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Microfluidic active loading of single cells enables
analysis of complex clinical specimens
Nicholas L. Calistri 1, Robert J. Kimmerling1, Seth W. Malinowski2, Mehdi Touat2, Mark M. Stevens1,3,

Selim Olcum 1, Keith L. Ligon2,4,5,6 & Scott R. Manalis1,7,8

A fundamental trade-off between flow rate and measurement precision limits performance of

many single-cell detection strategies, especially for applications that require biophysical

measurements from living cells within complex and low-input samples. To address this, we

introduce ‘active loading’, an automated, optically-triggered fluidic system that improves

measurement throughput and robustness by controlling entry of individual cells into a

measurement channel. We apply active loading to samples over a range of concentrations

(1–1000 particles μL−1), demonstrate that measurement time can be decreased by up to 20-

fold, and show theoretically that performance of some types of existing single-cell micro-

fluidic devices can be improved by implementing active loading. Finally, we demonstrate how

active loading improves clinical feasibility for acute, single-cell drug sensitivity measurements

by deploying it to a preclinical setting where we assess patient samples from normal brain,

primary and metastatic brain cancers containing a complex, difficult-to-measure mixture of

confounding biological debris.
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The high level of control offered by microfluidic devices has
proven to be valuable for single-cell biological assay
development, where measurement of individual cells or

small clusters of cells can now be performed with exquisite
fidelity. However, for platforms that incorporate on-chip detec-
tion, flow rate is governed by the bandwidth required for the
measurement, which imposes limitations on the maximum
achievable throughput. Although measurements such as fluor-
escent intensity or light scattering can approach 105 cells s−1,
biophysical methods such as spectroscopy1,2, deformability3–7,
and electrical impedance8 typically require bandwidths in the 0.1
Hz to 10 kHz range, limiting throughput to the range of 1–10,000
cells min−1 (Supplementary Table 1). Throughput for these
approaches can be raised by increasing concentration; however,
there are often biological and logistical factors that determine the
range of achievable sample concentrations. For example, samples
processed from primary tissue sources—including biopsies, fine-
needle aspirates, blood samples, patient-derived xenograft tissues,
and so on—often yield a limited number of cells of interest that
set inherent limits on the maximum achievable sample con-
centration. Additionally, the loading period of particles into a
device is limited by Poisson statistics and flow rate, which makes
dilute samples especially challenging without increasing flow rate
and sacrificing bandwidth.

To decouple this fundamental trade-off between flow rate into
the device and measurement bandwidth, we developed an
approach called “active loading” where a triggering detector
selectively isolates particles from a large, two-port sampling
channel into a second smaller measurement channel. Since the
flow rates in each channel can be independently controlled, it is
possible to set the flow rate in the measurement channel based on
the desired measurement bandwidth while dynamically control-
ling the sampling channel flow rate in order to deterministically
load particles into the measurement channel. Using bright-field
microscopy as the triggering detector and standard pressure-
driven fluidic control components, we improve the throughput
for a particle concentration of 50 μL−1 by over 10-fold without
changing the measurement bandwidth. By applying active loading
to the serial suspended microchannel resonator (sSMR), we show
that buoyant mass and growth properties can be measured from a
dilute concentration of only a few cells per microliter in 3 h. In
contrast, the same number of measurements would take over
3 days of continuous passive sampling. A key advantage of active
loading with imaging is that debris can be rejected in order to
reduce clogging and eliminate unnecessary measurement time.
We demonstrate this capability by measuring the drug sensitivity
from a range of clinical brain tissue and tumor resection samples
containing a complex mixture of confounding biological debris
after cell purification.

Results
Active loading. Multiple regions of interest (ROIs) are used to
detect particles within either the sampling or measurement
channels to enable optically triggered activation of various fluidic
“states” and isolate individual cells with a defined loading duty
cycle (Figs. 1a, 2b, Supplementary Note 1). The baseline state of
the system is a “load” state, which is functionally equivalent to the
passive fluidic approach, where the upstream and downstream
pressures applied to the sampling channel are equal and a fixed
pressure drop is maintained across the measurement channel,
thereby setting the average transit time (and the required mini-
mum bandwidth) for individual particles across the detector
within the measurement channel. In this state, the volumetric
flow into the sampling channel is identical to the flow in the
measurement channel and therefore particles are loaded into the

measurement channel in a strictly concentration-dependent
manner governed by Poisson statistics.

