

university and examples of industry-university collaborations based on CE. 

It is important that higher education institutions embrace concurrent design CD/CE 

methodology in their curriculum. With technologies such as computer hardware continues to 

improve its costs-to-performance ratios, and its corresponding costs remain relatively flat, it 

becomes more affordable for many universities to setup an initial low-cost CDF. 

There are cases where universities have collaborated with industry to setup CDF and 

pushed CE practices in the curriculum, however, these attempts have often lower-level focus 

in directing to specific CDF supporting elements addressing pre- and post-CDF-based training 

requirements.  

The pre-CDF requirements include the proposed pre-requisites such as using the 

IACDT collaborative tool to enhance Year-3 teaching and maintaining various formal short 

courses prior to attending the CDF-based training. The post-CDF requirements include the 

proposed Industrial-University Collaborations and joint-creations of design themes (whenever 

feasible) and focus on enabling more students to attend the Industrial Placement Programs.  

These are important gaps being identified. CD methodologies and CDF require the 

implementation of a multi-disciplinary solution. The CDF may have state-of-the-art, top-of-

the-line IT infrastructure, hardware, CD software tools and facility. However, the CDF 

implemented at a university should be linked to industry, and students entering CE courses 

should have the proper pre-requisites for the CDF-based training. If not, students are likely to 

spend a lot of their times learning the pre-requisites instead of focusing in the core design 

projects in a relatively short timeline. 

 

Research Question 1: How is aerospace design currently taught at universities and to what 

extend are student graduate skills compatible with industry requirements?  

 

Four universities were investigated, where three offers undergraduate (BEng) degree in 

aerospace engineering and one offer undergraduate (BEng) degree with Dual Major in 

Mechanical and Aerospace Engineering. All four universities programs have a capstone design 

project, but do not have a CDF integrated in their curriculums. All four universities use a similar 

teaching philosophy, and with some differences in their overall design teaching methodology 

in general. 

 Students are taught the essential core engineering science and practice courses. 

 Industries are linked to the program, usually through the university school of engineering 

industry advisory or similar role committee, where the industries provide comments and 

advices on the contents of these programs. 

 Students are taught specialist skills such as analysis, design and operation of complex 

aerospace hardware and software. 
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 Year-1 to -2 of the curriculums focus on teaching students to understand the core 

engineering fundamentals including Mathematics, Physics and Mechanics. Out of the four, 

one university has a CAD course in Year-1. 

 Year-2 to -3 curriculums focus on specialist aerospace related courses to deepen the 

students acknowledge in aerospace engineering, such as Aerospace Structures and 

Aerodynamics etc. 

o Elective studies allow students to tailor the program to suit their areas of interests and 

enhance their career opportunities. 

 Year-4 curriculums consolidate the students’ Year-1 to -3 learning, and put it into practice 

through engineering research thesis, or capstone design projects with elements of Project 

Management (PM) or Team Works or Team Collaborations.  

o The capstone design project is either industry-based or simulates an industrial situation. 

o The capstone design project develops and reinforce the skills and knowledge of 

students. In Australia, this is as defined by the professional body Engineers Australia 

enabling them to commence their professional engineering career upon graduation 

[115]. 

o Year-4 continue to enable the selections of aerospace engineering electives. 

 Two universities have industrial training or placement and 2 do not have. 

o University of New South Wales (UNSW Sydney) – Year-3 Industrial Training or 

Exchange Opportunity (at least 60 days): Mandatory. 

o Royal Melbourne Institute of Technology University (RMIT) – Year-4 Industrial 

Placement program (at least 6 months full time): Elective. 

o University of Queensland (UQ) - Does not have an Industrial Placement Program. 

o University of Bristol (UB) – Does not have an Industrial Placement Program. 

 

In this light, the observation through a case study on a typical capstone design course in the 

thesis has shown that there is a: 

 Presence of ‘waterfall’ and over-the-wall’ approaches resulting in reduced iterative cycles 

and lower project completeness as shown in the students’ final group reports. 

 A general lack of CD enabled software tools that allow concurrent collaborations with each 

other through compatible interfaces. 

 A general lack of students’ CD, CAD and project management skills, which were reflected 

in their tutorial ‘in-session’ group collaborations/discussions and final group reports.  

 

These results are also in-sync with the studies conducted by the Professional Engineering 

Magazine (U.K.), Industrial Focus Group (Canada), University World News and OpenEdition 

Freemium for Journals [20, 21, 116, 117]. 

 

These three preceding misalignments observed in the case study are related to the applications 

of engineering practice in the capstone design project. The design project’s workflows and 

tools used are not in line with the concurrent design approach applied in many industries. 

Universities should consider establishing a CDF architecture along with CD enabled software 

tools, maintaining the CAD/CAE formal short courses, with more focus on project 

management as pre-requisites, and post-CDF based training if feasible (i.e. work-integrated-

learning with placement at industry or with industry participation) to realise the full potential 

of CDF implementations.  

The CAD/CAE formal short course is not course embedded in another engineering 

course. This is because, a dedicated separate CAD/CAE formal short course can focus more 
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directly on the tool’s main features, whereas, an embedded ‘course’ is just a by-product of 

another engineering course. 

 Lessons learned in literatures were that, some universities have already implemented a 

CDF and offer CDF-based aerospace courses at BSc. and MSc. Degree levels. Two universities 

placed their CDF-based trainings in their Master programs, and 1 university in their Bachelor 

and Master programs.  

The CDF-based Bachelor program has two capstone design project courses, and one 

elective (Space System Engineering course) in the Year-4. Following the completion of these 

three courses, students can proceed to the Space System Design Course, which is conducted in 

the USU Concurrent Engineering Facility (CEF). Whereas, the Master program from this same 

university, started the CDF-based course from Year-1 to -2. 

The CDF-based Master programs conducted by the two universities in close 

collaborations with ESA, also conduct their Year-1 to -2 courses within the CDF. 

The thesis acknowledged that it is an issue to decide which course need to be removed 

or changed to accommodate the CDF-based training course. 

 

The Concurrent Design Facility (CDF) at Technical University of Madrid (UPM, Spain), and 

International Space University (ISU, France: donated by European Space Agency) conformed 

to the best practise and approach of European Space Agency (ESA CDF), while USU CDF 

conformed to the National Aeronautics and Space Administration Jet Propulsion Laboratory 

(NASA JPL) best practise and approach. All three universities also collaborated closely with 

their agencies in design projects, educations and research. Therefore, the students are trained 

by the same ESA or JPL CDF approaches.  

Since the ESA CDF and NASA JPL CDF approaches have been used as guidelines and 

adopted by many industries in Europe, North America and worldwide, it is logical and 

reasonable to believe that graduates from UPM, ISU and USU and the likes, will have a better 

chance to be more work-ready and perform better in their Industrial Placement Programs (IPP). 

This is especially true for students who are performing their IPP in organisations that use CDF 

based on the ESA or JPL CE solutions. 

 

Research Question 2: What are the requirements for a Concurrent Design Facility suitable for 

design education and research at university level?  

 

The requirements for establishing a Concurrent Design Facility suitable for design education 

and research at university level must meet the needs of the relevant industries. Therefore, a set 

of rationales and its essential requirements that are relevant to these industries have been 

established as given in Sub-chapter 4.1.1, Table 11. 

 

Research Question 3: What CDF architecture would best meet the aforementioned 

requirements, including hardware, software, data management, infrastructure, etc., from an 

ease of use and cost perspective?  

 

The recommended CDF architecture and design environment that meets the essential 

requirements (ER) identified in Research Question-2 (Sub-chapter 4.1.1, Table 11) are given 

as follows: 

 

 For ER1: 

o The recommended CDF architecture incorporate the ESA CDF 5 key CE elements in 

literatures, which has largely become a reference point for other European partners to 

apply this approach to space mission designs.  
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Industries and national space agencies are using the ESA CDF as a guide to 

create their own facilities and processes, such as the French Space Agency CNES, 

which also partner with the Australian National Concurrent Design Facility opened at 

UNSW (Canberra) in Nov 2017. 

 

 For ER2: 

o The recommended CDF architecture consists of 10 workstations (PC). 

 Universities with the best practices in the CDF have implemented a maximum of 

10 or less disciplines workstations. Furthermore, universities with non-CDF/PBL 

and CDF/PBL combination have an average of 7 students in a group. 

 The CDF architecture can be expanded beyond 10 relevant disciplines workstations 

when the needs arise. 

 

 For ER3:  

o The recommended CDF architecture implemented a custom webserver/client based 

collaborative content-sharing tool, which is capable of: 

 Connecting any authorized Internet-enabled offsite discipline workstations 

(running a client and web-browser) to the onsite networked CDF workstations 

(running a custom webserver) for multi-disciplinary contents sharing 

simultaneously. The offsite/onsite clients disciplines workstations access the 

webserver, which is hard-wired to the video wall, by visiting the webserver’s 

uniform resource locator (URL) address. 

 

 For ER4: 

o The recommended CDF architecture consists of generic upgradable IT hardware, off-the-

shelf design and support software tools, and Cloud Computing. 

 This low-cost implementation is possible due to the advancements of computer 

hardware, Information and Communications Technology (ICT) infrastructure, and 

educational software licensing. 

 

 For ER5: 

o The recommended CDF architecture consists of a proposed Multi-Disciplinary 

Optimization (MDO) Collaborative tool to support the CDF core iterative design 

process workflows. This MDO tool is also capable to support easy installation and 

integration of: 

 A large variety of 3rd party popular commercial design tools (low cost education 

licensing) using its ready-made built-in interfaces. 

 In-house developed tools with its built-in custom-made interface wizard-style tool. 

 A case study (simulation) conducted in the thesis has demonstrated the seamless 

integrations of the proposed MDO tool with the spreadsheets/workbook and 

computational simulation tools. 

 

 For ER6: 

o The recommended CDF architecture consists of generic hardware, which can easily be 

used to install many different disciplines software tools without or in rare scenarios, 

with minimum restrictions, which may be resolved with upgrade (e.g. more ram). 

 Different installed disciplines software tools can be used in the CDF generic 

hardware at any given times, depending on the project types and disciplines. 
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 For ER7:  

o The recommended CDF architecture consists of low cost and yet, powerful upgradable 

hardware as requirement arise. For examples: 

 PC: upgradable components (new technology) includes: display, hard-drive and/or 

solid-state-drive capacity, Central-Processing-Unit (CPU), Graphic-Processing-

Unit (GPU) etc. 

 Video Wall: add new display panel, by tiling using daisy-chain/display-port 

connections. 

 

 For ER8:  

o The recommended CDF architecture includes secure data storage of 2 types: 

 Cloud Computing Services: design data kept in the pubic cloud service. 

 Virtual Private Networks (VPN): design data kept in the internal CDF data 

exchange server. 

VPN is proposed for design projects that are confidential, patent and defense in nature, 

because VPN can provide highly secure data networking connections between the onsite 

CDF (internal) data exchange storage server and authorized offsite disciplines 

workstations. VPN can be setup in software (e.g. Window 10 Operating System built-in 

feature), with no additional hardware requirement. 

Onsite students/researchers/staff will need to be trained to back up their design 

project data to the CDF internal data exchange server only, which ‘sit’ behind a firewall. 

Offsite/international students/researchers/commercial partners will also need to be trained 

to back up their design project data to the onsite CDF internal data exchange server using 

VPN connections only. 

On the other hand, Cloud Computing Services data storage, though less safe than 

VPN, is also proposed, mainly due to its ease of implementation and low cost (i.e. not 

required to purchase separate internal data storage server, including annual maintenance 

cost). Therefore, Cloud data storage services is proposed for design projects that are not 

confidential, not patent/copyright and not defense in nature. Such design projects may be 

based on design themes that simulate industrial scenarios or design competitions etc. 

For minimum internet speeds requirements, a broad estimate of standard resolution 

video streaming is at 3Mbit/s, HD at 5Mbit/s and UHD at 25Mbit/s. Assuming a typical 

design session may have 1 ongoing HD video streaming, including some other 

uploading/downloading taking place in parallel, intuitively, a 50 - 100Mb internet speed 

at the onsite and offsite discipline stations is sufficient for seamless and simultaneous 

collaborations. 

 

 For ER9: 

o The recommended CDF architecture consists of a proposed off-the-self commercial 

collaborative design tool that are capable of: 

 Performing system integration from CAD/CAE/numerical-computation to 

optimization, visualization, statistical and sensitivity analysis, and full product data 

management integration. 

 Performing intuitive workflows creations based on simple Drag-and-Drop of 

functional and application built-in interface icons into its workflow space. This is 

a relatively short process before the first meaningful data is entered.  

 Research works in the thesis has utilised the proposed MDO tool to integrate with 

the spreadsheet/workbook and computational simulation tools to conduct a case 

study (simulation). The case study is able to successfully determine that this MDO 

tool is intuitive, easy to learn and use, and efficient. 
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 Performing in multi-disciplinary environments, such as Aerospace, Automotive, 

Electronics, and Architectural and Construction disciplines for design projects. 

 

 For ER10:  

o The recommended CDF architecture consists of: 

 Powerful low-cost generic computer hardware, a large video wall, smart board, and 

supporting Networking/ICT infrastructure for concurrent seamless Data 

processing. 

 CDF room physical layout, with the ‘U’ configurations of the 10 PCs/disciplines 

and front large video wall, including ergonomics considerations to provide suitable 

visualisations. 

 Media contents are shared seamlessly and simultaneously with the proposed 

support tool to display between the video wall and the 10 connected PC on-site and 

any authorised off-site PC.  

This function has been successfully demonstrated through a case study (simulation) 

in the thesis. 

 

 For ER11: 

o The recommended CDF architecture meets the ergonomic and safety standards in 

Australia: 

 Safe Work Australia: Code of Practice: Managing the work environment and 

facilities, Dec 2011. This is an Australian Government statutory agency. 

 The University of Adelaide: Health, Safety and Welfare (HSW) Handbook: 

Workstation Ergonomic Guidelines, Oct 2015. 

The relevant standards and guidelines include: 

 Lighting will be sufficient to allow the design teams to function safely and 

effectively. There will be minimum glare and reflection to avoid straining the eyes. 

 Ambient air temperature range, humidity and air movement will be comfortable. 

 Workstation ergonomic ideal setup. 

 Ambient air temperature range and humidity will be within equipment operating 

range such as video wall. 

 

 For ER12: 

o The recommended CDF architecture includes a set of integrated Pre-CDF components, 

aiming to provide sufficient training and preparation to students prior to their 

progression to the subsequent year for the actual CDF-based training. These proposals 

include: 

 Utilising the Aircraft Design Collaborative (IACDT) Tool developed in the thesis 

to enhance the Year-3 aircraft design course with CE workflows. 

 The various separate formal short courses for: CAD/CAE, Computational 

Simulations, Multi-Disciplinary Optimisations, and more focus on Project 

Management. 

Note:  

The term ‘Pre-CDF’ usually refers to time-dependency element. Example, before a CDF 

has been installed. However, in the thesis, it refers to the students being trained in the CDF 

related curriculums, before they progress to the subsequent year to utilize the CDF that is 

already installed. 
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Future works 

 

Future works may include Prototyping and Visualisations enhancements evaluations 

capabilities in the overall CDF-based design project course. Such enhanced extensions may be 

through various methods, such as 3-Dimensions printing, and virtual/augmented reality 

(VR/AR) that are becoming popular in the industries. 

These are interesting future directions because the initial CDF only allows for 

visualisations of 3D model in 2D screen. However, with 3D Printing or VR/AR, students’ 

exposure to the system engineering will be enhanced in terms of depth and breath. Just like 

using the 2D screen for reviewing/inspecting the 3D model, in the 3D printing or VR/AR 

situations, students may export the same 3D models file into any of the following: 
 

 A 3D Printer to print the scale-down physical prototype with multiple parts making up the 

complete model, or  

 A VR/AR environment where students can digitally visualise the 3D model from different 

point of views. 

 

For the prototype with multi-sub-parts, it will allow students to separate the parts to conduct 

close-up hands-on physical inspections/reviews, which is far more detail than reviewing on a 

2D screen. While, in a VR/AR environment (using a headset and hand-held device), students 

will also be able to ‘move around’ in a virtual environment to look, and ‘touch and assess’ the 

3D model from different perspectives.  

Both of these technologies are more engaging and effective in identifying issues in the 

early design stage. By implementing this technology, students may remain motivated to 

produce the 3D model quickly and keeping them interested in the projects. 
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Appendices 
 

Appendix A, Listing of Concurrent Design Facility Design Tools adopted in 

Industries and Industry-University Collaboration 
 

Table 23, Listing of CDF design tools adopted in Industry and Industry-University Collaboration (1. ESA [6],  

2. DLR [30], 3. SSC [31], 4. IST [118], 5. ISU [32], 6. UPM [28] and 7. MIT [119]. 
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Appendix B, Listing of Domain Disciplines design stations in industry (ESA)  
 

 

Table 24, Listing of Domain Disciplines design stations in Industry (ESA). Design stations 1 to 9 (top table) and 

10 to 19 (bottom table) [105]. 

