
Continual Deep Learning
via Progressive Learning

A thesis submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy

Haytham M. Fayek

B.Eng. (Hons), Petronas University of Technology
M.Sc., Petronas University of Technology

School of Engineering
College of Science, Engineering and Health

RMIT University
February 2019

Declaration

I certify that except where due acknowledgement has been made, the work is that
of the author alone; the work has not been submitted previously, in whole or in
part, to qualify for any other academic award; the content of the thesis is the result
of work which has been carried out since the official commencement date of the
approved research program; any editorial work, paid or unpaid, carried out by
a third party is acknowledged; and, ethics procedures and guidelines have been
followed.

Haytham M. Fayek
Melbourne, Victoria
February 4, 2019

i

Abstract

Machine learning is one of several approaches to artificial intelligence. It allows us
to build machines that can learn from experience as opposed to being explicitly
programmed. Current machine learning formulations are mostly designed for
learning and performing a particular task from a tabula rasa using data available
for that task. For machine learning to converge to artificial intelligence, in addition
to other desiderata, it must be in a state of continual learning, i.e., have the ability
to be in a continuous learning process, such that when a new task is presented, the
system can leverage prior knowledge from prior tasks, in learning and performing
this new task, and augment the prior knowledge with the newly acquired knowledge
without having a significant adverse effect on the prior knowledge. Continual
learning is key to advancing machine learning and artificial intelligence.

Deep learning is a powerful general-purpose approach to machine learning that is
able to solve numerous and various tasks with minimal modification. Deep learning
extends machine learning, and specially neural networks, to learn multiple levels
of distributed representations together with the required mapping function into a
single composite function. The emergence of deep learning and neural networks
as a generic approach to machine learning, coupled with their ability to learn
versatile hierarchical representations, has paved the way for continual learning. The
main aim of this thesis is the study and development of a structured approach to
continual learning, leveraging the success of deep learning and neural networks.

This thesis studies the application of deep learning to a number of supervised
learning tasks, and in particular, classification tasks in machine perception, e.g.,
image recognition, automatic speech recognition, and speech emotion recognition.
The relation between the systems developed for these tasks is investigated to
illuminate the layer-wise relevance of features in deep networks trained for these
tasks via transfer learning, and these independent systems are unified into continual
learning systems.

The main contribution of this thesis is the construction and formulation of
a deep learning framework, denoted progressive learning, that allows a holistic
and systematic approach to continual learning. Progressive learning comprises a
number of procedures that address the continual learning desiderata. It is shown

ii

iii

that, when tasks are related, progressive learning leads to faster learning that
converges to better generalization performance using less amounts of data and
a smaller number of dedicated parameters, for the tasks studied in this thesis,
by accumulating and leveraging knowledge learned across tasks in a continuous
manner. It is envisioned that progressive learning is a step towards a fully general
continual learning framework.

Acknowledgements

I am eternally grateful to all my teachers, lecturers, supervisors, and mentors. I
am particularly grateful to my PhD supervisors: Professor Lawrence Cavedon and
Professor Hong Ren Wu, for they have provided me the freedom to pursue my
interests, were always available to provide feedback and support when needed, and
were tremendously generous with their advice and mentorship.

I am thankful to Dr. Ravish Mehra and Dr. Laurens van der Maaten for hosting
me at Facebook Research. My internship at Facebook was one of the highlights
of this journey. I also acknowledge Associate Professor Margaret Lech for her
guidance during the first year of my candidature. I am also thankful to members of
the Evolutionary Computing and Machine Learning (ECML) group, collaborators,
and fellow students for all the discussions and musings.

I am indebted to the Royal Melbourne Institute of Technology (RMIT) for
the generous Vice-Chancellor’s PhD Scholarship (VCPS). I also acknowledge the
Australian National Computing Infrastructure (NCI) and NVIDIA for the computa-
tional resources. I am thankful to the School of Engineering’s administrative staff,
and particularly Ms. Bethany McKinnon, for helping me navigate the university’s
processes.

No words can express my gratitude to my dear parents Mohamed Fayek and
Manal for their selfless devotion to my brother Hesham and myself; it is no
coincidence that we both chose to pursue scholarly careers. To my late beloved
grandparents, grandfather Ibrahim Elsayed and grandmother Aida Khatab, I will
always cherish the values you instilled in me. To my lovely wife Agata, for her love
and support.

iv

List of Publications

Fayek, H. M., Cavedon, L., and Wu, H. R. (2018). On the transferability of represen-
tations in neural networks between datasets and tasks. In Continual Learning
Workshop, Advances in Neural Information Processing Systems (NeurIPS),
Montréal, Canada.

Fayek, H. M. (2017). MatDL: A lightweight deep learning library in MATLAB.
The Journal of Open Source Software, 2(19):413.

Fayek, H. M., Lech, M., and Cavedon, L. (2017). Evaluating deep learning
architectures for speech emotion recognition. Neural Networks, 92:60–68.
Advances in Cognitive Engineering Using Neural Networks.

Fayek, H. M., Lech, M., and Cavedon, L. (2016b). On the correlation and transfer-
ability of features between automatic speech recognition and speech emotion
recognition. In Interspeech, pages 3618–3622.

Fayek, H. M., Lech, M., and Cavedon, L. (2016a). Modeling subjectiveness in
emotion recognition with deep neural networks: Ensembles vs soft labels. In
International Joint Conference on Neural Networks (IJCNN), pages 566–570.

Fayek, H. M. (2016). A deep learning framework for hybrid linguistic-paralinguistic
speech systems. In 2nd Doctoral Consortium at Interspeech 2016, pages 1–2,
Berkeley, United States.

Fayek, H. M., Lech, M., and Cavedon, L. (2015). Towards real-time speech emotion
recognition using deep neural networks. In International Conference on Signal
Processing and Communication Systems (ICSPCS), pages 1–5.

v

Contents

Abstract ii

Acknowledgements iv

List of Publications v

Contents vi

List of Figures ix

List of Tables xv

List of Algorithms xviii

List of Abbreviations xix

List of Symbols xxi

1 Introduction 1
1.1 Artificial Intelligence and Machine Learning 2
1.2 Inductive Bias and Catastrophic Forgetting 4
1.3 Scope . 5
1.4 Contributions . 6
1.5 Thesis Outline . 7
1.6 Notation . 8

2 Machine Learning and Deep Learning 9
2.1 Machine Learning . 10
2.2 Regularization . 13
2.3 Optimization . 16
2.4 Deep Learning . 21
2.5 Neural Networks . 23

vi

CONTENTS vii

2.6 Convolutional Neural Networks . 28
2.7 Recurrent Neural Networks . 30
2.8 Learning Multiple Tasks . 32
2.9 Continual Learning . 36
2.10 Summary . 37

3 Tabula Rasa Learning 38
3.1 Machine Perception . 39
3.2 Image Recognition . 40

3.2.1 Background . 40
3.2.2 Experimental Setup . 40
3.2.3 Results . 45

3.3 Automatic Speech Recognition . 45
3.3.1 Background . 46
3.3.2 Automatic Speech Recognition System 47
3.3.3 Experimental Setup . 49
3.3.4 Results . 53

3.4 Speech Emotion Recognition . 54
3.4.1 Background . 54
3.4.2 Related Work . 55
3.4.3 Speech Emotion Recognition System 56
3.4.4 Experimental Setup . 58
3.4.5 Results . 60

3.5 Discussion . 69
3.6 Summary . 69

4 Relevance of Features and Task Relatedness 71
4.1 Background . 72
4.2 Gradual Transfer Learning . 73
4.3 Experiments in Image Recognition 75

4.3.1 Experimental Setup . 75
4.3.2 Results . 78

4.4 Experiments in Speech Recognition 80
4.4.1 Experimental Setup . 80
4.4.2 Results . 85

4.5 Discussion . 89
4.6 Summary . 90

5 Progressive Learning 92
5.1 Background . 93
5.2 Related Work . 95

CONTENTS viii

5.3 Progressive Learning . 97
5.3.1 Curriculum . 98
5.3.2 Progression . 99
5.3.3 Pruning . 101

5.4 Experiments in Image Recognition 103
5.4.1 Experimental Setup . 103
5.4.2 Evaluation Criteria . 106
5.4.3 Results . 107

5.5 Experiments in Speech Recognition 113
5.5.1 Experimental Setup . 115
5.5.2 Evaluation Criteria . 118
5.5.3 Results . 118

5.6 Discussion . 121
5.7 Summary . 122

6 Conclusions and Future Work 124
6.1 Conclusions . 125
6.2 Future Work . 126

Bibliography 128

A Datasets 146
A.1 CIFAR . 146
A.2 eNTERFACE . 149
A.3 IEMOCAP . 149
A.4 ImageNet . 149
A.5 SVHN . 150
A.6 TIMIT . 150

List of Figures

1.1 Conceptual taxonomy of artificial intelligence, continual learning,
classical machine learning, representation learning, and deep learning.
Note that this taxonomy does not imply that all classical machine
learning, representation learning, and deep learning methods are
continual learning methods. 3

2.1 Dropout. Left. A complete fully connected neural network with
one hidden layer. Right. The same fully connected neural network
with a number of omitted units. 16

2.2 Feed-forward fully connected neural network with two hidden layers. 23
2.3 Non-linear activation functions. Left. Logistic sigmoid function.

Centre. Hyperbolic tangent function. Right. Rectified linear unit. 25
2.4 Convolutional neural network with three Convolutional (Conv) and

Pooling (Pool) layers followed by a Fully Connected (FC) layer. . . 29
2.5 Recurrent neural network with two recurrent hidden layers charac-

terized by self-connections (blue). 30
2.6 Transfer learning via a neural network with three hidden layers.

Top. The parameters of the model were randomly initialized, and
trained for Task A. Bottom. The parameters of the model were
initialized using the parameters trained for Task A, and fine-tuned
for Task B. 34

2.7 Multi-task learning with three tasks via a neural network that has
three hidden layers. All layers are shared between the three tasks
except the output layer which is unique to each task. 35

3.1 Acoustic speech signal. Top. Raw acoustic signal in the time do-
main. Centre. Normalized log Mel Frequency Spectral Coefficients
(MFSCs) computed from the raw acoustic signal (top). Bottom.
Normalized Mel Scale Cepstral Coefficients (MFCCs) computed from
the raw acoustic signal (top). 48

ix

LIST OF FIGURES x

3.2 Mel scale filter banks. The amplitudes of 40 filter banks on a Mel
scale in the frequency range 0–4 kHz. 49

3.3 Overview of the proposed speech emotion recognition system. A deep
multi-layered neural network, composed of several fully connected,
convolutional, or recurrent layers, ingests a target frame (solid),
concatenated with a number of context frames (dashed), to predict
the probabilities over emotion classes corresponding to the target
frame. 57

3.4 Speech emotion recognition test accuracy and test Unweighted Av-
erage Recall (UAR) on the IEMOCAP dataset with a deep neural
network as a function of the number of context frames. 61

3.5 Speech emotion recognition test accuracy on the IEMOCAP dataset
of a Long Short-Term Memory (LSTM)-Recurrent Neural Network
(RNN) with various number of context frames. LSTM-RNN-c de-
notes the sequence length which the model was trained on. The
number of frames denotes the sequence length which the model was
evaluated on. 64

3.6 Speech emotion recognition test Unweighted Average Recall (UAR)
on the IEMOCAP dataset of a Long Short-Term Memory (LSTM)-
Recurrent Neural Network (RNN) with various number of context
frames. LSTM-RNN-c denotes the sequence length which the model
was trained on. The number of frames denotes the sequence length
which the model was evaluated on. 65

3.7 Input speech utterances (top) and corresponding aligned output
(below) of the speech emotion recognition system for a number of
selected utterances from the test subset of the IEMOCAP dataset.
The output is the probabilities over classes denoting the confidence
of the model. Transcripts: (a): Oh, laugh at me all you like but
why does this happen every night she comes back? She goes to sleep
in his room and his memorial breaks in pieces. Look at it, Joe look.
(Angry); (b): I will never forgive you. All I’d done was sit around
wondering if I was crazy waiting so long, wondering if you were
thinking about me. (Happy); (c): OKay. So I am putting out the
pets, getting the car our the garage. (Neutral); (d): They didn’t
die. They killed themselves for each other. I mean that, exactly.
Just a little more selfish and they would all be here today. (Sad);
(e): Oh yeah, that would be. Well, depends on what type of car
you had, though too. I guess it would be worth it. helicopter. Yeah,
helicopter. There is a helipad there, right? Yeah, exactly. (Happy). 67

LIST OF FIGURES xi

4.1 Gradual transfer learning between two tasks. The parameters of
the first and second models are initialized randomly (grey) and
trained for Task A (blue) and Task B (green) respectively. The third
and fourth models are examples of gradual transfer learning. The
parameters of the third model are initialized using the trained Task
A model (blue) and the final three layers are fine-tuned for Task B
(green). The parameters of the fourth model are initialized using the
trained Task B model (green) and all layers except the first layer
are fine-tuned for Task A (blue). 74

4.2 Gradual transfer learning between the CIFAR-10 and CIFAR-100
datasets. Left. The validation and test accuracies of indepen-
dent CIFAR-10 (dashed) and CIFAR-10 fine-tuned from CIFAR-100
(solid) as a function of the number of constant layers. Right. The
validation and test accuracies of independent CIFAR-100 (dashed)
and CIFAR-100 fine-tuned from CIFAR-10 (solid) as a function of
the number of constant layers. 79

4.3 Gradual transfer learning between the CIFAR-10 and SVHN datasets.
Left. The validation and test accuracies of independent CIFAR-10
(dashed) and CIFAR-10 fine-tuned from SVHN (solid) as a function
of the number of constant layers. Right. The validation and test
accuracies of independent SVHN (dashed) and SVHN fine-tuned
from CIFAR-10 (solid) as a function of the number of constant layers. 79

4.4 Gradual transfer learning between the CIFAR-100 and SVHN datasets.
Left. The validation and test accuracies of independent CIFAR-100
(dashed) and CIFAR-100 fine-tuned from SVHN (solid) as a function
of the number of constant layers. Right. The validation and test
accuracies of independent SVHN (dashed) and SVHN fine-tuned
from CIFAR-100 (solid) as a function of the number of constant layers. 80

4.5 Learned features in the first layer of the convolutional neural network
Model A detailed in Table 4.3 for the automatic speech recognition
task (left) and the speech emotion recognition task (right). 86

LIST OF FIGURES xii

4.6 Gradual transfer learning between the automatic speech recognition
task and the speech emotion recognition task with convolutional
neural network Model A. Left. The Phone Error Rate (PER) of
independent automatic speech recognition (TIMIT) (dashed) and
automatic speech recognition (TIMIT) fine-tuned from speech emo-
tion recognition (IEMOCAP) (solid) as a function of the number
of constant layers. Right. The Unweighted Error (UE) of indepen-
dent speech emotion recognition (IEMOCAP) (dashed) and speech
emotion recognition (IEMOCAP) fine-tuned from automatic speech
recognition (TIMIT) (solid) as a function of the number of constant
layers. 87

4.7 Gradual transfer learning between the automatic speech recognition
task and the speech emotion recognition task with convolutional
neural network Model B. Left. The Phone Error Rate (PER) of
independent automatic speech recognition (TIMIT) (dashed) and
automatic speech recognition (TIMIT) fine-tuned from speech emo-
tion recognition (IEMOCAP) (solid) as a function of the number
of constant layers. Right. The Unweighted Error (UE) of indepen-
dent speech emotion recognition (IEMOCAP) (dashed) and speech
emotion recognition (IEMOCAP) fine-tuned from automatic speech
recognition (TIMIT) (solid) as a function of the number of constant
layers. 88

5.1 Overview of progressive learning for three tasks. Initially, a curricu-
lum strategy is used to select a task (blue) from the pool of candidate
tasks. Second, a model is trained to perform the selected task (blue),
and the learned parameters are constant thereafter. Third, the cur-
riculum strategy is employed to select the subsequent task (purple).
Fourth, new model parameters, denoted progressive block, which
draw connections from the preceding layer in the block as well as the
preceding layer in prior progressive block(s), are added and trained
to perform the selected task (purple). Fifth, after training the newly
added progressive block to convergence, a pruning procedure is used
to remove weights without compromising performance. Finally, the
curriculum, progression, and pruning procedures are repeated for
the third task (green), and for all remaining task(s) subsequently. . 94

LIST OF FIGURES xiii

5.2 Procedural illustration of progressive learning for three tasks. In
the first iteration, a curriculum strategy is used to select a task
(blue) from the pool of candidate tasks. Then, a model is trained
to perform the selected task (blue), and the learned parameters are
constant thereafter. In the second iteration, the curriculum strategy
is employed to select the subsequent task (purple). Then, new model
parameters, denoted progressive block, which draw connections from
the preceding layer in the block as well as the preceding layer in
prior progressive block(s), are added and trained to perform the
selected task (purple). Subsequently, after training the newly added
progressive block to convergence, a pruning procedure is used to
remove weights without compromising performance. In the third
iteration, the curriculum, progression, and pruning procedures are
repeated for the third task (green). Further iterations of the three
procedures continue for all following task(s). 97

5.3 Illustration of the concatenation operation for three blocks. 101
5.4 Accuracy of progressive learning vs. independent learning for all 11

image recognition tasks. The tasks are ordered according to the
outcome of the curriculum procedure. C-10 denotes the CIFAR-10
task, C-100-s indicates the sth CIFAR-100 task. 110

5.5 Learning curves, validation error as a function of training iterations,
for progressive and independent learning for the 11 CIFAR-10 and
CIFAR-100 tasks. Progressive Learning demonstrates faster learning
compared with independent learning. Note that tasks are ordered
according to the outcome of the curriculum strategy. Models are
reset to random initialization at the beginning of each task in the
case of independent learning. 112

5.6 Total number of parameters in the model as a function of tasks.
Left. The total number of parameters in the model as a function
of tasks before and after pruning. Centre. The number of fixed
parameters (parameters in preceding progressive blocks) as a function
of tasks before and after pruning. Right. The number of adaptive
parameters (parameters in the progressive block being trained) as a
function of tasks before and after pruning. 113

5.7 Percentage of pruned weights as a function of layers. It can be noted
that initial layers are more prone to pruning as progressive blocks
can rely on features learned in initial layers in prior progressive blocks.114

5.8 Progressive learning vs independent learning for all four speech
recognition tasks. The tasks are ordered according to the outcome
of the curriculum procedure. 119

LIST OF FIGURES xiv

5.9 Learning curves, validation error as a function of training iterations,
for progressive and independent learning for the four speech recogni-
tion tasks. Note that tasks are ordered according to the outcome of
the curriculum strategy. Models are reset to random initialization
at the beginning of each task in the case of independent learning. . 120

A.1 Sample images randomly drawn from the training set of the CIFAR-
10 dataset. Each row was drawn from a single class in the following
order: airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
and truck. 148

A.2 Sample images randomly drawn from the training set of the SVHN
dataset. Each row represents a class or a digit 0–9 respectively. . . . 151

List of Tables

3.1 Convolutional neural network Model A architecture for the image
recognition task. K denotes the number of output classes. 43

3.2 Densely connected convolutional network Model B architecture for
the image recognition task. The outputs of the convolutional layers
in Blocks 2, 4, and 6, are concatenated with the inputs to the layer
and fed to the subsequent layer in the same block. K denotes the
number of output classes. 44

3.3 Image recognition Validation Classification Accuracy (Val ACC)
and Test Classification Accuracy (Test ACC) on the CIFAR-10,
CIFAR-100, and SVHN datasets. 46

3.4 Convolutional neural network Model A architecture for the auto-
matic speech recognition task. 51

3.5 Convolutional neural network ModelB architecture for the automatic
speech recognition task. 52

3.6 Automatic speech recognition validation and test Frame Error Rate
(FER) and Phone Error Rate (PER) on the TIMIT dataset. 54

3.7 Speech emotion recognition test Accuracy (ACC) and test Un-
weighted Average Recall (UAR) on the IEMOCAP dataset with
various convolutional neural network architectures. Conv(c× j × k)
and Conv1D(c× j × k) denote a spatial convolutional layer and a
temporal convolutional layer respectively of c filters, each of size j×k,
with stride 2, followed by Batch Normalization (BatchNorm) and
Rectified Linear Units (ReLUs). FC(nl) denotes a fully connected
layer of nl units followed by BatchNorm, ReLUs, and dropout. All
architectures have a fully connected layer with a softmax function
as the output layer. 62

xv

LIST OF TABLES xvi

3.8 Speech emotion recognition test Accuracy (ACC) and Unweighted
Average Recall (UAR) on the IEMOCAP dataset with various neural
network architectures. Conv(c × j × k) denote a spatial convolu-
tional layer of c filters, each of size j × k, with stride 2, followed by
Batch Normalization (BatchNorm) and Rectified Linear Units (Re-
LUs). FC(nl) denotes a fully connected layer of nl units followed by
BatchNorm, ReLUs, and dropout. LSTM-RNN(nl) denotes a Long
Short-Term Memory (LSTM)-Recurrent Neural Network (RNN) of
nl units. All architectures have a fully connected layer with a softmax
function as the output layer. 66

3.9 Speech Emotion Recognition (SER) results reported in prior work
on the IEMOCAP dataset. Note that differences in data subsets and
other experiment conditions should be taken into consideration when
comparing the following results against each other, see references for
more details. 68

4.1 Densely connected convolutional network architecture for image
recognition. The outputs of the convolutional layers in Blocks 2,
4, and 6, are concatenated with the inputs to the layer and fed to
the subsequent layer in the same block. K denotes the number of
output classes. 76

4.2 Speech recognition convolutional neural network Model A architec-
ture. K denotes the number of output classes. 83

4.3 Speech recognition convolutional neural network Model B architec-
ture. K denotes the number of output classes. 84

4.4 Validation and test Frame Error Rate (FER) and Phone Error
Rate (PER) of gradual transfer learning from the speech emotion
recognition task (IEMOCAP) to the automatic speech recognition
task (TIMIT) with convolutional neural network Model A. 86

4.5 Validation and test error and unweighted error of gradual transfer
learning from the automatic speech recognition task (TIMIT) to the
speech emotion recognition task (IEMOCAP) with convolutional
neural network Model A. 87

4.6 Validation and test Frame Error Rate (FER) and Phone Error
Rate (PER) of gradual transfer learning from the speech emotion
recognition task (IEMOCAP) to the automatic speech recognition
task (TIMIT) with convolutional neural network Model B. 88

4.7 Validation and test error and unweighted error of gradual transfer
learning from the automatic speech recognition task (TIMIT) to the
speech emotion recognition task (IEMOCAP) with convolutional
neural network Model B. 89

LIST OF TABLES xvii

5.1 Convolutional neural network architecture for the image recognition
tasks. The concatenation operation indicates the layers at which
the output of the previous layer in all prior blocks are concatenated.
The concatenation operation can be ignored in independent learning.105

5.2 Progressive learning Validation Average Accuracy (Val AA) and Test
Average Accuracy (Test AA) over all 11 tasks using the CIFAR-10
and CIFAR-100 datasets unless otherwise indicated. 108

5.3 Progressive learning Validation Progressive Knowledge Transfer (Val
PKT) and Test Progressive Knowledge Transfer (Test PKT) over
all 11 tasks using the CIFAR-10 and CIFAR-100 datasets unless
otherwise indicated. 109

5.4 Convolutional neural network architecture for the speech recognition
tasks. The concatenation operation indicates the layers at which
the output of the previous layer in all prior blocks are concatenated.
The concatenation operation can be ignored in independent learning.
K denotes the number of output classes. 117

A.1 Classes in the CIFAR-100 dataset. 147

List of Algorithms

2.1 Early stopping algorithm for determining when to terminate an
iterative training algorithm. 15

2.2 Stochastic gradient descent algorithm. Note that supervised learning
is assumed herein, but the algorithm is valid for other types of
learning that can provide means to compute the gradients. 18

2.3 Adam algorithm. ε is a small constant for numerical stability (e.g.,
ε = 10−8). The division and square root in Step 10 are applied
element-wise. 20

2.4 Forward propagation through a fully connected (deep) neural net-
work. φ denotes a non-linear operation applied element-wise. Note
that for notational convenience, the output of the output layer in the
network ŷ(L) is abbreviated to ŷ. The algorithm assumes a single
exemplar m but can be extended to the case with a mini-batch of
exemplars or the entire dataset. 27

2.5 Backward computation through a fully connected (deep) neural net-
work. φ′ denotes the derivative of the non-linear operation applied
element-wise. � denotes the Hadamard product. > denotes the
transpose operation. λ is the regularization weight and the entire
term can be ignored if the loss function does not constitute a reg-
ularization penalty Ω. Note that for notational convenience, the
output of the output layer in the network ŷ(L) is abbreviated to ŷ.
The algorithm assumes a single exemplar m but can be extended to
the case with a mini-batch of exemplars or the entire dataset. . . . 28

5.6 Functional decomposition of progressive learning in the supervised
learning case. 99

5.7 Greedy layer-wise pruning procedure in progressive learning. 103

xviii

List of Abbreviations

AI Artificial Intelligence.
ANN Artificial Neural Network.
ASR Automatic Speech Recognition.

BatchNorm Batch Normalization.
BPTT BackPropagation Through Time.

ConvNet Convolutional Neural Network.
CPU Central Processing Unit.

DCT Discrete Cosine Transform.
DenseNet Densely Connected Convolutional Network.
DFT Discrete Fourier Transform.
DNN Deep Neural Network.

ELM Extreme Learning Machine.
ERM Empirical Risk Minimization.

FER Frame Error Rate.

GMM Gaussian Mixture Model.
GPU Graphics Processing Unit.
GR Gender Recognition.

HMM Hidden Markov Model.
HOG Histograms of Oriented Gradient.

IID Independent and Identically Distributed.

xix

List of Abbreviations xx

LOSO Leave-One-Speaker-Out.
LSTM Long Short-Term Memory.

MAP Maximum A Priori.
MFCC Mel Frequency Cepstral Coefficient.
MFSC Mel Frequency Spectral Coefficient.
MLE Maximum Likelihood Estimation.
MLP Multi-Layer Perceptron.
MSE Mean Squared Error.

NN Neural Network.

PCA Principal Component Analysis.
PER Phone Error Rate.

RBM Restricted Boltzmann Machine.
ReLU Rectified Linear Unit.
ResNet Residual Network.
RNN Recurrent Neural Network.

SER Speech Emotion Recognition.
SGD Stochastic Gradient Descent.
SIFT Scale Invariant Feature Transform.
SR Speaker Recognition.
SVM Support Vector Machine.

UAR Unweighted Average Recall.
UE Unweighted Error.

VC Vapnik-Chervonenkis.

List of Symbols

x Scalar.
X Constant.
x Vector.
X Matrix or Tensor.
X Set or Special Notation.
X Set or Special Notation.

xi Element i of Vector x.
Xi Element i of Set X.
Xij Element in Row i and Column j of Matrix X.
Xi: Element(s) in Row i of Matrix X.

p(i) Probability Distribution Over i.
p(i|j) Conditional Probability Distribution Over i Given j.
p(i|j;θ) p(i|j) Parametrized by Parameters θ.

f
Concatenation Operation.

∗ Convolution Operation.
E Expectation.
∇i Gradient of i.
� Hadamard Product.
ε Small Constant.
> Transpose Operation.

‖i‖j Lj Norm of i.
sigm Logistic Sigmoid Function.
tanh Hyperbolic Tangent Function.

xxi

List of Symbols xxii

R Set of Real Numbers.
D Dataset.
Θ Parameter Space.
θ Vector of All Adaptive Parameters in a Model.

W Matrix of Weights.
W(i) Matrix of Weights of layer i.
b Vector of Biases.
L Number of Layers in a Deep Network.
LH Number of Hidden Layers in a Deep Network.

Chapter 1

Introduction

Artificial intelligence aims to understand and build intelligent entities. Ma-
chine learning is one of several approaches to artificial intelligence. It allows

us to build machines that can learn from experience as opposed to being explicitly
programmed. Current machine learning algorithms and methodologies are mostly
designed for learning and performing a particular task from a tabula rasa using
data available for the task at hand. For machine learning to converge to artificial
intelligence, in addition to other desiderata, it must be in a state of continual
learning, i.e., have the ability to be in a continuous learning process, such that
when a new task is presented, it can leverage prior knowledge from prior tasks, in
learning and performing this new task, and augment the prior knowledge with the
newly acquired knowledge without having a significant adverse effect on the prior
knowledge. Continual learning is key to advancing machine learning and artificial
intelligence.

Outline. This chapter is structured as follows. Section 1.1 provides a brief
introduction to artificial intelligence, machine learning, and continual learning.
Section 1.2 describes the problem statement which this work is set to address.
Section 1.3 outlines the scope of this work. Section 1.4 lists the contributions of
this thesis. Section 1.5 details the thesis outline. Finally, Section 1.6 summarizes
the notation used throughout the thesis.

1

CHAPTER 1. INTRODUCTION 2

1.1 Artificial Intelligence and
Machine Learning

Artificial Intelligence (AI) aims to understand and build intelligent entities∗. Con-
temporary AI has been sought after ever since the inception of the first pro-
grammable digital computer [Turing, 1950]. Nonetheless, the seeds of AI were
planted long before that, and can be traced to antiquity, when humans devised and
solicited statues and automatons depicting gods for wisdom and emotion [McCor-
duck, 2004]. Later, classical philosophers delineated formal processes for logical
reasoning, e.g., Aristotelian syllogism, which was built on the notion that human
thought could be mechanized. This notion is one of the main assumptions in many
approaches to AI [Russell and Norvig, 2003], and can be conceived using mathe-
matical logic [Boole, 1854] implemented using programmable digital computers.
Progress in the field of AI has been swift relative to its young age [McCorduck
et al., 1977]. Today, there are many approaches to AI, such as symbolic reasoning
and computational intelligence, that may one day lead to thinking machines that
have intellectual capabilities superior to those of humans. Theoretically, thinking
machines are only limited by the limits of computation and physics [Schmidhuber,
2002].

Machine learning is one of several approaches to AI. Notably, it is able to deal
with tasks that are easy for humans to perform but hard for them to formalize
how it was performed [Goodfellow et al., 2016], such as recognizing and converting
speech into text, assessing visual aesthetics, or driving a car. Each of these tasks
cannot be defined by a complete set of formal rules, and therefore programming
machines to directly perform such tasks would result in error-prone, fragile, or
incomplete programs. Machine learning allows machines to learn from experience as
opposed to being explicitly programmed [Samuel, 1959]. Machine learning can be
formally defined as follows: “A computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P , if its performance
at tasks in T , as measured by P , improves with experience E” [Mitchell, 1997].

The machine learning approach relies on data to learn a model that can be used
to accomplish the required task [Bishop, 1995]. This encompasses engineering a
data representation, choosing an architecture for the model, deriving an appropriate
loss function†, and selecting a suitable training algorithm. Such decisions require
domain knowledge and are naturally heuristic. Engineering a representation of the
data, which is known as feature engineering, is especially challenging, as it is difficult
to determine which features should be used in advance for a particular problem;

∗See [Russell and Norvig, 2003] for formal definitions of AI.
†The loss function is also known as cost function, error function, fitness function, or objective

function.

CHAPTER 1. INTRODUCTION 3

Deep
Learning

Representation
Learning

Classical
Machine
Learning

Continual
Learning

Artificial
Intelligence

Figure 1.1: Conceptual taxonomy of artificial intelligence, continual learning,
classical machine learning, representation learning, and deep learning. Note that
this taxonomy does not imply that all classical machine learning, representation
learning, and deep learning methods are continual learning methods.

with a poor choice of features, all subsequent effort can be futile [Mitchell, 1997].
Representation learning alleviates the dependence of machine learning on feature
engineering by learning appropriate representations for the required task [Bengio
et al., 2013]. Deep learning extends representation learning to learn multiple
levels of representations together with the mapping function, be it classification or
regression or otherwise, into a single composite function.

Deep learning is, therefore, an approach to machine learning (see Figure 1.1).
It allows learning representations and concepts in a hierarchical way. This can
be achieved by decomposing computational models or graphs into multiple layers
of processing, with the aim of learning representations of the data with multiple
levels of abstraction [LeCun et al., 2015]. In doing so, the model can adaptively
learn low-level features from raw data and higher-level features from the low-level
features in a hierarchical manner [Hinton et al., 2006]. Notably, deep learning
presents itself as a general-purpose approach to machine learning that is able to
solve numerous and various tasks with minimal modification. At present, deep
learning is the state-of-the-art approach to machine learning, and is prominent in
numerous fields, such as computer vision, speech recognition, and natural language
processing.

Neural networks are a class of machine learning systems‡ [Rosenblatt, 1958,
Rumelhart and McClelland, 1986]. A neural network is a collection of nodes or
units that are inter-connected via adaptive weights to form a directed weighted

‡Artificial Neural Networks (ANNs) are also referred to as Multi-Layer Perceptrons (MLPs).

CHAPTER 1. INTRODUCTION 4

graph, which can learn distributed representations and ultimately the task at hand.
A Deep Neural Network (DNN), a neural network with many hierarchical layers, is
the most prevalent example of deep learning, where one layer feeds the subsequent
layer, such that initial layers learn simple features from the data and subsequent
layers learn more complex features using the simple features in initial layers.

Learning from a tabula rasa is the most common machine learning paradigm
[Mikolov et al., 2018,Lake et al., 2017]. For an arbitrary task, a model is initialized
and trained using a dataset or environment to achieve a certain objective. Contrary
to human learning, the model does not typically take into account knowledge
learned in prior related tasks that used prior datasets or environments, which could
lead to a slower learning process that requires more data and possibly suboptimal
performance [Lake et al., 2017].

For machine learning to converge to AI, in addition to other desiderata, it
must be in a state of continual learning [Thrun and Mitchell, 1995,Mitchell et al.,
2018], i.e., have the ability to be in a continuous learning process, such that when
a new task is presented, it can leverage prior knowledge from prior tasks, in
learning and performing this new task, and augment the prior knowledge with
the newly acquired knowledge without having a significant adverse effect on the
prior knowledge. Quintessentially, humans are always in a state of continual
learning [Harlow, 1949,Smith et al., 2002,Dewar and Xu, 2010]. For instance, when
presented with the task of learning a new language, one will automatically draw
from one’s own past experiences with languages they are familiar with, to facilitate
the learning of this new language, e.g., English speakers would naturally use their
knowledge of the English syntax when learning French.

Within machine learning, deep learning and neural networks are particularly
suited for continual learning, due to their unprecedented success in numerous and
various tasks with minimal modification and their innate ability to learn multiple
hierarchical levels of versatile distributed representations. For example, a unit in a
neural network that has learned the concept of a wheel in a bicycle detection task
can be used in learning to detect cars in a self-driving car task, which avoids the
need to re-learn the concept of the wheel.

Continual learning is key to advancing machine learning and AI, where knowl-
edge can be accumulated, repurposed, and reused over tasks.

1.2 Inductive Bias and Catastrophic Forgetting
Every machine learning algorithm with the ability to generalize beyond the data
which it has encountered during training has, by definition, some form of prior,
known as inductive bias [Mitchell, 1980]. Inductive bias is the set of assumptions
that the model relies on to generalize beyond the data it has not encountered

CHAPTER 1. INTRODUCTION 5

during training. For example, linear regression assumes that the relation between
the independent variables (input) and dependent variables (output) is linear.

Ideally, one aspires to minimize the inductive bias in a machine learning al-
gorithm. There is, however, a trade-off between the inductive bias of an algo-
rithm and the amount of data required to ensure reliable generalization to unseen
data [Mitchell, 1980,Baxter, 2000], in that the search space for a solution needs to
be large enough to contain a solution to the task, and small enough to not require a
large dataset to navigate the search space during training. Revisiting the previous
example regarding linear regression, by assuming that the relation between the
independent variables and dependent variables is linear, all non-linear solutions are
effectively eliminated from the search space; the search space is simpler yet may
not contain the solution to the task if a non-linear solution is necessary.

Deep learning and neural networks require large datasets to learn a given task
due to the large search space inherent in their design. Inductive bias can play
an important role in navigating this large search space during training, and thus,
alleviate the requirement of large datasets which typically leads to a slower learning
process.

Continual learning is in itself a form of inductive bias. However, it can be
considered a soft form of inductive bias, whereby the model can rely on existing
solutions to related tasks in its search for a solution in the search space, or use
data available for the task at hand to navigate the search space, or both. In doing
so, one can expect a faster learning process and better generalization, using less
amounts of data.

It can be seen how continual learning can be used as a form of inductive bias to
improve the learning and execution of new tasks given prior related tasks; however,
this should not be at the expense of corrupting the solutions to prior tasks.

Catastrophic forgetting in machine learning is the tendency to forget previously
learned information when learning new information [McCloskey and Cohen, 1989,
Ratcliff, 1990]. Catastrophic forgetting is evident in parametric machine learning
algorithms, where parameters learned for old task(s) are repurposed for the new
task at hand, and the model forgets the old task(s) as the parameters move in the
search space during the training phase for the new task.

Inducing the correct inductive bias and mitigating catastrophic forgetting in an
efficient manner are two of the main challenges in continual learning.

1.3 Scope
Continual learning applies to all branches of machine learning, including supervised
learning, unsupervised learning, and reinforcement learning§. The focus of this

§See Section 2.1 for the definitions of the classifications of machine learning.

CHAPTER 1. INTRODUCTION 6

work lies at the intersection between continual learning and deep learning. The
class of tasks studied in this work are all cast as supervised learning problems, and
in particular, classification tasks in the image recognition and speech recognition
domains, both of which are sub-domains of machine perception. Nevertheless, the
propositions and conclusions put forward herein are not confined to such learning
tasks, and are envisaged to be applicable to other branches of machine learning,
particularly those that utilize deep learning.

1.4 Contributions
The contributions of the thesis are as follows.

• The application of deep learning requires a plethora of design decisions and ex-
tensive tuning of hyperparameters to ensure good performance, e.g., choosing
the architecture of the neural network, including the number of layers and size
of each layer. These design decisions and hyperparameters are cumbersome
and are usually task-specific or domain-specific. It is therefore advantageous
to understand some of these design decisions and hyperparameters across
a variety of tasks. To this end, various tasks, namely, image recognition,
Automatic Speech Recognition (ASR), and Speech Emotion Recognition
(SER), were formulated and studied in a systematic manner. The SER task
was comprehensively considered and used as a test bed to explore various
neural network architectures as the task itself can be formulated in multi-
ple ways. This is the first empirical exploration of various deep learning
formulations and architectures applied to SER. Empirical analysis provided
intuition and insights on the effectiveness of some of these architectures and
their suitability to particular tasks. As a consequent result of the systematic
exploration, state-of-the-art results were reported on the Interactive Emo-
tional Dyadic Motion Capture (IEMOCAP) dataset [Busso et al., 2008] for
speaker-independent SER¶.