In order to rapidly isolate particles from a dilute sample, the
system toggles to a “seek” state. For this task, a pressure drop is
applied along the sampling channel to induce a larger volumetric
flow rate. During this adjustment, the pressure drop along the
measurement channel is unchanged in order to maintain a
constant flow rate to ensure consistent single-particle transit time
through the detector. The flow along the sampling channel
continues until a particle is detected in ROI 1, at which point the
system switches to the “load” state to capture the particle in the
measurement channel (Supplementary Movie 1). Since the
sampling channel and measurement channel flow rates are
largely decoupled, the maximum sampling channel flow rate is
limited by the frame rate of the camera used for detection
(Supplementary Notes 3, 4).

To maximize throughput, it is important to identify the next
particle available to be measured. To achieve this, the user sets a
loading duty cycle that maximizes loading throughput while
maintaining the desired measurement bandwidth. Once a particle
has entered the measurement channel (as detected by ROI 4), the
system repeats the “seek” function. However, the next particle
may be detected by ROI 1 prior to completion of the defined
loading duty cycle. This occurs for dilute samples where the next
particle is not immediately available but is found quickly by the
“seek” function as well as high-concentration samples where
multiple particles may be proximal to the measurement channel.
In order to ensure that no more than one particle is loaded per
duty cycle, the system adopts a “queue” state when a cell reaches
ROI 2, but the loading duty cycle is not yet complete
(Supplementary Movie 2). The “queue” state is characterized by
a brief flush of the particle upstream by introducing a pressure
drop along the sampling channel, at which point the system
returns to the “load” state. This function repeats as necessary to
keep the particle proximal to the measurement channel entrance
until sufficient time has elapsed, at which point it is immediately
loaded into the measurement channel. This “queue” state,
combined with detection in seek mode, is key to enabling high
throughput with evenly spaced particle sampling that is not
reliant on Poisson statistics.

Finally, to determine if a particle loaded into the measurement
channel is a particle of interest and not debris that should be
excluded from measurement, the system implements a function
driven by real-time image processing (Supplementary Movie 3).
This process relies on user-defined thresholds for particle
parameters such as cross-sectional area and x–y ratio (Supple-
mentary Note 2). When a particle is loaded into the measurement
channel, as detected by ROI 4, ROI 3 captures a bright-field image
that is assessed for these parameters. If an undesired particle is
loaded, a “reject” state is enabled whereby the pressure drop along
the measurement channel is briefly reversed in order to remove
the particle (Supplementary Movie 4, Supplementary Movie 5).
At the same time, a pressure drop is induced along the sampling
channel to flush this particle downstream and ensure that it is not
recaptured for measurement. This feature allows for the rejection
of debris loading events that would otherwise lead to failed
measurements and enables high-fidelity measurements on
samples with prohibitive amounts of biological debris or
aggregates.

To demonstrate active loading, we used the first mass sensor of
an sSMR to measure transit time of a murine lymphocytic
leukemia cell line (L1210) at a concentration of 50 μL−1 (Fig. 1b,
Supplementary Figure 1, Methods section). For passive loading,
only 22 cells h−1 were measured for a desired transit time of 800
ms, while for active loading, 386 particles h−1 were measured
without altering the transit time.
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Seek and queue functions increase concentration dynamic
range. To demonstrate the benefits of active loading for a single-
cell assay, we applied it to the sSMR for measuring mass accu-
mulation rate (MAR)9. The sSMR is well suited for active loading
since the sensor transit time is slow (typically ~600–800 ms) and
coincidence within the long (~50 cm) measurement channel
limits the maximum sample concentration (Fig. 2a, b, Supple-
mentary Figure 1). We first determined the theoretical ranges of
the concentration-dependent throughput for the sSMR with
active and passive fluidic implementations (Supplementary
Note 4). For passive loading, throughput increases for higher
concentration samples before reaching a maximum theoretical
throughput at an optimal cell concentration. Above this con-
centration threshold—which is defined by the minimum time
required between cells flowing through the sSMR—cell matching
failures begin to occur more frequently and the measurement
throughput decreases. When this limitation is included, the
active loading scheme displays a higher theoretical measurement
throughput across all sample concentrations. For dilute-cell
samples, this throughput advantage is driven largely by the
“seek” function, whereas for medium and high-concentration
samples it is driven largely by the “queue” functionality, which
ensures sufficient spacing between cells to maintain cell match-
ing fidelity and prevent co-occupancy of the measurement
sensors.