European Space Agency 19 Concurrent Design Stations descriptions (from station 1 to 9) [105] 

Date No 
Design 
Station 

Descriptions 

D
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n
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ti
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1
o

f2
, L

as
t 

u
p

d
at

e:
 2

5
 S

ep
te

m
b

er
 2

0
1

7 

1 Team Leader 

1. Responsible for managing the study.  
2. Work with customer to define scope of study and mission objectives for study analysis.  
3. Work with CDF Manager to select internal and external team members. 
4. Organises design sessions, supervises team members works. 
5. Works with systems engineers to complete the design at the shortest possible timeline. 
6. At study conclusion, oversees compilation of final report, along with technical author.  

2 Systems 

1. Team leader supervise the Systems engineer to conduct most of the systems level analysis.  
2. In charge of budgets, which include mass and Power, and checks whether the design satisfies 
mission requirements.  
3. Coordinates with the various disciplines and conduct design sessions in the absence of the team 
leader.  

3 
Mission 
Analysis 

1. Mission analyst defines the spacecraft operational environment with team leader and system 
engineer throughout its mission. This includes 
     1.1. Launch profile, orbital analysis, & trajectory definition.  
     1.2. 1.1. - Critical preliminary study phase, support mission definition requirements and 
                       development of a mission profile.  
2. Updates and optimises the mission profile as the spacecraft design progresses.  

4 

CDF PC 
station for 
Ground 
Systems & 
Operations 

1. GS&O engineer analyses resources required to support the spacecraft from a ground station & 
operational point of view & calculate cost of operating mission throughout its lifecycle.  
2. Work with communications engineer to select ground station(s) to be used 
3. Work with cost engineer to include costing for supporting workforce and equipment within the 
overall cost estimate.  
4. Assesses overall mission operational complexity work with Systems engineer to optimise operational 
complexity versus cost constraints.  

5 

Programmatic 
& AIV 
(assembly 
integration & 
verification) 

1. Programmatic & AIV engineer develops plan for the development, fabrication, testing and 
integrating the spacecraft aimed at launching on time.  
2. This involves 
    2.1. Analysing the time for development work & procurement.  
    2.2. Defining the test models and testing procedures.  
    2.3. Advising the other disciplines whether the design can be easily tested & integrated.  

6 
Technical Risk 
Assessment 

1. Risk engineer analyses the preliminary spacecraft design and identifies risks during the mission, 
which is based on the designs from other disciplines, such as the: 
    1.1. Definition of a risk management policy. 
    1.2. Assessment of risks. 
    1.3. Communicate these risks to team leader.  
2. Overall goal - use this data to mitigate risk to improve chances of meeting goals.  

7 Cost Analyst 
1. Responsible to: 
     1.1. Prepare the preliminary design industrial cost estimates. 
     1.2. Provide a cost-guided approach to the overall system design throughout study. 

8 Simulation 
1. Simulation engineer is responsible to create the mission simulation. 
     1.1. To analyse the spacecraft motion at any time during mission.  
     1.2. To ensure that the simulation accurately reflects the latest design and mission profile data.  

9 Configuration 

Configuration engineer is responsible for: 
1. The spacecraft components arrangement and fitting within their allocated spaces.  

2. Working with structural engineer to generate CAD file to represent the assembled spacecraft.  
3. Working with Programmatic / AIV engineer to analyse manufacturability and ease of assembly of 
the design.  
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European Space Agency 19 Concurrent Design Stations descriptions (from station 10 to 19) [105] 

Date No Design Station Descriptions 
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10 
Structural 
Engineering 

1. Structural engineer designs the spacecraft supporting structure, which includes 
    1.1. Analysing the launch and operational environment to ensure that all components are 
            1.1.1. Properly supported. 
            1.1.2. Can survive the structural loads.  
    1.2. Creating CAD models for components and assembles it in a master file that represents the 
geometry of the entire spacecraft.  

11 
Attitude & Orbit 
Control System 
(AOCS) 

AOCS engineer:  
1. Is responsible for the system that enables the spacecraft to determine, control its position and 

orientation throughout the mission.  
2. Design sensors to measure attitude & actuators to change attitude, to ensure that the craft 

always points in the desired direction.  
3. Works with propulsion engineer to ensure the spacecraft can perform all required manoeuvres.  

12 Propulsion 

Propulsion engineer is responsible for Engine design, which involved: 
1. Selecting and calculating the propellant required for mission. 
2. Selecting a tank to hold the propellant. 
3. Creating a preliminary design for the pumps, valves and pipes to supply the engines.  

13 Communication 

Communications engineer is responsible for: 
1. Designing a system to allow the spacecraft to communicate with Earth. 
2. Interfaces with many disciplines in the study, which are involved in handling, transmitting, & 

receiving data to size the antenna and supporting hardware. 

14 Data Handling 

CDF data handling engineer is responsible for: 
1.  The on-board system for collecting, interpreting and recording of data.  
2.  Analysing mission objectives, determines the required data processing and storage capability of 

the spacecraft, prior to sending data to Earth.  
3. Specifies the required components and data bus to interface other subsystems to the central 

processor.  

15 Power 

Electrical engineer is responsible for: 
1. Designing the spacecraft power systems.  
2. Analysing the power requirements for each subsystem and determines the overall power 

consumption profile. 
3. Selecting and sizing the power generation system (solar arrays, primary cells). 
4. Calculating the required battery capacity. 
5. Generating specifications for the power handling system.  

16 Thermal Control 

Thermal engineer is responsible for: 
1.  Ensuring that the spacecraft components are within the operating temperature ranges. 
2. Analysing the mission profile to determine effect of the spacecraft operational environment. 
3. Designing active and/or passive units to control temperatures throughout the spacecraft. 

17 
Mechanisms & 
Pyrotechnics 

Mechanical engineer is responsible for designing all spacecraft mechanical components to: 
1. Provide options for moveable parts required for (e.g. an antenna pointing mechanism). 

18 Instruments 

Instruments engineer is responsible for: 
1. All spacecraft science instruments. 
2. Defining the interface between instruments and spacecraft. 
3. Interacting with the systems engineer and other disciplines to ensure that requirements relating 

to the instrument are satisfied.  

19 
Technical 
Author, YGTs & 
Stagiaires 

1. Technical author works with the team leader, customer and system engineer throughout the 
whole study. Tasks include 
    1.1. Minuting the design session discussions and results. 
    1.2. Production and edit all the final study documentation. 
    1.3. Production and edit all technical documentation related to the CDF and its utilisation, such as 
various technical domain-workbook user manuals, or the CDF user manual. 
    1.4. Assist in all the studies as assistant system engineers. 
    1.5. Support to the CDF activities such as rapid prototyping, model preparation, software 
management etc.  
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Appendix C, Operating the Initial Aircraft Conceptual Design Tool 
 
IACDT is a collaborative tool originally developed in the thesis to demonstrate the 

concurrent design workflows and aims to enhance the pre-CDF multi-disciplinary 

optimisation education. 

 

This appendix describes the detail operation of the collaborative tool called the Initial Aircraft 

Conceptual Design Tool (IACDT). 

 

A typical IACDT process demonstration: begins with the following steps 

 

 Step1: Create a new directory/folder in C drive (C:\IACDT) – only once during installing 

 Step2: Copy the following files into the ‘C:\IACDT directory/folder’ – only once during 

installing 

o File1: ‘Workbook Concurrent Design - Conceptual Aircraft Design 1.xlsx’ 

 This is the main excel initial IACD source file 

o File2: ‘ConcurrentDesignBasedTool - Conceptual Aircraft Design 1.SLDPRT’ 

 This is the main SolidWorks2017 data file, containing the 3D aircraft concept 

o File3: ‘Worksheet in ConcurrentDesignBasedTool - Conceptual Aircraft Design 1.xlsx’ 

 This is SolidWorks2017 excel data file (with dimensions for 3D model) created 

within SolidWorks2017 dynamically linking dimensions of the aircraft conceptual 

design 3D model. 

 File3 can be opened within SolidWorks2017 

 Step3: Launch IACDT by opening (double click) the preceding 3 files in below sequence: 

o 1st – open MS Excel File1 

o 2nd – open SolidWorks2017 File2 

o 3rd – open MS Excel File3 (in SolidWorks: ‘Configurations-> Table-> Edit Table in 

New Window’) 

 

At this point, MS-Excel File1 (with relevant dimensions for 3D model) is linked to MS-Excel 

File3 within SolidWorks2017, linking the 3D model. Any change in the relevant linked 

dimensions in MS-Excel File1 will also change the MS-Excel File3 and 3D model. This 

happens upon saving or closing File3. 

 

IACDT process Colour code descriptions 

 

On launching IACDT, the main MS-Excel workbook (File1) comprising of nine worksheets 

TABs will dynamically link to each other. Each of these TABs contains the design workflows 

and computations of specific sub-system component. Within some of TABs in File1, colour 

codes are provided in the relevant cells to represent the following functions: 

 

  Denote manual entry values 

  Denote auto-calculated and/or linked values 

  Denote linked values 

 Denote values linked between SolidWorks2017 3D model’s File3, and main MS-Excel 

IACDT File1. Any change in File 1 automatically updates the model in SolidWorks. 

 

 

 

 

15000

4

400

162.18
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Aircraft mission requirements (AMR), TAB: ‘1.IACDT-WORKFLOWS’:  

 

The main functions of this spreadsheet are to: 

2. Provide Main Aircraft Mission Requirements (AMR), FAR23 by manual entries. 

3. Highlight High-level IACDT process workflows (iterative) 

4. Summary results (automatic updating computational results from TAB: 2 to 9 in Figure 14. 

 

Main Aircraft Mission Requirements (AMR), FAR23 will be entered manually. 

 

The main AMR includes aircraft conceptual design mission requirement values for FAR 23 as 

listed in Table 25 and Table 26. These are the: 

 Range (R = nm) 

 Endurance or loiter time (E = minutes) 

 Take-Off ground roll at sea level (S = feet), which may be varied (demonstration purpose) 

for each unique design scenario during lecture session.  

 

Figure 28 illustrates the actual manual data entries cells (blue values)/area for the AMR. 

 
Table 25, Aircraft mission requirements 

 

 
 

 
Table 26, Aircraft mission requirements: e.g. possible values (Left) & Variant values: R, E and S (Right) for 

FAR23 General Aviation, 1 engine, 1 pilot, 1 PAX aircraft IACD. 
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Figure 28, TAB1: Manual Entries area (colour coded cells: blue values) for main mission requirements in 

IACDT (FAR23, 1 engine, 1 pilot, 1 PAX general aviation aircraft only). 

 

 

Initial Weight Estimation (IWE), initial sizing – TAB ‘2.IACDT-Weight Estimate’:  

 

The main functions of this spreadsheet are to determine: 

 Initial Gross Take-off Weight (𝑊𝑇𝑂𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒). 

 Empty Weight (𝑊𝑒𝑚𝑝𝑡𝑦). 

 Fuel Weight (𝑊𝑓𝑢𝑒𝑙).  

 

The computations’ assumptions are based on the following historical data (Lift Coefficient): 

 𝐶𝐿𝑚𝑎𝑥𝐶𝑙𝑒𝑎𝑛
 

 𝐶𝐿𝑚𝑎𝑥𝑇𝑂
 

 𝐶𝐿𝑚𝑎𝑥𝐿𝑎𝑛𝑑𝑖𝑛𝑔
  

 

The computed results are subsequently applied to the relevant sub-system components (other 

linked spreadsheets) for further estimation as shown in Table 27.  

 

Limitation of IACDT 

IACDT is currently ‘hard-wired’ for FAR23, single engine, 1 PAX General Aviation (G.A.) 

aircraft only. Therefore, the historical data, statistical equations and assumptions used for 

computations are mainly for FAR23 G.A. aircraft. This is deemed sufficient for demonstration 

of the initial aircraft conceptual design within the CD environment. Future development may 

include FAR25 aircraft. 
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Table 27, Expected results: Initial Weight Estimation & Matching Chart (design points). 

 

 
 

 

The complete Initial Weight Estimation (IWE) workflows are given as: 

 Step1 (auto-calc.) – Determine Payload from Mission Requirements (Crew + PAX + 

Luggage and Cargo (excludes Fuel). 

 Step2 (manual entry) – Reference Payload Weight (from step1) to research comparative 

aircraft’s Initial Gross Take-off Weight (𝑊𝑇𝑂𝑔𝑢𝑒𝑠𝑠) with similar payload weight. 

 Step3 (manual entry) – Select comparative aircraft with similar Payload weight and guess 

the initial gross take-off weight (𝑊𝑇𝑂𝑔𝑢𝑒𝑠𝑠). 

 Step4 (auto-calc.) – Determine all Mission Segment Weight Fractions based on mission 

requirements. 

 Step5 (auto-calc.) – Determine Fuel Weight Fraction (
𝑊𝑓𝑢𝑒𝑙

𝑊𝑇𝑂
) from Overall Mission 

Segment Weight Fraction (
𝑊𝑙𝑎𝑠𝑡

𝑊𝑇𝑂
) of step4. 

 Step6 (auto-calc.) – Determine Initial Gross Take-off Weight (𝑊𝑇𝑂𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒), by 

solving equation iteratively until no change in WTO (i.e. after convergence) in lbs. 

 Step7 (auto-calc.) – Determine Empty Weight (𝑊𝑒𝑚𝑝𝑡𝑦) in lbs. 

 Step8 (auto-calc.) – Determine Fuel Weight) (𝑊𝑓𝑢𝑒𝑙) in lbs. 

 

 

Matching Chart, sizing to performance – TAB ‘3.IACDT-Matching Chart’: design points 

selection:  

 

The main functions of this spreadsheet are to compute the Matching Chart (Power Loading vs. 

Wing Loading) for sizing to performance. 

 Power Loading (
𝑊

ℎ𝑝
) (lbs/hp) for propeller aircraft 

 Wing Loading (
𝑊

𝑆
) (lbs/𝑓𝑡2) 

 

Once the Power Loading and Wing Loading have been computed for the sizing to Stall, Take-

off, Landing, Cruise, Rate of Climb and Service Ceiling, the Matching Chart can be utilised to 

manually select 2 suitable possible design points. Subsequently, the following 2 values are 

automatically computed based on the 2 selected design points. 

 Wing surface area (S) 

 Maximum Take-off Engine horsepower (hp) 
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The complete Matching Chart workflows for sizing to performance are given as: 

 Step1 (auto-calc.) – Sizing to Stall (Wing Loading (
𝑊

𝑆
) stall at assumed stall speed (𝑉𝑠𝑡𝑎𝑙𝑙) 

in kts. 

 Step2 (auto-calc.) – Sizing to Take-off (Wing Loading (Power Loading (
𝑊

ℎ𝑝
)𝑇𝑂 in lbs/hp 

vs. (
𝑊

𝑆
) in lbs/𝑓𝑡.2). 

 Step3 (auto-calc.) - Sizing to Landing (Wing Loading (
𝑊

𝑆
) landing in lbs/𝑓𝑡.2. 

 Step4 (auto-calc.) – Sizing to Cruise (Power Loading (
𝑊

ℎ𝑝
)𝑐𝑟 in lbs/hp vs. (

𝑊

𝑆
) in lbs/𝑓𝑡.2).  

 Step5 (auto-calc.) – Sizing to Rate of Climb (ROC) (
𝑊

ℎ𝑝
)𝑟𝑜𝑐 in lbs/hp vs. (

𝑊

𝑆
) in lbs/𝑓𝑡.2).  

 Step6 (auto-calc.) – Sizing to Service Ceiling (
𝑊

ℎ𝑝
)𝑐𝑒𝑖𝑙 in lbs/hp vs. (

𝑊

𝑆
) in lbs/𝑓𝑡.2).  

 Step7 (auto-calc. & Plot Matching Chart) (
𝑊

ℎ𝑝
) in lbs/hp vs. (

𝑊

𝑆
) in lbs/𝑓𝑡.2).  

 Step8 (manual/visual determine) min. 2 Design Points from Matching Chart: (
𝑊

ℎ𝑝
) and(

𝑊

𝑆
). 

 Step9 (auto-calc.) – Wing Reference Area (S) in 𝑓𝑡.2, and Engine horsepower (hp) in hp 

from manual/visual determined 2 x Design Points. 

 

 
 

Figure 29, E.g. of Matching Chart Plot at Configurations phase: Power Loading vs. Wing Loading, to allow 

manual selections of Design Points. 
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Table 28, E.g. Manual selection of 2 suitable Design Points. Wing Ref. Area & Engine Power are auto-calc. 