• In order to move from single-task systems to systems that aim to address
multiple tasks, one ought to understand the relation between these tasks.
A methodology for understanding the relation between two tasks using the
features learned for each task in a deep network is proposed in this work,
to illuminate the relevance of each layer of features in the multi-layered
neural network trained for one task to the other task via transfer learning.
Understanding the layer-wise transferability of features and task relatedness
is envisaged to be valuable in designing and implementing systems that

¶Compared to prior literature when the work was published in [Fayek et al., 2017].

CHAPTER 1. INTRODUCTION 7

aim to address multiple tasks, by taking into consideration the overlap
between closely related tasks as well as the interference between non-related
or adversary tasks.

• Continual learning is a machine learning paradigm, whereby tasks are learned
in sequence with the ability to use prior knowledge from previously learned
tasks to facilitate the learning and execution of new ones. The main contribu-
tion of this work is the construction and formulation of a novel deep learning
framework, named progressive learning, that allows a holistic and systematic
approach to continual learning. Progressive learning comprises a number
of procedures that address the continual learning desiderata. It is shown
that, when tasks are related, progressive learning leads to faster learning that
converges to better generalization performance using less amounts of data
and a smaller number of dedicated parameters, for the tasks studied in this
thesis, by accumulating and leveraging knowledge learned across tasks in a
continuous manner.

The above three contributions are put forward in Chapters 3, 4 and 5 respec-
tively‖.

1.5 Thesis Outline
The thesis is structured as follows.

Chapter 1 presents a brief introduction to AI, machine learning, and continual
learning, and an outlook on the state-of-the-art; provides the problem statement
which this thesis is set to address; defines the scope and highlights contributions of
this work, as well as the thesis outline and notation used.

Chapter 2 reviews machine learning, deep learning, and continual learning. The
concepts, theory, and mathematical framework that constitute the foundations of
this work are detailed therein.

Chapter 3 builds understanding, insights, and baselines of the various tasks
used throughout this work, as well as datasets, deep learning architectures, and
best practices. The SER task is comprehensively considered and used as a test bed

‖An additional contribution is the development and release of an open-source lightweight
deep learning library, called MatDL [Fayek, 2017]. MatDL was developed natively in Matlab
and implements some commonly used deep learning building blocks and algorithms. MatDL
is convenient in cases where Matlab is preferred, or if it is required to be closely linked with
other libraries written in Matlab or Octave. MatDL is ideal for rapid machine learning research
and experimentation, specially with small or medium-sized datasets, as it was designed with an
emphasis on modularity, flexibility, and extensibility.

CHAPTER 1. INTRODUCTION 8

to explore various neural network architectures. The work presented in this chapter
is based on [Fayek et al., 2015,Fayek et al., 2016a,Fayek et al., 2017,Fayek, 2017].

Chapter 4 is an investigation into the specificity and transferability of learned
features in deep networks across multiple tasks, and how this can be used to
understand task relatedness. The aim of this chapter is to gain intuition into how
information propagates in deep networks that can be used to build systems with
multiple tasks. The work presented in this chapter is based on [Fayek, 2016,Fayek
et al., 2016b,Fayek et al., 2018].

Chapter 5 builds on work carried out in the previous two chapters and proposes
progressive learning, a novel deep learning framework that formulates continual
learning into three procedures: curriculum, progression, and pruning. Progressive
learning is evaluated on a number of tasks in the image recognition and speech
recognition domains that were studied in the previous chapters to demonstrate its
advantages compared with baseline methods.

Chapter 6 concludes the thesis and highlights avenues for future work.

1.6 Notation
The following notation is used throughout this thesis unless otherwise specified.
Standard weight lower-case letters (e.g., x) are used to denote scalars. Standard
weight upper-case letters (e.g., X) are used to denote constant scalars. Boldface
lower-case letters (e.g., x) are used to denote vectors. Boldface upper-case letters
(e.g., X) are used to denote matrices or tensors. Standard weight upper-case
calligraphic or open-face letters (e.g., X or X) are used to denote sets and special
notation.

Single subscripts are used to denote an element in a vector or set (e.g., xi or
Xi). Double (or triple or more, depending on the order) subscripts are used to
denote an element or elements in a matrix or tensor (e.g., Xij or Xijk), where the
symbol “:” may be used to denote the entire row, or column, or dimension (e.g., Xi:

for row i in matrix X). Single superscripts or subscripts in parentheses are used to
differentiate variables (e.g., W(i) can refer to the matrix of weights of layer i).

Chapter 2

Machine Learning and
Deep Learning

Machine learning can be formally defined as follows: “A computer program
is said to learn from experience E with respect to some class of tasks T

and performance measure P , if its performance at tasks in T , as measured by
P , improves with experience E” [Mitchell, 1997]. Following this definition, the
concepts, theory, and mathematical framework that constitute the foundations
of this work are detailed in this chapter, including statistical machine learning,
regularization, optimization, deep learning, neural networks, learning multiple tasks,
and continual learning.

Outline. This chapter is structured as follows. Section 2.1 provides the assump-
tions, theory, formulation, and mathematical framework of statistical machine
learning. Section 2.2 presents popular regularization techniques for improving the
generalization of machine learning models. Section 2.3 describes gradient-based
optimization algorithms relevant to training neural networks. Section 2.4 presents
the motivation, background, and fundamentals of deep learning. Section 2.5 is an
exposition of feed-forward fully connected neural networks. Section 2.6 presents
convolutional neural networks. Section 2.7 describes recurrent and long short-term
memory neural networks. Section 2.8 outlines machine learning paradigms that
incorporate learning multiple tasks. Section 2.9 introduces continual learning and
reviews selected prior literature. Finally, Section 2.10 summarizes the chapter.

9

CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING 10

2.1 Machine Learning
Machine learning can be broadly classified into supervised learning, reinforcement
learning, and unsupervised learning [Bishop, 2006,Russell and Norvig, 2003,Barber,
2012]. Supervised learning relies on labels or targets in labelled datasets for the
training signal during the training phase. Reinforcement learning uses a reward
function, that can provide positive or negative values to indicate desired or undesired
outcomes, often associated with actions, to obtain the training signal during the
training phase. Unsupervised learning does not require extra information, such as
labels, targets, or a reward function, for the training signal. Other classifications
may include other branches of machine learning, e.g., semi-supervised learning,
which can be interpreted as a variation of, or a combination of two or more of, the
previously mentioned branches. The remainder of this section focuses on supervised
learning.

In supervised learning, the objective is to learn a mapping function f : X → Y
that maps from an input space X to an output space Y. In statistical learning
theory [Vapnik, 2000], the relation between the input space X and the output
space Y is assumed to be governed by a data-generating probability distribution
pdata. The true data-generating probability distribution pdata is usually unknown;
an empirical data-generating probability distribution p̂data can be used instead,
following the Empirical Risk Minimization (ERM) principle [Vapnik, 2000].

The objective can thus be decomposed into two sub-objectives: an explicit
objective and an implicit objective. The explicit objective is to learn the function
y = f(x) using a training set D(train) ∼ p̂data drawn from the empirical data-
generating probability distribution p̂data, composed of M exemplars X ∈ RM×N

and corresponding labels or targets Y ∈ RM×K , such that N and K are the
dimensionalities of the input and output respectively∗, x ∈ X, and y ∈ Y. The
implicit objective, however, is generalization; that is to learn the function f that
generalizes to unseen data D(test), i.e., perform the same mapping task well on data
not observed during training. Note that D(train) and D(test) are mutually exclusive.

Statistical learning theory relies on two assumptions to generalize beyond the
exemplars observed in training. The first assumption is that the training set
D(train) and the test set D(test) are from the same data-generating probability
distribution that characterizes the task t. The second assumption is that each
exemplar (x(m),y(m)) for 1 ≤ m ≤M in the dataset D(train) is an Independent and
Identically Distributed (IID) exemplar drawn from the probability distribution
p̂data.

In the probabilistic perspective of machine learning, the function f is set to
estimate the probability p(y | x), or more specifically p(y | x;θ) in the parametric

∗Note that N and K are loosely defined such that X and Y may be of lower or higher rank.

CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING 11

case, where f is parametrized by parameters† θ. To achieve the explicit objective,
the function f is trained to minimize a loss function `, where the loss function ` is
related to, but not necessarily exactly equal to, the true objective o of the task t.
The loss function `, used in training the function f parametrized by parameters θ,
can follow the conditional Maximum Likelihood Estimation (MLE) principle to
estimate θ, i.e.,

θML = argmax
θ∈Θ

p(Y |X;θ), (2.1)

where p(Y | X;θ) is the conditional probability, i.e., predict Y given X, the
subscripts in θML denote maximum likelihood, and Θ is the parameter space.
Equation (2.1) can be decomposed into Equation (2.2) assuming that all exemplars
(x(m),y(m)) in the training set D(train) are IID as follows:

θML = argmax
θ∈Θ

M∏
m=1

p(y(m) | x(m);θ), (2.2)

= argmax
θ∈Θ

M∑
m=1

log p(y(m) | x(m);θ). (2.3)

Of-course, maximizing the log-likelihood in Equation (2.3) is equivalent to minimiz-
ing the negative log-likelihood, which is more commonly used as the loss function `
that is minimized during training:

θML = argmin
θ∈Θ

1

M

M∑
m=1

− log p(y(m) | x(m);θ), (2.4)

= argmin
θ∈Θ

−E(x(m),y(m))∼D(train) log p(y(m) | x(m);θ), (2.5)

where E(x(m),y(m))∼D(train) denotes the expectation over the training set D(train).
Additional terms can be added to Equations (2.4) and (2.5) to improve generalization
as discussed in Section 2.2. Optimization algorithms used to minimize ` are
discussed in Section 2.3. Equation (2.4) will be revisited in Section 2.5 in the
context of neural networks.

Using the principles of MLE, it can be shown that as the number of exemplars
in the training set D(train) approaches infinity, M →∞, the maximum likelihood
estimate of the parameters converges to the true value of the parameters with
arbitrary precision, according to the property of consistency, under mild conditions;
the implicit objective may be achieved, in expectation, relying on the assumption

†Parameters θ are all the adaptive variables in a machine learning model that can be trained
during the training phase, e.g., weights and biases in a neural network, where θ ∈ Θ, and Θ is
the parameter space.

CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING 12

that both the training set D(train) and test set D(test) were drawn from the same
data-generating probability distribution. This forms the basis of many supervised
learning algorithms [Goodfellow et al., 2016].

The explicit objective error, i.e., the error computed on the training set D(train),
is referred to as the training error, whereas the implicit objective error, i.e., the error
computed on the test set D(test), is referred to as the test error or generalization
error. Under-fitting refers to the case when the training error is large. Over-fitting
refers to the case when the training error is small but the test error is large. The
trade-off between under-fitting and over-fitting can be handled by altering the
capacity of the function f . The capacity of a function is loosely a measure of its
complexity, which pertains to its ability to fit a wide variety of solutions. For
example, in classification, a popular measure of the capacity of a classification
function is the Vapnik-Chervonenkis (VC) dimension. The VC dimension for a
binary classifier is the largest number of exemplars M in a training set D(train) that
the classifier can perfectly model without any misclassification error. A function
f with low capacity will tend to under-fit, i.e., not be able to model the training
set, while a function f with high capacity will tend to over-fit, i.e., memorize the
training set including noise in a way that harms generalization.

Not all supervised learning algorithms and techniques conform to the above
views and formalisms. For example, Support Vector Machines (SVMs) are non-
probabilistic linear models that belong to a wider family of models known as kernel
methods [Schölkopf and Smola, 2001]. Kernel methods and SVMs employ the
kernel trick [Cortes and Vapnik, 1995], which enables them to operate in an implicit
high-dimensional feature space without ever computing that space, but rather by
simply carrying out the computation in some other space, e.g., computing the
dot products between data exemplars. The kernel trick allows such methods to
learn non-linear functions with respect to the input using convex optimization
techniques by appropriately choosing a suitable kernel function. Another example
is k-nearest neighbours, a family of non-parametric techniques that can be used
for classification or regression. There is no training phase in k-nearest neighbours;
instead, at test time, for a given input x, the k-nearest neighbours to x in the
training set D(train) are located and the average of the corresponding y values in
the training set is returned, where the k-nearest neighbours can be determined
according to a distance metric, e.g., Euclidean distance. Decision trees are another
family of learning algorithms that break the input space into regions and assign
separate parameters for each region [Breiman et al., 1984]. Decision trees can be
used for classification or regression, where branches can represent conjunctions of
features that lead to leaves, and leaves can represent class labels in classification
problems or take on continuous values in regression problems.

The learning algorithms above have their own advantages and limitations, and

CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING 13

are suitable for certain types of problems. The no free lunch theorem for machine
learning states that, averaged over all possible data-generating distributions, every
classification algorithm has the same error rate when classifying previously unob-
served exemplars [Wolpert, 1996]. At first glance, this may seem disappointing, but
fortunately, if assumptions about the kinds of probability distributions encountered
in real-world applications are made, then learning algorithms that perform well on
these distributions can be designed [Goodfellow et al., 2016].

2.2 Regularization
Regularization refers to any modification to the learning algorithm that intends
to reduce the test error but not the training error [Bishop, 1995], i.e., strategies
that aim to combat over-fitting. There are many regularization strategies, of
which many abide by the following principle‡: among competing hypotheses that
explain observations well, one should choose the simplest hypothesis [Vapnik
and Chervonenkis, 2015]. The following strategies are some of the most popular
regularization strategies in the literature that were used in this work.

Data Augmentation. The simplest way to obtain better generalization error
of a machine learning model is to increase the size of the training set. This may
not be practical as the process of obtaining additional data can be cumbersome.
Nevertheless, additional artificial data could be generated by augmenting the
training set with transformations applied to the original data in the training
set. For example, in classification, and particularly, image recognition, simple
transformations applied to the images in the training set, such as flipping, rotation,
cropping, and scaling, can easily generate additional images given that the resultant
image has the same label as the original image [Bishop, 2006,Krizhevsky et al.,
2012]. Similarly, in speech recognition, label-persevering operations on speech
utterances, such as resampling or vocal tract length perturbation, were found
to be effective in improving generalization error [Jaitly and Hinton, 2013,Fayek
et al., 2015]. Many data augmentation methods can be integrated into the training
pipeline, and artificial exemplars can be generated online during training, making
these methods popular regularization methods.

Parametric Norm Penalties. Penalties that are a function of some or all of
the model parameters, e.g., norm penalties, can be added to the loss function to

‡This is commonly referred to as Occam’s razor, which appears to have been adapted from:
“Pluralitas non est ponenda sine neccesitate”: Plurality should not be posited without necessity,
or “Frustra fit per plura quod potest fieri per pauciora”: It is futile to do with more things that
which can be done with fewer [Thorburn, 1918].

CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING 14

penalize certain solutions over others. A norm penalty can be added to a loss
function ` as follows:

L(θ; X,Y) = `(θ; X,Y) + λΩ(θ), (2.6)

where L denotes the regularized loss function, λ is a hyperparameter§ to weigh
both terms, and Ω is a norm penalty, e.g., the L1 norm or the L2 norm.

The L1 norm penalty can be computed as follows:

Ω(θ) = ‖θ‖1 =
∑
i

|θi|. (2.7)

Note that Equation (2.7) implicitly regularizes the parameters θ towards zero; other
values θ̃ could be chosen by using the full expression of ‖θ‖1, that is

∑
i|θi − θ̃i |.

The L1 norm penalty encourages the parameters θ to be sparse.
The L2 norm penalty, which is also known as weight decay, can be computed as

follows:

Ω(θ) =
1

2
‖θ‖2

2 =
1

2

√∑
i

θ2
i

2

=
1

2

∑
i

θ2
i . (2.8)

where, the multiplication by 1/2 and exponentiation by 2 are used to simplify
the computation of the derivative of the function. Similar to Equation (2.7),
Equation (2.8) can be generalized to regularize the parameters θ towards values
other than zero. The L2 norm penalty encourages the parameters θ to have a
small magnitude but not necessarily exactly zero. It is interesting to note that L2

regularization can be interpreted as having a Gaussian prior on the parameters θ,
which links MLE to the Maximum A Priori (MAP) approximation (see [Graves,
2008] for more details).

Noise Injection. Injecting noise to the inputs during training as well as to the
parameters θ is a well-established method to improve generalization. Adding noise
to the inputs is a form of data augmentation and can aid the model in dealing with
noisy exemplars. Adding noise to some or all of the parameters θ during training
may not only aid in escaping local minima during optimization but can also force
the model to learn parameters that are resilient to small variations [Graves, 2013].

Early Stopping. In the initial stages of training, the training error typically
decreases rapidly, and the speed at which the error decreases declines as training
progresses; given sufficient time, it is likely to almost plateau. Should the test

§Hyperparameters are the set of typically non-adaptive variables that control the behaviour of
a learning algorithm.

CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING 15

Algorithm 2.1 Early stopping algorithm for determining when to terminate an
iterative training algorithm.
Require: Initial parameters θ
Require: Number of steps between validation evaluations i
Require: Patience q
1: Initialize:
j ← 0
e←∞
θ? ← θ

2: while j < q do
3: Update θ for i steps // see Section 2.3 for training algorithms
4: e′ ← ValidationError(θ)
5: if e′ < e then
6: j ← 0
7: θ? ← θ
8: e← e′

9: else
10: j ← j + 1
11: end if
12: end while
13: return Parameters θ?

error be measured throughout training, and if the model has enough capacity to
over-fit the training set, the test error will also decrease rapidly during the initial
stages of training, and the speed at which the test error decreases will decline as
training progresses; however, the test error can subsequently increase as the model
begins to over-fit the training data, and the gap between the training error and
test error can continue to increase as training progresses. Thus, a better test error
can be obtained at the point before the test error begins to increase. This can be
achieved by using a validation set, D(val), which is a mutually exclusive subset from
the training set, to monitor the generalization error, in this case the validation
error, and return the model that has the lowest validation error during training,
as opposed to the model obtained when training ceases¶. This is known as early
stopping as training can be halted as soon as over-fitting appears to occur. An
algorithmic view of early stopping is listed in Algorithm 2.1. Early stopping is one
of the most commonly used regularization methods.

¶A validation set is also useful in other scenarios, e.g., exploring and validating hyperparameters.

CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING 16

Input Layer

Hidden Layer

Output Layer

Dropout

Input Layer

Hidden Layer

Output Layer

×
×

×

Figure 2.1: Dropout. Left. A complete fully connected neural network with one
hidden layer. Right. The same fully connected neural network with a number of
omitted units.

Dropout. Dropout is a powerful yet simple regularization method [Srivastava
et al., 2014]. Unlike the methods above, it is specifically designed for neural
networks. The key idea in dropout is to stochastically omit units along with their
connections with probability r, where r is a hyperparameter, from the neural
network at each iteration during training, as illustrated in Figure 2.1. This prevents
co-adaptation of units during training, as units cannot rely on other units as they
may be omitted at various iterations during training. The full neural network is
used at test time with the magnitude of the connections in the model adjusted
proportionally to r to compensate for the fan-in and fan-out of the units. Dropout
can be loosely interpreted as training an ensemble of narrower models sampled
from the original model during training and using the original model at test time.

2.3 Optimization
Within the formalism adopted in Section 2.1, training machine learning models is
formulated — in most but not all cases — as an optimization problem that aims
to minimize a loss function L using a training set D(train) with the objective of
generalization to unseen data. The remainder of this section focuses on iterative
gradient-based training algorithms that are suited to neural networks with loss
functions that are differentiable with respect to all parameters θ in the model to
obtain the gradients (see [Williams, 1992,Sutton et al., 2000] for algorithms that
deal with the non-differentiable case).

CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING 17

Gradient Descent. Gradient descent, also known as steepest descent, is a first-
order iterative optimization algorithm. Assuming that the loss function L is
differentiable with respect to all parameters θ in the model, the gradient descent
algorithm iteratively updates parameters θ proportional to the negative gradient
∇θL(f(X;θ),Y), as in Equation (2.9), until a stopping criterion is met:

θ ← θ − α∇θL (f (X;θ) ,Y) , (2.9)

where α is the learning rate, and the update is applied independently to each
parameter in θ.

It is important to note that gradient descent does not guarantee convergence to
the global optimum, or even a local optimum, in non-convex problems characterized
by the existence of many local minima. Moreover, the quality of the results can be
dependent on the quality of the initial values of the model parameters θ, which
makes the initialization of parameters an important exercise [Mishkin and Matas,
2015], as discussed below. Furthermore, in problems that contain plateaus, saddle
points, or steep curvatures, gradient descent may require an excessive amount
of time to converge to a solution, and careful tuning of the learning rate α can
be crucial to its success [Dauphin et al., 2014]. This forms the motivation for
algorithms such as RMSProp [Tieleman and Hinton, 2012,Dauphin et al., 2015]
and Adam [Kingma and Ba, 2014] that aim to adapt the learning rate for each
parameter individually during training, as discussed later in this section.

Initialization. Initialization is an important step for any iterative local-search
optimization algorithm, e.g., gradient descent, dealing with non-convex problems.
Initialization is particularly important in multi-layered computational differentiable
graphs, such as neural networks, as initializing the parameters with values that
are too small or too large may lead to unstable gradients, and consequently the
optimization process may never converge [Hochreiter, 1991, Hochreiter, 1998].
Initialization strategies have been devised for various computational architectures
that will be discussed in Section 2.5.

Stochastic Gradient Descent. Considering Equation (2.4) and Equation (2.9),
each update requires computing the loss function L over the entire training set
D(train). If the training set D(train) is considerably large, each update would require
a large amount of computation. Therefore, it would be advantageous to compute
the gradients ∇θL using only a small subset, called mini-batch, of Mb exemplars
sampled from the training set. This will only provide an estimate of the true
gradients at each update [LeCun et al., 1998], hence, the algorithm is called
Stochastic Gradient Descent (SGD). The stochasticity in SGD is also beneficial for
escaping local minima during training, since the landscape of the loss function might

CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING 18

Algorithm 2.2 Stochastic gradient descent algorithm. Note that supervised
learning is assumed herein, but the algorithm is valid for other types of learning
that can provide means to compute the gradients.

Require: Training set D(train) of exemplars
(
x(m),y(m)

)
Require: Initial parameters θ
Require: Learning rate α
Require: Mini-batch size Mb

1: while stopping criteria not met do
2: Sample mini-batch {

(
x(m),y(m)

)
| 1 ≤ m ≤Mb} ∼ D(train)

3: Update parameters θ ← θ − α
(

(1/Mb)
∑Mb

m=1∇θL
(
f
(
x(m);θ

)
,y(m)

))
4: end while
5: return Trained parameters θ

vary for each mini-batch [Bottou, 2004]. Algorithm 2.2 lists the steps involved in
the SGD algorithm.

Momentum. The addition of a momentum term is a popular modification to the
original SGD algorithm. The momentum term can accelerate the learning process,
especially in the face of noisy gradients or high curvature in the landscape of the
loss function. The momentum term accumulates an exponentially decaying moving
average of the gradients and influences the update in their direction as follows:

θ̄ ← ηθ̄ − α
(

1

Mb

Mb∑
m=1

∇θL
(
f
(
x(m);θ

)
,y(m)

))
, (2.10)

θ ← θ + θ̄, (2.11)

where θ̄ is a decaying moving average of the gradients initialized to zero, η is the
decay rate, and α is the learning rate.

Nesterov Momentum. A popular variant of the momentum algorithm is the
Nesterov momentum algorithm [Sutskever et al., 2013]. The difference between the
standard momentum algorithm and the Nesterov momentum algorithm is where
the gradients are evaluated. In the Nesterov momentum algorithm, the gradients
are evaluated after the momentum term is applied as follows:

θ̄ ← ηθ̄ − α
(

1

Mb

Mb∑
m=1

∇θL
(
f
(
x(m);θ + ηθ̄

)
,y(m)

))
, (2.12)

θ ← θ + θ̄. (2.13)

CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING 19

This can be interpreted as adding a correction factor to the standard momentum
algorithm.

RMSProp. The RMSProp algorithm is a first-order adaptive variant of SGD [Tiele-
man and Hinton, 2012,Dauphin et al., 2015], which aims to adjust the learning
rate per-parameter using an exponentially decaying moving average of the squared
gradients, as in Equation (2.14) and Equation (2.15).

θ̄ ← ηθ̄ + (1− η)

(
1

Mb

Mb∑
m=1

∇θL
(
f
(
x(m);θ

)
,y(m)

))2

, (2.14)

θ ← θ − α√
θ̄ + ε

�
(

1

Mb

Mb∑
m=1

∇θL
(
f
(
x(m);θ

)
,y(m)

))
, (2.15)

where θ̄ is a decaying moving average of the squared gradients initialized to zero, η
is the decay rate, α is the learning rate, ε is a small constant for numerical stability
(e.g., ε = 10−8), � denotes the Hadamard product, and the division and square
root in Equation (2.15) are applied element-wise.

Adam. The Adam algorithm, listed in Algorithm 2.3, is also a first-order adaptive
variant of SGD [Kingma and Ba, 2014]. Adam uses adaptive estimates of the first
and second moments of the gradients to adjust the learning rate for each parameter
individually.

Batch Normalization. Computational differentiable graphs with multiple layers,
such as neural networks, can be difficult to train due to what is commonly known as
the vanishing or exploding gradient problem [Hochreiter, 1991,Hochreiter, 1998]. The
problem arises when gradients flowing through the graph are too small or too large,
to a point that can hinder learning. This also makes choosing hyperparameters,
particularly the learning rate α, a tedious process, as the chosen hyperparameters
must deal with the entire spectrum of gradients. Batch Normalization (BatchNorm)
is an adaptive re-parametrization method that aims to alleviate the difficulty
of training computational differentiable graphs with multiple layers [Ioffe and
Szegedy, 2015]. The key idea in BatchNorm is to normalize the means and standard
deviations, over a mini-batch of exemplars, of the output H(l) ∈ RMb×nl of units in
layer l as follows, where Mb is the number of exemplars in the mini-batch, and nl

CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING 20

Algorithm 2.3 Adam algorithm. ε is a small constant for numerical stability (e.g.,
ε = 10−8). The division and square root in Step 10 are applied element-wise.

Require: Training set D(train) of exemplars
(
x(m),y(m)

)
Require: Initial parameters θ
Require: Learning rate α
Require: Mini-batch size Mb

Require: Decay rates for moment estimates β1 and β2

1: Initialize first and second moment estimates θ(s) ← 0, θ(v) ← 0
2: Initialize iteration counter i← 0
3: while stopping criteria not met do
4: i← i+ 1
5: Sample mini-batch {

(
x(m),y(m)

)
| 1 ≤ m ≤Mb} ∼ D(train)

6: θ(s) ← β1θ
(s) + (1− β1)

(
(1/Mb)

∑Mb

m=1∇θL
(
f
(
x(m);θ

)
,y(m)

))
7: θ(v) ← β2θ

(v) + (1− β2)
(

(1/Mb)
∑Mb

m=1∇θL
(
f
(
x(m);θ

)
,y(m)

))2

8: θ̂
(s) ← θ(s)/ (1− βi

1) // correct bias of first moment
9: θ̂

(v) ← θ(v)/ (1− βi
2) // correct bias of second moment

10: Apply updates θ ← θ − α
(
θ̂

(s)
/

(√
θ̂

(v)
+ ε

))
11: end while
12: return Trained parameters θ

is the number of units in layer l:

µb =
1

Mb

Mb∑
m=1

H(l)
m:, (2.16)

σb =

√√√√(1

Mb

Mb∑
m=1

(
H(l)

m: − µb

)2
)

+ ε, (2.17)

BatchNorm(H(l)
m:;γ,β) = β + γ � (

H(l)
m: − µb

σb

), (2.18)

where γ ∈ Rnl and β ∈ Rnl are adaptive parameters that determine the mean
and standard deviation of the outputs respectively, and the square root in Equa-
tion (2.17) and the division in Equation (2.18) are applied element-wise. The
normalized outputs are then used instead of the unnormalized outputs H(l) in
the forward propagation, and dealt with accordingly in the backward propagation
when computing the gradients [Ioffe and Szegedy, 2015] (see Section 2.5 for more

CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING 21

details on the forward and backward propagations). At test time, µb and σb can be
replaced by running averages that were computed during training to deal with single
exemplar inferences. BatchNorm leads to more stable gradients and consequently
faster training.

2.4 Deep Learning
Shallow machine learning algorithms, e.g., SVMs [Cortes and Vapnik, 1995], which
are composed of a single processing layer, typically struggle to learn complex
functions, especially directly from raw data. Shallow machine learning algorithms
rely instead on features, engineered from raw data, that are representative of the
task at hand. Devising representative features requires considerable engineering
and domain expertise, and is inherently empirical. This leads to fragile features
that are not robust enough as these features are fixed as opposed to learned. No
machine learning algorithm can overcome a poor choice of features.

The foundations of deep learning date back to the introduction of Multi-
Layer Perceptrons (MLPs) and the backpropagation algorithm [Rumelhart et al.,
1986, Schmidhuber, 2015], with the advent of MLPs formulated as a series of
affine transformations weighted by a set of adaptive parameters and non-linear
operations. These techniques worked well for shallow neural networks that contain
a few — typically one — hidden layers but did not work as well for Deep Neural
Networks (DNNs) with many hidden layers. Subsequently, this problem was studied,
and the reason was identified [Hochreiter, 1991,Hochreiter, 1998], the so-called
vanishing or exploding gradient problem. It was found that as gradients flow
through many layers, the magnitudes of these gradients either shrink indefinitely
and vanish or grow exponentially and explode, hindering the training process.
Greedy layer-wise unsupervised pre-training [Hinton et al., 2006] was introduced to
overcome this problem, which utilized unsupervised learning to pre-train the model,
layer-by-layer, by extracting prominent features from the previous layer using
a Restricted Boltzmann Machine (RBM) [Hinton, 2012], followed by supervised
learning using the backpropagation algorithm to fine-tune all layers in the model.
Such unsupervised pre-training was later rendered unnecessary with subsequent
advances, such as Rectified Linear Units (ReLUs) and BatchNorm.

Deep learning is an approach to machine learning. While shallow learning aims
to learn a mapping from the input space X — typically engineered features — to
the output space Y , deep learning aims to learn multiple layers of hierarchical rep-
resentations from raw data X , together with the mapping from the representation
space to the output space Y, in a single composite function. Learning represen-
tations with a fairly general learning algorithm as opposed to using engineered
features is much more advantageous as it requires less human intervention and

CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING 22

domain-specific knowledge, performs well across various tasks, and ultimately leads
to better performance.

Deep learning allows learning representations and concepts in a hierarchical
manner, i.e., representations that are expressed in terms of other representations.
This can be achieved by decomposing computational models or graphs into multiple
layers of processing, with the aim of learning representations of the data with
multiple levels of abstraction [LeCun et al., 2015]. In doing so, the model can
adaptively learn low-level features from raw data and higher-level features from
the low-level features in a hierarchical way [Hinton et al., 2006,Zeiler and Fergus,
2014].

For example, let y = f(x;θ) be a deep learning model parametrized by pa-
rameters θ that comprises four layers, f (1), f (2), f (3), and f (4), where x is the
input and y is the output. This expression can be rewritten more verbosely as in
Equation (2.19).

y = f (4)(f (3)(f (2)(f (1)(x;θ(1));θ(2));θ(3));θ(4)), (2.19)

where {θ(1),θ(2),θ(3),θ(4)} ∈ θ are the parameters of the first, second, third, and
output layers, f (1), f (2), f (3), f (4), respectively. Herein, it would be expected that
θ(1) would learn simple low-level features, θ(2) would utilize θ(1) to learn slightly
more abstract mid-level features, θ(3) would utilize θ(2) to learn abstract high-level
features, while θ(4) would utilize θ(3) to learning the mapping to y. Concretely,
in an image recognition task, θ(1) can resemble Gabor filters, θ(2) can resemble
contours composed of multiple Gabor filters, θ(3) can resemble motifs or objects
composed of multiple contours, and θ(4) can represent the classes in the recognition
task at hand. With the composition of enough functions f (l), one can more easily
learn complex functions.

Typically, the entire deep learning model is trained end-to-end, i.e., all layers
are trained simultaneously, using methods outlined in Sections 2.1, 2.2 and 2.3; a
loss function L is minimized using a training set D(train)

k typically via an iterative
gradient-based optimization algorithm that utilizes gradients computed throughout
the model with the objective of generalization to unseen data.

At present, deep learning is the state-of-the-art approach to many problems
in machine learning, and is prominent in numerous fields, such as computer vi-
sion [Krizhevsky et al., 2012,He et al., 2015,Ren et al., 2015,Johnson et al., 2017],
speech recognition [Hinton et al., 2012,Graves et al., 2013,Abdel-Hamid et al.,
2014, Chorowski et al., 2015, Fayek et al., 2017], and natural language process-
ing [Sutskever et al., 2014, Bordes et al., 2015,Hermann et al., 2015, See et al.,
2017].

Despite its success, deep learning suffers a number of drawbacks, some of
which are major research areas in the field. For example, deep learning typically

CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING 23

Input Layer

Hidden Layer 1 Hidden Layer 2

Output Layer

Figure 2.2: Feed-forward fully connected neural network with two hidden layers.

requires more data and computational resources compared with competing methods,
c.f., [Redmon et al., 2016]. Deep learning lacks interpretability and deep models
are often perceived as black-boxes, which can make the reliance on such models
unpredictable, c.f., [Goodfellow et al., 2015]. Deep learning also presents its own
engineering challenges due to the difficulty associated with tuning hyperparameters,
c.f., [Snoek et al., 2012].

2.5 Neural Networks
A neural network is a collection of nodes or units that are inter-connected via
adaptive weights to form a directed weighted graph that can learn distributed
representations and ultimately the task at hand. Neural networks were initially
conceived as a simplified model of biological neural networks of the human brain;
though it is now clear that neural networks and biological neural networks bear
little resemblance to each other. Nevertheless, neural networks remain one of the
most powerful learning systems.

A neural network with at least a single non-linear hidden layer composed of
an arbitrary number of units and a linear output layer can approximate any Borel
measurable function with some arbitrary accuracy, according to the universal
approximation theorem [Hornik et al., 1989,Cybenko, 1989], assuming the neural
network has enough units in its hidden layer [Goodfellow et al., 2016].

The most widely used type of neural networks is the feed-forward fully connected
neural network, as illustrated in Figure 2.2. Feed-forward fully connected neural
networks are unidirectional acyclic graphs that comprise one or more layers of affine

CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING 24

transformations and non-linear operations. Each layer is composed of one or more
nodes or units that are connected via adaptive weights to units in the previous
layer and the subsequent layer.

Affine Transformation. The output of each unit in the previous layer is the
input to each unit in the following layer via an adaptive weight as in Equation (2.20):

h
(l)
i =

n(l−1)∑
j=1

W
(l)
ij ŷ

(l−1)
j + b

(l)
i , (2.20)

where h
(l)
i is the pre-activation of unit i in layer l, W

(l)
ij is the adaptive weight from

unit j in layer (l − 1) to unit i in layer l, ŷ
(l−1)
j is the output of unit j in layer

(l − 1), b
(l)
i is the adaptive bias term of unit i in layer l, l ∈ {1, . . . , L}, and L is

the number of layers in the network.
Equation (2.20) can be expressed in a more concise form as per Equation (2.21):

h(l) = W(l)ŷ(l−1) + b(l), (2.21)

where h(l) ∈ Rnl is the pre-activation vector of layer l, nl is the number of units in
layer l, W(l) ∈ Rnl×n(l−1) is the adaptive weight matrix from layer (l− 1) to layer l,
ŷ(l−1) ∈ Rn(l−1) is the output vector of layer (l − 1), b(l) ∈ Rnl is the adaptive bias
vector of layer l, ŷ(0) = x is the input to the network, and ŷ(L) is the output of
the network. Note that for notational simplicity, the output of the network ŷ(L) is
abbreviated to ŷ.

Non-linear Operation. Non-linear operations enable neural networks to learn
non-linear mappings from the input space X to the output space Y. The pre-
activation vector h(l) typically undergoes a non-linear operation φ as in Equa-
tion (2.22) to obtain the output of layer‖ l:

ŷ(l) = φ(h(l)), (2.22)

where ŷ(l) is the output of layer l, and φ is a non-linear operation applied element-
wise.

There are numerous non-linear operations that can be used, such as the sigmoid
functions, e.g., the logistic function in Equation (2.23) and the tanh function in
Equation (2.24), and the ReLU [Glorot et al., 2011a] in Equation (2.25). The

‖The input to the function φ is referred to as the pre-activation of the layer. The non-linear
operation φ is also known as the activation function. The output of the function φ is referred to
as the activation of the layer.

CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING 25

5.0 2.5 0.0 2.5 5.0
Input

0.5

0.0

0.5

1.0

1.5
Ou

tp
ut

Logistic Sigmoid

5.0 2.5 0.0 2.5 5.0
Input

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Hyperbolic Tangent

5.0 2.5 0.0 2.5 5.0
Input

0

1

2

3

4

5
Rectified Linear Unit

Figure 2.3: Non-linear activation functions. Left. Logistic sigmoid function.
Centre. Hyperbolic tangent function. Right. Rectified linear unit.

responses of these functions are illustrated in Figure 2.3. Sigmoid functions squash
the inputs to be in the [0, 1] range in the case of the logistic function and [−1, 1]
in the case of the tanh function, which can be advantageous in conditioning the
output of hidden layers. The ReLU circumvents possible saturation of the output of
hidden layers in sigmoid functions due to the unbounded nature of the rectification
function.

sigm(z) =
1

1 + e−z
(2.23)

tanh(z) =
ez − e−z

ez + e−z
(2.24)

relu(z) = max(0, z) =

{
0 z ≤ 0

z z > 0
(2.25)

Other popular non-linear functions include leaky-ReLUs [Maas et al., 2013],
maxout units [Goodfellow et al., 2013], and Scaled Exponential Linear Units
(SELUs) [Klambauer et al., 2017].

The final layer in the neural network, which is the output layer, typically uses
a function that depends on the type of task at hand. For example, in the case
of regression, it can be the identify function∗∗. The output layer can then be
viewed as a linear regression model that utilizes the representations learned in
the preceding hidden layer as its input. Similarly, in the case of classification, the
softmax function in Equation (2.26) can be used, which can be viewed as a logistic
regression model.

softmax(zk) =
ezk∑K
k=1 ezk

∀k ∈ K, (2.26)

∗∗A layer with an identity function as its non-linear operation is just a linear layer.

CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING 26

where K is the number of output classes. The output of a softmax layer can be
interpreted as the probabilities of the output classes.

Training and Inference. Thus far, the elements that constitute a feed-forward
neural network have been presented. Training such models for the required task
involves designing the architecture of the network, including the number of layers
and size of each layer, followed by initializing the parameters of the model, and
optimizing the parameters to minimize the loss function.

There are a number of recommended initialization strategies for feed-forward
neural networks depending on the type of non-linear operation used. The standard
practice is to initialize the parameters of the model randomly, sampling from a
Gaussian distribution, to break symmetry between units in the network. The
mean and standard deviation of the Gaussian distribution can be tuned to aid the
optimization process [Glorot et al., 2011a]. For example, it is recommended in [He
et al., 2015] to initialize weights in layers with ReLUs using a Gaussian distribution
with zero mean and

√
2/ni standard deviation, where ni is the number of inputs

to the layer, whereas biases are initialized to zero. This approximately adjusts the
magnitudes of the fan-in and fan-out of each unit regardless of the number of units
in each layer (see [He et al., 2015] for more details on the derivation).

Training feed-forward neural networks via an iterative gradient-based training
algorithm, as described in Section 2.3, can be achieved using the backpropagation
algorithm, which requires propagating the inputs x forward through the hidden
layer(s) and output layer to obtain the predicted output ŷ, computing the loss
function and its derivative between the true output y and the predicted output ŷ,
and propagating the errors backwards through the layers of the network. Note that
neural networks can be trained with algorithms other than the backpropagation
algorithm, e.g., the target propagation algorithm [Lee et al., 2015] (see [LeCun,
1986,Montana and Davis, 1989,Wilamowski and Yu, 2010,Lee et al., 2015] for more
details). Inference requires the forward propagation only to compute the predicted
output of the model.

Forward Propagation. Algorithm 2.4 lists the complete algorithm to propagate
the inputs x forward through the hidden layer(s) and output layer to obtain the
output ŷ.

Loss Function. In training, following the forward propagation outlined in Algo-
rithm 2.4, the loss function is computed. The choice of loss function is dependent
on the task at hand. Two popular loss functions are the Mean Squared Error (MSE)
as in Equation (2.27) and the negative log-likelihood following Equation (2.4) to
compute the cross-entropy between the true output and predicted output as in

CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING 27

Algorithm 2.4 Forward propagation through a fully connected (deep) neural
network. φ denotes a non-linear operation applied element-wise. Note that for
notational convenience, the output of the output layer in the network ŷ(L) is
abbreviated to ŷ. The algorithm assumes a single exemplar m but can be extended
to the case with a mini-batch of exemplars or the entire dataset.
Require: Network depth L
Require: Network parameters θ, s.t., W(l),b(l) ∈ θ, l ∈ {1, . . . , L}
Require: Training exemplar x(m)

1: ŷ(0) = x(m)

2: for l = 1, . . . , L do
3: h(l) = W(l)ŷ(l−1) + b(l) // see Equation (2.21)
4: ŷ(l) = φ(h(l)) // see Equation (2.22)
5: end for
6: ŷ(m) = ŷ(L)

7: return Predicted output ŷ(m)

Equation (2.28).

`(ŷ,y) =
1

m

∑
m

K∑
k=1

(ŷ
(m)
k − y

(m)
k)

2
, (2.27)

`(ŷ,y) =
1

m

∑
m

K∑
k=1

y
(m)
k log(ŷ

(m)
k), (2.28)

where y ∈ ZK
2 or RK is a one-hot encoded vector denoting the class label or a

vector of targets, and m denotes either a single exemplar, the size of the mini-batch
Mb, or the entire training set M . Additional terms can be added to `, such as the
regularization term(s), as discussed in Section 2.2.

Backward Propagation. Algorithm 2.5 lists the backpropagation algorithm
[Rumelhart et al., 1986] to propagate the errors backwards through the layers of
the network. The backpropagation algorithm starts with differentiating the loss
function L with respect to the output(s) of the model and employs the chain rule
to recursively compute the gradients for each layer in the network. The gradients
can then be used to update the parameters of the network using a gradient-based
optimization algorithm as outlined in Section 2.3.

CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING 28

Algorithm 2.5 Backward computation through a fully connected (deep) neural
network. φ′ denotes the derivative of the non-linear operation applied element-wise.
� denotes the Hadamard product. > denotes the transpose operation. λ is the
regularization weight and the entire term can be ignored if the loss function does
not constitute a regularization penalty Ω. Note that for notational convenience, the
output of the output layer in the network ŷ(L) is abbreviated to ŷ. The algorithm
assumes a single exemplar m but can be extended to the case with a mini-batch of
exemplars or the entire dataset.
Require: Network depth L
Require: Network parameters θ, s.t., W(l),b(l) ∈ θ, l ∈ {1, . . . , L}
Require: Training exemplar (x(m),y(m))
Require: Forward propagation using x(m) to obtain ŷ(m) // see Algorithm 2.4
1: ŷ(L) = ŷ(m)

2: g← ∇ŷ(L)L(ŷ(L),y(m))
3: for l = L, . . . , 1 do
4: g← ∇h(l)L = g � φ′(h(l))

5: ∇W(l)L = gŷ(l−1)> + λ∇W(l)Ω(θ)
6: ∇b(l)L = g + λ∇b(l)Ω(θ)

7: g← ∇y(l−1)L = W(l)>g
8: end for
9: return Gradients ∇θL, s.t., ∇W(l)L,∇b(l)L ∈ ∇θL, l ∈ {1, . . . , L}

2.6 Convolutional Neural Networks
A popular variant of the feed-forward fully connected neural network architecture is
the Convolutional Neural Network (ConvNet) [LeCun et al., 1990,LeCun and Bengio,
1995], as illustrated in Figure 2.4. A ConvNet is a feed-forward neural network
that contains at least one convolutional layer (defined below). ConvNets leverage
three ideas: sparse interactions, parameter sharing, and equivariant representations.
ConvNets are particularly suited to processing data that has a grid-like topology,
such as time-series data, e.g., speech, two-dimensional and three-dimensional images,
and three-dimensional and four-dimensional videos.

Convolutional Layer. A convolutional layer is similar to the fully connected
layer that replaces the dot product between the output of the previous layer and

CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING 29

Input Conv 1
Pool 1 Conv 2

Pool 2 Conv 3 Pool 3

FC 1
Output

Figure 2.4: Convolutional neural network with three Convolutional (Conv) and
Pooling (Pool) layers followed by a Fully Connected (FC) layer.

the weights (see Equation (2.21)) with the convolution operation†† as follows:

H (l) = Ŷ
(l−1) ∗W (l) + b(l), (2.29)

where in this case, H (l) ∈ Rnlc×nlx×nly is the pre-activation tensor of layer l, nlc

is the number of channels in layer l, nlx and nly are the number of rows and

columns respectively of each channel in layer l, Ŷ
(l−1) ∈ Rn(l−1)c

×n(l−1)x
×n(l−1)y is

the activation tensor of layer (l − 1), n(l−1)c
is the number of channels in layer

(l− 1), n(l−1)x
and n(l−1)y

are the number of rows and columns respectively of each
channel in layer (l− 1), W (l) ∈ Rnlc×nli

×nlj is tensor of adaptive weights of layer l,
nli and nlj are the number of rows and columns respectively of each filter in layer
l, and b(l) ∈ Rnlc is a vector of adaptive biases of layer l.

Using the convolution operation provides numerous advantages: (1) a convo-
lutional layer typically requires a smaller number of parameters compared with a
fully connected layer; (2) parameters in a convolutional layer are shared across the
input; and, (3) a convolutional layer is equivariant to translations in the input.

Following the convolution operation in Equation (2.29), H (l) typically undergoes
a non-linear operation as in Equation (2.22) to obtain the activation map Ŷ

(l)
.

Pooling Layer. A pooling function is commonly used following the non-linear
operation to spatially downsample the activation map Ŷ

(l)
. The pooling layer does

not typically contain any adaptive parameters and is applied to each activation map
independently. A frequently used pooling layer is max pooling, which replaces each
rectangular neighbourhood in the activation map with the maximum value in that
neighbourhood, where the size of the neighbourhood is a hyperparameter. Another
frequently used pooling layer is mean pooling, which replaces each rectangular

††The convolution operation in convolutional layers is usually implemented as the cross-
correlation operation.

CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING 30

Input Layer

Hidden Layer 1 Hidden Layer 2

Output Layer

Figure 2.5: Recurrent neural network with two recurrent hidden layers characterized
by self-connections (blue).

neighbourhood in the activation map with the mean value of all elements in
that neighbourhood. Downsampling the activation map can also be achieved
by adjusting the stride‡‡ in the convolution operation rather than an explicit
pooling layer [Simonyan and Zisserman, 2015,He et al., 2016]. Pooling can aid
in achieving invariance to small translations in the input. Pooling also improves
the computational efficiency of ConvNets as it decreases the size of the activation
maps.

Training and Inference. A ConvNet follows the fully connected neural network
in all aspects of regularization, optimization, and other practices.

2.7 Recurrent Neural Networks
A recurrent neural network is a cyclic graph that extends the notion of a typical
feed-forward neural network architecture to model sequences. A recurrent neural
network is a neural network that has at least one recurrent layer. A recurrent layer
is characterized by having self-connections between units in the same layer [Graves,
2008], as illustrated in Figure 2.5. Recurrent neural networks are particularly
suitable for tasks that involve sequential inputs such as speech and text.

‡‡The stride is the amount by which the filter shifts during a convolution operation. In the
standard definition of a convolution operation, the stride is assumed to be 1.

CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING 31

Recurrent Layer. Consider a sequence y
(l−1)
(1:t:T) of length T such that y

(l−1)
(t) is

the value of the sequence at step t. A recurrent layer can ingest this sequence one
step at a time as per Equation (2.30).

h
(l)
(t) = W

(l)
(y)y

(l−1)
(t) + W

(l)
(h)y

(l)
(t−1) + b(l), (2.30)

where t denotes the step, h
(l)
(t) ∈ Rnl is a vector of pre-activations of layer l at step

t, nl is the number of units in layer l, y
(l−1)
(t) ∈ Rn(l−1) is the output of the previous

layer (l− 1) at step t and input to layer l at step t, n(l−1) is the number of units in
the previous layer (l − 1), W

(l)
(y) ∈ Rnl×n(l−1) is a matrix of adaptive weights of layer

l, y
(l)
(t−1) ∈ Rnl is the output of layer l at the previous step (t− 1), W

(l)
(h) ∈ Rnl×nl is

a matrix of adaptive weights of layer l, and b(l) ∈ Rnl is a vector of adaptive biases
of layer l.

Equation (2.30) replaces Equation (2.21), and h
(l)
(t) typically undergoes a non-

linear operation as in Equation (2.22) to obtain y
(l)
(t). The exploding gradient

problem in recurrent layers is particularly problematic, as gradients can grow
indefinitely when back-propagated through a long sequence of many steps. This
makes sigmoid functions, e.g., the logistic function (see Equation (2.23)) or the tanh
function (see Equation (2.24)), a more sensible choice for the non-linear operation
due to their bounded nature (see Figure 2.3); unbounded non-linear operations,
e.g., ReLUs, can amplify the exploding gradient problem and should be avoided.

Long Short-Term Memory. A popular variant of the recurrent layer is the
Long Short-Term Memory (LSTM) layer [Hochreiter and Schmidhuber, 1997].
An LSTM unit uses an explicit memory cell to learn long-term dependencies in
sequences, where relevant events are separated by a large number of steps. An
LSTM layer can be modelled using Equations (2.31) to (2.35):

i
(l)
(t) = sigm

(
W

(l)
(yi)y

(l−1)
(t) + W

(l)
(hi)y

(l)
(t−1) + W

(l)
(ci)c

(l)
(t−1) + b

(l)
(i)

)
, (2.31)

f
(l)
(t) = sigm

(
W

(l)
(yf)y

(l−1)
(t) + W

(l)
(hf)y

(l)
(t−1) + W

(l)
(cf)c

(l)
(t−1) + b

(l)
(f)

)
, (2.32)

c
(l)
(t) = f

(l)
(t) � c

(l)
(t−1) + i

(l)
(t) � tanh

(
W

(l)
(yc)y

(l−1)
(t) + W

(l)
(hc)y

(l)
(t−1) + b

(l)
(c)

)
, (2.33)

o
(l)
(t) = sigm

(
W

(l)
(yo)y

(l−1)
(t) + W

(l)
(ho)y

(l)
(t−1) + W

(l)
(co)c

(l)
t + b

(l)
(o)

)
, (2.34)

y
(l)
(t) = o

(l)
(t) � tanh(c

(l)
(t)), (2.35)

where sigm is the logistic sigmoid function as in Equation (2.23), and i
(l)
(t), f

(l)
(t), c

(l)
(t)

and o
(l)
(t) are respectively the input gate, forget gate, cell activation and output gate

CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING 32

vectors of layer l at time t, all of which are the same size as the activation vector
y

(l)
(t) ∈ Rnl . The adaptive weight matrices from the cell to gate vectors, e.g., W

(l)
(ci),

are diagonal, such that each element in each gate vector only receives input from
the same element of the cell vector [Graves et al., 2013].

Training and Inference. Training recurrent architectures requires modifica-
tion to the backpropagation algorithm to compute the gradients with respect to
the parameters over time. The BackPropagation Through Time (BPTT) algo-
rithm [Werbos, 1988] unrolls the network in time and applies the backpropagation
algorithm to the unrolled graph. All other aspects of regularization, optimization,
etc., remain identical to feed-forward neural networks.

2.8 Learning Multiple Tasks
Thus far, the machine learning paradigm presented was formulated for learning
a single task. For an arbitrary task tk ∈ T∞ = {ti | i ∈ Z+}, a model fk is
initialized and trained using a dataset D(train)

k or environment Ek to minimize
a loss function `k or maximize a reward rk with the aim of achieving a certain
objective ok. The model fk is initialized randomly, and hence learns from a
tabula rasa, i.e., independent learning, which is the most common machine learning
paradigm [Mikolov et al., 2018]. Contrary to human learning, the model fk does not
take into account knowledge learned in prior models Fk−1 = {fi | 1 ≤ i ≤ k−1} for
tasks Tk−1 = {ti | 1 ≤ i ≤ k − 1} using datasets Dk−1 = {D(train)

i | 1 ≤ i ≤ k − 1}
or environments Ek−1 = {Ei | 1 ≤ i ≤ k − 1}, which may lead to a slower learning
process that requires more data and possibly suboptimal performance [Lake et al.,
2017].

Sharing knowledge between tasks has a long history in the field of machine
learning. In the context of deep learning and neural networks, paradigms such
as transfer learning, multi-task learning, and lifelong learning are alternatives to
independent learning that can share or repurpose experiences and knowledge over
tasks.

Transfer Learning. Transfer learning incorporates knowledge from a source task
into a target task by initializing the parameters of the model for the target task
using the parameters learned in the source task, followed by fine-tuning some or all
of those parameters [Taylor and Stone, 2009,Pan and Yang, 2010,Yosinski et al.,
2014], as illustrated in Figure 2.6. For example, the parameters of a model trained
for an English Automatic Speech Recognition (ASR) task can be used to initialize
another model for a French ASR task. Transfer learning can boost the performance

CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING 33

of a model relative to independent learning [Razavian et al., 2014], when both tasks
are related, particularly in cases where the target task lacks sufficient data.

Transfer learning is a popular paradigm that has demonstrated success across a
variety of settings, domains, and applications, as briefly surveyed in Section 4.1
and [Pan and Yang, 2010], despite the following limitations. First, if both tasks are
unrelated to each other, transfer learning may lead to negative forward transfer,
where the model performs worse when initialized from a source task compared with
the same model randomly initialized. Second, prior knowledge is only incorporated
at the initialization phase of learning. Third, it is non-trivial to extend the paradigm
to utilize multiple source tasks [Misra et al., 2016]. Fourth, it is susceptible
to catastrophic forgetting [McCloskey and Cohen, 1989, Ratcliff, 1990], where
parameters learned for the source task are repurposed for the new task and the
model forgets the older task.

Multi-task Learning. Multi-task learning aims to learn a single model jointly
for multiple related tasks by leveraging relevant information contained in the
parallel training signals of those tasks [Caruana, 1997], as illustrated in Figure 2.7.
The goal of multi-task learning is typically to maximize the performance across all
tasks, unlike transfer learning, where the goal is to maximize the performance of
the latest task.

Multi-task learning has been successfully applied to numerous tasks in computer
vision [Misra et al., 2016], speech recognition [Chen and Mak, 2015], and natural
language processing [Collobert et al., 2011], despite the following. Multi-task
learning does not provide a straight-forward mechanism for adding new tasks once
the model has been trained, in that it may be required to jointly relearn all tasks
whenever a new task is added. Moreover, multi-task learning is intrinsically unable
to handle interference between unrelated tasks.

Lifelong Learning. Lifelong learning [Thrun and Mitchell, 1995,Ruvolo and
Eaton, 2013b,Chen and Liu, 2016] is a form of continual learning, and the terms
are sometimes used interchangeably. Lifelong learning can be defined as follows:
“The system has performed N tasks. When faced with the (N + 1)th task, it
uses the knowledge gained from the N tasks to help the (N + 1)th task.” [Thrun,
1996]. This definition was extended in [Chen and Liu, 2016] as follows: “Lifelong
machine learning is a continuous learning process. At any time point, the learner
has performed a sequence of N learning tasks, T1, T2, . . . , TN . These tasks, which
are also called the previous tasks, have their corresponding datasets D1, D2, . . . ,
DN . The tasks can be of different types and from different domains. When faced
with the (N + 1)th task TN+1 (which is called the new or current task) with its
data DN+1, the learner can leverage the past knowledge in the knowledge base to

CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING 34

Task A

Task B

Figure 2.6: Transfer learning via a neural network with three hidden layers. Top.
The parameters of the model were randomly initialized, and trained for Task A.
Bottom. The parameters of the model were initialized using the parameters
trained for Task A, and fine-tuned for Task B.

CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING 35

Task B

Task C

Task A

Figure 2.7: Multi-task learning with three tasks via a neural network that has three
hidden layers. All layers are shared between the three tasks except the output layer
which is unique to each task.

CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING 36

help learn TN+1.” Continual learning is surveyed in Section 2.9.

2.9 Continual Learning
Continual learning is a machine learning paradigm, whereby tasks are learned in
sequence with the ability to use prior knowledge from previously learned tasks to
facilitate the learning and execution of new ones, e.g., lifelong learning [Thrun
and Mitchell, 1995] and never-ending learning [Mitchell et al., 2018]. Recall the
definition of continual learning, as follows: “The system has performed K tasks.
When faced with the (K + 1)th task, it uses the knowledge gained from the K
tasks to help the (K + 1)th task.” [Thrun, 1996], where the definition was adapted
to follow the notation adopted in this thesis. This poses numerous challenges, two
of which are catastrophic forgetting and negative forward transfer. Catastrophic
forgetting [McCloskey and Cohen, 1989,Ratcliff, 1990] refers to the case when the
performance of the system for the K tasks degrades when it learns the (K + 1)th
task, as the model forgets the K tasks to learn the (K + 1)th task. Negative
forward transfer refers to the case when the K tasks have a negative effect on
the performance of the system for the (K + 1)th task, which can occur when the
(K + 1)th task is not related to any of the K tasks leading to interfere and worse
performance. Mitigating negative forward transfer and catastrophic forgetting in
an efficient manner are two of the main challenges in continual learning.

Continual learning in deep learning and neural networks has been studied in
numerous prior works and several paradigms have been proposed as follows.

• The parameter regularization paradigm aims to find a measure of impor-
tance of parameters for prior tasks that can be used to adaptively adjust
or penalize their perturbation during training on a new task, and thus miti-
gate catastrophic forgetting, e.g., elastic weight consolidation [Kirkpatrick
et al., 2017], synaptic intelligence [Zenke et al., 2017], and gradient episodic
memory [Lopez-Paz and Ranzato, 2017].

• The functional regularization paradigm combats catastrophic forgetting by
introducing a regularization term to the loss function that penalizes deviation
in the output of the model trained on some prior tasks when being trained
on a new task, e.g., learning without forgetting [Li and Hoiem, 2016] and
adaptation by distillation [Hou et al., 2018].

• The architectural paradigm sidesteps catastrophic forgetting by adding new
adaptive parameters to the model for each new task, such as block-modular
neural networks [Terekhov et al., 2015], progressive neural networks [Rusu
et al., 2016], and residual adapters [Rebuffi et al., 2017].

CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING 37

• The experience replay paradigm stores previously seen data from prior tasks,
either directly or compressed via a generative model [Shin et al., 2017, Isele
and Cosgun, 2018], and utilizes a multi-task objective that combines prior
tasks and the new task by replaying previously seen data from prior tasks
during training with the introduced new task.

Despite the relevant work, there is no holistic deep learning framework for
continual learning to point to, that is capable of inducing the correct inductive bias,
thus attenuating negative forward transfer, and mitigating catastrophic forgetting,
in an efficient manner, that demonstrated success across numerous and various
domains and applications.

2.10 Summary
The assumptions, theory, and formalisms of statistical machine learning, regulariza-
tion techniques, and gradient-based optimization algorithms were described. The
motivation, background, and outline of deep learning were provided. Feed-forward
fully connected and convolutional neural networks, as well as recurrent neural net-
works, were detailed. Finally, machine learning paradigms that incorporate learning
multiple tasks, such as transfer learning, multi-task learning, and in particular,
continual learning, were presented.

In the next chapter, the theory presented herein will be applied to a number
of supervised learning tasks, and in particular, classification tasks in machine
perception, namely, image recognition, ASR, and Speech Emotion Recognition
(SER).

Chapter 3

Tabula Rasa Learning

The application of machine learning requires bridging the gap between theory
and practice. The concepts, theory, and mathematical framework presented

in the previous chapter are applied to supervised learning tasks in this chapter,
and in particular, classification tasks in machine perception, specifically, image
recognition, automatic speech recognition, and speech emotion recognition. The
chapter builds understanding, insights, and baselines of the various tasks used
throughout this thesis, and describes datasets, deep learning architectures, and
best practices.

The speech emotion recognition task is comprehensively considered and used as
a test bed to explore various neural network architectures. This is the first empirical
exploration of various deep learning formulations and architectures applied to speech
emotion recognition, which forms one of the main contributions of this thesis. As a
result, state-of-the-art results are reported on the benchmark IEMOCAP dataset
for speaker-independent speech emotion recognition. The work presented in this
chapter is based on [Fayek et al., 2015,Fayek et al., 2016a,Fayek et al., 2017,Fayek,
2017].

Outline. This chapter is structured as follows. Section 3.1 outlines the machine
perception problem. Section 3.2 briefly introduces the image recognition task and
presents experiments on the task using the CIFAR-10, CIFAR-100, and SVHN
datasets. Section 3.3 briefly delineates and reviews the automatic speech recognition
task and presents experiments on the task using the TIMIT dataset. Section 3.4
describes the speech emotion recognition task, reviews related prior work, and
presents experiments on the task with various neural network architectures using
the IEMOCAP dataset. Section 3.5 discusses common findings for all tasks. Finally,
Section 3.6 summarizes the chapter.

38

CHAPTER 3. TABULA RASA LEARNING 39

3.1 Machine Perception
Machine perception is the capability of machines to interpret sensory data, e.g.,
vision and hearing. Machine perception is vital to Artificial Intelligence (AI)
as it can allow machines to perceive the world in a manner similar to the way
humans perceive the world around them using their senses. Many tasks in machine
perception can be described as tasks that are easy for humans to perform but
difficult for them to formalize how it was performed, which makes the machine
learning approach to such tasks highly pertinent. Machine perception is, therefore,
one of the most active research areas in machine learning. The tasks studied in
this thesis are all machine perception tasks.

Computer vision is a broad field that aims to enable machines to gain a high-
level understanding of visual data, e.g., images and videos [Hartley and Zisserman,
2004,Szeliski, 2010]. Computer vision encompasses tasks such as object recognition,
scene reconstruction, motion estimation, and video tracking. The image recognition
task is one of the most popular tasks in the field of computer vision. The image
recognition task involves mapping an image to a label denoting a particular category,
e.g., mapping an image of handwritten digit(s) into labels denoting the digit(s)
depicted in the image [LeCun et al., 1990]. The mapping of an image into a fixed
set of labels denoting a particular category from a set of predefined categories
works well for tasks such as handwritten digits recognition, where the number of
possible categories are fixed, e.g., 0–9 in the handwritten digits recognition task.
However, this fails to deal with more complex image recognition tasks, where the
number of possible categories can be hard to define; c.f., the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [Russakovsky et al., 2015] that comprises
millions of natural images labelled into 1000 categories (see Appendix A.4 for more
details), in which the categories can be difficult to partition.

Speech recognition is an interdisciplinary field that combines computational
linguistics, computer science, and electrical engineering [Rabiner and Juang, 1993].
The recognition of the linguistic component of speech, i.e., the mapping of an
acoustic signal containing spoken word(s) into the corresponding sequence of
word(s) intended by the speaker(s), is referred to as speech-to-text or Automatic
Speech Recognition (ASR). The recognition of the paralinguistic component of
speech is the mapping of all other aspects of speech except the linguistic component,
e.g., Speech Emotion Recognition (SER), gender recognition, or speaker recognition.
Most speech systems are designed to recognize one particular aspect of speech;
however, knowledge of both aspects of speech — the linguistic aspect and the
paralinguistic aspect — is key to better speech processing and perception [Cowie
et al., 2001]. It can be conjectured that the knowledge of either aspect may
better facilitate modelling and recognition of the other. For instance, knowledge
of the linguistic aspect of speech may boost the detection of the paralinguistic

CHAPTER 3. TABULA RASA LEARNING 40

characteristics; conversely, knowledge of the paralinguistic characteristics may aid
in characterizing the linguistic aspect [Fernandez, 2004].

3.2 Image Recognition
The image recognition task is reviewed and experiments on the task are presented.
Section 3.2.1 is a brief introduction to the image recognition task. Section 3.2.2
details the experimental setup, including the CIFAR-10, CIFAR-100, and SVHN
datasets, data preprocessing, the architectures of the models, as well as the training
and implementation details. Finally, Section 3.2.3 presents the results.

3.2.1 Background

The image recognition task is one of the most popular tasks in the field of computer
vision. The image recognition task involves mapping an image to labels denoting a
particular category, e.g., mapping an image of a dog into labels denoting the breed
of the dog depicted in the image. Many tasks in image recognition are facilitated
by the availability of large (labelled) datasets, e.g., the ImageNet dataset, which
makes image recognition tasks popular machine learning benchmarks.

The application of deep learning to image recognition is fairly straightforward.
Visual data are characterized by two problems: the high dimensionality problem
and the high variance problem [van der Maaten, 2009], which makes designing engi-
neered features for visual data problematic, c.f., Histograms of Oriented Gradients
(HOGs) [Dalal and Triggs, 2005] features and Scale Invariant Feature Transform
(SIFT) [Lowe, 2004] features. The application of deep learning to image recognition
led to dramatic performance improvements across almost all image recognition
tasks [Krizhevsky et al., 2012], as well as other tasks in computer vision [LeCun
et al., 2015].

The deep learning approach to image recognition typically operates on raw
image pixels x using Convolutional Neural Networks (ConvNets) to predict a
probability distribution p(y|x) over the labels y. The raw image pixels typically
undergo minimal preprocessing, e.g., normalizing the mean and standard deviation
of the images per pixel across the entire dataset, and are then fed to a ConvNet
that has the ability to learn hierarchical features across the entire image.

3.2.2 Experimental Setup

Datasets. The CIFAR-10 and CIFAR-100 datasets∗ [Krizhevsky, 2009] (see
Appendix A.1 for more details), as well as the Street View House Numbers (SVHN)

∗The CIFAR datasets are named after the Canadian Institute For Advanced Research (CIFAR).

CHAPTER 3. TABULA RASA LEARNING 41

dataset [Netzer et al., 2011] (see Appendix A.5 for more details), were used in this
experiment.

The CIFAR-10 and CIFAR-100 datasets consist of RGB images, of size 32× 32
pixels, labelled into 10 and 100 classes respectively. The 10 classes in the CIFAR-10
dataset are: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.
The 100 classes in the CIFAR-100 dataset are listed in Table A.1. Each dataset
comprises a training set of 50000 images and a test set of 10000 images, i.e., the
CIFAR-10 dataset contains 5000 training images and 1000 test images per class,
whereas the CIFAR-100 dataset contains 500 training images and 100 test images
per class. For each CIFAR dataset, the original training set was split into a training
set of 45000 images and a validation set of 5000 images; the entire test set was
used for testing.

The SVHN dataset consists of RGB images, of size 32× 32 pixels, labelled into
10 classes. The dataset is composed of house numbers obtained from Google Street
View images, and thus, each of the 10 classes denotes a 0–9 digit. The training
and test sets of the SVHN dataset contain 73257 and 26032 images respectively,
and additionally, 531131 images are available that can be appended to the training
set. The original training set and additional set were combined and split into a
training set of 598388 images and a validation set of 6000 images. The entire test
set was used for testing.

The training, validation, and test sets of all datasets are mutually exclusive.
The partitioning of the datasets into training, validation, and test sets is similar to
prior work [Sermanet et al., 2012,Goodfellow et al., 2013,Long et al., 2015].

Preprocessing. Standard data preprocessing steps were applied for all datasets
as commonly practised in the literature [Sermanet et al., 2012,Goodfellow et al.,
2013,Long et al., 2015]. The mean and standard deviation of the images in the
CIFAR datasets were normalized to zero and one respectively per colour channel
using the training set statistics for each dataset individually. The images in the
SVHN dataset were scaled via division by 255 to lie in the [0, 1] range. No data
augmentation was used for all datasets.

Architectures. Two ConvNet architectures were used in this experiment, follow-
ing recent developments in the field.

The first architecture used in this experiment is described in Table 3.1 and
denoted Model A. The model is a standard ConvNet, which comprises four convo-
lutional layers followed by two fully connected layers, with Batch Normalization
(BatchNorm), Rectified Linear Units (ReLUs), and dropout interspersed in-between;
a max pooling layer is inserted after the non-linear function of the second and
fourth convolutional layers; the final fully connected layer is followed by a softmax

CHAPTER 3. TABULA RASA LEARNING 42

function.
The second architecture used in this experiment follows the recent Densely

Connected Convolutional Network (DenseNet) architecture [Huang et al., 2017] and
is denoted Model B. This was shown to achieve state-of-the-art performance on the
datasets used in this experiment [Huang et al., 2017]. The DenseNet architecture
differs from other ConvNet architectures by connecting each layer to every other
layer in a feed-forward fashion, i.e., the outputs of all preceding layers are used
as inputs to a layer and its own outputs are used as inputs into all subsequent
layers. The DenseNet architecture used is detailed in Table 3.2. The main layers
in the architecture can be grouped into blocks based on their type and role. The
dense blocks, Blocks 2, 4, and 6 in Table 3.2, comprise 12 layers of BatchNorm,
ReLUs, convolution, and dropout. Each convolutional layer in Blocks 2, 4, and
6 in Table 3.2 is connected to all subsequent layers in the same block via the
concatenation operation. The transition blocks, Blocks 3 and 5 in Table 3.2, are
used to counteract the growth in the number of parameters due to the use of
the concatenation operation, and are composed of a layer of BatchNorm, ReLUs,
convolution, dropout, and average pooling. A down-sampling block, Block 7 in
Table 4.1, is used to further reduce the complexity of the model, and is composed
of BatchNorm, ReLUs, and average pooling. The output layer is a fully connected
layer followed by a softmax function.

Training and Implementation Details. The training and implementation
details of each architecture differed slightly, following the recommenced practice
for each model in prior literature.

The parameters of the convolutional and fully connected layers of Model A
were initialized randomly, sampling from a Gaussian distribution, with zero mean
and

√
2/ni and 1/

√
ni standard deviation for convolutional and fully connected

layers respectively, where ni is the number of inputs to the layer, as recommended
in [He et al., 2015]. Convolutional and fully connected layers in Model A were
regularized using weight decay with penalty λ = 1× 10−3 and dropout with drop
probability r as indicated in Table 3.1. ADAM was used to optimize the parameters
of Model A with respect to a negative log-likelihood loss function using batch size
Mb = 256, learning rate α = 1× 10−3, first moment β1 = 0.99, and second moment
β2 = 0.999, for 90 epochs. No early stopping was used in the case of the CIFAR
datasets, whereas the validation set was used for early stopping in the case of the
SVHN dataset.

The parameters of the convolutional and fully connected layers of Model B
were initialized randomly, sampling from a Gaussian distribution, with zero mean
and

√
2/ni and 1/

√
ni standard deviation for convolutional and fully connected

layers respectively, where ni is the number of inputs to the layer, similar to Model

CHAPTER 3. TABULA RASA LEARNING 43

Table 3.1: Convolutional neural network Model A architecture for the image
recognition task. K denotes the number of output classes.

№ Type Size Other

1
Convolution 32, 3× 3 Stride = 1
BatchNorm — —

ReLU — —

2

Convolution 32, 3× 3 Stride = 1
BatchNorm — —

ReLU — —
Max Pooling 2× 2 Stride = 2
Dropout — r = 0.25

3
Convolution 64, 3× 3 Stride = 1
BatchNorm — —

ReLU — —

4

Convolution 64, 3× 3 Stride = 1
BatchNorm — —

ReLU — —
Max Pooling 2× 2 Stride = 2
Dropout — r = 0.25

5

Fully Connected 512 —
BatchNorm — —

ReLU — —
Dropout — r = 0.5

6
Fully Connected K —

Softmax — —

CHAPTER 3. TABULA RASA LEARNING 44

Table 3.2: Densely connected convolutional network Model B architecture for the
image recognition task. The outputs of the convolutional layers in Blocks 2, 4, and
6, are concatenated with the inputs to the layer and fed to the subsequent layer in
the same block. K denotes the number of output classes.

Block Repeat Type Size Other

1 1× Convolution 24, 3× 3 Stride = 1

2 12×

BatchNorm — —
ReLU — —

Convolution 12, 3× 3 Stride = 1
Dropout — r = 0.2

3 1×

BatchNorm — —
ReLU — —

Convolution 168, 1× 1 Stride = 1
Dropout — r = 0.2

Average Pooling 2× 2 Stride = 2

4 12×

BatchNorm — —
ReLU — —

Convolution 12, 3× 3 Stride = 1
Dropout — r = 0.2

5 1×

BatchNorm — —
ReLU — —

Convolution 312, 1× 1 Stride = 1
Dropout — r = 0.2

Average Pooling 2× 2 Stride = 2

6 12×

BatchNorm — —
ReLU — —

Convolution 12, 3× 3 Stride = 1
Dropout — r = 0.2

7 1×
BatchNorm — —

ReLU — —
Average Pooling 8× 8 Stride = 8

8 1× Fully Connected K —
Softmax — —

CHAPTER 3. TABULA RASA LEARNING 45

A. Convolutional and fully connected layers in Model B were regularized using
weight decay with penalty λ = 1× 10−4 and dropout with drop probability r = 0.2.
Mini-batch Stochastic Gradient Descent (SGD) was used to optimize the parameters
of Model B with respect to a negative log-likelihood loss function using batch size
Mb = 64, learning rate α = 0.1, and Nesterov momentum η = 0.9, for 300 and 40
epochs for the CIFAR and SVHN datasets respectively. The initial learning rate
α was divided by 10 at 50% and 75% of the total number of training epochs. No
early stopping was used in the case of the CIFAR datasets, whereas the validation
set was used for early stopping in the case of the SVHN dataset. These settings
follow [Huang et al., 2017].

The experiments were implemented using TensorFlow [Abadi et al., 2016].
Training a single model with the Model A architecture on a single NVIDIA Tesla
P100 Graphics Processing Unit (GPU) required a wall time of approximately 30
and 60 mins for the CIFAR and SVHN datasets respectively. Training a single
model with the Model B architecture on a single NVIDIA Tesla K80 GPU required
a wall time of approximately 30 and 50 hours for the CIFAR and SVHN datasets
respectively. Note that the difference in wall time between both models is due to
the difference in complexity between the architectures, as well as the GPUs used.

3.2.3 Results

Table 3.3 lists the validation and test classification accuracies obtained for the
CIFAR-10, CIFAR-100, and SVHN datasets using the models and training recipes
described in Section 3.2.2. The standard ConvNet Model A is clearly outperformed
by the DenseNet Model B across all three datasets. The validation and test
classification accuracies of the DenseNet Model B across all three datasets are
on par with the state-of-the-art [Huang et al., 2017]. The ConvNet Model A is
computationally more efficient as the DenseNet Model B contains more parameters
and more layers. This poses a trade-off between computational complexity and
performance for both models.

3.3 Automatic Speech Recognition
The ASR task is introduced and formulated, and experiments on the task are
presented. Section 3.3.1 briefly describes the ASR task. Section 3.3.2 outlines the
ASR system. Section 3.3.3 details the experimental setup, including the TIMIT
dataset, data preprocessing, the architectures of the models, as well as the training
and implementation details. Finally, Section 3.3.4 presents the results.

CHAPTER 3. TABULA RASA LEARNING 46

Table 3.3: Image recognition Validation Classification Accuracy (Val ACC) and
Test Classification Accuracy (Test ACC) on the CIFAR-10, CIFAR-100, and SVHN
datasets.

Dataset Model Val ACC (%) Test ACC (%)

CIFAR-10
ConvNet Model A 84.86 83.36

DenseNet Model B 100 92.91

CIFAR-100
ConvNet Model A 63.32 64.24

DenseNet Model B 99.84 70.66

SVHN
ConvNet Model A 94.52 95.00

DenseNet Model B 97.48 98.15

3.3.1 Background

The ASR task aims to map an acoustic signal containing spoken word(s), i.e., an
utterance, into the corresponding sequence of word(s) intended by the speaker(s).
ASR has numerous stand-alone applications, e.g., dictation in word processors, or
can be integrated into larger applications, e.g., speech interfaces.

Since the inception of the task until recently, the state-of-the-art approach to
ASR systems employed a hybrid Gaussian Mixture Model (GMM)-Hidden Markov
Model (HMM) system. The GMM-HMM system uses HMMs to model the temporal
variability of speech and GMMs to determine how well each state of the HMMs fits
a small chunk of the acoustic signal, denoted frame, or a short window of frames,
represented by features [Rabiner and Juang, 1993]. In these systems, the acoustic
signal is typically represented by Mel Frequency Cepstral Coefficients (MFCCs)
computed from the raw acoustic signal.