These theoretical throughput improvements were tested
experimentally by collecting single-cell MAR measurements for
L1210 cells seeded at various concentrations (Fig. 2c). For high-
concentration samples (above ~50 cells μL−1), we found that the
system performed near the theoretical maximum throughput. For
samples of moderate concentration, the advantage of active
loading is particularly pronounced: for a sample concentration of
10 cells μL−1, the throughput increased from eight cells per hour
for passive fluidic loading to ~100 cells h−1 using active loading.

To demonstrate the utility of the cell-seeking functionality, we
collected single-cell MAR measurements for a sample containing
approximately 100 L1210 cells in 50 μL of media (2 cells μL−1)
(Fig. 2d). Over the course of a 3-h experiment, 47 of these cells
were isolated for measurement, a data set that would have
required approximately 21 h to collect with passive loading.
Furthermore, the fluidic manipulation necessary to conduct this
cell-seeking routine did not appear to introduce excessive stress
on the cells as there were no significant differences in mass or
MAR measurements observed as compared to L1210 cells
measured with passive loading (Fig. 2d). In an analogous
experiment using a 100 μL sample with approximately 270
hematopoietic cells (2.7 cells μL−1) from a murine pro-B cell
line (BaF3), we collected 165 MAR measurements over 3 h
(Supplementary Fig. 2). With passive loading, this experiment
would have taken >3 days, which would have impacted cell
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Fig. 1 Schematic of active loading by optically triggered fluidic state switching. a Regions of interest (ROIs) are labeled as colored boxes. ROI 1 (green) is
used to detect particles when in the “seek” state. Detection of a particle at traveling at a high flow rate in the sampling channel by ROI 1 causes a temporary
change to the default “load” state, and reverts following entrance of a single particle into the measurement channel as detected by ROI 4 (purple). ROI 2
(yellow) maintains the presence of a single particle in the sampling channel for the next loading duty cycle. As a single particle is detected by ROI 2 while in
the “load” state it triggers adoption of a “queue” state, which bumps the cell back in the sampling channel before reverting to the “load” state. This
continues until the duty cycle is complete. ROI 4 (purple) and ROI 3 (red) work together to detect entrance into the measurement channel and the
presence of debris or doublet events, respectively. Once ROI 4 detects entrance of a particle in the “load” state, ROI 3 quickly images the event, switching
to the “reject” state if the particles geometry or contrast is outside previously set parameters defining an unwanted particle. b Comparison between passive
throughput (22 cells h−1, 95% CI: 13, 39, n= 9) and active loading (386 cells h−1, 95% CI: 354, 433, n= 247) for murine L1210 cells (50 μL−1) flowing
through a transit time detector in the measurement channel (Supplementary Fig. 1, see Methods). Zoom-in plots show passage of a single cell with a
predefined transit time of ~800ms
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growth dynamics, emphasizing the relevance of substantial
throughput gains that are possible with active loading for devices
where sampling and measurement flow rates are constrained.

Despite orders of magnitude throughput improvements
demonstrated for dilute-cell samples, the throughput did not
reach the theoretical limit depicted in Fig. 2c. This is due to non-
zero response times of the pneumatic controls, which occasionally
causes a cell detected in ROI 1 (Fig. 1a) to overshoot the
measurement channel entrance. This overshoot is corrected with
a brief flow reversal in the sampling channel, a process that
slightly increases the average time between cell loading events
(Supplementary Note 3).

Rejection function reduces clogging from debris. A number of
confounding factors preclude microfluidic technologies from
being able to analyze single cells from heterogeneous patient
biopsy samples. First, the number of cells that one can isolate
from samples is highly variable, and often limited by either the
biopsy sample size or isolation protocols. Additionally, primary
samples generally present with a high level of biological debris
and particulate aggregation, which limit flow rate by clogging the
fluidic channels10. Sample debris and aggregation issues may be
further exacerbated by ex vivo drug treatment of primary cells

given that sensitive cells may undergo necrosis or apoptosis
leading to fragmentation (mechanism dependent).