 

 
 

 Step10 (manual selection) – 2 suitable Design Points from Matching Chart in Figure 29. 

o Table 28 illustrates the manual selections of 2 suitable Design Points, DP (
W

hp
) , (

W

S
). 

o Wing Ref. Area (S) and Engine Power (hp) are auto-calc.  

o Colour codes: 

 1 DP is manually selected (dark blue) from the 2 suitable DP (light blue) 

 S and hp are auto-calc. (yellow) and linked to WTO, Wempty, Wfuel (light grey) 

o Preference:  

 Highest Power Loading (
𝑊

ℎ𝑝
): Propeller Aircraft or  

 Lowest Trust-to-Weight ratio (
𝑇

𝑊
): Jet Aircraft and  

 Highest Wing Loading – smaller size and lower weight wing 

 Step11 (Proceed to Aircraft Configurations) upon computing all the results as in Table 28. 

 

 

Aircraft Configuration – TAB ‘4.IACDT-Config FUSELAGE’ 

 

This section describes Aircraft Configuration phase to estimates the fuselage Width, Height, 

Length and Internal Cabin dimensions. Fuselage design will consider the Payload, Flight Crew, 

System, Low Drag Shape and Low Structural Weight. 

 

Fuselage design – TAB ‘4.IACDT-Config FUSELAGE’ 

 

The main functions of this spreadsheet are to commence the Preliminary Configuration Design 

Process upon computing all the results as illustrated in Table 29. These are the design summary 

results, which include: 

 Initial Weight Estimation (initial Sizing) 

 Matching Chart (Sizing to Performance) 

 Historical Data assumption.  

 

This process will commence with the Fuselage. The additional parameters are also required: 

 Fuselage Length and Diameter can be computed based on following taken from Aircraft 

Mission Requirements [66]: 

o Number of passengers, pilots and seats-across 

 Fuselage Nose Length can be computed based on: 

o Engine Model specification, which in-turn, is based on the Power Loading derived from 

Initial Weight Estimation and Matching Chart 
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Table 29, Design Summary from Initial Weight Estimation, Matching Chart and Historical Data used as 

preliminary configuration to begin design process. 
 

 Sizing Description Abbreviation Unit Originate from Remark 
 1 Initial Gross Take-Off Weight WTOconverge lbs Initial Weight Estimation  

2 Empty Weight Wempty lbs Initial Weight Estimation  

3 Fuel Weight Wfuel lbs Initial Weight Estimation  

4 Power Loading (Propeller AC) 
(

𝑊

ℎ𝑝
) 

𝑙𝑏𝑠

ℎ𝑝
 

Matching Chart: sizing to 
performance  

FAR23 

5 Or Trust-to-Weight Ratio 
(

𝑇

𝑊
) 

𝑙𝑏𝑓

𝑙𝑏𝑠
 

Matching Chart: sizing to 
performance 

FAR25 

6 Wing Loading 
(
𝑊

𝑆
) 

𝑙𝑏𝑠

𝑓𝑡2
 

Matching Chart: sizing to 
performance 

 

7 Wing Reference Area S 𝑓𝑡2 
(
𝑊𝑇𝑂𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒

(
𝑊
𝑆

)
) 

 

8 Engine Horse Power hp hp 
 (

𝑊𝑇𝑂𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒

(
𝑊
ℎ𝑝

)
) 

 

9 Wing Aspect Ratio AR  Historical Data [67] 

10 Max. Lift. Coefficient Clmaxclean  Historical Data [68] 

11 Max. Lift. Coefficient ClmaxTO  Historical Data [68] 

12 Max. Lift. Coefficient ClmaxL  Historical Data [68] 

 

 

The complete Fuselage design workflows are given as: 

 Step1 (manual entry): Fuselage internal Width, Height & Structural Wall Thickness 

assumption 

o Fuselage internal Width dimensions (dfwinternal
), assumption 2+18+8+18+2 = 48 inch 

[64, 67]. 

o Fuselage structural thickness (dfsthickness
): 1.5 in. [67]. 

o Fuselage internal height (dfhinternal
): 49 in. [64]. 

o Fuselage Door 

 Step2 (manual entry): Historical Data for equation used for Fuselage Length estimation 

[67]: 

o a = 4.37 and c = 0.23 

 Step3 (manual entry): Historical Data for equation (Roskam Part 2 2004) used for Fuselage 

Length estimation 

o Fuselage length and fuselage dim ext. width ratio(
lf

df
). 

o Fuselage Cone length and fuselage dim ext. width ratio(
lfc

df
). 

o Fuselage Tip Back Angle(θfc). 

 Step4 (auto-link) from TAB ‘5.IACDT-Config PROPULSION’ – Engine Length (Lengine) 

o Engine Length (Lengine) , X = a(bhp)b (lb or in.), table 10.4 [67]. 

Note: Step4 (auto-link) true result cannot be computed until: 

 A suitable Design Point is selected  

 Subsequent (auto-calc) of Engine Horsepower in TAB ‘3.CDF-Matching Chart’ 

 Historical Data are manually entered in TAB ‘5.IACDT-Config PROPULSION’  

[67]. 

o Engine Length, La = 3.86 and Engine Length, Lb = 0.42 

 Step5 (manual entry): Historical Data for Propeller Spinner Length & Engine + Firewall 

Buffer Length (Lengine). 

o Propeller Spinner Length, 𝐿𝑝𝑠 – Assumption 

o Propeller Spinner Diameter, 𝐷𝑝𝑠 - Assumption 
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o Engine/Firewall Buffer Length [64]. 

 Step6 (auto-calc.): Fuselage external Width, Height, Length & Cone Length 

o Fuselage external width dimension (𝑑𝑓𝑤𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙
) – (𝑑𝑓𝑤𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙

 + (𝑑𝑓𝑠𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠
 * 2)) 

o Fuselage external height dimension (𝑑𝑓ℎ𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙
) – (𝑑𝑓ℎ𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙

 + (𝑑𝑓𝑠𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠
 * 2)) 

o *Fuselage Length (based on Step2 data, equation & 𝑊𝑇𝑂𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒), 𝑙𝑓 = 𝑎𝑊𝑇𝑂
𝑐  

o **Fuselage Length (based on Step3 data & equation): 𝑑𝑓𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙(
𝑙𝑓

𝑑𝑓
). 

o Fuselage Cone length (𝑙𝑓𝑐) (based on Step3 & equation) : ((
𝑙𝑓𝑐

𝑑𝑓
)𝑑𝑓). 

Note: The results from step 6* and 6** should be quite similar. The (
𝑙𝑓

𝑑𝑓
) ratio 

should be within Roskam’s recommended range [68]. 

 Step7 (auto-calc.): Fuselage Nose Length (from spinner tip to firewall) 

o Fuselage Nose Length (𝐿𝑓𝑛): Sum ( 𝐿𝑒𝑛𝑔𝑖𝑛𝑒  + 𝐿𝑝𝑠 +𝐿𝑏𝑢𝑓𝑓𝑒𝑟). 

 Step8 (manual entry): Historical Data for Fuselage Cockpit Length [64]. 

 Step9 (auto-calc.): Luggage Length = Fuselage total Length – Nose Length – Cockpit 

Length – Cone Length – Row2PAXseatLength (if applicable). 

 

 

Aircraft Configuration – TAB ‘5.IACDT-Config PROPULSION’   

 

The main functions of this spreadsheet are to commence the Preliminary Configuration Design 

for the Propulsion System. The tasks performed will include the estimation of the Engine 

Length, Width, Height, Weight (Un-installed stage) and (Installed in fuselage), including the 

Propeller Length (2 blades) by referencing the historical data. 

 

Propulsion design – TAB ‘5.IACDT-Config PROPULSION’ 

 

Once the Engine horsepower has been estimated based on the manually selected design point 

in the Matching Chart, the preliminary configuration design process for the Propulsion System 

can begin.  

  

Note: Fuselage design requires the Propulsion System results prior to completion. 

 

The complete Propulsion system design workflows are given as: 

 Step1 (auto-link) - Engine Horsepower (hp) from TAB ‘3.IACDT-Matching Chart’ (auto-

calc. from selected design point: (
𝑊𝑇𝑂𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒

(
𝑊

ℎ𝑝
)

) 

 Step2 (manual entry) – Historical Data for Engine Width, Height, and Equations to calc. 

Engine Weight and Length [67].  

o Weight, Wa = 5.47 and Wb = 0.78 

o Length, La = 3.86 and Lb = 0.42 

o Width = 34 in (range 32 to 34 in) 

o Height = 25 in (range 22 to 25 in) 

 Step3 (manual entry) – Historical Data (assumption) for Propeller Weight (est. 20 lbs, 2 

blade) 

 Step4 (auto-calculation) – Engine Weight (Not installed), (Installed with Prop + Spinner), 

Engine Length & Propeller Length (using 2 blades equation) [67]. 

o Engine Weight, 𝑋 = 𝑎(𝑏ℎ𝑝)𝑏 (𝑙𝑏 𝑜𝑟 𝑖𝑛.), table 10.4. 
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o Engine Length (Not installed and installed results) 

o Propeller Length equation (diameter, d), (10.23), (10.24) respectively: 

2-blade: 𝑑 = 22√𝐻𝑝4
   Equation 1 

3-blade: 𝑑 = 18√𝐻𝑝4
   Equation 2 

 

Aircraft Configuration – TAB ‘6.IACDT-Config WING’ 

 

The main functions of this spreadsheet are to commence the Preliminary Configuration Design 

for Wing. The tasks performed include the estimation of the Wing Parameters such as the 

Dimensions, Aerofoil selection, High Lift. Device (single slotted flap), Control Surfaces (Flap 

and Aileron) and Fuel Storage (volume) in Wing (need to reference the historical data). 

 
Wing design – TAB ‘6.IACDT-Config WING’ 

 

Wing design can begin once the following parameters have been computed or assumed: 

 Engine Wing Loading (
𝑊

𝑆
) 

 Wing Reference Area (S) from Initial Weight Estimation and Matching Chart (selected 

design point: (
𝑊

ℎ𝑝
) vs. (

𝑊

𝑆
)) 

 Historical Data required: 

o Wing Aspect Ratio (AR = 7.6, [67]. 

o Lift Coefficient (𝐶𝐿𝑚𝑎𝑥𝐶𝑙𝑒𝑎𝑛
 = 1.6, 𝐶𝐿𝑚𝑎𝑥𝑇𝑂

 = 1.8 (Est. 80% L), 𝐶𝐿𝑚𝑎𝑥𝐿𝑎𝑛𝑑𝑖𝑛𝑔
 = 2.3) [68]. 

 

The complete Wing design workflows are given as: 

 Step1 (auto-links): Historical Data and auto-calc. results 

o Wing Aspect Ratio (A or AR) = 7.6 (Linked from Initial Weight Estimation) [67]. 

o Wing Reference Area (S) in 𝑓𝑡.2 (from Matching auto-calc. - selected Chart, design 

point) 

 Step2 (manual entry): Historical Data 

o Wing Taper Ratio (  = 0.45 

o Wing Twist Angle = -3 degree (𝐶𝑡𝑖𝑝) lower angle of incidence than (𝐶𝑟𝑜𝑜𝑡) to reshape 

lift. distribution) 

o Wing Dihedral or Anhedral (low wing) () = 5 degree [67]. 

o Quarter Chord Sweep Angle ( (
𝛥𝑐

4
)= 0 degree (0 degree reduce cost) [69]. 

o Wing Incidence: (𝑖𝑤) = 2 degree [67]. 

 Step3 (auto-calc.): Wing Span, Root Chord, Tip Chord, Y: distance of MAC from 

Centreline, Mean Aerodynamic Chord, Leading edge sweep angle 

o Wing Span (b, in ft.): Table 4.1*: A=aspect ratio, S=wing & canard area [67]: 

𝑏 = √𝐴𝑆   Equation 3 

o Wing Root Chord (cruise), (𝐶𝑟𝑜𝑜𝑡, in ft.) [67]: 

(𝐶𝑟𝑜𝑜𝑡 =
2𝑆

𝑏(1+𝜆)
)                Equation 4 

o Wing Tip Chord (cruise), (𝐶𝑡𝑖𝑝, in ft.) [67]: 

(𝐶𝑡𝑖𝑝 = 𝜆𝐶𝑟𝑜𝑜𝑡)              Equation 5 
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o Wing, Y is distance of MAC from Centreline of Fuselage [67]: 

 �̅� =
𝑏

6
[

(𝟏+𝟐𝝀)

(𝟏+𝝀)
)]             Equation 6 

o Wing Mean Aerodynamic Chord (MAC, 𝐶̅, in ft.) [67]: 

 𝐶̅ = (
2

3
)𝐶𝑟𝑜𝑜𝑡

(𝟏+𝝀+𝝀𝟐)

(𝟏+𝝀)
             Equation 7 

o Leading edge sweep angle (due to taper, in degree) [67]: 

 𝑡𝑎𝑛𝛥𝐿𝐸 = 𝑡𝑎𝑛𝛥𝐶
4⁄ + [

(1−𝜆)

𝐴𝑅(1+𝜆)
]             Equation 8 

 Step4 (auto-link): Historical Data and auto-calc. results 

o Wing Loading, from Selected Design Point (Matching Chart), (
𝑊

𝑆
) in 

𝑙𝑏𝑠

𝑓𝑡.2 
 

o Air Density at 15,000 ft. ( ) in 0.001498 
𝑠𝑙𝑢𝑔

𝑓𝑡.3 
 (Mission Requirement) 

o Velocity at Cruise, (Vcr) in kts, converted to ft./s (Mission Requirement) 

o Weight (average) estimation at cruise, est. 0.9 * WTO [69]. 

𝑊𝑎𝑣𝑔 =
1

2
(𝑊𝑖 + 𝑊𝑓)         Equation 9 

o Maximum Lift Coefficient (clean), (𝐶𝐿𝑚𝑎𝑥
) from Initial Weight Estimation [68]. 

 

 Step5 (auto-calc.): Wing Aerofoil selection, where design Lift Coefficient, 𝐶𝐿𝑑𝑒𝑠𝑖𝑔𝑛
 should 

be around 𝐶𝐿𝑐𝑟𝑢𝑖𝑠𝑒
 for efficiency during high-altitude cruise. 

 

 

Wing Airfoil Ideal Lift Coefficient [69]. 

o Aircraft ideal Lift Coefficient (cruise) needed for Aerofoil Design, (𝐶𝐿𝑖𝑐𝑟
): 

𝐶𝐿𝑐
=

2𝑊𝑎𝑣𝑒

𝜌𝑉𝑐
2𝑆

        Equation 10 

o Wing Ideal Lift Coefficient (cruise), excludes the rest of aircraft (𝐶𝐿𝐶𝑤
): 

𝐶𝐿𝐶𝑤
=

𝐶𝐿𝑐

0.95
                   Equation 11 

o Wing Airfoil Ideal Lift Coefficient (𝐶𝐿𝑖𝑎𝑖𝑟𝑓𝑜𝑖𝑙
): 

𝐶𝐿𝑖
=

𝐶𝐿𝐶𝑤

0.9
        Equation 12 

Wing Airfoil Gross Maximum Lift Coefficient [69]. 

o Maximum WING Lift Coefficient (𝐶𝐿 max _𝑤): 

𝐶𝐿 𝑚𝑎𝑥 _𝑤 
=

𝐶𝐿𝑚𝑎𝑥

0.95
        Equation 13 

o Gross Maximum AIRFOIL Lift Coefficient, with High Lift Device 

(𝐶L max _𝑎𝑖𝑟𝑓𝑜𝑖𝑙𝑔𝑟𝑜𝑠𝑠  ): 

𝐶𝐿 𝑚𝑎𝑥 _𝑔𝑟𝑜𝑠𝑠 
=

𝐶𝐿𝑚𝑎𝑥 _𝑤

0.9
                Equation 14 

Note: Results of the example mission requirements have shown that the HLD (flap): 

 Is more than sufficient for TO (𝐶𝐿𝑚𝑎𝑥𝑇𝑂
) range: 1.3 to 1.9, assumed 1.8), but  

 Not sufficient for LANDING (𝐶𝐿𝑚𝑎𝑥𝐿
) range: 1.6 to 2.3, assumed 2.3) [68]. 
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 Referring to the Chart: Maximum Lift Coefficient vs. Ideal Lift Coefficient of 

preceding example results - for NACA Airfoil selections, the possible Airfoil 

are: NACA 4412, 4415, 64-412 [69]. 

 
 Step6 (manual entry): History Data [69]. 

o Change in High Lift Device (for TO and Landing) fully extended to 60 degree, slotted 

flap: 

   𝛥𝐶𝐿𝐻𝐿𝐷
= (1.3 ∗

𝐶𝑓

𝐶
)          Equation 15 

o General Aviation 2 seats aircraft (avg. Flap-to-Chord ratio, (
𝐶𝑓

𝐶
)), est. = 0.30. 