More recently, Deep Neural Networks (DNNs) displaced GMMs in GMM-HMM
systems leading to DNN-HMM systems [Mohamed et al., 2012,Mohamed, 2014].
The DNN-HMM systems dramatically improved the performance of ASR systems
compared with GMM-HMM systems [Dahl et al., 2012]. The DNN in a DNN-HMM
system ingests a short window of frames of features that represent the acoustic
signal, and predicts the conditional probability distribution over the states of the
HMMs for typically the central frame in the window of frames ingested, using
adjacent frames in the window as context to aid prediction. The use of DNNs
in ASR systems paved the way for less-engineered features, e.g., Mel Frequency
Spectral Coefficients (MFSCs), as opposed to MFCCs commonly used in GMM-
HMM systems.

MFSCs require computing the Discrete Fourier Transform (DFT) over each

CHAPTER 3. TABULA RASA LEARNING 47

frame, followed by applying a number of filter banks distributed on a Mel scale (see
Figure 3.2) to obtain a time-frequency spectrogram, as illustrated in Figure 3.1.
MFCCs require an additional step to compute the Discrete Cosine Transform (DCT)
of the log-MFSCs to obtain a more compressed decorrelated representation shown
in Figure 3.1. The application of the DCT on the log-MFSCs resulting in MFCCs,
maintaining only the first N coefficients and discarding the rest, also reportedly
removes some inter-speaker variability, which is beneficial in GMM-HMM systems;
however, DNNs can utilize the speaker variably in log-MFSCs for enhanced speech
modelling [Mohamed, 2014]. Prior studies have also investigated the use of DNNs
on the raw acoustic signal, reporting promising results [Jaitly and Hinton, 2011].

With the advent of DNNs in ASR systems, multiple neural network architectures
were subsequently studied. In [Abdel-Hamid et al., 2014], the DNN in a DNN-
HMM system was replaced with a ConvNet leading to a ConvNet-HMM system
to learn features across both time and frequency, demonstrating improved results.
In [Graves et al., 2013], deep Long Short-Term Memory (LSTM)-Recurrent Neural
Networks (RNNs) were used in an end-to-end ASR system, without the HMMs,
reporting competitive results given suitable regularization. In [Amodei et al., 2016],
a hybrid ConvNet-RNN was used in an end-to-end ASR system, achieving improved
performance in clean and noisy utterances for multiple languages.

3.3.2 Automatic Speech Recognition System

The ASR system used in this work is a hybrid Neural Network (NN)-HMM system
similar to those of [Mohamed et al., 2012,Dahl et al., 2012,Abdel-Hamid et al.,
2014,Mohamed, 2014].

First, the incoming speech utterance is processed. Let s be a speech utterance
of arbitrary length. The speech utterance is divided into small equal overlapping
chunks, typically of 25 ms every 10–15 ms, denoted frames. A Hamming window
is applied to each frame to reduce the discontinuity at the start and end of the
frames [Allen, 1977]. Each frame is then converted from the time domain to the
frequency domain via DFT. Overlapping triangular filter banks, distributed on a
Mel scale to mimic the human ear sensitivity (see Figure 3.2), are subsequently
applied to each frame, to obtain the MFSCs. Typically, the logarithm function is
applied to the MFSCs to produce log-MFSCs that are preferred due to improved
discrimination. The speech utterance s is now S ∈ RT×N : a sequence of T frames
such that each frame is represented by N features.

Second, the processed speech utterance is fed to the neural network that is a
ConvNet. The ConvNet ingests a short window of concatenated consecutive frames
of MFSCs, xt = S(t−l)

f
. . .

f
St

f
. . .

f
S(t+r), where

f
denotes the concatenation

operation, to predict the conditional probability distribution p(q|xt) over the states
of the HMMs q, given the window of frames of MFSCs xt for the central frame

CHAPTER 3. TABULA RASA LEARNING 48

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s)

0

1

A
m

pl
it

ud
e

×104

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s)

0

2

4

F
re

qu
en

cy
(k

H
z)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s)

5

10

M
F

C
C

s

Figure 3.1: Acoustic speech signal. Top. Raw acoustic signal in the time domain.
Centre. Normalized log Mel Frequency Spectral Coefficients (MFSCs) computed
from the raw acoustic signal (top). Bottom. Normalized Mel Scale Cepstral
Coefficients (MFCCs) computed from the raw acoustic signal (top).

CHAPTER 3. TABULA RASA LEARNING 49

0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

0.0

0.5

1.0
A

m
pl

it
ud

e

Figure 3.2: Mel scale filter banks. The amplitudes of 40 filter banks on a Mel scale
in the frequency range 0–4 kHz.

St, using the adjacent frames in the window, S(t−l) and S(t+r), as context to aid
prediction. A three-state HMM is employed per phoneme; thus, the ConvNet is
required to predict p(q|xt) over (3× number of phonemes) states.

Note that the ConvNet is trained independently and therefore requires HMM
state labels for each frame. The force-aligned frame labels were obtained by training
a mono-phone GMM-HMM system with MFCCs.

Third, the likelihood p(xt|q) is estimated using Bayes’ rule:

p(xt|q) =
p(q|xt)p(xt)

p(q)
. (3.1)

The likelihoods, p(xt|q); ∀t ∈ T , are then fed into a standard Viterbi decoder [Viterbi,
1967] to obtain the predicted sequence of phonemes. Finally, a bi-gram language
model, estimated from the training set, is used over the predicted phonemes to
favour more probable phoneme sequences [Katz, 1987,Jurafsky and Martin, 2014].

3.3.3 Experimental Setup

Dataset. The Texas Instruments Massachusetts Institute of Technology (TIMIT)
dataset [Garofolo et al., 1993] (see Appendix A.6 for more details) was used in
this experiment. The TIMIT dataset was collected to advance ASR systems and
released in 1990. The TIMIT dataset contains recordings of 630 speakers, of which
70% are males and 30% are females, from eight major American English dialects,
with each speaker reading ten phonetically rich sentences, amounting to a total of
6300 utterances. The sampling rate of all recordings is 16 kHz. Each utterance is
accompanied by a phonetic transcript.

There are 61 phonemes in the TIMIT dataset. As commonly practised in the
literature, the 61 phonemes were mapped into 48 phonemes for training, which

CHAPTER 3. TABULA RASA LEARNING 50

were then mapped into 39 phonemes for scoring (see [Lee and Hon, 1989] for more
details).

The dataset is predeterminedly divided into mutually exclusive training and
test sets [Garofolo et al., 1993,Lee and Hon, 1989,Povey et al., 2011]. The complete
462-speaker training set, without the dialect (SA) utterances, was used as the
training set. The 50-speaker development set was used as the validation set. The
24-speaker core test set was used as the test set.

Preprocessing. Utterances were split into 25 ms frames with a stride of 10 ms,
and a Hamming window was applied, then 40 log-MFSCs were extracted from
each frame. The mean and standard deviation were normalized per coefficient to
zero and one respectively using the mean and standard deviation computed on
the training set. No speaker dependent operations were performed. The Kaldi
toolkit [Povey et al., 2011] was used to produce force-aligned frame labels by
training a mono-phone GMM-HMM system with MFCCs. The input to the neural
network was either 31 or 41 consecutive frames, depending on the architecture of
the neural network, labelled using the label of the central frame.

Architectures. The ASR system had a hybrid ConvNet-HMM architecture: a
ConvNet acoustic model was used to produce a probability distribution over the
states of three-state HMMs with a bi-gram language model estimated from the
training set. Two ConvNet architectures were used in this experiment, following
recent developments in the field.

The first ConvNet architecture used in this experiment is described in Table 3.4
and denoted Model A. The model is a standard ConvNet that comprises two
convolutional and max pooling layers, followed by four fully connected layers, with
BatchNorm and ReLUs interspersed in-between. The final fully connected layer
is followed by a softmax function to predict the probability distribution over 144
classes, i.e., three HMM states per 48 phonemes.

The second ConvNet architecture used in this experiment is a variant of the
popular VGGNet architecture [Simonyan and Zisserman, 2014,Sercu et al., 2016]
as described in Table 3.5 and is denoted Model B. The architecture comprises a
number of convolutional, BatchNorm, and ReLUs layers, with a few max pooling
layers used throughout the architecture as indicated in Table 3.5, followed by
three fully connected layers, with BatchNorm, ReLUs, and dropout interspersed
in-between. The final fully connected layer is followed by a softmax function to
predict the probability distribution over 144 classes, i.e., three HMM states per 48
phonemes.

CHAPTER 3. TABULA RASA LEARNING 51

Table 3.4: Convolutional neural network Model A architecture for the automatic
speech recognition task.

№ Type Size Other

1

Convolution 64, 5× 4 Stride = 1
BatchNorm — —

ReLU — —
Max Pooling 2× 2 Stride = 2

2

Convolution 128, 3× 3 Stride = 1
BatchNorm — —

ReLU — —
Max Pooling 2× 2 Stride = 2

3
Fully Connected 1024 —

BatchNorm — —
ReLU — —

Dropout — r = 0.4

4
Fully Connected 1024 —

BatchNorm — —
ReLU — —

Dropout — r = 0.4

5
Fully Connected 1024 —

BatchNorm — —
ReLU — —

Dropout — r = 0.4

6
Fully Connected 144 —

Softmax — —

CHAPTER 3. TABULA RASA LEARNING 52

Table 3.5: Convolutional neural network Model B architecture for the automatic
speech recognition task.

№ Repeat Type Size Other

1

Convolution 64, 6× 5 Stride = 1
1× BatchNorm — —

ReLU — —

Convolution 64, 3× 3 Stride = 1
1× BatchNorm — —

ReLU — —

1× Max Pooling 2× 2 Stride = 2

2
2×

Convolution 128, 3× 3 Stride = 1
BatchNorm — —

ReLU — —

1× Max Pooling 2× 2 Stride = 2

3
3×

Convolution 256, 3× 3 Stride = 1
BatchNorm — —

ReLU — —

1× Max Pooling 2× 2 Stride = 2

4
3×

Convolution 256, 3× 3 Stride = 1
BatchNorm — —

ReLU — —

1× Max Pooling 2× 2 Stride = 2

5 1×

Fully Connected 1024 —
BatchNorm — —

ReLU — —
Dropout — r = 0.4

6 1×

Fully Connected 1024 —
BatchNorm — —

ReLU — —
Dropout — r = 0.4

7 1× Fully Connected 144 —
Softmax — —

CHAPTER 3. TABULA RASA LEARNING 53

Training and Implementation Details. The training and implementation
details of each architecture differed slightly following the recommenced practice for
each model in prior literature. The hyperparameters reported below were tuned
using the validation set.

The parameters of the convolutional and fully connected layers of Model A
were initialized randomly, sampling from a Gaussian distribution, with zero mean
and

√
2/ni and 1/

√
ni standard deviation for convolutional and fully connected

layers respectively, where ni is the number of inputs to the layer, as recommended
in [He et al., 2015]. Convolutional layers were regularized using weight decay with
penalty λ = 1 × 10−3 and fully connected layers were regularized using dropout
with drop probability r = 0.4. RMSProp was used to optimize the parameters of
Model A with respect to a negative log-likelihood loss function using batch size
Mb = 256, learning rate α = 1× 10−3, and decay rate η = 0.99. The validation set
was used for early stopping such that training halts if the validation error ceases to
improve for three epochs.

The parameters of the convolutional and fully connected layers of Model B were
initialized randomly, sampling from a Gaussian distribution, with zero mean and√

2/ni and 1/
√
ni standard deviation for convolutional and fully connected layers

respectively, where ni is the number of inputs to the layer, similar to Model A. All
layers in Model B were regularized using weight decay with penalty λ = 1× 10−3

and fully connected layers were also regularized using dropout with drop probability
r = 0.4. ADAM was used to optimize the parameters of Model B with respect
to a negative log-likelihood loss function using batch size Mb = 256, learning rate
α = 1× 10−3, first moment β1 = 0.99, and second moment β2 = 0.999 for 110× 103

iterations.
The experiments were implemented using MatDL [Fayek, 2017] and Tensor-

Flow [Abadi et al., 2016]†. Training was carried out using NVIDIA Tesla K40
and K80 GPUs. Training a single model on a single GPU required a wall time of
approximately 15–48 hours depending on the architecture and GPU used.

3.3.4 Results

Table 3.6 lists the validation and test Frame Error Rate (FER) and Phone Error
Rate (PER) obtained for the TIMIT dataset using the models and training recipes
described in Section 3.3.3. The FER is the classification error rate of the ConvNet
acoustic model, while the PER is the minimum edit distance between the predicted
output of the entire ConvNet-HMM system following decoding and the transcript.
The ConvNet Model A is outperformed by the ConvNet Model B due to the

†Each model, Model A and Model B, were implemented using both frameworks, MatDL and
Tensorflow, producing similar results.

CHAPTER 3. TABULA RASA LEARNING 54

Table 3.6: Automatic speech recognition validation and test Frame Error Rate
(FER) and Phone Error Rate (PER) on the TIMIT dataset.

Model
FER PER

Validation Test Validation Test

ConvNet Model A 30.53% 31.61% 18.71% 20.18%

ConvNet Model B 29.35% 30.69% 17.67% 19.4%

increased depth and capacity of the later. Slightly better results could be achieved
by further tuning the architecture or hyperparameters of the models [Zhang et al.,
2016] or using attention-based sequence-to-sequence models [Chorowski et al., 2015].

3.4 Speech Emotion Recognition
The SER task and related work are reviewed, and experiments on the task are
presented, focusing on various architectures of neural networks. Deep learning
has been applied to SER in prior work as discussed below. However, with various
experiment conditions involved in prior studies, it is difficult to gauge the strengths
and drawbacks of the different deep learning formulations and architectures. As a
result of the novel empirical exploration carried out in this section of various deep
learning formulations and architectures applied to SER, state-of-the-art results are
reported on the benchmark IEMOCAP dataset for speaker-independent SER‡.

Section 3.4.1 briefly introduces the SER task. Section 3.4.2 reviews related prior
work. Section 3.4.3 outlines the SER system. Section 3.4.4 details the experimental
setup, including the IEMOCAP dataset, data preprocessing, as well as the training
and implementation details. Finally, Section 3.4.5 presents and discusses the results.

3.4.1 Background

The SER task aims to automatically identify the affective state of a human from
their speech [Cowie et al., 2001]. SER can be employed in stand-alone applications,
e.g., emotion monitoring, or integrated into other systems for emotional awareness,
e.g., integrating SER into an ASR system to improve the capability of the system
in dealing with emotional speech.

SER can be regarded as a static or dynamic classification problem, which has
motivated two popular formulations to the task in the literature [Ververidis and

‡Compared to prior literature when the work was published in [Fayek et al., 2017].

CHAPTER 3. TABULA RASA LEARNING 55

Kotropoulos, 2006]: turn-based processing, also known as static modelling; and
frame-based processing, also known as dynamic modelling. Turn-based processing
aims to recognize emotions from a complete utterance, whereas frame-based pro-
cessing aims to recognize emotions at a more granular level, i.e., the frame level.
Frame-based processing is more robust since it does not rely on segmenting the in-
put speech into utterances and can model intra-utterance emotion dynamics [Arias
et al., 2013]. Moreover, frame-based processing allows the possibility of real-time
SER systems. However, empirical comparisons between frame-based processing and
turn-based processing in prior work have generally demonstrated the superiority of
the latter [Vlasenko et al., 2007,Schuller et al., 2009b].

Whether performing turn-based processing or frame-based processing, most
prior research in the last decade has been devoted to selecting an optimal set of
features [Schuller et al., 2010]. Despite the effort, little success has been achieved
in realizing a set of features that performs consistently over different conditions
and datasets [Eyben et al., 2016]. Thus, brute-force high-dimensional feature
sets, that comprise many acoustic parameters, have been used, in an attempt to
capture all variances [Tahon and Devillers, 2016]. Such high-dimensional feature
sets complicate the learning process in most machine learning algorithms, increase
the likelihood of over-fitting, and hinder generalization. Moreover, the computation
of many acoustic parameters is computationally expensive and may be difficult to
apply on a large scale with limited resources [Eyben et al., 2015]. Therefore, the
application of deep learning to SER is pertinent to alleviate the problem of feature
engineering and achieve an SER with a simple pipeline and low latency. Further,
SER is an excellent test bed for exploring various deep learning architectures since
the task itself can be formulated in multiple ways.

3.4.2 Related Work

Prior literature on SER is well surveyed in [Ververidis and Kotropoulos, 2006,Ayadi
et al., 2011,Petta et al., 2011]. Recent work has mostly focused on deep learning
approaches to SER. This follows the success of DNNs in ASR, as discussed in
Section 3.3.1, which has prompted research into the application of DNNs to other
areas of speech recognition.

In [Stuhlsatz et al., 2011], a generalized discriminant analysis based on a DNN
was proposed to deal with the high-dimensional feature sets commonly used in
SER, demonstrating better performance than Support Vector Machines (SVMs) on
the same set of features. In [Li et al., 2013], a hybrid DNN-HMM system trained
with MFCCs was proposed for SER, indicating improved results compared with a
GMM-HMM system. In [Han et al., 2014], a DNN was used to extract features from
speech segments, which were then used to construct utterance-level features that
were fed into an Extreme Learning Machine (ELM) for utterance-level classification

CHAPTER 3. TABULA RASA LEARNING 56

outperforming competing techniques. In [Fayek et al., 2016a], a DNN was used
to learn a mapping from MFSCs to emotion classes using soft labels generated
from multiple annotators to model the subjectiveness in emotion recognition, which
yielded improved performance compared with ground truth labels obtained by
majority voting between the same annotators.

More recently, alternative neural network architectures were also investigated
for SER. In [Mao et al., 2014], a ConvNet was used in a two-stage SER system that
involved learning local invariant features using a sparse auto-encoder from speech
spectrograms, processed using Principal Component Analysis (PCA), followed by
salient discriminative feature analysis to extract discriminative features demon-
strating competitive results. In [Tian et al., 2015a], the use of knowledge-inspired
disfluency and non-verbal vocalization features in emotional speech were compared
with the use of a feature set comprising acoustic parameters aggregated using
statistical functions, by using an LSTM-RNN as well as an SVM classifier; the
former was shown to produce better results given enough data.

The work presented in this section differs from prior work in several ways. A
frame-based formulation to SER is presented with the aim of achieving a system
with a simple pipeline and low latency by modelling the intra-utterance emotion
dynamics. Moreover, most previous studies relied on engineered features, whereas
in this work, minimal speech processing is employed, and deep learning is relied on
to automate the process of learning features. Furthermore, unlike previous studies,
uniform data subsets and experiment conditions were used to promote comparisons
across various deep learning formulations and architectures for SER.

3.4.3 Speech Emotion Recognition System

Figure 3.3 is a sketch of the proposed SER system. The system follows a frame-
based processing formulation that utilizes MFSCs and a deep multi-layered neural
network to predict a probability distribution over emotion classes for each frame in
the input utterance.

Let S ∈ RT×N be a sequence of T frames such that each frame is represented
by N features computed from a speech utterance or speech stream. The aim is
to rely on minimal speech processing, and thus, each frame is represented by N
log-MFSCs, as described in Section 3.3.2.

The objective of the model is to predict p(yt|xt), where yt is the predicted
output corresponding to the target frame(s) xt, xt = S(t−l)

f
. . .

f
St

f
. . .

f
S(t+r), l

is the number of past context frames, and r is the number of future frames. Silence
was added to the output classes, i.e., the final output is either one emotion class
or silence, since silence and unvoiced speech were not removed from the input
speech utterance, as it has been shown that silence and other disfluencies can be
an effective cue in emotion recognition [Tian et al., 2015b].

CHAPTER 3. TABULA RASA LEARNING 57

Input Speech

Aligned Probability Distribution over Output Classes

0

1

Figure 3.3: Overview of the proposed speech emotion recognition system. A deep
multi-layered neural network, composed of several fully connected, convolutional, or
recurrent layers, ingests a target frame (solid), concatenated with a number of con-
text frames (dashed), to predict the probabilities over emotion classes corresponding
to the target frame.

CHAPTER 3. TABULA RASA LEARNING 58

The proposed model is a deep multi-layered neural network. Note that the
model is able to deal with utterances of variable length, independent of the choice
of the architecture, since the model predicts p(yt|xt), ∀t ∈ T ; this only requires
the target frame St and the past l and future r context frames, which are set
throughout the system. Since emotions manifest in speech in a slow manner, one
may not necessarily predict the class of every single frame in an utterance or speech
stream but may rely on predicting the class of a frame sampled every few frames,
depending on the requirements of the application. The output of the model can
be aggregated over the entire utterance to perform utterance-level classification if
desired.

3.4.4 Experimental Setup

Dataset. The Interactive Emotional Dyadic Motion Capture (IEMOCAP) dataset
[Busso et al., 2008] (see Appendix A.3 for more details) was used in this experiment.
The dataset comprises 12 hours of audio-visual recordings divided into five sessions.
Each session is composed of two actors, a male and a female, performing emotional
scripts as well as improvised scenarios. In total, the dataset comprises 10039
utterances sampled at 48 kHz with an average duration of 4.5 s.

Utterances were labelled by three annotators using categorical labels. The
dataset predominantly focused on five emotions, namely, anger, happiness, sadness,
neutral, and frustration; however, annotators were not limited to these emotions
during annotation. Ground truths labels were obtained by majority voting, where
74.6% of the utterances were agreed upon by at least two annotators. Utterances
that were labelled differently by all three annotators were discarded. To be
consistent with other studies on this dataset [Shah et al., 2014,Mariooryad and
Busso, 2013,Yelin et al., 2013], utterances that bore only the following four emotions:
anger, happiness, sadness, and neutral, were included with excitement considered
as happiness ; amounting to a total of 5531 utterances.

An eight-fold Leave-One-Speaker-Out (LOSO) cross-validation scheme [Schuller
et al., 2009b] was employed in all experiments using the eight speakers in the
first four sessions. Both speakers in the fifth session were used as the validation
set, and hence were not included in the cross-validation folds to avoid biasing the
results [Refaeilzadeh et al., 2009].

Preprocessing. Utterances were split into 25 ms frames with a stride of 10 ms,
and a Hamming window was applied, then 40 log-MFSCs were extracted from each
frame. The mean and standard deviation were normalized per coefficient to zero
and one respectively for each fold using the mean and standard deviation computed
using the training subset only. No speaker dependent operations were performed.

CHAPTER 3. TABULA RASA LEARNING 59

Since the data was labelled at utterance-level, all frames in an utterance inherited
that utterance label. A voice activity detector was subsequently used to label
silent frames, and silence was added as an additional class to the four previously
mentioned emotion classes, i.e., a frame had either the same label as its parent
utterance or the silence label. The underlying assumption here is that frames in
an utterance convey the same emotion as the parent utterance, which concurs with
the same assumption made when a categorical label was assigned to the entire
utterance; nevertheless, this assumption is eased by labelling unvoiced and silent
frames as silence.

Architectures. Several neural network architectures were investigated as pre-
sented in Section 3.4.5.

Training and Implementation Details. The parameters of the neural net-
works were initialized randomly, sampling from a Gaussian distribution, with zero
mean and

√
2/ni standard deviation, where ni is the number of inputs to the layer,

as recommended in [He et al., 2015]. Fully connected layers were regularized using
dropout with drop probability r = 0.5. Convolutional layers were regularized using
weight decay with penalty λ = 1 × 10−3. LSTM layers were regularized using
dropout with drop probability r = 0.5 and the gradients were clipped to lie in the
range [−5, 5]. BatchNorm was used after every fully connected or convolutional
layer. RMSProp was used to optimize the parameters of the models with respect
to a negative log-likelihood loss function using batch size Mb = 256. The initial
learning rate was set to α = 1 × 10−2 and annealed by a factor of 10 when the
error plateaus. The decay rate was set to η = 0.99. The validation set was used to
perform early stopping during training, such that training halts when the learning
rate reaches α = 1 × 10−8; the model with the best accuracy on the validation
set during training was selected. These hyperparameters were chosen based on
experimental trials using the validation set.

The Kaldi toolkit [Povey et al., 2011] was used for speech processing. The
experiments were implemented using MatDL [Fayek, 2017]. Due to the large
number of experiments carried out, several computational resources were exploited
at difference stages. Some experiments were carried out on a cluster of Central
Processing Units (CPUs), whereas other experiments were carried out using GPUs.
Training wall time varied significantly between different models. The largest model
took 14 days to train on a single GPU, but the average wall time was two days.

CHAPTER 3. TABULA RASA LEARNING 60

3.4.5 Results

The classification accuracy is reported to gauge the performance of the models, as
well as the Unweighted Average Recall (UAR) to reflect imbalanced classes [Schuller
et al., 2009a], as commonly practised in the field of automatic emotion recognition.
Both metrics are averaged across the eight-fold LOSO cross-validation scheme
described in Section 3.4.4.

Feed-Forward Architectures The number of context frames required for SER
is investigated. It is hypothesized that unlike ASR, SER does not rely on future
context, but does require a large number of past context frames. Hence, the models
were trained in two configurations: (1) the first configuration was to predict p(yt|xt),
where xt = St−c

f
. . .

f
St

f
. . .

f
St+c for various values of c, i.e., predict the class

label of the central frame; (2) the second configuration was to predict p(yt|xt),
where xt = St−c

f
. . .

f
St for various values of c, i.e., predict the class label of the

final frame. The model used in this experiment was a DNN with five hidden layers,
each of which is composed of 1024 fully connected units with BatchNorm, ReLUs,
and dropout layers interspersed in-between, and a softmax function after the final
fully connected layer. This architecture was selected based on the best UAR on
the validation set, which was excluded from the cross-validation scheme. Figure 3.4
is a plot of the test accuracy and test UAR of the model in both configurations for
various numbers of context frames.

Two observations are immediately evident from the results in Figure 3.4: (1)
the performance of the system is directly proportional to the number of context
frames until 220 frames, where it starts to plateau; (2) future context has a minor
contribution to the performance of the system as hypothesized. A large number of
context frames leads to an increase in the dimensionality of the input, and may
increase over-fitting, as shown in Figure 3.4; a trade-off between the number of
context frames and the performance of the system lies in the range of 2–3 seconds
of speech.

Considering the results obtained in Figure 3.4, the application of ConvNets to
SER is well motivated. ConvNets are able to deal with high-dimensional input,
which in this case is due to the large number of context frames required. Moreover,
ConvNets are able to learn features that are insensitive to small variations in the
input, which can aid in disentangling inter-speaker variations, as well as other
sources of distortion, e.g., noise.

The following experiments present an in-depth exploration of various ConvNet
architectures, where the effects of the number of convolutional and fully connected
layers, number of filters, size of filters, and type of convolution (spatial vs temporal)
on the performance of the system are investigated. All experiments were conducted
using 259 past context frames and no future context frames, which corresponds

CHAPTER 3. TABULA RASA LEARNING 61

20 60 100 140 180 220 260 300 340
No. of Frames

48

50

52

54

56

58

60

62

64

Te
st

A
cc

ua
rc

y
/U

A
R

(%
)

Test Accuracy Center Frame
Test UAR Center Frame
Test Accuracy Final Frame
Test UAR Final Frame

Figure 3.4: Speech emotion recognition test accuracy and test Unweighted Average
Recall (UAR) on the IEMOCAP dataset with a deep neural network as a function
of the number of context frames.

CHAPTER 3. TABULA RASA LEARNING 62

Table 3.7: Speech emotion recognition test Accuracy (ACC) and test Unweighted
Average Recall (UAR) on the IEMOCAP dataset with various convolutional neural
network architectures. Conv(c× j × k) and Conv1D(c× j × k) denote a spatial
convolutional layer and a temporal convolutional layer respectively of c filters,
each of size j × k, with stride 2, followed by Batch Normalization (BatchNorm)
and Rectified Linear Units (ReLUs). FC(nl) denotes a fully connected layer of nl

units followed by BatchNorm, ReLUs, and dropout. All architectures have a fully
connected layer with a softmax function as the output layer.

Architecture Test ACC
(%)

Test UAR
(%)

Conv(32× 4× 4) — FC(1024)×2 62.27 58.30
Conv(32× 4× 4) — FC(1024)×3 62.78 58.87
Conv(32× 4× 4) — Conv(64× 3× 3) — FC(1024)×2 62.58 58.71
Conv(32× 4× 4) — Conv(64× 3× 3) — FC(1024)×3 63.16 58.56
Conv(16× 4× 4) — Conv(32× 3× 3) — FC(716)×3 63.34 59.30
Conv(32× 4× 4) — Conv(64× 3× 3) — FC(1024)×4 63.82 58.92
Conv(16× 4× 4) — Conv(32× 3× 3) — FC(716)×4 62.90 58.17

Conv(16× 6× 6) — Conv(32× 6× 6) — FC(716)×3 63.51 59.50
Conv(16× 10× 10) — Conv(32× 10× 10) — FC(716)×3 64.78 60.89
Conv(16× 14× 14) — Conv(32× 14× 14) — FC(716)×3 62.84 58.30
Conv(16× 10× 18) — Conv(32× 18× 18) — FC(716)×3 63.07 58.79

Conv1D(64× 40× 4) — FC(1024)×3 62.41 58.38
Conv1D(64× 40× 8) — FC(1024)×3 62.98 59.07
Conv1D(64× 40× 16) — FC(1024)×3 62.91 58.49

to approximately 2.6 s of speech, i.e., the input dimensionality is 40 filter banks ×
260 frames. Table 3.7 lists various ConvNet architectures and their respective test
accuracy and test UAR.

From the results listed in the first segment of Table 3.7, the benefit of the
depth of the model can be observed. The best results were obtained using two
convolutional layers followed by 2–3 fully connected layers. The addition of more
layers to the model did not yield any performance gain but conversely resulted in
over-fitting. The results in the second segment of Table 3.7 demonstrate the effect
of the filter size on the performance of the model. It can be seen that, similar to
other speech applications, SER requires a relatively large filter with an optimal size
of 10× 10. Temporal convolution was slightly outperformed by spatial convolution,
as demonstrated in the final segment of Table 3.7.

CHAPTER 3. TABULA RASA LEARNING 63

Recurrent Architectures The application of LSTM-RNNs for the proposed
SER system is investigated in the following experiments. LSTM-RNNs can be
trained in several ways, e.g., sequence-to-sequence, where a model is trained to
ingest a sequence of frames and output a sequence of class labels, or sequence-to-one,
where a model is trained to ingest a sequence of frames and output a class label.
Sequence-to-sequence training may seem to be a better fit to the proposed system;
however, preliminary experiments demonstrated the superiority of sequence-to-
one training, whereas sequence-to-sequence training failed to converge in most
cases or had poor performance otherwise. Therefore, sequence-to-one training
was used in the experiments; i.e., the model was trained to ingest a sequence of
frames, frame-by-frame, and predict a class label for the final frame, p(yt|xt), where
xt = St−c

f
. . .

f
St, and c is the number of context frames (sequence length).

LSTM-RNNs can handle sequences of arbitrary lengths. However, the effect
of the sequence length, on which the model was trained, on the ability of the
model to handle arbitrary sequence lengths is not well-studied. Hence, several
models were trained using various training sequence lengths {20, 60, 100, 200},
where LSTM-RNN-c denotes the training sequence length c on which the model
was trained on; this model was then evaluated on a number of test sequence
lengths {20, 60, 100, 200, 260, 300}. An extra model was trained on sequence length
c chosen randomly at each iteration such that c ∈ {20, 60, 100, 200}, denoted
LSTM-RNN-R. The model used in this experiment was a two-layered LSTM-RNN
with 256 units in each hidden layer and dropout interspersed in-between, and a
final fully connected layer followed by a softmax function. This architecture was
selected based on the best UAR on the validation set, which was excluded from
the cross-validation scheme. Figure 3.5 and Figure 3.6 depict the test accuracy
and test UAR respectively of the LSTM-RNNs trained and evaluated on various
sequence lengths.

The results in Figure 3.5 and Figure 3.6 demonstrate a similar trend in that
models trained on short sequences did not perform as well as on long sequences
and vice versa. In addition, noticeable gains in performance could be achieved
by increasing the number of context frames. The best performance at each test
sequence length was obtained by the model trained on the same sequence length;
the performance degraded gradually as the test sequence length deviated from the
training sequence length. Moreover, by varying the sequence length when training
LSTM-RNN-R, the model did learn to perform well on various test sequence lengths.
On average, LSTM-RNN-100 yielded the best UAR averaged over all test sequence
lengths, followed by LSTM-RNN-R.

Analysis. Table 3.8 lists the best model from each architecture and their re-
spective test accuracy and test UAR trained and evaluated under the same data

CHAPTER 3. TABULA RASA LEARNING 64

20 60 100 200 260 300
No. of Frames

48

50

52

54

56

58

60

62

64

Te
st

A
cc

ur
ac

y
(%

)

Test Accuracy LSTM-RNN-20
Test Accuracy LSTM-RNN-60
Test Accuracy LSTM-RNN-100
Test Accuracy LSTM-RNN-200
Test Accuracy LSTM-RNN-R

Figure 3.5: Speech emotion recognition test accuracy on the IEMOCAP dataset
of a Long Short-Term Memory (LSTM)-Recurrent Neural Network (RNN) with
various number of context frames. LSTM-RNN-c denotes the sequence length
which the model was trained on. The number of frames denotes the sequence length
which the model was evaluated on.

CHAPTER 3. TABULA RASA LEARNING 65

20 60 100 200 260 300
No. of Frames

44

46

48

50

52

54

56

58

60

Te
st

U
A

R
(%

)

Test UAR LSTM-RNN-20
Test UAR LSTM-RNN-60
Test UAR LSTM-RNN-100
Test UAR LSTM-RNN-200
Test UAR LSTM-RNN-R

Figure 3.6: Speech emotion recognition test Unweighted Average Recall (UAR) on
the IEMOCAP dataset of a Long Short-Term Memory (LSTM)-Recurrent Neural
Network (RNN) with various number of context frames. LSTM-RNN-c denotes the
sequence length which the model was trained on. The number of frames denotes
the sequence length which the model was evaluated on.

CHAPTER 3. TABULA RASA LEARNING 66

Table 3.8: Speech emotion recognition test Accuracy (ACC) and Unweighted
Average Recall (UAR) on the IEMOCAP dataset with various neural network
architectures. Conv(c× j × k) denote a spatial convolutional layer of c filters, each
of size j × k, with stride 2, followed by Batch Normalization (BatchNorm) and
Rectified Linear Units (ReLUs). FC(nl) denotes a fully connected layer of nl units
followed by BatchNorm, ReLUs, and dropout. LSTM-RNN(nl) denotes a Long
Short-Term Memory (LSTM)-Recurrent Neural Network (RNN) of nl units. All
architectures have a fully connected layer with a softmax function as the output
layer.

Model Test ACC
(%)

Test UAR
(%)

FC(1024)×5 62.55 58.78
Conv(16× 10× 10) — Conv(32× 10× 10) — FC(716)×3 64.78 60.89
LSTM-RNN(256)×2 — FC(256) 61.71 58.05

subsets and experiment conditions. As stated earlier, SER can be regarded as a
static or dynamic classification problem, which makes the task an excellent test
bed for conducting a comparison between these architectures. In this case, the
DNN and the ConvNet can be regarded in this formulation as static classifiers that
process a number of concatenated frames jointly to predict a class label, whereas
the LSTM-RNN can be regarded in this formulation as a dynamic classifier that
processes a sequence of frames, frame-by-frame, to predict a class label. The results
in Table 3.8 suggest that the static component in speech is more discriminative for
SER than the dynamic component. This is likely due to the dominant presence of
the linguistic aspect in the dynamic component of speech, which can hinder the
recognition of paralinguistic components such as emotions. It is speculated that for
this reason, in addition to the ability of ConvNets to learn discriminative features
invariant to small variations, the ConvNet yielded the best test accuracy and test
UAR, followed by the DNN, then the LSTM-RNN.

Figure 3.7 illustrates the output of the proposed SER system using a ConvNet
for a number of selected utterances from the test subset of the IEMOCAP dataset.
Qualitative assessment of the system’s output indicates that the system has learned
to model the intra-utterance emotion dynamics with high confidence and is able to
transition smoothly from one class to another, capturing brief pauses and mixed
emotions as shown in Figure 3.7. It is particularly interesting to note the system’s
output in Figure 3.7(e), which has classified the first half of the utterance as neutral
and the second half of the utterance as happy, conforming to the manual inspection,
whereas the dataset annotators assigned the happy label to the entire utterance.

CHAPTER 3. TABULA RASA LEARNING 67

(a
)

0

1

p(
y t

)
(b

)

0

1

p(
y t

)
(c

)

0

1

p(
y t

)
(d

)

0

1

p(
y t

)
(e

)

0 2 4 6 8 10 12 14
Time (s)

0

1

p(
y t

)

Angry Happy Neutral Sad Silence

Figure 3.7: Input speech utterances (top) and corresponding aligned output (below)
of the speech emotion recognition system for a number of selected utterances from
the test subset of the IEMOCAP dataset. The output is the probabilities over
classes denoting the confidence of the model. Transcripts: (a): Oh, laugh at me
all you like but why does this happen every night she comes back? She goes to
sleep in his room and his memorial breaks in pieces. Look at it, Joe look. (Angry);
(b): I will never forgive you. All I’d done was sit around wondering if I was crazy
waiting so long, wondering if you were thinking about me. (Happy); (c): OKay.
So I am putting out the pets, getting the car our the garage. (Neutral); (d): They
didn’t die. They killed themselves for each other. I mean that, exactly. Just a
little more selfish and they would all be here today. (Sad); (e): Oh yeah, that
would be. Well, depends on what type of car you had, though too. I guess it would
be worth it. helicopter. Yeah, helicopter. There is a helipad there, right? Yeah,
exactly. (Happy).

CHAPTER 3. TABULA RASA LEARNING 68

Table 3.9: Speech Emotion Recognition (SER) results reported in prior work on
the IEMOCAP dataset. Note that differences in data subsets and other experiment
conditions should be taken into consideration when comparing the following results
against each other, see references for more details.

Method Test ACC (%) Test UAR (%)

DNN + ELM [Han et al., 2014] 54.3 48.2
SVM [Mariooryad and Busso, 2013]1 53.99 50.64
Replicated Softmax + SVM [Shah et al., 2014]1 — 57.39
Hierarchical Binary Decision Tree [Lee et al., 2011]2 — 58.46
SVM [Poria et al., 2017]1 61.32 —
Data Augmentation + ConvNet [Etienne et al., 2018] 64.5 61.7

Proposed SER System (Utterance-Based) 57.74 58.28
Proposed SER System (Frame-Based) 64.78 60.89
1 Better performance was reported by incorporating other modalities.
2 Speaker-dependent normalization.