Prior work demonstrates the capacity of MAR to define the
therapeutic response of multiple myeloma patients to standard-
of-care therapies11; however, solid tumors have remained difficult
to measure. To determine whether active loading improves the
feasibility of single-cell measurements on heterogeneous primary
patient, we deployed sSMR devices with active loading to a
preclinical laboratory setting at Dana-Farber Cancer Institute.
Using established protocols for isolating single cells from primary
tissue samples12 (Fig. 3a, Methods section, Supplementary
Note 7), active loading enabled the sSMR to measure cell mass
and MAR for a diverse range of clinical brain tissue and cancer
samples exposed to either a standard-of-care therapy or
experimental therapy currently in clinical trial (Supplementary
Note 8). Measurements were obtained from five types of primary
patient sample types including non-tumor brain tissue resected
for a non-tumor condition (n= 1), primary and recurrent
glioblastoma13,14 (n= 2), metastatic breast adenocarcinoma15

(n= 1), metastatic non-small-cell lung cancer16 (n= 1) and
primary central nervous system (CNS) lymphoma17 (n= 1)
(Fig. 3b,c, Supplementary Notes 9–14). Measurements were made
in a median time frame of 9 days following surgery (range of
2–18 days). Overall, we were able to measure mass and MAR
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Fig. 2 Active loading enables single-cell growth measurements of dilute samples. a Schematic of the serial suspended microchannel resonator (sSMR).
Sampling channels on either side of the device (100 μm wide and 30 μm deep) are each accessed via two ports with independent pressure control to
achieve the fluidic states presented in b. These sample channels are connected with a serpentine channel (50 cm long, 20 μm wide, and 25 μm high) with
10–12 SMR mass sensors spaced evenly along its length. Mass accumulation rate (MAR) is calculated by taking the slope of the linear least squares fit of
mass measurements collected from individual SMRs as a function of time for each single-cell trajectory. b COMSOL models demonstrating the flow
characteristics of the four different fluidic states presented in Fig. 1a. The model shows the T-junction entrance of the sSMR, outlined with a red box in
a. Flow patterns were modeled using the volumetric flow rates described in Supplementary Note 4 to recapitulate experimental conditions. c Comparison
of theoretical throughput limits (solid and dashed lines for active and passive loading, respectively) with experimental results (solid points and open
squares for active and passive loading, respectively) for samples with 1, 10, 50, 100, and 1000 L1210 cells μL−1 (n= 15, 105, 143, 149, and 83 for active
loading and n= 1, 8, 64, 87, and 309 for passive loading) collected with a 15 s minimum spacing. The theoretical model is based on a 15 s duty cycle
(Supplementary Note 4). Measurement error bars represent the 95% CI (two-tailed t test) of loading period (s) converted to throughput (events h−1).
Each concentration was measured continuously for at least 20min. The passive loading sample at 1000 cells μL−1 had a throughput of 747 cells h−1, 95%
CI: 673, 832. d Dot plot of MAR vs. mass comparing L1210 cells measured from standard, growth-phase culture concentrations (100 cells μL−1, gray circles,
n= 426), or from samples with low concentration and low total cell count (~2 cells μL−1, 100 total cells, open red circles, n= 47)

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07283-x

4 NATURE COMMUNICATIONS |          (2018) 9:4784 | DOI: 10.1038/s41467-018-07283-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


from 1092 cells with an average of 84 cells measured per
condition over 13 conditions tested. (Fig. 3b, c). The buoyant
mass, MAR, and mass-normalized MAR of each drug-treated
sample were compared with a paired vehicle control and
significance was calculated using the Wilcoxon's signed-rank test.

The “rejection” capability of active loading was essential in
performing sSMR measurements on the primary biopsies, as they
contained a high amount of undesirable debris and cell aggregates
that could prematurely terminate measurements by clogging the
measurement channel. All six primary samples had images
recorded and annotated of every particle accepted or rejected by
the real-time Labview code. These images were manually
reviewed and compared with the real-time determination to
quantify the success rate at identifying unwanted particles in real
time (Supplementary Note 5). For the six primary samples
measured, the overall success rate for the real-time analysis code
was 86% for correctly identifying single cells and allowing them to
continue through the measurement channel.