 Step7 (auto-calc.): change in 𝐶𝐿 in HLD, & NETT Max. Airfoil 𝐶𝐿 without HLD 

o Change in 𝐶𝐿 (single slotted HLD flap) when fully extended: 

𝛥𝐶𝐿𝐻𝐿𝐷_𝑓
= (1.3 ∗

𝐶𝑓

𝐶
)                    Equation 16 

o NETT Max. Airfoil Lift Coefficient (without HLD): 

𝐶𝐿 𝑚𝑎𝑥 
= (𝐶𝐿 𝑚𝑎𝑥 _𝑔𝑟𝑜𝑠𝑠 

− 𝛥𝐶𝐿 𝐻𝐿𝐷 
)                     Equation 17 

 Step8 (auto-link & manual entry): for calc. Reynolds numbers Airfoil Croot and Ctip 

o Air density at cruise attitude: 15,000 ft. (requirement) - 
o Cruise velocity (requirement) - V 

o Wing airfoil 𝐶𝑟𝑜𝑜𝑡 (calc.) - L 

o Wing airfoil 𝐶𝑡𝑖𝑝 (calc.) - L 

o Dynamic Viscosity of fluid (Historical data) - .

 Step9 (auto-calc.): Reynolds numbers at Airfoil 𝐶𝑟𝑜𝑜𝑡 and 𝐶𝑡𝑖𝑝 that meet Mission 

Requirements (cruise attitude: 15000 ft., cruise velocity): 

 𝑅𝑒 =
𝜌𝑉𝐿

𝜇
    Equation 18 

Note: Reynolds is a dimensionless value that measures ratio of Inertial Forces to Viscous 

Forces and describes the degree of Laminar or Turbulent Flow. 

 

 Step10 (manual selection): Airfoil selection uses Sadraey chart that meets the calc. ideal 

lift coefficient vs. max. Lift coefficient (no HLD) as calculated [69]. 

o Reynolds number 𝐶𝑟𝑜𝑜𝑡 is 5,000,066, which is estimated to be close to the Chart with 

data at Re = 6,000,000.  

o Airfoil selected is NACA 4415 (Airfoil thickness, max. camber location & max. 

camber). 

 Step11 (auto-link) – Check the Wing 𝐶𝐿 value to see whether ideal 𝐶𝐿 calculated is ok. 

o Ideal Lift Coefficient (𝐶𝐿𝑖
) 

o 
𝑊

𝑆
 (wing loading) 

o Air density at 15,000 ft. 

o Cruise Velocity at 15,000 ft. 

 Step12 (auto-calc.): q cr (dynamic pressure) and Lift coefficient cr (design) and check (𝐶𝐿𝑖
) 

vs. (𝐶𝐿𝑑𝑒𝑠
) is within 10% 

o q cr (dynamic pressure): 

 q = 
𝜌𝑉2

2
            Equation 19 
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o Design Lift Coefficient: 

𝐶𝐿 =
𝑊

𝑆
∗

1

0.5𝜌𝑐𝑉𝑐
2            Equation 20 

o Check (𝐶𝐿𝑖
) (Step5.c) vs. (𝐶𝐿𝑑𝑒𝑠

) (@ Step12.b) is within 10% or not. 

 Step13 (auto-link): Wing control surfaces (Flap and Aileron) 

o External diameter, in ft. (fuselage) (𝑑𝑓𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙
) – from TAB ‘4.IACDT-Config 

FUSELAGE’ 

o Wing Span, in ft. (b) , SQRT(Wing Aspect Ratio * Wing Reference Area) [67]. 

o Wing Root Chord, Croot (cruise, in ft.): 

𝐶𝑟𝑜𝑜𝑡 =  
2𝑆

𝑏(1+𝜆)
            Equation 21 

o Wing Tip Chord, 𝐶𝑡𝑖𝑝 (cruise, in ft.): 

𝐶𝑡𝑖𝑝 = 𝜆𝐶𝑟𝑜𝑜𝑡          Equation 22 

o Wing Reference Area, S (in ft.) – from TAP ‘3.IACDT-Matching Chart’, selected 

design point’s derivation. 

 Step14 (manual entry): Wing control surfaces (Flap and Aileron) 

o Flap, outer (
𝐶𝑓

𝐶
), (  )  

o Aileron, inner, outer, (
𝐶𝑎

𝐶
), (  ) 

 Step14 (auto-calc.): Wing control surfaces (Flap and Aileron) 

o Flap, inner:  , y ft., c ft. 

o Flap, outer:       y ft., c ft. 

o Complete Flapped Area, (𝑆𝑓), in 𝑓𝑡.2 

o Flapped Area to Wing Area ratio : (
𝑆𝑓

𝑆
) 

o Aileron, inner:  y ft., c ft. 

o Aileron, outer:  y ft., c ft. 

o Complete Aileron Area, (𝑆𝑎), in 𝑓𝑡.2 

o Aileron Area to Wing Area ratio : (
𝑆𝑎

𝑆
) 

 Step15 (auto-link): Fuel Weight, from Initial Weight Estimation 

o Fuel Weight, 𝑊𝑓𝑢𝑒𝑙, in lbs 

 Step16 (manual entry): Fuel Storage (volume) in Wing, Historical Data 

o Fuel Density (assumption), ( fuel, in lbs/𝑓𝑡.3 

o Step17 (auto-calc.): Fuel Storage (volume) in Wing required for mission, Fuel Volume 

Check, (𝐹𝑣𝑜𝑙) in 𝑓𝑡.3: 

𝐹𝑣𝑜𝑙 =
𝑊𝑓𝑢𝑒𝑙

𝜌𝑓𝑢𝑒𝑙
  Equation 23 

 Step18 (auto-link): Check Fuel Volume requirement vs. Wing Fuel Tank Volume capacity 

(check ok or not) 

o Wing Reference Area, (S), in 𝑓𝑡.2 

o Wing Span, (b), in ft. 

o Taper Ratio,Historical Data [67]. 

o Wing Root Chord (cruise), 𝐶𝑟𝑜𝑜𝑡, in ft. 

o Wing Tip Chord (cruise), 𝐶𝑡𝑖𝑝, in ft. 

o Dihedral or Anhedral (low wing), , in degree [67]. 
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 Step19 (manual entry): Check Fuel Volume requirement vs. Wing Fuel Tank Volume 

capacity (check ok or not) 

 Manually selected Airfoil : NACA 4415:  

o Maximum thickness 15% at 30.9% chord 

o Maximum camber 4% at 40.2% chord 

 Airfoil Thickness ratio (tip), (
𝑡

𝑐
)𝑡𝑖𝑝. 

 Airfoil Thickness ratio (root), (
𝑡

𝑐
)𝑟𝑜𝑜𝑡. 

 Step20 (auto-calc.): Check Fuel Volume requirement vs. Wing Fuel Tank Volume capacity 

(check ok or not) 

o Wing Fuel Tank Volume, in 𝑓𝑡.3: 

 𝛤 =
(

𝑡

𝑐
)𝑡𝑖𝑝

(
𝑡

𝑐
)𝑟𝑜𝑜𝑡

      Equation 24 

𝑉𝑓𝑢𝑒𝑙𝑤𝑖𝑛𝑔 = 0.54(
𝑆2

𝑏
)(

𝑡

𝑐
)𝑟𝑜𝑜𝑡

(1+𝜆√𝜏+𝜆2𝜏)

(1+𝜆)2  𝑉𝑓𝑢𝑒𝑙𝑤𝑖𝑛𝑔             Equation 25 

o Wing Fuel Volume Check whether mission requirement is sufficient vs. fuel tank 

capacity in wing 

 

 

Aircraft Configuration – TAB ‘7.IACDT-Config TAIL’ 

 

The main functions of this spreadsheet are to commence the Preliminary Configuration Design 

for the Tail. The tasks performed include the estimation of Tail parameters such as the 

Dimensions, Aerofoil selection, thickness ratio, sweep angle, taper ratio, incidence, twist 

dihedral, Control Surfaces and historical data. 

 

Tail design – TAB ‘7.IACDT-Config TAIL’ 

 

The Tail surface area is directly proportional to Wing area, therefore: 

 Tail area cannot be selected until the initial weight estimation of aircraft 𝑊𝑇𝑂𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑎𝑛𝑐𝑒 

has been completed.  

 Initial estimation of tail area will be made using the Tail Volume Coefficient method [67]. 

 

Tail design process can begin after the following parameters have been determined: 

 Wing Chord (C) ft. 

 Wing Span (b) ft. 

 Wing Area (S) ft.2  

 

The complete Tail design workflows are given as: 

 Step1 (auto-link) – Wing Chord, Wing Span, Wing Area & Fuselage length 

o Wing Chord (C ) in ft. (from Wing design) 

o Wing Span ( b ) in ft. (from Wing design) 

o Wing Area ( S ) in 𝑓𝑡.2 (from Matching Chart selected design point’s derivation) 

o Fuselage Length (𝐿𝑓) in ft. (from Fuselage design) 

 Step2 (manual entry) – Historical Data  

o Tail Aspect Ratio (Horizontal, (𝐴𝑅ℎ)) [67]. 

o Tail Aspect Ratio (Vertical, (𝐴𝑅𝑣)) [67]. 
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o Tail Taper Ratio (Horizontal, (𝑇𝑅ℎ)) [67]. 

o Tail Taper Ratio (Vertical, (𝑇𝑅𝑣)) [67]. 

o Tail Leading-edge Sweep Angle (Horizontal, (𝛥𝐿𝐸)) in degree [67]. 

o Tail Sweep Angle (Vertical, (𝛥𝐿𝐸))  in degree [67]. 

o Tail Airfoil Thickness Ratio, horizontal (similar to Wing), (
𝑡

𝑐
)ℎ [67]. 

o Tail Airfoil Thickness Ratio, vertical (similar to Wing), (
𝑡

𝑐
)𝑣 [67]. 

o Tail Dihedral Angle, horizontal, , in degree [67]. 

o Tail Dihedral Angle, Vertical, , in degree [67]. (not applicable in example) 

o Tail Volume Coefficients (Horizontal, 𝐶𝐻𝑇 (𝑉𝐻)) [67]. 

o Tail Volume Coefficients (Vertical, 𝐶𝑉𝑇 (𝑉𝑉)) [67]. 

o Tail Moment Arm (Horizontal, (
𝐿𝐻

𝐿𝑓
)), est. 60% of Lf [67]. 

o Tail Moment Arm (Vertical, (
𝐿𝑉

𝐿𝑓
), est. 60% of Lf [67]. 

o Tail Airfoil selection, NACA 0012 (Horizontal and Vertical) 

 Step3 (auto-calc.) – Tail Stabiliser Length 

o Tail Stabiliser Length (Horizontal, 𝐿𝐻, in ft.) = (Tail Moment Arm, (
𝐿𝐻

𝐿𝑓
) in %) * 

(Fuselage Length) [67]. 

o Tail Stabiliser Length (Vertical, 𝐿𝑉, in ft.) = (Tail Moment Arm, (
𝐿𝑉

𝐿𝑓
) in %) * (Fuselage 

Length) [67]. 

 Step4 (auto-calc.) - Tail Stabiliser (Horizontal) Area, Span, Root Chord, Tip Chord, Chord 

o Tail Stabiliser Area (Horizontal, 𝑆𝐻𝑇, in 𝑓𝑡.2) [67]. 

𝑆𝐻𝑇 =
𝐶𝐻𝑇�̅�𝑊𝑆𝑊

𝐿𝐻𝑇
   Equation 26 

o Tail Stabiliser Span (Horizontal, 𝑏𝐻𝑇, in ft.) 

o Tail Root Chord (Horizontal, 𝐶𝑟𝑜𝑜𝑡_ℎ, in ft.) 

o Tail Tip Chord (Horizontal, 𝐶𝑡𝑖𝑝_ℎ, in ft.) – convert to inches as well 

o Tail Chord (Horizontal, c h, Y h, x c/4 h, in ft.) 

 Step5 (auto-calc.) - Tail Stabiliser (Vertical) Area, Span, Root Chord, Tip Chord, Chord 

o Tail Stabiliser Area (Vertical, 𝑆𝑉𝑇, in 𝑓𝑡.2) [67]. 

𝑆𝑉𝑇 =
𝐶𝑉𝑇𝑏𝑊𝑆𝑊

𝐿𝑉𝑇
   Equation 27 

o Tail Stabiliser Span (Vertical, 𝑏𝑉𝑇, in ft.) 

o Tail Root Chord (Vertical, 𝐶𝑟𝑜𝑜𝑡_𝑣 , in ft.) 

o Tail Tip Chord (Vertical, 𝐶𝑡𝑖𝑝_𝑣 , in ft.) – convert to inches as well 

o Tail Chord (Vertical, 𝐶𝑣, 𝑌𝑣, 𝑋𝑐 4⁄ 𝑣
, in ft.) 

 Step6 (manual entry) – Tail Control Surface (Elevator) 

o inner,  = 0 

o outer  = 0.90 (%) [67]. 

o (
𝐶𝑒

𝐶ℎ
)= 0.45 (control surface chord to tail chord elevator ratio) 

 Step7 (auto-calc.) – Tail Control Surface (Elevator) 

o Inner, y ft. and c ft. 

o Outer, y ft. and c ft. 

o Elevator Area (𝑆𝑒, in 𝑓𝑡.2) 

o Elevator Area to H Tail Area Ratio(
𝑆𝑒

𝑆𝐻
). 
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 Step8 (manual entry) – Tail Control Surface (Rudder) 

o inner,  = 0 

o outer  = 0.90 (%) [67]. 

o cr / cv = 0.40 (control surface chord to tail chord elevator ratio) 

 Step9 (auto-calc.) – Tail Control Surface (Rudder) 

o Inner, y ft. and c ft. 

o Outer, y ft. and c ft. 

o Rudder Area (𝑆𝑟, in 𝑓𝑡.2) 

o Rudder Area to V Tail Area Ratio(
𝑆𝑟

𝑆𝑉
). 

 

 

Aircraft Configuration – TAB ‘8.IACDT-Config W and B’ 

 

The Aircraft Configuration phase to estimate the Weight and Balance Parameters are aimed at 

designing a balanced and stable aircraft that is controllable within the designed flight envelope. 

For example, a tail-heavy aircraft is unstable, but a nose-heavy aircraft may be overly 

stable, which may also reduce its controllability.  

This stage of design workflows estimates the initial weight distribution, C.G. grouping 

components positions and travel range of the aircraft concept (airframe structure & systems). 

These also include the fuselage, horizontal tail, vertical tail, landing gear (nose and main), 

system (others), wing, propulsion, empty weight, fuel weight, useful payload (pilot + PAX + 

luggage). 

 

Weight and Balance design – TAB ‘8.IACDT-Config W and B’ 

 

The main functions of this spreadsheet are to commence the Preliminary Configuration Design 

Process for the Weight and Balance of the aircraft. The W & B Design process begins after the 

following conceptual workflows have been completed: 

 Initial weight estimation (WTO, 𝑊𝑒𝑚𝑝𝑡𝑦, 𝑊𝑓𝑢𝑒𝑙),  

 Matching Chart (selected Design Point: (
𝑊

ℎ𝑝
), (

𝑊

𝑆
), S, hp) and the relevant historical data 

such as: 𝐶𝐿𝑚𝑎𝑥
, 𝐶𝐿𝑚𝑎𝑥𝑇𝑂

, 𝐶𝐿𝑚𝑎𝑥𝐿
. 

 Fuselage, Propulsion, Wing and Tail (horizontal and vertical). 

 

The complete Weight and Balance design workflows are given as: 

 

Summary listing of W & B related parameters: 

 𝑊𝑇𝑂𝑐𝑜𝑛𝑣, 𝑊𝑒𝑚𝑝𝑡𝑦, 𝑊𝑓𝑢𝑒𝑙, 𝑊𝑝𝑎𝑦𝑙𝑜𝑎𝑑. 

 WING Parameters 

 HORIZONTAL TAIL Parameters 

 VERTICAL TAIL Parameters 

 FUSELAGE Parameters 

 LANDING GEAR (Weight) Parameters 

 ENGINE Parameters 

 LANDING GEAR (Tricycle) Requirement/Parameters 

 STATIC MARGIN: longitudinal stability & control Parameters 

 MAIN DESIGN VALUES (this sheet: ‘8.IACDT-Config W and B’) Parameters 

 C.G. GROUPING Parameters 
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 LANDING GEAR Parameters 

 

Note: values in red colour denote that it is directly exported for dimensioning the 

SolidWorks 3D model (aircraft concept). 

 

 Step1 (auto-link): WTOconv, Wempty, Wfuel, Wpayloadt 

o Initial take-off gross weight (𝑊𝑇𝑂𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒) – from Initial Weight Estimation 

o Empty Weight (𝑊𝑒𝑚𝑝𝑡𝑦) – from Initial Weight Estimation) 

o Fuel Weight (𝑊𝑓𝑢𝑒𝑙) – from Initial Weight Estimation) 

o Total useful Payload (Pilot, PAX, Luggage), (𝑊𝑝𝑎𝑦𝑙𝑜𝑎𝑑) – from Initial Weight 

Estimation 

 Step2 (manual entry) 

o Approximate Empty Weight Build-up Historical Data (General Aviation, 
𝑙𝑏

𝑓𝑡2), Table 

15.2 – for approximating Group Weights  [67]. This includes C.G. estimate via 

statistical data + approximate locations of components C.G. 