To facilitate comparison of the results reported with prior literature, which
mostly relies on utterance-based classification, the class probabilities computed
for each frame in an utterance were averaged across all frames in that utterance
and an utterance-based label was selected based on the maximum average class
probabilities, ignoring the silence label, as per Equation (3.2):

y̌ = argmax
k=1,...,K

∑T
t=1 p(yt|xt)

T
(3.2)

where y̌ is the utterance-level label, and K = 4 is the number of output classes,
i.e., ignoring the silence class.

Table 3.9 shows the SER results reported in prior work on the IEMOCAP
dataset. Note that differences in data subsets used and other experiment conditions
should be taken into consideration when comparing these results against each other
(see [Han et al., 2014,Mariooryad and Busso, 2013, Shah et al., 2014, Lee et al.,
2011,Poria et al., 2017,Etienne et al., 2018] for more details). As shown in Table 3.9,
the proposed SER system outperforms all other prior speaker-independent methods.
In addition, the proposed SER system offers other advantages, e.g., real-time output,
since it does not depend on future context. Moreover, the system is able to deal with
utterances of arbitrary length with no degradation in performance. Furthermore, the
system can handle utterances that contain more than one emotion, as demonstrated
in Figure 3.7(e), which is not possible in an utterance-based processing formulation.

CHAPTER 3. TABULA RASA LEARNING 69

3.5 Discussion
The benefit of depth in deep learning architectures was observed across all three
tasks. In the image recognition task, DenseNets Model B, which had approximately
40 convolutional or fully connected layers, outperformed ConvNets Model A, which
had only 6 convolutional or fully connected layers, as demonstrated in Table 3.3.
The same observation was also noted in the ASR task as demonstrated in Table 3.6.
In the SER task, deeper ConvNets outperformed shallower networks, as shown in
Table 3.7, albeit the improvement was not as pronounced as the other two tasks.

The machine perception tasks, namely, image recognition, ASR, and SER,
studied in Sections 3.2, 3.3 and 3.4 respectively, are somewhat diverse. Prior to
the application of deep learning to all three tasks, various methods and techniques
were employed for each task. Image recognition relied on engineered geometric
features, e.g., HOGs features and SIFT features, and standard classifiers, e.g.,
SVMs. ASR relied on engineered features that reportedly discard inter-speaker
variability and maintain features of relevance to ASR in speech, e.g., MFCCs, and
GMM-HMM systems. SER relied on high-dimensional acoustic feature sets and
standard classifiers. The deep learning approach is superior to all of the above as
demonstrated in [Krizhevsky et al., 2012,Mohamed et al., 2012] and Table 3.9.

The ConvNets employed, described in Tables 3.1, 3.2, 3.4, 3.5 and 3.7, with
fairly consistent training and implementation frameworks, performed well across all
three tasks. This is notable given the differences between the tasks and datasets,
and motivates the pursuit of multi-task and continual learning systems.

3.6 Summary
The concepts, theory, and mathematical framework presented in Chapter 2 were
applied to supervised learning tasks in this chapter, and in particular, classification
tasks in machine perception, namely, image recognition, Automatic Speech Recog-
nition (ASR), and Speech Emotion Recognition (SER). The work presented herein
developed understanding, insights, and baselines for the three tasks, as well as
their respective datasets, deep learning architectures, and best practices. Results
reported for the image recognition task on the CIFAR-10, CIFAR-100, and SVHN
datasets, as well as the results reported for the ASR task on the TIMIT dataset,
were on par with the state-of-the-art.

The SER task was explored in more depth and used as a test bed to explore
various neural network architectures. The task is an excellent test bed for exploring
various deep learning architectures since the task itself can be formulated in multiple
ways. As a result of this novel exploration, state-of-the-art results were reported

CHAPTER 3. TABULA RASA LEARNING 70

on the IEMOCAP dataset for speaker-independent SER§. Significantly, the results
obtained attested to the viability of the frame-based processing formulation to SER
compared with the turn-based processing formulation, which not only facilitates
the integration of SER into other speech recognition tasks, e.g., ASR, but also
provides real-time SER capability and successfully handles long utterance with
multiple emotions.

The relation between the systems developed in this chapter will be investigated
in Chapter 4. These independent systems will be used as baselines and unified into
continual learning systems in Chapter 5.

§Compared to prior literature when the work was published in [Fayek et al., 2017].

Chapter 4

On the Relevance of Features and
Task Relatedness in Deep Networks

Prior to formulating a system that aims to address multiple tasks, the relation
between these tasks ought to be understood. Understanding task relatedness is

envisaged to be valuable in designing and implementing systems that aim to address
multiple tasks, by taking into consideration the overlap between closely related
tasks as well as the interference between unrelated or adversary tasks. Herein, a
methodology for understanding the relation between two tasks is proposed using
the features learned for each task in a deep network, where the relevance of each
layer of features in a network trained for one task to the other task is illuminated
via transfer learning. The gradual transfer learning methodology is explored on
a number of datasets and tasks in the image recognition and speech recognition
domains that were developed in the previous chapter. The work presented in this
chapter is based on [Fayek, 2016,Fayek et al., 2016b,Fayek et al., 2018].

Outline. This chapter is structured as follows. Section 4.1 reviews related prior
work on this topic. Section 4.2 introduces the gradual transfer learning methodology.
Section 4.3 presents experiments and results in the image recognition domain using
the CIFAR-10, CIFAR-100, and SVHN datasets. Section 4.4 presents experiments
and results in the speech recognition domain using the TIMIT and IEMOCAP
datasets. Section 4.5 provides a discussion on the methodology and common
findings. Finally, Section 4.6 summarizes the chapter.

71

CHAPTER 4. RELEVANCE OF FEATURES AND TASK RELATEDNESS 72

4.1 Background
Transfer learning aims to incorporate the learned knowledge from one task, de-
noted source task or base task, into another task, denoted target task, to aid the
learning or performance, or both, of the target task [Caruana, 1997,Bengio, 2012].
Incorporating knowledge from the source task into the target task is achieved by
initializing the parameters of a model for the target task, denoted target model,
using parameters learned in a model for the source task, denoted source model or
base model, followed by fine-tuning some or all of those parameters on the target
task. Transfer learning was shown to lead to faster learning, or better performance,
or both, compared with independent learning, i.e., learning from a tabula rasa, in
many cases when both tasks are related, particularly in cases where the target task
lacks sufficient data [Pan and Yang, 2010,Razavian et al., 2014]. The impact of
transfer learning is dependent on: the nature of both tasks; the relation between
the source task and target task; the amount of data available in both tasks; as well
as the architecture of the models and learning algorithm used.

Transfer learning has been extensively utilized across a variety of settings,
domains, and applications. For example, in computer vision, transfer learning is
often used as an alternative to random initialization or to boost the performance
of tasks that lack sufficiently large datasets using another similar task that has
a large dataset. In [Razavian et al., 2014], learned features in a Convolutional
Neural Network (ConvNet) for an object classification task were used for scene
recognition, fine-grained recognition, attribute detection, and image retrieval tasks,
using various datasets. The learned features in the object classification task were
used as an image representation for these tasks and were found to outperform
state-of-the-art models across almost all datasets and tasks that were trained
independently. In [Tajbakhsh et al., 2016], a ConvNet, trained using the ImageNet
dataset [Russakovsky et al., 2015] that comprises natural images (see Appendix A.4
for more details), was fine-tuned for a number of tasks, e.g., classification, detection,
and segmentation, in radiology, cardiology, and gastroenterology. This model
outperformed the same models trained independently as well as models trained
using hand-crafted features. In Automatic Speech Recognition (ASR), transfer
learning is often used across datasets and languages [Wang and Zheng, 2015], e.g.,
in [Swietojanski et al., 2012], multiple languages were used to pre-train Deep Neural
Networks (DNNs), and the trained models were fine-tuned on a target language,
demonstrating better results than the same DNNs trained directly on the target
language. Transfer learning has also been used for speaker adaptation, as in [Li
and Sim, 2010,Yao et al., 2012]. Transfer learning has been employed in Speech
Emotion Recognition (SER), as in [Deng et al., 2013], where transfer learning
between datasets was studied, and was shown to lead to a boost in performance
relative to independent learning.

CHAPTER 4. RELEVANCE OF FEATURES AND TASK RELATEDNESS 73

Deep networks tend to learn low-level features in initial layers and transition
to high-level features towards final layers [Zeiler and Fergus, 2014]. Similar low-
level features commonly appear across various datasets and tasks, while high-level
features are somewhat more attuned to the dataset or task at hand; this makes
low-level features more general and easier to transfer from one dataset or task to
another [Yosinski et al., 2014]. In many situations, especially when data in the
target task is scarce, the transfer of low-level features from one dataset or task
to another, followed by learning high-level features, is likely to lead to a boost in
performance given that both datasets or tasks share some similarity [Razavian
et al., 2014,Wang and Zheng, 2015]. Conversely, transferring high-level features
and learning low-level ones can be regarded as a form of domain adaptation and
can be useful when the tasks are similar or identical but the data distributions are
slightly different [Glorot et al., 2011b,Bengio, 2012].

Layer-wise transferability in deep networks was studied in [Yosinski et al., 2014].
Therein, the transferability of features in a ConvNet for a computer vision task was
experimentally studied, where the generality versus specificity of each layer in the
network was quantified using curated classes from the ImageNet dataset. It was
shown that initial layers in deep networks are more transferable than final layers.
It was also shown that a correlation between the benefit of feature transfer and
the relatedness between the source task and the target task exists, such that the
improvement due to feature transfer diminishes as the relatedness between both
tasks decreases. A similar study was carried out in [Misra et al., 2016], reporting
similar findings.

4.2 Gradual Transfer Learning
The main premise put forward in this chapter is that the layer-wise transferability
of representations in deep networks between two tasks can be used to understand
the relation between these tasks. The methodology to quantify this transferability,
denoted gradual transfer learning, is as follows, which is also summarised in
Figure 4.1. First, two primary neural network models that comprise L layers
are trained for each dataset or task independently. Second, for each of the two
primary models, the learned parameters in all layers of the trained model, except
the output layer, are copied to a new model for the (other) secondary dataset or
task; the output layer can be randomly initialized, since it is closely tied to the
dataset or task at hand, e.g., the number of output classes in both datasets or
tasks may be different. Third, the first lc ∈ {0, . . . , LH} layers are held constant
and the remaining layers are fine-tuned for the secondary dataset or task, where
LH is the number of hidden layers in the model, i.e., LH = L− 1. If the constant
transferred layers lc are relevant to the secondary dataset or task, one can expect

CHAPTER 4. RELEVANCE OF FEATURES AND TASK RELATEDNESS 74

Task A

Task B

Task B

Task A

Figure 4.1: Gradual transfer learning between two tasks. The parameters of the
first and second models are initialized randomly (grey) and trained for Task A
(blue) and Task B (green) respectively. The third and fourth models are examples
of gradual transfer learning. The parameters of the third model are initialized
using the trained Task A model (blue) and the final three layers are fine-tuned
for Task B (green). The parameters of the fourth model are initialized using the
trained Task B model (green) and all layers except the first layer are fine-tuned for
Task A (blue).

CHAPTER 4. RELEVANCE OF FEATURES AND TASK RELATEDNESS 75

an insignificant or no drop in performance relative to the primary model trained
independently, and vice versa. By iteratively varying the number of constant layers
lc, the layer-wise transferability of representations learned for each dataset or task
to the other can be inferred.

Iterating lc through {0, . . . , LH} yields a number of special cases as follows. In
the case of lc = LH , the primary model can be regarded as a feature extractor to
the secondary model, in that the output layer is the only layer to be fine-tuned. In
the case of 1 ≤ lc < LH , the output layer is first fine-tuned for a small number of
iterations to avoid back-propagating gradients from randomly initialized parameters
to previous layers when the output layer is randomly initialized, and subsequently
the final (L− lc) layers (including the output layer) are fine-tuned simultaneously.
In the case of lc = 0, the output layer is first fine-tuned for a small number of
iterations, and then all layers of the model are fine-tuned simultaneously with
the output layer; in this case, the primary model can be regarded as only an
initialization to the secondary model.

4.3 Experiments in Image Recognition
The transferability and relevance of learned features in deep ConvNets between
image recognition tasks using the CIFAR-10, CIFAR-100, and SVHN datasets are
investigated using the gradual transfer learning methodology outlined in Section 4.1.
Section 4.3.1 details the experimental setup, which follows the setup detailed in
Section 3.2, and experiments carried out. Section 4.3.2 presents the results and
observations.

4.3.1 Experimental Setup

Datasets. The CIFAR-10 and CIFAR-100 datasets [Krizhevsky, 2009] (see Ap-
pendix A.1 for more details) as well as the SVHN dataset [Netzer et al., 2011] (see
Appendix A.5 for more details) were used in this experiment.

The training and test sets of each of the CIFAR datasets contain 50000 and
10000 images respectively. For each CIFAR dataset, the original training set was
split into a training set of 45000 images and a validation set of 5000 images; the
entire test set was used for testing.

The training and test sets of the SVHN dataset contain 73257 and 26032 images
respectively, and additionally, 531131 images are available that can be appended
to the training set. The original training set and additional set were combined and
split into a training set of 598388 images and a validation set of 6000 images. The
entire test set was used for testing.

The training, validation, and test sets of all datasets are mutually exclusive.

CHAPTER 4. RELEVANCE OF FEATURES AND TASK RELATEDNESS 76

Table 4.1: Densely connected convolutional network architecture for image recogni-
tion. The outputs of the convolutional layers in Blocks 2, 4, and 6, are concatenated
with the inputs to the layer and fed to the subsequent layer in the same block. K
denotes the number of output classes.

Block Repeat Type Size Other

1 1× Convolution 24, 3× 3 Stride = 1

2 12×

BatchNorm — —
ReLU — —

Convolution 12, 3× 3 Stride = 1
Dropout — r = 0.2

3 1×

BatchNorm — —
ReLU — —

Convolution 168, 1× 1 Stride = 1
Dropout — r = 0.2

Average Pooling 2× 2 Stride = 2

4 12×

BatchNorm — —
ReLU — —

Convolution 12, 3× 3 Stride = 1
Dropout — r = 0.2

5 1×

BatchNorm — —
ReLU — —

Convolution 312, 1× 1 Stride = 1
Dropout — r = 0.2

Average Pooling 2× 2 Stride = 2

6 12×

BatchNorm — —
ReLU — —

Convolution 12, 3× 3 Stride = 1
Dropout — r = 0.2

7 1×
BatchNorm — —

ReLU — —
Average Pooling 8× 8 Stride = 8

8 1× Fully Connected K —
Softmax — —

CHAPTER 4. RELEVANCE OF FEATURES AND TASK RELATEDNESS 77

Preprocessing. Standard data preprocessing steps were applied for all datasets
as commonly practised in the literature [Sermanet et al., 2012,Goodfellow et al.,
2013,Long et al., 2015]. The mean and standard deviation of the images in the
CIFAR datasets were normalized to zero and one respectively per colour channel
using the training set statistics for each dataset individually. The images in the
SVHN dataset were scaled via division by 255 to lie in the [0, 1] range. No data
augmentation was used for all datasets.

Model. The model used in this experiment follows the Densely Connected Con-
volutional Network (DenseNet) architecture [Huang et al., 2017]. It was shown to
achieve state-of-the-art performance on the datasets used in this experiment [Huang
et al., 2017]. The DenseNet architecture used is detailed in Table 4.1. The main
layers in the architecture can be grouped into blocks based on their type and role.
The dense blocks, Blocks 2, 4, and 6 in Table 4.1, comprise 12 layers of Batch
Normalization (BatchNorm), Rectified Linear Units (ReLUs), convolution, and
dropout. Each convolutional layer in Blocks 2, 4, and 6 in Table 4.1 is connected
to all subsequent layers in the same block via the concatenation operation. The
transition blocks, Blocks 3 and 5 in Table 4.1, are used to counteract the growth
in the number of parameters due to the use of the concatenation operation, and
are composed of a layer of BatchNorm, ReLUs, convolution, dropout, and average
pooling. A down-sampling block, Block 7 in Table 4.1, is used to further reduce
the complexity of the model, and is composed of BatchNorm, ReLUs, and average
pooling. The output layer is a fully connected layer followed by a softmax function.

Training and Implementation Details. The parameters of the convolutional
and fully connected layers were initialized randomly, sampling from a Gaussian
distribution, with zero mean and

√
2/ni and 1/

√
ni standard deviation for convo-

lutional and fully connected layers respectively, where ni is the number of inputs to
the layer, as recommended in [He et al., 2015]. Convolutional and fully connected
layers were regularized using weight decay with penalty λ = 1× 10−4 and dropout
with drop probability r = 0.2. Mini-batch Stochastic Gradient Descent (SGD)
was used to optimize the parameters with respect to a negative log-likelihood loss
function using batch size Mb = 64, learning rate α = 0.1, and Nesterov momentum
η = 0.9, for 300 and 40 epochs for the CIFAR and SVHN datasets respectively.
The initial learning rate α was divided by 10 at 50% and 75% of the total number
of training epochs. No early stopping was used in the case of the CIFAR datasets,
whereas the validation set was used for early stopping in the case of the SVHN
dataset. These settings follow [Huang et al., 2017] and are identical to the settings
described in Section 3.2.

The experiments were implemented using TensorFlow [Abadi et al., 2016].

CHAPTER 4. RELEVANCE OF FEATURES AND TASK RELATEDNESS 78

Training was carried out on NVIDIA Tesla K80 Graphics Processing Units (GPUs).
Training a single model from scratch on a single GPU required a wall time of
approximately 30 and 50 hours for the CIFAR and SVHN datasets respectively.

Gradual Transfer Learning. Three base models were trained independently
for the CIFAR-10, CIFAR-100, and SVHN datasets. Gradual transfer learning was
used to assess the layer-wise feature relevance for each dataset to the other two.
The architecture of the models comprised 40 layers in total as detailed in Table 4.1,
and thus the number of fixed layers was varied in block intervals as opposed
to single layer intervals, i.e., lc ∈ {0, Block 1, Blocks 2 and 3, Blocks 4 and 5,
Blocks 6 and 7}.

4.3.2 Results

The baseline models trained independently on each dataset achieved a validation
and test classification accuracy of respectively 100% and 92.91% on the CIFAR-10
dataset, 99.84% and 70.66% on the CIFAR-100 dataset, and 97.48% and 98.15% on
the SVHN dataset. The baseline results are also plotted in Figures 4.2, 4.3 and 4.4.
It is important to take into consideration that the number of images and classes
vary across the datasets when comparing the results with each other.

The results of gradual transfer learning between the CIFAR-10 and CIFAR-100
datasets are plotted in Figure 4.2. Both datasets are somewhat similar as both
datasets contain approximately the same categories of classes. The results plotted
in Figure 4.2 reflect this similarity. The difference between the baseline models and
the models that contain constant layers in Blocks 1, 2, and 3 is small. The gap
between the baseline models and the models that contain constant layers in Blocks
4, 5, 6, and 7 increases relative to preceding layers. This indicates that features
learned in layers in Blocks 1, 2, and 3 are relevant for both tasks, and the relevance
diminishes in layers in Blocks 4, 5, 6, and 7.

The results of gradual transfer learning between the CIFAR-10 and SVHN
datasets are plotted in Figure 4.3. The results demonstrate an intriguing observation:
features learned for the CIFAR-10 dataset are more relevant to the SVHN dataset
than features learned for the SVHN dataset are to the CIFAR-10 dataset, except
for layers in Blocks 6 and 7, which were somewhat not relevant in both cases.

The results of gradual transfer learning between the CIFAR-100 and SVHN
datasets are plotted in Figure 4.4. A similar observation to the observation in
Figure 4.3 is noted here; features learned for the CIFAR-100 dataset are more
relevant to the SVHN dataset than features learned for the SVHN dataset are to
the CIFAR-100 dataset, except for layers in Blocks 6 and 7, which were somewhat
not relevant in both cases.

CHAPTER 4. RELEVANCE OF FEATURES AND TASK RELATEDNESS 79

0

Blo
ck

1

Blo
ck

s 2
&

3

Blo
ck

s 4
&

5

Blo
ck

s 6
&

7

No. of Constant Layers (lc)

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

A
cc

ur
ac

y
(%

)

Gradual Transfer Learning from CIFAR-100 to CIFAR-10.

CIFAR-10 Base Val

CIFAR-10 Val

CIFAR-10 Base Test

CIFAR-10 Test

0

Blo
ck

1

Blo
ck

s 2
&

3

Blo
ck

s 4
&

5

Blo
ck

s 6
&

7

No. of Constant Layers (lc)

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Gradual Transfer Learning from CIFAR-10 to CIFAR-100.

CIFAR-100 Base Val

CIFAR-100 Val

CIFAR-100 Base Test

CIFAR-100 Test

Figure 4.2: Gradual transfer learning between the CIFAR-10 and CIFAR-100
datasets. Left. The validation and test accuracies of independent CIFAR-10
(dashed) and CIFAR-10 fine-tuned from CIFAR-100 (solid) as a function of the
number of constant layers. Right. The validation and test accuracies of indepen-
dent CIFAR-100 (dashed) and CIFAR-100 fine-tuned from CIFAR-10 (solid) as a
function of the number of constant layers.

0

Blo
ck

1

Blo
ck

s 2
&

3

Blo
ck

s 4
&

5

Blo
ck

s 6
&

7

No. of Constant Layers (lc)

60

65

70

75

80

85

90

95

100

A
cc

ur
ac

y
(%

)

Gradual Transfer Learning from SVHN to CIFAR-10.

CIFAR-10 Base Val

CIFAR-10 Val

CIFAR-10 Base Test

CIFAR-10 Test

0

Blo
ck

1

Blo
ck

s 2
&

3

Blo
ck

s 4
&

5

Blo
ck

s 6
&

7

No. of Constant Layers (lc)

30

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Gradual Transfer Learning from CIFAR-10 to SVHN.

SVHN Base Val

SVHN Val

SVHN Base Test

SVHN Test

Figure 4.3: Gradual transfer learning between the CIFAR-10 and SVHN datasets.
Left. The validation and test accuracies of independent CIFAR-10 (dashed) and
CIFAR-10 fine-tuned from SVHN (solid) as a function of the number of constant
layers. Right. The validation and test accuracies of independent SVHN (dashed)
and SVHN fine-tuned from CIFAR-10 (solid) as a function of the number of constant
layers.

CHAPTER 4. RELEVANCE OF FEATURES AND TASK RELATEDNESS 80

0

Blo
ck

1

Blo
ck

s 2
&

3

Blo
ck

s 4
&

5

Blo
ck

s 6
&

7

No. of Constant Layers (lc)

30

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Gradual Transfer Learning from SVHN to CIFAR-100.

CIFAR-100 Base Val

CIFAR-100 Val

CIFAR-100 Base Test

CIFAR-100 Test

0

Blo
ck

1

Blo
ck

s 2
&

3

Blo
ck

s 4
&

5

Blo
ck

s 6
&

7

No. of Constant Layers (lc)

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Gradual Transfer Learning from CIFAR-100 to SVHN.

SVHN Base Val

SVHN Val

SVHN Base Test

SVHN Test

Figure 4.4: Gradual transfer learning between the CIFAR-100 and SVHN datasets.
Left. The validation and test accuracies of independent CIFAR-100 (dashed) and
CIFAR-100 fine-tuned from SVHN (solid) as a function of the number of constant
layers. Right. The validation and test accuracies of independent SVHN (dashed)
and SVHN fine-tuned from CIFAR-100 (solid) as a function of the number of
constant layers.

Results plotted in Figures 4.2, 4.3 and 4.4 indicate that features learned for the
CIFAR-10 and CIFAR-100 datasets are more relevant to each other compared with
features learned for the SVHN dataset that were not as relevant to the CIFAR-10
and CIFAR-100 datasets, which reflects the relation between all three datasets.

4.4 Experiments in Speech Recognition
The transferability and relevance of learned features in deep ConvNets between ASR
using the TIMIT dataset and SER using the IEMOCAP dataset are investigated
via the gradual transfer learning methodology outlined in Section 4.1. Section 4.4.1
details the experimental setup, which follows the setup detailed in Section 3.3 and
Section 3.4, and experiments carried out. Section 4.4.2 presents the results and
observations.

4.4.1 Experimental Setup

Datasets. The TIMIT dataset [Garofolo et al., 1993] (see Appendix A.6 for
more details) was used for the ASR task. The complete 462-speaker training set,
without the dialect (SA) utterances, was used as the training set. The 50-speaker

CHAPTER 4. RELEVANCE OF FEATURES AND TASK RELATEDNESS 81

development set was used as the validation set. The 24-speaker core test set was
used as the test set. As commonly practised in the literature [Lee and Hon, 1989],
the 61 phonemes were mapped into 48 phonemes for training, which were then
mapped into 39 phonemes for scoring.

The IEMOCAP dataset [Busso et al., 2008] (see Appendix A.3 for more details)
was used for the SER task. Similar to the setup in Section 3.4, utterances that
bore only the following four emotions: anger, happiness, sadness, and neutral, were
included with excitement considered as happiness; amounting to a total of 5531
utterances. An eight-fold Leave-One-Speaker-Out (LOSO) cross-validation scheme
was employed in all experiments using the eight speakers in the first four sessions.
Both speakers in the fifth session were used as the validation set, and hence were
not included in the cross-validation folds to avoid biasing the results [Refaeilzadeh
et al., 2009].

Preprocessing. Utterances were split into 25 ms frames with a stride of 10 ms,
and a Hamming window was applied, then 40 log-Mel Frequency Spectral Coeffi-
cients (MFSCs) were extracted from each frame. The mean and standard deviation
were normalized per coefficient to zero and one respectively using the mean and
standard deviation computed from the training set only in the case of ASR and from
training subset in each fold in the case of SER. No speaker dependent operations
were performed.

In ASR, the Kaldi toolkit [Povey et al., 2011] was used to produce force-aligned
frame labels by training a mono-phone Gaussian Mixture Model (GMM)-Hidden
Markov Model (HMM) system with Mel Frequency Cepstral Coefficients (MFCCs).
In SER, the data was already labelled at an utterance level; hence, all frames in an
utterance inherited the utterance label. A voice activity detector was subsequently
used to label silent frames, and silence was added as an additional class to the four
previously mentioned emotion classes, i.e., a frame had either the same label as its
parent utterance or the silence label. This scheme was adopted to be consistent
with the ASR task since silence is considered a class in the TIMIT dataset and
contributes to the score. Moreover, the presence of silence and other disfluencies
can be an effective cue in emotion recognition [Tian et al., 2015b].

Model. The ASR system had a hybrid ConvNet-HMM architecture, as described
in Section 3.3. A ConvNet acoustic model was used to produce a probability
distribution over the states of three-state HMMs with a bi-gram language model
estimated from the training set. The SER system comprised only a ConvNet
acoustic model identical to the model used in ASR.

Acoustic models in ASR typically utilize a smaller window of frames of features
computed from speech compared with acoustic models in ASR as shown in Figure 3.4.

CHAPTER 4. RELEVANCE OF FEATURES AND TASK RELATEDNESS 82

The number of frames was determined empirically using the validation sets in both
tasks and it was found that 31–41 frames was a good trade-off between both tasks.
Temporal derivatives were not appended to the input as commonly done in ASR
since it was observed that appending temporal derivatives degraded the accuracy
of SER.

Two ConvNet architectures were used to isolate architecture-specific behaviour
and trends. The first architecture is detailed in Table 4.2 and denoted Model
A. The model is a standard ConvNet that comprises two convolutional and max
pooling layers, followed by four fully connected layers, with BatchNorm and ReLUs
interspersed in-between. The final fully connected layer is followed by a softmax
function to predict the probability distribution over 144 classes in the case of ASR,
i.e., three HMM states per 48 phonemes, or 5 classes in the case of SER. The second
architecture is detailed in Table 4.3 and denoted Model B. The architecture is a
variant of the popular VGGNet architecture [Simonyan and Zisserman, 2014,Sercu
et al., 2016]. The architecture comprises a number of convolutional, BatchNorm,
and ReLUs layers, with a few max pooling layers used throughout the architecture
as indicated in Table 4.3, followed by three fully connected layers, with BatchNorm,
ReLUs, and dropout interspersed in-between. The final fully connected layer is
followed by a softmax function to predict the probability distribution over 144
classes in the case of ASR, i.e., three HMM states per 48 phonemes, or 5 classes in
the case of SER.

Training and Implementation Details. The training and implementation
details of each architecture differed slightly following the recommenced practice for
each model in prior literature. The hyperparameters reported below were tuned
using the validation set and are similar to the settings described in Section 3.3.

The parameters of the convolutional and fully connected layers of Model A were
initialized randomly, sampling from a Gaussian distribution, with zero mean and√

2/ni and 1/
√
ni standard deviation for convolutional and fully connected layers

respectively, where ni is the number of inputs to the layer, as recommended in [He
et al., 2015]. Convolutional layers were regularized using weight decay with penalty
λ = 1× 10−3 and fully connected layers were regularized using dropout with drop
probability r = 0.4. RMSProp was used to optimize the parameters of Model A
with respect to a negative log-likelihood loss function using batch size Mb = 256,
learning rate α = 1× 10−3 and α = 1× 10−4 for ASR and SER respectively, and
decay rate η = 0.99. The validation set was used for early stopping such that
training halts if the validation error ceases to improve for three consecutive epochs.

The parameters of the convolutional and fully connected layers of Model B were
initialized randomly, sampling from a Gaussian distribution, with zero mean and√

2/ni and 1/
√
ni standard deviation for convolutional and fully connected layers

CHAPTER 4. RELEVANCE OF FEATURES AND TASK RELATEDNESS 83

Table 4.2: Speech recognition convolutional neural network Model A architecture.
K denotes the number of output classes.

№ Type Size Other

1

Convolution 64, 5× 4 Stride = 1
BatchNorm — —

ReLU — —
Max Pooling 2× 2 Stride = 2

2

Convolution 128, 3× 3 Stride = 1
BatchNorm — —

ReLU — —
Max Pooling 2× 2 Stride = 2

3
Fully Connected 1024 —

BatchNorm — —
ReLU — —

Dropout — r = 0.4

4
Fully Connected 1024 —

BatchNorm — —
ReLU — —

Dropout — r = 0.4

5
Fully Connected 1024 —

BatchNorm — —
ReLU — —

Dropout — r = 0.4

6
Fully Connected K —

Softmax — —

CHAPTER 4. RELEVANCE OF FEATURES AND TASK RELATEDNESS 84

Table 4.3: Speech recognition convolutional neural network Model B architecture.
K denotes the number of output classes.

№ Repeat Type Size Other

1

Convolution 64, 6× 5 Stride = 1
1× BatchNorm — —

ReLU — —

Convolution 64, 3× 3 Stride = 1
1× BatchNorm — —

ReLU — —

1× Max Pooling 2× 2 Stride = 2

2
2×

Convolution 128, 3× 3 Stride = 1
BatchNorm — —

ReLU — —

1× Max Pooling 2× 2 Stride = 2

3
3×

Convolution 256, 3× 3 Stride = 1
BatchNorm — —

ReLU — —

1× Max Pooling 2× 2 Stride = 2

4
3×

Convolution 256, 3× 3 Stride = 1
BatchNorm — —

ReLU — —

1× Max Pooling 2× 2 Stride = 2

5 1×

Fully Connected 1024 —
BatchNorm — —

ReLU — —
Dropout — r = 0.4

6 1×

Fully Connected 1024 —
BatchNorm — —

ReLU — —
Dropout — r = 0.4

7 1× Fully Connected K —
Softmax — —

CHAPTER 4. RELEVANCE OF FEATURES AND TASK RELATEDNESS 85

respectively, where ni is the number of inputs to the layer, similar to Model A. All
layers in Model B were regularized using weight decay with penalty λ = 1× 10−3

and fully connected layers were also regularized using dropout with drop probability
r = 0.4. ADAM was used to optimize the parameters of Model B with respect
to a negative log-likelihood loss function using batch size Mb = 256, learning rate
α = 1 × 10−3 and α = 1 × 10−4 for ASR and SER respectively, first moment
β1 = 0.99, and second moment β2 = 0.999 for 110× 103 iterations.

The experiments were implemented using MatDL [Fayek, 2017] and Tensor-
Flow [Abadi et al., 2016]. Training was carried out using NVIDIA Tesla K40 and
K80 GPUs. Training a single model from scratch on a single GPU required a wall
time of approximately 15–48 hours depending on the architecture and GPU used.

Gradual Transfer Learning. Two base models were trained independently for
the ASR and SER tasks. Gradual transfer learning was used to assess the layer-wise
feature relevance between both tasks.

4.4.2 Results

The Frame Error Rate (FER) and Phone Error Rate (PER) are reported for the
ASR task. The Error (E) and Unweighted Error (UE) (1− Unweighted Average
Recall (UAR)) are reported for the SER task to reflect imbalanced classes [Schuller
et al., 2009a]. These metrics are the average of the eight-fold LOSO cross-validation
scheme, except for the ASR base model since the data split was predefined.

The base ASR Model A achieved an FER of 30.53% and 31.61% and a PER
of 18.71% and 20.18% on the validation and test sets respectively. The base ASR
Model B achieved an FER of 29.35% and 30.69% and a PER of 17.67% and 19.4%
on the validation and test sets respectively. The base SER Model A achieved
an error of 44.63% and 46.44% and an unweighted error of 46.34% and 48.96%
on the validation and test sets respectively. The base SER Model B achieved an
error of 46.89% and 48.47% and an unweighted error of 48.57% and 50.40% on the
validation and test sets respectively.

The learned features in the first layer of the ConvNet Model A for both tasks
are visualized in Figure 4.5. It is evident that features in ASR are smoother and
more attuned to detect rapid variations in the input. However, learned features in
SER did not demonstrate a similar pattern; this can be attributed to the longer
period in which emotions manifest in speech.

The results of gradual transfer learning between ASR and SER using Model A
outlined in Table 4.2 are listed in Tables 4.4 and 4.5 and plotted in Figure 4.6. The
results of gradual transfer learning between ASR and SER using Model B outlined
in Table 4.3 are listed in Tables 4.6 and 4.7 and plotted in Figure 4.7.

CHAPTER 4. RELEVANCE OF FEATURES AND TASK RELATEDNESS 86

Figure 4.5: Learned features in the first layer of the convolutional neural network
Model A detailed in Table 4.3 for the automatic speech recognition task (left) and
the speech emotion recognition task (right).

Table 4.4: Validation and test Frame Error Rate (FER) and Phone Error Rate
(PER) of gradual transfer learning from the speech emotion recognition task
(IEMOCAP) to the automatic speech recognition task (TIMIT) with convolutional
neural network Model A.

№ of Constant FER PER

Layers (lc) Validation Test Validation Test

Baseline 30.53% 31.61% 18.71% 20.18%

5 71.09% 71.64% 61.15% 61.82%

4 53.26% 53.92% 42.96% 44.13%

3 40.29% 40.97% 28.81% 30.48%

2 31.75% 32.87% 20.08% 21.85%

1 30.83% 32.01% 18.99% 20.94%

0 30.62% 31.65% 18.73% 20.57%

CHAPTER 4. RELEVANCE OF FEATURES AND TASK RELATEDNESS 87

0 1 2 3 4 5
No. of Constant Layers (lc)

20

30

40

50

60

E
rr

or
R

at
e

(%
)

Gradual Transfer Learning from SER to ASR.

ASR Baseline Val PER

ASR Val PER

ASR Baseline Test PER

ASR Test PER

0 1 2 3 4 5
No. of Constant Layers (lc)

47.5

50.0

52.5

55.0

57.5

60.0

62.5

E
rr

or
R

at
e

(%
)

Gradual Transfer Learning from ASR to SER.

SER Baseline Val UE

SER Val UE

SER Baseline Test UE

SER Test UE

Figure 4.6: Gradual transfer learning between the automatic speech recognition
task and the speech emotion recognition task with convolutional neural network
Model A. Left. The Phone Error Rate (PER) of independent automatic speech
recognition (TIMIT) (dashed) and automatic speech recognition (TIMIT) fine-
tuned from speech emotion recognition (IEMOCAP) (solid) as a function of the
number of constant layers. Right. The Unweighted Error (UE) of independent
speech emotion recognition (IEMOCAP) (dashed) and speech emotion recognition
(IEMOCAP) fine-tuned from automatic speech recognition (TIMIT) (solid) as a
function of the number of constant layers.

Table 4.5: Validation and test error and unweighted error of gradual transfer
learning from the automatic speech recognition task (TIMIT) to the speech emotion
recognition task (IEMOCAP) with convolutional neural network Model A.

№ of Constant Error Unweighted Error

Layers (lc) Validation Test Validation Test

Baseline 44.63% 46.44% 46.34% 48.96%

5 52.55% 59.20% 62.50% 64.03%

4 51.94% 53.34% 56.21% 56.18%

3 50.22% 52.01% 54.18% 54.37%

2 47.39% 48.50% 47.72% 49.82%

1 46.37% 48.36% 47.61% 50.57%

0 45.26% 46.97% 46.60% 48.95%

CHAPTER 4. RELEVANCE OF FEATURES AND TASK RELATEDNESS 88

0 1 2 3 4 5 6
No. of Constant Layers (lc)

20

30

40

50

60

70

80

E
rr

or
R

at
e

(%
)

Gradual Transfer Learning from SER to ASR.

ASR Baseline Val PER

ASR Val PER

ASR Baseline Test PER

ASR Test PER

0 1 2 3 4 5 6
No. of Constant Layers (lc)

48

50

52

54

56

58

60

E
rr

or
R

at
e

(%
)

Gradual Transfer Learning from ASR to SER.

SER Baseline Val UE

SER Val UE

SER Baseline Test UE

SER Test UE

Figure 4.7: Gradual transfer learning between the automatic speech recognition
task and the speech emotion recognition task with convolutional neural network
Model B. Left. The Phone Error Rate (PER) of independent automatic speech
recognition (TIMIT) (dashed) and automatic speech recognition (TIMIT) fine-
tuned from speech emotion recognition (IEMOCAP) (solid) as a function of the
number of constant layers. Right. The Unweighted Error (UE) of independent
speech emotion recognition (IEMOCAP) (dashed) and speech emotion recognition
(IEMOCAP) fine-tuned from automatic speech recognition (TIMIT) (solid) as a
function of the number of constant layers.

Table 4.6: Validation and test Frame Error Rate (FER) and Phone Error Rate
(PER) of gradual transfer learning from the speech emotion recognition task
(IEMOCAP) to the automatic speech recognition task (TIMIT) with convolutional
neural network Model B.