No change in mass nor MAR was observed in cells isolated
from the normal brain treated with TMZ (250 μM, 72 h). Normal
brain tissue is non-proliferative, and was used as a negative
control for both drug response and baseline in vitro growth.
Similarly, no significant change was observed in the primary CNS

lymphoma treated with ibrutinib (10 nM, 48 h), or the newly
diagnosed glioblastoma treated with TMZ (250 μM, 8 days).
Mass-normalized MAR was significantly reduced for the
recurrent glioblastoma (p= 0.032) treated with abemaciclib (1
μM, 72 h), breast metastasis (p= 0.029) treated with abemaciclib
(100 nM, 72 h), and the lung metastasis sample (p= 0.025)
treated with carboplatin (100 μM, 72 h). Although this was not a
directed study to investigate the effects of therapies on primary
cells, active loading improved throughput and enabled measure-
ment of previously incompatible tissues. Future studies are
needed in order to determine if the mass and MAR biomarkers
can predict individual patient response to standard-of-care and
experimental therapies.

Discussion
Although numerous methods exist for tissue dissociation and pre-
enrichment (e.g. centrifugation, filtration, and magnetic-activated
cell sorting (MACS)), they often yield imperfect sample pur-
ification by leaving behind significant biological debris or cellular
aggregates that make it challenging to analyze or manipulate
single cells within microfluidics. The active loading approach
presented here improves throughput of single-cell assays by
reducing clogging events from debris or aggregates and
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Fig. 3 Ex vivo drug sensitivity testing of patient resections. a Sample processing pipeline for sSMR measurement with active loading. Tumor cells were
isolated from patient resection specimens using established protocols12 (see Methods, Supplementary Note 7) for dissociation into single-cell suspension
and allowed to recover for at least 24 h before the addition of drug or vehicle control. On subsequent days, the buoyant mass and MAR were measured for
both the control and drug-treated fractions. b Tukey's box plot showing the buoyant mass measurements for primary biopsies of different brain lesions.
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values from the same primary tissue samples shown in b. Statistically significant reductions in MAR per mass (*p < 0.05 in highlighted segments)
were observed for the recurrent glioblastoma treated with 1 μM abemaciclib for 72 h (p= 0.032), breast metastasis treated with 100 nM abemaciclib
(p= 0.029), and lung metastasis treated with 100 μM carboplatin (p= 0.025). All other drug-control comparisons did not show a statistically significant
response. Additional information about the handling of each primary sample can be found in Supplementary Note 7 and exact p values can be found in
Supplementary Notes 9–14. For both b, c, the center line shows median value, hinges represent the first and third quartiles, and whiskers extend to the
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circumventing limitations imposed by Poisson statistics for
loading cells into the measurement channel. For the preclinical
studies shown in Fig. 3, we utilized MACS-based cell enrichment
and debris depletion upstream of the sSMR assay and found that
these samples were still not easily measured without real-time
debris rejection enabled by active loading. Thus, active loading is
intended to supplement these existing purification methods to
enable live-cell measurements from minimally processed and
low-input clinical samples. Although the sSMR was used here,
active loading could be used to improve performance of other
single-cell measurement platforms provided that optical hardware
required for imaging can be accommodated. However, benefits
from circumventing limitations imposed by Poisson statistics
only become meaningful when the necessary measurement time
is more than ~100 ms, which is often the case for biophysical
measurements (Supplementary Note 3).

While the implementation described here utilizes bright-field
imaging with a low-cost camera for label-free detection (Sup-
plementary Note 6), future iterations of active loading could
achieve higher throughput by triggering with faster cameras or
utilize fluorescent intensity readout with a photo-multiplier tube
(Supplementary Note 3). Additionally, beyond basic geometry-
based particle identification used here, improved image-
processing algorithms could be used to generate more stringent
classification criteria to better exclude debris and isolate cells of
interest. Given the rapidly increasing number of microfluidic
devices and single-cell assays in development for medical use,
these universal improvements should be a benefit to the broader
community.

Methods
Image analysis. Live images are acquired using a monochrome camera (BFS-U3-
13Y3M-C, FLIR). Custom software coded in LabVIEW 2017 (National Instru-
ments) is used to analyze images in real-time and integrate the image feedback with
automated pneumatic control. A standard computer equipped with a 2015 4-core
CPU with 8 Gb of RAM was capable of analyzing at least 60 frames s−1 stably.
Settings specific to the image-processing code were calibrated using a suspension of
polystyrene beads (Duke Scientific, #4207A) prior to loading biological samples on
the sSMR.