 Wing = 2.5 

 𝐻𝑡𝑎𝑖𝑙 = 1.9 (given = 2) 

 𝑉𝑡𝑎𝑖𝑙 = 1.9 (given = 2) 

 Fuselage = 1.3 (given = 1.4) 

 𝐿𝑔𝑒𝑎𝑟  = 0.057 

 Engine (installed) = 1.4 

 Others = 0.1 

o X C.G. coordinates measured from datum 200" in front of nose (x offset = 200 in) 

o Z C.G. coordinates measured from datum 30" below ground level (z offset = 30 in) 

 Step3 (auto-link): WING Parameters 

o Wing Flap inner, c ft. (c at fus) - from WING design 

o Wing Tip Chord (cruise, 𝐶𝑡𝑖𝑝, in ft., convert to in) – from WING design 

o Mean Aerodynamic Chord (MAC) – from WING design 

o Y: distance of MAC from Centreline (Y) – from WING design 

o Leading Edge MAC – from WING design 

o 𝑡𝑎𝑛𝛥𝐿𝐸 , Leading edge sweep angle due to taper (𝛥𝐿𝐸) – from WING design 

o Wing Root Chord (cruise, 𝐶𝑟𝑜𝑜𝑡, in ft.) – from WING design 

o Wing Airfoil Thickness-to-Chord Ratio ((
𝑡

𝑐
)𝑟𝑜𝑜𝑡) – from WING design 

o Wing Airfoil Thickness-to-Chord Ratio ((
𝑡

𝑐
)𝑡𝑖𝑝) – from WING design 

o Wing Span (b, in ft.) convert to inch – from WING design 

o Wing Dihedral Angle,  in degree – from WING design [67]. 
 Step4 (auto-calc.): WING Parameters 

o Wing Span exposed (𝑏𝑒𝑥𝑝, in ft.) 

o Wing true-view exposed planform area (𝑆𝑒𝑥𝑝, in 𝑓𝑡.2) 

o Wing Weight (𝑤𝑤𝑖𝑛𝑔, in lbs) 

o Wing Quarter Chord (x c/4, in inch) 

o Location point Reference Wing (x 𝐶𝑟𝑜𝑜𝑡, in inch) 

o Airfoil thickness-to-chord ratio MAC ((
𝑡

𝑐
) MAC) 

o WingCtipSweepLengthLocation based on Sweep Angle, in Inch 

 Step5 (auto-link): HORIZONTAL TAIL Parameters 

o Horizontal Tail Surface Area (𝑆𝑒𝑥𝑝𝑡ℎ, in 𝑓𝑡.2), from TAIL design 
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o Horizontal Tail Stabiliser length (LH (LHT) previous – from TAIL design 

o Tail mean Chord (Horizontal) (c mean, in ft.) – from TAIL design 

o Tail root Chord (Horizontal) (c root, in ft.) – from TAIL design 

o TAILhSweep (deg) – from TAIL design 

o Horizontal Tail Span (b, in ft.), convert to inch and divide by 2 = b/2 

 Step6 (auto-calc.): HORIZONTAL TAIL Parameters 

o Horizontal Tail Weight (𝑊𝑡ℎ, in lbs) 

o Horizontal Tail Stabiliser Length (LH (LHT), in ft.) 

o Horizontal Tail Leading Edge (x LE h, in ft.) 

o (CtipLEstartPt based on sweep angle+TAILhCrootLE), in inch 

 Step7 (auto-link): VERTICAL TAIL Parameters 

o Vertical Tail Stabiliser Area (𝑆𝑒𝑥𝑝, in 𝑓𝑡.2) – from TAIL design 

o Vertical Tail Stabiliser length (LV (LVT) previous, in ft. – from TAIL design 

o Chord mean (Vertical) (c mean, in ft.) – from TAIL design 

o Chord root (Vertical) (c root, in ft.) – from TAIL design 

o Chord tip (Vertical) (c tip, in ft.) - from TAIL design 

o Vertical Tail Leading Edge (x LE v, in ft.) - from TAIL design 

o Vertical Tail Span (b, in ft.) from TAIL design, and convert to inch 

o Vertical Tail Sweep Angle (𝛥𝐿𝐸, in degree) [67]. 

 Step8 (auto-calc.): VERTICAL TAIL Parameters 

o Vertical Tail Weight (𝑊𝑡𝑣, in lbs) 

o Vertical Tail Stabiliser length (LV (LVT), in ft.) 

o (CtipLEstartPt based on sweep angle+TAILvCrootLE) in inch 

 Step9 (auto-link): FUSELAGE Parameters 

o Fuselage length (𝐿𝑓, in ft.) – from FUSELAGE design 

 Step10 (auto-calc.): FUSELAGE Parameters 

o Fuselage external dimension (𝑑𝑓, in ft., width) – from FUSELAGE design (in) convert 

to ft. 

o Fuselage fineness ration [67]. 

 𝜆𝑓 = (
𝐿𝑓

𝑑𝑓
)                 Equation 28 

o Fuselage Wetted Area (𝑆𝑤𝑒𝑡, in 𝑓𝑡.2) 

o Fuselage Weight (𝑊𝑓, in lbs) 

 Step11 (auto-link): LANDING GEAR (Weight) Parameters 

o Initial Take-off gross weight (𝑊𝑇𝑂𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒, in lbs) – from Weight  

 Step12 (auto-calc.) – LANDING GEAR (Weight) Parameters 

o Nose Landing Gear Weight (15% of 𝑊𝑇𝑂𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 * 0.057, table 15.2) [67]. 

o Main Landing Gear Weight (85% of 𝑊𝑇𝑂𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 * 0.057, table 15.2) [67]. 

 Step13 (auto-link): ENGINE Parameters 

o Engine Weight (𝑊𝑒𝑛𝑔𝑖𝑛𝑒, in lbs) – from PROPULSION design 

o Engine Weight (installed with Propeller + Spinner) – from PROPULSION design 

o Propeller Diameter (Dp, in ft.) – convert to inch (FAR 23) – from PROPULSION design 

o Engine Length, not install (x 𝐿𝑒𝑛𝑔𝑖𝑛𝑒, in) – from PROPULSION design 

 Step14 (manual entry): ENGINE Parameters 

o Engine – y coordinate location, in ft. 

 Step15 (auto-calc.): ENGINE Parameters 

o Engine Length + Engine an Firewall buffer, (x 𝐿𝑒𝑛𝑔𝑖𝑛𝑒𝐼𝑛𝑠𝑡, in: 𝐿𝑒𝑛𝑔𝑖𝑛𝑒 + 𝐿𝑏𝑢𝑓𝑓𝑒𝑟) 
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o WTO (include other system weight (𝑊𝑜𝑡ℎ𝑒𝑟𝑠, in lbs: 𝑊𝑇𝑂𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 * 

ApproxEmptyWeightBuildup) [67]. 
 Step16 (auto-link): LANDING GEAR (Tricycle) Requirement/Parameters 

o Landing Gear Height (𝐻𝑖𝑔, in: baseline fuselage to ground level) 

 Step17 (manual entry): LANDING GEAR (Tricycle) Requirement/Parameters 

o Propeller Tips Clearance from ground level (FAR 23.925) 

o Main Landing Gear carry: 80% to 90% Aircraft loads, assumption [67]. 

o Front Landing Gear carry: 10% to 20% Aircraft loads, assumption [67]. 

o Main Landing Gear Rotation (TO, Landing) R ngTOL, deg., assumption [67]. 

 Step18 (auto-link): STATIC MARGIN: longitudinal stability & control Parameters 

Note: 

Static Margin is used to determine the longitudinal stability and controllability. 

 Neutral point is located in front of most aft.-CG. I.e. static margin = 0. 

 Neutral Point = CG neutral stability = Static Margin is 0. 

 Static margin is about 4-10% for propeller aircraft [67]. 

 

o Wing Aspect Ratio (𝐴𝑅𝑤) – from MATCHING CHART 

o Wing Taper Ratio ( ) – from WING design 

o (
𝛥𝑐

2
): assume 𝑡𝑎𝑛𝛥𝐿𝐸(Wing leading edge sweep angle due to taper) – fm WING design 

o Fuselage external width dimension (𝑑𝑓, in ft.) – from FUSELAGE design 

o Wing Span (𝑏𝑤, in ft.) – from WING design 

o Tail Aspect Ratio, Horizontal (𝐴𝑅𝑡ℎ) from TAIL design 

o (
𝛥𝑐

2
):  assume 𝛥𝐿𝐸 Leading-edge sweep (Horizontal TAIL) – from TAIL design 

o Horizontal Tail Stabiliser length (𝐿𝐻 (𝐿𝐻𝑇), in ft. – from TAIL design 

o Quarter Chord Sweep Angle ((
𝛥𝑐

4
) in degree) from WING design [69]. 

o Horizontal Tail Stabiliser Area (𝑆𝐻 (𝑆𝐻𝑇), in 𝑓𝑡.2 – from TAIL design 

o Wing Reference Surface Area (S, in 𝑓𝑡.2) – from WING design 

 Step19 (manual entry): STATIC MARGIN: longitudinal stability & control Parameters 

o Wing Power off calculations (M) 

o Wing (0.95 if unknown) 

o Horizontal Tail Power off calculations (M) 

o Horizontal Tail  

o (
𝐶𝐿

𝐶𝐿
):  

 
(𝐶𝐿𝛼𝑤

)𝑎𝑡 𝑀

(𝐶𝐿𝛼𝑤
)𝑎𝑡 𝑀=0

           Equation 29 

o Tail to free Stream Dynamic Pressure Ratio ( H ) 
 Step20 (auto-calc.): STATIC MARGIN: longitudinal stability and control Parameters 

o Xacwf (Xacw: location of wing/fuselage aerodynamic center) 

o Wing : 

𝛽 = √1 − 𝑀2   Equation 30 

o (𝐶𝐿𝛼𝑤
)  - for (𝐶𝐿𝛼𝑤

) and (𝐶𝐿𝛼𝐻
)  , use: 

  𝐶𝐿𝛼
=

2𝜋𝐴𝑅

2+√4+
𝐴𝑅2𝛽2

𝜂2 (1+
𝑡𝑎𝑛2𝛥𝑐

2⁄

𝛽2 )

   Equation 31 
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o (𝐾𝑤𝑓), buckling coefficient wing/fuselage:  

𝐾𝑤𝑓 = 1 + 0.025 (
𝑑𝑓

𝑏
) − 0.25(

𝑑𝑓

𝑏
)2           Equation 32 

o (𝐶𝐿𝛼𝑤𝑓
): 

𝐶𝐿𝛼𝑤𝑓
= (𝐶𝐿𝛼𝑤

𝐾𝑤𝑓)        Equation 33 

o Horizontal Tail :  

𝛽 = √1 − 𝑀2      Equation 34 

o 𝐶𝐿𝛼ℎ
 (per rad) Horizontal Tail Lift Curve Slope: 

o (𝐶𝐿𝛼ℎ
)  - for (𝐶𝐿𝛼𝑤

) and (𝐶𝐿𝛼𝐻
) use: 

   𝐶𝐿𝛼
=

2𝜋𝐴𝑅

2+√4+
𝐴𝑅2𝛽2

𝜂2 (1+
𝑡𝑎𝑛2𝛥𝑐

2⁄

𝛽2 )

               Equation 35 

o 𝐾𝐴𝑅: 

𝐾𝐴𝑅 =
1

𝐴𝑅
−

1

1+𝐴𝑅1.7               Equation 36 

o 𝐾𝜆 

𝐾𝜆 =
(10−3𝜆)

7
              Equation 37 

o 𝐾𝐻 

𝐾𝐻 =
1−ℎ𝐻

𝑏

(
2𝐿𝐻

𝑏
)1 3⁄

   Equation 38 

o 
𝜕𝜀𝐻

𝜕𝛼
   

𝜕𝜀𝐻

𝜕𝛼
= 4.44[(𝐾𝐴𝑅𝐾𝜆𝐾𝐻(𝑐𝑜𝑠𝛥𝑐 4⁄ )1 2⁄ )1.19]

(𝐶𝐿𝛼𝑤
)𝑎𝑡 𝑀

(𝐶𝐿𝛼𝑤
)𝑎𝑡 𝑀=0

                 Equation 39 

o 𝑋𝑎𝑐𝐻
, (% MAC) Horizontal Tail Aerodynamic Centre location (Tail_H_moment_arm 

* MAC) 
o 𝐶𝐿𝛼

: 

 𝐶𝐿𝛼
= 𝐶𝐿𝛼𝑤𝑓

+ 𝐶𝐿𝛼𝐻
𝜂𝐻(

𝑆𝐻

𝑆
)(1 −

𝜕𝜀𝐻

𝜕𝛼
)   Equation 40 

o �̅�𝑛𝑝, Aircraft Neutral PT: Aerodynamic Ctr. (% MAC): 

                              �̅�𝑛𝑝 = �̅�𝛼 𝑤𝑓

𝐶𝐿𝛼𝑤𝑓

𝐶𝐿𝛼

+ 𝜂𝐻

𝐶𝐿𝛼𝐻

𝐶𝐿𝛼

(1 −
𝜕𝜀𝐻

𝜕𝛼
)(

𝑆𝐻

𝑆
)�̅�𝛼 𝐻      Equation 41 

Note:  

The Length in equations can be expressed as a fraction of WING MEAN CHORD: 

C, where a bar denotes this fractional length. So, e.g. �̅�𝑐𝑔 represents 
�̅�𝑐𝑔

𝐶
. 

o �̅�𝑐𝑔, Centre of Gravity location (% MAC) 

o Static Margin (SM, %MAC) is the Distance in % MAC from Neutral Point to C.G. 
(aircraft neutral point - aircraft centre of gravity). Therefore, SM [67, 69]: 

𝑆𝑀 =
𝑋𝑛𝑝−𝑋𝑐𝑔

�̅�
   Equation 42 
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 Step21 (auto-link): MAIN DESIGN VALUES (sheet: ‘8.IACDT-Config W and B’) 

Parameters 

o xLE MAC (Leading edge Mean Aerodynamic Chord), height in inch 

 Step22 (manual entry): MAIN DESIGN VALUES (sheet: ‘8.IACDT-Config W and B’) 

Parameters 

o h ground (from fuselage bottom surface to ground) - to meet FAA FAR23.925 

o x nose wheel (estimate from comparative aircraft specification) 

o x main wheel (𝐶𝐺𝑎𝑓𝑡 to m gear: need to re-calc. manually this value if 𝐶𝐺𝑎𝑓𝑡 changes 

each time) 

o Wheel Track (estimate from comparative aircraft specification) 

 Step23 (auto-calc.): MAIN DESIGN VALUES (sheet: ‘8.IACDT-Config W and B’) 

Parameters 

o XoffsetANDCGaft.ANDCGaft.TOWheelMainLoc@Sketch41 (solidworks model), in 

inch 

o 'WheelNoseLocation@Sketch43 (solidworks model), in inch 

 Step24 (auto-link, manual entry and auto-calc.): C.G. GROUPING Parameters 

The MS-Excel Table 30, Table 31, Table 32 and Table 33 illustrate the C.G. grouping, 

including: Airframe structure + system (others), Propulsion and components weights.  
 

These tables include calc. values for interfacing inputs linking with SolidWorks 3D model 

(aircraft concept). Any change in this workbook on the relevant linked values, the 3D model 

will also auto update. This provides a CD like environment while working through the core 

design curriculums. Colour Codes are:  for auto-link; for manual entry; 

for auto-calc.;  for auto-calc. + link to SolidWorks 3D model 
 

Table 30, Centre of Gravity Grouping. 
 

 
 

 
 
 

50 0 72.41

79.50

C.G. Grouping

Weight X WX XI XO Z

(lbs)
moment arm 

(in)

Weight * 

moment arm 

(lbs.in)

Starting X location 

of component (in)

Ending X location 

of component (in)
Height (in)

Airframe Structure + system (others)

fuselage 345 315 108677 200.00 487.54 79.50

h tail 55 482 26666 468.84 512.36 79.50

v tail 23 479 10984 443.24 487.54 82.94

l gear ng 14 228 3185 34.95

l gear mg 79 314 24826 38.24

others 98 315 30882 79.50

wing 268 286 76720 261.02 329.66 65.14

Propulsion

engine (Installed) 275.00 234.21 64406.45 210.00 244.21 77.50

Wempty 1157.64

Wempty (Prev: 

init Weight Est)
1018.01 1.14

Fuel (Wing) init 

Weight Est)
215.87 286.00 61738.39

Useful Payload

Pilot + 1 PAX 350 296 103600

PAX (row 2) 0 332 0

Luggage 50 355 17768
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Table 31, Centre of Gravity Grouping. 

 

 
 
 

Table 32, Centre of Gravity Grouping. 
 