№ of Constant FER PER

Layers (lc) Validation Test Validation Test

Baseline 29.35% 30.69% 17.67% 19.4%

6 87.96% 87.69% 61.15% 78.56%

5 86.90% 86.73% 61.15% 75.96%

4 75.75% 76.05% 42.96% 64.22%

3 49.02% 50.10% 28.81% 35.07%

2 34.24% 35.65% 20.08% 22.05%

1 31.12% 32.14% 18.99% 19.16%

0 30.39% 31.39% 18.73% 18.36%

CHAPTER 4. RELEVANCE OF FEATURES AND TASK RELATEDNESS 89

Table 4.7: Validation and test error and unweighted error of gradual transfer
learning from the automatic speech recognition task (TIMIT) to the speech emotion
recognition task (IEMOCAP) with convolutional neural network Model B.

№ of Constant Error Unweighted Error

Layers (lc) Validation Test Validation Test

Baseline 46.89% 48.47% 48.57% 50.40%

6 53.86% 57.15% 60.53% 60.94%

5 52.14% 54.22% 55.38% 56.58%

4 50.91% 52.19% 52.81% 54.05%

3 47.00% 49.23% 49.76% 51.76%

2 47.36% 48.28% 49.15% 50.98%

1 46.98% 48.86% 49.15% 51.04%

0 46.61% 49.11% 49.38% 51.72%

Several observations can be made from the results. Whether transfer learning
from ASR to SER or from SER to ASR, the first two layers were relevant to the
other task, i.e., could be transferred without fine-tuning and achieve performance
comparable with the base models; the relevance of subsequent layers decreased grad-
ually, i.e., transferring subsequent layers without fine-tuning led to a degradation
in performance such that the extent of the degradation was positively correlated
with the number of fixed layers in a quasi-linear manner. Both architectures
demonstrated similar behaviour.

4.5 Discussion
The gradual transfer learning methodology was explored under a variety of settings
and conditions as detailed in Sections 4.3 and 4.4. Consistent behaviour emerged
that reflected the nature of the datasets or tasks involved.

Gradual Layer Specificity. Regardless of the architecture of the model, dataset,
or task, the layer-wise feature specificity was positively correlated with the depth
of the layer in the neural network, i.e., initial layers were more transferable than
deeper layers. The transition in transferability between initial layers and deep
layers was gradual, i.e., transferring initial learned layers without fine-tuning from
one model trained for a dataset or task to another model for another dataset or
task led to no or little degradation in performance, under the datasets or tasks

CHAPTER 4. RELEVANCE OF FEATURES AND TASK RELATEDNESS 90

studied herein, compared to the same model with no transferred layers, and the
performance degraded gradually thereafter as we traversed deeper into the network
towards final layers.

Non-symmetric Relevance. As shown in Figures 4.2, 4.3 and 4.4, the layer-
wise relevance between two datasets or tasks can be non-symmetric This is shown
in Figures 4.3 and 4.4, where features learned for the CIFAR-10 and CIFAR-100
datasets were found to be more relevant to the SVHN dataset than features learned
for the SVHN dataset were found to be relevant to the CIFAR-10 and CIFAR-100
datasets.

Architecture Agnostic Behaviour. The architecture of the model is likely to
influence the layer-wise relevance between datasets or tasks. However, under the
datasets or tasks studied herein, it can be seen from Figures 4.6 and 4.7 that the
architecture did not have a significant effect on the layer-wise relevance between
datasets or tasks. Two different architectures, as described in Tables 4.2 and 4.3,
were used to assess the layer-wise relevance between the ASR task and the SER
task, yet similar trends were obtained as shown in Figures 4.6 and 4.7 respectively.

Layer-wise Relevance as an Indication to the Relation between Tasks.
The main premise put forward in this chapter is that the layer-wise relevance of
features in deep networks between two tasks can be used to understand the relation
between these tasks. The true relation between the tasks studied in this work
is unknown. Nevertheless, the CIFAR-10 and CIFAR-100 can be assumed to be
more closely related to each other compared with their relation with the SVHN
dataset, as the CIFAR-10 and CIFAR-100 datasets contain similar categories of
classes. This is reflected in the results in Figures 4.2, 4.3 and 4.4, where features
learned for the CIFAR-10 and CIFAR-100 datasets were more relevant to each
other, compared with features learned for the SVHN dataset that were not as
relevant to the CIFAR-10 and CIFAR-100 datasets.

4.6 Summary
A methodology for understanding the layer-wise relevance of features in deep
networks between two tasks denoted gradual transfer learning was proposed, where
the relevance of each layer of features in a network trained for one task to the other
task is illuminated via transfer learning. The gradual transfer learning methodology
was explored on a number of datasets and tasks in the image recognition and
speech recognition domains. Within the datasets or tasks studied herein, consistent
behaviour emerged that reflected the nature of the datasets or tasks involved such

CHAPTER 4. RELEVANCE OF FEATURES AND TASK RELATEDNESS 91

that the specificity of the features in deep networks was found to be positively
correlated with the depth of the layer in the neural network. The gradual transfer
learning methodology can be used for understanding the relation between two tasks,
which can aid in designing and implementing systems that aim to address multiple
tasks.

The findings and insights gained in this chapter will be used in the next chapter
to build a continual learning framework that aims to learn and perform multiple
tasks.

Chapter 5

Progressive Learning

Continual learning is the ability of a learning system to solve new tasks by
utilizing previously acquired knowledge from learning and performing prior

tasks without having significant adverse effects on the acquired prior knowledge.
In this chapter, progressive learning is proposed, a deep learning framework that
formulates continual learning into three procedures: curriculum, progression, and
pruning. The curriculum procedure is used to actively select a task to learn from
a set of candidate tasks. The progression procedure is used to grow the capacity
of the model by adding new parameters that leverage parameters learned in prior
tasks, while learning from data available for the new task at hand, without being
susceptible to catastrophic forgetting. The pruning procedure is used to counteract
the growth in the number of parameters as further tasks are learned, as well as to
mitigate negative forward transfer, in which prior knowledge unrelated to the task
at hand may interfere and worsen performance. Progressive learning is evaluated
on a number of tasks in the image recognition and speech recognition domains that
were studied in the previous chapters to demonstrate its advantages compared with
baseline methods. It is shown that when tasks are related, progressive learning
leads to faster learning that converges to better generalization performance using a
smaller number of dedicated parameters.

Outline. This chapter is structured as follows. Section 5.1 outlines the motiva-
tions and advantages of progressive learning. Section 5.2 reviews related prior work.
Section 5.3 describes progressive learning. Section 5.4 presents experiments and
results in the image recognition domain using tasks derived from the CIFAR-10
and CIFAR-100 datasets. Section 5.5 presents experiments and results in the
speech recognition domain using tasks derived from the TIMIT, IEMOCAP, and
eNTERFACE datasets. Section 5.6 provides a discussion and outlines related future
work. Finally, Section 5.7 summarizes the chapter.

92

CHAPTER 5. PROGRESSIVE LEARNING 93

5.1 Background
Learning from a tabula rasa is the most common machine learning paradigm [Mikolov
et al., 2018]. For an arbitrary task tk ∈ T∞ = {ti | i ∈ Z+}, a model fk is ini-
tialized and trained using a dataset D(train)

k or environment Ek to minimize a
loss function `k or maximize a reward rk with the aim of achieving a certain
objective ok. Contrary to human learning, the model fk does not take into ac-
count knowledge learned in prior models Fk−1 = {fi | 1 ≤ i ≤ k − 1} for tasks
Tk−1 = {ti | 1 ≤ i ≤ k− 1} using datasets Dk−1 = {D(train)

i | 1 ≤ i ≤ k− 1} or envi-
ronments Ek−1 = {Ei | 1 ≤ i ≤ k − 1}, which may lead to a slower learning process
that requires more data and possibly results in suboptimal performance [Lake et al.,
2017]. Continual learning is key to advancing machine learning, whereby experi-
ences and knowledge can be accumulated and re-purposed over tasks T∞ [Thrun
and Mitchell, 1995]∗.

As previously mentioned in Section 2.9, continual learning is defined as follows:
“The system has performed K tasks. When faced with the (K + 1)th task, it
uses the knowledge gained from the K tasks to help the (K + 1)th task.” [Thrun,
1996]. This poses numerous challenges, two of which are catastrophic forgetting
and negative forward transfer. Catastrophic forgetting [McCloskey and Cohen,
1989,Ratcliff, 1990] refers to the case when the performance of the system for the
K tasks degrades when it learns the (K + 1)th task, as the model forgets the K
tasks to learn the (K + 1)th task. Negative forward transfer refers to the case
when the K tasks have a negative effect on the performance of the system for the
(K + 1)th task, which can occur when the (K + 1)th task is not related to any of
the K tasks leading to interfere and worse performance.

Continual learning requires: (1) a strategy to select the next task to learn from
a pool of candidate tasks to facilitate learning; (2) a mechanism to efficiently grow
the capacity of the model to accommodate learning new tasks (if necessary); and,
(3) a method to accumulate, maintain, and utilize knowledge to learn future tasks
without significant adverse effects on the learned tasks.

Herein, progressive learning is proposed, a deep learning framework for continual
learning that aims to address the aforementioned three desiderata. Progressive
learning comprises three procedures: curriculum, progression, and pruning. Cur-
riculum is used to actively select a subsequent task to learn from a pool of candidate
tasks. Progression grows the capacity of the model by adding new parameters,
denoted progressive block, that leverage parameters learned in prior tasks to learn
from data available for the new task at hand. Only new parameters are trained, and
existing parameters are not altered, which sidesteps the problem of catastrophic

∗Since the total number of tasks at a given time is known to be finite, T∞ is reduced to
TN = {ti | 1 ≤ i ≤ N}.

CHAPTER 5. PROGRESSIVE LEARNING 94

Input

Curriculum 2

Pruned Weights

Task 12

3

Task 24

6 Curriculum 3

Task 37

Prune 25 Prune 38

…

Curriculum 11

Figure 5.1: Overview of progressive learning for three tasks. Initially, a curriculum
strategy is used to select a task (blue) from the pool of candidate tasks. Second, a
model is trained to perform the selected task (blue), and the learned parameters
are constant thereafter. Third, the curriculum strategy is employed to select the
subsequent task (purple). Fourth, new model parameters, denoted progressive
block, which draw connections from the preceding layer in the block as well as the
preceding layer in prior progressive block(s), are added and trained to perform the
selected task (purple). Fifth, after training the newly added progressive block to
convergence, a pruning procedure is used to remove weights without compromising
performance. Finally, the curriculum, progression, and pruning procedures are
repeated for the third task (green), and for all remaining task(s) subsequently.

forgetting; however, this leads to growth in the number of parameters as the number
of tasks increases. Pruning is used to counteract this growth, where it is used to
attempt to remove newly added trained weights in a greedy layer-wise manner
without compromising performance. Pruning may also aid in mitigating negative
forward transfer as it may allow progressive learning to be reduced to independent
learning by removing parameters between progressive blocks, if the new task is not
related to prior tasks. Figure 5.1 illustrates the progressive learning framework.

Despite relevant work in curriculum [Bengio et al., 2009,Ruvolo and Eaton,
2013a], progression [Terekhov et al., 2015,Rusu et al., 2016], and pruning [LeCun
et al., 1990,Han et al., 2015], there is no deep learning framework for continual
learning to point to. The main novel contribution of progressive learning is the
construction and formulation of a deep learning framework that allows a holistic
and systematic approach to continual learning. Key to the viability of progressive
learning is the following:

CHAPTER 5. PROGRESSIVE LEARNING 95

• The curriculum procedure offers a straight-forward strategy for active task
selection, i.e., select a task from a pool of candidate tasks, with respect to the
current state of knowledge leading to a natural development in task difficulty.

• The progression procedure provides a mechanism to grow the capacity of the
model to accommodate learning new tasks, encourages the reuse of features
by concatenating features learned in prior tasks with features being learned
for the task at hand, and avoids catastrophic forgetting.

• The greedy layer-wise pruning procedure builds on intuition that the specificity
of features varies across layers in deep networks, as shown in Chapter 4, and
therefore aims to adjust the pruning amount per layer to counteract the growth
in the number of parameters. Furthermore, the pruning procedure can aid
in mitigating negative forward transfer by reducing progressive learning to
independent learning via removing parameters between progressive blocks if
tasks are unrelated.

Progressive learning is the first to package the aforementioned features into a single
framework.

5.2 Related Work
Continual Learning. Continual learning in deep learning and neural networks
has been studied in numerous prior works and several paradigms have been proposed,
as reviewed in Section 2.9.

Curriculum. Curriculum learning follows the notion that a meaningful order
of tasks when learning multiple tasks sequentially could significantly facilitate
learning [Elman, 1993]. Curriculum strategies for training deep neural networks
were studied in [Bengio et al., 2009,Graves et al., 2017], while active task selection
was studied in [Ruvolo and Eaton, 2013a]. Therein, models trained with curriculum
strategies outperformed the same models trained without curriculum strategies
indicating the importance of a structured process to determine a meaningful order
of tasks. Note that some studies reported that curriculum strategies that start
with easier tasks and progress towards harder tasks outperformed anti-curriculum
strategies that start with harder tasks and progress towards easier tasks [Bengio
et al., 2009,Graves et al., 2017], whereas other studies found the opposite to be
true [Ruvolo and Eaton, 2013a].

Progression. Block-modular neural networks were proposed in [Terekhov et al.,
2015], and similarly, progressive neural networks were proposed in [Rusu et al.,

CHAPTER 5. PROGRESSIVE LEARNING 96

2016]. Both approaches were explicitly designed for learning tasks in a sequential
manner by training a model for each task that is connected to prior models via
adaptive connections. For example, progressive neural networks [Rusu et al., 2016]
start with a standard multi-layered neural network trained for some arbitrary
task; for every new subsequent task, an additional multi-layered neural network,
denoted block (or column in [Rusu et al., 2016]), connected to prior block(s) via
lateral connections in addition to its own connections, is added to the network and
trained for the new task at hand; all prior block(s) remain constant, thus avoiding
catastrophic forgetting. A block is connected to prior block(s) via progressive
layers that draw connections from the previous layer in its own block as well as the
previous layer in prior block(s), as follows:

ŷ
(l)
(k) = φ

(
W

(l)
(k)ŷ

(l−1)
(k) +

∑
j<k

U
(l)
(k:j)ŷ

(l−1)
(j)

)
, (5.1)

where ŷ
(l)
(k) ∈ Rnlk is the vector of activations of layer l in block fk, nlk is the

number of units in layer l in block fk, φ is an element-wise non-linear function,
W

(l)
(k) ∈ Rnlk

×n(l−1)k is the weight matrix of layer l in block fk, ŷ
(l−1)
(k) ∈ Rn(l−1)k is the

vector of activations of the previous layer (l − 1) in block fk, U
(l)
(k:j) ∈ Rnlk

×n(l−1)j

are the lateral connections from layer (l − 1) in block fj to layer l in block fk, and
y

(l−1)
(j) ∈ Rn(l−1)j is the vector of activations of the previous layer (l − 1) in block fj .

Pruning. Pruning the parameters of neural networks can not only be used
to decrease the computational and memory requirements and speed up training
and inference [Han et al., 2015, Han et al., 2016, Louizos et al., 2018], but can
also improve generalization [LeCun et al., 1990, Hassibi and Stork, 1993, Reed,
1993, Louizos et al., 2018] as deep neural networks, in particular, are typically
over-parametrized, which can easily lead to over-fitting. The pruning procedure
used here is an extension to the pruning method proposed in [Han et al., 2015,Han
et al., 2016] that relies on training a neural network via standard methods, followed
by pruning unimportant parameters, then fine-tuning the remaining parameters of
the network to compensate for the pruned parameters.

Progressive Learning Progressive learning extends and unifies several key ideas
in curriculum, progression, and pruning into a holistic and systematic framework
for continual learning. The curriculum procedure in progressive learning is a simple
method for active task selection that allows for a natural development in task
difficulty relative to the state of knowledge, unlike prior work [Ruvolo and Eaton,
2013a], which found anti-curriculum methods to work better. The progression
procedure in progressive learning relies on the concatenation operation, which

CHAPTER 5. PROGRESSIVE LEARNING 97

Input

Task 1

Pruned Weights

Input

…

Input

Task 1 Task 2 Task 1 Task 2 Task 3

Curriculum 2 Curriculum 3Curriculum 1

Figure 5.2: Procedural illustration of progressive learning for three tasks. In the
first iteration, a curriculum strategy is used to select a task (blue) from the pool
of candidate tasks. Then, a model is trained to perform the selected task (blue),
and the learned parameters are constant thereafter. In the second iteration, the
curriculum strategy is employed to select the subsequent task (purple). Then, new
model parameters, denoted progressive block, which draw connections from the
preceding layer in the block as well as the preceding layer in prior progressive
block(s), are added and trained to perform the selected task (purple). Subsequently,
after training the newly added progressive block to convergence, a pruning procedure
is used to remove weights without compromising performance. In the third iteration,
the curriculum, progression, and pruning procedures are repeated for the third task
(green). Further iterations of the three procedures continue for all following task(s).

encourages the reuse of features [Huang et al., 2017], instead of the summation
operation used in [Rusu et al., 2016]. The pruning procedure in progressive learning
is carried out in a greedy layer-wise manner, unlike prior work [Han et al., 2015],
which prunes the entire network concurrently. These procedures can be regarded
as modular building blocks for the progressive learning framework that may be
employed individually or in combination as required. Other procedures can be
added to progressive learning to address further desiderata of continual learning.

5.3 Progressive Learning
Progressive learning, introduced and investigated in this work, is a deep learning
framework for continual learning, whereby tasks are learned in sequence with the
ability to use prior knowledge from previously learned tasks to facilitate the learning
and execution of new ones. The iterative framework comprises three procedures:
curriculum, progression, and pruning, which are presented in Sections 5.3.1, 5.3.2
and 5.3.3 respectively.

Intuitively, the curriculum procedure employs a strategy to select the subsequent

CHAPTER 5. PROGRESSIVE LEARNING 98

task to learn from a pool of candidate tasks to facilitate learning, the progression
procedure grows the capacity of the model by adding new parameters that leverage
parameters learned in prior tasks, while learning from data available for the new
task at hand, without being susceptible to catastrophic forgetting, and finally, the
pruning procedure is used to counteract the growth in the number of parameters
in the progression procedure as further tasks are learned, and can also aid in
mitigating negative forward transfer.

Algorithm 5.6 is a functional decomposition of progressive learning in the
supervised learning case, where the objective is to learn a model y(k) = Fk(x(k))

for task tk that has a dataset D(train)
k composed of Mk exemplars X(k) ∈ RMk×nik

and corresponding labels or targets Y(k) ∈ RMk×nck such that nik and nck are the
dimensionalities of the input and output respectively, x(k) ∈ X(k), and y(k) ∈ Y(k).
Figure 5.2 is a procedural illustration of progressive learning.

5.3.1 Curriculum

The objective of the curriculum procedure is to determine the most appropriate
subsequent task to learn from a pool of candidate tasks with respect to the state
of knowledge at the time.

Consider a pool of tasks TP ⊂ TN , where TN is a set of N classification or
regression tasks, a classification or regression model gj can be trained and evaluated
for each candidate task tj ∈ TP , using data available for the respective task Dj and
features computed from the model learned in prior tasks fk−1. The performance of
each of these classification or regression models gj can then be used to measure
the relevance of the current features in fk−1 to each of these tasks tj [Fayek et al.,
2018]. The subsequent task tk can be chosen using a metric that utilizes the
performance of the classification or regression models gj. Herein, the task with
the highest performance, i.e., the task that can be best solved using the already
learned features, is chosen as in Equation (5.2). Following Equation (5.2) is likely
to lead to a natural progression in task difficulty relative to the state of knowledge
at each iteration.

tk = argmax
tj∈Tp

R
(
gj

(
fk−1

(
X(j); Θ

(1:(L(k−1)−1))?

k−1

)
;ψj

)
; Y(j)

)
(5.2)

where R denotes some measure of positive normalized performance (the larger,
the better), gj is a classification or regression model parametrized by adaptive
parameters ψj trained using features extracted from fk−1(X(j); Θ

(1:(L(k−1)−1))?

k−1) such
that parameters Θ

(1:(L(k−1)−1))?

k−1 were trained on some previous task tk−1 and held
constant thereafter, L(k−1) is the total number of layers in block fk−1, X(j) and Y(j)

are the training / validation exemplars and labels / targets of task tj respectively.
When k = 1, gj can be trained on the data directly.

CHAPTER 5. PROGRESSIVE LEARNING 99

Algorithm 5.6 Functional decomposition of progressive learning in the supervised
learning case.
Require: Candidate Tasks TN = {ti | 1 ≤ i ≤ N}
Require: Datasets DN = {Di = (X(i),Y(i), ti) | 1 ≤ i ≤ N}
Output: Model FK = {fi | 1 ≤ i ≤ K}

// FK is a model of K progressive blocks,
// each fk is trained for its respective task tk ∈ TN using Dk ∈ DN

1: Initialize:
TK = ∅ // learned tasks s.t. TK ⊂ TN
DK = ∅ // processed datasets s.t. DK ⊂ DN

TP ← TN − TK // remaining tasks s.t. TP ⊂ TN
DP ← DN −DK // remaining datasets s.t. DP ⊂ DN

FK = ∅
2: for k = 1 to N do
3: Curriculum: select next task tk ∈ Tp // see Section 5.3.1
4: Progression: train fk on task tk using Dk = (X(k),Y(k), tk)

// see Section 5.3.2
5: if k > 1 then
6: Pruning: prune fk // see Section 5.3.3
7: end if
8: TP ← TP − tk
9: DP ← DP − Dk

10: TK ← TK + tk
11: DK ← DK + Dk

12: FK ← FK + fk
13: end for
14: return Model FK

The curriculum procedure is a dynamic process that evaluates which task to
learn at each iteration. For N tasks, this requires N(N + 1)/2 classification or
regression models to be trained and evaluated, assuming no new tasks are introduced
to the pool of candidate tasks. Training a simple classification or regression model
is not as computationally demanding as training a deep model. Further, training
and evaluation can be carried out on only a subset of the candidate tasks or using
only a subset of the available data for each task.

5.3.2 Progression

The objective of the progression procedure is to (1) increase the capacity of the
model by adding new parameters to accommodate learning a new task; more

CHAPTER 5. PROGRESSIVE LEARNING 100

importantly, (2) provide a mechanism to leverage parameters learned in prior tasks
while learning the new task at hand from data available for the task without being
susceptible to catastrophic forgetting.

This can be achieved by instantiating and training a new multi-layered neural
network for each new task with randomly initialized parameters, denoted progressive
block, that in addition to its layer-to-layer connections, draws connections from
respective preceding layers in existing progressive blocks, i.e., a layer in a progressive
block receives input from the preceding layer in that block, as well as the preceding
layer in all prior blocks. The parameters in the newly added progressive block
provide the model with the additional capacity to learn the new task, while
the connections between the prior blocks and the newly added block provide a
mechanism to leverage parameters learned in prior tasks.

Progressive learning leads to a model that is formed of multiple progressive
blocks that are in turn formed of multiple progressive layers, where initially a
standard neural network f1 is trained on task t1 using dataset D1, followed by a
progressive block fk for each subsequent task tk that is trained using only dataset Dk.
Catastrophic forgetting is prevented by only training the newly added parameters
of progressive block fk, while all parameters in prior blocks remain constant. At
inference time for task tk, the forward pass of a progressive neural network will
propagate through progressive blocks {fi | 1 ≤ i ≤ k}.

Formally, consider a standard fully connected layer (see Equation (2.21) and
Equation (2.22)):

ŷ(l) = φ(W(l)ŷ(l−1)), (5.3)

where ŷ(l) ∈ Rnl is a vector of activations of layer l, nl is the number of units in
layer l, φ is an element-wise non-linear function such as the Rectified Linear Unit
(ReLU), W(l) ∈ Rnl×n(l−1) is a matrix of weights of layer l, n(l−1) is the number of
units in the preceding layer (l − 1), ŷ(l−1) ∈ Rn(l−1) is a vector of activations of the
preceding layer (l − 1), l ∈ {1, . . . , L}, L is the total number of layers, such that
ŷ(0) is the input to the model, and ŷ(L) is the output of the model, and the bias
term is omitted for clarity. A progressive fully connected layer is given by:

ŷ
(l)
(k) = φ

W
(l)
(k)

ŷ
(l−1)
(k)

n
(k−1)n

j=1

ŷ
(l−1)
(j)

 , (5.4)

where ŷ
(l)
(k) ∈ Rnlk is a vector of activations of layer l in progressive block fk, nlk

is the number of units in layer l in progressive block fk, W
(l)
(k) ∈ Rnlk

×
∑k

j=1 n(l−1)j

is a matrix of weights of layer l in progressive block fk,
∑k

j=1 n(l−1)j
is the total

number of units in layers (l − 1) in the current and prior progressive blocks,
ŷ

(l−1)
(k) ∈ Rn(l−1)k and ŷ

(l−1)
(j) ∈ Rn(l−1)j are vectors of activations of the preceding

CHAPTER 5. PROGRESSIVE LEARNING 101

y
(1)
(1) ∈ Rn(1)1 y

(1)
(2) ∈ Rn(1)2 y

(1)
(3) ∈ Rn(1)3

f

z
(2)
(3) ∈ R(n(1)1

+n(1)2
+n(1)3

)

Figure 5.3: Illustration of the concatenation operation for three blocks.

layer (l − 1) in progressive blocks fk and fj respectively, l ∈ {2, . . . , Lk}, Lk is the
total number of layers in progressive block fk, and

f
denotes the concatenation

operation as illustrated in Figure 5.3. When k = 1, Equation (5.4) is reduced to
Equation (5.3), i.e., the first progressive block f1 is a standard multi-layered neural
network. Equation (5.4) can be trivially extended to convolutional and recurrent
layers.

Note the important distinction between Equation (5.1) [Rusu et al., 2016] and
Equation (5.4), in that Equation (5.4) uses the concatenation operation, whereas
Equation (5.1) uses a weighted sum of outputs of the previous layers in the previous
blocks as well as the current block. The use of the concatenation operation leads
to a simpler design that encourages the reuse of features and is easier to optimize
due to the improved flow of gradients [Huang et al., 2017]. In particular, the use
of the concatenation operation requires only a single weight matrix W

(l)
(k) and a

single matrix-vector multiplication (in the case of fully connected layers) for each
progressive layer, which is straightforward to parallelize on Graphics Processing
Units (GPUs) and convenient to prune as described in Section 5.3.3. In Section 5.4
and Tables 5.2 and 5.3, it is shown that the use of the concatenation operation in
Equation (5.4), over Equation (5.1) or the summation operation, leads to improved
performance.

5.3.3 Pruning

The objective of the pruning procedure is to counteract the growth in the number of
parameters in the model as the number of tasks increases by attempting to remove
weights in a progressive block after each progression procedure. Moreover, in most

CHAPTER 5. PROGRESSIVE LEARNING 102

prior work on continual learning, tasks are assumed to be related; if this assumption
is invalid, it may lead to negative forward transfer. Herein, the effect of negative
forward transfer is mitigated by pruning, which can remove the connections that
are responsible for this undesirable transfer, or even reduce progressive learning to
independent learning if the new task is not related to any prior task, by removing
all connections to prior blocks.

The specificity of features varies across layers in deep networks that tend to
learn low-level features in initial layers and transition gradually to high-level more
task-specific features towards final layers, as shown in Chapter 4. Similar low-
level features commonly appear across various datasets and tasks, while high-level
features are somewhat more attuned to the dataset or task at hand, making initial
layers more generic, i.e., easier to use across datasets or tasks. To this end, initial
layers in a progressive block are expected to be more prone to pruning than final
layers without comprising performance as the model can rely on features learned
in initial layers in prior blocks. Therefore, an iterative greedy layer-wise pruning
procedure is proposed, which aims to greedily prune the weights in each layer in a
progressive block without compromising performance.

The proposed pruning procedure is as follows. Initially, a progressive block fk
is trained as outlined in Section 5.3.2 until convergence, using the following loss
function:

Lk(Θk) = `k(Θk) + λ
1

2

Lk∑
l=1

‖W(l)
(k)‖2

2, (5.5)

where Lk(Θk) is the total loss of progressive block fk, Θk denotes the parameters
of progressive block fk including weights W(k), biases b(k), Batch Normalization
(BatchNorm) parameters, etc., `k(Θk) is the loss function of progressive block fk
without the weight-decay regularization term, λ is a hyperparameter to trade-off
both terms, and ‖W(l)

(k)‖2 is the L2 norm of the weights of layer l in progressive
block fk. The regularization term in the loss function in Equation (5.5) is used
to encourage the weights of progressive block fk to be small in magnitude, and
therefore, implicitly encourage the use of previous progressive blocks since their
weights do not constitute part of the regularization term. This somewhat validates
the assumption that weights with small magnitude are not as important as weights
with large magnitude, and the magnitude of the weights can be used as a pruning
criterion [Han et al., 2016].

Subsequently, after training to convergence, iteratively for each layer, starting
from the initial layer to the final layer in progressive block fk, the smallest q-
percentile of the sorted magnitudes of the weights of the layer are removed and
the entire progressive block continues to train for a small number of iterations, to
compensate for the pruned weights, where q is a hyperparameter. The pruning
and training procedures are repeated for an increasingly larger q, until the entire

CHAPTER 5. PROGRESSIVE LEARNING 103

Algorithm 5.7 Greedy layer-wise pruning procedure in progressive learning.
Require: Trained progressive block fk
Require: Pruning step size q̃
Output: Pruned progressive block f̃k
1: Rb ← Evaluate fk // benchmark performance
2: fb ← fk // best model
3: for l = 1 to Lk do // Lk the total number of layers in fk
4: for q = q̃ to 100 by q̃ do
5: Prune: prune smallest q% of weights |W(l)

(k)| in fk
6: Train: continue training fk
7: Rc ← Evaluate fk // current performance
8: if Rc ≥ Rb then
9: Rb ← Rc

10: fb ← fk
11: end if
12: end for
13: fk ← fb
14: end for
15: f̃k ← fb
16: return Pruned progressive block f̃k

progressive layer is removed, q → 100%, and the largest q that does not lead to
degradation in performance is used. The complete pruning procedure is detailed in
Algorithm 5.7.

5.4 Experiments in Image Recognition
Progressive learning is analysed on a set of 11 supervised classification tasks in the
image recognition domain using the CIFAR-10 and CIFAR-100 datasets. The tasks
in this setting are closely related to each other since 10 out of the 11 tasks are forged
from the CIFAR-100 dataset and all 11 tasks have the same image recognition
objective, yet the challenge is in the somewhat large number of tasks. Section 5.4.1
details the experimental setup and experiments carried out. Section 5.4.2 outlines
the evaluation criteria used. Section 5.4.3 presents the results and observations.

5.4.1 Experimental Setup

Datasets. The CIFAR-10 and CIFAR-100 datasets [Krizhevsky, 2009] (see Ap-
pendix A.1 for more details) were used in this experiment. Each dataset comprises

CHAPTER 5. PROGRESSIVE LEARNING 104

a training set of 50000 images and a test set of 10000 images. Both datasets were
used to construct a set of 11 supervised image recognition tasks as follows [Zenke
et al., 2017]. The CIFAR-10 dataset was used to construct the first classification
task, where 45000 training images drawn from the original CIFAR-10 training
set were used as the training set, with the remaining 5000 images held out as a
validation set. The 10000 original CIFAR-10 test set images were used as a test set
for this task. The CIFAR-100 was used to construct the remaining 10 classification
tasks, each of which was composed of 10 classes drawn from CIFAR-100 100 classes.
For each task, the training and validation sets comprised 4500 and 500 images
respectively, both of which, were drawn from the original CIFAR-100 training
set, and a test set of 1000 images, which were all the test images in the original
CIFAR-100 test set that belong to the selected 10 classes of the task. Note that all
sets in all tasks are mutually exclusive.

Preprocessing. The mean and standard deviation of the images were normalized
to zero and one respectively per colour channel using the training set statistics for
each task individually.

Model. The architecture of the model used in this image recognition experiment
is described in Table 5.1, ignoring the concatenation operation. The model is a
Convolutional Neural Network (ConvNet) that comprises four convolutional layers
followed by two fully connected layers, with BatchNorm, ReLUs, and dropout
interspersed in-between, and a max pooling layer after the non-linear function
of the second and fourth convolutional layers. The final fully connected layer is
followed by a softmax function.

Training and Implementation Details. The parameters of the convolutional
and fully connected layers were initialized randomly, sampling from a Gaussian
distribution, with zero mean and

√
2/ni and 1/

√
ni standard deviation for convo-

lutional and fully connected layers respectively, where ni is the number of inputs
to the layer, as recommended in [He et al., 2015]. All layers were regularized
using weight decay with penalty λ = 0.001 and dropout with drop probability r as
indicated in Table 5.1. ADAM was used to optimize the parameters with respect
to a negative log-likelihood loss function using batch size Mb = 256, learning rate
α = 0.001, first moment β1 = 0.99, and second moment β2 = 0.999 for 90 epochs.

The experiments were implemented using TensorFlow [Abadi et al., 2016].
Training was carried out on NVIDIA Tesla P100 GPUs. Training a single model
from scratch for a single task on a single GPU required a wall time of approximately
30 mins.

CHAPTER 5. PROGRESSIVE LEARNING 105

Table 5.1: Convolutional neural network architecture for the image recognition
tasks. The concatenation operation indicates the layers at which the output of the
previous layer in all prior blocks are concatenated. The concatenation operation
can be ignored in independent learning.

№ Type Size Other

1
Convolution 32, 3× 3 Stride = 1
BatchNorm — —

ReLU — —

[Concatenation] — —

2

Convolution 32, 3× 3 Stride = 1
BatchNorm — —

ReLU — —
Max Pooling 2× 2 Stride = 2
Dropout — r = 0.25

[Concatenation] — —

3
Convolution 64, 3× 3 Stride = 1
BatchNorm — —

ReLU — —

[Concatenation] — —

4

Convolution 64, 3× 3 Stride = 1
BatchNorm — —

ReLU — —
Max Pooling 2× 2 Stride = 2
Dropout — r = 0.25

[Concatenation] — —

5

Fully Connected 512 —
BatchNorm — —

ReLU — —
Dropout — r = 0.5

[Concatenation] — —

6
Fully Connected 10 —

Softmax — —

CHAPTER 5. PROGRESSIVE LEARNING 106

Progressive Learning. For progressive learning, initially a model that has the
same architecture and training recipe outlined above was trained on the first task.
An additional progressive block was then added for each subsequent task. Each
progressive block had the same architecture with half the number of feature maps
/ units listed in Table 5.1 in each layer. The outputs of the layer preceding a
convolutional or fully connected layer in all prior blocks were concatenated and fed
as input to that convolutional or fully connected layer, as marked [Concatenation]
in Table 5.1. In each progression procedure, the parameters of the new progressive
block were randomly initialized and trained using the same training recipe as
described above. Note that parameters in a progressive block are held constant
once the block is trained and pruned, including during training and pruning
subsequent progressive blocks.

5.4.2 Evaluation Criteria

A number of evaluation criteria were used to assess the performance of the models
over the various settings. As standard for the single task setting, the classification
accuracy was used to measure the performance of the models in each task. Addi-
tionally, the following criteria are used to assess the effectiveness of progressive
learning over all tasks involved.

The average accuracy across all tasks as defined in Equation (5.6) is used as
the primary evaluation criterion.

Average Accuracy (AA) =
1

K

K∑
k=1

Rk, (5.6)

where K is the total number of learned tasks, and Rk is the accuracy of task tk in
progressive learning.

The progressive knowledge transfer, which measures the difference between a
task learned with progressive learning and the same task learned independently is
defined in Equation (5.7) [Lopez-Paz and Ranzato, 2017]:

Progressive Knowledge Transfer (PKT) =
1

K

K∑
k=2

(Rk − R̄k), (5.7)

where R̄k is the accuracy of task tk learned independently.
The learning speed, that is the performance of the model as a function of

training iterations, of tasks learned with progressive learning versus the same tasks
learned independently is reported.

The number of free parameters in a progressive block, before and after pruning,
and the number of fixed parameters in progressive blocks preceding that block,

CHAPTER 5. PROGRESSIVE LEARNING 107

are also reported to evaluate the effectiveness of the pruning procedure, as well as
gauge the number of additional parameters required for additional tasks as the
number of tasks increases.

5.4.3 Results

Independent Baselines. Baseline models were trained for each task indepen-
dently, in that 11 models were trained for the 11 image recognition tasks. Tables 5.2
and 5.3 present the validation and test accuracy of the CIFAR-10 task, the valida-
tion and test average accuracy across the 10 CIFAR-100 tasks, and the validation
and test average accuracy across all 11 CIFAR-10 and CIFAR-100 tasks. Figure 5.4
presents the test accuracy of the models for each of the 11 tasks.

Multiple Tasks Baselines. A single model was then used to learn all 11 tasks
sequentially using transfer learning, where a model was trained and evaluated on
one task, and the trained parameters were used to initialize the following model
that was fine-tuned and evaluated on the subsequent task. This was carried out for
all tasks successively, i.e., the model for task t1 was initialized randomly and the
model for task tk was initialized using the trained parameters of task tk−1. Note
that the model was evaluated on task tk after it was fine-tuned on that particular
task only; the performance of the model on task tk and all prior tasks would
degrade as fine-tuning on the subsequent task tk+1 progressed, a typical example
of catastrophic forgetting in transfer learning. The validation and test average
accuracy as well as the validation and test progressive knowledge transfer are listed
in Tables 5.2 and 5.3.

Subsequently, a multi-task learning model was used to learn all 11 tasks in
parallel. Two models were used: a model similar to the model listed in Table 5.1
but with 11 parallel output layers, one for each task, and a larger model with five
times the number of parameters as the other model. Due to interference between
overlapping classes in the CIFAR-10 and CIFAR-100 datasets, the two previously
described models were also trained for the 10 CIFAR-100 tasks only. Tables 5.2
and 5.3 list the validation and test average accuracy for all multi-task learning
models.

Finally, a progressive neural network [Rusu et al., 2016] was used to learn
all 11 tasks sequentially. This is conceptually the closest baseline to progressive
learning. The validation and test average accuracy as well as the validation and
test progressive knowledge transfer are listed in Tables 5.2 and 5.3.

Note that all previous models were trained using the same settings described in
Section 5.4.1.

CHAPTER 5. PROGRESSIVE LEARNING 108

Table 5.2: Progressive learning Validation Average Accuracy (Val AA) and Test
Average Accuracy (Test AA) over all 11 tasks using the CIFAR-10 and CIFAR-100
datasets unless otherwise indicated.