Pneumatic control. The sSMR features four fluidic ports. These ports connect to
pneumatically sealed satellite reservoirs containing media or sample in sterile
secondary vials. Independent electronic pressure regulators (QPV1TFEE030CXL,
Proportion Air) control the pressure within the reservoir, which drives flow across
the sSMR. Regulators are supplied with 5% CO2 gas, and the microfluidic chip and
satellite reservoirs are kept at 37℃ using custom aluminum heat exchangers to
maintain incubator-like conditions.

Sample preparation. All liquids were filtered with 0.2-μm filters prior to use in the
PDMS device or in cell culture. L1210 (murine lymphocytic leukemia, 87092804-
1VL, ECACC/Sigma-Aldrich) and BaF3 (murine pro-B, Riken BioResource Center)
cells were cultured in RPMI-1640 with L-glutamine (11875-093, Gibco) with added
10% dialyzed fetal bovine serum (F0392-500 mL, Sigma), 25 mM HEPES (15630-
080, Gibco), and 1% ABAM (15240-062, Gibco). Cells are prepared by centrifuging
for 5 min at 200 x g, removing the supernatant, and resuspension in fresh pre-
warmed complete RPMI as defined above. These cell lines were not tested for
mycoplasma contamination or authenticated.

Patient-derived cells from six different types of brain tissues were assessed for
drug sensitivity in the sSMR: non-tumor brain tissue from epilepsy surgery,
glioblastoma, recurrent glioblastoma, breast metastasis, lung metastasis, and
primary CNS lymphoma. Resected samples were obtained with patient consent to
research (Brigham and Women’s Hospital, DF/HCC IRB-approved consent
protocol 10-417) were enzymatically and physically dissociated using the Brain
Tumor Dissociation Kit P (130-095-942, Miltenyi Biotec) and gentleMACS
Dissociator (130-093-235, Miltenyi Biotec). Cells were cultured in Neurocult NS-A
proliferation media (05702, Stemcell Technologies) containing 20 ng mL−1

epidermal growth factor (130-093-825, Miltenyi Biotec) and 10 ng mL−1 fibroblast
growth factor (130-093-564, Miltenyi Biotec).

After at least 48 h in culture (with the exception of CNS lymphoma which was
cultured for 24 h), persistent red blood cells were removed with RBC lysis buffer
(00-433-57, Thermo Fisher Scientific). The remaining cells were then dissociated
with Accutase (A6964, Sigma-Aldrich) and further purified via demyelination

(130-096-733, Miltenyi Biotec) with mass spectrometry separation columns (130-
042-201, Miltenyi Biotec), or debris removal (130-109-398, Miltenyi Biotec). The
purified cells were plated in 6-well or 24-well plates and allowed to recover in the
well plate for 48–96 h before addition of the drug. Specific timelines in culture and
drugging regimens for each tissue type can be found in Supplementary Note 7.
Prior to loading samples on the sSMR for drug response measurements, cells were
dissociated into a single-cell suspension using Accutase and gentle pipetting. Cells
were resuspended at a concentration of 100,000 cells mL−1 in Neurocult NS-A (as
prepared above) with the same concentration of drug or DMSO as their respective
culture.

Device preparation. The sSMR is cleaned prior to each experiment with 10%
bleach for 10 min, followed by a 20-min rinse with DI-H2O. Persistent biological
debris is removed with 0.25% Trypsin-EDTA. After cleaning, the device is passi-
vated with 1 mgmL−1 PLL-g-PEG in H2O for 10 min at 37℃.

SMR measurements for transit time detection. To detect cells and characterize
transit time in Fig. 1, resonant frequency data was collected from the first cantilever
of a sSMR (Supplementary Figure 1). Savitsky–Golay and nonlinear high-pass
filters were used to isolate mass signals from measurement noise8, and subsequent
median filtering (frame length of 49) and threshold detection were implemented
such that all below-threshold points were set to zero and all above-threshold points
were set to one. These filtered data provide a binary characterization of SMR
occupancy seeing as the resonant frequency shifts caused by cell transit led to
above-threshold measurements. Single-cell transit times were subsequently quan-
tified by determining the number of consecutive above-threshold measurements
collected for each cell.

Code availability. Hardware control and analysis code is available from corre-
sponding author S.R.M. upon reasonable request.

Data availability
Data supporting the findings of this study are available from the corresponding
author upon reasonable request.
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