 
 
 

Table 33, Centre of Gravity Grouping. 
 

 
 

 

 Step25 (auto-calc.) – Determine Forward and Aft. C.G. Limits Parameters 

o CG, forward limit, in inch 

o CG, aft. limit, in inch 

o CG travel (range between fore and aft. CG limits) 

 Step26 (auto-link): LANDING GEAR Parameters 

o h ground (fm fuselage bottom surface to ground), in inch 

o x nose (l gear ng - exclude x offset), in inch 

o x main (l gear mg - exclude x offset), in inch 

o main D main (Main Wheel Diameter), d (wheel), in inch 

o D nose (Nose Wheel Diameter) ,(wheel) in inch 

o X CG aft. (CG Aft. Limit), in inch 

o X CG fwd (CG Forward Limit), in inch 

o X main (l gear mg, with x offset), in inch 

o X nose (l gear ng, with x offset), in inch 

o Wheel Track, in inch 

 

Weight (lb) X WX We pilot aft pax fuel only fuel + pax cargo Z

Wfuel (init Weight 

Est)
216 286 61738 0 0 0 216 216 0 65.14

cockpit pilot + 1 PAX 350 296 103600 0 350 0 0 350 0 79.50

Cabin n.a. PAX (row 2) 0 332 0 0 0 0 0 0 0 79.50

cargo luggage 50 355 17768 0 0 0 0 0 50 79.50

WTO 1774 1158 1508 1158 1374 1724 1208

WTO prev (init 

Weight Est)
1634 1.085461 299 307 299 299 306 287

X Z X/c

CG 299 73.12 0.64 c

CG We 299 72.41

CG fuel 286 65.14

CG payload 303 79.50

XLE MAC 265.14 65.14

Xac 278 65.14

Xnp 299 65.14 5.74 % MAC

Xcg 299 65.14 5.72 % MAC

CG Envelope - Aircraft ComponentsX axis (In) Weight (lb)

Wcargo 287 1208 0.420605 c

Wempty 299 1158 0.657523 c

pilot only 307 1508 0.803422 c

aft pax only 299 1158 0.657523 c

fuel only 299 1374 0.647189 c

fuel + front pax 306 1724 0.776912 c

WTO 299 1774 0.640346 c
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 Step27 (manual entry): LANDING GEAR Parameters 

o N struts m 

o N struts n 

o Safety 

o Growth allowance in MTOW [67]. 

o (
𝐷𝑛

𝐷𝑚
) (Ratio: Diameter Nose Wheel / Diameter Main Wheel) [67]. 

 Step28 (auto-calc.): LANDING GEAR Parameters 

o CG_aft. to m_gear, in inch 

o HCG (Height of I gear, CG to Gnd), in inch 

o HCG + Z_offset, in inch 

o Angle (Tip Over Longitude est. 15 degree) 

 

Lateral Tip-Over Values, main gear 

o Wheel Track (TrackW/2, in inch) 

o a, in degree 

o d, in inch 

o Angle (Tip Over Lateral >25 and < 63 degree) [67, 69]. 

o X fcone, in inch 

o a (Rotation Longitude), in degree 

o htip, in inch 

o xtip-mg, in inch 

o a, in degree 

o ℎ𝑒𝑛𝑔𝑖𝑛𝑒, in inch 

o xeng-mg, in inch 

o a (Rotation Laterial est. 5 degree) 

o B (Wheel Base Length, in inch) 

o 𝐼𝑚 (Length fm CG_fwd to main_gear, in inch) 

o (from fuselage TIP to Nose Gear at fuselage underside (firewall buffer), in inch 

o NoseWheelGearHeight@Sketch54 (SolidWorks model), in inch 

o 𝐼𝑛 (Length fm CG aft. to Nose Gear) in inch 

 

Tire Selection (𝑊𝑊 = load per tire (wheel) 

o 𝑊𝑤 𝑚(Max load on main wheel, in lbs): 

 𝑊 =
𝑙𝑛

𝐵𝑛𝑠𝑡𝑟𝑢𝑡𝑠𝑚

  Equation 43 

o 𝑊𝑤 𝑛 (Max load on nose wheel, in lbs): 

     𝑊 =
𝑙𝑚

𝐵𝑛𝑠𝑡𝑟𝑢𝑡𝑠𝑛

    Equation 44 

o 
𝑊𝑛

𝑊𝑇𝑂
: 

 

With Growth allowance in MTOW 

o 𝑊𝑤 𝑚 (Max Load on Main Wheel) : with Growth allowance in MTOW assumption 

o 𝑊𝑤 𝑛 (Max Load on Nose Wheel) : with Growth allowance in MTOW assumption 

 

Main and Nose Wheel Diameter and Width 

o D main (Main Wheel Diameter), in 𝐴𝑊𝑤
𝐵 inch and convert to Radius  [67]. 
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o w main (Main Wheel Width), in inch 

o D nose (Nose Wheel Diameter), in inch: 60-100% 𝑊𝑤 𝑚 and convert to Radius  [67]. 

o w nose (Nose Wheel Width), in inch 

Aircraft Configuration: TAB ‘9.IACDT-Config DRAG POLAR’ 

 

The main functions of this spreadsheet are to commence the Preliminary Configuration Design 

is to estimate the Drag Polar Parameters. 

 

Aerodynamic Coefficient vs. Drag Polar (𝐶𝐿 vs 𝐶𝐷) is the relationship between Lift, Drag and 

Angle of Attack. It can be calculated once the following parameters have been computed: 

 Weight and Balance: 

o Weight distributions 

o C.G. and  

o Locations of components (includes locations and dimensions for SolidWorks 3D 

model) related parameters has been determined. 

 

The complete Drag Polar workflows are given as: 

 Determine Wetted Areas of: Wing, Vertical Tail, Horizontal Tail and Fuselage 

 Determine Drag at zero Lift. (cruise), 𝐶𝐷0 

 Determine Lift. to Drag Ratio, (
𝐿

𝐷
) (TO and Landing) 

 Determine Drag Coefficient, 𝐶𝐷 (cruise, TO and Landing) 
 

 Step1 Determine Wetted Area: Wing, Vertical Tail, Horizontal Tail & Fuselage, Table 34. 
 

Table 34, Wetted Areas: Wing, Vertical Tail, Horizontal Tail & Fuselage. 
 

 

 

 
 

𝜏 =
(

𝑡

𝑐
)𝑟𝑜𝑜𝑡

(
𝑡

𝑐
)𝑡𝑖𝑝

  Equation 45 

𝜆 =
𝐶𝑡𝑖𝑝

𝐶𝑟𝑜𝑜𝑡
              Equation 46 

𝑆𝑤𝑒𝑡 = 2𝑆𝑒𝑥𝑝𝑜𝑠𝑒𝑑(1 +
0.25(

𝑡

𝑐
)

𝑟𝑜𝑜𝑡
(1+𝜏𝜆)

(1+𝜆)
)                       Equation 47 

wing v tail h tail

True-View Exposed Planform 

Area (Sexposed)
S exp ft2 107.30 11.46 27.66

Airfoil Thickness Ratio (root) t/c root 0.15 0.15 0.15

Airfoil Thickness Ratio (tip) t/c tip 0.15 0.15 0.15

dihedral t 1 1 1

Taper Ratio (Historical)  0.45 0.45 0.45

Wing, Vtail, Htail Wetted 

Area (total exposed surface 

area: external parts of AC get 

wet if dipped in water)

S wet ft2 222.65 23.78 57.39

 

fuselage (Wetted Area) Swet 246.42 ft2

The nacelle is a housing, separate from the fuselage, that holds engines, fuel, or equipment on an aircraft.

 nacelles 0 ft2 Manual Entry (Note: ignored for this G.A. aircraft)

Total Wetted Area: Wing, V 

Tail, H Tail, Fuselage
Swet total 550.24 ft2
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 Step2 Determine: Drag at zero Lift (cruise), CD0, Table 35. 

 
Table 35, Drag at zero lift (cruise), 𝐶𝐷0. 

 

  
 

𝐶𝐷0 = 𝐶𝑓𝑒
𝑆𝑤𝑒𝑡

𝑆𝑟𝑒𝑓
   Equation 48 

 Step3 Determine Lift to Drag Ratio, (
L

D
) (TO and Landing), Table 36. 

 
Table 36, Lift-to-Drag Ratio, (TO and Landing). 

 

 
 
 

𝐾 =
1

𝜋𝐴𝑅𝘦
              Equation 49 

(
𝐿

𝐷
)𝑏𝑒𝑠𝑡 𝑟𝑎𝑛𝑔𝑒 𝑝𝑟𝑜𝑝 = (

𝐿

𝐷
)𝑚𝑎𝑥                  Equation 50 

(
𝐿

𝐷
)𝑚𝑎𝑥 =

1

√𝐶𝐷0𝐾2        Equation 51 

 Step4 Determine: Drag Coefficient, CD (cruise, TO and Landing), Table 37. 

 
Table 37, Drag Coefficient, CD (cruise, TO and Landing). 

 

 
 
 

𝐶𝐷 = 𝐶𝐷0 + 𝐾𝐶𝐿
2            Equation 52 

 

 

 

 

 

 

 

 

skin friction co-efficient Cfe 0.0055 Historical Manual Entry

Drag at zero Lift (cruise) CD0 0.023153

Wing Aspect Ratio AR 7.60 Raymer 1992

cruise takeoff landing

Drag at zero Lift CD0 0.02 DCD0 0.03 DCD0 0.07

Oswald efficiency factor (e ),  

(assumed 0.8, Roskam)
e 0.80 CD0 0.05 CD0 0.09

Lift induced Drag Constant (K) K 0.05 e, Roskam 0.75 e, Roskam 0.70

Lift to Drag Ratio L/D 14.36 K 0.06 K 0.06

LD assume 10.00 L/D 9.18 L/D 6.70

Total Drag Coefficient CD = CD0 + K CL

Total Cruise Drag Coefficient cruise CD = 0.02 + 0.05 CL
2 0.39 Calc

Total Takeoff Drag Coefficient takeoff CD = 0.05 + 0.06 CL
2 1.80 Roskam

Total Landing Drag Coefficient landing CD = 0.09 + 0.06 CL
2 2.30 Roskam
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Aircraft Configuration – Preliminary: 3-view of aircraft concept 

 

The Aircraft Configuration phase includes the automatic (real-time) updating of the 3D model 

when the relevant dimensions in the IACDT workbook changes. 

When the SolidWorks 3D model as illustrated in Figure 30 opened, the relevant 

dimensions within the IACDT spreadsheets (sub-system components) will be automatically 

linked to the 3D model. Any change (linked dimensions) in the 3D model or individual IACDT 

spreadsheet will automatically change the other linked dimensions in the relevant spreadsheets 

and the 3D model.  

Therefore, this tool can provide a system-wide perspective for example, the trade-off 

analysis between sub-system components in a real-time environment. 

 

. 
 

Figure 30, SolidWorks 3D model dynamically linked with Initial Aircraft Conceptual Design Tool. 
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Appendix D, Interfacing MS-Excel with MATLAB Simulink 
 

This appendix includes an example on how MS-Excel has been interfaced with MATLAB 

Simulink for the specific purpose to carry out the research. The reader should refer to Table 

16. 

 

Setup MS-Excel connection with MATLAB (from within MS-Excel) 

 

The setup procedure includes the following steps: 

 Start the MS-Excel application 

 Click ‘FILE’ tab 

 Click ‘Options’ (‘Excel Options’ dialogue box appear) 

 Click ‘Add-ins’ 

 Click ‘Go…’ button for Manage: ‘Excel Add-ins’ drop-down list (Add-ins’ dialogue box 

appears) 

 Select option ‘Spreadsheet Link 3.2.5 for use with MATLAB and Excel’ 

 Click ‘OK’ button (‘Add-ins’ dialogue box closes) 

 Click ‘HOME’ tab (MATLAB function lists appear. Spreadsheet Link 3.2.5 for use with 

MATLAB and Excel as illustrated in Figure 31. MS-EXCEL spreadsheet link is ready for 

use. 

 

  
 

Figure 31, MATLAB function lists appear in EXCEL after MATLAB link setup completion. 
 

 

Procedures to Write a Matrix array from MATLAB into MS-Excel file 

 

A matrix array can be written using one of the four MATLAB functions as shown below with 

different options.  

 xlswrite(filename,A) 

 xlswrite(filename,A,sheet) 

 xlswrite(filename,A,xlRange) 

 xlswrite(filename,A,sheet,xlRange) 

 

The steps to write an example matrix array from MATLAB into MS-Excel are as follows: 

  At the Command-Window and next to the prompt ‘>>’, enter: 

o >> testdataarray1 = {'dataA' 1 2 3; 'dataB' 4 5 6; 'dataC' 7 8 9}acknow and click ‘Enter’ 

key. 
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 A 3x4 cell matrix array is displayed as illustrated in Figure 32. 

 

Note: There is no requirement for a MS-Excel spreadsheet to exist prior to transferring the 

preceding array. The MATLAB ‘xlswrite’ command can be setup to write the array into a 

certain file directory and new filename, including what cell to write. 

 

 At the Command-Window and next to the prompt ‘>>’, enter: 

o >> a = xlswrite ('D:\MATLAB EXCEL LINK\matlabExcel', testdataarray1,2,'F5'); 

 Figure 33 illustrates that the matrix array have been transferred into MS-

EXCEL’s worksheet 2 and populated at cell ‘F5”. 

 

 
 

 
Figure 32, In MATLAB, showing functions to create an array & follow by transferring to MS-EXCEL. 

 

 
 

Figure 33, In MS-EXCEL showing an array populated from cell 'F5" as defined in MATLAB. 
 

 

Procedures to Read a Matrix array from MS-Excel into MATLAB within MATLAB 

 

Figure 34 illustrates the execution of MATLAB command ‘xlsread’ to read an matrix array 

from the MS-Excel file in certain directory, worksheet and cell ranges into the MATLAB 

Command-Window. 

 

 
 
Figure 34, MATLAB 'xlsread' function to read an array from MS-EXCEL file, worksheet 2 & cell range: G5:I7 

into MATLAB. 
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Appendix E, Interfacing MS-Excel with AGI System Tool Kit (STK) 
 

This appendix includes an example on how MS-Excel has been interfaced with AGI STK for 

the specific purpose to carry out the research. The reader should refer to Table 16. 

 

Setting up MS-Excel to interface with AGI STK 

 

The steps to setup MS-Excel to interface with AGI STK are as follows: 

 Step1: Download the STKExcelAdd-in1100.zip file from AGI website  

         http://help.agi.com/stk/index.htm#gettingstarted/excelAddin.htm?Highlight=excel  

 (assess date: 01 Sep 2018) 

o At the AGI website, download the ‘STK Excel Add-in’ by clicking on the ‘Resources’ 

and select the ‘Other tab’. 

o The ‘STK Excel Add-in’ creates a custom toolbar in MS-Excel. This is to enable the 

transferring of data between MS-Excel spreadsheets and STK scenarios.  

 Step2: Unzip the downloaded .zip file into a new directory and run the setup.exe file.  

o This will automatically install the Excel-STK ‘Stk Add-in 11’ and ‘Stk Add-in 11 

X64’ for AGI STK version 11 into Excel application. 

 Step3: Activate the installed ‘STK Add-in’ feature within the Excel application with the 

following sub-steps.  

o Click on the DEVELOPER Tab 

o Click on the ‘Add-Ins’ box to display the ‘Add-Ins’ dialogue box as illustrated in 

Figure 35.  

o Check on both the ‘STK Add-Ins 11’ and ‘STK ADD-In 11 X64’ box (for Windows 

8/10 64bit version) if unsure which version is installed.  

o Once this is completed, MS-Excel is ready for interfacing with AGI STK. 

 

 
 

Figure 35, Activating STK Add-in feature within Excel application. 

http://help.agi.com/stk/index.htm#gettingstarted/excelAddin.htm?Highlight=excel
https://support.agi.com/downloads/
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Appendix F, Interfacing MS-Excel with modeFRONTIER 
 

This appendix includes an example on how MS-Excel has been interfaced with 

modeFRONTIER for the specific purpose to carry out the research. The reader should refer 

to Table 16. 

 

ModeFRONTIER built-in features support different versions of MS-Excel [85]. 

 

The supported versions of MS-Excel application are listed in Table 38, where: 

 ‘T’ = Tested and Supported 

 ‘E’ = Expected to Work 

 ‘Empty cell’ = Not Supported 
 

Table 38, ModeFRONTIER 3rd part integration application – MS-Excel. 

 
 

 

Excel direct integration node 

 

This appendix describes the use and setup of Excel2010 (32bit) Direct Integration Node 

interface, which is built into modeFRONTIER. 

 

The MS-Excel application must be setup prior to interfacing with modeFRONTIER for the 

following purposes: 

 Utilising the Excel2010 (32-bit) Direct Application Integration Node of modeFRONTIER 

to perform design evaluation or  

 Editing the MS-Excel workbook from within modeFRONTIER prior to performing the 

optimisation. 