Method Val AA (%) Test AA (%)

CIFAR-10 (Single task) 84.86 83.36
CIFAR-100 (Avg. of 10 Independent Tasks) 79.97 78.51
CIFAR-10 & CIFAR-100 (Avg. of 11 Independent Tasks) 80.41 78.95

Transfer Learning (Avg. of 11 Independent Tasks) 80.23 80.39
Multi-Task Network (Avg. of 10 CIFAR-100 Tasks) 63.32 64.24
Multi-Task Network (Avg. of All 11 Tasks) 62.69 65.80
Large Multi-Task Network (Avg. of 10 CIFAR-100 Tasks) 67.38 66.99
Large Multi-Task Network (Avg. of All 11 Tasks) 68.38 71.26
Progressive Neural Networks [Rusu et al., 2016] 81.36 81.51

Curriculum + Progression + Pruning 83.70 82.24

Progression 81.86 81.60
Progression (Sum) 78.50 78.28
Progression + Pruning 83.96 82.18
Progression + Random Pruning 83.77 81.99
Curriculum + Progression 81.99 81.83
Anti-Curriculum + Progression 81.56 81.54

CHAPTER 5. PROGRESSIVE LEARNING 109

Table 5.3: Progressive learning Validation Progressive Knowledge Transfer (Val
PKT) and Test Progressive Knowledge Transfer (Test PKT) over all 11 tasks using
the CIFAR-10 and CIFAR-100 datasets unless otherwise indicated.

Method Val PKT (%) Test PKT (%)

CIFAR-10 (Single task) — —
CIFAR-100 (Avg. of 10 Independent Tasks) — —
CIFAR-10 & CIFAR-100 (Avg. of 11 Independent Tasks) — —

Transfer Learning (Avg. of 11 Independent Tasks) -0.2 1.58
Multi-Task Network (Avg. of 10 CIFAR-100 Tasks) — —
Multi-Task Network (Avg. of All 11 Tasks) — —
Large Multi-Task Network (Avg. of 10 CIFAR-100 Tasks) — —
Large Multi-Task Network (Avg. of All 11 Tasks) — —
Progressive Neural Networks [Rusu et al., 2016] 1.04 2.82

Curriculum + Progression + Pruning 3.62 3.62

Progression 1.59 2.91
Progression (Sum) -2.10 -0.74
Progression + Pruning 3.91 3.56
Progression + Random Pruning 3.70 3.34
Curriculum + Progression 1.74 3.17
Anti-Curriculum + Progression 1.26 2.85

CHAPTER 5. PROGRESSIVE LEARNING 110

C-1
0

C-1
00-1

0

C-1
00-3

C-1
00-5

C-1
00-9

C-1
00-7

C-1
00-1

C-1
00-4

C-1
00-2

C-1
00-6

C-1
00-8

Task

72

74

76

78

80

82

84

86

T
es

t
A

cc
ua

rc
y

(%
)

Progressive Learning

Independent Learning

Progressive Learning (Avg)

Independent Learning (Avg)

Figure 5.4: Accuracy of progressive learning vs. independent learning for all 11
image recognition tasks. The tasks are ordered according to the outcome of the
curriculum procedure. C-10 denotes the CIFAR-10 task, C-100-s indicates the sth
CIFAR-100 task.

CHAPTER 5. PROGRESSIVE LEARNING 111

Progressive Learning. Progressive learning was used to learn the 11 tasks
sequentially using the curriculum, progression, and pruning procedures. The
order of the tasks was determined via the curriculum procedure that utilized the
validation accuracy as its metric. Once a task was chosen, a progression procedure
was employed. This was followed by pruning, where the pruning amount q was
varied in 25% intervals, i.e., the pruning amount q ∈ {25%, 50%, 75%, 100%}, only
for layers that receive input from preceding progressive blocks. The validation set
was used to evaluate the performance in the pruning procedure. The validation
and test average accuracy as well as the validation and test progressive knowledge
transfer are listed in Tables 5.2 and 5.3. The test accuracy for each of the 11
tasks is plotted in Figure 5.4. These metrics were measured after learning all 11
tasks. It can be seen from the results in Tables 5.2 and 5.3 and Figure 5.4 that
progressive learning leads to better performance compared with baseline methods,
and in particular independent learning by a large margin.

Progressive learning leverages knowledge learned in prior tasks when learning
a new task, and it is therefore expected to learn new tasks faster. Figure 5.5
demonstrates the validation error as a function of training iterations, where it is
shown that progressive learning converges faster than independent learning.

Ablation Study. To gain a better understanding of progressive learning, an
ablation study was performed, whereby each component of progressive learning was
studied separately. Tables 5.2 and 5.3 lists the outcome of this ablation study. It can
be seen that all three procedures of progressive learning contribute to improvement
in performance, with the majority of the contribution obtained from the progression
procedure. The following was also observed. First, the presence of a curriculum
procedure that chooses the easiest task as the next task leads to an improvement in
performance, and outperforms the anti-curriculum strategy that chooses the most
difficult task as the next task, as well as the case where no curriculum procedure is
employed. Second, the proposed progression procedure based on the concatenation
operation outperforms the progression procedure based on the summation operation,
and is superior to all baseline models as well as independent learning. Third, the
magnitude-based greedy layer-wise pruning procedure improves performance, in
addition to decreasing the number of parameters in the model, and outperforms
random greedy layer-wise pruning.

Analysis. Progression leads to growth in the number of parameters and pruning
was introduced to counteract this growth. As the number of learned tasks increases,
the number of pruned parameters is expected to increase, especially in initial layers
and with task relatedness. This is shown in Figure 5.6 (left), where the difference
between the total number of parameters before and after pruning increases as the

CHAPTER 5. PROGRESSIVE LEARNING 112

1

15681

31361

47041

62721

78401

94081

109761

125441

141121

156801

172481

Training Iterations

102

2× 101

3× 101

4× 101

6× 101

V
al

id
at

io
n

E
rr

or
(%

)

C
-1

0

C
-1

00
-1

0

C
-1

00
-3

C
-1

00
-5

C
-1

00
-9

C
-1

00
-7

C
-1

00
-1

C
-1

00
-4

C
-1

00
-2

C
-1

00
-6

C
-1

00
-8

Independent Learning

Progressive Learning

Figure 5.5: Learning curves, validation error as a function of training iterations, for
progressive and independent learning for the 11 CIFAR-10 and CIFAR-100 tasks.
Progressive Learning demonstrates faster learning compared with independent
learning. Note that tasks are ordered according to the outcome of the curriculum
strategy. Models are reset to random initialization at the beginning of each task in
the case of independent learning.

CHAPTER 5. PROGRESSIVE LEARNING 113

C-1
0

C-1
00-1

0

C-1
00-3

C-1
00-5

C-1
00-9

C-1
00-7

C-1
00-1

C-1
00-4

C-1
00-2

C-1
00-6

C-1
00-8

Task

0.5

1.0

1.5

2.0

2.5

N
um

b
er

of
P

ar
am

et
er

s

×107 Total Parameters

Before Pruning

After Pruning

C-1
0

C-1
00-1

0

C-1
00-3

C-1
00-5

C-1
00-9

C-1
00-7

C-1
00-1

C-1
00-4

C-1
00-2

C-1
00-6

C-1
00-8

Task

0.0

0.5

1.0

1.5

2.0

N
um

b
er

of
P

ar
am

et
er

s

×107 Fixed Parameters

Before Pruning

After Pruning

C-1
0

C-1
00-1

0

C-1
00-3

C-1
00-5

C-1
00-9

C-1
00-7

C-1
00-1

C-1
00-4

C-1
00-2

C-1
00-6

C-1
00-8

Task

1

2

3

N
um

b
er

of
P

ar
am

et
er

s

×106 Adaptive Parameters

Before Pruning

After Pruning

Figure 5.6: Total number of parameters in the model as a function of tasks. Left.
The total number of parameters in the model as a function of tasks before and
after pruning. Centre. The number of fixed parameters (parameters in preceding
progressive blocks) as a function of tasks before and after pruning. Right. The
number of adaptive parameters (parameters in the progressive block being trained)
as a function of tasks before and after pruning.

number of tasks increases. The amount of pruned parameters in each progressive
block varied, as shown in Figure 5.6 (right), which is likely due to the layer-wise
transferability of features between tasks or task relatedness.

One of the main motivations behind the proposed greedy layer-wise pruning
procedure was that initial layers were more prone to pruning than final layers, as
progressive blocks can leverage features learned in initial layers in prior progressive
blocks more than final layers as features in initial layers are usually more generic.
This can be seen in Figure 5.7, which is a plot of the amount of pruned parameters
per layer averaged across all progressive blocks.

Further discussion is provided in Section 5.6.

5.5 Experiments in Speech Recognition
Progressive learning is evaluated in the speech recognition domain using four super-
vised classification tasks, specifically Automatic Speech Recognition (ASR), Speech
Emotion Recognition (SER), Gender Recognition (GR), and Speaker Recognition
(SR), using the TIMIT, IEMOCAP, and eNTERFACE datasets. This is a challeng-
ing setting since the relationship between these tasks is not well understood [Fayek
et al., 2016a], and moreover, the datasets used in these tasks were collected under
different conditions. Section 5.5.1 details the experimental setup and experiments
carried out. Section 5.5.2 outlines the evaluation criteria used. Section 5.5.3
presents the results and observations.

CHAPTER 5. PROGRESSIVE LEARNING 114

Conv
Lay

er
1

Conv
Lay

er
2

Conv
Lay

er
3

Conv
Lay

er
4

FC
Lay

er
1

0

10

20

30

40

50

60

70

P
ar

am
et

er
s

P
ru

ne
d

(%
)

Figure 5.7: Percentage of pruned weights as a function of layers. It can be noted
that initial layers are more prone to pruning as progressive blocks can rely on
features learned in initial layers in prior progressive blocks.

CHAPTER 5. PROGRESSIVE LEARNING 115

5.5.1 Experimental Setup

Datasets. The TIMIT dataset [Garofolo et al., 1993] (see Appendix A.6 for more
details) was used for the ASR and GR tasks. The complete 462-speaker training set,
without the dialect (SA) utterances, was used as the training set. The 50-speaker
development set was used as the validation set. The 24-speaker core test set was
used as the test set.

In the case of the ASR task, the 61 phonemes were mapped into 48 phonemes
for training, which were then mapped into 39 phonemes for scoring, as commonly
practised in the literature [Lee and Hon, 1989]. The Kaldi toolkit [Povey et al.,
2011] was used to produce force-aligned frame labels by training a mono-phone
Gaussian Mixture Model (GMM)-Hidden Markov Model (HMM) system with Mel
Frequency Cepstral Coefficients (MFCCs).

In the case of the GR task, a voice activity detector was used to detect and
remove silent frames. The ratio between male and female speakers was balanced
by randomly omitting utterances from male speakers.

The IEMOCAP dataset [Busso et al., 2008] (see Appendix A.3 for more details)
was used for the SER task. Utterances from the first two sessions were used as the
training set. The fifth session was used as the validation set to be consistent with
experiments carried out in Chapter 3 and Chapter 4. Utterances from the third
and fourth sessions were used as the test set. Since the data was labelled at an
utterance level, all frames in an utterance inherited the utterance label. A voice
activity detector was then used to label silent frames and silence was added as an
additional class to the four emotion classes, i.e., a frame has either the same label
as its parent utterance or the silence label. Silent frames were retained in this task
as silence can be a strong cue for SER.

The eNTERFACE dataset [Martin et al., 2006] (see Appendix A.2 for more
details) was used for the SR task. The training, validation, and test sets were
constructed by randomly selecting utterances corresponding to 70%, 15%, and
15% respectively of all data from 40 speakers, while the remaining four speakers
were discarded due to inconsistency in their data. Similar to GR, a voice activity
detector was used to detect and remove silent frames.

Note that all sets in all tasks are mutually exclusive, except for the ASR and
GR tasks, where the training, validation, and test sets overlap between both tasks,
i.e., the training set for the ASR is similar to the training set for the GR task,
however, the training, validation, and test sets are mutually exclusive in both tasks.

Preprocessing. For all datasets and tasks, utterances were split into 25 ms
frames with a stride of 10 ms, and a Hamming window was applied, then 40 log-Mel
Frequency Spectral Coefficients (MFSCs) were extracted from each frame. The
mean and standard deviation were normalized per coefficient to zero and one

CHAPTER 5. PROGRESSIVE LEARNING 116

respectively using the mean and standard deviation computed on each training set
only. No speaker dependent operations were performed. An input data exemplar
was composed of 41 consecutive frames with the exemplar label being the label of
the middle frame in the case of ASR and SER or the utterance label in the case of
GR and SR.

Model. The ASR system had a hybrid ConvNet-HMM architecture, as described
in Section 3.3. A ConvNet acoustic model was used to produce a probability
distribution over the states of three-state HMMs with a bi-gram language model
estimated from the training set. The other three tasks, namely SER, GR, and SR,
had an acoustic model only.

The ConvNet acoustic model used in all four tasks is detailed in Table 5.4. The
model is similar to the model used in Section 5.4 for the image recognition tasks.

Training and Implementation Details. The parameters of the convolutional
and fully connected layers were initialized randomly, sampling from a Gaussian
distribution, with zero mean and

√
2/ni and 1/

√
ni standard deviation for convo-

lutional and fully connected layers respectively, where ni is the number of inputs
to the layer. All layers were regularized using weight decay with penalty λ = 0.001
and dropout with drop probability r as indicated in Table 5.4. ADAM was used
to optimize the parameters with respect to a negative log-likelihood loss function
using batch size Mb = 256, learning rate α = 0.001, first moment β1 = 0.99, and
second moment β2 = 0.999. The model was trained for a minimum of 110× 103

iterations and a maximum of 250× 103 iterations. The validation set was used for
early stopping.

The experiments were implemented using TensorFlow [Abadi et al., 2016].
Training was carried out on NVIDIA Tesla P100 GPUs. Training a single model
from scratch for a single task on a single GPU required a wall time of approximately
7 hours.

Progressive Learning. In the case of progressive learning, initially, a model
that has the same architecture and training recipe outlined above was trained on
the first task. Afterwards, an additional progressive block was added for each
subsequent task. Each progressive block had the same architecture with half the
number of features maps / units listed in Table 5.4 in each layer; the outputs of
the layer before a convolutional or fully connected layer in all prior blocks were
concatenated and fed as input to that convolutional or fully connected layer, as
marked [Concatenation] in Table 5.4. In each progression procedure, the parameters
of the new progressive block were randomly initialized and trained using the same
training recipe as mentioned above. Note that parameters in a progressive block

CHAPTER 5. PROGRESSIVE LEARNING 117

Table 5.4: Convolutional neural network architecture for the speech recognition
tasks. The concatenation operation indicates the layers at which the output of the
previous layer in all prior blocks are concatenated. The concatenation operation
can be ignored in independent learning. K denotes the number of output classes.

№ Type Size Other

1
Convolution 64, 6× 5 Stride = 1
BatchNorm — —

ReLU — —

[Concatenation] — —

2

Convolution 64, 3× 3 Stride = 1
BatchNorm — —

ReLU — —
Max Pooling 2× 2 Stride = 2
Dropout — r = 0.25

[Concatenation] — —

3
Convolution 128, 3× 3 Stride = 1
BatchNorm — —

ReLU — —

[Concatenation] — —

4

Convolution 128, 3× 3 Stride = 1
BatchNorm — —

ReLU — —
Max Pooling 2× 2 Stride = 2
Dropout — r = 0.25

[Concatenation] — —

5

Fully Connected 1024 —
BatchNorm — —

ReLU — —
Dropout — r = 0.5

[Concatenation] — —

6
Fully Connected K —

Softmax — —

CHAPTER 5. PROGRESSIVE LEARNING 118

are held constant once the block is trained and pruned, including during training
and pruning subsequent progressive blocks.

5.5.2 Evaluation Criteria

The standard evaluation criteria varied among tasks. The phone accuracy rate
(100− Phone Error Rate (PER)) was used for the ASR task, whereas the classifica-
tion accuracy was used for the SER, GR, and SR tasks. Additionally, the learning
speed, that is the model performance as a function of training iterations, of tasks
learned with progressive learning versus the same tasks learned independently is
monitored and reported.

5.5.3 Results

Baseline. Baseline models were trained for each task independently, in that four
models were trained for the four speech recognition tasks. Figure 5.8 plots the test
phone accuracy rate for the ASR task, and test accuracy for the SER, GR, and SR
tasks.

Progressive Learning. Progressive learning was used to learn the four tasks
sequentially, employing the curriculum, progression, and pruning procedures. The
curriculum procedure used the relative improvement of the validation accuracy
over random guessing to score the classifiers trained at each curriculum procedure.
The relative improvement was preferred to the standard validation accuracy as the
number of classes varied between tasks. Once a task was chosen, a progression
procedure was employed. This was followed by pruning, where the pruning amount
q was varied in 25% intervals, i.e., the pruning amount q ∈ {25%, 50%, 75%, 100%}
for only layers that receive input from preceding progressive blocks. The validation
set was used to monitor and evaluate the performance of the model in the pruning
procedure.

The test phone accuracy rate for the ASR task and test accuracy for the
remaining three tasks are plotted in Figure 5.8. It can be seen from the results in
Figure 5.8 that progressive learning leads to comparable performance with respect
to independent learning for all three tasks.

Figure 5.9 demonstrates the validation error as a function of training iterations,
where it is shown that progressive learning converges faster than independent
learning on most tasks.

CHAPTER 5. PROGRESSIVE LEARNING 119

ASR SR
SER GR

Task

40

50

60

70

80

90

100

T
es

t
A

cc
ua

rc
y

(%
)

Progressive Learning

Independent Learning

Progressive Learning (Avg)

Independent Learning (Avg)

Figure 5.8: Progressive learning vs independent learning for all four speech recog-
nition tasks. The tasks are ordered according to the outcome of the curriculum
procedure.

CHAPTER 5. PROGRESSIVE LEARNING 120

1

226000

382000

476000

586000

696000

716000

Training Iterations

0

20

40

60

80

100

V
al

id
at

io
n

E
rr

or
(%

)

A
S

R

S
R

S
E

R

G
R

Independent Learning

Progressive Learning

Figure 5.9: Learning curves, validation error as a function of training iterations,
for progressive and independent learning for the four speech recognition tasks.
Note that tasks are ordered according to the outcome of the curriculum strategy.
Models are reset to random initialization at the beginning of each task in the case
of independent learning.

CHAPTER 5. PROGRESSIVE LEARNING 121

5.6 Discussion
Continual Learning. Progressive learning is a framework for continual learning
that aims to address the following desiderata, as mentioned in Section 5.1: (1)
a strategy to select the next task to learn from a pool of candidate tasks to
facilitate learning; (2) a mechanism to efficiently grow the capacity of the model to
accommodate learning new tasks (if necessary); and, (3) a method to accumulate,
maintain, and utilize knowledge to learn future tasks without significant adverse
effects on the learned tasks.

In this work, the aforementioned three desiderata were addressed using three
simple yet effective procedures: curriculum, progression, and pruning. These
procedures can be regarded as modular building blocks for the progressive learning
framework that may be employed individually or in combination as required. Other
procedures can be added to progressive learning to address further desiderata of
continual learning.

Curriculum. A structured order to learning new concepts and tasks is an im-
portant aspect of human learning. It is also beneficial in machine learning [Elman,
1993], and it was shown that it can lead to faster learning, and in some cases, better
generalization [Bengio et al., 2009,Graves et al., 2017].

The curriculum procedure is an important component of progressive learning,
where the learner can choose the most representative task to learn next with respect
to the state of knowledge at the time, which leads to a natural development in task
difficulty over time. For the tasks studied herein, the curriculum procedure led to
better generalization as shown in Tables 5.2 and 5.3.

Progression. The progression procedure is the main procedure in progressive
learning that has the largest contribution in terms of performance as shown in
Tables 5.2 and 5.3. The progression procedure increases the capacity of the model
by adding new parameters, and provides a mechanism for forward knowledge
transfer, i.e., use knowledge learned in prior tasks to facilitate the learning and
execution of new tasks, by leveraging existing parameters learned in prior tasks,
all while sidestepping catastrophic forgetting, as only newly added parameters are
trained.

Existing model parameters are leveraged by concatenating the output of the
preceding layer in all prior progressive blocks as well as the current block and
feeding the concatenated output to the subsequent layer in the block. The use of
the concatenation operation, as opposed to other operations, encourages the reuse
of features, and also leads to easier optimization, as pointed out in [Huang et al.,
2017].

CHAPTER 5. PROGRESSIVE LEARNING 122

Growing the capacity of the model by adding new parameters is important
in the case when the new task is not related to any of the prior tasks, which
would allow progressive learning to be reduced to independent learning via pruning
parameters between progressive blocks.

Pruning. The pruning procedure in progressive learning offers many advantages.
It was initially conceived to counteract the growth in the number of parameters as
a result of the progression procedure. Nevertheless, it was also found to combat
over-fitting and negative forward transfer, which can lead to an improvement in
performance as shown in Tables 5.2 and 5.3. To this end, pruning was favoured
to incremental growing, where the parameters would grow incrementally in the
progression procedure.

Layer-wise greedy pruning was built on the intuition that features in initial
layers in deep networks are more generic and reusable across tasks. It is envisioned
that as the number of tasks increases and with a diverse enough set of tasks,
pruning would be able to eliminate most initial layers in new progressive blocks.

Lifelong Learning. Progressive learning can be regarded as a form of lifelong
learning, which requires three criteria [Chen and Liu, 2016]: a continuous learning
process, knowledge accumulation and maintenance in a knowledge base, and the
ability to use the knowledge base for learning future tasks. Progression can be
regarded as the continuous learning process. Similarly, the features learned in prior
progressive blocks can be regarded as the knowledge base. Hence, the connections
between a new progressive block and all prior progressive blocks define the ability
to use the knowledge base (features) for learning the new task and future ones.

Limitations. The current progression procedure provides a mechanism for for-
ward knowledge transfer. One of the limitations of this work is the absence of a
mechanism to allow backward knowledge transfer, i.e., transfer knowledge obtained
from a new task being learned to prior tasks already learned. It is envisioned that
this could be achieved by modifying the progression procedure to cater for backward
knowledge transfer in addition to forward knowledge transfer by incorporating
methods introduced in [Kirkpatrick et al., 2017, Lopez-Paz and Ranzato, 2017].
This is an area for future research.

5.7 Summary
Continual learning is key to advancing machine learning, where experiences and
knowledge can be accumulated and used across tasks. Progressive learning is a deep
learning framework that addresses the identified continual learning desiderata using

CHAPTER 5. PROGRESSIVE LEARNING 123

three procedures: curriculum, progression, and pruning. The novel contribution
of progressive learning is the construction and formulation of a deep learning
framework that allows a holistic and systematic approach to continual learning.

Progressive learning was evaluated using supervised classification tasks in the
image recognition and speech recognition domains. It was shown that progressive
learning outperforms independent learning, transfer learning, and multi-task learn-
ing in terms of overall performance as well as learning speed, when tasks are related,
by accumulating and leveraging knowledge learned across tasks in a continuous
manner.

It is envisioned that progressive learning is a step towards a fully general
continual learning framework.

Chapter 6

Conclusions and Future Work

The work presented throughout the thesis has led to a number of observations
and insights. This chapter highlights the main insights and conclusions of the

thesis. The chapter also presents avenues for future research.

Outline. This chapter is structured as follows. Section 6.1 summarizes and
concludes the thesis. Section 6.2 highlights avenues for future work.

124

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 125

6.1 Conclusions
The main aim of this thesis was the study and development of a structured approach
to continual learning, building on the success of deep learning and neural networks.
Continual learning extends machine learning beyond the single task paradigm into
the realm of learning multiple tasks consecutively. Learning multiple tasks via
continual learning allows machine learning to accumulate and leverage knowledge
learned across tasks in a continuous manner. In doing so, one can expect a faster
learning process that leads to better generalization using less amounts of data and
a smaller number of dedicated parameters for new tasks that are relevant to prior
tasks. Of course, continual learning presents its own set of challenges. Inducing the
correct inductive bias and mitigating catastrophic forgetting in an efficient manner
are two of these challenges that this work was set to address.

The thesis commenced with developing understanding, insights, and baselines
for a number of independent classification tasks, i.e., image recognition, Automatic
Speech Recognition (ASR), and Speech Emotion Recognition (SER), as well as their
respective datasets, network architectures, and best practices. Results reported for
the image recognition task using the CIFAR-10, CIFAR-100, and SVHN datasets,
as well as the results reported for the ASR task using the TIMIT dataset, were on
par with the state-of-the-art. The SER task was explored in greater depth using
the IEMOCAP dataset and used as a test bed to explore various neural network
architectures. As a result of this exploration, state-of-the-art results were reported
on the IEMOCAP dataset for speaker-independent SER. More importantly, the
models devised for all of these tasks were somewhat similar in that deep multi-
layered neural networks with similar architectures and training algorithms were
used across all of the tasks.

Subsequently, the relation between the systems developed for the aforementioned
tasks was investigated. To this end, a methodology for understanding the layer-wise
relevance of features in deep networks between two tasks, denoted gradual transfer
learning, was proposed. The gradual transfer learning methodology can be used
for understanding the relation between two tasks, which can aid in designing and
implementing systems that aim to address multiple tasks. The gradual transfer
learning methodology illuminates the relevance of each layer of features in a deep
network trained for one task to another task via transfer learning. The gradual
transfer learning methodology was explored on a number of datasets and tasks
in the image recognition and speech recognition domains. Consistent behaviour
emerged that reflected the nature of the datasets or tasks involved, such that the
specificity and transferability of the features in deep networks was found to be
positively correlated with the depth of the layer.

Finally, progressive learning, a deep learning framework for continual learning
that comprises three procedures: curriculum, progression, and pruning, was formu-

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 126

lated and presented. Progressive learning was evaluated in the image recognition
and speech recognition domains, where it was shown that progressive learning out-
performs independent learning, as well as other paradigms that incorporate learning
multiple tasks, including, transfer learning and multi-task learning, in terms of
learning speed and overall performance when tasks are related, by accumulating
and leveraging knowledge learned across tasks in a continuous manner. Progressive
learning address two main challenges in continual learning: inducing the correct
inductive bias and mitigating catastrophic forgetting.

Revisiting the main proposition of the thesis, continual learning is key to
advancing machine learning and Artificial Intelligence (AI). It is envisioned that
progressive learning is a step towards a fully general continual learning framework.

The contributions of the thesis are as follows. A systemic study of multiple
tasks in machine perceptions, namely, image recognition, ASR, and particularly an
in-depth exploration of SER. A methodology for understanding the relation between
two tasks using the features learned for each task in a deep network to illuminate
the relevance of each layer of features in the multi-layered neural network trained
for one task to the other task via transfer learning. A deep learning framework
that allows a holistic and systematic approach to continual learning.

6.2 Future Work
Future work can be pursued in numerous directions.

On the continual learning front, first, the investigation of continual learning
in unrestricted domains is of notable interest. The utility of the application of
continual learning to a diverse set of potentially unrelated tasks, e.g., machine
translation and self-driving cars, remains questionable. Second, the continual
learning methods studied herein focus on forward knowledge transfer, i.e., leverage
knowledge accumulated from prior tasks to learn and perform the new task, whereas,
backward knowledge transfer, i.e., leverage knowledge obtained from a new task
to improve the performance of prior tasks, may also be beneficial. Third, the
computational efficiency of progressive learning in dealing with a very large number
of tasks needs to be further studied.

From a broader outlook on machine learning, first, the application of deep learn-
ing requires a plethora of design decisions and extensive tuning of hyperparameters
to ensure optimal performance. While some of these design decisions were found to
be consistent among the class of tasks studied in this work, these design decisions
and hyperparameters still lack an automatic or systematic way of tuning. To allow
continual learning to expand to truly diverse domains, such problems need to be
addressed. Finally, the most elegant learning algorithm is an algorithm that is not
only able to learn from experience, but is also able to learn the learning algorithm,

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 127

and learn the learning algorithm of the learning algorithm, and learn the learning
algorithm of the learning algorithm of the learning algorithm, etc., in an endless
recursive manner. This meta-learning algorithm may not necessarily be a continual
learning algorithm, but it is their unification that presents the most compelling
avenue for future work.

Bibliography

[Abadi et al., 2016] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al. (2016). Tensorflow: A
system for large-scale machine learning. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI), volume 16, pages 265–283. 45, 53,
77, 85, 104, 116

[Abdel-Hamid et al., 2014] Abdel-Hamid, O., Mohamed, A.-R., Jiang, H., Deng,
L., Penn, G., and Yu, D. (2014). Convolutional neural networks for speech recog-
nition. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
22(10):1533–1545. 22, 47

[Allen, 1977] Allen, J. (1977). Short term spectral analysis, synthesis, and modifi-
cation by discrete fourier transform. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 25(3):235–238. 47

[Amodei et al., 2016] Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J.,
Battenberg, E., Case, C., Casper, J., Catanzaro, B., Cheng, Q., Chen, G., and
Others (2016). Deep speech 2: End-to-end speech recognition in english and
mandarin. In International Conference on Machine Learning (ICML), pages
173–182, New York, NY, USA. 47

[Arias et al., 2013] Arias, J. P., Busso, C., and Yoma, N. B. (2013). Energy and F0
contour modeling with functional data analysis for emotional speech detection.
In Interspeech, pages 2871–2875. 55

[Ayadi et al., 2011] Ayadi, M. E., Kamel, M. S., and Karray, F. (2011). Survey
on speech emotion recognition: Features, classification schemes, and databases.
Pattern Recognition, 44(3):572–587. 55

[Barber, 2012] Barber, D. (2012). Bayesian Reasoning and Machine Learning.
Cambridge University Press. 10

[Baxter, 2000] Baxter, J. (2000). A model of inductive bias learning. Journal of
Artificial Intelligence Research, 12:149–198. 5

128

BIBLIOGRAPHY 129

[Bengio, 2012] Bengio, Y. (2012). Deep learning of representations for unsupervised
and transfer learning. In International Conference on Machine Learning (ICML)
Workshop on Unsupervised and Transfer Learning, pages 17–36. 72, 73

[Bengio et al., 2013] Bengio, Y., Courville, A., and Vincent, P. (2013). Represen-
tation learning: A review and new perspectives. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 35(8):1798–1828. 3

[Bengio et al., 2009] Bengio, Y., Louradour, J., Collobert, R., and Weston, J.
(2009). Curriculum learning. In International Conference on Machine Learning
(ICML), pages 41–48, New York, NY, USA. ACM. 94, 95, 121

[Bishop, 1995] Bishop, C. M. (1995). Neural Networks for Pattern Recognition.
Oxford University Press. 2, 13

[Bishop, 2006] Bishop, C. M. (2006). Pattern Recognition and Machine Learning.
Springer. 10, 13

[Boole, 1854] Boole, G. (1854). An Investigation of the Laws of Thought on Which
are Founded the Mathematical Theories of Logic and Probabilities. Macmillan. 2

[Bordes et al., 2015] Bordes, A., Usunier, N., Chopra, S., and Weston, J. (2015).
Large-scale simple question answering with memory networks. arXiv preprint
arXiv:1506.02075. 22

[Bottou, 2004] Bottou, L. (2004). Stochastic Learning, pages 146–168. Springer
Berlin Heidelberg. 18

[Breiman et al., 1984] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone,
C. J. (1984). Classification and Regression Trees. Wadsworth. 12

[Busso et al., 2008] Busso, C., Bulut, M., Lee, C.-C., Kazemzadeh, A., Mower, E.,
Kim, S., Chang, J., Lee, S., and Narayanan, S. (2008). IEMOCAP: interactive
emotional dyadic motion capture database. Language Resources and Evaluation,
42(4):335–359. 6, 58, 81, 115, 149

[Caruana, 1997] Caruana, R. (1997). Multitask learning. Machine Learning,
28(1):41–75. 33, 72

[Chen and Mak, 2015] Chen, D. and Mak, B. K. (2015). Multitask learning of deep
neural networks for low-resource speech recognition. IEEE/ACM Transactions
on Audio, Speech, and Language Processing, 23(7):1172–1183. 33

[Chen and Liu, 2016] Chen, Z. and Liu, B. (2016). Lifelong Machine Learning.
Morgan & Claypool Publishers. 33, 122

BIBLIOGRAPHY 130

[Chorowski et al., 2015] Chorowski, J. K., Bahdanau, D., Serdyuk, D., Cho, K.,
and Bengio, Y. (2015). Attention-based models for speech recognition. In
Advances in Neural Information Processing Systems (NIPS), pages 577–585. 22,
54

[Collobert et al., 2011] Collobert, R., Weston, J., Bottou, L., Karlen, M.,
Kavukcuoglu, K., and Kuksa, P. (2011). Natural language processing (almost)
from scratch. Journal of Machine Learning Research (JMLR), 12(Aug):2493–
2537. 33

[Cortes and Vapnik, 1995] Cortes, C. and Vapnik, V. (1995). Support vector
networks. Machine learning, 20(3):273–297. 12, 21

[Cowie et al., 2001] Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G.,
Kollias, S., Fellenz, W., and Taylor, J. (2001). Emotion recognition in human-
computer interaction. IEEE Signal Processing Magazine, 18(1):32–80. 39, 54

[Cybenko, 1989] Cybenko, G. (1989). Approximation by superpositions of a sig-
moidal function. Mathematics of control, signals and systems, 2(4):303–314.
23

[Dahl et al., 2012] Dahl, G. E., Yu, D., Deng, L., and Acero, A. (2012). Context-
dependent pre-trained deep neural networks for large-vocabulary speech recogni-
tion. IEEE Transactions on audio, speech, and language processing, 20(1):30–42.
46, 47

[Dalal and Triggs, 2005] Dalal, N. and Triggs, B. (2005). Histograms of oriented
gradients for human detection. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), volume 1, pages 886–893. IEEE. 40

[Dauphin et al., 2015] Dauphin, Y., de Vries, H., and Bengio, Y. (2015). Equi-
librated adaptive learning rates for non-convex optimization. In Advances in
Neural Information Processing Systems (NIPS), pages 1504–1512. 17, 19

[Dauphin et al., 2014] Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Gan-
guli, S., and Bengio, Y. (2014). Identifying and attacking the saddle point
problem in high-dimensional non-convex optimization. In Advances in Neural
Information Processing Systems (NIPS), pages 2933–2941. Curran Associates,
Inc. 17

[Deng et al., 2013] Deng, J., Zhang, Z., Marchi, E., and Schuller, B. (2013). Sparse
autoencoder-based feature transfer learning for speech emotion recognition. In
International Conference on Affective Computing and Intelligent Interaction
(ACII), pages 511–516. 72

BIBLIOGRAPHY 131

[Dewar and Xu, 2010] Dewar, K. M. and Xu, F. (2010). Induction, overhypothe-
sis, and the origin of abstract knowledge: Evidence from 9-month-old infants.
Psychological Science, 21(12):1871–1877. 4

[Elman, 1993] Elman, J. L. (1993). Learning and development in neural networks:
the importance of starting small. Cognition, 48(1):71–99. 95, 121

[Etienne et al., 2018] Etienne, C., Fidanza, G., Petrovskii, A., Devillers, L., and
Schmauch, B. (2018). Speech emotion recognition with data augmentation and
layer-wise learning rate adjustment. arXiv preprint arXiv:1802.05630. 68

[Eyben et al., 2015] Eyben, F., Huber, B., Marchi, E., Schuller, D., and Schuller,
B. (2015). Real-time robust recognition of speakers’ emotions and characteristics
on mobile platforms. In International Conference on Affective Computing and
Intelligent Interaction (ACII), pages 778–780. 55

[Eyben et al., 2016] Eyben, F., Scherer, K. R., Schuller, B. W., Sundberg, J.,
André, E., Busso, C., Devillers, L. Y., Epps, J., Laukka, P., Narayanan, S. S.,
and Truong, K. P. (2016). The geneva minimalistic acoustic parameter set
(gemaps) for voice research and affective computing. IEEE Transactions on
Affective Computing, 7(2):190–202. 55

[Fayek, 2016] Fayek, H. M. (2016). A deep learning framework for hybrid linguistic-
paralinguistic speech systems. In 2nd Doctoral Consortium at Interspeech 2016,
pages 1–2, Berkeley, CA, United States. 8, 71

[Fayek, 2017] Fayek, H. M. (2017). MatDL: A lightweight deep learning library in
MATLAB. The Journal of Open Source Software, 2(19):413. 7, 8, 38, 53, 59, 85

[Fayek et al., 2018] Fayek, H. M., Cavedon, L., and Wu, H. R. (2018). On the
transferability of representations in neural networks between datasets and tasks.
In Continual Learning Workshop, Advances in Neural Information Processing
Systems (NeurIPS), Montréal, QC, Canada. 8, 71, 98

[Fayek et al., 2015] Fayek, H. M., Lech, M., and Cavedon, L. (2015). Towards
real-time speech emotion recognition using deep neural networks. In International
Conference on Signal Processing and Communication Systems (ICSPCS), pages
1–5. 8, 13, 38

[Fayek et al., 2016a] Fayek, H. M., Lech, M., and Cavedon, L. (2016a). Modeling
subjectiveness in emotion recognition with deep neural networks: Ensembles
vs soft labels. In International Joint Conference on Neural Networks (IJCNN),
pages 566–570. 8, 38, 56, 113

BIBLIOGRAPHY 132

[Fayek et al., 2016b] Fayek, H. M., Lech, M., and Cavedon, L. (2016b). On the
correlation and transferability of features between automatic speech recognition
and speech emotion recognition. In Interspeech, pages 3618–3622. 8, 71

[Fayek et al., 2017] Fayek, H. M., Lech, M., and Cavedon, L. (2017). Evaluating
deep learning architectures for speech emotion recognition. Neural Networks,
92:60–68. Advances in Cognitive Engineering Using Neural Networks. 6, 8, 22,
38, 54, 70

[Fernandez, 2004] Fernandez, R. (2004). A computational model for the automatic
recognition of affect in speech. PhD thesis, Massachusetts Institute of Technology.
40

[Garofolo et al., 1993] Garofolo, J. S., Lamel, L. F., Fisher, W. M., Fiscus, J. G.,
Pallett, D. S., Dahlgren, N., and Zue, V. (1993). Timit acoustic-phonetic
continuous speech corpus. Linguistic Data Consortium, 93. 49, 50, 80, 115, 150,
152

[Glorot et al., 2011a] Glorot, X., Bordes, A., and Bengio, Y. (2011a). Deep sparse
rectifier neural networks. In International Conference on Artificial Intelligence
and Statistics (AISTATS). 24, 26