 

Setup of MS-Excel application to interface with modeFRONTIER 

 

The steps to setup the MS-Excel’s VB Project component are as follows: 

 Click on File 

 Click on menu 

 Click on Options 

 Click on Trust centre 

 Click on Trust Centre Settings 

 Click on Macro Settings. 

 Check Trust Access to the VBA project model. 
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 Close all instances of Excel. 

 Double-click on the MS-Excel Node in modeFRONTIER workflow to open ‘Excel 

Workbook Properties’ dialog box as illustrated in Figure 37 for further setup.  

o Assumption: The MS-Excel Node has already been dragged into workflow space as 

illustrated in Figure 36. 

 

   
 

Figure 36, Excel application integration node dragged from tool bar into Workflow. 

 

Setup ‘Excel Workbook Properties’ using Tutorial: modeFRONTIER project and MS-Excel file 

 

The setup steps for modeFRONTIER ‘Excel Workbook Properties’ are as follows: 

 At the ‘Workbook’ field as in Figure 37, select the ‘excelfile.xls’ file (c:\Program 

Files\ESTECO\modeFRONTIER2017r2\tutorials\prj\Excel_Node\Weldbeam.xls). 

o This file will be subjected to introspection to detect the input and output parameters set 

within. ModeFRONTIER will optimise these parameters during evaluation process. 

o The MS-Excel workbook performs the design evaluation within modeFRONTIER 

using the Excel formula applied to the output cells.  

 Click on the ‘Edit Excel Workbook’ button in the Toolbar. This will open the MS-Excel 

workbook directly from modeFRONTIER. 

o Once opened, the worksheet shows the Input, Output data and formulas as illustrated in 

Figure 38. 
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Figure 37, Double-click on Excel node in modeFRONTIER to display Excel Properties dialog box. 

 

 
 

Figure 38, Double-click Edit Excel Workbook button in the dialog box to open Excel application. 

 

Problem Definition (an example) 

 

The aims of this problem definition are to optimise a rectangular section beam, welded at one 

end and loaded at the other end.  

There are four parameters defining its geometry, while load conditions, the young 

modulus of the material, the weld and material costs (per unit volume) are fixed.  

 The 4 Input Variable Parameters as illustrated in Figure 39 are: 

o L: Weld Length, H: Weld Thickness, B: Beam Width and T: Beam Thickness. 

 The 5 Constant Parameters are: 

o Young: Young Modulus; WC: Welding Cost; MC: Material Cost; F: Applied Load; 

S: Beam Length 
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 The Output Data are:  

o Displacement at the end of Beam (Disp) 

o Max Shear Stress (MaxS) 

o Max Normal Stress (MaxT) 

o Material Volume (Mvol) 

o Weld Volume (Wvol) 

  
Figure 39, Weldbeam showing various parameters. 

 

Workflow Description 

 

The workflow consists of a main application chain, starting from Design of Experiment (DOE), 

Scheduler Nodes and ending with the Complete Logic Node. ME-Excel is the only Direct 

Application Node, in use to run the specified MS-Excel model for each configuration proposed 

for the optimisation, updating input variables and extracting output values, until the set 

objectives are achieved. 

 

Parameters Setup for the example problem definition (link Excel file cells/ranges with 

modeFRONTIER variables) 

 

The next step is to link the parameter values set in Excel file cells or cell ranges with the 

modeFRONTIER variables via Interactive Selection, or Parameter Chooser.  

Both methods are accessible from the Actions Toolbar and all established connections 

are shown in the lower part of the Properties panel. Interactive Selection button launches the 

Excel application and loads the specified workbook, which enable the linking of 

modeFRONTIER variables to Excel parameters. Before using this feature, the desired input 

and output variable nodes must be inserted in the workflow and link to the MS-Excel node. 

 

 

Optimisation Run – modeFRONTIER with Excel 

 

When the project is ready to run, the following must be performed: 

 Create a DOE table using a Random DOE sequence of 24 points and 

 Use MOGA-II of 20 generations as optimisation algorithm in the Scheduler node.  

 Save the project 

 Click on the green arrow (top toolbar) to run the optimisation.  
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o The optimisation run can be monitored real-time from the Run Analysis environment 

by using different gadgets. E.g. 

 Project Info gadget (1) shows the general project run log (index.html) 

 Scatter/Bubble gadget (2) enables to check how the data is dispersed, whether the 

variables are correlated and whether any anomalies are present 

 Engine Table gadget (3) shows in a tree format all ongoing processes, i.e. IDs of 

designs currently evaluated and application nodes performing the evaluation 

 Multi-History gadget (4) shows the progress of the optimisation.  

 Clicking on a single design in the Design List (5), the Info Design panel (6) opens 

a tree view of the log and process directories of the selected design and allows for 

the direct access to the relevant files, which are thus opened in a new gadget.  

 It also indicates the design ID number, type (feasible/unfeasible, real/virtual, 

error, etc.) and completeness. It reflects a single design selected in a gadget or the 

Design List. 

 

The example optimisation run uses the ‘Excel_tutorial.prj’ file with a run duration of about 2 

½ hours and can be stopped manually. The modeFRONTIER and MS-Excel configurations are 

as follows: 

 ModeFRONTIER2017 and Excel2010 installed in RMIT server (operating system: 

Windows Server 2012 R2). 

 Workbook: c:\Program 

Files\ESTECO\modeFRONTIER2017r2\tutorials\prj\Excel_Node\Weldbeam.xls 

 Installation Dir: C:\Program Files\MATLAB\R2017a  

 Java (SDK/JRE) Version: 1.8.0_60; Java Home: C:\Program 

Files\ESTECO\modelFRONTIER2017R2\jre 

 

The Design Analysis (after the optimisation run) is illustrated in Figure 40, where the 

‘Evaluated designs’ was 99,  Real-Feasible was 95 and Real-Unfeasible was 4. 

 

 
 
Figure 40, ModeFRONTIER analytical results: stopped manually after 99 evaluated designs inabout 2 1/2 hours. 
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Appendix G, Interfacing MATLAB Simulink (Simscape) with SolidWorks 
 

This appendix includes an example on how MATLAB Simulink (Simscape) has been 

interfaced with SolidWorks for the specific purpose to carry out the research. The reader 

should refer to Table 16. 

 

This appendix describes the MATLAB functions to allow SolidWorks 3D models to be 

exported to MATLAB Simulink (Simscape Multibody) environment. This function provides: 

 A multibody simulation for 3D mechanical systems, such as the aircraft landing gear. 

 The Import function allows a complete CAD assemblies model, which includes all masses, 

inertias, joints, constraints, and 3D geometry.  

 Automatic generation of 3D animation to enable visualising the system dynamic. 

 

Simscape Multibody Link is a CAD plug-in that: 

 Allows installation of CAD application such as SolidWorks to export CAD assembly 

models from SolidWorks into MATLAB Simulink (Simscape) environment.  

 Generates the files that need to import the model into the Simscape Multibody environment 

(using the ‘smimport’ function).  

 

Setup MATLAB Simulink (Simscape Multibody) connection with SolidWorks 

 

The installation steps for the Simscape Multibody Link Plug-In are taken from the MathWorks 

website: https://au.mathworks.com/help/physmod/smlink/ug/installing-and-linking-

simmechanics-link-software.html (assess date: 01 July 2018). The Simscape™ Multibody™ 

Link plug-in provides the primary interface for exporting CAD assemblies into Simscape 

Multibody software. 

Step 1: Download the Simscape Multibody Link installation files: 

 Go to Simscape Multibody Link download page. 

 Follow the download page prompts. 

 Save the zip archive and MATLAB file in a convenient folder. 

 Select the file versions, which matches the installed MATLAB release no. and system 

architecture—e.g., release R2015b and Win64 architecture. 

o smlink.r2018a.win64.zip (Do not extract the zip archive) 

o install_addon.m 

 

 
 

Figure 41, Setup MATLAB Simulink (Simscape Multibody) connection with SolidWorks – In MATLAB: 

step2, run installation function. 
Step 2: Run the installation function: 

 Run MATLAB as administrator. 

https://au.mathworks.com/help/physmod/smlink/ug/installing-and-linking-simmechanics-link-software.html
https://au.mathworks.com/help/physmod/smlink/ug/installing-and-linking-simmechanics-link-software.html
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 Add the saved installation files to the MATLAB path by entering addpath ('foldername') 

at the MATLAB command prompt as illustrated in Figure 41.  

 Replace foldername with foldername of the saved installation files—e.g., C:\Temp. 

 Enter install_addon ('zipname') at the MATLAB command prompt. 

 Replace ‘zipname’ with the name of the zip archive—e.g., smlink.r2015b.win64.zip. 

 

Step 3: Register MATLAB as an Automation Server each time to export a CAD assembly 

model. 

 Simscape Multibody Link plug-in will attempts to connect to MATLAB.  

 For the connection to occur, MATLAB must be registered as an automation server as 

follows: 

o In a MATLAB session, run in administrator mode: at the command prompt, enter 

regMATLABserver as illustrated in Figure 42. 

o In MS-DOS window run in administrator mode: at command prompt, enter MATLAB 

-regserver. 
 

 
 

Figure 42, Setup MATLAB Simulink (Simscape Multibody) connection with SolidWorks – In MATLAB: 

step3, register MATLAB as an automation server. 
 

 

 
 

Figure 43, Setup MATLAB Simulink (Simscape Multibody) connection with SolidWorks – In MATLAB: 

step4, enable simscape multibody link plug-in. 
 

 

Step 4: Enable the Simscape Multibody Link Plug-In: 

 At MATLAB® command prompt, enter smlink_linksw as illustrated in Figure 43. 

 Start SolidWorks. 

 In the SolidWorks Tools menu, select Add-Ins as illustrated in Figure 44. 

 In the SolidWorks Add-Ins dialog box, select Simscape Multibody Link check box.  

o A Simscape Multibody Link menu appears in the SolidWorks menu bar when user 

starts or opens a CAD assembly.  
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o Once, the ‘Simscape Multibody’ box has been clicked, the file will be saved in .xml 

file format in any selected directory. 

 

 
 

Figure 44, Setup MATLAB Simulink (Simscape Multibody) connection with SolidWorks – In SolidWorks: 

check simscape multibody link. 
 

 

Exporting a CAD assembly from SolidWorks into MATLAB Simulink: Simcape 

 

A CAD assembly from SolidWorks that has been saved in .xml file format can be exported 

into the MATLAB Simulink: Simcape environment as illustrated in Figure 45. 

 

 
 

Figure 45, Setup MATLAB Simulink (Simscape Multibody) connection with SolidWorks – In SolidWorks: 

export CAD assembly to .xml file compatible for simscape import. 
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After saving the example ballvalve.xml, the MATLAB can be started and followed by typing  

>> smimport ('C:\IACDT\ballvalve.xml') in the Command-Window. Simscape will import the 

CAD file and transform to simscape simulation model. The simulation could be run by click 

the play button. 

 

 
 
Figure 46, Setup: MATLAB Simulink (Simscape Multibody) connection with SolidWorks – Simscape: .xml file 

has been imported and converted to Simscape block, ready for simulation. 
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Appendix H, Interfacing MATLAB with modeFRONTIER 
 

This appendix includes an example on how MATLAB has been interfaced with 

modeFRONTIER for the specific purpose to carry out the research. The reader should refer 

to Table 16. 

 

The supported versions of MATLAB application are listed in Table 39, where [85]: 

 ‘T’ = Tested & Supported 

 ‘E’ = Expected to Work 

 ‘Empty cell = Not Supported’ 
 

Table 39, ModeFRONTIER 3rd part integration application – MATLAB. 
 

 
 

 

MATLAB Application Integration Node 

 

The MATLAB Application Integration Node can be dragged from the tool bar directly into the 

workflow space as illustrated in Figure 47. After that, the ‘MATLAB properties’ dialog box 

can be opened by double-clicking on the MATLAB Node as illustrated in Figure 48. 

 

 
 

Figure 47, MATLAB app. integration node dragged from modeFRONTIER tool bar into workflow. 
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Figure 48, MATLAB property dialog box opened in modeFRONTIER by double-clicking MATLAB node. 

 

Problem description (an example) 

 

In this example modeFRONTIER tutorial problem: Matlab_Tutorial.prj, 2 functions in x and 

y are to be optimised.  

 The 1st function (F1) is a complicated sum of sines and cosines.  

 The 2nd function (F2) is a 2nd order polynomial.  

 Input data consists of 2 parameters: 

o x: [-3.14; 3.14] 

o y: [-3.14; 3.14].  

 Output data consists of 2 objectives: 

o Maximum value of function F1 and F2 in the domain of definition.  

 

The MATLAB Direct Application Integration Node is used to run the specified MATLAB 

model for each configuration proposed during the optimisation, updating the input variables 

and extracting the output values, until the set objectives are achieved. 

  

Setup - MATLAB node and preferences (1) 

 

The setup steps are as follows: 

 Open MATLAB Preferences dialog box, Figure 49. 

 Enter path to MATLAB installation directory, which is required for opening the loaded 

MATLAB script directly from modeFRONTIER, Figure 49. 

 Select the correct MATLAB version from the drop-down list, which must correspond to 

the version registered using the MATLAB automation server (the mismatch between this 

parameter and the actual version used, may cause error in design evaluation). 

 If several MATLAB versions are installed, verify the current MATLAB automation server. 

o For example, if MATLAB version x.y.z is to be used in Windows, the automation server 

must be manually registered with the following command:  

‘C:\Programs\MatlabXY\bin\win32\MATLAB.exe/regserver’ 

 

1 5 

4 

3 

2 
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Figure 49, MATLAB direct application node: properties, preferences button. 

 

Setup - Test MATLAB Configuration (2) 

 

The ‘Test Matlab Configuration’ button as illustrated in Figure 48 (2) can be used to verify 

whether: 

 All installation requirements have been respected 

 ModeFRONTIER is able to access Matlab, modify the inputs and extract the outputs by 

using an internal test model without executing the user script as illustrated in Figure 50. 

 

  
 

Figure 50, Testing MATLAB configuration. 

 

Setup - MATLAB Properties (3) 

 

The Script File field can be used to select the example ‘pol4frontier.m’ file from the file system. 

 This file will be subject to introspection to detect the input and output parameters set 

within, which will be subsequently optimised by modeFRONTIER.  

 Clicking on ‘Edit Matlab Script’ button, Figure 48 (5) will open MATLAB2017a 

application in modeFRONTIER as illustrates in Figure 51. 
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Figure 51, MATLAB script file used to run design Model. 

 

Setup - Linking modeFRONTIER variables with MATLAB parameters (4) 

 

The Input and output variable nodes in modeFRONTIER must be inserted in the workflow and 

connected to the Matlab node before linking them to the Matlab parameters. Once the insertion 

and connection are completed, the variable nodes will appear in the Data Input Connector/Data 

Output Connector panels in the bottom part of the ‘Matlab Properties’ dialog as illustrated in 

Figure 48 (4). In this example: 

 Link only those parameters whose values will be evaluated with modeFRONTIER. 

 All others parameters can be ignored and kept at their fixed values.  

 In order to do this, it is sufficient to write the correct variable name (as in the Matlab script) 

in the field next to the corresponding modeFRONTIER variable. 

 

In any given moment, the Matlab script can be opened directly from modeFRONTIER: 

 By clicking on the ‘Edit Matlab Script’ button (5) in the Toolbar.  

 When finished, press OK to exit the Properties dialog. 

 

Optimisation Run – modeFRONTIER with MATLAB 

 

When the project is ready to run, the following actions must be performed: 

 Create a DOE table using a Sobol DOE sequence of 24 points 

 Utilise MOGA-II of 24 generations as optimisation algorithm in the Scheduler node.  

 Save the project and click on the green arrow in the top toolbar to run the optimisation as 

illustrated in Figure 52. 

o The optimisation run can be monitored real-time from the Run Analysis environment 

by using different gadgets, such as: 

 Project Info gadget (1) shows the general project run log (index.html) 

 Scatter/Bubble gadget (2) enables to check how the data is dispersed, whether the 

variables are correlated and whether any anomalies are present 
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 Engine Table gadget (3) shows in a tree format all ongoing processes, i.e. IDs of 

designs currently evaluated and application nodes performing the evaluation 

 Multi-History gadget (4) shows the progress of the optimisation.  

 By clicking on a single design in the Design List (5), 

o Info Design panel (6) opens a tree view of the log and process directories of the selected 

design and  

o Allows for the direct access to the relevant files, which are thus opened in a new gadget.  

o It also indicates the design ID number, type (feasible/unfeasible, real/virtual, error, etc.) 

and completeness.  

o It reflects a single design selected in a gadget or the Design List.  

o Remember to set the option Clear Design Dir on Exit in the Scheduler node Properties 

on Never to keep all designs' log files. 

 

 
 

Figure 52, Design Analysis (after optimisation run). 

 

The example optimisation run uses the ‘Matlab_tutorial.prj’ file with a Run duration of about 

2 hours. The modeFRONTIER and MATLAB configurations are: 

 ModeFRONTIER2017 and MATLAB2017a are installed in RMIT server (Windows 

Server 2012 R2). 

 Script File: C:\Program 

Files\ESTECO\modelFRONTIER2017R2\tutorials\prj\Matlab_Node\pol4frontier.m 

 Installation Dir: C:\Program Files\MATLAB\R2017a 

 Java executable file: C:\Program Files\Java\jdk1.8.0_131\bin\java.exe 

 

Design Analysis (after the optimisation run) is illustrated in Figure 52: 

 Evaluated designs: 405. Real-Feasible: 405 – all feasible 

 Design Point ID: 667 have been highlighted. 
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Appendix I, Interfacing AGI System Tool Kit (STK) with SolidWorks 

 

This appendix includes an example on how AGI STK has been interfaced with SolidWorks 

for the specific purpose to carry out the research. The reader should refer to Table 16. 

 

Using 3D Models in STK 

 

The AGI STK can use 3D models to represent scenario objects and aid in analysing and 

visualising the relationships among the objects. STK contains detailed 3D models representing 

objects such as ground stations, aircraft, airstrips, satellites, aircraft carriers and helicopters. 

Once a model is specified to represent an object, it is graphically displayed in its correct 

position and orientation, as defined in the objects. Basic properties, Position and orientation 

can vary over time and can be manually adjusted within the objects 3D Graphics properties. 

Models used in the STK 3D graphics windows can be imported into STK in: 

 COLLADA (.dae) file format 

 MDL (.mdl) file format.  

 

Once a model is available in COLLADA or MDL, functionality such as Ancillary features 

consist of articulations (moveable components), attach points, pointable elements, and solar 

panel groups, and could be added. After loading the models (.dae or .mdl) into STK the model 

may be scaled to adjust the position of the model articulations. 

 

A simplified case study - method to convert SolidWorks (.sldprt, .sldasm) into Collada (.dae) 

file format prior to importing into AGI STK 

 

Step#1: Create a 3D model in SolidWorks and save as (.sldprt, .sldasm), Figure 53. 

Step#2: Import SolidWorks 3D model (.sldprt, .sldasm) into Autodesk 3dsMax2018, Figure 

54. 

Step#3: Export the 3dsMax2018 3D model into Autodesk Collada file format (.dae), Figure 55. 

Step#4: Import the 3D model in file format (.dae) into AGI STK, Figure 56. 

 

 
 

Figure 53, Step#1: create a 3D model in SolidWorks and save in file format (.sldprt, .sldasm). 
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Figure 54, Step#2: import SolidWorks 3D model (.sldprt, .sldasm) into Autodesk 3ds Max2018. 

 

 
 

Figure 55, Step#3: export 3ds Max2018 3D model into Autodesk Collada file format (.dae). 

 

 
 

Figure 56, Step#4: import 3D model in file format (.dae) into AGI STK environment. 
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Appendix J, Case studies by manual calculations and simulations by 

modeFRONTIER, MS-Excel and MATLAB 

 

This appendix includes the Case Studies on how modeFRONTIER has been interfaced with 

MS-Excel and MATLAB for the specific purpose to carry out the research. 

 

Case study (simulations) assumed configuration 

 

The mission requirement for the FRDS system is to expel 5,000 litre per second of retardant 

from a 28,000-litre reservoir through the door of the A400M aircraft Figure 57 (top). 

https://www.airbus.com (assess date: 26 Oct 2018). 

 

 
 

Figure 57, Airbus A400M aircraft (top). Configuration used for evaluations (bottom). 

 

 

The assumed configuration utilised for evaluation as illustrated in Figure 57 consists of the 

following components: 

 1 fire retardant tank (28,000 litre, max) 

 1 high pressure compressor 

 2 gas tanks (Pressure needed in the 2 * 1𝑚3 gas tank is estimated at 4.28MPa (+ 20% loss, 

estimated at 5.13MPa, Mega Pascal)) to expel gas into the retardant tank 

 1 battery bank power supply (bbps) coupled with a DC-to-AC 3-phase voltage inverter to 

power the compressor.  

https://www.airbus.com/
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 Battery bank and DC-to-AC 3-phase voltage inverter are allocated underneath the 

compressor with short power cabling to minimise excessive voltage drop in order to be able 

to operate within a typical limit of 5% supply voltage tolerance.  

 The assumed FRDS system operation requires an estimated 55kwh.  

 

Battery bank output is assumed at 48V, 1500Ah (72kwh, max) connected to the 3-phase pure 

sine wave DC-to-AC inverter (Input at 48V nominal, Output at 415VAC, 3-phase, 50Hz pure 

since wave), which in turn connects to the high-pressure compressor (Specification at max, 

power consumption 27kw, pressure 85bar/1230psig, 1700 l/min F.A.D., free air delivery).  

With an estimated 5.13MPa = 51.3bar (Pressure: 1 Mega pascal = 10 bar) required from 

the maximum 85bar capacity of the compressor, the continuous power consumption could be 

estimated at (
51.3

85
) ∗ 27𝑘𝑤 = 16.3𝑘𝑤. This means a continuous flow of current estimated at 

339 ampere (Ampere = Power/Voltage [120], chapter 1, page 1-16) is expected from the battery 

bank at 48V output to the inverter via a 1foot copper cable.  

Based on the assumed power supply Vdc = 48V, continuous drawn Idc = 339amp and 

copper cable length = 1 foot (P.S. to Inverter), the cmil (cross-section area) value is estimated 

as at least 31.89 𝑚𝑚2. The wire size: 31.89 𝑚𝑚2  taken from the wire size conversion chart is 

therefore based on next higher value: 33.61 𝑚𝑚2, with the corresponding values: 6.54 mm 

diameter; American Wire Gauge (AWG) 2 and 0.2576 inch diameter [121, 122]. AWG 2 = 

66350 (circular mils, cmil) [122, 123]. 

  

Case study – Evaluation approach by Manual Calculations 

 

The configuration: For total Vdc dropped across cable run of paired copper conductors from 1 

foot (0.3048 m) to 32.8 feet (10 m) at constant 24 Vdc and 339 Amp connecting from battery 

bank to inverter. 

 

The first step is to calculate the voltage dropped across a 1 foot copper cable run of paired 

copper conductors (L) could be calculated based on following equation [122, 123]:   

Voltage drop (2-wire DC or AC 1-phase (inductance negligible@60Hz)) ([122], chapter 

2, page 13 and 14) is given as: 

 𝑉𝑑𝑟𝑜𝑝2𝑤𝑖𝑟𝑒 =
(2∗𝐾∗𝐼∗𝐿)

𝑐𝑚𝑖𝑙
  Equation 53 

Where,  

Resistivity of conductor (a constant): K = ohms-cmil per ft. (or 1ft. = 0.3048m) 

K_copper = 12.9ohms-cmil/ft.; K_aluminum = 21.2 ohms-cmil/ft. (estimated) 

I = current (or amperes) in conductor 

L = one-way length of paired circuit cable run (feet)  

cmil = circular mil area (cross sectional area size) of conductor 

 Where, (𝑤𝑖𝑟𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑖𝑛 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑖𝑛𝑐ℎ𝑒𝑠 ∗  1000)2  (1inch = 25.4 mm) 
 

Therefore, Vdc dropped across a 1 foot (L) copper cable run of paired copper conductors 

(0.3048 meter) copper cable is 
(2∗12.9∗339∗1)

66350
= 0.13𝑣 [122, 123].  

 

Subsequently, the remaining supply voltage available to drop across the load, i.e. supply to 

inverter = 48V – 0.13V, resulting in 47.87V. This result is within the typical 5% tolerance, i.e. 

2.4V. This calculation is based on the voltage divider principle (i.e. Supply Voltage (Vsource: 

48V) = VacrossCable (in pair): 0.13V + VacrossInverter: 47.87V connected in series [122]. 

Some 3-phase inverters may have input voltage tolerance up to -15% + 12.5% [124].  
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The second step is to calculate Vdc dropped across the changing cable run of paired 

copper conductor from 1 foot (0.3048 m) to 32.8 feet (10 m) at the same constant 24 Vdc and 

339 Amp connecting from the battery bank to inverter, and plot a chart as in Figure 58. For 

example, voltage dropped across the cable run of paired copper conductor is calculated at 

2.42V and 18.3 feet respectively. This means the actual cable length run (L in equation) of the 

paired copper conductor from the battery bank to the inverter location is 18.3 feet. 

With the increases in voltage dropped across the cable run as its length increases, and 

typically, the supply voltage should be kept within 5% tolerance (i.e. 2.4v of 48v) at the inverter 

contact terminals (i.e. load), the maximum cable run of the paired copper conductor should be 

estimated at around 16.4 feet or 5 meters and not exceeding 18 feet. 

Longer cable run is only possible with supply voltage still within tolerance at the 

inverter contact terminal, if the power supply unit incorporate a voltage feedback sensing cable 

connecting the inverter contact terminals. This is to continuously monitor and maintain the 

supply voltage at 48Vdc (within 5% tolerance) by automatically increasing the voltage upwards 

at the power-supply contact terminals when the cable length is increased.  

However, such DC power supply is mainly available with 220Vac Input, and not as a 

rechargeable battery bank, and is out-of-scope in this case study. Note: The sensing cable 

feature of the DC power supply (if available) is also suitable for maintaining supply voltage at 

the target unit (i.e. inverter) contact terminals for different current load conditions, such as 

during initial power up and down of the compressor. With voltage dropped across the cable 

continues to change as the load changes, the supply voltage at the power supply terminals will 

continue to be higher than at the contact terminals of the inverter. 
 

 
 

Figure 58, Vdc dropped across changing cable run of paired copper conductors at rated 339Amp and 48Vdc. 

 

 

 

 

 

 

 

E.g., voltage dropped across the cable = 2.42V at 
total cable run of paired copper conductors = 18.3 

feet is outside the set constraint tolerance of 48V, 5% 
(i.e. 2.4V) 
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Case study - Evaluation approach by the proposed CDF design tools 

 

The configuration: For Vdc dropped across cable run of paired copper conductor from 1 foot 

(0.3048 m) to 32.8 feet (10 m) at constant 24 Vdc and 339 Amp. 

 

The evaluation (simulation) estimates the maximum (i.e. optimal) cable run of paired copper 

conductor allowable for normal operation, at a particular cable size (circular cross-section area) 

and with a continuous rated current flowing from a battery bank through the copper cable to 

the load (inverter) at fixed power supply voltage for the FRDS system in a A400M aircraft. 

The evaluation does not include computation at the initial compressor power up (with max 

current drawn: voltage should drop due to surge current), during operation (with rated current 

drawn) and power down stage. Once the range of changes voltage drop levels at different cable 

run of pair copper conductor is known, these values will be used to estimate the maximum 

allowable cable length connecting the battery bank and the inverter. Further assumptions and 

expectations are:  

 Battery bank power supply (bbps) does not have a voltage-sensing cable connected to the 

DC-to-AC 3-phases voltage inverter’s contact terminals to monitor the voltage to be within 

the pre-set level (i.e. within specification of power supply, e.g. typical 5% tolerance). 

 The voltage at the bbps contact terminals was always higher than the voltage at the inverter 

contact terminals due to the voltage drop across the cables connecting both. 

 The cable run of paired copper conductors connecting between the bbps and inverter will 

be varied to observe the level of voltage dropped. (I.e. shorter cable run will have lower 

voltage drop). 

 

The simulation: modeFRONTIER interfaces with Excel (built-in application node) 

 

The simulation runs were 51 of the 320 random iterative evaluation design cycle available 

(estimated). Feasible cycle is 86.27% (44 cycles) and unfeasible is 13.73% (7 cycles). From 

the 51 cycles completed, at cycle ID 304, the voltage dropped across the cable = 2.42V at cable 

run of paired copper conductor at 18.3 feet, is outside the set constraint tolerance of 48V, 5% 

(i.e. 2.4V), and recorded as unfeasible condition in Figure 59 and Figure 60. Therefore, the 

cable run of paired copper conductor should not exceed an estimated of 18 feet for the supply 

voltage, 48V (at the target inverter contact terminals) to be within 5% tolerance (i.e. 2.4V). 

This also means that the battery bank should be within 18 feet from the DC/AC inverter. 
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Figure 59, 51 of 320 estimated random evaluation cycles completed. Feasible cycles: 86.27% (44 cycles). 

Unfeasible: 13.73% (7 cycles). 
 

 

   
 

Figure 60, Completed 51 random evaluation cycles. Left: Scatter/Bubble graph. Right: Pie chart. Green dot/area 

= Feasible. Yellow dot/area = Unfeasible condition. 

 

The simulation: modeFRONTIER interfaces with MATLAB (built-in application node) 

 

The simulation runs were 54 of the 200 random iterative evaluation design cycle available 

(estimated). Feasible cycle is 70.37% (38 cycles), unfeasible is 27.78% (15 cycles) and 1 cycle 

recorded due to error when executing the stop cycle (i.e. disregarded). From the 54 cycles 

completed, at cycle ID 584, the voltage dropped across the cable = 2.44V at cable length = 18.5 

feet, is outside the set constraint tolerance of 48V, 5% (i.e. 2.4V), and recorded as unfeasible 

condition in Figure 61 and Figure 62. Therefore, the cable run of paired copper conductor 

should not exceed an estimated of 18 feet for the supply voltage, 48V (at the target inverter 

contact terminals) to be within 5% tolerance (i.e. 2.4V). This also means that the battery bank 

should be within 18 feet from the DC/AC inverter. 

 

Changes in cable length (feet) 

Changes in voltage dropped across cable (volt) 

At cycle ID 304, the voltage dropped across 
the cable = 2.42V at cable run of paired 

copper conductors = 18.3 feet is outside the 
set constraint tolerance of 48V, 5% (i.e. 
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At cycle ID 304, the voltage dropped across the 
cable = 2.42V at cable run of paired copper 
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Figure 61, 54 of the 200 estimated random evaluation cycles completed. Feasible cycle: 70.37% (38 cycles), 

unfeasible: 27.78% (15 cycles) and 1 cycle due to error when executing stop cycle. 

 

  
 

Figure 62, Completed 54 random evaluation cycles. Left: Scatter/Bubble graph. Right: Pie chart. Green dot/area 

= Feasible. Yellow dot/area = Unfeasible condition. Red area = error due to executing stop cycle. 

 

Simulations – modeFRONTIER interfaces with Excel and MATLAB (built-in application node) 

 

This last part of the case study combined both Excel and MATLAB application nodes together 

within modeFRONTIER to illustrate the ability of the 3 applications to work as a single unit in 

a concurrent design environment. The modeFRONTIER workflow is illustrated in Figure 63, 

where the required mission parameters are input into Excel node for modelling (Equation 1 

[122], chapter 2, page 13 and 14) to produce the output results, and subsequently fed into 

MATLAB node (acting as a pass-through buffer). Outputs from MATLAB is in turns fed into 

the constraint node to determine which results value is feasible (meeting the defined limits) or 

not feasible. 
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Figure 63, Simulations, modeFRONTIER interfaces with Excel and MATLAB. 

 

The simulation runs were 65 of the 320 random iterative evaluation design cycle available 

(estimated). Feasible cycle is 86.15% (56 cycles) and unfeasible is 13.85% (9 cycles). From 

the 65 cycles completed, at cycle ID 437, the voltage dropped across the cable = 2.28V at cable 

length = 17.3 feet, is just inside the set constraint tolerance of 48V, 5% (i.e. 2.4V), and recorded 

as unfeasible condition in Figure 64 and Figure 65. Therefore, the cable run of paired copper 

conductor should not exceed an estimated of 18 feet for the supply voltage, 48V (at the target 

inverter contact terminals) to be within 5% tolerance (i.e. 2.4V). This also means that the 

battery bank should be within 18 feet from the DC/AC inverter. 

 

 
 

Figure 64, Estimated 65 of the 320 random iterative evaluation design cycles completed. Feasible cycle is 

86.27% (44 cycles) and unfeasible is 13.73% (7 cycles). 
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Figure 65, Completed 65 random evaluation cycles. Left: Scatter/Bubble graph. Right: Pie chart. Green dot/area 

= Feasible. Yellow dot/area = Unfeasible condition. 

 

In summary, the preceding evaluations results by Simulation using modeFRONTIER to 

interface with ME-Excel and MATLAB (built-in application node) have shown that these tools 

are capable to function as a single unit in the CDF environment. ModeFRONTIER user 

interface is intuitive and preparation stage is relatively fast as compared to the manual method 

based on a workbook. Changing from 1 optimisation option to another can also be performed 

with ease with its built-in library of optimisation options.  

At cycle ID 437, the voltage dropped across 
the cable = 2.28V at cable run of paired 

copper conductors = 17.3 feet is just inside 
the set constraint tolerance of 48V, 5% 
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