[Glorot et al., 2011b] Glorot, X., Bordes, A., and Bengio, Y. (2011b). Domain
adaptation for large-scale sentiment classification: A deep learning approach. In
International Conference on Machine Learning (ICML), pages 513–520. 73

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
Learning. MIT Press. 2, 12, 13, 23

[Goodfellow et al., 2015] Goodfellow, I., Shlens, J., and Szegedy, C. (2015). Ex-
plaining and harnessing adversarial examples. In International Conference on
Learning Representations (ICLR). 23

[Goodfellow et al., 2013] Goodfellow, I., Warde-Farley, D., Mirza, M., Courville,
A., and Bengio, Y. (2013). Maxout networks. In International Conference on
Machine Learning (ICML), volume 28, pages 1319–1327, Atlanta, GA, USA. 25,
41, 77

[Graves, 2008] Graves, A. (2008). Supervised Sequence Labelling with Recurrent
Neural Networks. PhD thesis, Technische Universitat Munchen. 14, 30

[Graves, 2013] Graves, A. (2013). Generating sequences with recurrent neural
networks. arXiv preprint arXiv:1308.0850. 14

BIBLIOGRAPHY 133

[Graves et al., 2017] Graves, A., Bellemare, M. G., Menick, J., Munos, R., and
Kavukcuoglu, K. (2017). Automated curriculum learning for neural networks.
In International Conference on Machine Learning (ICML), volume 70, pages
1311–1320, Sydney, NSW, Australia. 95, 121

[Graves et al., 2013] Graves, A., Mohamed, A.-R., and Hinton, G. E. (2013).
Speech recognition with deep recurrent neural networks. In IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
6645–6649. 22, 32, 47

[Han et al., 2014] Han, K., Yu, D., and Tashev, I. (2014). Speech emotion recogni-
tion using deep neural network and extreme learning machine. In Interspeech.
55, 68

[Han et al., 2016] Han, S., Mao, H., and Dally, W. J. (2016). Deep compression:
Compressing deep neural networks with pruning, trained quantization and
huffman coding. In International Conference on Learning Representations (ICLR).
96, 102

[Han et al., 2015] Han, S., Pool, J., Tran, J., and Dally, W. J. (2015). Learning
both weights and connections for efficient neural networks. In Advances in Neural
Information Processing Systems (NIPS), pages 1135–1143, Cambridge, MA, USA.
MIT Press. 94, 96, 97

[Harlow, 1949] Harlow, H. F. (1949). The formation of learning sets. Psychological
Review, 56(1):51–65. 4

[Hartley and Zisserman, 2004] Hartley, R. I. and Zisserman, A. (2004). Multiple
View Geometry in Computer Vision. Cambridge University Press, second edition.
39

[Hassibi and Stork, 1993] Hassibi, B. and Stork, D. G. (1993). Second order deriva-
tives for network pruning: Optimal brain surgeon. In Advances in Neural
Information Processing Systems (NIPS), pages 164–171. 96

[He et al., 2015] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep
into rectifiers: Surpassing human-level performance on ImageNet classification.
In International Conference on Computer Vision (ICCV), pages 1026–1034,
Washington, DC, USA. IEEE Computer Society. 22, 26, 42, 53, 59, 77, 82, 104

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual
learning for image recognition. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 770–778. 30

BIBLIOGRAPHY 134

[Hermann et al., 2015] Hermann, K. M., Kočiský, T., Grefenstette, E., Espeholt,
L., Kay, W., Suleyman, M., and Blunsom, P. (2015). Teaching machines to read
and comprehend. In Advances in Neural Information Processing Systems (NIPS),
pages 1693–1701, Cambridge, MA, USA. MIT Press. 22

[Hinton, 2012] Hinton, G. E. (2012). A practical guide to training restricted
boltzmann machines. In Neural networks: Tricks of the trade, pages 599–619.
Springer. 21

[Hinton et al., 2012] Hinton, G. E., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-R.,
Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T. N., et al. (2012).
Deep neural networks for acoustic modeling in speech recognition: The shared
views of four research groups. IEEE Signal Processing Magazine, 29(6):82–97. 22

[Hinton et al., 2006] Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast
learning algorithm for deep belief nets. Neural Computation, 18(7):1527–1554. 3,
21, 22

[Hochreiter, 1991] Hochreiter, S. (1991). Untersuchungen zu dynamischen neu-
ronalen netzen. Master’s thesis, Technische Universität München. 17, 19, 21

[Hochreiter, 1998] Hochreiter, S. (1998). The vanishing gradient problem during
learning recurrent neural nets and problem solutions. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 06(02):107–116. 17, 19, 21

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997).
Long short-term memory. Neural Computation, 9(8):1735–1780. 31

[Hornik et al., 1989] Hornik, K., Stinchcombe, M., and White, H. (1989). Mul-
tilayer feedforward networks are universal approximators. Neural networks,
2(5):359–366. 23

[Hou et al., 2018] Hou, S., Pan, X., Loy, C. C., Wang, Z., and Lin, D. (2018).
Lifelong learning via progressive distillation and retrospection. In European
Conference on Computer Vision (EECV), pages 452–467. Springer. 36

[Huang et al., 2017] Huang, G., Liu, Z., Weinberger, K. Q., and van der Maaten,
L. (2017). Densely connected convolutional networks. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 42, 45, 77, 97, 101, 121

[Ioffe and Szegedy, 2015] Ioffe, S. and Szegedy, C. (2015). Batch normalization:
Accelerating deep network training by reducing internal covariate shift. In Inter-
national Conference on Machine Learning (ICML), pages 448–456. JMLR.org.
19, 20

BIBLIOGRAPHY 135

[Isele and Cosgun, 2018] Isele, D. and Cosgun, A. (2018). Selective experience
replay for lifelong learning. In AAAI Conference on Artificial Intelligence. 37

[Jaitly and Hinton, 2011] Jaitly, N. and Hinton, G. (2011). Learning a better
representation of speech soundwaves using restricted boltzmann machines. In
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5884–5887. 47

[Jaitly and Hinton, 2013] Jaitly, N. and Hinton, G. E. (2013). Vocal tract length
perturbation (vtlp) improves speech recognition. In International Conference on
Machine Learning (ICML) Workshop on Deep Learning for Audio, Speech and
Language. 13

[Johnson et al., 2017] Johnson, J., Hariharan, B., van der Maaten, L., Hoffman,
J., Fei-Fei, L., Zitnick, C. L., and Girshick, R. (2017). Inferring and executing
programs for visual reasoning. In International Conference on Computer Vision
(ICCV). 22

[Jurafsky and Martin, 2014] Jurafsky, D. and Martin, J. H. (2014). Speech and
language processing. Pearson London. 49

[Katz, 1987] Katz, S. (1987). Estimation of probabilities from sparse data for
the language model component of a speech recognizer. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 35(3):400–401. 49

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. In International Conference on Learning Representations
(ICLR). 17, 19

[Kirkpatrick et al., 2017] Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness,
J., Desjardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T., Grabska-
Barwinska, A., Hassabis, D., Clopath, C., Kumaran, D., and Hadsell, R. (2017).
Overcoming catastrophic forgetting in neural networks. Proceedings of the
National Academy of Sciences, 114(13):3521–3526. 36, 122

[Klambauer et al., 2017] Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter,
S. (2017). Self-normalizing neural networks. In Advances in Neural Information
Processing Systems (NIPS), pages 971–980. Curran Associates, Inc. 25

[Krizhevsky, 2009] Krizhevsky, A. (2009). Learning multiple layers of features from
tiny images. Technical report, University of Toronto. 40, 75, 103, 146

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neural networks. In Advances

BIBLIOGRAPHY 136

in Neural Information Processing Systems (NIPS), pages 1097–1105. Curran
Associates, Inc. 13, 22, 40, 69

[Lake et al., 2017] Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gershman,
S. J. (2017). Building machines that learn and think like people. Behavioral and
Brain Sciences, 40. 4, 32, 93

[LeCun, 1986] LeCun, Y. (1986). Learning process in an asymmetric threshold
network. In Disordered Systems and Biological Organization, pages 233–240.
Springer Berlin Heidelberg. 26

[LeCun and Bengio, 1995] LeCun, Y. and Bengio, Y. (1995). Convolutional net-
works for images, speech, and time series. In The Handbook of Brain Theory and
Neural Networks, pages 255–258. MIT Press, Cambridge, MA, USA. 28

[LeCun et al., 2015] LeCun, Y., Bengio, Y., and Hinton, G. E. (2015). Deep
learning. Nature, 521(7553):436–444. Insight. 3, 22, 40

[LeCun et al., 1990] LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard,
R. E., Hubbard, W. E., and Jackel, L. D. (1990). Handwritten digit recognition
with a back-propagation network. In Advances in Neural Information Processing
Systems (NIPS), pages 396–404. 28, 39, 94, 96

[LeCun et al., 1998] LeCun, Y., Bottou, L., Orr, G. B., and Müller, K.-R. (1998).
Efficient backprop. In Neural networks: Tricks of the trade, pages 9–50. Springer.
17

[Lee et al., 2011] Lee, C.-C., Mower, E., Busso, C., Lee, S., and Narayanan, S.
(2011). Emotion recognition using a hierarchical binary decision tree approach.
Speech Communication, 53(9):1162–1171. Sensing Emotion and Affect - Facing
Realism in Speech Processing. 68

[Lee et al., 2015] Lee, D.-H., Zhang, S., Fischer, A., and Bengio, Y. (2015). Dif-
ference target propagation. In Machine Learning and Knowledge Discovery in
Databases, pages 498–515. Springer. 26

[Lee and Hon, 1989] Lee, K.-F. and Hon, H.-W. (1989). Speaker-independent
phone recognition using hidden markov models. IEEE Transactions on Acoustics,
Speech and Signal Processing, 37(11):1641–1648. 50, 81, 115, 152

[Li and Sim, 2010] Li, B. and Sim, K. C. (2010). Comparison of discriminative
input and output transformations for speaker adaptation in the hybrid nn/hmm
systems. In Interspeech, pages 526–529. 72

BIBLIOGRAPHY 137

[Li et al., 2013] Li, L., Zhao, Y., Jiang, D., Zhang, Y., Wang, F., Gonzalez, I.,
Valentin, E., and Sahli, H. (2013). Hybrid deep neural network–hidden markov
model (dnn-hmm) based speech emotion recognition. In International Conference
on Affective Computing and Intelligent Interaction (ACII), pages 312–317. 55

[Li and Hoiem, 2016] Li, Z. and Hoiem, D. (2016). Learning without forgetting. In
European Conference on Computer Vision (ECCV), pages 614–629. Springer. 36

[Long et al., 2015] Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolu-
tional networks for semantic segmentation. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3431–3440. 41, 77

[Lopez-Paz and Ranzato, 2017] Lopez-Paz, D. and Ranzato, M. A. (2017). Gradi-
ent episodic memory for continual learning. In Advances in Neural Information
Processing Systems (NIPS), pages 6467–6476. Curran Associates, Inc. 36, 106,
122

[Louizos et al., 2018] Louizos, C., Welling, M., and Kingma, D. P. (2018). Learning
sparse neural networks through l0 regularization. In International Conference on
Learning Representations (ICLR). 96

[Lowe, 2004] Lowe, D. G. (2004). Distinctive image features from scale-invariant
keypoints. International journal of computer vision, 60(2):91–110. 40

[Maas et al., 2013] Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier
nonlinearities improve neural network acoustic models. In International Con-
ference on Machine Learning (ICML) Workshop on Deep Learning for Audio,
Speech and Language Processing. 25

[Mao et al., 2014] Mao, Q., Dong, M., Huang, Z., and Zhan, Y. (2014). Learn-
ing salient features for speech emotion recognition using convolutional neural
networks. IEEE Transactions on Multimedia, 16(8):2203–2213. 56

[Mariooryad and Busso, 2013] Mariooryad, S. and Busso, C. (2013). Exploring
cross-modality affective reactions for audiovisual emotion recognition. IEEE
Transactions on Affective Computing, 4(2):183–196. 58, 68, 149

[Martin et al., 2006] Martin, O., Kotsia, I., Macq, B., and Pitas, I. (2006). The
enterface’05 audio-visual emotion database. In International Conference on Data
Engineering Workshops, Washington, DC, USA. IEEE Computer Society. 115,
149

[McCloskey and Cohen, 1989] McCloskey, M. and Cohen, N. J. (1989). Catas-
trophic interference in connectionist networks: The sequential learning problem.
Psychology of Learning and Motivation, 24:109–165. 5, 33, 36, 93

BIBLIOGRAPHY 138

[McCorduck, 2004] McCorduck, P. (2004). Machines Who Think. AK Peters Ltd.
2

[McCorduck et al., 1977] McCorduck, P., Minsky, M., Selfridge, O. G., and Simon,
H. A. (1977). History of artificial intelligence. In International Joint Conferences
on Artificial Intelligence (IJCAI), pages 951–954. 2

[Mikolov et al., 2018] Mikolov, T., Joulin, A., and Baroni, M. (2018). A roadmap
towards machine intelligence. In Computational Linguistics and Intelligent Text
Processing, pages 29–61. Springer. 4, 32, 93

[Miller, 1995] Miller, G. A. (1995). Wordnet: a lexical database for english. Com-
munications of the ACM, 38(11):39–41. 146, 150

[Mishkin and Matas, 2015] Mishkin, D. and Matas, J. (2015). All you need is a
good init. In International Conference on Learning Representations (ICLR). 17

[Misra et al., 2016] Misra, I., Shrivastava, A., Gupta, A., and Hebert, M. (2016).
Cross-stitch networks for multi-task learning. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3994–4003. 33, 73

[Mitchell et al., 2018] Mitchell, T., Cohen, W., Hruschka, E., Talukdar, P., Yang,
B., Betteridge, J., Carlson, A., Dalvi, B., Gardner, M., Kisiel, B., Krishnamurthy,
J., Lao, N., Mazaitis, K., Mohamed, T., Nakashole, N., Platanios, E., Ritter, A.,
Samadi, M., Settles, B., Wang, R., Wijaya, D., Gupta, A., Chen, X., Saparov,
A., Greaves, M., and Welling, J. (2018). Never-ending learning. Communications
of the ACM, 61(5):103–115. 4, 36

[Mitchell, 1980] Mitchell, T. M. (1980). The need for biases in learning general-
izations. Technical report, CS Tech Report CBM-TR-117, Computer Science
Department, Rutgers University. 4, 5

[Mitchell, 1997] Mitchell, T. M. (1997). Machine learning. 2, 3, 9

[Mohamed et al., 2012] Mohamed, A., Dahl, G., and Hinton, G. (2012). Acoustic
modeling using deep belief networks. IEEE Transactions on Audio, Speech, and
Language Processing, 20(1):14–22. 46, 47, 69

[Mohamed, 2014] Mohamed, A.-R. (2014). Deep Neural Network Acoustic Models
for ASR. PhD thesis, University of Toronto. 46, 47

[Montana and Davis, 1989] Montana, D. J. and Davis, L. (1989). Training feedfor-
ward neural networks using genetic algorithms. In International Joint Conferences
on Artificial Intelligence (IJCAI), volume 89, pages 762–767. 26

BIBLIOGRAPHY 139

[Netzer et al., 2011] Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and
Ng, A. Y. (2011). Reading digits in natural images with unsupervised feature
learning. In Advances in Neural Information Processing Systems (NIPS) workshop
on deep learning and unsupervised feature learning. 41, 75, 150

[Pan and Yang, 2010] Pan, S. J. and Yang, Q. (2010). A survey on transfer learning.
IEEE Transactions on Knowledge and Data Engineering, 22(10):1345–1359. 32,
33, 72

[Petta et al., 2011] Petta, P., Pelachaud, C., and Cowie, R. (2011). Emotion-
Oriented Systems: The Humaine Handbook. Springer, 1st edition. 55

[Poria et al., 2017] Poria, S., Peng, H., Hussain, A., Howard, N., and Cambria,
E. (2017). Ensemble application of convolutional neural networks and multiple
kernel learning for multimodal sentiment analysis. Neurocomputing, 261:217–230.
68

[Povey et al., 2011] Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek,
O., Goel, N., Hannemann, M., Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J.,
Stemmer, G., and Vesely, K. (2011). The kaldi speech recognition toolkit. In
Workshop on Automatic Speech Recognition and Understanding. IEEE Signal
Processing Society. IEEE Catalog No.: CFP11SRW-USB. 50, 59, 81, 115, 152

[Rabiner and Juang, 1993] Rabiner, L. R. and Juang, B.-H. (1993). Fundamentals
of speech recognition, volume 14. PTR Prentice Hall Englewood Cliffs. 39, 46

[Ratcliff, 1990] Ratcliff, R. (1990). Connectionist models of recognition memory:
Constraints imposed by learning and forgetting functions. Psychological Review,
97(2):285–308. 5, 33, 36, 93

[Razavian et al., 2014] Razavian, A. S., Azizpour, H., Sullivan, J., and Carlsson,
S. (2014). CNN features off-the-shelf: An astounding baseline for recognition.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, pages 512–519. 33, 72, 73

[Rebuffi et al., 2017] Rebuffi, S.-A., Bilen, H., and Vedaldi, A. (2017). Learn-
ing multiple visual domains with residual adapters. In Advances in Neural
Information Processing Systems (NIPS), pages 506–516. 36

[Redmon et al., 2016] Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016).
You only look once: Unified, real-time object detection. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 779–788. 23

BIBLIOGRAPHY 140

[Reed, 1993] Reed, R. (1993). Pruning algorithms-a survey. IEEE Transactions
on Neural Networks, 4(5):740–747. 96

[Refaeilzadeh et al., 2009] Refaeilzadeh, P., Tang, L., and Liu, H. (2009). Cross-
validation. In Encyclopedia of database systems, pages 532–538. Springer. 58,
81

[Ren et al., 2015] Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster R-CNN:
Towards real-time object detection with region proposal networks. In Advances
in Neural Information Processing Systems (NIPS), pages 91–99. 22

[Rosenblatt, 1958] Rosenblatt, F. (1958). The perceptron: a probabilistic model
for information storage and organization in the brain. Psychological review,
65(6):386–408. 3

[Rumelhart et al., 1986] Rumelhart, D. E., Hinton, G. E., and Williams, R. J.
(1986). Learning representations by back-propagating errors. Nature,
323(6088):533–536. 21, 27

[Rumelhart and McClelland, 1986] Rumelhart, D. E. and McClelland, J. L., editors
(1986). Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, Vol. 1: Foundations. MIT Press, Cambridge, MA, USA. 3

[Russakovsky et al., 2015] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,
S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al. (2015).
ImageNet large scale visual recognition challenge. International Journal of
Computer Vision, 115(3):211–252. 39, 72, 149

[Russell and Norvig, 2003] Russell, S. J. and Norvig, P. (2003). Artificial Intelli-
gence: A Modern Approach. Pearson Education. 2, 10

[Rusu et al., 2016] Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirk-
patrick, J., Kavukcuoglu, K., Pascanu, R., and Hadsell, R. (2016). Progressive
neural networks. CoRR, abs/1606.04671. 36, 94, 95, 96, 97, 101, 107, 108, 109

[Ruvolo and Eaton, 2013a] Ruvolo, P. and Eaton, E. (2013a). Active task selection
for lifelong machine learning. In AAAI Conference on Artificial Intelligence,
pages 862–868. AAAI Press. 94, 95, 96

[Ruvolo and Eaton, 2013b] Ruvolo, P. and Eaton, E. (2013b). Ella: An efficient
lifelong learning algorithm. In International Conference on Machine Learning
(ICML), pages 507–515. 33

[Samuel, 1959] Samuel, A. L. (1959). Some studies in machine learning using the
game of checkers. IBM Journal of Research and Development, 3(3):210–229. 2

BIBLIOGRAPHY 141

[Schmidhuber, 2002] Schmidhuber, J. (2002). Hierarchies of generalized kolmogorov
complexities and nonenumerable universal measures computable in the limit.
International Journal of Foundations of Computer Science, 13(04):587–612. 2

[Schmidhuber, 2015] Schmidhuber, J. (2015). Deep learning in neural networks:
An overview. Neural Networks, 61:85–117. 21

[Schölkopf and Smola, 2001] Schölkopf, B. and Smola, A. J. (2001). Learning with
kernels: support vector machines, regularization, optimization, and beyond. MIT
Press. 12

[Schuller et al., 2009a] Schuller, B., Steidl, S., and Batliner, A. (2009a). The
interspeech 2009 emotion challenge. In Interspeech, pages 312–315. 60, 85

[Schuller et al., 2010] Schuller, B., Steidl, S., Batliner, A., Burkhardt, F., Dev-
illers, L., Müller, C. A., and Narayanan, S. S. (2010). The interspeech 2010
paralinguistic challenge. In Interspeech, pages 2794–2797. 55

[Schuller et al., 2009b] Schuller, B., Vlasenko, B., Eyben, F., Rigoll, G., and Wen-
demuth, A. (2009b). Acoustic emotion recognition: A benchmark comparison of
performances. In IEEE Workshop on Automatic Speech Recognition Understand-
ing (ASRU), pages 552–557. 55, 58

[See et al., 2017] See, A., Liu, P. J., and Manning, C. D. (2017). Get to the point:
Summarization with pointer-generator networks. In Annual Meeting of the
Association for Computational Linguistics (ACL), pages 1073–1083. Association
for Computational Linguistics. 22

[Sercu et al., 2016] Sercu, T., Puhrsch, C., Kingsbury, B., and LeCun, Y. (2016).
Very deep multilingual convolutional neural networks for lvcsr. In IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
4955–4959. IEEE. 50, 82

[Sermanet et al., 2012] Sermanet, P., Chintala, S., and LeCun, Y. (2012). Con-
volutional neural networks applied to house numbers digit classification. In
International Conference on Pattern Recognition (ICPR), pages 3288–3291.
IEEE. 41, 77

[Shah et al., 2014] Shah, M., Chakrabarti, C., and Spanias, A. (2014). A multi-
modal approach to emotion recognition using undirected topic models. In IEEE
International Symposium on Circuits and Systems (ISCAS), pages 754–757. 58,
68, 149

BIBLIOGRAPHY 142

[Shin et al., 2017] Shin, H., Lee, J. K., Kim, J., and Kim, J. (2017). Contin-
ual learning with deep generative replay. In Advances in Neural Information
Processing Systems (NIPS), pages 2990–2999. 37

[Simonyan and Zisserman, 2014] Simonyan, K. and Zisserman, A. (2014). Very
deep convolutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556. 50, 82

[Simonyan and Zisserman, 2015] Simonyan, K. and Zisserman, A. (2015). Very
deep convolutional networks for large-scale image recognition. In International
Conference on Learning Representations (ICLR). 30

[Smith et al., 2002] Smith, L. B., Jones, S. S., Landau, B., Gershkoff-Stowe, L.,
and Samuelson, L. (2002). Object name learning provides on-the-job training
for attention. Psychological Science, 13(1):13–19. 4

[Snoek et al., 2012] Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical
bayesian optimization of machine learning algorithms. In Advances in Neural
Information Processing Systems (NIPS), pages 2951–2959. Curran Associates,
Inc. 23

[Srivastava et al., 2014] Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Research (JMLR), 15:1929–1958.
16

[Stuhlsatz et al., 2011] Stuhlsatz, A., Meyer, C., Eyben, F., ZieIke, T., Meier, G.,
and Schuller, B. (2011). Deep neural networks for acoustic emotion recognition:
Raising the benchmarks. In IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 5688–5691. 55

[Sutskever et al., 2013] Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013).
On the importance of initialization and momentum in deep learning. In Interna-
tional Conference on Machine Learning (ICML), pages 1139–1147. 18

[Sutskever et al., 2014] Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence
to sequence learning with neural networks. In Advances in Neural Information
Processing Systems (NIPS), pages 3104–3112. Curran Associates, Inc. 22

[Sutton et al., 2000] Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour,
Y. (2000). Policy gradient methods for reinforcement learning with function
approximation. In Advances in Neural Information Processing Systems (NIPS),
pages 1057–1063. 16

BIBLIOGRAPHY 143

[Swietojanski et al., 2012] Swietojanski, P., Ghoshal, A., and Renals, S. (2012).
Unsupervised cross-lingual knowledge transfer in dnn-based lvcsr. In IEEE
Workshop on Spoken Language Technology (SLT), pages 246–251. 72

[Szeliski, 2010] Szeliski, R. (2010). Computer vision: algorithms and applications.
Springer Science & Business Media. 39

[Tahon and Devillers, 2016] Tahon, M. and Devillers, L. (2016). Towards a small
set of robust acoustic features for emotion recognition: Challenges. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 24(1):16–28. 55

[Tajbakhsh et al., 2016] Tajbakhsh, N., Shin, J. Y., Gurudu, S. R., Hurst, R. T.,
Kendall, C. B., Gotway, M. B., and Liang, J. (2016). Convolutional neural
networks for medical image analysis: Full training or fine tuning? IEEE
Transactions on Medical Imaging, 35(5):1299–1312. 72

[Taylor and Stone, 2009] Taylor, M. E. and Stone, P. (2009). Transfer learning
for reinforcement learning domains: A survey. Journal of Machine Learning
Research (JMLR), 10(Jul):1633–1685. 32

[Terekhov et al., 2015] Terekhov, A. V., Montone, G., and O’Regan, J. K. (2015).
Knowledge Transfer in Deep Block-Modular Neural Networks, pages 268–279.
Springer. 36, 94, 95

[Thorburn, 1918] Thorburn, W. M. (1918). The myth of occam’s razor. Mind,
27(107):345–353. 13

[Thrun, 1996] Thrun, S. (1996). Is learning the n-th thing any easier than learning
the first? In Advances in Neural Information Processing Systems (NIPS), pages
640–646, Cambridge, MA, USA. MIT Press. 33, 36, 93

[Thrun and Mitchell, 1995] Thrun, S. and Mitchell, T. M. (1995). Lifelong robot
learning. Robotics and Autonomous Systems, 15(1):25–46. 4, 33, 36, 93

[Tian et al., 2015a] Tian, L., Moore, J., and Lai, C. (2015a). Emotion recognition
in spontaneous and acted dialogues. In International Conference on Affective
Computing and Intelligent Interaction (ACII), pages 698–704. 56

[Tian et al., 2015b] Tian, L., Moore, J. D., and Lai, C. (2015b). Recognizing emo-
tions in dialogues with acoustic and lexical features. In International Conference
on Affective Computing and Intelligent Interaction (ACII), pages 737–742. 56,
81

BIBLIOGRAPHY 144

[Tieleman and Hinton, 2012] Tieleman, T. and Hinton, G. E. (2012). Lecture
6.5-rmsprop: Divide the gradient by a running average of its recent magnitude.
COURSERA: Neural Networks for Machine Learning, 4. 17, 19

[Torralba et al., 2008] Torralba, A., Fergus, R., and Freeman, W. T. (2008). 80
million tiny images: A large data set for nonparametric object and scene recogni-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
30(11):1958–1970. 146

[Turing, 1950] Turing, A. M. (1950). Computing machinery and intelligence. Mind,
59(236):433–460. 2

[van der Maaten, 2009] van der Maaten, L. (2009). Feature Extraction from Visual
Data. PhD thesis, Universiteit van Tilburg. 40

[Vapnik, 2000] Vapnik, V. (2000). The Nature of Statistical Learning Theory.
Springer-Verlag. 10

[Vapnik and Chervonenkis, 2015] Vapnik, V. N. and Chervonenkis, A. Y. (2015).
On the Uniform Convergence of Relative Frequencies of Events to Their Proba-
bilities, pages 11–30. Springer. 13

[Ververidis and Kotropoulos, 2006] Ververidis, D. and Kotropoulos, C. (2006).
Emotional speech recognition: Resources, features, and methods. Speech Com-
munication, 48(9):1162–1181. 54, 55

[Viterbi, 1967] Viterbi, A. (1967). Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm. IEEE Transactions on Information
Theory, 13(2):260–269. 49

[Vlasenko et al., 2007] Vlasenko, B., Schuller, B., Wendemuth, A., and Rigoll, G.
(2007). Frame vs. turn-level: emotion recognition from speech considering static
and dynamic processing. In International Conference on Affective Computing
and Intelligent Interaction (ACII), pages 139–147. Springer. 55

[Wang and Zheng, 2015] Wang, D. and Zheng, T. F. (2015). Transfer learning
for speech and language processing. In Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference (APSIPA), pages 1225–
1237. 72, 73

[Werbos, 1988] Werbos, P. J. (1988). Generalization of backpropagation with
application to a recurrent gas market model. Neural Networks, 1(4):339–356. 32

BIBLIOGRAPHY 145

[Wilamowski and Yu, 2010] Wilamowski, B. M. and Yu, H. (2010). Neural network
learning without backpropagation. IEEE Transactions on Neural Networks,
21(11):1793–1803. 26

[Williams, 1992] Williams, R. J. (1992). Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning. In Reinforcement Learning,
pages 5–32. Springer. 16

[Wolpert, 1996] Wolpert, D. H. (1996). The lack of a priori distinctions between
learning algorithms. Neural computation, 8(7):1341–1390. 13

[Yao et al., 2012] Yao, K., Yu, D., Seide, F., Su, H., Deng, L., and Gong, Y. (2012).
Adaptation of context-dependent deep neural networks for automatic speech
recognition. In IEEE Workshop on Spoken Language Technology (SLT), pages
366–369. 72

[Yelin et al., 2013] Yelin, K., Honglak, L., and Provost, E. (2013). Deep learning
for robust feature generation in audiovisual emotion recognition. In IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 3687–3691. 58, 149

[Yosinski et al., 2014] Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014).
How transferable are features in deep neural networks? In Advances in Neural
Information Processing Systems (NIPS), pages 3320–3328. Curran Associates,
Inc. 32, 73

[Zeiler and Fergus, 2014] Zeiler, M. D. and Fergus, R. (2014). Visualizing and
understanding convolutional networks. In European Conference on Computer
Vision (ECCV), pages 818–833. Springer. 22, 73

[Zenke et al., 2017] Zenke, F., Poole, B., and Ganguli, S. (2017). Continual learning
through synaptic intelligence. In International Conference on Machine Learning
(ICML), volume 70, pages 3987–3995, Sydney, NSW, Australia. 36, 104

[Zhang et al., 2016] Zhang, Y., Pezeshki, M., Brakel, P., Zhang, S., Laurent, C.,
Bengio, Y., and Courville, A. (2016). Towards end-to-end speech recognition
with deep convolutional neural networks. In Interspeech. 54

Appendix A

Datasets

The datasets used in this work are presented and described herein. Appendix A.1
presents the CIFAR-10 and CIFAR-100 datasets. Appendix A.2 presents the eN-
TERFACE dataset. Appendix A.3 presents the IEMOCAP dataset. Appendix A.4
presents the ImageNet dataset. Appendix A.5 presents the SVHN dataset. Finally,
Appendix A.6 presents the TIMIT dataset.

A.1 CIFAR
The CIFAR-10 and CIFAR-100 datasets [Krizhevsky, 2009] were produced at the
University of Toronto and released in 2009. Both datasets are mutually exclusive
labelled subsets of the 80 Million Tiny Images dataset [Torralba et al., 2008]. The 80
million tiny images dataset was collected at Massachusetts Institute of Technology
(MIT) and New York University (NYU) using images returned by several search
engines for non-abstract English nouns in the lexical database WordNet [Miller,
1995]. The labels in the CIFAR-10 and CIFAR-100 datasets were obtained by
human annotators paid to label the subsets.

The CIFAR-10 and CIFAR-100 datasets consist of RGB images, of size 32× 32
pixels, labelled into 10 and 100 classes respectively. The 10 classes in the CIFAR-10
dataset are: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.
The 100 classes in the CIFAR-100 dataset are listed in Table A.1. Note that the
100 classes are clustered into 20 superclasses as indicated in Table A.1; these 20
superclasses were ignored in this work.

Each dataset comprises a training set of 50000 images and a test set of 10000
images, i.e. the CIFAR-10 dataset contains 5000 training images and 1000 test
images per class, whereas the CIFAR-100 dataset contains 500 training images and
100 test images per class. Figure A.1 illustrates images randomly drawn from the
training set of the CIFAR-10 dataset.

146

APPENDIX A. DATASETS 147

Table A.1: Classes in the CIFAR-100 dataset.

Superclass Classes

aquatic mammals beaver, dolphin, otter, seal, whale
fish aquarium fish, flatfish, ray, shark, trout
flowers orchids, poppies, roses, sunflowers,

tulips
food containers bottles, bowls, cans, cups, plates
fruit and vegetables apples, mushrooms, oranges, pears,

sweet peppers
household electrical devices clock, computer keyboard, lamp, tele-

phone, television
household furniture bed, chair, couch, table, wardrobe
insects bee, beetle, butterfly, caterpillar, cock-

roach
large carnivores bear, leopard, lion, tiger, wolf
large man-made outdoor things bridge, castle, house, road, skyscraper
large natural outdoor scenes cloud, forest, mountain, plain, sea
large omnivores and herbivores camel, cattle, chimpanzee, elephant,

kangaroo
medium-sized mammals fox, porcupine, possum, raccoon, skunk
non-insect invertebrates crab, lobster, snail, spider, worm
people baby, boy, girl, man, woman
reptiles crocodile, dinosaur, lizard, snake, turtle
small mammals hamster, mouse, rabbit, shrew, squirrel
trees maple, oak, palm, pine, willow
vehicles 1 bicycle, bus, motorcycle, pickup truck,

train
vehicles 2 lawn-mower, rocket, streetcar, tank,

tractor

APPENDIX A. DATASETS 148

truck

Figure A.1: Sample images randomly drawn from the training set of the CIFAR-10
dataset. Each row was drawn from a single class in the following order: airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

APPENDIX A. DATASETS 149

A.2 eNTERFACE
The eNTERFACE [Martin et al., 2006] dataset was recorded and released in 2005.
The dataset comprises approximately one hour of audio-visual recordings of 44 male
and female speakers reading sentences that included a strong emotional component.
The emotional component was induced by listening to a short story that evoked
a particular emotion prior to uttering the scripted sentence. There are 35 male
speakers and 9 female speakers; mostly non-native English speakers.

There are 1296 English recordings in total, categorically labelled in six emotions,
namely, anger, disgust, fear, happiness, sadness, and surprise. Only audio was used
in this work, which had a sampling frequency of 16 kHz. The training, validation,
and test sets were constructed by randomly selecting utterances from 40 speakers,
whereas the remaining four speakers were discarded due to inconsistencies in their
data.

A.3 IEMOCAP
The Interactive Emotional Dyadic Motion Capture (IEMOCAP) dataset [Busso
et al., 2008] was recorded by the Signal Analysis and Interpretation Laboratory
(SAIL) at the University of Southern California (USC) and released in 2008. The
dataset comprises 12 hours of audio-visual recordings divided into five sessions.
Each session is composed of two actors, a male and a female, performing emotional
scripts as well as improvised scenarios. In total, the dataset comprises 10039
utterances sampled at 48 kHz with an average duration of 4.5 s.

Utterances were labelled by three annotators using categorical labels. The
dataset predominantly focused on five emotions, namely, anger, happiness, sadness,
neutral, and frustration; however, annotators were not limited to these emotions
during annotation. Ground truths labels were obtained by majority voting between
the annotators, where 74.6% of the utterances were agreed upon by at least two
annotators. To be consistent with other studies on this dataset [Shah et al.,
2014,Mariooryad and Busso, 2013,Yelin et al., 2013], utterances that bore only
the following four emotions: anger, happiness, sadness, and neutral, were included,
with excitement considered as happiness, amounting to a total of 5531 utterances.

A.4 ImageNet
The ImageNet dataset [Russakovsky et al., 2015] was not used in this work, but
referred to on multiple occasions, and thus warranting a brief description here. The
dataset was collected and is maintained by researchers at Princeton University and
Stanford University. The ImageNet dataset is a large dataset of natural images

APPENDIX A. DATASETS 150

organised according to the WordNet hierarchy [Miller, 1995]. The dataset contains
over 15 million high-resolution images categorised into 20000 categories. The
images were collected from the web and annotated by human annotators using
crowd-sourcing tools. The dataset is used for a number of tasks in computer vision,
e.g., object detection and object localization.

A subset of the ImageNet dataset is used in the popular ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC) using only 1000 categories. The training
set contains 1.2 million images of variable size labelled into the 1000 categories.
The validation set comprises 50000 images of variable size labelled into the same
1000 categories. The test set is typically withheld from the public by the ILSVRC
organisers.

A.5 SVHN
The Street View House Numbers (SVHN) dataset [Netzer et al., 2011] was collected
at Google and Stanford University and released in 2011. The dataset was obtained
from a large number of Google Street View images of house numbers using a
combination of automated algorithms and crowd-sourcing tools. The dataset is
available in two formats: (1) full numbers — the original variable-sized RGB
images, as obtained from street view via a sliding window house-numbers detector,
screened and transcribed by humans from crowd-sourcing tools; (2) cropped digits
— a cropped version of the original images, of fixed size 32× 32 pixels, with a single
digit in approximately the centre of each image, although other digits may appear
on the sides of the image. The dataset consists of RGB images, of size 32 × 32
pixels, labelled into 10 classes. Each of the 10 classes denotes a digit.

The training and test sets of the SVHN dataset contain 73257 and 26032 images
respectively, and additionally, 531131 images are available that can be appended to
the training set. Figure A.2 illustrates images randomly drawn from the training
set of the SVHN dataset.

A.6 TIMIT
The TIMIT dataset [Garofolo et al., 1993] was recorded by Texas Instruments
(TI), transcribed by Massachusetts Institute of Technology (MIT), with design aid
from SRI International, under sponsorship from the Defence Advanced Research
Projects Agency — Information Science and Technology Office (DARPA-ISTO). It
was verified and prepared for release by the National Institute of Standards and
Technology (NIST), and released in 1990, with the aim of advancing Automatic
Speech Recognition (ASR) systems.

APPENDIX A. DATASETS 151

Figure A.2: Sample images randomly drawn from the training set of the SVHN
dataset. Each row represents a class or a digit 0–9 respectively.

APPENDIX A. DATASETS 152

The TIMIT dataset contains recordings of 630 speakers, of which 70% are males
and 30% are females, from eight major American English dialects, with each speaker
reading ten phonetically rich sentences, amounting to a total of 6300 utterances.
The sampling rate of all recordings is 16 kHz. Each utterance is accompanied by a
phonetic transcript. There are 61 phonemes in the TIMIT dataset.

The dataset is predeterminedly divided into mutually exclusive training and
test sets [Garofolo et al., 1993,Lee and Hon, 1989,Povey et al., 2011]. The complete
462-speaker training set, without the dialect (SA) utterances, was used as the
training set. The 50-speaker development set was used as the validation set. The
24-speaker core test set was used as the test set.

